Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobe72485033c48e0317a22d376e2c290440b40cce9
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
127 #ifdef CONFIG_SMP
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149 #endif
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195 if (!overrun)
196 break;
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224 ktime_t now;
226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
227 return;
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
242 spin_unlock(&rt_b->rt_runtime_lock);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
248 hrtimer_cancel(&rt_b->rt_period_timer);
250 #endif
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
262 struct cfs_rq;
264 static LIST_HEAD(task_groups);
266 /* task group related information */
267 struct task_group {
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
270 #endif
272 #ifdef CONFIG_USER_SCHED
273 uid_t uid;
274 #endif
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282 #endif
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
288 struct rt_bandwidth rt_bandwidth;
289 #endif
291 struct rcu_head rcu;
292 struct list_head list;
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
304 user->tg->uid = user->uid;
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock);
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
349 #define MIN_SHARES 2
350 #define MAX_SHARES (1UL << 18)
352 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353 #endif
355 /* Default task group.
356 * Every task in system belong to this group at bootup.
358 struct task_group init_task_group;
360 /* return group to which a task belongs */
361 static inline struct task_group *task_group(struct task_struct *p)
363 struct task_group *tg;
365 #ifdef CONFIG_USER_SCHED
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
369 #elif defined(CONFIG_CGROUP_SCHED)
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
372 #else
373 tg = &init_task_group;
374 #endif
375 return tg;
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
384 #endif
386 #ifdef CONFIG_RT_GROUP_SCHED
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
389 #endif
392 #else
394 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 static inline struct task_group *task_group(struct task_struct *p)
397 return NULL;
400 #endif /* CONFIG_GROUP_SCHED */
402 /* CFS-related fields in a runqueue */
403 struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
407 u64 exec_clock;
408 u64 min_vruntime;
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
413 struct list_head tasks;
414 struct list_head *balance_iterator;
417 * 'curr' points to currently running entity on this cfs_rq.
418 * It is set to NULL otherwise (i.e when none are currently running).
420 struct sched_entity *curr, *next, *last;
422 unsigned int nr_spread_over;
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
438 #ifdef CONFIG_SMP
440 * the part of load.weight contributed by tasks
442 unsigned long task_weight;
445 * h_load = weight * f(tg)
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
450 unsigned long h_load;
453 * this cpu's part of tg->shares
455 unsigned long shares;
458 * load.weight at the time we set shares
460 unsigned long rq_weight;
461 #endif
462 #endif
465 /* Real-Time classes' related field in a runqueue: */
466 struct rt_rq {
467 struct rt_prio_array active;
468 unsigned long rt_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 int highest_prio; /* highest queued rt task prio */
471 #endif
472 #ifdef CONFIG_SMP
473 unsigned long rt_nr_migratory;
474 int overloaded;
475 #endif
476 int rt_throttled;
477 u64 rt_time;
478 u64 rt_runtime;
479 /* Nests inside the rq lock: */
480 spinlock_t rt_runtime_lock;
482 #ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489 #endif
492 #ifdef CONFIG_SMP
495 * We add the notion of a root-domain which will be used to define per-domain
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
502 struct root_domain {
503 atomic_t refcount;
504 cpumask_var_t span;
505 cpumask_var_t online;
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
511 cpumask_var_t rto_mask;
512 atomic_t rto_count;
513 #ifdef CONFIG_SMP
514 struct cpupri cpupri;
515 #endif
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
522 unsigned int sched_mc_preferred_wakeup_cpu;
523 #endif
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
530 static struct root_domain def_root_domain;
532 #endif
535 * This is the main, per-CPU runqueue data structure.
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
541 struct rq {
542 /* runqueue lock: */
543 spinlock_t lock;
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
549 unsigned long nr_running;
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552 unsigned char idle_at_tick;
553 #ifdef CONFIG_NO_HZ
554 unsigned long last_tick_seen;
555 unsigned char in_nohz_recently;
556 #endif
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
559 unsigned long nr_load_updates;
560 u64 nr_switches;
562 struct cfs_rq cfs;
563 struct rt_rq rt;
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
568 #endif
569 #ifdef CONFIG_RT_GROUP_SCHED
570 struct list_head leaf_rt_rq_list;
571 #endif
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
579 unsigned long nr_uninterruptible;
581 struct task_struct *curr, *idle;
582 unsigned long next_balance;
583 struct mm_struct *prev_mm;
585 u64 clock;
587 atomic_t nr_iowait;
589 #ifdef CONFIG_SMP
590 struct root_domain *rd;
591 struct sched_domain *sd;
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
596 /* cpu of this runqueue: */
597 int cpu;
598 int online;
600 unsigned long avg_load_per_task;
602 struct task_struct *migration_thread;
603 struct list_head migration_queue;
604 #endif
606 #ifdef CONFIG_SCHED_HRTICK
607 #ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610 #endif
611 struct hrtimer hrtick_timer;
612 #endif
614 #ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620 /* sys_sched_yield() stats */
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
626 /* schedule() stats */
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
631 /* try_to_wake_up() stats */
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
635 /* BKL stats */
636 unsigned int bkl_count;
637 #endif
640 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
642 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
647 static inline int cpu_of(struct rq *rq)
649 #ifdef CONFIG_SMP
650 return rq->cpu;
651 #else
652 return 0;
653 #endif
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658 * See detach_destroy_domains: synchronize_sched for details.
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
663 #define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
666 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667 #define this_rq() (&__get_cpu_var(runqueues))
668 #define task_rq(p) cpu_rq(task_cpu(p))
669 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
671 static inline void update_rq_clock(struct rq *rq)
673 rq->clock = sched_clock_cpu(cpu_of(rq));
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
679 #ifdef CONFIG_SCHED_DEBUG
680 # define const_debug __read_mostly
681 #else
682 # define const_debug static const
683 #endif
686 * runqueue_is_locked
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
692 int runqueue_is_locked(void)
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
704 * Debugging: various feature bits
707 #define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
710 enum {
711 #include "sched_features.h"
714 #undef SCHED_FEAT
716 #define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
719 const_debug unsigned int sysctl_sched_features =
720 #include "sched_features.h"
723 #undef SCHED_FEAT
725 #ifdef CONFIG_SCHED_DEBUG
726 #define SCHED_FEAT(name, enabled) \
727 #name ,
729 static __read_mostly char *sched_feat_names[] = {
730 #include "sched_features.h"
731 NULL
734 #undef SCHED_FEAT
736 static int sched_feat_show(struct seq_file *m, void *v)
738 int i;
740 for (i = 0; sched_feat_names[i]; i++) {
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
745 seq_puts(m, "\n");
747 return 0;
750 static ssize_t
751 sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
759 if (cnt > 63)
760 cnt = 63;
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
765 buf[cnt] = 0;
767 if (strncmp(buf, "NO_", 3) == 0) {
768 neg = 1;
769 cmp += 3;
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
784 if (!sched_feat_names[i])
785 return -EINVAL;
787 filp->f_pos += cnt;
789 return cnt;
792 static int sched_feat_open(struct inode *inode, struct file *filp)
794 return single_open(filp, sched_feat_show, NULL);
797 static struct file_operations sched_feat_fops = {
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
805 static __init int sched_init_debug(void)
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
810 return 0;
812 late_initcall(sched_init_debug);
814 #endif
816 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
822 const_debug unsigned int sysctl_sched_nr_migrate = 32;
825 * ratelimit for updating the group shares.
826 * default: 0.25ms
828 unsigned int sysctl_sched_shares_ratelimit = 250000;
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
835 unsigned int sysctl_sched_shares_thresh = 4;
838 * period over which we measure -rt task cpu usage in us.
839 * default: 1s
841 unsigned int sysctl_sched_rt_period = 1000000;
843 static __read_mostly int scheduler_running;
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
849 int sysctl_sched_rt_runtime = 950000;
851 static inline u64 global_rt_period(void)
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
856 static inline u64 global_rt_runtime(void)
858 if (sysctl_sched_rt_runtime < 0)
859 return RUNTIME_INF;
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
866 #endif
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
869 #endif
871 static inline int task_current(struct rq *rq, struct task_struct *p)
873 return rq->curr == p;
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq *rq, struct task_struct *p)
879 return task_current(rq, p);
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
886 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891 #endif
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
899 spin_unlock_irq(&rq->lock);
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq *rq, struct task_struct *p)
905 #ifdef CONFIG_SMP
906 return p->oncpu;
907 #else
908 return task_current(rq, p);
909 #endif
912 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
914 #ifdef CONFIG_SMP
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
920 next->oncpu = 1;
921 #endif
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924 #else
925 spin_unlock(&rq->lock);
926 #endif
929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
931 #ifdef CONFIG_SMP
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
937 smp_wmb();
938 prev->oncpu = 0;
939 #endif
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
942 #endif
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
950 static inline struct rq *__task_rq_lock(struct task_struct *p)
951 __acquires(rq->lock)
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 spin_unlock(&rq->lock);
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
967 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 __acquires(rq->lock)
970 struct rq *rq;
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
978 spin_unlock_irqrestore(&rq->lock, *flags);
982 void task_rq_unlock_wait(struct task_struct *p)
984 struct rq *rq = task_rq(p);
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
990 static void __task_rq_unlock(struct rq *rq)
991 __releases(rq->lock)
993 spin_unlock(&rq->lock);
996 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
997 __releases(rq->lock)
999 spin_unlock_irqrestore(&rq->lock, *flags);
1003 * this_rq_lock - lock this runqueue and disable interrupts.
1005 static struct rq *this_rq_lock(void)
1006 __acquires(rq->lock)
1008 struct rq *rq;
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1014 return rq;
1017 #ifdef CONFIG_SCHED_HRTICK
1019 * Use HR-timers to deliver accurate preemption points.
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1034 static inline int hrtick_enabled(struct rq *rq)
1036 if (!sched_feat(HRTICK))
1037 return 0;
1038 if (!cpu_active(cpu_of(rq)))
1039 return 0;
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1043 static void hrtick_clear(struct rq *rq)
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1053 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1059 spin_lock(&rq->lock);
1060 update_rq_clock(rq);
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1064 return HRTIMER_NORESTART;
1067 #ifdef CONFIG_SMP
1069 * called from hardirq (IPI) context
1071 static void __hrtick_start(void *arg)
1073 struct rq *rq = arg;
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
1082 * Called to set the hrtick timer state.
1084 * called with rq->lock held and irqs disabled
1086 static void hrtick_start(struct rq *rq, u64 delay)
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1091 hrtimer_set_expires(timer, time);
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 rq->hrtick_csd_pending = 1;
1101 static int
1102 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1104 int cpu = (int)(long)hcpu;
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
1113 hrtick_clear(cpu_rq(cpu));
1114 return NOTIFY_OK;
1117 return NOTIFY_DONE;
1120 static __init void init_hrtick(void)
1122 hotcpu_notifier(hotplug_hrtick, 0);
1124 #else
1126 * Called to set the hrtick timer state.
1128 * called with rq->lock held and irqs disabled
1130 static void hrtick_start(struct rq *rq, u64 delay)
1132 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq *rq)
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1158 static inline void init_rq_hrtick(struct rq *rq)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1174 #ifdef CONFIG_SMP
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1180 static void resched_task(struct task_struct *p)
1182 int cpu;
1184 assert_spin_locked(&task_rq(p)->lock);
1186 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1187 return;
1189 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1201 static void resched_cpu(int cpu)
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1212 #ifdef CONFIG_NO_HZ
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1228 return;
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1238 return;
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1252 #endif /* CONFIG_NO_HZ */
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct *p)
1257 assert_spin_locked(&task_rq(p)->lock);
1258 set_tsk_need_resched(p);
1260 #endif /* CONFIG_SMP */
1262 #if BITS_PER_LONG == 32
1263 # define WMULT_CONST (~0UL)
1264 #else
1265 # define WMULT_CONST (1UL << 32)
1266 #endif
1268 #define WMULT_SHIFT 32
1271 * Shift right and round:
1273 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1276 * delta *= weight / lw
1278 static unsigned long
1279 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 struct load_weight *lw)
1282 u64 tmp;
1284 if (!lw->inv_weight) {
1285 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1286 lw->inv_weight = 1;
1287 else
1288 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1289 / (lw->weight+1);
1292 tmp = (u64)delta_exec * weight;
1294 * Check whether we'd overflow the 64-bit multiplication:
1296 if (unlikely(tmp > WMULT_CONST))
1297 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1298 WMULT_SHIFT/2);
1299 else
1300 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1302 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1305 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1307 lw->weight += inc;
1308 lw->inv_weight = 0;
1311 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1313 lw->weight -= dec;
1314 lw->inv_weight = 0;
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1322 * scaled version of the new time slice allocation that they receive on time
1323 * slice expiry etc.
1326 #define WEIGHT_IDLEPRIO 3
1327 #define WMULT_IDLEPRIO 1431655765
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
1341 static const int prio_to_weight[40] = {
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1359 static const u32 prio_to_wmult[40] = {
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1370 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1377 struct rq_iterator {
1378 void *arg;
1379 struct task_struct *(*start)(void *);
1380 struct task_struct *(*next)(void *);
1383 #ifdef CONFIG_SMP
1384 static unsigned long
1385 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 unsigned long max_load_move, struct sched_domain *sd,
1387 enum cpu_idle_type idle, int *all_pinned,
1388 int *this_best_prio, struct rq_iterator *iterator);
1390 static int
1391 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 struct sched_domain *sd, enum cpu_idle_type idle,
1393 struct rq_iterator *iterator);
1394 #endif
1396 #ifdef CONFIG_CGROUP_CPUACCT
1397 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398 #else
1399 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400 #endif
1402 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1404 update_load_add(&rq->load, load);
1407 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1409 update_load_sub(&rq->load, load);
1412 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1413 typedef int (*tg_visitor)(struct task_group *, void *);
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1419 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1421 struct task_group *parent, *child;
1422 int ret;
1424 rcu_read_lock();
1425 parent = &root_task_group;
1426 down:
1427 ret = (*down)(parent, data);
1428 if (ret)
1429 goto out_unlock;
1430 list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 parent = child;
1432 goto down;
1435 continue;
1437 ret = (*up)(parent, data);
1438 if (ret)
1439 goto out_unlock;
1441 child = parent;
1442 parent = parent->parent;
1443 if (parent)
1444 goto up;
1445 out_unlock:
1446 rcu_read_unlock();
1448 return ret;
1451 static int tg_nop(struct task_group *tg, void *data)
1453 return 0;
1455 #endif
1457 #ifdef CONFIG_SMP
1458 static unsigned long source_load(int cpu, int type);
1459 static unsigned long target_load(int cpu, int type);
1460 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1462 static unsigned long cpu_avg_load_per_task(int cpu)
1464 struct rq *rq = cpu_rq(cpu);
1465 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1467 if (nr_running)
1468 rq->avg_load_per_task = rq->load.weight / nr_running;
1469 else
1470 rq->avg_load_per_task = 0;
1472 return rq->avg_load_per_task;
1475 #ifdef CONFIG_FAIR_GROUP_SCHED
1477 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1480 * Calculate and set the cpu's group shares.
