2 * sparse memory mappings.
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
17 * Permanent SPARSEMEM data:
19 * 1) mem_section - memory sections, mem_map's for valid memory
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
23 ____cacheline_internodealigned_in_smp
;
25 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
26 ____cacheline_internodealigned_in_smp
;
28 EXPORT_SYMBOL(mem_section
);
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 * If we did not store the node number in the page then we have to
33 * do a lookup in the section_to_node_table in order to find which
34 * node the page belongs to.
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
39 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
42 int page_to_nid(struct page
*page
)
44 return section_to_node_table
[page_to_section(page
)];
46 EXPORT_SYMBOL(page_to_nid
);
48 static void set_section_nid(unsigned long section_nr
, int nid
)
50 section_to_node_table
[section_nr
] = nid
;
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr
, int nid
)
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok
*sparse_index_alloc(int nid
)
61 struct mem_section
*section
= NULL
;
62 unsigned long array_size
= SECTIONS_PER_ROOT
*
63 sizeof(struct mem_section
);
65 if (slab_is_available())
66 section
= kmalloc_node(array_size
, GFP_KERNEL
, nid
);
68 section
= alloc_bootmem_node(NODE_DATA(nid
), array_size
);
71 memset(section
, 0, array_size
);
76 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
78 static DEFINE_SPINLOCK(index_init_lock
);
79 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
80 struct mem_section
*section
;
83 if (mem_section
[root
])
86 section
= sparse_index_alloc(nid
);
90 * This lock keeps two different sections from
91 * reallocating for the same index
93 spin_lock(&index_init_lock
);
95 if (mem_section
[root
]) {
100 mem_section
[root
] = section
;
102 spin_unlock(&index_init_lock
);
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
113 * Although written for the SPARSEMEM_EXTREME case, this happens
114 * to also work for the flat array case because
115 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
117 int __section_nr(struct mem_section
* ms
)
119 unsigned long root_nr
;
120 struct mem_section
* root
;
122 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
123 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
127 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
131 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
135 * During early boot, before section_mem_map is used for an actual
136 * mem_map, we use section_mem_map to store the section's NUMA
137 * node. This keeps us from having to use another data structure. The
138 * node information is cleared just before we store the real mem_map.
140 static inline unsigned long sparse_encode_early_nid(int nid
)
142 return (nid
<< SECTION_NID_SHIFT
);
145 static inline int sparse_early_nid(struct mem_section
*section
)
147 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
150 /* Record a memory area against a node. */
151 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
153 unsigned long max_arch_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
157 * Sanity checks - do not allow an architecture to pass
158 * in larger pfns than the maximum scope of sparsemem:
160 if (start
>= max_arch_pfn
)
162 if (end
>= max_arch_pfn
)
165 start
&= PAGE_SECTION_MASK
;
166 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
167 unsigned long section
= pfn_to_section_nr(pfn
);
168 struct mem_section
*ms
;
170 sparse_index_init(section
, nid
);
171 set_section_nid(section
, nid
);
173 ms
= __nr_to_section(section
);
174 if (!ms
->section_mem_map
)
175 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
176 SECTION_MARKED_PRESENT
;
181 * Only used by the i386 NUMA architecures, but relatively
184 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
185 unsigned long end_pfn
)
188 unsigned long nr_pages
= 0;
190 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
191 if (nid
!= early_pfn_to_nid(pfn
))
194 if (pfn_present(pfn
))
195 nr_pages
+= PAGES_PER_SECTION
;
198 return nr_pages
* sizeof(struct page
);
202 * Subtle, we encode the real pfn into the mem_map such that
203 * the identity pfn - section_mem_map will return the actual
204 * physical page frame number.
206 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
208 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
212 * Decode mem_map from the coded memmap
214 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
216 /* mask off the extra low bits of information */
217 coded_mem_map
&= SECTION_MAP_MASK
;
218 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
221 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
222 unsigned long pnum
, struct page
*mem_map
,
223 unsigned long *pageblock_bitmap
)
225 if (!present_section(ms
))
228 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
229 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
231 ms
->pageblock_flags
= pageblock_bitmap
;
236 unsigned long usemap_size(void)
238 unsigned long size_bytes
;
239 size_bytes
= roundup(SECTION_BLOCKFLAGS_BITS
, 8) / 8;
240 size_bytes
= roundup(size_bytes
, sizeof(unsigned long));
244 #ifdef CONFIG_MEMORY_HOTPLUG
245 static unsigned long *__kmalloc_section_usemap(void)
247 return kmalloc(usemap_size(), GFP_KERNEL
);
249 #endif /* CONFIG_MEMORY_HOTPLUG */
251 static unsigned long *__init
sparse_early_usemap_alloc(unsigned long pnum
)
253 unsigned long *usemap
, section_nr
;
254 struct mem_section
*ms
= __nr_to_section(pnum
);
255 int nid
= sparse_early_nid(ms
);
256 struct pglist_data
*pgdat
= NODE_DATA(nid
);
259 * Usemap's page can't be freed until freeing other sections
260 * which use it. And, Pgdat has same feature.
261 * If section A has pgdat and section B has usemap for other
262 * sections (includes section A), both sections can't be removed,
263 * because there is the dependency each other.
