1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
55 #define DRV_VERSION "1.0.2-k4"
56 char e1000e_driver_name
[] = "e1000e";
57 const char e1000e_driver_version
[] = DRV_VERSION
;
59 static const struct e1000_info
*e1000_info_tbl
[] = {
60 [board_82571
] = &e1000_82571_info
,
61 [board_82572
] = &e1000_82572_info
,
62 [board_82573
] = &e1000_82573_info
,
63 [board_82574
] = &e1000_82574_info
,
64 [board_82583
] = &e1000_82583_info
,
65 [board_80003es2lan
] = &e1000_es2_info
,
66 [board_ich8lan
] = &e1000_ich8_info
,
67 [board_ich9lan
] = &e1000_ich9_info
,
68 [board_ich10lan
] = &e1000_ich10_info
,
69 [board_pchlan
] = &e1000_pch_info
,
72 struct e1000_reg_info
{
77 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
78 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
79 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
80 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
81 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
83 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
84 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
85 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
86 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
87 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
89 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
91 /* General Registers */
93 {E1000_STATUS
, "STATUS"},
94 {E1000_CTRL_EXT
, "CTRL_EXT"},
96 /* Interrupt Registers */
100 {E1000_RCTL
, "RCTL"},
101 {E1000_RDLEN
, "RDLEN"},
104 {E1000_RDTR
, "RDTR"},
105 {E1000_RXDCTL(0), "RXDCTL"},
107 {E1000_RDBAL
, "RDBAL"},
108 {E1000_RDBAH
, "RDBAH"},
109 {E1000_RDFH
, "RDFH"},
110 {E1000_RDFT
, "RDFT"},
111 {E1000_RDFHS
, "RDFHS"},
112 {E1000_RDFTS
, "RDFTS"},
113 {E1000_RDFPC
, "RDFPC"},
116 {E1000_TCTL
, "TCTL"},
117 {E1000_TDBAL
, "TDBAL"},
118 {E1000_TDBAH
, "TDBAH"},
119 {E1000_TDLEN
, "TDLEN"},
122 {E1000_TIDV
, "TIDV"},
123 {E1000_TXDCTL(0), "TXDCTL"},
124 {E1000_TADV
, "TADV"},
125 {E1000_TARC(0), "TARC"},
126 {E1000_TDFH
, "TDFH"},
127 {E1000_TDFT
, "TDFT"},
128 {E1000_TDFHS
, "TDFHS"},
129 {E1000_TDFTS
, "TDFTS"},
130 {E1000_TDFPC
, "TDFPC"},
132 /* List Terminator */
137 * e1000_regdump - register printout routine
139 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
145 switch (reginfo
->ofs
) {
146 case E1000_RXDCTL(0):
147 for (n
= 0; n
< 2; n
++)
148 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
150 case E1000_TXDCTL(0):
151 for (n
= 0; n
< 2; n
++)
152 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
155 for (n
= 0; n
< 2; n
++)
156 regs
[n
] = __er32(hw
, E1000_TARC(n
));
159 printk(KERN_INFO
"%-15s %08x\n",
160 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
164 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
165 printk(KERN_INFO
"%-15s ", rname
);
166 for (n
= 0; n
< 2; n
++)
167 printk(KERN_CONT
"%08x ", regs
[n
]);
168 printk(KERN_CONT
"\n");
173 * e1000e_dump - Print registers, tx-ring and rx-ring
175 static void e1000e_dump(struct e1000_adapter
*adapter
)
177 struct net_device
*netdev
= adapter
->netdev
;
178 struct e1000_hw
*hw
= &adapter
->hw
;
179 struct e1000_reg_info
*reginfo
;
180 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
181 struct e1000_tx_desc
*tx_desc
;
182 struct my_u0
{ u64 a
; u64 b
; } *u0
;
183 struct e1000_buffer
*buffer_info
;
184 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
185 union e1000_rx_desc_packet_split
*rx_desc_ps
;
186 struct e1000_rx_desc
*rx_desc
;
187 struct my_u1
{ u64 a
; u64 b
; u64 c
; u64 d
; } *u1
;
191 if (!netif_msg_hw(adapter
))
194 /* Print netdevice Info */
196 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
197 printk(KERN_INFO
"Device Name state "
198 "trans_start last_rx\n");
199 printk(KERN_INFO
"%-15s %016lX %016lX %016lX\n",
206 /* Print Registers */
207 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
208 printk(KERN_INFO
" Register Name Value\n");
209 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
210 reginfo
->name
; reginfo
++) {
211 e1000_regdump(hw
, reginfo
);
214 /* Print TX Ring Summary */
215 if (!netdev
|| !netif_running(netdev
))
218 dev_info(&adapter
->pdev
->dev
, "TX Rings Summary\n");
219 printk(KERN_INFO
"Queue [NTU] [NTC] [bi(ntc)->dma ]"
220 " leng ntw timestamp\n");
221 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
222 printk(KERN_INFO
" %5d %5X %5X %016llX %04X %3X %016llX\n",
223 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
224 (u64
)buffer_info
->dma
,
226 buffer_info
->next_to_watch
,
227 (u64
)buffer_info
->time_stamp
);
230 if (!netif_msg_tx_done(adapter
))
231 goto rx_ring_summary
;
233 dev_info(&adapter
->pdev
->dev
, "TX Rings Dump\n");
235 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
237 * Legacy Transmit Descriptor
238 * +--------------------------------------------------------------+
239 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
240 * +--------------------------------------------------------------+
241 * 8 | Special | CSS | Status | CMD | CSO | Length |
242 * +--------------------------------------------------------------+
243 * 63 48 47 36 35 32 31 24 23 16 15 0
245 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
246 * 63 48 47 40 39 32 31 16 15 8 7 0
247 * +----------------------------------------------------------------+
248 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
249 * +----------------------------------------------------------------+
250 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
251 * +----------------------------------------------------------------+
252 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
254 * Extended Data Descriptor (DTYP=0x1)
255 * +----------------------------------------------------------------+
256 * 0 | Buffer Address [63:0] |
257 * +----------------------------------------------------------------+
258 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
259 * +----------------------------------------------------------------+
260 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
262 printk(KERN_INFO
"Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
263 " [bi->dma ] leng ntw timestamp bi->skb "
264 "<-- Legacy format\n");
265 printk(KERN_INFO
"Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
266 " [bi->dma ] leng ntw timestamp bi->skb "
267 "<-- Ext Context format\n");
268 printk(KERN_INFO
"Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
269 " [bi->dma ] leng ntw timestamp bi->skb "
270 "<-- Ext Data format\n");
271 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
272 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
273 buffer_info
= &tx_ring
->buffer_info
[i
];
274 u0
= (struct my_u0
*)tx_desc
;
275 printk(KERN_INFO
"T%c[0x%03X] %016llX %016llX %016llX "
276 "%04X %3X %016llX %p",
277 (!(le64_to_cpu(u0
->b
) & (1<<29)) ? 'l' :
278 ((le64_to_cpu(u0
->b
) & (1<<20)) ? 'd' : 'c')), i
,
279 le64_to_cpu(u0
->a
), le64_to_cpu(u0
->b
),
280 (u64
)buffer_info
->dma
, buffer_info
->length
,
281 buffer_info
->next_to_watch
, (u64
)buffer_info
->time_stamp
,
283 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
284 printk(KERN_CONT
" NTC/U\n");
285 else if (i
== tx_ring
->next_to_use
)
286 printk(KERN_CONT
" NTU\n");
287 else if (i
== tx_ring
->next_to_clean
)
288 printk(KERN_CONT
" NTC\n");
290 printk(KERN_CONT
"\n");
292 if (netif_msg_pktdata(adapter
) && buffer_info
->dma
!= 0)
293 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
294 16, 1, phys_to_virt(buffer_info
->dma
),
295 buffer_info
->length
, true);
298 /* Print RX Rings Summary */
300 dev_info(&adapter
->pdev
->dev
, "RX Rings Summary\n");
301 printk(KERN_INFO
"Queue [NTU] [NTC]\n");
302 printk(KERN_INFO
" %5d %5X %5X\n", 0,
303 rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
306 if (!netif_msg_rx_status(adapter
))
309 dev_info(&adapter
->pdev
->dev
, "RX Rings Dump\n");
310 switch (adapter
->rx_ps_pages
) {
314 /* [Extended] Packet Split Receive Descriptor Format
316 * +-----------------------------------------------------+
317 * 0 | Buffer Address 0 [63:0] |
318 * +-----------------------------------------------------+
319 * 8 | Buffer Address 1 [63:0] |
320 * +-----------------------------------------------------+
321 * 16 | Buffer Address 2 [63:0] |
322 * +-----------------------------------------------------+
323 * 24 | Buffer Address 3 [63:0] |
324 * +-----------------------------------------------------+
326 printk(KERN_INFO
"R [desc] [buffer 0 63:0 ] "
328 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
329 "[bi->skb] <-- Ext Pkt Split format\n");
330 /* [Extended] Receive Descriptor (Write-Back) Format
332 * 63 48 47 32 31 13 12 8 7 4 3 0
333 * +------------------------------------------------------+
334 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
335 * | Checksum | Ident | | Queue | | Type |
336 * +------------------------------------------------------+
337 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
338 * +------------------------------------------------------+
339 * 63 48 47 32 31 20 19 0
341 printk(KERN_INFO
"RWB[desc] [ck ipid mrqhsh] "
343 "[ l3 l2 l1 hs] [reserved ] ---------------- "
344 "[bi->skb] <-- Ext Rx Write-Back format\n");
345 for (i
= 0; i
< rx_ring
->count
; i
++) {
346 buffer_info
= &rx_ring
->buffer_info
[i
];
347 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
348 u1
= (struct my_u1
*)rx_desc_ps
;
350 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
351 if (staterr
& E1000_RXD_STAT_DD
) {
352 /* Descriptor Done */
353 printk(KERN_INFO
"RWB[0x%03X] %016llX "
354 "%016llX %016llX %016llX "
355 "---------------- %p", i
,
362 printk(KERN_INFO
"R [0x%03X] %016llX "
363 "%016llX %016llX %016llX %016llX %p", i
,
368 (u64
)buffer_info
->dma
,
371 if (netif_msg_pktdata(adapter
))
372 print_hex_dump(KERN_INFO
, "",
373 DUMP_PREFIX_ADDRESS
, 16, 1,
374 phys_to_virt(buffer_info
->dma
),
375 adapter
->rx_ps_bsize0
, true);
378 if (i
== rx_ring
->next_to_use
)
379 printk(KERN_CONT
" NTU\n");
380 else if (i
== rx_ring
->next_to_clean
)
381 printk(KERN_CONT
" NTC\n");
383 printk(KERN_CONT
"\n");
388 /* Legacy Receive Descriptor Format
390 * +-----------------------------------------------------+
391 * | Buffer Address [63:0] |
392 * +-----------------------------------------------------+
393 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
394 * +-----------------------------------------------------+
395 * 63 48 47 40 39 32 31 16 15 0
397 printk(KERN_INFO
"Rl[desc] [address 63:0 ] "
398 "[vl er S cks ln] [bi->dma ] [bi->skb] "
399 "<-- Legacy format\n");
400 for (i
= 0; rx_ring
->desc
&& (i
< rx_ring
->count
); i
++) {
401 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
402 buffer_info
= &rx_ring
->buffer_info
[i
];
403 u0
= (struct my_u0
*)rx_desc
;
404 printk(KERN_INFO
"Rl[0x%03X] %016llX %016llX "
406 i
, le64_to_cpu(u0
->a
), le64_to_cpu(u0
->b
),
407 (u64
)buffer_info
->dma
, buffer_info
->skb
);
408 if (i
== rx_ring
->next_to_use
)
409 printk(KERN_CONT
" NTU\n");
410 else if (i
== rx_ring
->next_to_clean
)
411 printk(KERN_CONT
" NTC\n");
413 printk(KERN_CONT
"\n");
415 if (netif_msg_pktdata(adapter
))
416 print_hex_dump(KERN_INFO
, "",
418 16, 1, phys_to_virt(buffer_info
->dma
),
419 adapter
->rx_buffer_len
, true);
428 * e1000_desc_unused - calculate if we have unused descriptors
430 static int e1000_desc_unused(struct e1000_ring
*ring
)
432 if (ring
->next_to_clean
> ring
->next_to_use
)
433 return ring
->next_to_clean
- ring
->next_to_use
- 1;
435 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
439 * e1000_receive_skb - helper function to handle Rx indications
440 * @adapter: board private structure
441 * @status: descriptor status field as written by hardware
442 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
443 * @skb: pointer to sk_buff to be indicated to stack
445 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
446 struct net_device
*netdev
,
448 u8 status
, __le16 vlan
)
450 skb
->protocol
= eth_type_trans(skb
, netdev
);
452 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
453 vlan_gro_receive(&adapter
->napi
, adapter
->vlgrp
,
454 le16_to_cpu(vlan
), skb
);
456 napi_gro_receive(&adapter
->napi
, skb
);
460 * e1000_rx_checksum - Receive Checksum Offload for 82543
461 * @adapter: board private structure
462 * @status_err: receive descriptor status and error fields
463 * @csum: receive descriptor csum field
464 * @sk_buff: socket buffer with received data
466 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
467 u32 csum
, struct sk_buff
*skb
)
469 u16 status
= (u16
)status_err
;
470 u8 errors
= (u8
)(status_err
>> 24);
471 skb
->ip_summed
= CHECKSUM_NONE
;
473 /* Ignore Checksum bit is set */
474 if (status
& E1000_RXD_STAT_IXSM
)
476 /* TCP/UDP checksum error bit is set */
477 if (errors
& E1000_RXD_ERR_TCPE
) {
478 /* let the stack verify checksum errors */
479 adapter
->hw_csum_err
++;
483 /* TCP/UDP Checksum has not been calculated */
484 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
487 /* It must be a TCP or UDP packet with a valid checksum */
488 if (status
& E1000_RXD_STAT_TCPCS
) {
489 /* TCP checksum is good */
490 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
493 * IP fragment with UDP payload
494 * Hardware complements the payload checksum, so we undo it
495 * and then put the value in host order for further stack use.