1482 static void
1483 update_group_shares_cpu(struct task_group *tg, int cpu,
1484 unsigned long sd_shares, unsigned long sd_rq_weight)
1486 unsigned long shares;
1487 unsigned long rq_weight;
1489 if (!tg->se[cpu])
1490 return;
1492 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1497 * \Sum rq_weight
1500 shares = (sd_shares * rq_weight) / sd_rq_weight;
1501 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1503 if (abs(shares - tg->se[cpu]->load.weight) >
1504 sysctl_sched_shares_thresh) {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long flags;
1508 spin_lock_irqsave(&rq->lock, flags);
1509 tg->cfs_rq[cpu]->shares = shares;
1511 __set_se_shares(tg->se[cpu], shares);
1512 spin_unlock_irqrestore(&rq->lock, flags);
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
1521 static int tg_shares_up(struct task_group *tg, void *data)
1523 unsigned long weight, rq_weight = 0;
1524 unsigned long shares = 0;
1525 struct sched_domain *sd = data;
1526 int i;
1528 for_each_cpu(i, sched_domain_span(sd)) {
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1534 weight = tg->cfs_rq[i]->load.weight;
1535 if (!weight)
1536 weight = NICE_0_LOAD;
1538 tg->cfs_rq[i]->rq_weight = weight;
1539 rq_weight += weight;
1540 shares += tg->cfs_rq[i]->shares;
1543 if ((!shares && rq_weight) || shares > tg->shares)
1544 shares = tg->shares;
1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1547 shares = tg->shares;
1549 for_each_cpu(i, sched_domain_span(sd))
1550 update_group_shares_cpu(tg, i, shares, rq_weight);
1552 return 0;
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
1560 static int tg_load_down(struct task_group *tg, void *data)
1562 unsigned long load;
1563 long cpu = (long)data;
1565 if (!tg->parent) {
1566 load = cpu_rq(cpu)->load.weight;
1567 } else {
1568 load = tg->parent->cfs_rq[cpu]->h_load;
1569 load *= tg->cfs_rq[cpu]->shares;
1570 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1573 tg->cfs_rq[cpu]->h_load = load;
1575 return 0;
1578 static void update_shares(struct sched_domain *sd)
1580 u64 now = cpu_clock(raw_smp_processor_id());
1581 s64 elapsed = now - sd->last_update;
1583 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1584 sd->last_update = now;
1585 walk_tg_tree(tg_nop, tg_shares_up, sd);
1589 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1591 spin_unlock(&rq->lock);
1592 update_shares(sd);
1593 spin_lock(&rq->lock);
1596 static void update_h_load(long cpu)
1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1601 #else
1603 static inline void update_shares(struct sched_domain *sd)
1607 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1611 #endif
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1616 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 __releases(this_rq->lock)
1618 __acquires(busiest->lock)
1619 __acquires(this_rq->lock)
1621 int ret = 0;
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq->lock);
1626 BUG_ON(1);
1628 if (unlikely(!spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 spin_unlock(&this_rq->lock);
1631 spin_lock(&busiest->lock);
1632 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 ret = 1;
1634 } else
1635 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1637 return ret;
1640 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1643 spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1646 #endif
1648 #ifdef CONFIG_FAIR_GROUP_SCHED
1649 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1651 #ifdef CONFIG_SMP
1652 cfs_rq->shares = shares;
1653 #endif
1655 #endif
1657 #include "sched_stats.h"
1658 #include "sched_idletask.c"
1659 #include "sched_fair.c"
1660 #include "sched_rt.c"
1661 #ifdef CONFIG_SCHED_DEBUG
1662 # include "sched_debug.c"
1663 #endif
1665 #define sched_class_highest (&rt_sched_class)
1666 #define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
1669 static void inc_nr_running(struct rq *rq)
1671 rq->nr_running++;
1674 static void dec_nr_running(struct rq *rq)
1676 rq->nr_running--;
1679 static void set_load_weight(struct task_struct *p)
1681 if (task_has_rt_policy(p)) {
1682 p->se.load.weight = prio_to_weight[0] * 2;
1683 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 return;
1688 * SCHED_IDLE tasks get minimal weight:
1690 if (p->policy == SCHED_IDLE) {
1691 p->se.load.weight = WEIGHT_IDLEPRIO;
1692 p->se.load.inv_weight = WMULT_IDLEPRIO;
1693 return;
1696 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1697 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1700 static void update_avg(u64 *avg, u64 sample)
1702 s64 diff = sample - *avg;
1703 *avg += diff >> 3;
1706 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1708 sched_info_queued(p);
1709 p->sched_class->enqueue_task(rq, p, wakeup);
1710 p->se.on_rq = 1;
1713 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1715 if (sleep && p->se.last_wakeup) {
1716 update_avg(&p->se.avg_overlap,
1717 p->se.sum_exec_runtime - p->se.last_wakeup);
1718 p->se.last_wakeup = 0;
1721 sched_info_dequeued(p);
1722 p->sched_class->dequeue_task(rq, p, sleep);
1723 p->se.on_rq = 0;
1727 * __normal_prio - return the priority that is based on the static prio
1729 static inline int __normal_prio(struct task_struct *p)
1731 return p->static_prio;
1735 * Calculate the expected normal priority: i.e. priority
1736 * without taking RT-inheritance into account. Might be
1737 * boosted by interactivity modifiers. Changes upon fork,
1738 * setprio syscalls, and whenever the interactivity
1739 * estimator recalculates.
1741 static inline int normal_prio(struct task_struct *p)
1743 int prio;
1745 if (task_has_rt_policy(p))
1746 prio = MAX_RT_PRIO-1 - p->rt_priority;
1747 else
1748 prio = __normal_prio(p);
1749 return prio;
1753 * Calculate the current priority, i.e. the priority
1754 * taken into account by the scheduler. This value might
1755 * be boosted by RT tasks, or might be boosted by
1756 * interactivity modifiers. Will be RT if the task got
1757 * RT-boosted. If not then it returns p->normal_prio.
1759 static int effective_prio(struct task_struct *p)
1761 p->normal_prio = normal_prio(p);
1763 * If we are RT tasks or we were boosted to RT priority,
1764 * keep the priority unchanged. Otherwise, update priority
1765 * to the normal priority:
1767 if (!rt_prio(p->prio))
1768 return p->normal_prio;
1769 return p->prio;
1773 * activate_task - move a task to the runqueue.
1775 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1777 if (task_contributes_to_load(p))
1778 rq->nr_uninterruptible--;
1780 enqueue_task(rq, p, wakeup);
1781 inc_nr_running(rq);
1785 * deactivate_task - remove a task from the runqueue.
1787 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1789 if (task_contributes_to_load(p))
1790 rq->nr_uninterruptible++;
1792 dequeue_task(rq, p, sleep);
1793 dec_nr_running(rq);
1797 * task_curr - is this task currently executing on a CPU?
1798 * @p: the task in question.
1800 inline int task_curr(const struct task_struct *p)
1802 return cpu_curr(task_cpu(p)) == p;
1805 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1807 set_task_rq(p, cpu);
1808 #ifdef CONFIG_SMP
1810 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 * successfuly executed on another CPU. We must ensure that updates of
1812 * per-task data have been completed by this moment.
1814 smp_wmb();
1815 task_thread_info(p)->cpu = cpu;
1816 #endif
1819 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1820 const struct sched_class *prev_class,
1821 int oldprio, int running)
1823 if (prev_class != p->sched_class) {
1824 if (prev_class->switched_from)
1825 prev_class->switched_from(rq, p, running);
1826 p->sched_class->switched_to(rq, p, running);
1827 } else
1828 p->sched_class->prio_changed(rq, p, oldprio, running);
1831 #ifdef CONFIG_SMP
1833 /* Used instead of source_load when we know the type == 0 */
1834 static unsigned long weighted_cpuload(const int cpu)
1836 return cpu_rq(cpu)->load.weight;
1840 * Is this task likely cache-hot:
1842 static int
1843 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1845 s64 delta;
1848 * Buddy candidates are cache hot:
1850 if (sched_feat(CACHE_HOT_BUDDY) &&
1851 (&p->se == cfs_rq_of(&p->se)->next ||
1852 &p->se == cfs_rq_of(&p->se)->last))
1853 return 1;
1855 if (p->sched_class != &fair_sched_class)
1856 return 0;
1858 if (sysctl_sched_migration_cost == -1)
1859 return 1;
1860 if (sysctl_sched_migration_cost == 0)
1861 return 0;
1863 delta = now - p->se.exec_start;
1865 return delta < (s64)sysctl_sched_migration_cost;
1869 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1871 int old_cpu = task_cpu(p);
1872 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1873 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1874 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1875 u64 clock_offset;
1877 clock_offset = old_rq->clock - new_rq->clock;
1879 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1881 #ifdef CONFIG_SCHEDSTATS
1882 if (p->se.wait_start)
1883 p->se.wait_start -= clock_offset;
1884 if (p->se.sleep_start)
1885 p->se.sleep_start -= clock_offset;
1886 if (p->se.block_start)
1887 p->se.block_start -= clock_offset;
1888 if (old_cpu != new_cpu) {
1889 schedstat_inc(p, se.nr_migrations);
1890 if (task_hot(p, old_rq->clock, NULL))
1891 schedstat_inc(p, se.nr_forced2_migrations);
1893 #endif
1894 p->se.vruntime -= old_cfsrq->min_vruntime -
1895 new_cfsrq->min_vruntime;
1897 __set_task_cpu(p, new_cpu);
1900 struct migration_req {
1901 struct list_head list;
1903 struct task_struct *task;
1904 int dest_cpu;
1906 struct completion done;
1910 * The task's runqueue lock must be held.
1911 * Returns true if you have to wait for migration thread.
1913 static int
1914 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1916 struct rq *rq = task_rq(p);
1919 * If the task is not on a runqueue (and not running), then
1920 * it is sufficient to simply update the task's cpu field.
1922 if (!p->se.on_rq && !task_running(rq, p)) {
1923 set_task_cpu(p, dest_cpu);
1924 return 0;
1927 init_completion(&req->done);
1928 req->task = p;
1929 req->dest_cpu = dest_cpu;
1930 list_add(&req->list, &rq->migration_queue);
1932 return 1;
1936 * wait_task_inactive - wait for a thread to unschedule.
1938 * If @match_state is nonzero, it's the @p->state value just checked and
1939 * not expected to change. If it changes, i.e. @p might have woken up,
1940 * then return zero. When we succeed in waiting for @p to be off its CPU,
1941 * we return a positive number (its total switch count). If a second call
1942 * a short while later returns the same number, the caller can be sure that
1943 * @p has remained unscheduled the whole time.
1945 * The caller must ensure that the task *will* unschedule sometime soon,
1946 * else this function might spin for a *long* time. This function can't
1947 * be called with interrupts off, or it may introduce deadlock with
1948 * smp_call_function() if an IPI is sent by the same process we are
1949 * waiting to become inactive.
1951 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1953 unsigned long flags;
1954 int running, on_rq;
1955 unsigned long ncsw;
1956 struct rq *rq;
1958 for (;;) {
1960 * We do the initial early heuristics without holding
1961 * any task-queue locks at all. We'll only try to get
1962 * the runqueue lock when things look like they will
1963 * work out!
1965 rq = task_rq(p);
1968 * If the task is actively running on another CPU
1969 * still, just relax and busy-wait without holding
1970 * any locks.
1972 * NOTE! Since we don't hold any locks, it's not
1973 * even sure that "rq" stays as the right runqueue!
1974 * But we don't care, since "task_running()" will
1975 * return false if the runqueue has changed and p
1976 * is actually now running somewhere else!
1978 while (task_running(rq, p)) {
1979 if (match_state && unlikely(p->state != match_state))
1980 return 0;
1981 cpu_relax();
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1989 rq = task_rq_lock(p, &flags);
1990 trace_sched_wait_task(rq, p);
1991 running = task_running(rq, p);
1992 on_rq = p->se.on_rq;
1993 ncsw = 0;
1994 if (!match_state || p->state == match_state)
1995 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1996 task_rq_unlock(rq, &flags);
1999 * If it changed from the expected state, bail out now.
2001 if (unlikely(!ncsw))
2002 break;
2005 * Was it really running after all now that we
2006 * checked with the proper locks actually held?
2008 * Oops. Go back and try again..
2010 if (unlikely(running)) {
2011 cpu_relax();
2012 continue;
2016 * It's not enough that it's not actively running,
2017 * it must be off the runqueue _entirely_, and not
2018 * preempted!
2020 * So if it wa still runnable (but just not actively
2021 * running right now), it's preempted, and we should
2022 * yield - it could be a while.
2024 if (unlikely(on_rq)) {
2025 schedule_timeout_uninterruptible(1);
2026 continue;
2030 * Ahh, all good. It wasn't running, and it wasn't
2031 * runnable, which means that it will never become
2032 * running in the future either. We're all done!
2034 break;
2037 return ncsw;
2040 /***
2041 * kick_process - kick a running thread to enter/exit the kernel
2042 * @p: the to-be-kicked thread
2044 * Cause a process which is running on another CPU to enter
2045 * kernel-mode, without any delay. (to get signals handled.)
2047 * NOTE: this function doesnt have to take the runqueue lock,
2048 * because all it wants to ensure is that the remote task enters
2049 * the kernel. If the IPI races and the task has been migrated
2050 * to another CPU then no harm is done and the purpose has been
2051 * achieved as well.
2053 void kick_process(struct task_struct *p)
2055 int cpu;
2057 preempt_disable();
2058 cpu = task_cpu(p);
2059 if ((cpu != smp_processor_id()) && task_curr(p))
2060 smp_send_reschedule(cpu);
2061 preempt_enable();
2065 * Return a low guess at the load of a migration-source cpu weighted
2066 * according to the scheduling class and "nice" value.
2068 * We want to under-estimate the load of migration sources, to
2069 * balance conservatively.
2071 static unsigned long source_load(int cpu, int type)
2073 struct rq *rq = cpu_rq(cpu);
2074 unsigned long total = weighted_cpuload(cpu);
2076 if (type == 0 || !sched_feat(LB_BIAS))
2077 return total;
2079 return min(rq->cpu_load[type-1], total);
2083 * Return a high guess at the load of a migration-target cpu weighted
2084 * according to the scheduling class and "nice" value.
2086 static unsigned long target_load(int cpu, int type)
2088 struct rq *rq = cpu_rq(cpu);
2089 unsigned long total = weighted_cpuload(cpu);
2091 if (type == 0 || !sched_feat(LB_BIAS))
2092 return total;
2094 return max(rq->cpu_load[type-1], total);
2098 * find_idlest_group finds and returns the least busy CPU group within the
2099 * domain.
2101 static struct sched_group *
2102 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2104 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2105 unsigned long min_load = ULONG_MAX, this_load = 0;
2106 int load_idx = sd->forkexec_idx;
2107 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2109 do {
2110 unsigned long load, avg_load;
2111 int local_group;
2112 int i;
2114 /* Skip over this group if it has no CPUs allowed */
2115 if (!cpumask_intersects(sched_group_cpus(group),
2116 &p->cpus_allowed))
2117 continue;
2119 local_group = cpumask_test_cpu(this_cpu,
2120 sched_group_cpus(group));
2122 /* Tally up the load of all CPUs in the group */
2123 avg_load = 0;
2125 for_each_cpu(i, sched_group_cpus(group)) {
2126 /* Bias balancing toward cpus of our domain */
2127 if (local_group)
2128 load = source_load(i, load_idx);
2129 else
2130 load = target_load(i, load_idx);
2132 avg_load += load;
2135 /* Adjust by relative CPU power of the group */
2136 avg_load = sg_div_cpu_power(group,
2137 avg_load * SCHED_LOAD_SCALE);
2139 if (local_group) {
2140 this_load = avg_load;
2141 this = group;
2142 } else if (avg_load < min_load) {
2143 min_load = avg_load;
2144 idlest = group;
2146 } while (group = group->next, group != sd->groups);
2148 if (!idlest || 100*this_load < imbalance*min_load)
2149 return NULL;
2150 return idlest;
2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2156 static int
2157 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2159 unsigned long load, min_load = ULONG_MAX;
2160 int idlest = -1;
2161 int i;
2163 /* Traverse only the allowed CPUs */
2164 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2165 load = weighted_cpuload(i);
2167 if (load < min_load || (load == min_load && i == this_cpu)) {
2168 min_load = load;
2169 idlest = i;
2173 return idlest;
2177 * sched_balance_self: balance the current task (running on cpu) in domains
2178 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2179 * SD_BALANCE_EXEC.
2181 * Balance, ie. select the least loaded group.
2183 * Returns the target CPU number, or the same CPU if no balancing is needed.
2185 * preempt must be disabled.
2187 static int sched_balance_self(int cpu, int flag)
2189 struct task_struct *t = current;
2190 struct sched_domain *tmp, *sd = NULL;
2192 for_each_domain(cpu, tmp) {
2194 * If power savings logic is enabled for a domain, stop there.
2196 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2197 break;
2198 if (tmp->flags & flag)
2199 sd = tmp;
2202 if (sd)
2203 update_shares(sd);
2205 while (sd) {
2206 struct sched_group *group;
2207 int new_cpu, weight;
2209 if (!(sd->flags & flag)) {
2210 sd = sd->child;
2211 continue;
2214 group = find_idlest_group(sd, t, cpu);
2215 if (!group) {
2216 sd = sd->child;
2217 continue;
2220 new_cpu = find_idlest_cpu(group, t, cpu);
2221 if (new_cpu == -1 || new_cpu == cpu) {
2222 /* Now try balancing at a lower domain level of cpu */
2223 sd = sd->child;
2224 continue;
2227 /* Now try balancing at a lower domain level of new_cpu */
2228 cpu = new_cpu;
2229 weight = cpumask_weight(sched_domain_span(sd));
2230 sd = NULL;
2231 for_each_domain(cpu, tmp) {
2232 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2233 break;
2234 if (tmp->flags & flag)
2235 sd = tmp;
2237 /* while loop will break here if sd == NULL */
2240 return cpu;
2243 #endif /* CONFIG_SMP */
2245 /***
2246 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread
2248 * @state: the mask of task states that can be woken
2249 * @sync: do a synchronous wakeup?
2251 * Put it on the run-queue if it's not already there. The "current"
2252 * thread is always on the run-queue (except when the actual
2253 * re-schedule is in progress), and as such you're allowed to do
2254 * the simpler "current->state = TASK_RUNNING" to mark yourself
2255 * runnable without the overhead of this.
2257 * returns failure only if the task is already active.