264 * To solve above issue, this collects all usemap on the same section
267 section_nr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
268 usemap
= alloc_bootmem_section(usemap_size(), section_nr
);
272 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
275 printk(KERN_WARNING
"%s: allocation failed\n", __FUNCTION__
);
279 #ifndef CONFIG_SPARSEMEM_VMEMMAP
280 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
)
284 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
288 map
= alloc_bootmem_pages_node(NODE_DATA(nid
),
289 PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
));
292 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
294 struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
297 struct mem_section
*ms
= __nr_to_section(pnum
);
298 int nid
= sparse_early_nid(ms
);
300 map
= sparse_mem_map_populate(pnum
, nid
);
304 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
305 "some memory will not be available.\n", __FUNCTION__
);
306 ms
->section_mem_map
= 0;
310 void __attribute__((weak
)) __meminit
vmemmap_populate_print_last(void)
314 * Allocate the accumulated non-linear sections, allocate a mem_map
315 * for each and record the physical to section mapping.
317 void __init
sparse_init(void)
321 unsigned long *usemap
;
322 unsigned long **usemap_map
;
326 * map is using big page (aka 2M in x86 64 bit)
327 * usemap is less one page (aka 24 bytes)
328 * so alloc 2M (with 2M align) and 24 bytes in turn will
329 * make next 2M slip to one more 2M later.
330 * then in big system, the memory will have a lot of holes...
331 * here try to allocate 2M pages continously.
333 * powerpc need to call sparse_init_one_section right after each
334 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
336 size
= sizeof(unsigned long *) * NR_MEM_SECTIONS
;
337 usemap_map
= alloc_bootmem(size
);
339 panic("can not allocate usemap_map\n");
341 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
342 if (!present_section_nr(pnum
))
344 usemap_map
[pnum
] = sparse_early_usemap_alloc(pnum
);
347 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
348 if (!present_section_nr(pnum
))
351 usemap
= usemap_map
[pnum
];
355 map
= sparse_early_mem_map_alloc(pnum
);
359 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
,
363 vmemmap_populate_print_last();
365 free_bootmem(__pa(usemap_map
), size
);
368 #ifdef CONFIG_MEMORY_HOTPLUG
369 #ifdef CONFIG_SPARSEMEM_VMEMMAP
370 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
371 unsigned long nr_pages
)
373 /* This will make the necessary allocations eventually. */
374 return sparse_mem_map_populate(pnum
, nid
);
376 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
378 return; /* XXX: Not implemented yet */
380 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
384 static struct page
*__kmalloc_section_memmap(unsigned long nr_pages
)
386 struct page
*page
, *ret
;
387 unsigned long memmap_size
= sizeof(struct page
) * nr_pages
;
389 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
393 ret
= vmalloc(memmap_size
);
399 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
401 memset(ret
, 0, memmap_size
);
406 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
407 unsigned long nr_pages
)
409 return __kmalloc_section_memmap(nr_pages
);
412 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
414 if (is_vmalloc_addr(memmap
))
417 free_pages((unsigned long)memmap
,
418 get_order(sizeof(struct page
) * nr_pages
));
421 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
423 unsigned long maps_section_nr
, removing_section_nr
, i
;
426 for (i
= 0; i
< nr_pages
; i
++, page
++) {
427 magic
= atomic_read(&page
->_mapcount
);
429 BUG_ON(magic
== NODE_INFO
);
431 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
432 removing_section_nr
= page
->private;
435 * When this function is called, the removing section is
436 * logical offlined state. This means all pages are isolated
437 * from page allocator. If removing section's memmap is placed
438 * on the same section, it must not be freed.
439 * If it is freed, page allocator may allocate it which will
440 * be removed physically soon.
442 if (maps_section_nr
!= removing_section_nr
)
443 put_page_bootmem(page
);
446 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
448 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
)
450 struct page
*usemap_page
;
451 unsigned long nr_pages
;
456 usemap_page
= virt_to_page(usemap
);
458 * Check to see if allocation came from hot-plug-add
460 if (PageSlab(usemap_page
)) {
463 __kfree_section_memmap(memmap
, PAGES_PER_SECTION
);
468 * The usemap came from bootmem. This is packed with other usemaps
469 * on the section which has pgdat at boot time. Just keep it as is now.
473 struct page
*memmap_page
;
474 memmap_page
= virt_to_page(memmap
);
476 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
479 free_map_bootmem(memmap_page
, nr_pages
);
484 * returns the number of sections whose mem_maps were properly
485 * set. If this is <=0, then that means that the passed-in
486 * map was not consumed and must be freed.
488 int sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
,
491 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
492 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
493 struct mem_section
*ms
;
495 unsigned long *usemap
;
500 * no locking for this, because it does its own
501 * plus, it does a kmalloc
503 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
504 if (ret
< 0 && ret
!= -EEXIST
)
506 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
, nr_pages
);
509 usemap
= __kmalloc_section_usemap();
511 __kfree_section_memmap(memmap
, nr_pages
);
515 pgdat_resize_lock(pgdat
, &flags
);
517 ms
= __pfn_to_section(start_pfn
);
518 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
523 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
525 ret
= sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
528 pgdat_resize_unlock(pgdat
, &flags
);
531 __kfree_section_memmap(memmap
, nr_pages
);
536 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
)
538 struct page
*memmap
= NULL
;
539 unsigned long *usemap
= NULL
;
541 if (ms
->section_mem_map
) {
542 usemap
= ms
->pageblock_flags
;
543 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
545 ms
->section_mem_map
= 0;
546 ms
->pageblock_flags
= NULL
;
549 free_section_usemap(memmap
, usemap
);