497 __sum16 sum
= (__force __sum16
)htons(csum
);
498 skb
->csum
= csum_unfold(~sum
);
499 skb
->ip_summed
= CHECKSUM_COMPLETE
;
501 adapter
->hw_csum_good
++;
505 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
506 * @adapter: address of board private structure
508 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
511 struct net_device
*netdev
= adapter
->netdev
;
512 struct pci_dev
*pdev
= adapter
->pdev
;
513 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
514 struct e1000_rx_desc
*rx_desc
;
515 struct e1000_buffer
*buffer_info
;
518 unsigned int bufsz
= adapter
->rx_buffer_len
;
520 i
= rx_ring
->next_to_use
;
521 buffer_info
= &rx_ring
->buffer_info
[i
];
523 while (cleaned_count
--) {
524 skb
= buffer_info
->skb
;
530 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
532 /* Better luck next round */
533 adapter
->alloc_rx_buff_failed
++;
537 buffer_info
->skb
= skb
;
539 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
540 adapter
->rx_buffer_len
,
542 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
543 dev_err(&pdev
->dev
, "RX DMA map failed\n");
544 adapter
->rx_dma_failed
++;
548 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
549 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
551 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
553 * Force memory writes to complete before letting h/w
554 * know there are new descriptors to fetch. (Only
555 * applicable for weak-ordered memory model archs,
559 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
562 if (i
== rx_ring
->count
)
564 buffer_info
= &rx_ring
->buffer_info
[i
];
567 rx_ring
->next_to_use
= i
;
571 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
572 * @adapter: address of board private structure
574 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
577 struct net_device
*netdev
= adapter
->netdev
;
578 struct pci_dev
*pdev
= adapter
->pdev
;
579 union e1000_rx_desc_packet_split
*rx_desc
;
580 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
581 struct e1000_buffer
*buffer_info
;
582 struct e1000_ps_page
*ps_page
;
586 i
= rx_ring
->next_to_use
;
587 buffer_info
= &rx_ring
->buffer_info
[i
];
589 while (cleaned_count
--) {
590 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
592 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
593 ps_page
= &buffer_info
->ps_pages
[j
];
594 if (j
>= adapter
->rx_ps_pages
) {
595 /* all unused desc entries get hw null ptr */
596 rx_desc
->read
.buffer_addr
[j
+1] = ~cpu_to_le64(0);
599 if (!ps_page
->page
) {
600 ps_page
->page
= alloc_page(GFP_ATOMIC
);
601 if (!ps_page
->page
) {
602 adapter
->alloc_rx_buff_failed
++;
605 ps_page
->dma
= dma_map_page(&pdev
->dev
,
609 if (dma_mapping_error(&pdev
->dev
,
611 dev_err(&adapter
->pdev
->dev
,
612 "RX DMA page map failed\n");
613 adapter
->rx_dma_failed
++;
618 * Refresh the desc even if buffer_addrs
619 * didn't change because each write-back
622 rx_desc
->read
.buffer_addr
[j
+1] =
623 cpu_to_le64(ps_page
->dma
);
626 skb
= netdev_alloc_skb_ip_align(netdev
,
627 adapter
->rx_ps_bsize0
);
630 adapter
->alloc_rx_buff_failed
++;
634 buffer_info
->skb
= skb
;
635 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
636 adapter
->rx_ps_bsize0
,
638 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
639 dev_err(&pdev
->dev
, "RX DMA map failed\n");
640 adapter
->rx_dma_failed
++;
642 dev_kfree_skb_any(skb
);
643 buffer_info
->skb
= NULL
;
647 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
649 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
651 * Force memory writes to complete before letting h/w
652 * know there are new descriptors to fetch. (Only
653 * applicable for weak-ordered memory model archs,
657 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
661 if (i
== rx_ring
->count
)
663 buffer_info
= &rx_ring
->buffer_info
[i
];
667 rx_ring
->next_to_use
= i
;
671 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
672 * @adapter: address of board private structure
673 * @cleaned_count: number of buffers to allocate this pass
676 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
679 struct net_device
*netdev
= adapter
->netdev
;
680 struct pci_dev
*pdev
= adapter
->pdev
;
681 struct e1000_rx_desc
*rx_desc
;
682 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
683 struct e1000_buffer
*buffer_info
;
686 unsigned int bufsz
= 256 - 16 /* for skb_reserve */;
688 i
= rx_ring
->next_to_use
;
689 buffer_info
= &rx_ring
->buffer_info
[i
];
691 while (cleaned_count
--) {
692 skb
= buffer_info
->skb
;
698 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
699 if (unlikely(!skb
)) {
700 /* Better luck next round */
701 adapter
->alloc_rx_buff_failed
++;
705 buffer_info
->skb
= skb
;
707 /* allocate a new page if necessary */
708 if (!buffer_info
->page
) {
709 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
710 if (unlikely(!buffer_info
->page
)) {
711 adapter
->alloc_rx_buff_failed
++;
716 if (!buffer_info
->dma
)
717 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
718 buffer_info
->page
, 0,
722 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
723 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
725 if (unlikely(++i
== rx_ring
->count
))
727 buffer_info
= &rx_ring
->buffer_info
[i
];
730 if (likely(rx_ring
->next_to_use
!= i
)) {
731 rx_ring
->next_to_use
= i
;
732 if (unlikely(i
-- == 0))
733 i
= (rx_ring
->count
- 1);
735 /* Force memory writes to complete before letting h/w
736 * know there are new descriptors to fetch. (Only
737 * applicable for weak-ordered memory model archs,
740 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
745 * e1000_clean_rx_irq - Send received data up the network stack; legacy
746 * @adapter: board private structure
748 * the return value indicates whether actual cleaning was done, there
749 * is no guarantee that everything was cleaned
751 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
752 int *work_done
, int work_to_do
)
754 struct net_device
*netdev
= adapter
->netdev
;
755 struct pci_dev
*pdev
= adapter
->pdev
;
756 struct e1000_hw
*hw
= &adapter
->hw
;
757 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
758 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
759 struct e1000_buffer
*buffer_info
, *next_buffer
;
762 int cleaned_count
= 0;
764 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
766 i
= rx_ring
->next_to_clean
;
767 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
768 buffer_info
= &rx_ring
->buffer_info
[i
];
770 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
774 if (*work_done
>= work_to_do
)
778 status
= rx_desc
->status
;
779 skb
= buffer_info
->skb
;
780 buffer_info
->skb
= NULL
;
782 prefetch(skb
->data
- NET_IP_ALIGN
);
785 if (i
== rx_ring
->count
)
787 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
790 next_buffer
= &rx_ring
->buffer_info
[i
];
794 dma_unmap_single(&pdev
->dev
,
796 adapter
->rx_buffer_len
,
798 buffer_info
->dma
= 0;
800 length
= le16_to_cpu(rx_desc
->length
);
803 * !EOP means multiple descriptors were used to store a single
804 * packet, if that's the case we need to toss it. In fact, we
805 * need to toss every packet with the EOP bit clear and the
806 * next frame that _does_ have the EOP bit set, as it is by
807 * definition only a frame fragment
809 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
810 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
812 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
813 /* All receives must fit into a single buffer */
814 e_dbg("Receive packet consumed multiple buffers\n");
816 buffer_info
->skb
= skb
;
817 if (status
& E1000_RXD_STAT_EOP
)
818 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
822 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
824 buffer_info
->skb
= skb
;
828 /* adjust length to remove Ethernet CRC */
829 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
832 total_rx_bytes
+= length
;
836 * code added for copybreak, this should improve
837 * performance for small packets with large amounts
838 * of reassembly being done in the stack
840 if (length
< copybreak
) {
841 struct sk_buff
*new_skb
=
842 netdev_alloc_skb_ip_align(netdev
, length
);
844 skb_copy_to_linear_data_offset(new_skb
,
850 /* save the skb in buffer_info as good */
851 buffer_info
->skb
= skb
;
854 /* else just continue with the old one */
856 /* end copybreak code */
857 skb_put(skb
, length
);
859 /* Receive Checksum Offload */
860 e1000_rx_checksum(adapter
,
862 ((u32
)(rx_desc
->errors
) << 24),
863 le16_to_cpu(rx_desc
->csum
), skb
);
865 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
870 /* return some buffers to hardware, one at a time is too slow */
871 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
872 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
876 /* use prefetched values */
878 buffer_info
= next_buffer
;
880 rx_ring
->next_to_clean
= i
;
882 cleaned_count
= e1000_desc_unused(rx_ring
);
884 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
886 adapter
->total_rx_bytes
+= total_rx_bytes
;
887 adapter
->total_rx_packets
+= total_rx_packets
;
888 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
889 netdev
->stats
.rx_packets
+= total_rx_packets
;
893 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
894 struct e1000_buffer
*buffer_info
)
896 if (buffer_info
->dma
) {
897 if (buffer_info
->mapped_as_page
)
898 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
899 buffer_info
->length
, DMA_TO_DEVICE
);
901 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
902 buffer_info
->length
, DMA_TO_DEVICE
);
903 buffer_info
->dma
= 0;
905 if (buffer_info
->skb
) {
906 dev_kfree_skb_any(buffer_info
->skb
);
907 buffer_info
->skb
= NULL
;
909 buffer_info
->time_stamp
= 0;
912 static void e1000_print_hw_hang(struct work_struct
*work
)
914 struct e1000_adapter
*adapter
= container_of(work
,
915 struct e1000_adapter
,
917 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
918 unsigned int i
= tx_ring
->next_to_clean
;
919 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
920 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
921 struct e1000_hw
*hw
= &adapter
->hw
;
922 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
925 e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
926 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_1000t_status
);
927 e1e_rphy(hw
, PHY_EXT_STATUS
, &phy_ext_status
);
929 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
931 /* detected Hardware unit hang */
932 e_err("Detected Hardware Unit Hang:\n"
935 " next_to_use <%x>\n"
936 " next_to_clean <%x>\n"
937 "buffer_info[next_to_clean]:\n"
938 " time_stamp <%lx>\n"
939 " next_to_watch <%x>\n"
941 " next_to_watch.status <%x>\n"
944 "PHY 1000BASE-T Status <%x>\n"
945 "PHY Extended Status <%x>\n"
947 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
948 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
949 tx_ring
->next_to_use
,
950 tx_ring
->next_to_clean
,
951 tx_ring
->buffer_info
[eop
].time_stamp
,
954 eop_desc
->upper
.fields
.status
,
963 * e1000_clean_tx_irq - Reclaim resources after transmit completes
964 * @adapter: board private structure
966 * the return value indicates whether actual cleaning was done, there
967 * is no guarantee that everything was cleaned
969 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
971 struct net_device
*netdev
= adapter
->netdev
;
972 struct e1000_hw
*hw
= &adapter
->hw
;
973 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
974 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
975 struct e1000_buffer
*buffer_info
;
977 unsigned int count
= 0;
978 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
980 i
= tx_ring
->next_to_clean
;
981 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
982 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
984 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
985 (count
< tx_ring
->count
)) {
986 bool cleaned
= false;
987 for (; !cleaned
; count
++) {
988 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
989 buffer_info
= &tx_ring
->buffer_info
[i
];
990 cleaned
= (i
== eop
);
993 total_tx_packets
+= buffer_info
->segs
;
994 total_tx_bytes
+= buffer_info
->bytecount
;
997 e1000_put_txbuf(adapter
, buffer_info
);
998 tx_desc
->upper
.data
= 0;
1001 if (i
== tx_ring
->count
)
1005 if (i
== tx_ring
->next_to_use
)
1007 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1008 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1011 tx_ring
->next_to_clean
= i
;
1013 #define TX_WAKE_THRESHOLD 32
1014 if (count
&& netif_carrier_ok(netdev
) &&
1015 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1016 /* Make sure that anybody stopping the queue after this
1017 * sees the new next_to_clean.
1021 if (netif_queue_stopped(netdev
) &&
1022 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1023 netif_wake_queue(netdev
);
1024 ++adapter
->restart_queue
;
1028 if (adapter
->detect_tx_hung
) {
1030 * Detect a transmit hang in hardware, this serializes the
1031 * check with the clearing of time_stamp and movement of i
1033 adapter
->detect_tx_hung
= 0;
1034 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1035 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1036 + (adapter
->tx_timeout_factor
* HZ
)) &&
1037 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
1038 schedule_work(&adapter
->print_hang_task
);
1039 netif_stop_queue(netdev
);
1042 adapter
->total_tx_bytes
+= total_tx_bytes
;
1043 adapter
->total_tx_packets
+= total_tx_packets
;
1044 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
1045 netdev
->stats
.tx_packets
+= total_tx_packets
;
1046 return (count
< tx_ring
->count
);
1050 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1051 * @adapter: board private structure
1053 * the return value indicates whether actual cleaning was done, there
1054 * is no guarantee that everything was cleaned
1056 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
1057 int *work_done
, int work_to_do
)
1059 struct e1000_hw
*hw
= &adapter
->hw
;
1060 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1061 struct net_device
*netdev
= adapter
->netdev
;
1062 struct pci_dev
*pdev
= adapter
->pdev
;
1063 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1064 struct e1000_buffer
*buffer_info
, *next_buffer
;
1065 struct e1000_ps_page
*ps_page
;
1066 struct sk_buff
*skb
;
1068 u32 length
, staterr
;
1069 int cleaned_count
= 0;
1071 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1073 i
= rx_ring
->next_to_clean
;
1074 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1075 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1076 buffer_info
= &rx_ring
->buffer_info
[i
];
1078 while (staterr
& E1000_RXD_STAT_DD
) {
1079 if (*work_done
>= work_to_do
)
1082 skb
= buffer_info
->skb
;
1084 /* in the packet split case this is header only */
1085 prefetch(skb
->data
- NET_IP_ALIGN
);
1088 if (i
== rx_ring
->count
)
1090 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1093 next_buffer
= &rx_ring
->buffer_info
[i
];
1097 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1098 adapter
->rx_ps_bsize0
,
1100 buffer_info
->dma
= 0;
1102 /* see !EOP comment in other rx routine */
1103 if (!(staterr
& E1000_RXD_STAT_EOP
))
1104 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1106 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1107 e_dbg("Packet Split buffers didn't pick up the full "
1109 dev_kfree_skb_irq(skb
);
1110 if (staterr
& E1000_RXD_STAT_EOP
)
1111 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1115 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
1116 dev_kfree_skb_irq(skb
);
1120 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1123 e_dbg("Last part of the packet spanning multiple "
1125 dev_kfree_skb_irq(skb
);
1130 skb_put(skb
, length
);
1134 * this looks ugly, but it seems compiler issues make it
1135 * more efficient than reusing j
1137 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1140 * page alloc/put takes too long and effects small packet
1141 * throughput, so unsplit small packets and save the alloc/put
1142 * only valid in softirq (napi) context to call kmap_*
1144 if (l1
&& (l1
<= copybreak
) &&
1145 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1148 ps_page
= &buffer_info
->ps_pages
[0];
1151 * there is no documentation about how to call
1152 * kmap_atomic, so we can't hold the mapping
1155 dma_sync_single_for_cpu(&pdev
->dev
, ps_page
->dma
,
1156 PAGE_SIZE
, DMA_FROM_DEVICE
);
1157 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
1158 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1159 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
1160 dma_sync_single_for_device(&pdev
->dev
, ps_page
->dma
,
1161 PAGE_SIZE
, DMA_FROM_DEVICE
);
1163 /* remove the CRC */
1164 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1172 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1173 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1177 ps_page
= &buffer_info
->ps_pages
[j
];
1178 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1181 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1182 ps_page
->page
= NULL
;
1184 skb
->data_len
+= length
;
1185 skb
->truesize
+= length
;
1188 /* strip the ethernet crc, problem is we're using pages now so
1189 * this whole operation can get a little cpu intensive
1191 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1192 pskb_trim(skb
, skb
->len
- 4);
1195 total_rx_bytes
+= skb
->len
;
1198 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
1199 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
1201 if (rx_desc
->wb
.upper
.header_status
&
1202 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1203 adapter
->rx_hdr_split
++;
1205 e1000_receive_skb(adapter
, netdev
, skb
,
1206 staterr
, rx_desc
->wb
.middle
.vlan
);
1209 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1210 buffer_info
->skb
= NULL
;
1212 /* return some buffers to hardware, one at a time is too slow */
1213 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1214 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1218 /* use prefetched values */
1220 buffer_info
= next_buffer
;
1222 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1224 rx_ring
->next_to_clean
= i
;
1226 cleaned_count
= e1000_desc_unused(rx_ring
);
1228 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1230 adapter
->total_rx_bytes
+= total_rx_bytes
;
1231 adapter
->total_rx_packets
+= total_rx_packets
;
1232 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
1233 netdev
->stats
.rx_packets
+= total_rx_packets
;
1238 * e1000_consume_page - helper function
1240 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1245 skb
->data_len
+= length
;
1246 skb
->truesize
+= length
;
1250 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1251 * @adapter: board private structure
1253 * the return value indicates whether actual cleaning was done, there
1254 * is no guarantee that everything was cleaned
1257 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
1258 int *work_done
, int work_to_do
)
1260 struct net_device
*netdev
= adapter
->netdev
;
1261 struct pci_dev
*pdev
= adapter
->pdev
;
1262 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1263 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
1264 struct e1000_buffer
*buffer_info
, *next_buffer
;
1267 int cleaned_count
= 0;
1268 bool cleaned
= false;
1269 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
1271 i
= rx_ring
->next_to_clean
;
1272 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1273 buffer_info
= &rx_ring
->buffer_info
[i
];
1275 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
1276 struct sk_buff
*skb
;
1279 if (*work_done
>= work_to_do
)
1283 status
= rx_desc
->status
;
1284 skb
= buffer_info
->skb
;
1285 buffer_info
->skb
= NULL
;
1288 if (i
== rx_ring
->count
)
1290 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
1293 next_buffer
= &rx_ring
->buffer_info
[i
];
1297 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1299 buffer_info
->dma
= 0;
1301 length
= le16_to_cpu(rx_desc
->length
);
1303 /* errors is only valid for DD + EOP descriptors */
1304 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
1305 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
1306 /* recycle both page and skb */
1307 buffer_info
->skb
= skb
;
1308 /* an error means any chain goes out the window
1310 if (rx_ring
->rx_skb_top
)
1311 dev_kfree_skb(rx_ring
->rx_skb_top
);
1312 rx_ring
->rx_skb_top
= NULL
;
1316 #define rxtop rx_ring->rx_skb_top
1317 if (!(status
& E1000_RXD_STAT_EOP
)) {
1318 /* this descriptor is only the beginning (or middle) */
1320 /* this is the beginning of a chain */
1322 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1325 /* this is the middle of a chain */
1326 skb_fill_page_desc(rxtop
,
1327 skb_shinfo(rxtop
)->nr_frags
,
1328 buffer_info
->page
, 0, length
);
1329 /* re-use the skb, only consumed the page */
1330 buffer_info
->skb
= skb
;
1332 e1000_consume_page(buffer_info
, rxtop
, length
);
1336 /* end of the chain */
1337 skb_fill_page_desc(rxtop
,
1338 skb_shinfo(rxtop
)->nr_frags
,
1339 buffer_info
->page
, 0, length
);
1340 /* re-use the current skb, we only consumed the
1342 buffer_info
->skb
= skb
;
1345 e1000_consume_page(buffer_info
, skb
, length
);
1347 /* no chain, got EOP, this buf is the packet
1348 * copybreak to save the put_page/alloc_page */
1349 if (length
<= copybreak
&&
1350 skb_tailroom(skb
) >= length
) {
1352 vaddr
= kmap_atomic(buffer_info
->page
,
1353 KM_SKB_DATA_SOFTIRQ
);
1354 memcpy(skb_tail_pointer(skb
), vaddr
,
1356 kunmap_atomic(vaddr
,
1357 KM_SKB_DATA_SOFTIRQ
);
1358 /* re-use the page, so don't erase
1359 * buffer_info->page */
1360 skb_put(skb
, length
);
1362 skb_fill_page_desc(skb
, 0,
1363 buffer_info
->page
, 0,
1365 e1000_consume_page(buffer_info
, skb
,
1371 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1372 e1000_rx_checksum(adapter
,
1374 ((u32
)(rx_desc
->errors
) << 24),
1375 le16_to_cpu(rx_desc
->csum
), skb
);
1377 /* probably a little skewed due to removing CRC */
1378 total_rx_bytes
+= skb
->len
;
1381 /* eth type trans needs skb->data to point to something */
1382 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1383 e_err("pskb_may_pull failed.\n");
1388 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1392 rx_desc
->status
= 0;
1394 /* return some buffers to hardware, one at a time is too slow */
1395 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1396 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1400 /* use prefetched values */
1402 buffer_info
= next_buffer
;
1404 rx_ring
->next_to_clean
= i
;
1406 cleaned_count
= e1000_desc_unused(rx_ring
);
1408 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1410 adapter
->total_rx_bytes
+= total_rx_bytes
;
1411 adapter
->total_rx_packets
+= total_rx_packets
;
1412 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
1413 netdev
->stats
.rx_packets
+= total_rx_packets
;
1418 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1419 * @adapter: board private structure
1421 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1423 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1424 struct e1000_buffer
*buffer_info
;
1425 struct e1000_ps_page
*ps_page
;
1426 struct pci_dev
*pdev
= adapter
->pdev
;
1429 /* Free all the Rx ring sk_buffs */
1430 for (i
= 0; i
< rx_ring
->count
; i
++) {
1431 buffer_info
= &rx_ring
->buffer_info
[i
];
1432 if (buffer_info
->dma
) {
1433 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1434 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1435 adapter
->rx_buffer_len
,
1437 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1438 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1441 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1442 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1443 adapter
->rx_ps_bsize0
,
1445 buffer_info
->dma
= 0;
1448 if (buffer_info
->page
) {
1449 put_page(buffer_info
->page
);
1450 buffer_info
->page
= NULL
;
1453 if (buffer_info
->skb
) {
1454 dev_kfree_skb(buffer_info
->skb
);
1455 buffer_info
->skb
= NULL
;
1458 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1459 ps_page
= &buffer_info
->ps_pages
[j
];
1462 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1465 put_page(ps_page
->page
);
1466 ps_page
->page
= NULL
;
1470 /* there also may be some cached data from a chained receive */
1471 if (rx_ring
->rx_skb_top
) {
1472 dev_kfree_skb(rx_ring
->rx_skb_top
);
1473 rx_ring
->rx_skb_top
= NULL
;
1476 /* Zero out the descriptor ring */
1477 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1479 rx_ring
->next_to_clean
= 0;
1480 rx_ring
->next_to_use
= 0;
1481 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1483 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1484 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1487 static void e1000e_downshift_workaround(struct work_struct
*work
)
1489 struct e1000_adapter
*adapter
= container_of(work
,
1490 struct e1000_adapter
, downshift_task
);
1492 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1496 * e1000_intr_msi - Interrupt Handler
1497 * @irq: interrupt number
1498 * @data: pointer to a network interface device structure
1500 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1502 struct net_device
*netdev
= data
;
1503 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1504 struct e1000_hw
*hw
= &adapter
->hw
;
1505 u32 icr
= er32(ICR
);
1508 * read ICR disables interrupts using IAM
1511 if (icr
& E1000_ICR_LSC
) {
1512 hw
->mac
.get_link_status
= 1;
1514 * ICH8 workaround-- Call gig speed drop workaround on cable
1515 * disconnect (LSC) before accessing any PHY registers
1517 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1518 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1519 schedule_work(&adapter
->downshift_task
);
1522 * 80003ES2LAN workaround-- For packet buffer work-around on
1523 * link down event; disable receives here in the ISR and reset
1524 * adapter in watchdog
1526 if (netif_carrier_ok(netdev
) &&
1527 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1528 /* disable receives */
1529 u32 rctl
= er32(RCTL
);
1530 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1531 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1533 /* guard against interrupt when we're going down */
1534 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1535 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1538 if (napi_schedule_prep(&adapter
->napi
)) {
1539 adapter
->total_tx_bytes
= 0;
1540 adapter
->total_tx_packets
= 0;
1541 adapter
->total_rx_bytes
= 0;
1542 adapter
->total_rx_packets
= 0;
1543 __napi_schedule(&adapter
->napi
);
1550 * e1000_intr - Interrupt Handler
1551 * @irq: interrupt number
1552 * @data: pointer to a network interface device structure
1554 static irqreturn_t
e1000_intr(int irq
, void *data
)
1556 struct net_device
*netdev
= data
;
1557 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1558 struct e1000_hw
*hw
= &adapter
->hw
;
1559 u32 rctl
, icr
= er32(ICR
);
1561 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1562 return IRQ_NONE
; /* Not our interrupt */
1565 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1566 * not set, then the adapter didn't send an interrupt
1568 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1572 * Interrupt Auto-Mask...upon reading ICR,
1573 * interrupts are masked. No need for the
1577 if (icr
& E1000_ICR_LSC
) {
1578 hw
->mac
.get_link_status
= 1;
1580 * ICH8 workaround-- Call gig speed drop workaround on cable
1581 * disconnect (LSC) before accessing any PHY registers
1583 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1584 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1585 schedule_work(&adapter
->downshift_task
);
1588 * 80003ES2LAN workaround--
1589 * For packet buffer work-around on link down event;
1590 * disable receives here in the ISR and
1591 * reset adapter in watchdog
1593 if (netif_carrier_ok(netdev
) &&
1594 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1595 /* disable receives */
1597 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1598 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1600 /* guard against interrupt when we're going down */
1601 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1602 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1605 if (napi_schedule_prep(&adapter
->napi
)) {
1606 adapter
->total_tx_bytes
= 0;
1607 adapter
->total_tx_packets
= 0;
1608 adapter
->total_rx_bytes
= 0;
1609 adapter
->total_rx_packets
= 0;
1610 __napi_schedule(&adapter
->napi
);
1616 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1618 struct net_device
*netdev
= data
;
1619 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1620 struct e1000_hw
*hw
= &adapter
->hw
;
1621 u32 icr
= er32(ICR
);
1623 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1624 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1625 ew32(IMS
, E1000_IMS_OTHER
);
1629 if (icr
& adapter
->eiac_mask
)
1630 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1632 if (icr
& E1000_ICR_OTHER
) {
1633 if (!(icr
& E1000_ICR_LSC
))
1634 goto no_link_interrupt
;
1635 hw
->mac
.get_link_status
= 1;
1636 /* guard against interrupt when we're going down */
1637 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1638 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1642 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1643 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1649 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1651 struct net_device
*netdev
= data
;
1652 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1653 struct e1000_hw
*hw
= &adapter
->hw
;
1654 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1657 adapter
->total_tx_bytes
= 0;
1658 adapter
->total_tx_packets
= 0;
1660 if (!e1000_clean_tx_irq(adapter
))
1661 /* Ring was not completely cleaned, so fire another interrupt */
1662 ew32(ICS
, tx_ring
->ims_val
);
1667 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1669 struct net_device
*netdev
= data
;
1670 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1672 /* Write the ITR value calculated at the end of the
1673 * previous interrupt.