2259 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2261 int cpu, orig_cpu, this_cpu, success = 0;
2262 unsigned long flags;
2263 long old_state;
2264 struct rq *rq;
2266 if (!sched_feat(SYNC_WAKEUPS))
2267 sync = 0;
2269 if (!sync) {
2270 if (current->se.avg_overlap < sysctl_sched_migration_cost &&
2271 p->se.avg_overlap < sysctl_sched_migration_cost)
2272 sync = 1;
2273 } else {
2274 if (current->se.avg_overlap >= sysctl_sched_migration_cost ||
2275 p->se.avg_overlap >= sysctl_sched_migration_cost)
2276 sync = 0;
2279 #ifdef CONFIG_SMP
2280 if (sched_feat(LB_WAKEUP_UPDATE)) {
2281 struct sched_domain *sd;
2283 this_cpu = raw_smp_processor_id();
2284 cpu = task_cpu(p);
2286 for_each_domain(this_cpu, sd) {
2287 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2288 update_shares(sd);
2289 break;
2293 #endif
2295 smp_wmb();
2296 rq = task_rq_lock(p, &flags);
2297 update_rq_clock(rq);
2298 old_state = p->state;
2299 if (!(old_state & state))
2300 goto out;
2302 if (p->se.on_rq)
2303 goto out_running;
2305 cpu = task_cpu(p);
2306 orig_cpu = cpu;
2307 this_cpu = smp_processor_id();
2309 #ifdef CONFIG_SMP
2310 if (unlikely(task_running(rq, p)))
2311 goto out_activate;
2313 cpu = p->sched_class->select_task_rq(p, sync);
2314 if (cpu != orig_cpu) {
2315 set_task_cpu(p, cpu);
2316 task_rq_unlock(rq, &flags);
2317 /* might preempt at this point */
2318 rq = task_rq_lock(p, &flags);
2319 old_state = p->state;
2320 if (!(old_state & state))
2321 goto out;
2322 if (p->se.on_rq)
2323 goto out_running;
2325 this_cpu = smp_processor_id();
2326 cpu = task_cpu(p);
2329 #ifdef CONFIG_SCHEDSTATS
2330 schedstat_inc(rq, ttwu_count);
2331 if (cpu == this_cpu)
2332 schedstat_inc(rq, ttwu_local);
2333 else {
2334 struct sched_domain *sd;
2335 for_each_domain(this_cpu, sd) {
2336 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2337 schedstat_inc(sd, ttwu_wake_remote);
2338 break;
2342 #endif /* CONFIG_SCHEDSTATS */
2344 out_activate:
2345 #endif /* CONFIG_SMP */
2346 schedstat_inc(p, se.nr_wakeups);
2347 if (sync)
2348 schedstat_inc(p, se.nr_wakeups_sync);
2349 if (orig_cpu != cpu)
2350 schedstat_inc(p, se.nr_wakeups_migrate);
2351 if (cpu == this_cpu)
2352 schedstat_inc(p, se.nr_wakeups_local);
2353 else
2354 schedstat_inc(p, se.nr_wakeups_remote);
2355 activate_task(rq, p, 1);
2356 success = 1;
2358 out_running:
2359 trace_sched_wakeup(rq, p, success);
2360 check_preempt_curr(rq, p, sync);
2362 p->state = TASK_RUNNING;
2363 #ifdef CONFIG_SMP
2364 if (p->sched_class->task_wake_up)
2365 p->sched_class->task_wake_up(rq, p);
2366 #endif
2367 out:
2368 current->se.last_wakeup = current->se.sum_exec_runtime;
2370 task_rq_unlock(rq, &flags);
2372 return success;
2375 int wake_up_process(struct task_struct *p)
2377 return try_to_wake_up(p, TASK_ALL, 0);
2379 EXPORT_SYMBOL(wake_up_process);
2381 int wake_up_state(struct task_struct *p, unsigned int state)
2383 return try_to_wake_up(p, state, 0);
2387 * Perform scheduler related setup for a newly forked process p.
2388 * p is forked by current.
2390 * __sched_fork() is basic setup used by init_idle() too:
2392 static void __sched_fork(struct task_struct *p)
2394 p->se.exec_start = 0;
2395 p->se.sum_exec_runtime = 0;
2396 p->se.prev_sum_exec_runtime = 0;
2397 p->se.last_wakeup = 0;
2398 p->se.avg_overlap = 0;
2400 #ifdef CONFIG_SCHEDSTATS
2401 p->se.wait_start = 0;
2402 p->se.sum_sleep_runtime = 0;
2403 p->se.sleep_start = 0;
2404 p->se.block_start = 0;
2405 p->se.sleep_max = 0;
2406 p->se.block_max = 0;
2407 p->se.exec_max = 0;
2408 p->se.slice_max = 0;
2409 p->se.wait_max = 0;
2410 #endif
2412 INIT_LIST_HEAD(&p->rt.run_list);
2413 p->se.on_rq = 0;
2414 INIT_LIST_HEAD(&p->se.group_node);
2416 #ifdef CONFIG_PREEMPT_NOTIFIERS
2417 INIT_HLIST_HEAD(&p->preempt_notifiers);
2418 #endif
2421 * We mark the process as running here, but have not actually
2422 * inserted it onto the runqueue yet. This guarantees that
2423 * nobody will actually run it, and a signal or other external
2424 * event cannot wake it up and insert it on the runqueue either.
2426 p->state = TASK_RUNNING;
2430 * fork()/clone()-time setup:
2432 void sched_fork(struct task_struct *p, int clone_flags)
2434 int cpu = get_cpu();
2436 __sched_fork(p);
2438 #ifdef CONFIG_SMP
2439 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2440 #endif
2441 set_task_cpu(p, cpu);
2444 * Make sure we do not leak PI boosting priority to the child:
2446 p->prio = current->normal_prio;
2447 if (!rt_prio(p->prio))
2448 p->sched_class = &fair_sched_class;
2450 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2451 if (likely(sched_info_on()))
2452 memset(&p->sched_info, 0, sizeof(p->sched_info));
2453 #endif
2454 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2455 p->oncpu = 0;
2456 #endif
2457 #ifdef CONFIG_PREEMPT
2458 /* Want to start with kernel preemption disabled. */
2459 task_thread_info(p)->preempt_count = 1;
2460 #endif
2461 put_cpu();
2465 * wake_up_new_task - wake up a newly created task for the first time.
2467 * This function will do some initial scheduler statistics housekeeping
2468 * that must be done for every newly created context, then puts the task
2469 * on the runqueue and wakes it.
2471 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2473 unsigned long flags;
2474 struct rq *rq;
2476 rq = task_rq_lock(p, &flags);
2477 BUG_ON(p->state != TASK_RUNNING);
2478 update_rq_clock(rq);
2480 p->prio = effective_prio(p);
2482 if (!p->sched_class->task_new || !current->se.on_rq) {
2483 activate_task(rq, p, 0);
2484 } else {
2486 * Let the scheduling class do new task startup
2487 * management (if any):
2489 p->sched_class->task_new(rq, p);
2490 inc_nr_running(rq);
2492 trace_sched_wakeup_new(rq, p, 1);
2493 check_preempt_curr(rq, p, 0);
2494 #ifdef CONFIG_SMP
2495 if (p->sched_class->task_wake_up)
2496 p->sched_class->task_wake_up(rq, p);
2497 #endif
2498 task_rq_unlock(rq, &flags);
2501 #ifdef CONFIG_PREEMPT_NOTIFIERS
2504 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2505 * @notifier: notifier struct to register
2507 void preempt_notifier_register(struct preempt_notifier *notifier)
2509 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2511 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2514 * preempt_notifier_unregister - no longer interested in preemption notifications
2515 * @notifier: notifier struct to unregister
2517 * This is safe to call from within a preemption notifier.
2519 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2521 hlist_del(&notifier->link);
2523 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2525 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2527 struct preempt_notifier *notifier;
2528 struct hlist_node *node;
2530 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2531 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2534 static void
2535 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2536 struct task_struct *next)
2538 struct preempt_notifier *notifier;
2539 struct hlist_node *node;
2541 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2542 notifier->ops->sched_out(notifier, next);
2545 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2547 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2551 static void
2552 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2553 struct task_struct *next)
2557 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2560 * prepare_task_switch - prepare to switch tasks
2561 * @rq: the runqueue preparing to switch
2562 * @prev: the current task that is being switched out
2563 * @next: the task we are going to switch to.
2565 * This is called with the rq lock held and interrupts off. It must
2566 * be paired with a subsequent finish_task_switch after the context
2567 * switch.
2569 * prepare_task_switch sets up locking and calls architecture specific
2570 * hooks.
2572 static inline void
2573 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2574 struct task_struct *next)
2576 fire_sched_out_preempt_notifiers(prev, next);
2577 prepare_lock_switch(rq, next);
2578 prepare_arch_switch(next);
2582 * finish_task_switch - clean up after a task-switch
2583 * @rq: runqueue associated with task-switch
2584 * @prev: the thread we just switched away from.
2586 * finish_task_switch must be called after the context switch, paired
2587 * with a prepare_task_switch call before the context switch.
2588 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2589 * and do any other architecture-specific cleanup actions.
2591 * Note that we may have delayed dropping an mm in context_switch(). If
2592 * so, we finish that here outside of the runqueue lock. (Doing it
2593 * with the lock held can cause deadlocks; see schedule() for
2594 * details.)
2596 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2597 __releases(rq->lock)
2599 struct mm_struct *mm = rq->prev_mm;
2600 long prev_state;
2602 rq->prev_mm = NULL;
2605 * A task struct has one reference for the use as "current".
2606 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2607 * schedule one last time. The schedule call will never return, and
2608 * the scheduled task must drop that reference.
2609 * The test for TASK_DEAD must occur while the runqueue locks are
2610 * still held, otherwise prev could be scheduled on another cpu, die
2611 * there before we look at prev->state, and then the reference would
2612 * be dropped twice.
2613 * Manfred Spraul <manfred@colorfullife.com>
2615 prev_state = prev->state;
2616 finish_arch_switch(prev);
2617 finish_lock_switch(rq, prev);
2618 #ifdef CONFIG_SMP
2619 if (current->sched_class->post_schedule)
2620 current->sched_class->post_schedule(rq);
2621 #endif
2623 fire_sched_in_preempt_notifiers(current);
2624 if (mm)
2625 mmdrop(mm);
2626 if (unlikely(prev_state == TASK_DEAD)) {
2628 * Remove function-return probe instances associated with this
2629 * task and put them back on the free list.
2631 kprobe_flush_task(prev);
2632 put_task_struct(prev);
2637 * schedule_tail - first thing a freshly forked thread must call.
2638 * @prev: the thread we just switched away from.
2640 asmlinkage void schedule_tail(struct task_struct *prev)
2641 __releases(rq->lock)
2643 struct rq *rq = this_rq();
2645 finish_task_switch(rq, prev);
2646 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2647 /* In this case, finish_task_switch does not reenable preemption */
2648 preempt_enable();
2649 #endif
2650 if (current->set_child_tid)
2651 put_user(task_pid_vnr(current), current->set_child_tid);
2655 * context_switch - switch to the new MM and the new
2656 * thread's register state.
2658 static inline void
2659 context_switch(struct rq *rq, struct task_struct *prev,
2660 struct task_struct *next)
2662 struct mm_struct *mm, *oldmm;
2664 prepare_task_switch(rq, prev, next);
2665 trace_sched_switch(rq, prev, next);
2666 mm = next->mm;
2667 oldmm = prev->active_mm;
2669 * For paravirt, this is coupled with an exit in switch_to to
2670 * combine the page table reload and the switch backend into
2671 * one hypercall.
2673 arch_enter_lazy_cpu_mode();
2675 if (unlikely(!mm)) {
2676 next->active_mm = oldmm;
2677 atomic_inc(&oldmm->mm_count);
2678 enter_lazy_tlb(oldmm, next);
2679 } else
2680 switch_mm(oldmm, mm, next);
2682 if (unlikely(!prev->mm)) {
2683 prev->active_mm = NULL;
2684 rq->prev_mm = oldmm;
2687 * Since the runqueue lock will be released by the next
2688 * task (which is an invalid locking op but in the case
2689 * of the scheduler it's an obvious special-case), so we
2690 * do an early lockdep release here:
2692 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2693 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2694 #endif
2696 /* Here we just switch the register state and the stack. */
2697 switch_to(prev, next, prev);
2699 barrier();
2701 * this_rq must be evaluated again because prev may have moved
2702 * CPUs since it called schedule(), thus the 'rq' on its stack
2703 * frame will be invalid.
2705 finish_task_switch(this_rq(), prev);
2709 * nr_running, nr_uninterruptible and nr_context_switches:
2711 * externally visible scheduler statistics: current number of runnable
2712 * threads, current number of uninterruptible-sleeping threads, total
2713 * number of context switches performed since bootup.
2715 unsigned long nr_running(void)
2717 unsigned long i, sum = 0;
2719 for_each_online_cpu(i)
2720 sum += cpu_rq(i)->nr_running;
2722 return sum;
2725 unsigned long nr_uninterruptible(void)
2727 unsigned long i, sum = 0;
2729 for_each_possible_cpu(i)
2730 sum += cpu_rq(i)->nr_uninterruptible;
2733 * Since we read the counters lockless, it might be slightly
2734 * inaccurate. Do not allow it to go below zero though:
2736 if (unlikely((long)sum < 0))
2737 sum = 0;
2739 return sum;
2742 unsigned long long nr_context_switches(void)
2744 int i;
2745 unsigned long long sum = 0;
2747 for_each_possible_cpu(i)
2748 sum += cpu_rq(i)->nr_switches;
2750 return sum;
2753 unsigned long nr_iowait(void)
2755 unsigned long i, sum = 0;
2757 for_each_possible_cpu(i)
2758 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2760 return sum;
2763 unsigned long nr_active(void)
2765 unsigned long i, running = 0, uninterruptible = 0;
2767 for_each_online_cpu(i) {
2768 running += cpu_rq(i)->nr_running;
2769 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2772 if (unlikely((long)uninterruptible < 0))
2773 uninterruptible = 0;
2775 return running + uninterruptible;
2779 * Update rq->cpu_load[] statistics. This function is usually called every
2780 * scheduler tick (TICK_NSEC).
2782 static void update_cpu_load(struct rq *this_rq)
2784 unsigned long this_load = this_rq->load.weight;
2785 int i, scale;
2787 this_rq->nr_load_updates++;
2789 /* Update our load: */
2790 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2791 unsigned long old_load, new_load;
2793 /* scale is effectively 1 << i now, and >> i divides by scale */
2795 old_load = this_rq->cpu_load[i];
2796 new_load = this_load;
2798 * Round up the averaging division if load is increasing. This
2799 * prevents us from getting stuck on 9 if the load is 10, for
2800 * example.
2802 if (new_load > old_load)
2803 new_load += scale-1;
2804 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2808 #ifdef CONFIG_SMP
2811 * double_rq_lock - safely lock two runqueues
2813 * Note this does not disable interrupts like task_rq_lock,
2814 * you need to do so manually before calling.
2816 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2817 __acquires(rq1->lock)
2818 __acquires(rq2->lock)
2820 BUG_ON(!irqs_disabled());
2821 if (rq1 == rq2) {
2822 spin_lock(&rq1->lock);
2823 __acquire(rq2->lock); /* Fake it out ;) */
2824 } else {
2825 if (rq1 < rq2) {
2826 spin_lock(&rq1->lock);
2827 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2828 } else {
2829 spin_lock(&rq2->lock);
2830 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2833 update_rq_clock(rq1);
2834 update_rq_clock(rq2);
2838 * double_rq_unlock - safely unlock two runqueues
2840 * Note this does not restore interrupts like task_rq_unlock,
2841 * you need to do so manually after calling.
2843 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2844 __releases(rq1->lock)
2845 __releases(rq2->lock)
2847 spin_unlock(&rq1->lock);
2848 if (rq1 != rq2)
2849 spin_unlock(&rq2->lock);
2850 else
2851 __release(rq2->lock);
2855 * If dest_cpu is allowed for this process, migrate the task to it.
2856 * This is accomplished by forcing the cpu_allowed mask to only
2857 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2858 * the cpu_allowed mask is restored.
2860 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2862 struct migration_req req;
2863 unsigned long flags;
2864 struct rq *rq;
2866 rq = task_rq_lock(p, &flags);
2867 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2868 || unlikely(!cpu_active(dest_cpu)))
2869 goto out;
2871 /* force the process onto the specified CPU */
2872 if (migrate_task(p, dest_cpu, &req)) {
2873 /* Need to wait for migration thread (might exit: take ref). */
2874 struct task_struct *mt = rq->migration_thread;
2876 get_task_struct(mt);
2877 task_rq_unlock(rq, &flags);
2878 wake_up_process(mt);
2879 put_task_struct(mt);
2880 wait_for_completion(&req.done);
2882 return;
2884 out:
2885 task_rq_unlock(rq, &flags);
2889 * sched_exec - execve() is a valuable balancing opportunity, because at
2890 * this point the task has the smallest effective memory and cache footprint.
2892 void sched_exec(void)
2894 int new_cpu, this_cpu = get_cpu();
2895 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2896 put_cpu();
2897 if (new_cpu != this_cpu)
2898 sched_migrate_task(current, new_cpu);
2902 * pull_task - move a task from a remote runqueue to the local runqueue.
2903 * Both runqueues must be locked.
2905 static void pull_task(struct rq *src_rq, struct task_struct *p,
2906 struct rq *this_rq, int this_cpu)
2908 deactivate_task(src_rq, p, 0);
2909 set_task_cpu(p, this_cpu);
2910 activate_task(this_rq, p, 0);
2912 * Note that idle threads have a prio of MAX_PRIO, for this test
2913 * to be always true for them.
2915 check_preempt_curr(this_rq, p, 0);
2919 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2921 static
2922 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2923 struct sched_domain *sd, enum cpu_idle_type idle,
2924 int *all_pinned)
2927 * We do not migrate tasks that are:
2928 * 1) running (obviously), or
2929 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2930 * 3) are cache-hot on their current CPU.
2932 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2933 schedstat_inc(p, se.nr_failed_migrations_affine);
2934 return 0;
2936 *all_pinned = 0;
2938 if (task_running(rq, p)) {
2939 schedstat_inc(p, se.nr_failed_migrations_running);
2940 return 0;
2944 * Aggressive migration if:
2945 * 1) task is cache cold, or
2946 * 2) too many balance attempts have failed.