1675 if (adapter
->rx_ring
->set_itr
) {
1676 writel(1000000000 / (adapter
->rx_ring
->itr_val
* 256),
1677 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
1678 adapter
->rx_ring
->set_itr
= 0;
1681 if (napi_schedule_prep(&adapter
->napi
)) {
1682 adapter
->total_rx_bytes
= 0;
1683 adapter
->total_rx_packets
= 0;
1684 __napi_schedule(&adapter
->napi
);
1690 * e1000_configure_msix - Configure MSI-X hardware
1692 * e1000_configure_msix sets up the hardware to properly
1693 * generate MSI-X interrupts.
1695 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1697 struct e1000_hw
*hw
= &adapter
->hw
;
1698 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1699 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1701 u32 ctrl_ext
, ivar
= 0;
1703 adapter
->eiac_mask
= 0;
1705 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1706 if (hw
->mac
.type
== e1000_82574
) {
1707 u32 rfctl
= er32(RFCTL
);
1708 rfctl
|= E1000_RFCTL_ACK_DIS
;
1712 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1713 /* Configure Rx vector */
1714 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1715 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1716 if (rx_ring
->itr_val
)
1717 writel(1000000000 / (rx_ring
->itr_val
* 256),
1718 hw
->hw_addr
+ rx_ring
->itr_register
);
1720 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
1721 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1723 /* Configure Tx vector */
1724 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1726 if (tx_ring
->itr_val
)
1727 writel(1000000000 / (tx_ring
->itr_val
* 256),
1728 hw
->hw_addr
+ tx_ring
->itr_register
);
1730 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
1731 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1732 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1734 /* set vector for Other Causes, e.g. link changes */
1736 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1737 if (rx_ring
->itr_val
)
1738 writel(1000000000 / (rx_ring
->itr_val
* 256),
1739 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1741 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1743 /* Cause Tx interrupts on every write back */
1748 /* enable MSI-X PBA support */
1749 ctrl_ext
= er32(CTRL_EXT
);
1750 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1752 /* Auto-Mask Other interrupts upon ICR read */
1753 #define E1000_EIAC_MASK_82574 0x01F00000
1754 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1755 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1756 ew32(CTRL_EXT
, ctrl_ext
);
1760 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1762 if (adapter
->msix_entries
) {
1763 pci_disable_msix(adapter
->pdev
);
1764 kfree(adapter
->msix_entries
);
1765 adapter
->msix_entries
= NULL
;
1766 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1767 pci_disable_msi(adapter
->pdev
);
1768 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1773 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1775 * Attempt to configure interrupts using the best available
1776 * capabilities of the hardware and kernel.
1778 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1784 switch (adapter
->int_mode
) {
1785 case E1000E_INT_MODE_MSIX
:
1786 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1787 numvecs
= 3; /* RxQ0, TxQ0 and other */
1788 adapter
->msix_entries
= kcalloc(numvecs
,
1789 sizeof(struct msix_entry
),
1791 if (adapter
->msix_entries
) {
1792 for (i
= 0; i
< numvecs
; i
++)
1793 adapter
->msix_entries
[i
].entry
= i
;
1795 err
= pci_enable_msix(adapter
->pdev
,
1796 adapter
->msix_entries
,
1801 /* MSI-X failed, so fall through and try MSI */
1802 e_err("Failed to initialize MSI-X interrupts. "
1803 "Falling back to MSI interrupts.\n");
1804 e1000e_reset_interrupt_capability(adapter
);
1806 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1808 case E1000E_INT_MODE_MSI
:
1809 if (!pci_enable_msi(adapter
->pdev
)) {
1810 adapter
->flags
|= FLAG_MSI_ENABLED
;
1812 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1813 e_err("Failed to initialize MSI interrupts. Falling "
1814 "back to legacy interrupts.\n");
1817 case E1000E_INT_MODE_LEGACY
:
1818 /* Don't do anything; this is the system default */
1824 * e1000_request_msix - Initialize MSI-X interrupts
1826 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1829 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1831 struct net_device
*netdev
= adapter
->netdev
;
1832 int err
= 0, vector
= 0;
1834 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1835 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1837 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1838 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1839 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1843 adapter
->rx_ring
->itr_register
= E1000_EITR_82574(vector
);
1844 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1847 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1848 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1850 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1851 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1852 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1856 adapter
->tx_ring
->itr_register
= E1000_EITR_82574(vector
);
1857 adapter
->tx_ring
->itr_val
= adapter
->itr
;
1860 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1861 e1000_msix_other
, 0, netdev
->name
, netdev
);
1865 e1000_configure_msix(adapter
);
1872 * e1000_request_irq - initialize interrupts
1874 * Attempts to configure interrupts using the best available
1875 * capabilities of the hardware and kernel.
1877 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1879 struct net_device
*netdev
= adapter
->netdev
;
1882 if (adapter
->msix_entries
) {
1883 err
= e1000_request_msix(adapter
);
1886 /* fall back to MSI */
1887 e1000e_reset_interrupt_capability(adapter
);
1888 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1889 e1000e_set_interrupt_capability(adapter
);
1891 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1892 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
1893 netdev
->name
, netdev
);
1897 /* fall back to legacy interrupt */
1898 e1000e_reset_interrupt_capability(adapter
);
1899 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1902 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
1903 netdev
->name
, netdev
);
1905 e_err("Unable to allocate interrupt, Error: %d\n", err
);
1910 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1912 struct net_device
*netdev
= adapter
->netdev
;
1914 if (adapter
->msix_entries
) {
1917 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1920 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1923 /* Other Causes interrupt vector */
1924 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1928 free_irq(adapter
->pdev
->irq
, netdev
);
1932 * e1000_irq_disable - Mask off interrupt generation on the NIC
1934 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1936 struct e1000_hw
*hw
= &adapter
->hw
;
1939 if (adapter
->msix_entries
)
1940 ew32(EIAC_82574
, 0);
1942 synchronize_irq(adapter
->pdev
->irq
);
1946 * e1000_irq_enable - Enable default interrupt generation settings
1948 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1950 struct e1000_hw
*hw
= &adapter
->hw
;
1952 if (adapter
->msix_entries
) {
1953 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
1954 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
1956 ew32(IMS
, IMS_ENABLE_MASK
);
1962 * e1000_get_hw_control - get control of the h/w from f/w
1963 * @adapter: address of board private structure
1965 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1966 * For ASF and Pass Through versions of f/w this means that
1967 * the driver is loaded. For AMT version (only with 82573)
1968 * of the f/w this means that the network i/f is open.
1970 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
1972 struct e1000_hw
*hw
= &adapter
->hw
;
1976 /* Let firmware know the driver has taken over */
1977 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1979 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
1980 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1981 ctrl_ext
= er32(CTRL_EXT
);
1982 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1987 * e1000_release_hw_control - release control of the h/w to f/w
1988 * @adapter: address of board private structure
1990 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1991 * For ASF and Pass Through versions of f/w this means that the
1992 * driver is no longer loaded. For AMT version (only with 82573) i
1993 * of the f/w this means that the network i/f is closed.
1996 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
1998 struct e1000_hw
*hw
= &adapter
->hw
;
2002 /* Let firmware taken over control of h/w */
2003 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2005 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2006 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2007 ctrl_ext
= er32(CTRL_EXT
);
2008 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2013 * @e1000_alloc_ring - allocate memory for a ring structure
2015 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2016 struct e1000_ring
*ring
)
2018 struct pci_dev
*pdev
= adapter
->pdev
;
2020 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2029 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2030 * @adapter: board private structure
2032 * Return 0 on success, negative on failure
2034 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
2036 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2037 int err
= -ENOMEM
, size
;
2039 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2040 tx_ring
->buffer_info
= vmalloc(size
);
2041 if (!tx_ring
->buffer_info
)
2043 memset(tx_ring
->buffer_info
, 0, size
);
2045 /* round up to nearest 4K */
2046 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2047 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2049 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2053 tx_ring
->next_to_use
= 0;
2054 tx_ring
->next_to_clean
= 0;
2058 vfree(tx_ring
->buffer_info
);
2059 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2064 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2065 * @adapter: board private structure
2067 * Returns 0 on success, negative on failure
2069 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
2071 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2072 struct e1000_buffer
*buffer_info
;
2073 int i
, size
, desc_len
, err
= -ENOMEM
;
2075 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2076 rx_ring
->buffer_info
= vmalloc(size
);
2077 if (!rx_ring
->buffer_info
)
2079 memset(rx_ring
->buffer_info
, 0, size
);
2081 for (i
= 0; i
< rx_ring
->count
; i
++) {
2082 buffer_info
= &rx_ring
->buffer_info
[i
];
2083 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2084 sizeof(struct e1000_ps_page
),
2086 if (!buffer_info
->ps_pages
)
2090 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2092 /* Round up to nearest 4K */
2093 rx_ring
->size
= rx_ring
->count
* desc_len
;
2094 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2096 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2100 rx_ring
->next_to_clean
= 0;
2101 rx_ring
->next_to_use
= 0;
2102 rx_ring
->rx_skb_top
= NULL
;
2107 for (i
= 0; i
< rx_ring
->count
; i
++) {
2108 buffer_info
= &rx_ring
->buffer_info
[i
];
2109 kfree(buffer_info
->ps_pages
);
2112 vfree(rx_ring
->buffer_info
);
2113 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2118 * e1000_clean_tx_ring - Free Tx Buffers
2119 * @adapter: board private structure
2121 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
2123 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2124 struct e1000_buffer
*buffer_info
;
2128 for (i
= 0; i
< tx_ring
->count
; i
++) {
2129 buffer_info
= &tx_ring
->buffer_info
[i
];
2130 e1000_put_txbuf(adapter
, buffer_info
);
2133 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2134 memset(tx_ring
->buffer_info
, 0, size
);
2136 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2138 tx_ring
->next_to_use
= 0;
2139 tx_ring
->next_to_clean
= 0;
2141 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2142 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2146 * e1000e_free_tx_resources - Free Tx Resources per Queue
2147 * @adapter: board private structure
2149 * Free all transmit software resources
2151 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
2153 struct pci_dev
*pdev
= adapter
->pdev
;
2154 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2156 e1000_clean_tx_ring(adapter
);
2158 vfree(tx_ring
->buffer_info
);
2159 tx_ring
->buffer_info
= NULL
;
2161 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2163 tx_ring
->desc
= NULL
;
2167 * e1000e_free_rx_resources - Free Rx Resources
2168 * @adapter: board private structure
2170 * Free all receive software resources
2173 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
2175 struct pci_dev
*pdev
= adapter
->pdev
;
2176 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2179 e1000_clean_rx_ring(adapter
);
2181 for (i
= 0; i
< rx_ring
->count
; i
++) {
2182 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2185 vfree(rx_ring
->buffer_info
);
2186 rx_ring
->buffer_info
= NULL
;
2188 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2190 rx_ring
->desc
= NULL
;
2194 * e1000_update_itr - update the dynamic ITR value based on statistics
2195 * @adapter: pointer to adapter
2196 * @itr_setting: current adapter->itr
2197 * @packets: the number of packets during this measurement interval
2198 * @bytes: the number of bytes during this measurement interval
2200 * Stores a new ITR value based on packets and byte
2201 * counts during the last interrupt. The advantage of per interrupt
2202 * computation is faster updates and more accurate ITR for the current
2203 * traffic pattern. Constants in this function were computed
2204 * based on theoretical maximum wire speed and thresholds were set based
2205 * on testing data as well as attempting to minimize response time
2206 * while increasing bulk throughput. This functionality is controlled
2207 * by the InterruptThrottleRate module parameter.
2209 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2210 u16 itr_setting
, int packets
,
2213 unsigned int retval
= itr_setting
;
2216 goto update_itr_done
;
2218 switch (itr_setting
) {
2219 case lowest_latency
:
2220 /* handle TSO and jumbo frames */
2221 if (bytes
/packets
> 8000)
2222 retval
= bulk_latency
;
2223 else if ((packets
< 5) && (bytes
> 512)) {
2224 retval
= low_latency
;
2227 case low_latency
: /* 50 usec aka 20000 ints/s */
2228 if (bytes
> 10000) {
2229 /* this if handles the TSO accounting */
2230 if (bytes
/packets
> 8000) {
2231 retval
= bulk_latency
;
2232 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2233 retval
= bulk_latency
;
2234 } else if ((packets
> 35)) {
2235 retval
= lowest_latency
;
2237 } else if (bytes
/packets
> 2000) {
2238 retval
= bulk_latency
;
2239 } else if (packets
<= 2 && bytes
< 512) {
2240 retval
= lowest_latency
;
2243 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2244 if (bytes
> 25000) {
2246 retval
= low_latency
;
2248 } else if (bytes
< 6000) {
2249 retval
= low_latency
;
2258 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2260 struct e1000_hw
*hw
= &adapter
->hw
;
2262 u32 new_itr
= adapter
->itr
;
2264 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2265 if (adapter
->link_speed
!= SPEED_1000
) {
2271 adapter
->tx_itr
= e1000_update_itr(adapter
,
2273 adapter
->total_tx_packets
,
2274 adapter
->total_tx_bytes
);
2275 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2276 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2277 adapter
->tx_itr
= low_latency
;
2279 adapter
->rx_itr
= e1000_update_itr(adapter
,
2281 adapter
->total_rx_packets
,
2282 adapter
->total_rx_bytes
);
2283 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2284 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2285 adapter
->rx_itr
= low_latency
;
2287 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2289 switch (current_itr
) {
2290 /* counts and packets in update_itr are dependent on these numbers */
2291 case lowest_latency
:
2295 new_itr
= 20000; /* aka hwitr = ~200 */
2305 if (new_itr
!= adapter
->itr
) {
2307 * this attempts to bias the interrupt rate towards Bulk
2308 * by adding intermediate steps when interrupt rate is
2311 new_itr
= new_itr
> adapter
->itr
?