2949 if (!task_hot(p, rq->clock, sd) ||
2950 sd->nr_balance_failed > sd->cache_nice_tries) {
2951 #ifdef CONFIG_SCHEDSTATS
2952 if (task_hot(p, rq->clock, sd)) {
2953 schedstat_inc(sd, lb_hot_gained[idle]);
2954 schedstat_inc(p, se.nr_forced_migrations);
2956 #endif
2957 return 1;
2960 if (task_hot(p, rq->clock, sd)) {
2961 schedstat_inc(p, se.nr_failed_migrations_hot);
2962 return 0;
2964 return 1;
2967 static unsigned long
2968 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2969 unsigned long max_load_move, struct sched_domain *sd,
2970 enum cpu_idle_type idle, int *all_pinned,
2971 int *this_best_prio, struct rq_iterator *iterator)
2973 int loops = 0, pulled = 0, pinned = 0;
2974 struct task_struct *p;
2975 long rem_load_move = max_load_move;
2977 if (max_load_move == 0)
2978 goto out;
2980 pinned = 1;
2983 * Start the load-balancing iterator:
2985 p = iterator->start(iterator->arg);
2986 next:
2987 if (!p || loops++ > sysctl_sched_nr_migrate)
2988 goto out;
2990 if ((p->se.load.weight >> 1) > rem_load_move ||
2991 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2992 p = iterator->next(iterator->arg);
2993 goto next;
2996 pull_task(busiest, p, this_rq, this_cpu);
2997 pulled++;
2998 rem_load_move -= p->se.load.weight;
3001 * We only want to steal up to the prescribed amount of weighted load.
3003 if (rem_load_move > 0) {
3004 if (p->prio < *this_best_prio)
3005 *this_best_prio = p->prio;
3006 p = iterator->next(iterator->arg);
3007 goto next;
3009 out:
3011 * Right now, this is one of only two places pull_task() is called,
3012 * so we can safely collect pull_task() stats here rather than
3013 * inside pull_task().
3015 schedstat_add(sd, lb_gained[idle], pulled);
3017 if (all_pinned)
3018 *all_pinned = pinned;
3020 return max_load_move - rem_load_move;
3024 * move_tasks tries to move up to max_load_move weighted load from busiest to
3025 * this_rq, as part of a balancing operation within domain "sd".
3026 * Returns 1 if successful and 0 otherwise.
3028 * Called with both runqueues locked.
3030 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3031 unsigned long max_load_move,
3032 struct sched_domain *sd, enum cpu_idle_type idle,
3033 int *all_pinned)
3035 const struct sched_class *class = sched_class_highest;
3036 unsigned long total_load_moved = 0;
3037 int this_best_prio = this_rq->curr->prio;
3039 do {
3040 total_load_moved +=
3041 class->load_balance(this_rq, this_cpu, busiest,
3042 max_load_move - total_load_moved,
3043 sd, idle, all_pinned, &this_best_prio);
3044 class = class->next;
3046 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3047 break;
3049 } while (class && max_load_move > total_load_moved);
3051 return total_load_moved > 0;
3054 static int
3055 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056 struct sched_domain *sd, enum cpu_idle_type idle,
3057 struct rq_iterator *iterator)
3059 struct task_struct *p = iterator->start(iterator->arg);
3060 int pinned = 0;
3062 while (p) {
3063 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3064 pull_task(busiest, p, this_rq, this_cpu);
3066 * Right now, this is only the second place pull_task()
3067 * is called, so we can safely collect pull_task()
3068 * stats here rather than inside pull_task().
3070 schedstat_inc(sd, lb_gained[idle]);
3072 return 1;
3074 p = iterator->next(iterator->arg);
3077 return 0;
3081 * move_one_task tries to move exactly one task from busiest to this_rq, as
3082 * part of active balancing operations within "domain".
3083 * Returns 1 if successful and 0 otherwise.
3085 * Called with both runqueues locked.
3087 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3088 struct sched_domain *sd, enum cpu_idle_type idle)
3090 const struct sched_class *class;
3092 for (class = sched_class_highest; class; class = class->next)
3093 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3094 return 1;
3096 return 0;
3100 * find_busiest_group finds and returns the busiest CPU group within the
3101 * domain. It calculates and returns the amount of weighted load which
3102 * should be moved to restore balance via the imbalance parameter.
3104 static struct sched_group *
3105 find_busiest_group(struct sched_domain *sd, int this_cpu,
3106 unsigned long *imbalance, enum cpu_idle_type idle,
3107 int *sd_idle, const struct cpumask *cpus, int *balance)
3109 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3110 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3111 unsigned long max_pull;
3112 unsigned long busiest_load_per_task, busiest_nr_running;
3113 unsigned long this_load_per_task, this_nr_running;
3114 int load_idx, group_imb = 0;
3115 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3116 int power_savings_balance = 1;
3117 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3118 unsigned long min_nr_running = ULONG_MAX;
3119 struct sched_group *group_min = NULL, *group_leader = NULL;
3120 #endif
3122 max_load = this_load = total_load = total_pwr = 0;
3123 busiest_load_per_task = busiest_nr_running = 0;
3124 this_load_per_task = this_nr_running = 0;
3126 if (idle == CPU_NOT_IDLE)
3127 load_idx = sd->busy_idx;
3128 else if (idle == CPU_NEWLY_IDLE)
3129 load_idx = sd->newidle_idx;
3130 else
3131 load_idx = sd->idle_idx;
3133 do {
3134 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3135 int local_group;
3136 int i;
3137 int __group_imb = 0;
3138 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3139 unsigned long sum_nr_running, sum_weighted_load;
3140 unsigned long sum_avg_load_per_task;
3141 unsigned long avg_load_per_task;
3143 local_group = cpumask_test_cpu(this_cpu,
3144 sched_group_cpus(group));
3146 if (local_group)
3147 balance_cpu = cpumask_first(sched_group_cpus(group));
3149 /* Tally up the load of all CPUs in the group */
3150 sum_weighted_load = sum_nr_running = avg_load = 0;
3151 sum_avg_load_per_task = avg_load_per_task = 0;
3153 max_cpu_load = 0;
3154 min_cpu_load = ~0UL;
3156 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3157 struct rq *rq = cpu_rq(i);
3159 if (*sd_idle && rq->nr_running)
3160 *sd_idle = 0;
3162 /* Bias balancing toward cpus of our domain */
3163 if (local_group) {
3164 if (idle_cpu(i) && !first_idle_cpu) {
3165 first_idle_cpu = 1;
3166 balance_cpu = i;
3169 load = target_load(i, load_idx);
3170 } else {
3171 load = source_load(i, load_idx);
3172 if (load > max_cpu_load)
3173 max_cpu_load = load;
3174 if (min_cpu_load > load)
3175 min_cpu_load = load;
3178 avg_load += load;
3179 sum_nr_running += rq->nr_running;
3180 sum_weighted_load += weighted_cpuload(i);
3182 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3186 * First idle cpu or the first cpu(busiest) in this sched group
3187 * is eligible for doing load balancing at this and above
3188 * domains. In the newly idle case, we will allow all the cpu's
3189 * to do the newly idle load balance.
3191 if (idle != CPU_NEWLY_IDLE && local_group &&
3192 balance_cpu != this_cpu && balance) {
3193 *balance = 0;
3194 goto ret;
3197 total_load += avg_load;
3198 total_pwr += group->__cpu_power;
3200 /* Adjust by relative CPU power of the group */
3201 avg_load = sg_div_cpu_power(group,
3202 avg_load * SCHED_LOAD_SCALE);
3206 * Consider the group unbalanced when the imbalance is larger
3207 * than the average weight of two tasks.
3209 * APZ: with cgroup the avg task weight can vary wildly and
3210 * might not be a suitable number - should we keep a
3211 * normalized nr_running number somewhere that negates
3212 * the hierarchy?
3214 avg_load_per_task = sg_div_cpu_power(group,
3215 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3217 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3218 __group_imb = 1;
3220 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3222 if (local_group) {
3223 this_load = avg_load;
3224 this = group;
3225 this_nr_running = sum_nr_running;
3226 this_load_per_task = sum_weighted_load;
3227 } else if (avg_load > max_load &&
3228 (sum_nr_running > group_capacity || __group_imb)) {
3229 max_load = avg_load;
3230 busiest = group;
3231 busiest_nr_running = sum_nr_running;
3232 busiest_load_per_task = sum_weighted_load;
3233 group_imb = __group_imb;
3236 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3238 * Busy processors will not participate in power savings
3239 * balance.
3241 if (idle == CPU_NOT_IDLE ||
3242 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3243 goto group_next;
3246 * If the local group is idle or completely loaded
3247 * no need to do power savings balance at this domain
3249 if (local_group && (this_nr_running >= group_capacity ||
3250 !this_nr_running))
3251 power_savings_balance = 0;
3254 * If a group is already running at full capacity or idle,
3255 * don't include that group in power savings calculations
3257 if (!power_savings_balance || sum_nr_running >= group_capacity
3258 || !sum_nr_running)
3259 goto group_next;
3262 * Calculate the group which has the least non-idle load.
3263 * This is the group from where we need to pick up the load
3264 * for saving power
3266 if ((sum_nr_running < min_nr_running) ||
3267 (sum_nr_running == min_nr_running &&
3268 cpumask_first(sched_group_cpus(group)) >
3269 cpumask_first(sched_group_cpus(group_min)))) {
3270 group_min = group;
3271 min_nr_running = sum_nr_running;
3272 min_load_per_task = sum_weighted_load /
3273 sum_nr_running;
3277 * Calculate the group which is almost near its
3278 * capacity but still has some space to pick up some load
3279 * from other group and save more power
3281 if (sum_nr_running <= group_capacity - 1) {
3282 if (sum_nr_running > leader_nr_running ||
3283 (sum_nr_running == leader_nr_running &&
3284 cpumask_first(sched_group_cpus(group)) <
3285 cpumask_first(sched_group_cpus(group_leader)))) {
3286 group_leader = group;
3287 leader_nr_running = sum_nr_running;
3290 group_next:
3291 #endif
3292 group = group->next;
3293 } while (group != sd->groups);
3295 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3296 goto out_balanced;
3298 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3300 if (this_load >= avg_load ||
3301 100*max_load <= sd->imbalance_pct*this_load)
3302 goto out_balanced;
3304 busiest_load_per_task /= busiest_nr_running;
3305 if (group_imb)
3306 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3309 * We're trying to get all the cpus to the average_load, so we don't
3310 * want to push ourselves above the average load, nor do we wish to
3311 * reduce the max loaded cpu below the average load, as either of these
3312 * actions would just result in more rebalancing later, and ping-pong
3313 * tasks around. Thus we look for the minimum possible imbalance.
3314 * Negative imbalances (*we* are more loaded than anyone else) will
3315 * be counted as no imbalance for these purposes -- we can't fix that
3316 * by pulling tasks to us. Be careful of negative numbers as they'll
3317 * appear as very large values with unsigned longs.
3319 if (max_load <= busiest_load_per_task)
3320 goto out_balanced;
3323 * In the presence of smp nice balancing, certain scenarios can have
3324 * max load less than avg load(as we skip the groups at or below
3325 * its cpu_power, while calculating max_load..)
3327 if (max_load < avg_load) {
3328 *imbalance = 0;
3329 goto small_imbalance;
3332 /* Don't want to pull so many tasks that a group would go idle */
3333 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3335 /* How much load to actually move to equalise the imbalance */
3336 *imbalance = min(max_pull * busiest->__cpu_power,
3337 (avg_load - this_load) * this->__cpu_power)
3338 / SCHED_LOAD_SCALE;
3341 * if *imbalance is less than the average load per runnable task
3342 * there is no gaurantee that any tasks will be moved so we'll have
3343 * a think about bumping its value to force at least one task to be
3344 * moved
3346 if (*imbalance < busiest_load_per_task) {
3347 unsigned long tmp, pwr_now, pwr_move;
3348 unsigned int imbn;
3350 small_imbalance:
3351 pwr_move = pwr_now = 0;
3352 imbn = 2;
3353 if (this_nr_running) {
3354 this_load_per_task /= this_nr_running;
3355 if (busiest_load_per_task > this_load_per_task)
3356 imbn = 1;
3357 } else
3358 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3360 if (max_load - this_load + busiest_load_per_task >=
3361 busiest_load_per_task * imbn) {
3362 *imbalance = busiest_load_per_task;
3363 return busiest;
3367 * OK, we don't have enough imbalance to justify moving tasks,
3368 * however we may be able to increase total CPU power used by
3369 * moving them.
3372 pwr_now += busiest->__cpu_power *
3373 min(busiest_load_per_task, max_load);
3374 pwr_now += this->__cpu_power *
3375 min(this_load_per_task, this_load);
3376 pwr_now /= SCHED_LOAD_SCALE;
3378 /* Amount of load we'd subtract */
3379 tmp = sg_div_cpu_power(busiest,
3380 busiest_load_per_task * SCHED_LOAD_SCALE);
3381 if (max_load > tmp)
3382 pwr_move += busiest->__cpu_power *
3383 min(busiest_load_per_task, max_load - tmp);
3385 /* Amount of load we'd add */
3386 if (max_load * busiest->__cpu_power <
3387 busiest_load_per_task * SCHED_LOAD_SCALE)
3388 tmp = sg_div_cpu_power(this,
3389 max_load * busiest->__cpu_power);
3390 else
3391 tmp = sg_div_cpu_power(this,
3392 busiest_load_per_task * SCHED_LOAD_SCALE);
3393 pwr_move += this->__cpu_power *
3394 min(this_load_per_task, this_load + tmp);
3395 pwr_move /= SCHED_LOAD_SCALE;
3397 /* Move if we gain throughput */
3398 if (pwr_move > pwr_now)
3399 *imbalance = busiest_load_per_task;
3402 return busiest;
3404 out_balanced:
3405 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3406 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3407 goto ret;
3409 if (this == group_leader && group_leader != group_min) {
3410 *imbalance = min_load_per_task;
3411 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3412 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3413 cpumask_first(sched_group_cpus(group_leader));
3415 return group_min;
3417 #endif
3418 ret:
3419 *imbalance = 0;
3420 return NULL;
3424 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3426 static struct rq *
3427 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3428 unsigned long imbalance, const struct cpumask *cpus)
3430 struct rq *busiest = NULL, *rq;
3431 unsigned long max_load = 0;
3432 int i;
3434 for_each_cpu(i, sched_group_cpus(group)) {
3435 unsigned long wl;
3437 if (!cpumask_test_cpu(i, cpus))
3438 continue;
3440 rq = cpu_rq(i);
3441 wl = weighted_cpuload(i);
3443 if (rq->nr_running == 1 && wl > imbalance)
3444 continue;
3446 if (wl > max_load) {
3447 max_load = wl;
3448 busiest = rq;
3452 return busiest;
3456 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3457 * so long as it is large enough.
3459 #define MAX_PINNED_INTERVAL 512
3462 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3463 * tasks if there is an imbalance.
3465 static int load_balance(int this_cpu, struct rq *this_rq,
3466 struct sched_domain *sd, enum cpu_idle_type idle,
3467 int *balance, struct cpumask *cpus)
3469 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3470 struct sched_group *group;
3471 unsigned long imbalance;
3472 struct rq *busiest;
3473 unsigned long flags;
3475 cpumask_setall(cpus);
3478 * When power savings policy is enabled for the parent domain, idle
3479 * sibling can pick up load irrespective of busy siblings. In this case,
3480 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3481 * portraying it as CPU_NOT_IDLE.
3483 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3484 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3485 sd_idle = 1;
3487 schedstat_inc(sd, lb_count[idle]);
3489 redo:
3490 update_shares(sd);
3491 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3492 cpus, balance);
3494 if (*balance == 0)
3495 goto out_balanced;
3497 if (!group) {
3498 schedstat_inc(sd, lb_nobusyg[idle]);
3499 goto out_balanced;
3502 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3503 if (!busiest) {
3504 schedstat_inc(sd, lb_nobusyq[idle]);
3505 goto out_balanced;
3508 BUG_ON(busiest == this_rq);
3510 schedstat_add(sd, lb_imbalance[idle], imbalance);
3512 ld_moved = 0;
3513 if (busiest->nr_running > 1) {
3515 * Attempt to move tasks. If find_busiest_group has found
3516 * an imbalance but busiest->nr_running <= 1, the group is
3517 * still unbalanced. ld_moved simply stays zero, so it is
3518 * correctly treated as an imbalance.
3520 local_irq_save(flags);
3521 double_rq_lock(this_rq, busiest);
3522 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3523 imbalance, sd, idle, &all_pinned);
3524 double_rq_unlock(this_rq, busiest);
3525 local_irq_restore(flags);
3528 * some other cpu did the load balance for us.
3530 if (ld_moved && this_cpu != smp_processor_id())
3531 resched_cpu(this_cpu);
3533 /* All tasks on this runqueue were pinned by CPU affinity */
3534 if (unlikely(all_pinned)) {
3535 cpumask_clear_cpu(cpu_of(busiest), cpus);
3536 if (!cpumask_empty(cpus))
3537 goto redo;
3538 goto out_balanced;
3542 if (!ld_moved) {
3543 schedstat_inc(sd, lb_failed[idle]);
3544 sd->nr_balance_failed++;
3546 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3548 spin_lock_irqsave(&busiest->lock, flags);
3550 /* don't kick the migration_thread, if the curr
3551 * task on busiest cpu can't be moved to this_cpu
3553 if (!cpumask_test_cpu(this_cpu,
3554 &busiest->curr->cpus_allowed)) {
3555 spin_unlock_irqrestore(&busiest->lock, flags);
3556 all_pinned = 1;
3557 goto out_one_pinned;
3560 if (!busiest->active_balance) {
3561 busiest->active_balance = 1;
3562 busiest->push_cpu = this_cpu;
3563 active_balance = 1;
3565 spin_unlock_irqrestore(&busiest->lock, flags);
3566 if (active_balance)
3567 wake_up_process(busiest->migration_thread);
3570 * We've kicked active balancing, reset the failure
3571 * counter.
3573 sd->nr_balance_failed = sd->cache_nice_tries+1;
3575 } else
3576 sd->nr_balance_failed = 0;
3578 if (likely(!active_balance)) {
3579 /* We were unbalanced, so reset the balancing interval */
3580 sd->balance_interval = sd->min_interval;
3581 } else {
3583 * If we've begun active balancing, start to back off. This
3584 * case may not be covered by the all_pinned logic if there
3585 * is only 1 task on the busy runqueue (because we don't call
3586 * move_tasks).
3588 if (sd->balance_interval < sd->max_interval)
3589 sd->balance_interval *= 2;
3592 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3593 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3594 ld_moved = -1;
3596 goto out;
3598 out_balanced:
3599 schedstat_inc(sd, lb_balanced[idle]);
3601 sd->nr_balance_failed = 0;
3603 out_one_pinned:
3604 /* tune up the balancing interval */
3605 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3606 (sd->balance_interval < sd->max_interval))
3607 sd->balance_interval *= 2;
3609 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3611 ld_moved = -1;
3612 else
3613 ld_moved = 0;
3614 out:
3615 if (ld_moved)
3616 update_shares(sd);
3617 return ld_moved;
3621 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3622 * tasks if there is an imbalance.
3624 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3625 * this_rq is locked.
3627 static int
3628 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3629 struct cpumask *cpus)
3631 struct sched_group *group;
3632 struct rq *busiest = NULL;
3633 unsigned long imbalance;
3634 int ld_moved = 0;
3635 int sd_idle = 0;
3636 int all_pinned = 0;
3638 cpumask_setall(cpus);
3641 * When power savings policy is enabled for the parent domain, idle
3642 * sibling can pick up load irrespective of busy siblings. In this case,
3643 * let the state of idle sibling percolate up as IDLE, instead of
3644 * portraying it as CPU_NOT_IDLE.
3646 if (sd->flags & SD_SHARE_CPUPOWER &&
3647 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3648 sd_idle = 1;
3650 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3651 redo:
3652 update_shares_locked(this_rq, sd);
3653 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3654 &sd_idle, cpus, NULL);
3655 if (!group) {
3656 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3657 goto out_balanced;
3660 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3661 if (!busiest) {
3662 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3663 goto out_balanced;
3666 BUG_ON(busiest == this_rq);
3668 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3670 ld_moved = 0;
3671 if (busiest->nr_running > 1) {
3672 /* Attempt to move tasks */
3673 double_lock_balance(this_rq, busiest);
3674 /* this_rq->clock is already updated */
3675 update_rq_clock(busiest);
3676 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3677 imbalance, sd, CPU_NEWLY_IDLE,
3678 &all_pinned);
3679 double_unlock_balance(this_rq, busiest);
3681 if (unlikely(all_pinned)) {
3682 cpumask_clear_cpu(cpu_of(busiest), cpus);
3683 if (!cpumask_empty(cpus))
3684 goto redo;
3688 if (!ld_moved) {
3689 int active_balance = 0;
3691 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3692 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3693 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3694 return -1;
3696 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3697 return -1;
3699 if (sd->nr_balance_failed++ < 2)
3700 return -1;
3703 * The only task running in a non-idle cpu can be moved to this
3704 * cpu in an attempt to completely freeup the other CPU
3705 * package. The same method used to move task in load_balance()
3706 * have been extended for load_balance_newidle() to speedup
3707 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3709 * The package power saving logic comes from
3710 * find_busiest_group(). If there are no imbalance, then
3711 * f_b_g() will return NULL. However when sched_mc={1,2} then
3712 * f_b_g() will select a group from which a running task may be
3713 * pulled to this cpu in order to make the other package idle.
3714 * If there is no opportunity to make a package idle and if
3715 * there are no imbalance, then f_b_g() will return NULL and no
3716 * action will be taken in load_balance_newidle().
3718 * Under normal task pull operation due to imbalance, there
3719 * will be more than one task in the source run queue and
3720 * move_tasks() will succeed. ld_moved will be true and this
3721 * active balance code will not be triggered.
3724 /* Lock busiest in correct order while this_rq is held */
3725 double_lock_balance(this_rq, busiest);
3728 * don't kick the migration_thread, if the curr
3729 * task on busiest cpu can't be moved to this_cpu
3731 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3732 double_unlock_balance(this_rq, busiest);
3733 all_pinned = 1;
3734 return ld_moved;
3737 if (!busiest->active_balance) {
3738 busiest->active_balance = 1;
3739 busiest->push_cpu = this_cpu;
3740 active_balance = 1;
3743 double_unlock_balance(this_rq, busiest);
3745 * Should not call ttwu while holding a rq->lock
3747 spin_unlock(&this_rq->lock);
3748 if (active_balance)
3749 wake_up_process(busiest->migration_thread);
3750 spin_lock(&this_rq->lock);
3752 } else
3753 sd->nr_balance_failed = 0;
3755 update_shares_locked(this_rq, sd);
3756 return ld_moved;
3758 out_balanced:
3759 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3760 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3761 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3762 return -1;
3763 sd->nr_balance_failed = 0;
3765 return 0;
3769 * idle_balance is called by schedule() if this_cpu is about to become
3770 * idle. Attempts to pull tasks from other CPUs.
3772 static void idle_balance(int this_cpu, struct rq *this_rq)
3774 struct sched_domain *sd;
3775 int pulled_task = 0;
3776 unsigned long next_balance = jiffies + HZ;
3777 cpumask_var_t tmpmask;
3779 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3780 return;
3782 for_each_domain(this_cpu, sd) {
3783 unsigned long interval;
3785 if (!(sd->flags & SD_LOAD_BALANCE))
3786 continue;
3788 if (sd->flags & SD_BALANCE_NEWIDLE)
3789 /* If we've pulled tasks over stop searching: */
3790 pulled_task = load_balance_newidle(this_cpu, this_rq,
3791 sd, tmpmask);
3793 interval = msecs_to_jiffies(sd->balance_interval);
3794 if (time_after(next_balance, sd->last_balance + interval))
3795 next_balance = sd->last_balance + interval;
3796 if (pulled_task)
3797 break;
3799 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3801 * We are going idle. next_balance may be set based on
3802 * a busy processor. So reset next_balance.
3804 this_rq->next_balance = next_balance;
3806 free_cpumask_var(tmpmask);
3810 * active_load_balance is run by migration threads. It pushes running tasks
3811 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3812 * running on each physical CPU where possible, and avoids physical /
3813 * logical imbalances.
3815 * Called with busiest_rq locked.
3817 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3819 int target_cpu = busiest_rq->push_cpu;
3820 struct sched_domain *sd;
3821 struct rq *target_rq;
3823 /* Is there any task to move? */
3824 if (busiest_rq->nr_running <= 1)
3825 return;
3827 target_rq = cpu_rq(target_cpu);
3830 * This condition is "impossible", if it occurs
3831 * we need to fix it. Originally reported by
3832 * Bjorn Helgaas on a 128-cpu setup.
3834 BUG_ON(busiest_rq == target_rq);
3836 /* move a task from busiest_rq to target_rq */
3837 double_lock_balance(busiest_rq, target_rq);
3838 update_rq_clock(busiest_rq);
3839 update_rq_clock(target_rq);
3841 /* Search for an sd spanning us and the target CPU. */
3842 for_each_domain(target_cpu, sd) {
3843 if ((sd->flags & SD_LOAD_BALANCE) &&
3844 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3845 break;
3848 if (likely(sd)) {
3849 schedstat_inc(sd, alb_count);
3851 if (move_one_task(target_rq, target_cpu, busiest_rq,
3852 sd, CPU_IDLE))
3853 schedstat_inc(sd, alb_pushed);
3854 else
3855 schedstat_inc(sd, alb_failed);
3857 double_unlock_balance(busiest_rq, target_rq);
3860 #ifdef CONFIG_NO_HZ
3861 static struct {
3862 atomic_t load_balancer;
3863 cpumask_var_t cpu_mask;
3864 } nohz ____cacheline_aligned = {
3865 .load_balancer = ATOMIC_INIT(-1),
3869 * This routine will try to nominate the ilb (idle load balancing)
3870 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3871 * load balancing on behalf of all those cpus. If all the cpus in the system
3872 * go into this tickless mode, then there will be no ilb owner (as there is
3873 * no need for one) and all the cpus will sleep till the next wakeup event
3874 * arrives...
3876 * For the ilb owner, tick is not stopped. And this tick will be used
3877 * for idle load balancing. ilb owner will still be part of
3878 * nohz.cpu_mask..
3880 * While stopping the tick, this cpu will become the ilb owner if there
3881 * is no other owner. And will be the owner till that cpu becomes busy
3882 * or if all cpus in the system stop their ticks at which point
3883 * there is no need for ilb owner.
3885 * When the ilb owner becomes busy, it nominates another owner, during the
3886 * next busy scheduler_tick()
3888 int select_nohz_load_balancer(int stop_tick)
3890 int cpu = smp_processor_id();
3892 if (stop_tick) {
3893 cpu_rq(cpu)->in_nohz_recently = 1;
3895 if (!cpu_active(cpu)) {
3896 if (atomic_read(&nohz.load_balancer) != cpu)
3897 return 0;
3900 * If we are going offline and still the leader,
3901 * give up!
3903 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3904 BUG();
3906 return 0;
3909 cpumask_set_cpu(cpu, nohz.cpu_mask);
3911 /* time for ilb owner also to sleep */
3912 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3913 if (atomic_read(&nohz.load_balancer) == cpu)
3914 atomic_set(&nohz.load_balancer, -1);
3915 return 0;
3918 if (atomic_read(&nohz.load_balancer) == -1) {
3919 /* make me the ilb owner */
3920 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3921 return 1;
3922 } else if (atomic_read(&nohz.load_balancer) == cpu)
3923 return 1;
3924 } else {
3925 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3926 return 0;
3928 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3930 if (atomic_read(&nohz.load_balancer) == cpu)
3931 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3932 BUG();
3934 return 0;
3936 #endif
3938 static DEFINE_SPINLOCK(balancing);
3941 * It checks each scheduling domain to see if it is due to be balanced,
3942 * and initiates a balancing operation if so.
3944 * Balancing parameters are set up in arch_init_sched_domains.
3946 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3948 int balance = 1;
3949 struct rq *rq = cpu_rq(cpu);
3950 unsigned long interval;
3951 struct sched_domain *sd;
3952 /* Earliest time when we have to do rebalance again */
3953 unsigned long next_balance = jiffies + 60*HZ;
3954 int update_next_balance = 0;
3955 int need_serialize;
3956 cpumask_var_t tmp;
3958 /* Fails alloc? Rebalancing probably not a priority right now. */
3959 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3960 return;
3962 for_each_domain(cpu, sd) {
3963 if (!(sd->flags & SD_LOAD_BALANCE))
3964 continue;
3966 interval = sd->balance_interval;
3967 if (idle != CPU_IDLE)
3968 interval *= sd->busy_factor;
3970 /* scale ms to jiffies */
3971 interval = msecs_to_jiffies(interval);
3972 if (unlikely(!interval))
3973 interval = 1;
3974 if (interval > HZ*NR_CPUS/10)
3975 interval = HZ*NR_CPUS/10;
3977 need_serialize = sd->flags & SD_SERIALIZE;
3979 if (need_serialize) {
3980 if (!spin_trylock(&balancing))
3981 goto out;
3984 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3985 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3987 * We've pulled tasks over so either we're no
3988 * longer idle, or one of our SMT siblings is
3989 * not idle.
3991 idle = CPU_NOT_IDLE;
3993 sd->last_balance = jiffies;
3995 if (need_serialize)
3996 spin_unlock(&balancing);
3997 out:
3998 if (time_after(next_balance, sd->last_balance + interval)) {
3999 next_balance = sd->last_balance + interval;
4000 update_next_balance = 1;
4004 * Stop the load balance at this level. There is another
4005 * CPU in our sched group which is doing load balancing more
4006 * actively.
4008 if (!balance)
4009 break;
4013 * next_balance will be updated only when there is a need.
4014 * When the cpu is attached to null domain for ex, it will not be
4015 * updated.
4017 if (likely(update_next_balance))
4018 rq->next_balance = next_balance;
4020 free_cpumask_var(tmp);
4024 * run_rebalance_domains is triggered when needed from the scheduler tick.
4025 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4026 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4028 static void run_rebalance_domains(struct softirq_action *h)
4030 int this_cpu = smp_processor_id();
4031 struct rq *this_rq = cpu_rq(this_cpu);
4032 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4033 CPU_IDLE : CPU_NOT_IDLE;
4035 rebalance_domains(this_cpu, idle);
4037 #ifdef CONFIG_NO_HZ
4039 * If this cpu is the owner for idle load balancing, then do the
4040 * balancing on behalf of the other idle cpus whose ticks are
4041 * stopped.
4043 if (this_rq->idle_at_tick &&
4044 atomic_read(&nohz.load_balancer) == this_cpu) {
4045 struct rq *rq;
4046 int balance_cpu;
4048 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4049 if (balance_cpu == this_cpu)
4050 continue;
4053 * If this cpu gets work to do, stop the load balancing
4054 * work being done for other cpus. Next load
4055 * balancing owner will pick it up.
4057 if (need_resched())
4058 break;
4060 rebalance_domains(balance_cpu, CPU_IDLE);
4062 rq = cpu_rq(balance_cpu);
4063 if (time_after(this_rq->next_balance, rq->next_balance))
4064 this_rq->next_balance = rq->next_balance;
4067 #endif
4071 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4073 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4074 * idle load balancing owner or decide to stop the periodic load balancing,
4075 * if the whole system is idle.
4077 static inline void trigger_load_balance(struct rq *rq, int cpu)
4079 #ifdef CONFIG_NO_HZ
4081 * If we were in the nohz mode recently and busy at the current
4082 * scheduler tick, then check if we need to nominate new idle
4083 * load balancer.
4085 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4086 rq->in_nohz_recently = 0;
4088 if (atomic_read(&nohz.load_balancer) == cpu) {
4089 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4090 atomic_set(&nohz.load_balancer, -1);
4093 if (atomic_read(&nohz.load_balancer) == -1) {
4095 * simple selection for now: Nominate the
4096 * first cpu in the nohz list to be the next
4097 * ilb owner.
4099 * TBD: Traverse the sched domains and nominate
4100 * the nearest cpu in the nohz.cpu_mask.
4102 int ilb = cpumask_first(nohz.cpu_mask);
4104 if (ilb < nr_cpu_ids)
4105 resched_cpu(ilb);
4110 * If this cpu is idle and doing idle load balancing for all the
4111 * cpus with ticks stopped, is it time for that to stop?
4113 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4114 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4115 resched_cpu(cpu);
4116 return;
4120 * If this cpu is idle and the idle load balancing is done by
4121 * someone else, then no need raise the SCHED_SOFTIRQ
4123 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4124 cpumask_test_cpu(cpu, nohz.cpu_mask))
4125 return;
4126 #endif
4127 if (time_after_eq(jiffies, rq->next_balance))
4128 raise_softirq(SCHED_SOFTIRQ);
4131 #else /* CONFIG_SMP */
4134 * on UP we do not need to balance between CPUs:
4136 static inline void idle_balance(int cpu, struct rq *rq)
4140 #endif
4142 DEFINE_PER_CPU(struct kernel_stat, kstat);
4144 EXPORT_PER_CPU_SYMBOL(kstat);
4147 * Return any ns on the sched_clock that have not yet been banked in
4148 * @p in case that task is currently running.
4150 unsigned long long task_delta_exec(struct task_struct *p)
4152 unsigned long flags;
4153 struct rq *rq;
4154 u64 ns = 0;
4156 rq = task_rq_lock(p, &flags);
4158 if (task_current(rq, p)) {
4159 u64 delta_exec;
4161 update_rq_clock(rq);
4162 delta_exec = rq->clock - p->se.exec_start;
4163 if ((s64)delta_exec > 0)
4164 ns = delta_exec;
4167 task_rq_unlock(rq, &flags);
4169 return ns;
4173 * Account user cpu time to a process.
4174 * @p: the process that the cpu time gets accounted to
4175 * @cputime: the cpu time spent in user space since the last update
4176 * @cputime_scaled: cputime scaled by cpu frequency
4178 void account_user_time(struct task_struct *p, cputime_t cputime,
4179 cputime_t cputime_scaled)
4181 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4182 cputime64_t tmp;
4184 /* Add user time to process. */
4185 p->utime = cputime_add(p->utime, cputime);
4186 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4187 account_group_user_time(p, cputime);
4189 /* Add user time to cpustat. */
4190 tmp = cputime_to_cputime64(cputime);
4191 if (TASK_NICE(p) > 0)
4192 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4193 else
4194 cpustat->user = cputime64_add(cpustat->user, tmp);
4195 /* Account for user time used */
4196 acct_update_integrals(p);
4200 * Account guest cpu time to a process.
4201 * @p: the process that the cpu time gets accounted to
4202 * @cputime: the cpu time spent in virtual machine since the last update
4203 * @cputime_scaled: cputime scaled by cpu frequency
4205 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4206 cputime_t cputime_scaled)
4208 cputime64_t tmp;
4209 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4211 tmp = cputime_to_cputime64(cputime);
4213 /* Add guest time to process. */
4214 p->utime = cputime_add(p->utime, cputime);
4215 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4216 account_group_user_time(p, cputime);
4217 p->gtime = cputime_add(p->gtime, cputime);
4219 /* Add guest time to cpustat. */
4220 cpustat->user = cputime64_add(cpustat->user, tmp);
4221 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4225 * Account system cpu time to a process.