2312 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2314 adapter
->itr
= new_itr
;
2315 adapter
->rx_ring
->itr_val
= new_itr
;
2316 if (adapter
->msix_entries
)
2317 adapter
->rx_ring
->set_itr
= 1;
2319 ew32(ITR
, 1000000000 / (new_itr
* 256));
2324 * e1000_alloc_queues - Allocate memory for all rings
2325 * @adapter: board private structure to initialize
2327 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
2329 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2330 if (!adapter
->tx_ring
)
2333 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2334 if (!adapter
->rx_ring
)
2339 e_err("Unable to allocate memory for queues\n");
2340 kfree(adapter
->rx_ring
);
2341 kfree(adapter
->tx_ring
);
2346 * e1000_clean - NAPI Rx polling callback
2347 * @napi: struct associated with this polling callback
2348 * @budget: amount of packets driver is allowed to process this poll
2350 static int e1000_clean(struct napi_struct
*napi
, int budget
)
2352 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
2353 struct e1000_hw
*hw
= &adapter
->hw
;
2354 struct net_device
*poll_dev
= adapter
->netdev
;
2355 int tx_cleaned
= 1, work_done
= 0;
2357 adapter
= netdev_priv(poll_dev
);
2359 if (adapter
->msix_entries
&&
2360 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2363 tx_cleaned
= e1000_clean_tx_irq(adapter
);
2366 adapter
->clean_rx(adapter
, &work_done
, budget
);
2371 /* If budget not fully consumed, exit the polling mode */
2372 if (work_done
< budget
) {
2373 if (adapter
->itr_setting
& 3)
2374 e1000_set_itr(adapter
);
2375 napi_complete(napi
);
2376 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2377 if (adapter
->msix_entries
)
2378 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2380 e1000_irq_enable(adapter
);
2387 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2389 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2390 struct e1000_hw
*hw
= &adapter
->hw
;
2393 /* don't update vlan cookie if already programmed */
2394 if ((adapter
->hw
.mng_cookie
.status
&
2395 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2396 (vid
== adapter
->mng_vlan_id
))
2399 /* add VID to filter table */
2400 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2401 index
= (vid
>> 5) & 0x7F;
2402 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2403 vfta
|= (1 << (vid
& 0x1F));
2404 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2408 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2410 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2411 struct e1000_hw
*hw
= &adapter
->hw
;
2414 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2415 e1000_irq_disable(adapter
);
2416 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
2418 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2419 e1000_irq_enable(adapter
);
2421 if ((adapter
->hw
.mng_cookie
.status
&
2422 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2423 (vid
== adapter
->mng_vlan_id
)) {
2424 /* release control to f/w */
2425 e1000_release_hw_control(adapter
);
2429 /* remove VID from filter table */
2430 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2431 index
= (vid
>> 5) & 0x7F;
2432 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2433 vfta
&= ~(1 << (vid
& 0x1F));
2434 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2438 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2440 struct net_device
*netdev
= adapter
->netdev
;
2441 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2442 u16 old_vid
= adapter
->mng_vlan_id
;
2444 if (!adapter
->vlgrp
)
2447 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
2448 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2449 if (adapter
->hw
.mng_cookie
.status
&
2450 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2451 e1000_vlan_rx_add_vid(netdev
, vid
);
2452 adapter
->mng_vlan_id
= vid
;
2455 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
2457 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
2458 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2460 adapter
->mng_vlan_id
= vid
;
2465 static void e1000_vlan_rx_register(struct net_device
*netdev
,
2466 struct vlan_group
*grp
)
2468 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2469 struct e1000_hw
*hw
= &adapter
->hw
;
2472 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2473 e1000_irq_disable(adapter
);
2474 adapter
->vlgrp
= grp
;
2477 /* enable VLAN tag insert/strip */
2479 ctrl
|= E1000_CTRL_VME
;
2482 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2483 /* enable VLAN receive filtering */
2485 rctl
&= ~E1000_RCTL_CFIEN
;
2487 e1000_update_mng_vlan(adapter
);
2490 /* disable VLAN tag insert/strip */
2492 ctrl
&= ~E1000_CTRL_VME
;
2495 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2496 if (adapter
->mng_vlan_id
!=
2497 (u16
)E1000_MNG_VLAN_NONE
) {
2498 e1000_vlan_rx_kill_vid(netdev
,
2499 adapter
->mng_vlan_id
);
2500 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2505 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2506 e1000_irq_enable(adapter
);
2509 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2513 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
2515 if (!adapter
->vlgrp
)
2518 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
2519 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
2521 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2525 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2527 struct e1000_hw
*hw
= &adapter
->hw
;
2528 u32 manc
, manc2h
, mdef
, i
, j
;
2530 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2536 * enable receiving management packets to the host. this will probably
2537 * generate destination unreachable messages from the host OS, but
2538 * the packets will be handled on SMBUS
2540 manc
|= E1000_MANC_EN_MNG2HOST
;
2541 manc2h
= er32(MANC2H
);
2543 switch (hw
->mac
.type
) {
2545 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2550 * Check if IPMI pass-through decision filter already exists;
2553 for (i
= 0, j
= 0; i
< 8; i
++) {
2554 mdef
= er32(MDEF(i
));
2556 /* Ignore filters with anything other than IPMI ports */
2557 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2560 /* Enable this decision filter in MANC2H */
2567 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2570 /* Create new decision filter in an empty filter */
2571 for (i
= 0, j
= 0; i
< 8; i
++)
2572 if (er32(MDEF(i
)) == 0) {
2573 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2574 E1000_MDEF_PORT_664
));
2581 e_warn("Unable to create IPMI pass-through filter\n");
2585 ew32(MANC2H
, manc2h
);
2590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2591 * @adapter: board private structure
2593 * Configure the Tx unit of the MAC after a reset.
2595 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2597 struct e1000_hw
*hw
= &adapter
->hw
;
2598 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2600 u32 tdlen
, tctl
, tipg
, tarc
;
2603 /* Setup the HW Tx Head and Tail descriptor pointers */
2604 tdba
= tx_ring
->dma
;
2605 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2606 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2607 ew32(TDBAH
, (tdba
>> 32));
2611 tx_ring
->head
= E1000_TDH
;
2612 tx_ring
->tail
= E1000_TDT
;
2614 /* Set the default values for the Tx Inter Packet Gap timer */
2615 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
2616 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
2617 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
2619 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
2620 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
2622 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
2623 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
2626 /* Set the Tx Interrupt Delay register */
2627 ew32(TIDV
, adapter
->tx_int_delay
);
2628 /* Tx irq moderation */
2629 ew32(TADV
, adapter
->tx_abs_int_delay
);
2631 /* Program the Transmit Control Register */
2633 tctl
&= ~E1000_TCTL_CT
;
2634 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2635 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2637 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2638 tarc
= er32(TARC(0));
2640 * set the speed mode bit, we'll clear it if we're not at
2641 * gigabit link later
2643 #define SPEED_MODE_BIT (1 << 21)
2644 tarc
|= SPEED_MODE_BIT
;
2645 ew32(TARC(0), tarc
);
2648 /* errata: program both queues to unweighted RR */
2649 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2650 tarc
= er32(TARC(0));
2652 ew32(TARC(0), tarc
);
2653 tarc
= er32(TARC(1));
2655 ew32(TARC(1), tarc
);
2658 /* Setup Transmit Descriptor Settings for eop descriptor */
2659 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2661 /* only set IDE if we are delaying interrupts using the timers */
2662 if (adapter
->tx_int_delay
)
2663 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2665 /* enable Report Status bit */
2666 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2670 e1000e_config_collision_dist(hw
);
2674 * e1000_setup_rctl - configure the receive control registers
2675 * @adapter: Board private structure
2677 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2678 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2679 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2681 struct e1000_hw
*hw
= &adapter
->hw
;
2686 /* Program MC offset vector base */
2688 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2689 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2690 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2691 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2693 /* Do not Store bad packets */
2694 rctl
&= ~E1000_RCTL_SBP
;
2696 /* Enable Long Packet receive */
2697 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2698 rctl
&= ~E1000_RCTL_LPE
;
2700 rctl
|= E1000_RCTL_LPE
;
2702 /* Some systems expect that the CRC is included in SMBUS traffic. The
2703 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2704 * host memory when this is enabled
2706 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2707 rctl
|= E1000_RCTL_SECRC
;
2709 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2710 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2713 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2715 phy_data
|= (1 << 2);
2716 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2718 e1e_rphy(hw
, 22, &phy_data
);
2720 phy_data
|= (1 << 14);
2721 e1e_wphy(hw
, 0x10, 0x2823);
2722 e1e_wphy(hw
, 0x11, 0x0003);
2723 e1e_wphy(hw
, 22, phy_data
);
2726 /* Setup buffer sizes */
2727 rctl
&= ~E1000_RCTL_SZ_4096
;
2728 rctl
|= E1000_RCTL_BSEX
;
2729 switch (adapter
->rx_buffer_len
) {
2732 rctl
|= E1000_RCTL_SZ_2048
;
2733 rctl
&= ~E1000_RCTL_BSEX
;
2736 rctl
|= E1000_RCTL_SZ_4096
;
2739 rctl
|= E1000_RCTL_SZ_8192
;
2742 rctl
|= E1000_RCTL_SZ_16384
;
2747 * 82571 and greater support packet-split where the protocol
2748 * header is placed in skb->data and the packet data is
2749 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2750 * In the case of a non-split, skb->data is linearly filled,
2751 * followed by the page buffers. Therefore, skb->data is
2752 * sized to hold the largest protocol header.
2754 * allocations using alloc_page take too long for regular MTU
2755 * so only enable packet split for jumbo frames
2757 * Using pages when the page size is greater than 16k wastes
2758 * a lot of memory, since we allocate 3 pages at all times
2761 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2762 if (!(adapter
->flags
& FLAG_IS_ICH
) && (pages
<= 3) &&
2763 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2764 adapter
->rx_ps_pages
= pages
;
2766 adapter
->rx_ps_pages
= 0;
2768 if (adapter
->rx_ps_pages
) {
2769 /* Configure extra packet-split registers */
2770 rfctl
= er32(RFCTL
);
2771 rfctl
|= E1000_RFCTL_EXTEN
;
2773 * disable packet split support for IPv6 extension headers,
2774 * because some malformed IPv6 headers can hang the Rx
2776 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2777 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2781 /* Enable Packet split descriptors */
2782 rctl
|= E1000_RCTL_DTYP_PS
;
2784 psrctl
|= adapter
->rx_ps_bsize0
>>
2785 E1000_PSRCTL_BSIZE0_SHIFT
;
2787 switch (adapter
->rx_ps_pages
) {
2789 psrctl
|= PAGE_SIZE
<<
2790 E1000_PSRCTL_BSIZE3_SHIFT
;
2792 psrctl
|= PAGE_SIZE
<<
2793 E1000_PSRCTL_BSIZE2_SHIFT
;
2795 psrctl
|= PAGE_SIZE
>>
2796 E1000_PSRCTL_BSIZE1_SHIFT
;
2800 ew32(PSRCTL
, psrctl
);
2804 /* just started the receive unit, no need to restart */
2805 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2809 * e1000_configure_rx - Configure Receive Unit after Reset
2810 * @adapter: board private structure
2812 * Configure the Rx unit of the MAC after a reset.
2814 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2816 struct e1000_hw
*hw
= &adapter
->hw
;
2817 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2819 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2821 if (adapter
->rx_ps_pages
) {
2822 /* this is a 32 byte descriptor */
2823 rdlen
= rx_ring
->count
*
2824 sizeof(union e1000_rx_desc_packet_split
);
2825 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2826 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2827 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2828 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2829 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2830 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2832 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2833 adapter
->clean_rx
= e1000_clean_rx_irq
;
2834 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2837 /* disable receives while setting up the descriptors */
2839 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2843 /* set the Receive Delay Timer Register */
2844 ew32(RDTR
, adapter
->rx_int_delay
);
2846 /* irq moderation */
2847 ew32(RADV
, adapter
->rx_abs_int_delay
);
2848 if (adapter
->itr_setting
!= 0)
2849 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2851 ctrl_ext
= er32(CTRL_EXT
);
2852 /* Auto-Mask interrupts upon ICR access */
2853 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2854 ew32(IAM
, 0xffffffff);
2855 ew32(CTRL_EXT
, ctrl_ext
);
2859 * Setup the HW Rx Head and Tail Descriptor Pointers and
2860 * the Base and Length of the Rx Descriptor Ring
2862 rdba
= rx_ring
->dma
;
2863 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
2864 ew32(RDBAH
, (rdba
>> 32));
2868 rx_ring
->head
= E1000_RDH
;
2869 rx_ring
->tail
= E1000_RDT
;
2871 /* Enable Receive Checksum Offload for TCP and UDP */
2872 rxcsum
= er32(RXCSUM
);
2873 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2874 rxcsum
|= E1000_RXCSUM_TUOFL
;
2877 * IPv4 payload checksum for UDP fragments must be
2878 * used in conjunction with packet-split.
2880 if (adapter
->rx_ps_pages
)
2881 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2883 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2884 /* no need to clear IPPCSE as it defaults to 0 */
2886 ew32(RXCSUM
, rxcsum
);
2889 * Enable early receives on supported devices, only takes effect when
2890 * packet size is equal or larger than the specified value (in 8 byte
2891 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2893 if (adapter
->flags
& FLAG_HAS_ERT
) {
2894 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2895 u32 rxdctl
= er32(RXDCTL(0));
2896 ew32(RXDCTL(0), rxdctl
| 0x3);
2897 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
2899 * With jumbo frames and early-receive enabled,
2900 * excessive C-state transition latencies result in
2901 * dropped transactions.
2903 pm_qos_update_request(
2904 adapter
->netdev
->pm_qos_req
, 55);
2906 pm_qos_update_request(
2907 adapter
->netdev
->pm_qos_req
,
2908 PM_QOS_DEFAULT_VALUE
);
2912 /* Enable Receives */
2917 * e1000_update_mc_addr_list - Update Multicast addresses
2918 * @hw: pointer to the HW structure
2919 * @mc_addr_list: array of multicast addresses to program
2920 * @mc_addr_count: number of multicast addresses to program
2922 * Updates the Multicast Table Array.
2923 * The caller must have a packed mc_addr_list of multicast addresses.
2925 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
2928 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
);
2932 * e1000_set_multi - Multicast and Promiscuous mode set
2933 * @netdev: network interface device structure
2935 * The set_multi entry point is called whenever the multicast address
2936 * list or the network interface flags are updated. This routine is
2937 * responsible for configuring the hardware for proper multicast,
2938 * promiscuous mode, and all-multi behavior.
2940 static void e1000_set_multi(struct net_device
*netdev
)
2942 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2943 struct e1000_hw
*hw
= &adapter
->hw
;
2944 struct netdev_hw_addr
*ha
;
2949 /* Check for Promiscuous and All Multicast modes */
2953 if (netdev
->flags
& IFF_PROMISC
) {
2954 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2955 rctl
&= ~E1000_RCTL_VFE
;
2957 if (netdev
->flags
& IFF_ALLMULTI
) {
2958 rctl
|= E1000_RCTL_MPE
;
2959 rctl
&= ~E1000_RCTL_UPE
;
2961 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2963 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
2964 rctl
|= E1000_RCTL_VFE
;
2969 if (!netdev_mc_empty(netdev
)) {
2970 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
2974 /* prepare a packed array of only addresses. */
2976 netdev_for_each_mc_addr(ha
, netdev
)
2977 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
2979 e1000_update_mc_addr_list(hw
, mta_list
, i
);
2983 * if we're called from probe, we might not have
2984 * anything to do here, so clear out the list
2986 e1000_update_mc_addr_list(hw
, NULL
, 0);
2991 * e1000_configure - configure the hardware for Rx and Tx
2992 * @adapter: private board structure
2994 static void e1000_configure(struct e1000_adapter
*adapter
)
2996 e1000_set_multi(adapter
->netdev
);
2998 e1000_restore_vlan(adapter
);
2999 e1000_init_manageability_pt(adapter
);
3001 e1000_configure_tx(adapter
);
3002 e1000_setup_rctl(adapter
);
3003 e1000_configure_rx(adapter
);
3004 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
));
3008 * e1000e_power_up_phy - restore link in case the phy was powered down
3009 * @adapter: address of board private structure
3011 * The phy may be powered down to save power and turn off link when the
3012 * driver is unloaded and wake on lan is not enabled (among others)
3013 * *** this routine MUST be followed by a call to e1000e_reset ***
3015 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3017 if (adapter
->hw
.phy
.ops
.power_up
)
3018 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3020 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3024 * e1000_power_down_phy - Power down the PHY
3026 * Power down the PHY so no link is implied when interface is down.
3027 * The PHY cannot be powered down if management or WoL is active.
3029 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3031 /* WoL is enabled */
3035 if (adapter
->hw
.phy
.ops
.power_down
)
3036 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3040 * e1000e_reset - bring the hardware into a known good state
3042 * This function boots the hardware and enables some settings that
3043 * require a configuration cycle of the hardware - those cannot be
3044 * set/changed during runtime. After reset the device needs to be
3045 * properly configured for Rx, Tx etc.
3047 void e1000e_reset(struct e1000_adapter
*adapter
)
3049 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3050 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3051 struct e1000_hw
*hw
= &adapter
->hw
;
3052 u32 tx_space
, min_tx_space
, min_rx_space
;
3053 u32 pba
= adapter
->pba
;
3056 /* reset Packet Buffer Allocation to default */
3059 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3061 * To maintain wire speed transmits, the Tx FIFO should be
3062 * large enough to accommodate two full transmit packets,
3063 * rounded up to the next 1KB and expressed in KB. Likewise,
3064 * the Rx FIFO should be large enough to accommodate at least
3065 * one full receive packet and is similarly rounded up and
3069 /* upper 16 bits has Tx packet buffer allocation size in KB */
3070 tx_space
= pba
>> 16;
3071 /* lower 16 bits has Rx packet buffer allocation size in KB */
3074 * the Tx fifo also stores 16 bytes of information about the tx
3075 * but don't include ethernet FCS because hardware appends it
3077 min_tx_space
= (adapter
->max_frame_size
+
3078 sizeof(struct e1000_tx_desc
) -
3080 min_tx_space
= ALIGN(min_tx_space
, 1024);
3081 min_tx_space
>>= 10;
3082 /* software strips receive CRC, so leave room for it */
3083 min_rx_space
= adapter
->max_frame_size
;
3084 min_rx_space
= ALIGN(min_rx_space
, 1024);
3085 min_rx_space
>>= 10;
3088 * If current Tx allocation is less than the min Tx FIFO size,
3089 * and the min Tx FIFO size is less than the current Rx FIFO
3090 * allocation, take space away from current Rx allocation
3092 if ((tx_space
< min_tx_space
) &&
3093 ((min_tx_space
- tx_space
) < pba
)) {
3094 pba
-= min_tx_space
- tx_space
;
3097 * if short on Rx space, Rx wins and must trump tx
3098 * adjustment or use Early Receive if available
3100 if ((pba
< min_rx_space
) &&
3101 (!(adapter
->flags
& FLAG_HAS_ERT
)))
3102 /* ERT enabled in e1000_configure_rx */
3111 * flow control settings
3113 * The high water mark must be low enough to fit one full frame
3114 * (or the size used for early receive) above it in the Rx FIFO.
3115 * Set it to the lower of:
3116 * - 90% of the Rx FIFO size, and
3117 * - the full Rx FIFO size minus the early receive size (for parts
3118 * with ERT support assuming ERT set to E1000_ERT_2048), or
3119 * - the full Rx FIFO size minus one full frame
3121 if (hw
->mac
.type
== e1000_pchlan
) {
3123 * Workaround PCH LOM adapter hangs with certain network
3124 * loads. If hangs persist, try disabling Tx flow control.
3126 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3127 fc
->high_water
= 0x3500;
3128 fc
->low_water
= 0x1500;
3130 fc
->high_water
= 0x5000;
3131 fc
->low_water
= 0x3000;
3133 fc
->refresh_time
= 0x1000;
3135 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
3136 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
3137 hwm
= min(((pba
<< 10) * 9 / 10),
3138 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
3140 hwm
= min(((pba
<< 10) * 9 / 10),
3141 ((pba
<< 10) - adapter
->max_frame_size
));
3143 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3144 fc
->low_water
= fc
->high_water
- 8;
3147 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3148 fc
->pause_time
= 0xFFFF;
3150 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3152 fc
->current_mode
= fc
->requested_mode
;
3154 /* Allow time for pending master requests to run */
3155 mac
->ops
.reset_hw(hw
);
3158 * For parts with AMT enabled, let the firmware know
3159 * that the network interface is in control
3161 if (adapter
->flags
& FLAG_HAS_AMT
)
3162 e1000_get_hw_control(adapter
);
3165 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
)
3166 e1e_wphy(&adapter
->hw
, BM_WUC
, 0);
3168 if (mac
->ops
.init_hw(hw
))
3169 e_err("Hardware Error\n");
3171 e1000_update_mng_vlan(adapter
);
3173 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3174 ew32(VET
, ETH_P_8021Q
);
3176 e1000e_reset_adaptive(hw
);
3177 e1000_get_phy_info(hw
);
3179 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
3180 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
3183 * speed up time to link by disabling smart power down, ignore
3184 * the return value of this function because there is nothing
3185 * different we would do if it failed
3187 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
3188 phy_data
&= ~IGP02E1000_PM_SPD
;
3189 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
3193 int e1000e_up(struct e1000_adapter
*adapter
)
3195 struct e1000_hw
*hw
= &adapter
->hw
;
3197 /* DMA latency requirement to workaround early-receive/jumbo issue */
3198 if (adapter
->flags
& FLAG_HAS_ERT
)
3199 adapter
->netdev
->pm_qos_req
=
3200 pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY
,
3201 PM_QOS_DEFAULT_VALUE
);
3203 /* hardware has been reset, we need to reload some things */
3204 e1000_configure(adapter
);
3206 clear_bit(__E1000_DOWN
, &adapter
->state
);
3208 napi_enable(&adapter
->napi
);
3209 if (adapter
->msix_entries
)
3210 e1000_configure_msix(adapter
);
3211 e1000_irq_enable(adapter
);
3213 netif_wake_queue(adapter
->netdev
);
3215 /* fire a link change interrupt to start the watchdog */
3216 if (adapter
->msix_entries
)
3217 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3219 ew32(ICS
, E1000_ICS_LSC
);
3224 void e1000e_down(struct e1000_adapter
*adapter
)
3226 struct net_device
*netdev
= adapter
->netdev
;
3227 struct e1000_hw
*hw
= &adapter
->hw
;
3231 * signal that we're down so the interrupt handler does not
3232 * reschedule our watchdog timer
3234 set_bit(__E1000_DOWN
, &adapter
->state
);
3236 /* disable receives in the hardware */
3238 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3239 /* flush and sleep below */
3241 netif_stop_queue(netdev
);
3243 /* disable transmits in the hardware */
3245 tctl
&= ~E1000_TCTL_EN
;
3247 /* flush both disables and wait for them to finish */
3251 napi_disable(&adapter
->napi
);
3252 e1000_irq_disable(adapter
);
3254 del_timer_sync(&adapter
->watchdog_timer
);
3255 del_timer_sync(&adapter
->phy_info_timer
);
3257 netif_carrier_off(netdev
);
3258 adapter
->link_speed
= 0;
3259 adapter
->link_duplex
= 0;
3261 if (!pci_channel_offline(adapter
->pdev
))
3262 e1000e_reset(adapter
);
3263 e1000_clean_tx_ring(adapter
);
3264 e1000_clean_rx_ring(adapter
);
3266 if (adapter
->flags
& FLAG_HAS_ERT
) {
3267 pm_qos_remove_request(
3268 adapter
->netdev
->pm_qos_req
);
3269 adapter
->netdev
->pm_qos_req
= NULL
;
3273 * TODO: for power management, we could drop the link and
3274 * pci_disable_device here.
3278 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
3281 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3283 e1000e_down(adapter
);
3285 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3290 * @adapter: board private structure to initialize
3292 * e1000_sw_init initializes the Adapter private data structure.
3293 * Fields are initialized based on PCI device information and
3294 * OS network device settings (MTU size).
3296 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
3298 struct net_device
*netdev
= adapter
->netdev
;
3300 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
3301 adapter
->rx_ps_bsize0
= 128;
3302 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3303 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
3305 e1000e_set_interrupt_capability(adapter
);
3307 if (e1000_alloc_queues(adapter
))
3310 /* Explicitly disable IRQ since the NIC can be in any state. */
3311 e1000_irq_disable(adapter
);
3313 set_bit(__E1000_DOWN
, &adapter
->state
);
3318 * e1000_intr_msi_test - Interrupt Handler
3319 * @irq: interrupt number
3320 * @data: pointer to a network interface device structure
3322 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
3324 struct net_device
*netdev
= data
;
3325 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3326 struct e1000_hw
*hw
= &adapter
->hw
;
3327 u32 icr
= er32(ICR
);
3329 e_dbg("icr is %08X\n", icr
);
3330 if (icr
& E1000_ICR_RXSEQ
) {
3331 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
3339 * e1000_test_msi_interrupt - Returns 0 for successful test
3340 * @adapter: board private struct
3342 * code flow taken from tg3.c
3344 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
3346 struct net_device
*netdev
= adapter
->netdev
;
3347 struct e1000_hw
*hw
= &adapter
->hw
;
3350 /* poll_enable hasn't been called yet, so don't need disable */
3351 /* clear any pending events */
3354 /* free the real vector and request a test handler */
3355 e1000_free_irq(adapter
);
3356 e1000e_reset_interrupt_capability(adapter
);
3358 /* Assume that the test fails, if it succeeds then the test
3359 * MSI irq handler will unset this flag */
3360 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
3362 err
= pci_enable_msi(adapter
->pdev
);
3364 goto msi_test_failed
;
3366 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
3367 netdev
->name
, netdev
);
3369 pci_disable_msi(adapter
->pdev
);
3370 goto msi_test_failed
;
3375 e1000_irq_enable(adapter
);
3377 /* fire an unusual interrupt on the test handler */
3378 ew32(ICS
, E1000_ICS_RXSEQ
);
3382 e1000_irq_disable(adapter
);
3386 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3387 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3389 e_info("MSI interrupt test failed!\n");
3392 free_irq(adapter
->pdev
->irq
, netdev
);
3393 pci_disable_msi(adapter
->pdev
);
3396 goto msi_test_failed
;
3398 /* okay so the test worked, restore settings */
3399 e_dbg("MSI interrupt test succeeded!\n");
3401 e1000e_set_interrupt_capability(adapter
);
3402 e1000_request_irq(adapter
);
3407 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3408 * @adapter: board private struct
3410 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3412 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3417 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3420 /* disable SERR in case the MSI write causes a master abort */
3421 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3422 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3423 pci_cmd
& ~PCI_COMMAND_SERR
);
3425 err
= e1000_test_msi_interrupt(adapter
);
3427 /* restore previous setting of command word */
3428 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3434 /* EIO means MSI test failed */
3438 /* back to INTx mode */
3439 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3441 e1000_free_irq(adapter
);
3443 err
= e1000_request_irq(adapter
);
3449 * e1000_open - Called when a network interface is made active
3450 * @netdev: network interface device structure
3452 * Returns 0 on success, negative value on failure
3454 * The open entry point is called when a network interface is made
3455 * active by the system (IFF_UP). At this point all resources needed
3456 * for transmit and receive operations are allocated, the interrupt
3457 * handler is registered with the OS, the watchdog timer is started,
3458 * and the stack is notified that the interface is ready.
3460 static int e1000_open(struct net_device
*netdev
)
3462 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3463 struct e1000_hw
*hw
= &adapter
->hw
;
3464 struct pci_dev
*pdev
= adapter
->pdev
;
3467 /* disallow open during test */
3468 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3471 pm_runtime_get_sync(&pdev
->dev
);
3473 netif_carrier_off(netdev
);
3475 /* allocate transmit descriptors */
3476 err
= e1000e_setup_tx_resources(adapter
);
3480 /* allocate receive descriptors */
3481 err
= e1000e_setup_rx_resources(adapter
);
3486 * If AMT is enabled, let the firmware know that the network
3487 * interface is now open and reset the part to a known state.
3489 if (adapter
->flags
& FLAG_HAS_AMT
) {
3490 e1000_get_hw_control(adapter
);
3491 e1000e_reset(adapter
);
3494 e1000e_power_up_phy(adapter
);
3496 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3497 if ((adapter
->hw
.mng_cookie
.status
&
3498 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3499 e1000_update_mng_vlan(adapter
);
3502 * before we allocate an interrupt, we must be ready to handle it.
3503 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3504 * as soon as we call pci_request_irq, so we have to setup our
3505 * clean_rx handler before we do so.
3507 e1000_configure(adapter
);
3509 err
= e1000_request_irq(adapter
);
3514 * Work around PCIe errata with MSI interrupts causing some chipsets to
3515 * ignore e1000e MSI messages, which means we need to test our MSI
3518 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3519 err
= e1000_test_msi(adapter
);
3521 e_err("Interrupt allocation failed\n");
3526 /* From here on the code is the same as e1000e_up() */
3527 clear_bit(__E1000_DOWN
, &adapter
->state
);
3529 napi_enable(&adapter
->napi
);
3531 e1000_irq_enable(adapter
);
3533 netif_start_queue(netdev
);
3535 adapter
->idle_check
= true;
3536 pm_runtime_put(&pdev
->dev
);
3538 /* fire a link status change interrupt to start the watchdog */
3539 if (adapter
->msix_entries
)
3540 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3542 ew32(ICS
, E1000_ICS_LSC
);
3547 e1000_release_hw_control(adapter
);
3548 e1000_power_down_phy(adapter
);
3549 e1000e_free_rx_resources(adapter
);
3551 e1000e_free_tx_resources(adapter
);
3553 e1000e_reset(adapter
);
3554 pm_runtime_put_sync(&pdev
->dev
);
3560 * e1000_close - Disables a network interface
3561 * @netdev: network interface device structure
3563 * Returns 0, this is not allowed to fail
3565 * The close entry point is called when an interface is de-activated
3566 * by the OS. The hardware is still under the drivers control, but
3567 * needs to be disabled. A global MAC reset is issued to stop the
3568 * hardware, and all transmit and receive resources are freed.
3570 static int e1000_close(struct net_device
*netdev
)
3572 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3573 struct pci_dev
*pdev
= adapter
->pdev
;
3575 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3577 pm_runtime_get_sync(&pdev
->dev
);
3579 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
3580 e1000e_down(adapter
);
3581 e1000_free_irq(adapter
);
3583 e1000_power_down_phy(adapter
);
3585 e1000e_free_tx_resources(adapter
);
3586 e1000e_free_rx_resources(adapter
);
3589 * kill manageability vlan ID if supported, but not if a vlan with
3590 * the same ID is registered on the host OS (let 8021q kill it)
3592 if ((adapter
->hw
.mng_cookie
.status
&
3593 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3595 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
3596 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3599 * If AMT is enabled, let the firmware know that the network
3600 * interface is now closed
3602 if (adapter
->flags
& FLAG_HAS_AMT
)
3603 e1000_release_hw_control(adapter
);
3605 pm_runtime_put_sync(&pdev
->dev
);
3610 * e1000_set_mac - Change the Ethernet Address of the NIC
3611 * @netdev: network interface device structure
3612 * @p: pointer to an address structure
3614 * Returns 0 on success, negative on failure
3616 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3618 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3619 struct sockaddr
*addr
= p
;
3621 if (!is_valid_ether_addr(addr
->sa_data
))
3622 return -EADDRNOTAVAIL
;
3624 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3625 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3627 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3629 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3630 /* activate the work around */
3631 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
3634 * Hold a copy of the LAA in RAR[14] This is done so that
3635 * between the time RAR[0] gets clobbered and the time it
3636 * gets fixed (in e1000_watchdog), the actual LAA is in one
3637 * of the RARs and no incoming packets directed to this port
3638 * are dropped. Eventually the LAA will be in RAR[0] and
3641 e1000e_rar_set(&adapter
->hw
,
3642 adapter
->hw
.mac
.addr
,
3643 adapter
->hw
.mac
.rar_entry_count
- 1);
3650 * e1000e_update_phy_task - work thread to update phy
3651 * @work: pointer to our work struct
3653 * this worker thread exists because we must acquire a
3654 * semaphore to read the phy, which we could msleep while
3655 * waiting for it, and we can't msleep in a timer.
3657 static void e1000e_update_phy_task(struct work_struct
*work
)
3659 struct e1000_adapter
*adapter
= container_of(work
,
3660 struct e1000_adapter
, update_phy_task
);
3661 e1000_get_phy_info(&adapter
->hw
);
3665 * Need to wait a few seconds after link up to get diagnostic information from
3668 static void e1000_update_phy_info(unsigned long data
)
3670 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3671 schedule_work(&adapter
->update_phy_task
);
3675 * e1000e_update_stats - Update the board statistics counters
3676 * @adapter: board private structure
3678 void e1000e_update_stats(struct e1000_adapter
*adapter
)
3680 struct net_device
*netdev
= adapter
->netdev
;
3681 struct e1000_hw
*hw
= &adapter
->hw
;
3682 struct pci_dev
*pdev
= adapter
->pdev
;
3686 * Prevent stats update while adapter is being reset, or if the pci
3687 * connection is down.