4226 * @p: the process that the cpu time gets accounted to
4227 * @hardirq_offset: the offset to subtract from hardirq_count()
4228 * @cputime: the cpu time spent in kernel space since the last update
4229 * @cputime_scaled: cputime scaled by cpu frequency
4231 void account_system_time(struct task_struct *p, int hardirq_offset,
4232 cputime_t cputime, cputime_t cputime_scaled)
4234 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4235 cputime64_t tmp;
4237 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4238 account_guest_time(p, cputime, cputime_scaled);
4239 return;
4242 /* Add system time to process. */
4243 p->stime = cputime_add(p->stime, cputime);
4244 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4245 account_group_system_time(p, cputime);
4247 /* Add system time to cpustat. */
4248 tmp = cputime_to_cputime64(cputime);
4249 if (hardirq_count() - hardirq_offset)
4250 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4251 else if (softirq_count())
4252 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4253 else
4254 cpustat->system = cputime64_add(cpustat->system, tmp);
4256 /* Account for system time used */
4257 acct_update_integrals(p);
4261 * Account for involuntary wait time.
4262 * @steal: the cpu time spent in involuntary wait
4264 void account_steal_time(cputime_t cputime)
4266 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4267 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4269 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4273 * Account for idle time.
4274 * @cputime: the cpu time spent in idle wait
4276 void account_idle_time(cputime_t cputime)
4278 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4279 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4280 struct rq *rq = this_rq();
4282 if (atomic_read(&rq->nr_iowait) > 0)
4283 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4284 else
4285 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4288 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4291 * Account a single tick of cpu time.
4292 * @p: the process that the cpu time gets accounted to
4293 * @user_tick: indicates if the tick is a user or a system tick
4295 void account_process_tick(struct task_struct *p, int user_tick)
4297 cputime_t one_jiffy = jiffies_to_cputime(1);
4298 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4299 struct rq *rq = this_rq();
4301 if (user_tick)
4302 account_user_time(p, one_jiffy, one_jiffy_scaled);
4303 else if (p != rq->idle)
4304 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4305 one_jiffy_scaled);
4306 else
4307 account_idle_time(one_jiffy);
4311 * Account multiple ticks of steal time.
4312 * @p: the process from which the cpu time has been stolen
4313 * @ticks: number of stolen ticks
4315 void account_steal_ticks(unsigned long ticks)
4317 account_steal_time(jiffies_to_cputime(ticks));
4321 * Account multiple ticks of idle time.
4322 * @ticks: number of stolen ticks
4324 void account_idle_ticks(unsigned long ticks)
4326 account_idle_time(jiffies_to_cputime(ticks));
4329 #endif
4332 * Use precise platform statistics if available:
4334 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4335 cputime_t task_utime(struct task_struct *p)
4337 return p->utime;
4340 cputime_t task_stime(struct task_struct *p)
4342 return p->stime;
4344 #else
4345 cputime_t task_utime(struct task_struct *p)
4347 clock_t utime = cputime_to_clock_t(p->utime),
4348 total = utime + cputime_to_clock_t(p->stime);
4349 u64 temp;
4352 * Use CFS's precise accounting:
4354 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4356 if (total) {
4357 temp *= utime;
4358 do_div(temp, total);
4360 utime = (clock_t)temp;
4362 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4363 return p->prev_utime;
4366 cputime_t task_stime(struct task_struct *p)
4368 clock_t stime;
4371 * Use CFS's precise accounting. (we subtract utime from
4372 * the total, to make sure the total observed by userspace
4373 * grows monotonically - apps rely on that):
4375 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4376 cputime_to_clock_t(task_utime(p));
4378 if (stime >= 0)
4379 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4381 return p->prev_stime;
4383 #endif
4385 inline cputime_t task_gtime(struct task_struct *p)
4387 return p->gtime;
4391 * This function gets called by the timer code, with HZ frequency.
4392 * We call it with interrupts disabled.
4394 * It also gets called by the fork code, when changing the parent's
4395 * timeslices.
4397 void scheduler_tick(void)
4399 int cpu = smp_processor_id();
4400 struct rq *rq = cpu_rq(cpu);
4401 struct task_struct *curr = rq->curr;
4403 sched_clock_tick();
4405 spin_lock(&rq->lock);
4406 update_rq_clock(rq);
4407 update_cpu_load(rq);
4408 curr->sched_class->task_tick(rq, curr, 0);
4409 spin_unlock(&rq->lock);
4411 #ifdef CONFIG_SMP
4412 rq->idle_at_tick = idle_cpu(cpu);
4413 trigger_load_balance(rq, cpu);
4414 #endif
4417 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4418 defined(CONFIG_PREEMPT_TRACER))
4420 static inline unsigned long get_parent_ip(unsigned long addr)
4422 if (in_lock_functions(addr)) {
4423 addr = CALLER_ADDR2;
4424 if (in_lock_functions(addr))
4425 addr = CALLER_ADDR3;
4427 return addr;
4430 void __kprobes add_preempt_count(int val)
4432 #ifdef CONFIG_DEBUG_PREEMPT
4434 * Underflow?
4436 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4437 return;
4438 #endif
4439 preempt_count() += val;
4440 #ifdef CONFIG_DEBUG_PREEMPT
4442 * Spinlock count overflowing soon?
4444 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4445 PREEMPT_MASK - 10);
4446 #endif
4447 if (preempt_count() == val)
4448 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4450 EXPORT_SYMBOL(add_preempt_count);
4452 void __kprobes sub_preempt_count(int val)
4454 #ifdef CONFIG_DEBUG_PREEMPT
4456 * Underflow?
4458 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4459 return;
4461 * Is the spinlock portion underflowing?
4463 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4464 !(preempt_count() & PREEMPT_MASK)))
4465 return;
4466 #endif
4468 if (preempt_count() == val)
4469 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4470 preempt_count() -= val;
4472 EXPORT_SYMBOL(sub_preempt_count);
4474 #endif
4477 * Print scheduling while atomic bug:
4479 static noinline void __schedule_bug(struct task_struct *prev)
4481 struct pt_regs *regs = get_irq_regs();
4483 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4484 prev->comm, prev->pid, preempt_count());
4486 debug_show_held_locks(prev);
4487 print_modules();
4488 if (irqs_disabled())
4489 print_irqtrace_events(prev);
4491 if (regs)
4492 show_regs(regs);
4493 else
4494 dump_stack();
4498 * Various schedule()-time debugging checks and statistics:
4500 static inline void schedule_debug(struct task_struct *prev)
4503 * Test if we are atomic. Since do_exit() needs to call into
4504 * schedule() atomically, we ignore that path for now.
4505 * Otherwise, whine if we are scheduling when we should not be.
4507 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4508 __schedule_bug(prev);
4510 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4512 schedstat_inc(this_rq(), sched_count);
4513 #ifdef CONFIG_SCHEDSTATS
4514 if (unlikely(prev->lock_depth >= 0)) {
4515 schedstat_inc(this_rq(), bkl_count);
4516 schedstat_inc(prev, sched_info.bkl_count);
4518 #endif
4522 * Pick up the highest-prio task:
4524 static inline struct task_struct *
4525 pick_next_task(struct rq *rq, struct task_struct *prev)
4527 const struct sched_class *class;
4528 struct task_struct *p;
4531 * Optimization: we know that if all tasks are in
4532 * the fair class we can call that function directly:
4534 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4535 p = fair_sched_class.pick_next_task(rq);
4536 if (likely(p))
4537 return p;
4540 class = sched_class_highest;
4541 for ( ; ; ) {
4542 p = class->pick_next_task(rq);
4543 if (p)
4544 return p;
4546 * Will never be NULL as the idle class always
4547 * returns a non-NULL p:
4549 class = class->next;
4554 * schedule() is the main scheduler function.
4556 asmlinkage void __sched schedule(void)
4558 struct task_struct *prev, *next;
4559 unsigned long *switch_count;
4560 struct rq *rq;
4561 int cpu;
4563 need_resched:
4564 preempt_disable();
4565 cpu = smp_processor_id();
4566 rq = cpu_rq(cpu);
4567 rcu_qsctr_inc(cpu);
4568 prev = rq->curr;
4569 switch_count = &prev->nivcsw;
4571 release_kernel_lock(prev);
4572 need_resched_nonpreemptible:
4574 schedule_debug(prev);
4576 if (sched_feat(HRTICK))
4577 hrtick_clear(rq);
4579 spin_lock_irq(&rq->lock);
4580 update_rq_clock(rq);
4581 clear_tsk_need_resched(prev);
4583 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4584 if (unlikely(signal_pending_state(prev->state, prev)))
4585 prev->state = TASK_RUNNING;
4586 else
4587 deactivate_task(rq, prev, 1);
4588 switch_count = &prev->nvcsw;
4591 #ifdef CONFIG_SMP
4592 if (prev->sched_class->pre_schedule)
4593 prev->sched_class->pre_schedule(rq, prev);
4594 #endif
4596 if (unlikely(!rq->nr_running))
4597 idle_balance(cpu, rq);
4599 prev->sched_class->put_prev_task(rq, prev);
4600 next = pick_next_task(rq, prev);
4602 if (likely(prev != next)) {
4603 sched_info_switch(prev, next);
4605 rq->nr_switches++;
4606 rq->curr = next;
4607 ++*switch_count;
4609 context_switch(rq, prev, next); /* unlocks the rq */
4611 * the context switch might have flipped the stack from under
4612 * us, hence refresh the local variables.
4614 cpu = smp_processor_id();
4615 rq = cpu_rq(cpu);
4616 } else
4617 spin_unlock_irq(&rq->lock);
4619 if (unlikely(reacquire_kernel_lock(current) < 0))
4620 goto need_resched_nonpreemptible;
4622 preempt_enable_no_resched();
4623 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4624 goto need_resched;
4626 EXPORT_SYMBOL(schedule);
4628 #ifdef CONFIG_PREEMPT
4630 * this is the entry point to schedule() from in-kernel preemption
4631 * off of preempt_enable. Kernel preemptions off return from interrupt
4632 * occur there and call schedule directly.
4634 asmlinkage void __sched preempt_schedule(void)
4636 struct thread_info *ti = current_thread_info();
4639 * If there is a non-zero preempt_count or interrupts are disabled,
4640 * we do not want to preempt the current task. Just return..
4642 if (likely(ti->preempt_count || irqs_disabled()))
4643 return;
4645 do {
4646 add_preempt_count(PREEMPT_ACTIVE);
4647 schedule();
4648 sub_preempt_count(PREEMPT_ACTIVE);
4651 * Check again in case we missed a preemption opportunity
4652 * between schedule and now.
4654 barrier();
4655 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4657 EXPORT_SYMBOL(preempt_schedule);
4660 * this is the entry point to schedule() from kernel preemption
4661 * off of irq context.
4662 * Note, that this is called and return with irqs disabled. This will
4663 * protect us against recursive calling from irq.
4665 asmlinkage void __sched preempt_schedule_irq(void)
4667 struct thread_info *ti = current_thread_info();
4669 /* Catch callers which need to be fixed */
4670 BUG_ON(ti->preempt_count || !irqs_disabled());
4672 do {
4673 add_preempt_count(PREEMPT_ACTIVE);
4674 local_irq_enable();
4675 schedule();
4676 local_irq_disable();
4677 sub_preempt_count(PREEMPT_ACTIVE);
4680 * Check again in case we missed a preemption opportunity
4681 * between schedule and now.
4683 barrier();
4684 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4687 #endif /* CONFIG_PREEMPT */
4689 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4690 void *key)
4692 return try_to_wake_up(curr->private, mode, sync);
4694 EXPORT_SYMBOL(default_wake_function);
4697 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4698 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4699 * number) then we wake all the non-exclusive tasks and one exclusive task.
4701 * There are circumstances in which we can try to wake a task which has already
4702 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4703 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4705 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4706 int nr_exclusive, int sync, void *key)
4708 wait_queue_t *curr, *next;
4710 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4711 unsigned flags = curr->flags;
4713 if (curr->func(curr, mode, sync, key) &&
4714 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4715 break;
4720 * __wake_up - wake up threads blocked on a waitqueue.
4721 * @q: the waitqueue
4722 * @mode: which threads
4723 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4724 * @key: is directly passed to the wakeup function
4726 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4727 int nr_exclusive, void *key)
4729 unsigned long flags;
4731 spin_lock_irqsave(&q->lock, flags);
4732 __wake_up_common(q, mode, nr_exclusive, 0, key);
4733 spin_unlock_irqrestore(&q->lock, flags);
4735 EXPORT_SYMBOL(__wake_up);
4738 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4740 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4742 __wake_up_common(q, mode, 1, 0, NULL);
4746 * __wake_up_sync - wake up threads blocked on a waitqueue.
4747 * @q: the waitqueue
4748 * @mode: which threads
4749 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4751 * The sync wakeup differs that the waker knows that it will schedule
4752 * away soon, so while the target thread will be woken up, it will not
4753 * be migrated to another CPU - ie. the two threads are 'synchronized'
4754 * with each other. This can prevent needless bouncing between CPUs.
4756 * On UP it can prevent extra preemption.
4758 void
4759 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4761 unsigned long flags;
4762 int sync = 1;
4764 if (unlikely(!q))
4765 return;
4767 if (unlikely(!nr_exclusive))
4768 sync = 0;
4770 spin_lock_irqsave(&q->lock, flags);
4771 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4772 spin_unlock_irqrestore(&q->lock, flags);
4774 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4777 * complete: - signals a single thread waiting on this completion
4778 * @x: holds the state of this particular completion
4780 * This will wake up a single thread waiting on this completion. Threads will be
4781 * awakened in the same order in which they were queued.
4783 * See also complete_all(), wait_for_completion() and related routines.
4785 void complete(struct completion *x)
4787 unsigned long flags;
4789 spin_lock_irqsave(&x->wait.lock, flags);
4790 x->done++;
4791 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4792 spin_unlock_irqrestore(&x->wait.lock, flags);
4794 EXPORT_SYMBOL(complete);
4797 * complete_all: - signals all threads waiting on this completion
4798 * @x: holds the state of this particular completion
4800 * This will wake up all threads waiting on this particular completion event.
4802 void complete_all(struct completion *x)
4804 unsigned long flags;
4806 spin_lock_irqsave(&x->wait.lock, flags);
4807 x->done += UINT_MAX/2;
4808 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4809 spin_unlock_irqrestore(&x->wait.lock, flags);
4811 EXPORT_SYMBOL(complete_all);
4813 static inline long __sched
4814 do_wait_for_common(struct completion *x, long timeout, int state)
4816 if (!x->done) {
4817 DECLARE_WAITQUEUE(wait, current);
4819 wait.flags |= WQ_FLAG_EXCLUSIVE;
4820 __add_wait_queue_tail(&x->wait, &wait);
4821 do {
4822 if (signal_pending_state(state, current)) {
4823 timeout = -ERESTARTSYS;
4824 break;
4826 __set_current_state(state);
4827 spin_unlock_irq(&x->wait.lock);
4828 timeout = schedule_timeout(timeout);
4829 spin_lock_irq(&x->wait.lock);
4830 } while (!x->done && timeout);
4831 __remove_wait_queue(&x->wait, &wait);
4832 if (!x->done)
4833 return timeout;
4835 x->done--;
4836 return timeout ?: 1;
4839 static long __sched
4840 wait_for_common(struct completion *x, long timeout, int state)
4842 might_sleep();
4844 spin_lock_irq(&x->wait.lock);
4845 timeout = do_wait_for_common(x, timeout, state);
4846 spin_unlock_irq(&x->wait.lock);
4847 return timeout;
4851 * wait_for_completion: - waits for completion of a task
4852 * @x: holds the state of this particular completion
4854 * This waits to be signaled for completion of a specific task. It is NOT
4855 * interruptible and there is no timeout.
4857 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4858 * and interrupt capability. Also see complete().
4860 void __sched wait_for_completion(struct completion *x)
4862 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4864 EXPORT_SYMBOL(wait_for_completion);
4867 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4868 * @x: holds the state of this particular completion
4869 * @timeout: timeout value in jiffies
4871 * This waits for either a completion of a specific task to be signaled or for a
4872 * specified timeout to expire. The timeout is in jiffies. It is not
4873 * interruptible.
4875 unsigned long __sched
4876 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4878 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4880 EXPORT_SYMBOL(wait_for_completion_timeout);
4883 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4884 * @x: holds the state of this particular completion
4886 * This waits for completion of a specific task to be signaled. It is
4887 * interruptible.
4889 int __sched wait_for_completion_interruptible(struct completion *x)
4891 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4892 if (t == -ERESTARTSYS)
4893 return t;
4894 return 0;
4896 EXPORT_SYMBOL(wait_for_completion_interruptible);
4899 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4900 * @x: holds the state of this particular completion
4901 * @timeout: timeout value in jiffies
4903 * This waits for either a completion of a specific task to be signaled or for a
4904 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4906 unsigned long __sched
4907 wait_for_completion_interruptible_timeout(struct completion *x,
4908 unsigned long timeout)
4910 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4912 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4915 * wait_for_completion_killable: - waits for completion of a task (killable)
4916 * @x: holds the state of this particular completion
4918 * This waits to be signaled for completion of a specific task. It can be
4919 * interrupted by a kill signal.
4921 int __sched wait_for_completion_killable(struct completion *x)
4923 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4924 if (t == -ERESTARTSYS)
4925 return t;
4926 return 0;
4928 EXPORT_SYMBOL(wait_for_completion_killable);
4931 * try_wait_for_completion - try to decrement a completion without blocking
4932 * @x: completion structure
4934 * Returns: 0 if a decrement cannot be done without blocking
4935 * 1 if a decrement succeeded.
4937 * If a completion is being used as a counting completion,
4938 * attempt to decrement the counter without blocking. This
4939 * enables us to avoid waiting if the resource the completion
4940 * is protecting is not available.
4942 bool try_wait_for_completion(struct completion *x)
4944 int ret = 1;
4946 spin_lock_irq(&x->wait.lock);
4947 if (!x->done)
4948 ret = 0;
4949 else
4950 x->done--;
4951 spin_unlock_irq(&x->wait.lock);
4952 return ret;
4954 EXPORT_SYMBOL(try_wait_for_completion);
4957 * completion_done - Test to see if a completion has any waiters
4958 * @x: completion structure
4960 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4961 * 1 if there are no waiters.
4964 bool completion_done(struct completion *x)
4966 int ret = 1;
4968 spin_lock_irq(&x->wait.lock);
4969 if (!x->done)
4970 ret = 0;
4971 spin_unlock_irq(&x->wait.lock);
4972 return ret;
4974 EXPORT_SYMBOL(completion_done);
4976 static long __sched
4977 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4979 unsigned long flags;
4980 wait_queue_t wait;
4982 init_waitqueue_entry(&wait, current);
4984 __set_current_state(state);
4986 spin_lock_irqsave(&q->lock, flags);
4987 __add_wait_queue(q, &wait);
4988 spin_unlock(&q->lock);
4989 timeout = schedule_timeout(timeout);
4990 spin_lock_irq(&q->lock);
4991 __remove_wait_queue(q, &wait);
4992 spin_unlock_irqrestore(&q->lock, flags);
4994 return timeout;
4997 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4999 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5001 EXPORT_SYMBOL(interruptible_sleep_on);
5003 long __sched
5004 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5006 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5008 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5010 void __sched sleep_on(wait_queue_head_t *q)
5012 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5014 EXPORT_SYMBOL(sleep_on);
5016 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5018 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5020 EXPORT_SYMBOL(sleep_on_timeout);
5022 #ifdef CONFIG_RT_MUTEXES
5025 * rt_mutex_setprio - set the current priority of a task
5026 * @p: task
5027 * @prio: prio value (kernel-internal form)
5029 * This function changes the 'effective' priority of a task. It does
5030 * not touch ->normal_prio like __setscheduler().
5032 * Used by the rt_mutex code to implement priority inheritance logic.
5034 void rt_mutex_setprio(struct task_struct *p, int prio)
5036 unsigned long flags;
5037 int oldprio, on_rq, running;
5038 struct rq *rq;
5039 const struct sched_class *prev_class = p->sched_class;
5041 BUG_ON(prio < 0 || prio > MAX_PRIO);
5043 rq = task_rq_lock(p, &flags);
5044 update_rq_clock(rq);
5046 oldprio = p->prio;
5047 on_rq = p->se.on_rq;
5048 running = task_current(rq, p);
5049 if (on_rq)
5050 dequeue_task(rq, p, 0);
5051 if (running)
5052 p->sched_class->put_prev_task(rq, p);
5054 if (rt_prio(prio))
5055 p->sched_class = &rt_sched_class;
5056 else
5057 p->sched_class = &fair_sched_class;
5059 p->prio = prio;
5061 if (running)
5062 p->sched_class->set_curr_task(rq);
5063 if (on_rq) {
5064 enqueue_task(rq, p, 0);
5066 check_class_changed(rq, p, prev_class, oldprio, running);
5068 task_rq_unlock(rq, &flags);
5071 #endif
5073 void set_user_nice(struct task_struct *p, long nice)
5075 int old_prio, delta, on_rq;
5076 unsigned long flags;
5077 struct rq *rq;
5079 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5080 return;
5082 * We have to be careful, if called from sys_setpriority(),
5083 * the task might be in the middle of scheduling on another CPU.
5085 rq = task_rq_lock(p, &flags);
5086 update_rq_clock(rq);
5088 * The RT priorities are set via sched_setscheduler(), but we still
5089 * allow the 'normal' nice value to be set - but as expected
5090 * it wont have any effect on scheduling until the task is
5091 * SCHED_FIFO/SCHED_RR:
5093 if (task_has_rt_policy(p)) {
5094 p->static_prio = NICE_TO_PRIO(nice);
5095 goto out_unlock;
5097 on_rq = p->se.on_rq;
5098 if (on_rq)
5099 dequeue_task(rq, p, 0);
5101 p->static_prio = NICE_TO_PRIO(nice);
5102 set_load_weight(p);
5103 old_prio = p->prio;
5104 p->prio = effective_prio(p);
5105 delta = p->prio - old_prio;
5107 if (on_rq) {
5108 enqueue_task(rq, p, 0);
5110 * If the task increased its priority or is running and
5111 * lowered its priority, then reschedule its CPU:
5113 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5114 resched_task(rq->curr);
5116 out_unlock:
5117 task_rq_unlock(rq, &flags);
5119 EXPORT_SYMBOL(set_user_nice);
5122 * can_nice - check if a task can reduce its nice value
5123 * @p: task
5124 * @nice: nice value
5126 int can_nice(const struct task_struct *p, const int nice)
5128 /* convert nice value [19,-20] to rlimit style value [1,40] */
5129 int nice_rlim = 20 - nice;
5131 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5132 capable(CAP_SYS_NICE));
5135 #ifdef __ARCH_WANT_SYS_NICE
5138 * sys_nice - change the priority of the current process.
5139 * @increment: priority increment
5141 * sys_setpriority is a more generic, but much slower function that
5142 * does similar things.
5144 SYSCALL_DEFINE1(nice, int, increment)
5146 long nice, retval;
5149 * Setpriority might change our priority at the same moment.
5150 * We don't have to worry. Conceptually one call occurs first
5151 * and we have a single winner.
5153 if (increment < -40)
5154 increment = -40;
5155 if (increment > 40)
5156 increment = 40;
5158 nice = PRIO_TO_NICE(current->static_prio) + increment;
5159 if (nice < -20)
5160 nice = -20;
5161 if (nice > 19)
5162 nice = 19;
5164 if (increment < 0 && !can_nice(current, nice))
5165 return -EPERM;
5167 retval = security_task_setnice(current, nice);
5168 if (retval)
5169 return retval;
5171 set_user_nice(current, nice);
5172 return 0;
5175 #endif
5178 * task_prio - return the priority value of a given task.
5179 * @p: the task in question.
5181 * This is the priority value as seen by users in /proc.
5182 * RT tasks are offset by -200. Normal tasks are centered
5183 * around 0, value goes from -16 to +15.
5185 int task_prio(const struct task_struct *p)
5187 return p->prio - MAX_RT_PRIO;
5191 * task_nice - return the nice value of a given task.
5192 * @p: the task in question.
5194 int task_nice(const struct task_struct *p)
5196 return TASK_NICE(p);
5198 EXPORT_SYMBOL(task_nice);
5201 * idle_cpu - is a given cpu idle currently?
5202 * @cpu: the processor in question.
5204 int idle_cpu(int cpu)
5206 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5210 * idle_task - return the idle task for a given cpu.
5211 * @cpu: the processor in question.
5213 struct task_struct *idle_task(int cpu)
5215 return cpu_rq(cpu)->idle;
5219 * find_process_by_pid - find a process with a matching PID value.
5220 * @pid: the pid in question.
5222 static struct task_struct *find_process_by_pid(pid_t pid)
5224 return pid ? find_task_by_vpid(pid) : current;
5227 /* Actually do priority change: must hold rq lock. */
5228 static void
5229 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5231 BUG_ON(p->se.on_rq);
5233 p->policy = policy;
5234 switch (p->policy) {
5235 case SCHED_NORMAL:
5236 case SCHED_BATCH:
5237 case SCHED_IDLE:
5238 p->sched_class = &fair_sched_class;
5239 break;
5240 case SCHED_FIFO:
5241 case SCHED_RR:
5242 p->sched_class = &rt_sched_class;
5243 break;
5246 p->rt_priority = prio;
5247 p->normal_prio = normal_prio(p);
5248 /* we are holding p->pi_lock already */
5249 p->prio = rt_mutex_getprio(p);
5250 set_load_weight(p);
5254 * check the target process has a UID that matches the current process's
5256 static bool check_same_owner(struct task_struct *p)
5258 const struct cred *cred = current_cred(), *pcred;
5259 bool match;
5261 rcu_read_lock();
5262 pcred = __task_cred(p);
5263 match = (cred->euid == pcred->euid ||
5264 cred->euid == pcred->uid);
5265 rcu_read_unlock();
5266 return match;
5269 static int __sched_setscheduler(struct task_struct *p, int policy,
5270 struct sched_param *param, bool user)
5272 int retval, oldprio, oldpolicy = -1, on_rq, running;
5273 unsigned long flags;
5274 const struct sched_class *prev_class = p->sched_class;
5275 struct rq *rq;
5277 /* may grab non-irq protected spin_locks */
5278 BUG_ON(in_interrupt());
5279 recheck:
5280 /* double check policy once rq lock held */
5281 if (policy < 0)
5282 policy = oldpolicy = p->policy;
5283 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5284 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5285 policy != SCHED_IDLE)
5286 return -EINVAL;
5288 * Valid priorities for SCHED_FIFO and SCHED_RR are
5289 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5290 * SCHED_BATCH and SCHED_IDLE is 0.
5292 if (param->sched_priority < 0 ||
5293 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5294 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5295 return -EINVAL;
5296 if (rt_policy(policy) != (param->sched_priority != 0))
5297 return -EINVAL;
5300 * Allow unprivileged RT tasks to decrease priority:
5302 if (user && !capable(CAP_SYS_NICE)) {
5303 if (rt_policy(policy)) {
5304 unsigned long rlim_rtprio;
5306 if (!lock_task_sighand(p, &flags))
5307 return -ESRCH;
5308 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5309 unlock_task_sighand(p, &flags);
5311 /* can't set/change the rt policy */
5312 if (policy != p->policy && !rlim_rtprio)
5313 return -EPERM;
5315 /* can't increase priority */
5316 if (param->sched_priority > p->rt_priority &&
5317 param->sched_priority > rlim_rtprio)
5318 return -EPERM;
5321 * Like positive nice levels, dont allow tasks to
5322 * move out of SCHED_IDLE either:
5324 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5325 return -EPERM;
5327 /* can't change other user's priorities */
5328 if (!check_same_owner(p))
5329 return -EPERM;
5332 if (user) {
5333 #ifdef CONFIG_RT_GROUP_SCHED
5335 * Do not allow realtime tasks into groups that have no runtime
5336 * assigned.
5338 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5339 task_group(p)->rt_bandwidth.rt_runtime == 0)
5340 return -EPERM;
5341 #endif
5343 retval = security_task_setscheduler(p, policy, param);
5344 if (retval)
5345 return retval;
5349 * make sure no PI-waiters arrive (or leave) while we are
5350 * changing the priority of the task:
5352 spin_lock_irqsave(&p->pi_lock, flags);
5354 * To be able to change p->policy safely, the apropriate
5355 * runqueue lock must be held.
5357 rq = __task_rq_lock(p);
5358 /* recheck policy now with rq lock held */
5359 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5360 policy = oldpolicy = -1;
5361 __task_rq_unlock(rq);
5362 spin_unlock_irqrestore(&p->pi_lock, flags);
5363 goto recheck;
5365 update_rq_clock(rq);
5366 on_rq = p->se.on_rq;
5367 running = task_current(rq, p);
5368 if (on_rq)
5369 deactivate_task(rq, p, 0);
5370 if (running)
5371 p->sched_class->put_prev_task(rq, p);
5373 oldprio = p->prio;
5374 __setscheduler(rq, p, policy, param->sched_priority);
5376 if (running)
5377 p->sched_class->set_curr_task(rq);
5378 if (on_rq) {
5379 activate_task(rq, p, 0);
5381 check_class_changed(rq, p, prev_class, oldprio, running);
5383 __task_rq_unlock(rq);
5384 spin_unlock_irqrestore(&p->pi_lock, flags);
5386 rt_mutex_adjust_pi(p);
5388 return 0;
5392 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5393 * @p: the task in question.
5394 * @policy: new policy.
5395 * @param: structure containing the new RT priority.
5397 * NOTE that the task may be already dead.
5399 int sched_setscheduler(struct task_struct *p, int policy,
5400 struct sched_param *param)
5402 return __sched_setscheduler(p, policy, param, true);
5404 EXPORT_SYMBOL_GPL(sched_setscheduler);
5407 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5408 * @p: the task in question.
5409 * @policy: new policy.
5410 * @param: structure containing the new RT priority.
5412 * Just like sched_setscheduler, only don't bother checking if the
5413 * current context has permission. For example, this is needed in
5414 * stop_machine(): we create temporary high priority worker threads,
5415 * but our caller might not have that capability.
5417 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5418 struct sched_param *param)
5420 return __sched_setscheduler(p, policy, param, false);
5423 static int
5424 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5426 struct sched_param lparam;
5427 struct task_struct *p;
5428 int retval;
5430 if (!param || pid < 0)
5431 return -EINVAL;
5432 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5433 return -EFAULT;
5435 rcu_read_lock();
5436 retval = -ESRCH;
5437 p = find_process_by_pid(pid);
5438 if (p != NULL)
5439 retval = sched_setscheduler(p, policy, &lparam);
5440 rcu_read_unlock();
5442 return retval;
5446 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5447 * @pid: the pid in question.
5448 * @policy: new policy.
5449 * @param: structure containing the new RT priority.
5451 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5452 struct sched_param __user *, param)
5454 /* negative values for policy are not valid */
5455 if (policy < 0)
5456 return -EINVAL;
5458 return do_sched_setscheduler(pid, policy, param);
5462 * sys_sched_setparam - set/change the RT priority of a thread
5463 * @pid: the pid in question.
5464 * @param: structure containing the new RT priority.
5466 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5468 return do_sched_setscheduler(pid, -1, param);
5472 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5473 * @pid: the pid in question.
5475 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5477 struct task_struct *p;
5478 int retval;
5480 if (pid < 0)
5481 return -EINVAL;
5483 retval = -ESRCH;
5484 read_lock(&tasklist_lock);
5485 p = find_process_by_pid(pid);
5486 if (p) {
5487 retval = security_task_getscheduler(p);
5488 if (!retval)
5489 retval = p->policy;
5491 read_unlock(&tasklist_lock);
5492 return retval;
5496 * sys_sched_getscheduler - get the RT priority of a thread
5497 * @pid: the pid in question.
5498 * @param: structure containing the RT priority.
5500 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5502 struct sched_param lp;
5503 struct task_struct *p;
5504 int retval;
5506 if (!param || pid < 0)
5507 return -EINVAL;
5509 read_lock(&tasklist_lock);
5510 p = find_process_by_pid(pid);
5511 retval = -ESRCH;
5512 if (!p)
5513 goto out_unlock;
5515 retval = security_task_getscheduler(p);
5516 if (retval)
5517 goto out_unlock;
5519 lp.sched_priority = p->rt_priority;
5520 read_unlock(&tasklist_lock);
5523 * This one might sleep, we cannot do it with a spinlock held ...
5525 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5527 return retval;
5529 out_unlock:
5530 read_unlock(&tasklist_lock);
5531 return retval;
5534 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5536 cpumask_var_t cpus_allowed, new_mask;
5537 struct task_struct *p;
5538 int retval;
5540 get_online_cpus();
5541 read_lock(&tasklist_lock);
5543 p = find_process_by_pid(pid);
5544 if (!p) {
5545 read_unlock(&tasklist_lock);
5546 put_online_cpus();
5547 return -ESRCH;
5551 * It is not safe to call set_cpus_allowed with the
5552 * tasklist_lock held. We will bump the task_struct's
5553 * usage count and then drop tasklist_lock.
5555 get_task_struct(p);
5556 read_unlock(&tasklist_lock);
5558 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5559 retval = -ENOMEM;
5560 goto out_put_task;
5562 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5563 retval = -ENOMEM;
5564 goto out_free_cpus_allowed;
5566 retval = -EPERM;
5567 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5568 goto out_unlock;
5570 retval = security_task_setscheduler(p, 0, NULL);
5571 if (retval)
5572 goto out_unlock;
5574 cpuset_cpus_allowed(p, cpus_allowed);
5575 cpumask_and(new_mask, in_mask, cpus_allowed);
5576 again:
5577 retval = set_cpus_allowed_ptr(p, new_mask);
5579 if (!retval) {
5580 cpuset_cpus_allowed(p, cpus_allowed);
5581 if (!cpumask_subset(new_mask, cpus_allowed)) {
5583 * We must have raced with a concurrent cpuset
5584 * update. Just reset the cpus_allowed to the
5585 * cpuset's cpus_allowed
5587 cpumask_copy(new_mask, cpus_allowed);
5588 goto again;
5591 out_unlock:
5592 free_cpumask_var(new_mask);
5593 out_free_cpus_allowed:
5594 free_cpumask_var(cpus_allowed);
5595 out_put_task:
5596 put_task_struct(p);
5597 put_online_cpus();
5598 return retval;
5601 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5602 struct cpumask *new_mask)
5604 if (len < cpumask_size())
5605 cpumask_clear(new_mask);
5606 else if (len > cpumask_size())
5607 len = cpumask_size();
5609 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5613 * sys_sched_setaffinity - set the cpu affinity of a process
5614 * @pid: pid of the process
5615 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5616 * @user_mask_ptr: user-space pointer to the new cpu mask
5618 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5619 unsigned long __user *, user_mask_ptr)
5621 cpumask_var_t new_mask;
5622 int retval;
5624 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5625 return -ENOMEM;
5627 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5628 if (retval == 0)
5629 retval = sched_setaffinity(pid, new_mask);
5630 free_cpumask_var(new_mask);
5631 return retval;
5634 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5636 struct task_struct *p;
5637 int retval;
5639 get_online_cpus();
5640 read_lock(&tasklist_lock);
5642 retval = -ESRCH;
5643 p = find_process_by_pid(pid);
5644 if (!p)
5645 goto out_unlock;
5647 retval = security_task_getscheduler(p);
5648 if (retval)
5649 goto out_unlock;
5651 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5653 out_unlock:
5654 read_unlock(&tasklist_lock);
5655 put_online_cpus();
5657 return retval;
5661 * sys_sched_getaffinity - get the cpu affinity of a process
5662 * @pid: pid of the process
5663 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5664 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5666 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5667 unsigned long __user *, user_mask_ptr)
5669 int ret;
5670 cpumask_var_t mask;
5672 if (len < cpumask_size())
5673 return -EINVAL;
5675 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5676 return -ENOMEM;
5678 ret = sched_getaffinity(pid, mask);
5679 if (ret == 0) {
5680 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5681 ret = -EFAULT;
5682 else
5683 ret = cpumask_size();
5685 free_cpumask_var(mask);
5687 return ret;
5691 * sys_sched_yield - yield the current processor to other threads.