3689 if (adapter
->link_speed
== 0)
3691 if (pci_channel_offline(pdev
))
3694 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3695 adapter
->stats
.gprc
+= er32(GPRC
);
3696 adapter
->stats
.gorc
+= er32(GORCL
);
3697 er32(GORCH
); /* Clear gorc */
3698 adapter
->stats
.bprc
+= er32(BPRC
);
3699 adapter
->stats
.mprc
+= er32(MPRC
);
3700 adapter
->stats
.roc
+= er32(ROC
);
3702 adapter
->stats
.mpc
+= er32(MPC
);
3703 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3704 (hw
->phy
.type
== e1000_phy_82577
)) {
3705 e1e_rphy(hw
, HV_SCC_UPPER
, &phy_data
);
3706 if (!e1e_rphy(hw
, HV_SCC_LOWER
, &phy_data
))
3707 adapter
->stats
.scc
+= phy_data
;
3709 e1e_rphy(hw
, HV_ECOL_UPPER
, &phy_data
);
3710 if (!e1e_rphy(hw
, HV_ECOL_LOWER
, &phy_data
))
3711 adapter
->stats
.ecol
+= phy_data
;
3713 e1e_rphy(hw
, HV_MCC_UPPER
, &phy_data
);
3714 if (!e1e_rphy(hw
, HV_MCC_LOWER
, &phy_data
))
3715 adapter
->stats
.mcc
+= phy_data
;
3717 e1e_rphy(hw
, HV_LATECOL_UPPER
, &phy_data
);
3718 if (!e1e_rphy(hw
, HV_LATECOL_LOWER
, &phy_data
))
3719 adapter
->stats
.latecol
+= phy_data
;
3721 e1e_rphy(hw
, HV_DC_UPPER
, &phy_data
);
3722 if (!e1e_rphy(hw
, HV_DC_LOWER
, &phy_data
))
3723 adapter
->stats
.dc
+= phy_data
;
3725 adapter
->stats
.scc
+= er32(SCC
);
3726 adapter
->stats
.ecol
+= er32(ECOL
);
3727 adapter
->stats
.mcc
+= er32(MCC
);
3728 adapter
->stats
.latecol
+= er32(LATECOL
);
3729 adapter
->stats
.dc
+= er32(DC
);
3731 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3732 adapter
->stats
.xontxc
+= er32(XONTXC
);
3733 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3734 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3735 adapter
->stats
.gptc
+= er32(GPTC
);
3736 adapter
->stats
.gotc
+= er32(GOTCL
);
3737 er32(GOTCH
); /* Clear gotc */
3738 adapter
->stats
.rnbc
+= er32(RNBC
);
3739 adapter
->stats
.ruc
+= er32(RUC
);
3741 adapter
->stats
.mptc
+= er32(MPTC
);
3742 adapter
->stats
.bptc
+= er32(BPTC
);
3744 /* used for adaptive IFS */
3746 hw
->mac
.tx_packet_delta
= er32(TPT
);
3747 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3748 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3749 (hw
->phy
.type
== e1000_phy_82577
)) {
3750 e1e_rphy(hw
, HV_COLC_UPPER
, &phy_data
);
3751 if (!e1e_rphy(hw
, HV_COLC_LOWER
, &phy_data
))
3752 hw
->mac
.collision_delta
= phy_data
;
3754 hw
->mac
.collision_delta
= er32(COLC
);
3756 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3758 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3759 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3760 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3761 (hw
->phy
.type
== e1000_phy_82577
)) {
3762 e1e_rphy(hw
, HV_TNCRS_UPPER
, &phy_data
);
3763 if (!e1e_rphy(hw
, HV_TNCRS_LOWER
, &phy_data
))
3764 adapter
->stats
.tncrs
+= phy_data
;
3766 if ((hw
->mac
.type
!= e1000_82574
) &&
3767 (hw
->mac
.type
!= e1000_82583
))
3768 adapter
->stats
.tncrs
+= er32(TNCRS
);
3770 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3771 adapter
->stats
.tsctc
+= er32(TSCTC
);
3772 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3774 /* Fill out the OS statistics structure */
3775 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3776 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3781 * RLEC on some newer hardware can be incorrect so build
3782 * our own version based on RUC and ROC
3784 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3785 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3786 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3787 adapter
->stats
.cexterr
;
3788 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
3790 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3791 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3792 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3795 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
3796 adapter
->stats
.latecol
;
3797 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3798 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3799 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3801 /* Tx Dropped needs to be maintained elsewhere */
3803 /* Management Stats */
3804 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3805 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3806 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3810 * e1000_phy_read_status - Update the PHY register status snapshot
3811 * @adapter: board private structure
3813 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
3815 struct e1000_hw
*hw
= &adapter
->hw
;
3816 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
3819 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
3820 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
3821 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
3822 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
3823 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
3824 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
3825 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
3826 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
3827 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
3828 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
3830 e_warn("Error reading PHY register\n");
3833 * Do not read PHY registers if link is not up
3834 * Set values to typical power-on defaults
3836 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
3837 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
3838 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
3840 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
3841 ADVERTISE_ALL
| ADVERTISE_CSMA
);
3843 phy
->expansion
= EXPANSION_ENABLENPAGE
;
3844 phy
->ctrl1000
= ADVERTISE_1000FULL
;
3846 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
3850 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
3852 struct e1000_hw
*hw
= &adapter
->hw
;
3853 u32 ctrl
= er32(CTRL
);
3855 /* Link status message must follow this format for user tools */
3856 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s, "
3857 "Flow Control: %s\n",
3858 adapter
->netdev
->name
,
3859 adapter
->link_speed
,
3860 (adapter
->link_duplex
== FULL_DUPLEX
) ?
3861 "Full Duplex" : "Half Duplex",
3862 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
3864 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
3865 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
3868 bool e1000e_has_link(struct e1000_adapter
*adapter
)
3870 struct e1000_hw
*hw
= &adapter
->hw
;
3871 bool link_active
= 0;
3875 * get_link_status is set on LSC (link status) interrupt or
3876 * Rx sequence error interrupt. get_link_status will stay
3877 * false until the check_for_link establishes link
3878 * for copper adapters ONLY
3880 switch (hw
->phy
.media_type
) {
3881 case e1000_media_type_copper
:
3882 if (hw
->mac
.get_link_status
) {
3883 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3884 link_active
= !hw
->mac
.get_link_status
;
3889 case e1000_media_type_fiber
:
3890 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3891 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
3893 case e1000_media_type_internal_serdes
:
3894 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3895 link_active
= adapter
->hw
.mac
.serdes_has_link
;
3898 case e1000_media_type_unknown
:
3902 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
3903 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
3904 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3905 e_info("Gigabit has been disabled, downgrading speed\n");
3911 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
3913 /* make sure the receive unit is started */
3914 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
3915 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
3916 struct e1000_hw
*hw
= &adapter
->hw
;
3917 u32 rctl
= er32(RCTL
);
3918 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3919 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
3924 * e1000_watchdog - Timer Call-back
3925 * @data: pointer to adapter cast into an unsigned long
3927 static void e1000_watchdog(unsigned long data
)
3929 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3931 /* Do the rest outside of interrupt context */
3932 schedule_work(&adapter
->watchdog_task
);
3934 /* TODO: make this use queue_delayed_work() */
3937 static void e1000_watchdog_task(struct work_struct
*work
)
3939 struct e1000_adapter
*adapter
= container_of(work
,
3940 struct e1000_adapter
, watchdog_task
);
3941 struct net_device
*netdev
= adapter
->netdev
;
3942 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3943 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
3944 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3945 struct e1000_hw
*hw
= &adapter
->hw
;
3949 link
= e1000e_has_link(adapter
);
3950 if ((netif_carrier_ok(netdev
)) && link
) {
3951 /* Cancel scheduled suspend requests. */
3952 pm_runtime_resume(netdev
->dev
.parent
);
3954 e1000e_enable_receives(adapter
);
3958 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
3959 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
3960 e1000_update_mng_vlan(adapter
);
3963 if (!netif_carrier_ok(netdev
)) {
3966 /* Cancel scheduled suspend requests. */
3967 pm_runtime_resume(netdev
->dev
.parent
);
3969 /* update snapshot of PHY registers on LSC */
3970 e1000_phy_read_status(adapter
);
3971 mac
->ops
.get_link_up_info(&adapter
->hw
,
3972 &adapter
->link_speed
,
3973 &adapter
->link_duplex
);
3974 e1000_print_link_info(adapter
);
3976 * On supported PHYs, check for duplex mismatch only
3977 * if link has autonegotiated at 10/100 half
3979 if ((hw
->phy
.type
== e1000_phy_igp_3
||
3980 hw
->phy
.type
== e1000_phy_bm
) &&
3981 (hw
->mac
.autoneg
== true) &&
3982 (adapter
->link_speed
== SPEED_10
||
3983 adapter
->link_speed
== SPEED_100
) &&
3984 (adapter
->link_duplex
== HALF_DUPLEX
)) {
3987 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
3989 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
3990 e_info("Autonegotiated half duplex but"
3991 " link partner cannot autoneg. "
3992 " Try forcing full duplex if "
3993 "link gets many collisions.\n");
3996 /* adjust timeout factor according to speed/duplex */
3997 adapter
->tx_timeout_factor
= 1;
3998 switch (adapter
->link_speed
) {
4001 adapter
->tx_timeout_factor
= 16;
4005 adapter
->tx_timeout_factor
= 10;
4010 * workaround: re-program speed mode bit after
4013 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
4016 tarc0
= er32(TARC(0));
4017 tarc0
&= ~SPEED_MODE_BIT
;
4018 ew32(TARC(0), tarc0
);
4022 * disable TSO for pcie and 10/100 speeds, to avoid
4023 * some hardware issues
4025 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
4026 switch (adapter
->link_speed
) {
4029 e_info("10/100 speed: disabling TSO\n");
4030 netdev
->features
&= ~NETIF_F_TSO
;
4031 netdev
->features
&= ~NETIF_F_TSO6
;
4034 netdev
->features
|= NETIF_F_TSO
;
4035 netdev
->features
|= NETIF_F_TSO6
;
4044 * enable transmits in the hardware, need to do this
4045 * after setting TARC(0)
4048 tctl
|= E1000_TCTL_EN
;
4052 * Perform any post-link-up configuration before
4053 * reporting link up.
4055 if (phy
->ops
.cfg_on_link_up
)
4056 phy
->ops
.cfg_on_link_up(hw
);
4058 netif_carrier_on(netdev
);
4060 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4061 mod_timer(&adapter
->phy_info_timer
,
4062 round_jiffies(jiffies
+ 2 * HZ
));
4065 if (netif_carrier_ok(netdev
)) {
4066 adapter
->link_speed
= 0;
4067 adapter
->link_duplex
= 0;
4068 /* Link status message must follow this format */
4069 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
4070 adapter
->netdev
->name
);
4071 netif_carrier_off(netdev
);
4072 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4073 mod_timer(&adapter
->phy_info_timer
,
4074 round_jiffies(jiffies
+ 2 * HZ
));
4076 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
4077 schedule_work(&adapter
->reset_task
);
4079 pm_schedule_suspend(netdev
->dev
.parent
,
4085 e1000e_update_stats(adapter
);
4087 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
4088 adapter
->tpt_old
= adapter
->stats
.tpt
;
4089 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
4090 adapter
->colc_old
= adapter
->stats
.colc
;
4092 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
4093 adapter
->gorc_old
= adapter
->stats
.gorc
;
4094 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
4095 adapter
->gotc_old
= adapter
->stats
.gotc
;
4097 e1000e_update_adaptive(&adapter
->hw
);
4099 if (!netif_carrier_ok(netdev
)) {
4100 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
4104 * We've lost link, so the controller stops DMA,
4105 * but we've got queued Tx work that's never going
4106 * to get done, so reset controller to flush Tx.
4107 * (Do the reset outside of interrupt context).
4109 adapter
->tx_timeout_count
++;
4110 schedule_work(&adapter
->reset_task
);
4111 /* return immediately since reset is imminent */
4116 /* Simple mode for Interrupt Throttle Rate (ITR) */
4117 if (adapter
->itr_setting
== 4) {
4119 * Symmetric Tx/Rx gets a reduced ITR=2000;
4120 * Total asymmetrical Tx or Rx gets ITR=8000;
4121 * everyone else is between 2000-8000.
4123 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
4124 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
4125 adapter
->gotc
- adapter
->gorc
:
4126 adapter
->gorc
- adapter
->gotc
) / 10000;
4127 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
4129 ew32(ITR
, 1000000000 / (itr
* 256));
4132 /* Cause software interrupt to ensure Rx ring is cleaned */
4133 if (adapter
->msix_entries
)
4134 ew32(ICS
, adapter
->rx_ring
->ims_val
);
4136 ew32(ICS
, E1000_ICS_RXDMT0
);
4138 /* Force detection of hung controller every watchdog period */
4139 adapter
->detect_tx_hung
= 1;
4142 * With 82571 controllers, LAA may be overwritten due to controller
4143 * reset from the other port. Set the appropriate LAA in RAR[0]
4145 if (e1000e_get_laa_state_82571(hw
))
4146 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
4148 /* Reset the timer */
4149 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4150 mod_timer(&adapter
->watchdog_timer
,
4151 round_jiffies(jiffies
+ 2 * HZ
));
4154 #define E1000_TX_FLAGS_CSUM 0x00000001
4155 #define E1000_TX_FLAGS_VLAN 0x00000002
4156 #define E1000_TX_FLAGS_TSO 0x00000004
4157 #define E1000_TX_FLAGS_IPV4 0x00000008
4158 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4159 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4161 static int e1000_tso(struct e1000_adapter
*adapter
,
4162 struct sk_buff
*skb
)
4164 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4165 struct e1000_context_desc
*context_desc
;
4166 struct e1000_buffer
*buffer_info
;
4169 u16 ipcse
= 0, tucse
, mss
;
4170 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
4173 if (!skb_is_gso(skb
))
4176 if (skb_header_cloned(skb
)) {
4177 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4182 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4183 mss
= skb_shinfo(skb
)->gso_size
;
4184 if (skb
->protocol
== htons(ETH_P_IP
)) {
4185 struct iphdr
*iph
= ip_hdr(skb
);
4188 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
4190 cmd_length
= E1000_TXD_CMD_IP
;
4191 ipcse
= skb_transport_offset(skb
) - 1;
4192 } else if (skb_is_gso_v6(skb
)) {
4193 ipv6_hdr(skb
)->payload_len
= 0;
4194 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4195 &ipv6_hdr(skb
)->daddr
,
4199 ipcss
= skb_network_offset(skb
);
4200 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
4201 tucss
= skb_transport_offset(skb
);
4202 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
4205 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
4206 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
4208 i
= tx_ring
->next_to_use
;
4209 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4210 buffer_info
= &tx_ring
->buffer_info
[i
];
4212 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
4213 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
4214 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
4215 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
4216 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
4217 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
4218 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
4219 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
4220 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
4222 buffer_info
->time_stamp
= jiffies
;
4223 buffer_info
->next_to_watch
= i
;
4226 if (i
== tx_ring
->count
)
4228 tx_ring
->next_to_use
= i
;
4233 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
4235 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4236 struct e1000_context_desc
*context_desc
;
4237 struct e1000_buffer
*buffer_info
;
4240 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
4243 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
4246 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
4247 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
4249 protocol
= skb
->protocol
;
4252 case cpu_to_be16(ETH_P_IP
):
4253 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
4254 cmd_len
|= E1000_TXD_CMD_TCP
;
4256 case cpu_to_be16(ETH_P_IPV6
):
4257 /* XXX not handling all IPV6 headers */
4258 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
4259 cmd_len
|= E1000_TXD_CMD_TCP
;
4262 if (unlikely(net_ratelimit()))
4263 e_warn("checksum_partial proto=%x!\n",
4264 be16_to_cpu(protocol
));
4268 css
= skb_transport_offset(skb
);
4270 i
= tx_ring
->next_to_use
;
4271 buffer_info
= &tx_ring
->buffer_info
[i
];
4272 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4274 context_desc
->lower_setup
.ip_config
= 0;
4275 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
4276 context_desc
->upper_setup
.tcp_fields
.tucso
=
4277 css
+ skb
->csum_offset
;
4278 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
4279 context_desc
->tcp_seg_setup
.data
= 0;
4280 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
4282 buffer_info
->time_stamp
= jiffies
;
4283 buffer_info
->next_to_watch
= i
;
4286 if (i
== tx_ring
->count
)
4288 tx_ring
->next_to_use
= i
;
4293 #define E1000_MAX_PER_TXD 8192
4294 #define E1000_MAX_TXD_PWR 12
4296 static int e1000_tx_map(struct e1000_adapter
*adapter
,
4297 struct sk_buff
*skb
, unsigned int first
,
4298 unsigned int max_per_txd
, unsigned int nr_frags
,
4301 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4302 struct pci_dev
*pdev
= adapter
->pdev
;
4303 struct e1000_buffer
*buffer_info
;
4304 unsigned int len
= skb_headlen(skb
);
4305 unsigned int offset
= 0, size
, count
= 0, i
;
4306 unsigned int f
, bytecount
, segs
;
4308 i
= tx_ring
->next_to_use
;
4311 buffer_info
= &tx_ring
->buffer_info
[i
];
4312 size
= min(len
, max_per_txd
);
4314 buffer_info
->length
= size
;
4315 buffer_info
->time_stamp
= jiffies
;
4316 buffer_info
->next_to_watch
= i
;
4317 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4319 size
, DMA_TO_DEVICE
);
4320 buffer_info
->mapped_as_page
= false;
4321 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4330 if (i
== tx_ring
->count
)
4335 for (f
= 0; f
< nr_frags
; f
++) {
4336 struct skb_frag_struct
*frag
;
4338 frag
= &skb_shinfo(skb
)->frags
[f
];
4340 offset
= frag
->page_offset
;
4344 if (i
== tx_ring
->count
)
4347 buffer_info
= &tx_ring
->buffer_info
[i
];
4348 size
= min(len
, max_per_txd
);
4350 buffer_info
->length
= size
;
4351 buffer_info
->time_stamp
= jiffies
;
4352 buffer_info
->next_to_watch
= i
;
4353 buffer_info
->dma
= dma_map_page(&pdev
->dev
, frag
->page
,
4356 buffer_info
->mapped_as_page
= true;
4357 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4366 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
4367 /* multiply data chunks by size of headers */
4368 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
4370 tx_ring
->buffer_info
[i
].skb
= skb
;
4371 tx_ring
->buffer_info
[i
].segs
= segs
;
4372 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
4373 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
4378 dev_err(&pdev
->dev
, "TX DMA map failed\n");
4379 buffer_info
->dma
= 0;
4385 i
+= tx_ring
->count
;
4387 buffer_info
= &tx_ring
->buffer_info
[i
];
4388 e1000_put_txbuf(adapter
, buffer_info
);;
4394 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
4395 int tx_flags
, int count
)
4397 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4398 struct e1000_tx_desc
*tx_desc
= NULL
;
4399 struct e1000_buffer
*buffer_info
;
4400 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
4403 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
4404 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
4406 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4408 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
4409 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
4412 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
4413 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
4414 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4417 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
4418 txd_lower
|= E1000_TXD_CMD_VLE
;
4419 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
4422 i
= tx_ring
->next_to_use
;
4425 buffer_info
= &tx_ring
->buffer_info
[i
];
4426 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
4427 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4428 tx_desc
->lower
.data
=
4429 cpu_to_le32(txd_lower
| buffer_info
->length
);
4430 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4433 if (i
== tx_ring
->count
)
4437 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4440 * Force memory writes to complete before letting h/w
4441 * know there are new descriptors to fetch. (Only
4442 * applicable for weak-ordered memory model archs,
4447 tx_ring
->next_to_use
= i
;
4448 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
4450 * we need this if more than one processor can write to our tail
4451 * at a time, it synchronizes IO on IA64/Altix systems
4456 #define MINIMUM_DHCP_PACKET_SIZE 282
4457 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4458 struct sk_buff
*skb
)
4460 struct e1000_hw
*hw
= &adapter
->hw
;
4463 if (vlan_tx_tag_present(skb
)) {
4464 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
4465 (adapter
->hw
.mng_cookie
.status
&
4466 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4470 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4473 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4477 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4480 if (ip
->protocol
!= IPPROTO_UDP
)
4483 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4484 if (ntohs(udp
->dest
) != 67)
4487 offset
= (u8
*)udp
+ 8 - skb
->data
;
4488 length
= skb
->len
- offset
;
4489 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4495 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4497 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4499 netif_stop_queue(netdev
);
4501 * Herbert's original patch had:
4502 * smp_mb__after_netif_stop_queue();
4503 * but since that doesn't exist yet, just open code it.
4508 * We need to check again in a case another CPU has just
4509 * made room available.
4511 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
4515 netif_start_queue(netdev
);
4516 ++adapter
->restart_queue
;
4520 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4522 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4524 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
4526 return __e1000_maybe_stop_tx(netdev
, size
);
4529 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4530 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4531 struct net_device
*netdev
)
4533 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4534 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4536 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4537 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4538 unsigned int tx_flags
= 0;
4539 unsigned int len
= skb_headlen(skb
);
4540 unsigned int nr_frags
;
4546 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4547 dev_kfree_skb_any(skb
);
4548 return NETDEV_TX_OK
;
4551 if (skb
->len
<= 0) {
4552 dev_kfree_skb_any(skb
);
4553 return NETDEV_TX_OK
;
4556 mss
= skb_shinfo(skb
)->gso_size
;
4558 * The controller does a simple calculation to
4559 * make sure there is enough room in the FIFO before
4560 * initiating the DMA for each buffer. The calc is:
4561 * 4 = ceil(buffer len/mss). To make sure we don't
4562 * overrun the FIFO, adjust the max buffer len if mss
4567 max_per_txd
= min(mss
<< 2, max_per_txd
);
4568 max_txd_pwr
= fls(max_per_txd
) - 1;
4571 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4572 * points to just header, pull a few bytes of payload from
4573 * frags into skb->data
4575 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4577 * we do this workaround for ES2LAN, but it is un-necessary,
4578 * avoiding it could save a lot of cycles
4580 if (skb
->data_len
&& (hdr_len
== len
)) {
4581 unsigned int pull_size
;
4583 pull_size
= min((unsigned int)4, skb
->data_len
);
4584 if (!__pskb_pull_tail(skb
, pull_size
)) {
4585 e_err("__pskb_pull_tail failed.\n");
4586 dev_kfree_skb_any(skb
);
4587 return NETDEV_TX_OK
;
4589 len
= skb_headlen(skb
);
4593 /* reserve a descriptor for the offload context */
4594 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4598 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
4600 nr_frags
= skb_shinfo(skb
)->nr_frags
;
4601 for (f
= 0; f
< nr_frags
; f
++)
4602 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
4605 if (adapter
->hw
.mac
.tx_pkt_filtering
)
4606 e1000_transfer_dhcp_info(adapter
, skb
);
4609 * need: count + 2 desc gap to keep tail from touching
4610 * head, otherwise try next time
4612 if (e1000_maybe_stop_tx(netdev
, count
+ 2))
4613 return NETDEV_TX_BUSY
;
4615 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4616 tx_flags
|= E1000_TX_FLAGS_VLAN
;
4617 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
4620 first
= tx_ring
->next_to_use
;
4622 tso
= e1000_tso(adapter
, skb
);
4624 dev_kfree_skb_any(skb
);
4625 return NETDEV_TX_OK
;
4629 tx_flags
|= E1000_TX_FLAGS_TSO
;
4630 else if (e1000_tx_csum(adapter
, skb
))
4631 tx_flags
|= E1000_TX_FLAGS_CSUM
;
4634 * Old method was to assume IPv4 packet by default if TSO was enabled.
4635 * 82571 hardware supports TSO capabilities for IPv6 as well...
4636 * no longer assume, we must.
4638 if (skb
->protocol
== htons(ETH_P_IP
))
4639 tx_flags
|= E1000_TX_FLAGS_IPV4
;
4641 /* if count is 0 then mapping error has occured */
4642 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
4644 e1000_tx_queue(adapter
, tx_flags
, count
);
4645 /* Make sure there is space in the ring for the next send. */
4646 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
4649 dev_kfree_skb_any(skb
);
4650 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4651 tx_ring
->next_to_use
= first
;
4654 return NETDEV_TX_OK
;
4658 * e1000_tx_timeout - Respond to a Tx Hang
4659 * @netdev: network interface device structure
4661 static void e1000_tx_timeout(struct net_device
*netdev
)
4663 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4665 /* Do the reset outside of interrupt context */
4666 adapter
->tx_timeout_count
++;
4667 schedule_work(&adapter
->reset_task
);
4670 static void e1000_reset_task(struct work_struct
*work
)
4672 struct e1000_adapter
*adapter
;
4673 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
4675 e1000e_dump(adapter
);
4676 e_err("Reset adapter\n");
4677 e1000e_reinit_locked(adapter
);
4681 * e1000_get_stats - Get System Network Statistics
4682 * @netdev: network interface device structure
4684 * Returns the address of the device statistics structure.
4685 * The statistics are actually updated from the timer callback.
4687 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
4689 /* only return the current stats */
4690 return &netdev
->stats
;
4694 * e1000_change_mtu - Change the Maximum Transfer Unit
4695 * @netdev: network interface device structure
4696 * @new_mtu: new value for maximum frame size
4698 * Returns 0 on success, negative on failure
4700 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
4702 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4703 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4705 /* Jumbo frame support */
4706 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
4707 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
4708 e_err("Jumbo Frames not supported.\n");
4712 /* Supported frame sizes */
4713 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
4714 (max_frame
> adapter
->max_hw_frame_size
)) {
4715 e_err("Unsupported MTU setting\n");
4719 /* 82573 Errata 17 */
4720 if (((adapter
->hw
.mac
.type
== e1000_82573
) ||
4721 (adapter
->hw
.mac
.type
== e1000_82574
)) &&
4722 (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
4723 adapter
->flags2
|= FLAG2_DISABLE_ASPM_L1
;
4724 e1000e_disable_aspm(adapter
->pdev
, PCIE_LINK_STATE_L1
);
4727 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4729 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4730 adapter
->max_frame_size
= max_frame
;
4731 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
4732 netdev
->mtu
= new_mtu
;
4733 if (netif_running(netdev
))
4734 e1000e_down(adapter
);
4737 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4738 * means we reserve 2 more, this pushes us to allocate from the next
4740 * i.e. RXBUFFER_2048 --> size-4096 slab
4741 * However with the new *_jumbo_rx* routines, jumbo receives will use
4745 if (max_frame
<= 2048)
4746 adapter
->rx_buffer_len
= 2048;
4748 adapter
->rx_buffer_len
= 4096;
4750 /* adjust allocation if LPE protects us, and we aren't using SBP */
4751 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
4752 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
4753 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
4756 if (netif_running(netdev
))
4759 e1000e_reset(adapter
);
4761 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4766 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4769 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4770 struct mii_ioctl_data
*data
= if_mii(ifr
);
4772 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4777 data
->phy_id
= adapter
->hw
.phy
.addr
;
4780 e1000_phy_read_status(adapter
);
4782 switch (data
->reg_num
& 0x1F) {
4784 data
->val_out
= adapter
->phy_regs
.bmcr
;
4787 data
->val_out
= adapter
->phy_regs
.bmsr
;
4790 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
4793 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
4796 data
->val_out
= adapter
->phy_regs
.advertise
;
4799 data
->val_out
= adapter
->phy_regs
.lpa
;
4802 data
->val_out
= adapter
->phy_regs
.expansion
;
4805 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
4808 data
->val_out
= adapter
->phy_regs
.stat1000
;
4811 data
->val_out
= adapter
->phy_regs
.estatus
;
4824 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4830 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4836 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
4838 struct e1000_hw
*hw
= &adapter
->hw
;
4843 /* copy MAC RARs to PHY RARs */
4844 for (i
= 0; i
< adapter
->hw
.mac
.rar_entry_count
; i
++) {
4845 mac_reg
= er32(RAL(i
));
4846 e1e_wphy(hw
, BM_RAR_L(i
), (u16
)(mac_reg
& 0xFFFF));
4847 e1e_wphy(hw
, BM_RAR_M(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
4848 mac_reg
= er32(RAH(i
));
4849 e1e_wphy(hw
, BM_RAR_H(i
), (u16
)(mac_reg
& 0xFFFF));
4850 e1e_wphy(hw
, BM_RAR_CTRL(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
4853 /* copy MAC MTA to PHY MTA */
4854 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
4855 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
4856 e1e_wphy(hw
, BM_MTA(i
), (u16
)(mac_reg
& 0xFFFF));
4857 e1e_wphy(hw
, BM_MTA(i
) + 1, (u16
)((mac_reg
>> 16) & 0xFFFF));
4860 /* configure PHY Rx Control register */
4861 e1e_rphy(&adapter
->hw
, BM_RCTL
, &phy_reg
);
4862 mac_reg
= er32(RCTL
);
4863 if (mac_reg
& E1000_RCTL_UPE
)
4864 phy_reg
|= BM_RCTL_UPE
;
4865 if (mac_reg
& E1000_RCTL_MPE
)
4866 phy_reg
|= BM_RCTL_MPE
;
4867 phy_reg
&= ~(BM_RCTL_MO_MASK
);
4868 if (mac_reg
& E1000_RCTL_MO_3
)
4869 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
4870 << BM_RCTL_MO_SHIFT
);
4871 if (mac_reg
& E1000_RCTL_BAM
)
4872 phy_reg
|= BM_RCTL_BAM
;
4873 if (mac_reg
& E1000_RCTL_PMCF
)
4874 phy_reg
|= BM_RCTL_PMCF
;
4875 mac_reg
= er32(CTRL
);
4876 if (mac_reg
& E1000_CTRL_RFCE
)
4877 phy_reg
|= BM_RCTL_RFCE
;
4878 e1e_wphy(&adapter
->hw
, BM_RCTL
, phy_reg
);
4880 /* enable PHY wakeup in MAC register */
4882 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
4884 /* configure and enable PHY wakeup in PHY registers */
4885 e1e_wphy(&adapter
->hw
, BM_WUFC
, wufc
);
4886 e1e_wphy(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
4888 /* activate PHY wakeup */
4889 retval
= hw
->phy
.ops
.acquire(hw
);
4891 e_err("Could not acquire PHY\n");
4894 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4895 (BM_WUC_ENABLE_PAGE
<< IGP_PAGE_SHIFT
));
4896 retval
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, &phy_reg
);
4898 e_err("Could not read PHY page 769\n");
4901 phy_reg
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
4902 retval
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
4904 e_err("Could not set PHY Host Wakeup bit\n");
4906 hw
->phy
.ops
.release(hw
);
4911 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
,
4914 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4915 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4916 struct e1000_hw
*hw
= &adapter
->hw
;
4917 u32 ctrl
, ctrl_ext
, rctl
, status
;
4918 /* Runtime suspend should only enable wakeup for link changes */
4919 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
4922 netif_device_detach(netdev
);
4924 if (netif_running(netdev
)) {
4925 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4926 e1000e_down(adapter
);
4927 e1000_free_irq(adapter
);
4929 e1000e_reset_interrupt_capability(adapter
);
4931 retval
= pci_save_state(pdev
);
4935 status
= er32(STATUS
);
4936 if (status
& E1000_STATUS_LU
)
4937 wufc
&= ~E1000_WUFC_LNKC
;
4940 e1000_setup_rctl(adapter
);
4941 e1000_set_multi(netdev
);
4943 /* turn on all-multi mode if wake on multicast is enabled */
4944 if (wufc
& E1000_WUFC_MC
) {
4946 rctl
|= E1000_RCTL_MPE
;
4951 /* advertise wake from D3Cold */
4952 #define E1000_CTRL_ADVD3WUC 0x00100000
4953 /* phy power management enable */
4954 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4955 ctrl
|= E1000_CTRL_ADVD3WUC
;
4956 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
4957 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
4960 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
4961 adapter
->hw
.phy
.media_type
==
4962 e1000_media_type_internal_serdes
) {
4963 /* keep the laser running in D3 */
4964 ctrl_ext
= er32(CTRL_EXT
);
4965 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
4966 ew32(CTRL_EXT
, ctrl_ext
);
4969 if (adapter
->flags
& FLAG_IS_ICH
)
4970 e1000e_disable_gig_wol_ich8lan(&adapter
->hw
);
4972 /* Allow time for pending master requests to run */
4973 e1000e_disable_pcie_master(&adapter
->hw
);
4975 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
4976 /* enable wakeup by the PHY */
4977 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
4981 /* enable wakeup by the MAC */
4983 ew32(WUC
, E1000_WUC_PME_EN
);
4990 *enable_wake
= !!wufc
;
4992 /* make sure adapter isn't asleep if manageability is enabled */
4993 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
4994 (hw
->mac
.ops
.check_mng_mode(hw
)))
4995 *enable_wake
= true;
4997 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
4998 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
5001 * Release control of h/w to f/w. If f/w is AMT enabled, this
5002 * would have already happened in close and is redundant.
5004 e1000_release_hw_control(adapter
);
5006 pci_disable_device(pdev
);
5011 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
5013 if (sleep
&& wake
) {
5014 pci_prepare_to_sleep(pdev
);
5018 pci_wake_from_d3(pdev
, wake
);
5019 pci_set_power_state(pdev
, PCI_D3hot
);
5022 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
5025 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5026 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5029 * The pci-e switch on some quad port adapters will report a
5030 * correctable error when the MAC transitions from D0 to D3. To
5031 * prevent this we need to mask off the correctable errors on the
5032 * downstream port of the pci-e switch.
5034 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
5035 struct pci_dev
*us_dev
= pdev
->bus
->self
;
5036 int pos
= pci_find_capability(us_dev
, PCI_CAP_ID_EXP
);
5039 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
5040 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
5041 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
5043 e1000_power_off(pdev
, sleep
, wake
);
5045 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
5047 e1000_power_off(pdev
, sleep
, wake
);
5051 #ifdef CONFIG_PCIEASPM
5052 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5054 pci_disable_link_state(pdev
, state
);
5057 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5063 * Both device and parent should have the same ASPM setting.
5064 * Disable ASPM in downstream component first and then upstream.
5066 pos
= pci_pcie_cap(pdev
);
5067 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5069 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5071 if (!pdev
->bus
->self
)
5074 pos
= pci_pcie_cap(pdev
->bus
->self
);
5075 pci_read_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5077 pci_write_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5080 void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5082 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
5083 (state
& PCIE_LINK_STATE_L0S
) ? "L0s" : "",
5084 (state
& PCIE_LINK_STATE_L1
) ? "L1" : "");
5086 __e1000e_disable_aspm(pdev
, state
);
5089 #ifdef CONFIG_PM_OPS
5090 static bool e1000e_pm_ready(struct e1000_adapter
*adapter
)
5092 return !!adapter
->tx_ring
->buffer_info
;
5095 static int __e1000_resume(struct pci_dev
*pdev
)
5097 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5098 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5099 struct e1000_hw
*hw
= &adapter
->hw
;
5102 pci_set_power_state(pdev
, PCI_D0
);
5103 pci_restore_state(pdev
);
5104 pci_save_state(pdev
);
5105 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5106 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
5108 e1000e_set_interrupt_capability(adapter
);
5109 if (netif_running(netdev
)) {
5110 err
= e1000_request_irq(adapter
);
5115 e1000e_power_up_phy(adapter
);
5117 /* report the system wakeup cause from S3/S4 */
5118 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5121 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
5123 e_info("PHY Wakeup cause - %s\n",
5124 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
5125 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
5126 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
5127 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
5128 phy_data
& E1000_WUS_LNKC
? "Link Status "
5129 " Change" : "other");
5131 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
5133 u32 wus
= er32(WUS
);
5135 e_info("MAC Wakeup cause - %s\n",
5136 wus
& E1000_WUS_EX
? "Unicast Packet" :
5137 wus
& E1000_WUS_MC
? "Multicast Packet" :
5138 wus
& E1000_WUS_BC
? "Broadcast Packet" :
5139 wus
& E1000_WUS_MAG
? "Magic Packet" :
5140 wus
& E1000_WUS_LNKC
? "Link Status Change" :
5146 e1000e_reset(adapter
);
5148 e1000_init_manageability_pt(adapter
);
5150 if (netif_running(netdev
))
5153 netif_device_attach(netdev
);
5156 * If the controller has AMT, do not set DRV_LOAD until the interface
5157 * is up. For all other cases, let the f/w know that the h/w is now
5158 * under the control of the driver.
5160 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5161 e1000_get_hw_control(adapter
);
5166 #ifdef CONFIG_PM_SLEEP
5167 static int e1000_suspend(struct device
*dev
)
5169 struct pci_dev
*pdev
= to_pci_dev(dev
);
5173 retval
= __e1000_shutdown(pdev
, &wake
, false);
5175 e1000_complete_shutdown(pdev
, true, wake
);
5180 static int e1000_resume(struct device
*dev
)
5182 struct pci_dev
*pdev
= to_pci_dev(dev
);
5183 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5184 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5186 if (e1000e_pm_ready(adapter
))
5187 adapter
->idle_check
= true;
5189 return __e1000_resume(pdev
);
5191 #endif /* CONFIG_PM_SLEEP */
5193 #ifdef CONFIG_PM_RUNTIME
5194 static int e1000_runtime_suspend(struct device
*dev
)
5196 struct pci_dev
*pdev
= to_pci_dev(dev
);
5197 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5198 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5200 if (e1000e_pm_ready(adapter
)) {
5203 __e1000_shutdown(pdev
, &wake
, true);
5209 static int e1000_idle(struct device
*dev
)
5211 struct pci_dev
*pdev
= to_pci_dev(dev
);
5212 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5213 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5215 if (!e1000e_pm_ready(adapter
))
5218 if (adapter
->idle_check
) {
5219 adapter
->idle_check
= false;
5220 if (!e1000e_has_link(adapter
))
5221 pm_schedule_suspend(dev
, MSEC_PER_SEC
);
5227 static int e1000_runtime_resume(struct device
*dev
)
5229 struct pci_dev
*pdev
= to_pci_dev(dev
);
5230 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5231 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5233 if (!e1000e_pm_ready(adapter
))
5236 adapter
->idle_check
= !dev
->power
.runtime_auto
;
5237 return __e1000_resume(pdev
);
5239 #endif /* CONFIG_PM_RUNTIME */
5240 #endif /* CONFIG_PM_OPS */
5242 static void e1000_shutdown(struct pci_dev
*pdev
)
5246 __e1000_shutdown(pdev
, &wake
, false);
5248 if (system_state
== SYSTEM_POWER_OFF
)
5249 e1000_complete_shutdown(pdev
, false, wake
);
5252 #ifdef CONFIG_NET_POLL_CONTROLLER
5254 * Polling 'interrupt' - used by things like netconsole to send skbs
5255 * without having to re-enable interrupts. It's not called while
5256 * the interrupt routine is executing.
5258 static void e1000_netpoll(struct net_device
*netdev
)
5260 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5262 disable_irq(adapter
->pdev
->irq
);
5263 e1000_intr(adapter
->pdev
->irq
, netdev
);
5265 enable_irq(adapter
->pdev
->irq
);
5270 * e1000_io_error_detected - called when PCI error is detected
5271 * @pdev: Pointer to PCI device
5272 * @state: The current pci connection state
5274 * This function is called after a PCI bus error affecting
5275 * this device has been detected.
5277 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
5278 pci_channel_state_t state
)
5280 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5281 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5283 netif_device_detach(netdev
);
5285 if (state
== pci_channel_io_perm_failure
)
5286 return PCI_ERS_RESULT_DISCONNECT
;
5288 if (netif_running(netdev
))
5289 e1000e_down(adapter
);
5290 pci_disable_device(pdev
);
5292 /* Request a slot slot reset. */
5293 return PCI_ERS_RESULT_NEED_RESET
;
5297 * e1000_io_slot_reset - called after the pci bus has been reset.
5298 * @pdev: Pointer to PCI device
5300 * Restart the card from scratch, as if from a cold-boot. Implementation
5301 * resembles the first-half of the e1000_resume routine.
5303 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5305 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5306 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5307 struct e1000_hw
*hw
= &adapter
->hw
;
5309 pci_ers_result_t result
;
5311 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5312 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
5313 err
= pci_enable_device_mem(pdev
);
5316 "Cannot re-enable PCI device after reset.\n");
5317 result
= PCI_ERS_RESULT_DISCONNECT
;
5319 pci_set_master(pdev
);
5320 pdev
->state_saved
= true;
5321 pci_restore_state(pdev
);
5323 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5324 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5326 e1000e_reset(adapter
);
5328 result
= PCI_ERS_RESULT_RECOVERED
;
5331 pci_cleanup_aer_uncorrect_error_status(pdev
);
5337 * e1000_io_resume - called when traffic can start flowing again.
5338 * @pdev: Pointer to PCI device
5340 * This callback is called when the error recovery driver tells us that
5341 * its OK to resume normal operation. Implementation resembles the
5342 * second-half of the e1000_resume routine.
5344 static void e1000_io_resume(struct pci_dev
*pdev
)
5346 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5347 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5349 e1000_init_manageability_pt(adapter
);
5351 if (netif_running(netdev
)) {
5352 if (e1000e_up(adapter
)) {
5354 "can't bring device back up after reset\n");
5359 netif_device_attach(netdev
);
5362 * If the controller has AMT, do not set DRV_LOAD until the interface
5363 * is up. For all other cases, let the f/w know that the h/w is now
5364 * under the control of the driver.
5366 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5367 e1000_get_hw_control(adapter
);
5371 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
5373 struct e1000_hw
*hw
= &adapter
->hw
;
5374 struct net_device
*netdev
= adapter
->netdev
;
5377 /* print bus type/speed/width info */
5378 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5380 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
5384 e_info("Intel(R) PRO/%s Network Connection\n",
5385 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
5386 e1000e_read_pba_num(hw
, &pba_num
);
5387 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
5388 hw
->mac
.type
, hw
->phy
.type
, (pba_num
>> 8), (pba_num
& 0xff));
5391 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
5393 struct e1000_hw
*hw
= &adapter
->hw
;
5397 if (hw
->mac
.type
!= e1000_82573
)
5400 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
5401 if (!ret_val
&& (!(le16_to_cpu(buf
) & (1 << 0)))) {
5402 /* Deep Smart Power Down (DSPD) */
5403 dev_warn(&adapter
->pdev
->dev
,
5404 "Warning: detected DSPD enabled in EEPROM\n");
5408 static const struct net_device_ops e1000e_netdev_ops
= {
5409 .ndo_open
= e1000_open
,
5410 .ndo_stop
= e1000_close
,
5411 .ndo_start_xmit
= e1000_xmit_frame
,
5412 .ndo_get_stats
= e1000_get_stats
,
5413 .ndo_set_multicast_list
= e1000_set_multi
,
5414 .ndo_set_mac_address
= e1000_set_mac
,
5415 .ndo_change_mtu
= e1000_change_mtu
,
5416 .ndo_do_ioctl
= e1000_ioctl
,
5417 .ndo_tx_timeout
= e1000_tx_timeout
,
5418 .ndo_validate_addr
= eth_validate_addr
,
5420 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
5421 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
5422 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
5423 #ifdef CONFIG_NET_POLL_CONTROLLER
5424 .ndo_poll_controller
= e1000_netpoll
,
5429 * e1000_probe - Device Initialization Routine
5430 * @pdev: PCI device information struct
5431 * @ent: entry in e1000_pci_tbl
5433 * Returns 0 on success, negative on failure
5435 * e1000_probe initializes an adapter identified by a pci_dev structure.
5436 * The OS initialization, configuring of the adapter private structure,
5437 * and a hardware reset occur.
5439 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
5440 const struct pci_device_id
*ent
)
5442 struct net_device
*netdev
;
5443 struct e1000_adapter
*adapter
;
5444 struct e1000_hw
*hw
;
5445 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
5446 resource_size_t mmio_start
, mmio_len
;
5447 resource_size_t flash_start
, flash_len
;
5449 static int cards_found
;
5450 int i
, err
, pci_using_dac
;
5451 u16 eeprom_data
= 0;
5452 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
5454 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5455 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
5457 err
= pci_enable_device_mem(pdev
);
5462 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5464 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5468 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
5470 err
= dma_set_coherent_mask(&pdev
->dev
,
5473 dev_err(&pdev
->dev
, "No usable DMA "
5474 "configuration, aborting\n");
5480 err
= pci_request_selected_regions_exclusive(pdev
,
5481 pci_select_bars(pdev
, IORESOURCE_MEM
),
5482 e1000e_driver_name
);
5486 /* AER (Advanced Error Reporting) hooks */
5487 pci_enable_pcie_error_reporting(pdev
);
5489 pci_set_master(pdev
);
5490 /* PCI config space info */
5491 err
= pci_save_state(pdev
);
5493 goto err_alloc_etherdev
;
5496 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
5498 goto err_alloc_etherdev
;
5500 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5502 netdev
->irq
= pdev
->irq
;
5504 pci_set_drvdata(pdev
, netdev
);
5505 adapter
= netdev_priv(netdev
);
5507 adapter
->netdev
= netdev
;
5508 adapter
->pdev
= pdev
;
5510 adapter
->pba
= ei
->pba
;
5511 adapter
->flags
= ei
->flags
;
5512 adapter
->flags2
= ei
->flags2
;
5513 adapter
->hw
.adapter
= adapter
;
5514 adapter
->hw
.mac
.type
= ei
->mac
;
5515 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
5516 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
5518 mmio_start
= pci_resource_start(pdev
, 0);
5519 mmio_len
= pci_resource_len(pdev
, 0);
5522 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
5523 if (!adapter
->hw
.hw_addr
)
5526 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
5527 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
5528 flash_start
= pci_resource_start(pdev
, 1);
5529 flash_len
= pci_resource_len(pdev
, 1);
5530 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
5531 if (!adapter
->hw
.flash_address
)
5535 /* construct the net_device struct */
5536 netdev
->netdev_ops
= &e1000e_netdev_ops
;
5537 e1000e_set_ethtool_ops(netdev
);
5538 netdev
->watchdog_timeo
= 5 * HZ
;
5539 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
5540 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
5542 netdev
->mem_start
= mmio_start
;
5543 netdev
->mem_end
= mmio_start
+ mmio_len
;
5545 adapter
->bd_number
= cards_found
++;
5547 e1000e_check_options(adapter
);
5549 /* setup adapter struct */
5550 err
= e1000_sw_init(adapter
);
5556 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
5557 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
5558 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
5560 err
= ei
->get_variants(adapter
);
5564 if ((adapter
->flags
& FLAG_IS_ICH
) &&
5565 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
5566 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
5568 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
5570 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
5572 /* Copper options */
5573 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
5574 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
5575 adapter
->hw
.phy
.disable_polarity_correction
= 0;
5576 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
5579 if (e1000_check_reset_block(&adapter
->hw
))
5580 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5582 netdev
->features
= NETIF_F_SG
|
5584 NETIF_F_HW_VLAN_TX
|
5587 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
5588 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
5590 netdev
->features
|= NETIF_F_TSO
;
5591 netdev
->features
|= NETIF_F_TSO6
;
5593 netdev
->vlan_features
|= NETIF_F_TSO
;
5594 netdev
->vlan_features
|= NETIF_F_TSO6
;
5595 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
5596 netdev
->vlan_features
|= NETIF_F_SG
;
5599 netdev
->features
|= NETIF_F_HIGHDMA
;
5601 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
5602 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
5605 * before reading the NVM, reset the controller to
5606 * put the device in a known good starting state
5608 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
5611 * systems with ASPM and others may see the checksum fail on the first
5612 * attempt. Let's give it a few tries
5615 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
5618 e_err("The NVM Checksum Is Not Valid\n");
5624 e1000_eeprom_checks(adapter
);
5626 /* copy the MAC address */
5627 if (e1000e_read_mac_addr(&adapter
->hw
))
5628 e_err("NVM Read Error while reading MAC address\n");
5630 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5631 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5633 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
5634 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
5639 init_timer(&adapter
->watchdog_timer
);
5640 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
5641 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
5643 init_timer(&adapter
->phy_info_timer
);
5644 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
5645 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
5647 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
5648 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
5649 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
5650 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
5651 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
5653 /* Initialize link parameters. User can change them with ethtool */
5654 adapter
->hw
.mac
.autoneg
= 1;
5655 adapter
->fc_autoneg
= 1;
5656 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
5657 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
5658 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
5660 /* ring size defaults */
5661 adapter
->rx_ring
->count
= 256;
5662 adapter
->tx_ring
->count
= 256;
5665 * Initial Wake on LAN setting - If APM wake is enabled in
5666 * the EEPROM, enable the ACPI Magic Packet filter
5668 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
5669 /* APME bit in EEPROM is mapped to WUC.APME */
5670 eeprom_data
= er32(WUC
);
5671 eeprom_apme_mask
= E1000_WUC_APME
;
5672 if (eeprom_data
& E1000_WUC_PHY_WAKE
)
5673 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
5674 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
5675 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
5676 (adapter
->hw
.bus
.func
== 1))
5677 e1000_read_nvm(&adapter
->hw
,
5678 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
5680 e1000_read_nvm(&adapter
->hw
,
5681 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
5684 /* fetch WoL from EEPROM */
5685 if (eeprom_data
& eeprom_apme_mask
)
5686 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
5689 * now that we have the eeprom settings, apply the special cases
5690 * where the eeprom may be wrong or the board simply won't support
5691 * wake on lan on a particular port
5693 if (!(adapter
->flags
& FLAG_HAS_WOL
))
5694 adapter
->eeprom_wol
= 0;
5696 /* initialize the wol settings based on the eeprom settings */
5697 adapter
->wol
= adapter
->eeprom_wol
;
5698 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
5700 /* save off EEPROM version number */
5701 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
5703 /* reset the hardware with the new settings */
5704 e1000e_reset(adapter
);
5707 * If the controller has AMT, do not set DRV_LOAD until the interface
5708 * is up. For all other cases, let the f/w know that the h/w is now
5709 * under the control of the driver.
5711 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5712 e1000_get_hw_control(adapter
);
5714 strcpy(netdev
->name
, "eth%d");
5715 err
= register_netdev(netdev
);
5719 /* carrier off reporting is important to ethtool even BEFORE open */
5720 netif_carrier_off(netdev
);
5722 e1000_print_device_info(adapter
);
5724 if (pci_dev_run_wake(pdev
)) {
5725 pm_runtime_set_active(&pdev
->dev
);
5726 pm_runtime_enable(&pdev
->dev
);
5728 pm_schedule_suspend(&pdev
->dev
, MSEC_PER_SEC
);
5733 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5734 e1000_release_hw_control(adapter
);
5736 if (!e1000_check_reset_block(&adapter
->hw
))
5737 e1000_phy_hw_reset(&adapter
->hw
);
5740 kfree(adapter
->tx_ring
);
5741 kfree(adapter
->rx_ring
);
5743 if (adapter
->hw
.flash_address
)
5744 iounmap(adapter
->hw
.flash_address
);
5745 e1000e_reset_interrupt_capability(adapter
);
5747 iounmap(adapter
->hw
.hw_addr
);
5749 free_netdev(netdev
);
5751 pci_release_selected_regions(pdev
,
5752 pci_select_bars(pdev
, IORESOURCE_MEM
));
5755 pci_disable_device(pdev
);
5760 * e1000_remove - Device Removal Routine
5761 * @pdev: PCI device information struct
5763 * e1000_remove is called by the PCI subsystem to alert the driver
5764 * that it should release a PCI device. The could be caused by a
5765 * Hot-Plug event, or because the driver is going to be removed from
5768 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
5770 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5771 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5772 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
5774 pm_runtime_get_sync(&pdev
->dev
);
5777 * flush_scheduled work may reschedule our watchdog task, so
5778 * explicitly disable watchdog tasks from being rescheduled
5781 set_bit(__E1000_DOWN
, &adapter
->state
);
5782 del_timer_sync(&adapter
->watchdog_timer
);
5783 del_timer_sync(&adapter
->phy_info_timer
);
5785 cancel_work_sync(&adapter
->reset_task
);
5786 cancel_work_sync(&adapter
->watchdog_task
);
5787 cancel_work_sync(&adapter
->downshift_task
);
5788 cancel_work_sync(&adapter
->update_phy_task
);
5789 cancel_work_sync(&adapter
->print_hang_task
);
5790 flush_scheduled_work();
5792 if (!(netdev
->flags
& IFF_UP
))
5793 e1000_power_down_phy(adapter
);
5795 /* Don't lie to e1000_close() down the road. */
5797 clear_bit(__E1000_DOWN
, &adapter
->state
);
5798 unregister_netdev(netdev
);
5800 if (pci_dev_run_wake(pdev
)) {
5801 pm_runtime_disable(&pdev
->dev
);
5802 pm_runtime_set_suspended(&pdev
->dev
);
5804 pm_runtime_put_noidle(&pdev
->dev
);
5807 * Release control of h/w to f/w. If f/w is AMT enabled, this
5808 * would have already happened in close and is redundant.
5810 e1000_release_hw_control(adapter
);
5812 e1000e_reset_interrupt_capability(adapter
);
5813 kfree(adapter
->tx_ring
);
5814 kfree(adapter
->rx_ring
);
5816 iounmap(adapter
->hw
.hw_addr
);
5817 if (adapter
->hw
.flash_address
)
5818 iounmap(adapter
->hw
.flash_address
);
5819 pci_release_selected_regions(pdev
,
5820 pci_select_bars(pdev
, IORESOURCE_MEM
));
5822 free_netdev(netdev
);
5825 pci_disable_pcie_error_reporting(pdev
);
5827 pci_disable_device(pdev
);
5830 /* PCI Error Recovery (ERS) */
5831 static struct pci_error_handlers e1000_err_handler
= {
5832 .error_detected
= e1000_io_error_detected
,
5833 .slot_reset
= e1000_io_slot_reset
,
5834 .resume
= e1000_io_resume
,
5837 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
5838 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
5839 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
5840 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
5841 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
5842 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
5843 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
5844 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
5845 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
5846 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
5848 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
5849 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
5850 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
5851 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
5853 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
5854 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
5855 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
5857 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
5858 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
5859 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
5861 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
5862 board_80003es2lan
},
5863 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
5864 board_80003es2lan
},
5865 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
5866 board_80003es2lan
},
5867 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
5868 board_80003es2lan
},
5870 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
5871 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
5872 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
5873 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
5874 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
5875 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
5876 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
5877 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
5879 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
5880 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
5881 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
5882 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
5883 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
5884 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
5885 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
5886 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
5887 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
5889 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
5890 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
5891 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
5893 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
5894 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
5895 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
5897 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
5898 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
5899 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
5900 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
5902 { } /* terminate list */
5904 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
5906 #ifdef CONFIG_PM_OPS
5907 static const struct dev_pm_ops e1000_pm_ops
= {
5908 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend
, e1000_resume
)
5909 SET_RUNTIME_PM_OPS(e1000_runtime_suspend
,
5910 e1000_runtime_resume
, e1000_idle
)
5914 /* PCI Device API Driver */
5915 static struct pci_driver e1000_driver
= {
5916 .name
= e1000e_driver_name
,
5917 .id_table
= e1000_pci_tbl
,
5918 .probe
= e1000_probe
,
5919 .remove
= __devexit_p(e1000_remove
),
5920 #ifdef CONFIG_PM_OPS
5921 .driver
.pm
= &e1000_pm_ops
,
5923 .shutdown
= e1000_shutdown
,
5924 .err_handler
= &e1000_err_handler
5928 * e1000_init_module - Driver Registration Routine
5930 * e1000_init_module is the first routine called when the driver is
5931 * loaded. All it does is register with the PCI subsystem.
5933 static int __init
e1000_init_module(void)
5936 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
5937 e1000e_driver_version
);
5938 pr_info("Copyright (c) 1999 - 2009 Intel Corporation.\n");
5939 ret
= pci_register_driver(&e1000_driver
);
5943 module_init(e1000_init_module
);
5946 * e1000_exit_module - Driver Exit Cleanup Routine
5948 * e1000_exit_module is called just before the driver is removed
5951 static void __exit
e1000_exit_module(void)
5953 pci_unregister_driver(&e1000_driver
);
5955 module_exit(e1000_exit_module
);
5958 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5959 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5960 MODULE_LICENSE("GPL");
5961 MODULE_VERSION(DRV_VERSION
);