5693 * This function yields the current CPU to other tasks. If there are no
5694 * other threads running on this CPU then this function will return.
5696 SYSCALL_DEFINE0(sched_yield)
5698 struct rq *rq = this_rq_lock();
5700 schedstat_inc(rq, yld_count);
5701 current->sched_class->yield_task(rq);
5704 * Since we are going to call schedule() anyway, there's
5705 * no need to preempt or enable interrupts:
5707 __release(rq->lock);
5708 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5709 _raw_spin_unlock(&rq->lock);
5710 preempt_enable_no_resched();
5712 schedule();
5714 return 0;
5717 static void __cond_resched(void)
5719 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5720 __might_sleep(__FILE__, __LINE__);
5721 #endif
5723 * The BKS might be reacquired before we have dropped
5724 * PREEMPT_ACTIVE, which could trigger a second
5725 * cond_resched() call.
5727 do {
5728 add_preempt_count(PREEMPT_ACTIVE);
5729 schedule();
5730 sub_preempt_count(PREEMPT_ACTIVE);
5731 } while (need_resched());
5734 int __sched _cond_resched(void)
5736 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5737 system_state == SYSTEM_RUNNING) {
5738 __cond_resched();
5739 return 1;
5741 return 0;
5743 EXPORT_SYMBOL(_cond_resched);
5746 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5747 * call schedule, and on return reacquire the lock.
5749 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5750 * operations here to prevent schedule() from being called twice (once via
5751 * spin_unlock(), once by hand).
5753 int cond_resched_lock(spinlock_t *lock)
5755 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5756 int ret = 0;
5758 if (spin_needbreak(lock) || resched) {
5759 spin_unlock(lock);
5760 if (resched && need_resched())
5761 __cond_resched();
5762 else
5763 cpu_relax();
5764 ret = 1;
5765 spin_lock(lock);
5767 return ret;
5769 EXPORT_SYMBOL(cond_resched_lock);
5771 int __sched cond_resched_softirq(void)
5773 BUG_ON(!in_softirq());
5775 if (need_resched() && system_state == SYSTEM_RUNNING) {
5776 local_bh_enable();
5777 __cond_resched();
5778 local_bh_disable();
5779 return 1;
5781 return 0;
5783 EXPORT_SYMBOL(cond_resched_softirq);
5786 * yield - yield the current processor to other threads.
5788 * This is a shortcut for kernel-space yielding - it marks the
5789 * thread runnable and calls sys_sched_yield().
5791 void __sched yield(void)
5793 set_current_state(TASK_RUNNING);
5794 sys_sched_yield();
5796 EXPORT_SYMBOL(yield);
5799 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5800 * that process accounting knows that this is a task in IO wait state.
5802 * But don't do that if it is a deliberate, throttling IO wait (this task
5803 * has set its backing_dev_info: the queue against which it should throttle)
5805 void __sched io_schedule(void)
5807 struct rq *rq = &__raw_get_cpu_var(runqueues);
5809 delayacct_blkio_start();
5810 atomic_inc(&rq->nr_iowait);
5811 schedule();
5812 atomic_dec(&rq->nr_iowait);
5813 delayacct_blkio_end();
5815 EXPORT_SYMBOL(io_schedule);
5817 long __sched io_schedule_timeout(long timeout)
5819 struct rq *rq = &__raw_get_cpu_var(runqueues);
5820 long ret;
5822 delayacct_blkio_start();
5823 atomic_inc(&rq->nr_iowait);
5824 ret = schedule_timeout(timeout);
5825 atomic_dec(&rq->nr_iowait);
5826 delayacct_blkio_end();
5827 return ret;
5831 * sys_sched_get_priority_max - return maximum RT priority.
5832 * @policy: scheduling class.
5834 * this syscall returns the maximum rt_priority that can be used
5835 * by a given scheduling class.
5837 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5839 int ret = -EINVAL;
5841 switch (policy) {
5842 case SCHED_FIFO:
5843 case SCHED_RR:
5844 ret = MAX_USER_RT_PRIO-1;
5845 break;
5846 case SCHED_NORMAL:
5847 case SCHED_BATCH:
5848 case SCHED_IDLE:
5849 ret = 0;
5850 break;
5852 return ret;
5856 * sys_sched_get_priority_min - return minimum RT priority.
5857 * @policy: scheduling class.
5859 * this syscall returns the minimum rt_priority that can be used
5860 * by a given scheduling class.
5862 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5864 int ret = -EINVAL;
5866 switch (policy) {
5867 case SCHED_FIFO:
5868 case SCHED_RR:
5869 ret = 1;
5870 break;
5871 case SCHED_NORMAL:
5872 case SCHED_BATCH:
5873 case SCHED_IDLE:
5874 ret = 0;
5876 return ret;
5880 * sys_sched_rr_get_interval - return the default timeslice of a process.
5881 * @pid: pid of the process.
5882 * @interval: userspace pointer to the timeslice value.
5884 * this syscall writes the default timeslice value of a given process
5885 * into the user-space timespec buffer. A value of '0' means infinity.
5887 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5888 struct timespec __user *, interval)
5890 struct task_struct *p;
5891 unsigned int time_slice;
5892 int retval;
5893 struct timespec t;
5895 if (pid < 0)
5896 return -EINVAL;
5898 retval = -ESRCH;
5899 read_lock(&tasklist_lock);
5900 p = find_process_by_pid(pid);
5901 if (!p)
5902 goto out_unlock;
5904 retval = security_task_getscheduler(p);
5905 if (retval)
5906 goto out_unlock;
5909 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5910 * tasks that are on an otherwise idle runqueue:
5912 time_slice = 0;
5913 if (p->policy == SCHED_RR) {
5914 time_slice = DEF_TIMESLICE;
5915 } else if (p->policy != SCHED_FIFO) {
5916 struct sched_entity *se = &p->se;
5917 unsigned long flags;
5918 struct rq *rq;
5920 rq = task_rq_lock(p, &flags);
5921 if (rq->cfs.load.weight)
5922 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5923 task_rq_unlock(rq, &flags);
5925 read_unlock(&tasklist_lock);
5926 jiffies_to_timespec(time_slice, &t);
5927 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5928 return retval;
5930 out_unlock:
5931 read_unlock(&tasklist_lock);
5932 return retval;
5935 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5937 void sched_show_task(struct task_struct *p)
5939 unsigned long free = 0;
5940 unsigned state;
5942 state = p->state ? __ffs(p->state) + 1 : 0;
5943 printk(KERN_INFO "%-13.13s %c", p->comm,
5944 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5945 #if BITS_PER_LONG == 32
5946 if (state == TASK_RUNNING)
5947 printk(KERN_CONT " running ");
5948 else
5949 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5950 #else
5951 if (state == TASK_RUNNING)
5952 printk(KERN_CONT " running task ");
5953 else
5954 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5955 #endif
5956 #ifdef CONFIG_DEBUG_STACK_USAGE
5958 unsigned long *n = end_of_stack(p);
5959 while (!*n)
5960 n++;
5961 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5963 #endif
5964 printk(KERN_CONT "%5lu %5d %6d\n", free,
5965 task_pid_nr(p), task_pid_nr(p->real_parent));
5967 show_stack(p, NULL);
5970 void show_state_filter(unsigned long state_filter)
5972 struct task_struct *g, *p;
5974 #if BITS_PER_LONG == 32
5975 printk(KERN_INFO
5976 " task PC stack pid father\n");
5977 #else
5978 printk(KERN_INFO
5979 " task PC stack pid father\n");
5980 #endif
5981 read_lock(&tasklist_lock);
5982 do_each_thread(g, p) {
5984 * reset the NMI-timeout, listing all files on a slow
5985 * console might take alot of time:
5987 touch_nmi_watchdog();
5988 if (!state_filter || (p->state & state_filter))
5989 sched_show_task(p);
5990 } while_each_thread(g, p);
5992 touch_all_softlockup_watchdogs();
5994 #ifdef CONFIG_SCHED_DEBUG
5995 sysrq_sched_debug_show();
5996 #endif
5997 read_unlock(&tasklist_lock);
5999 * Only show locks if all tasks are dumped:
6001 if (state_filter == -1)
6002 debug_show_all_locks();
6005 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6007 idle->sched_class = &idle_sched_class;
6011 * init_idle - set up an idle thread for a given CPU
6012 * @idle: task in question
6013 * @cpu: cpu the idle task belongs to
6015 * NOTE: this function does not set the idle thread's NEED_RESCHED
6016 * flag, to make booting more robust.
6018 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6020 struct rq *rq = cpu_rq(cpu);
6021 unsigned long flags;
6023 spin_lock_irqsave(&rq->lock, flags);
6025 __sched_fork(idle);
6026 idle->se.exec_start = sched_clock();
6028 idle->prio = idle->normal_prio = MAX_PRIO;
6029 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6030 __set_task_cpu(idle, cpu);
6032 rq->curr = rq->idle = idle;
6033 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6034 idle->oncpu = 1;
6035 #endif
6036 spin_unlock_irqrestore(&rq->lock, flags);
6038 /* Set the preempt count _outside_ the spinlocks! */
6039 #if defined(CONFIG_PREEMPT)
6040 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6041 #else
6042 task_thread_info(idle)->preempt_count = 0;
6043 #endif
6045 * The idle tasks have their own, simple scheduling class:
6047 idle->sched_class = &idle_sched_class;
6048 ftrace_graph_init_task(idle);
6052 * In a system that switches off the HZ timer nohz_cpu_mask
6053 * indicates which cpus entered this state. This is used
6054 * in the rcu update to wait only for active cpus. For system
6055 * which do not switch off the HZ timer nohz_cpu_mask should
6056 * always be CPU_BITS_NONE.
6058 cpumask_var_t nohz_cpu_mask;
6061 * Increase the granularity value when there are more CPUs,
6062 * because with more CPUs the 'effective latency' as visible
6063 * to users decreases. But the relationship is not linear,
6064 * so pick a second-best guess by going with the log2 of the
6065 * number of CPUs.
6067 * This idea comes from the SD scheduler of Con Kolivas:
6069 static inline void sched_init_granularity(void)
6071 unsigned int factor = 1 + ilog2(num_online_cpus());
6072 const unsigned long limit = 200000000;
6074 sysctl_sched_min_granularity *= factor;
6075 if (sysctl_sched_min_granularity > limit)
6076 sysctl_sched_min_granularity = limit;
6078 sysctl_sched_latency *= factor;
6079 if (sysctl_sched_latency > limit)
6080 sysctl_sched_latency = limit;
6082 sysctl_sched_wakeup_granularity *= factor;
6084 sysctl_sched_shares_ratelimit *= factor;
6087 #ifdef CONFIG_SMP
6089 * This is how migration works:
6091 * 1) we queue a struct migration_req structure in the source CPU's
6092 * runqueue and wake up that CPU's migration thread.
6093 * 2) we down() the locked semaphore => thread blocks.
6094 * 3) migration thread wakes up (implicitly it forces the migrated
6095 * thread off the CPU)
6096 * 4) it gets the migration request and checks whether the migrated
6097 * task is still in the wrong runqueue.
6098 * 5) if it's in the wrong runqueue then the migration thread removes
6099 * it and puts it into the right queue.
6100 * 6) migration thread up()s the semaphore.
6101 * 7) we wake up and the migration is done.
6105 * Change a given task's CPU affinity. Migrate the thread to a
6106 * proper CPU and schedule it away if the CPU it's executing on
6107 * is removed from the allowed bitmask.
6109 * NOTE: the caller must have a valid reference to the task, the
6110 * task must not exit() & deallocate itself prematurely. The
6111 * call is not atomic; no spinlocks may be held.
6113 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6115 struct migration_req req;
6116 unsigned long flags;
6117 struct rq *rq;
6118 int ret = 0;
6120 rq = task_rq_lock(p, &flags);
6121 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6122 ret = -EINVAL;
6123 goto out;
6126 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6127 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6128 ret = -EINVAL;
6129 goto out;
6132 if (p->sched_class->set_cpus_allowed)
6133 p->sched_class->set_cpus_allowed(p, new_mask);
6134 else {
6135 cpumask_copy(&p->cpus_allowed, new_mask);
6136 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6139 /* Can the task run on the task's current CPU? If so, we're done */
6140 if (cpumask_test_cpu(task_cpu(p), new_mask))
6141 goto out;
6143 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6144 /* Need help from migration thread: drop lock and wait. */
6145 task_rq_unlock(rq, &flags);
6146 wake_up_process(rq->migration_thread);
6147 wait_for_completion(&req.done);
6148 tlb_migrate_finish(p->mm);
6149 return 0;
6151 out:
6152 task_rq_unlock(rq, &flags);
6154 return ret;
6156 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6159 * Move (not current) task off this cpu, onto dest cpu. We're doing
6160 * this because either it can't run here any more (set_cpus_allowed()
6161 * away from this CPU, or CPU going down), or because we're
6162 * attempting to rebalance this task on exec (sched_exec).
6164 * So we race with normal scheduler movements, but that's OK, as long
6165 * as the task is no longer on this CPU.
6167 * Returns non-zero if task was successfully migrated.
6169 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6171 struct rq *rq_dest, *rq_src;
6172 int ret = 0, on_rq;
6174 if (unlikely(!cpu_active(dest_cpu)))
6175 return ret;
6177 rq_src = cpu_rq(src_cpu);
6178 rq_dest = cpu_rq(dest_cpu);
6180 double_rq_lock(rq_src, rq_dest);
6181 /* Already moved. */
6182 if (task_cpu(p) != src_cpu)
6183 goto done;
6184 /* Affinity changed (again). */
6185 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6186 goto fail;
6188 on_rq = p->se.on_rq;
6189 if (on_rq)
6190 deactivate_task(rq_src, p, 0);
6192 set_task_cpu(p, dest_cpu);
6193 if (on_rq) {
6194 activate_task(rq_dest, p, 0);
6195 check_preempt_curr(rq_dest, p, 0);
6197 done:
6198 ret = 1;
6199 fail:
6200 double_rq_unlock(rq_src, rq_dest);
6201 return ret;
6205 * migration_thread - this is a highprio system thread that performs
6206 * thread migration by bumping thread off CPU then 'pushing' onto
6207 * another runqueue.
6209 static int migration_thread(void *data)
6211 int cpu = (long)data;
6212 struct rq *rq;
6214 rq = cpu_rq(cpu);
6215 BUG_ON(rq->migration_thread != current);
6217 set_current_state(TASK_INTERRUPTIBLE);
6218 while (!kthread_should_stop()) {
6219 struct migration_req *req;
6220 struct list_head *head;
6222 spin_lock_irq(&rq->lock);
6224 if (cpu_is_offline(cpu)) {
6225 spin_unlock_irq(&rq->lock);
6226 goto wait_to_die;
6229 if (rq->active_balance) {
6230 active_load_balance(rq, cpu);
6231 rq->active_balance = 0;
6234 head = &rq->migration_queue;
6236 if (list_empty(head)) {
6237 spin_unlock_irq(&rq->lock);
6238 schedule();
6239 set_current_state(TASK_INTERRUPTIBLE);
6240 continue;
6242 req = list_entry(head->next, struct migration_req, list);
6243 list_del_init(head->next);
6245 spin_unlock(&rq->lock);
6246 __migrate_task(req->task, cpu, req->dest_cpu);
6247 local_irq_enable();
6249 complete(&req->done);
6251 __set_current_state(TASK_RUNNING);
6252 return 0;
6254 wait_to_die:
6255 /* Wait for kthread_stop */
6256 set_current_state(TASK_INTERRUPTIBLE);
6257 while (!kthread_should_stop()) {
6258 schedule();
6259 set_current_state(TASK_INTERRUPTIBLE);
6261 __set_current_state(TASK_RUNNING);
6262 return 0;
6265 #ifdef CONFIG_HOTPLUG_CPU
6267 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6269 int ret;
6271 local_irq_disable();
6272 ret = __migrate_task(p, src_cpu, dest_cpu);
6273 local_irq_enable();
6274 return ret;
6278 * Figure out where task on dead CPU should go, use force if necessary.
6280 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6282 int dest_cpu;
6283 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6285 again:
6286 /* Look for allowed, online CPU in same node. */
6287 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6288 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6289 goto move;
6291 /* Any allowed, online CPU? */
6292 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6293 if (dest_cpu < nr_cpu_ids)
6294 goto move;
6296 /* No more Mr. Nice Guy. */
6297 if (dest_cpu >= nr_cpu_ids) {
6298 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6299 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6302 * Don't tell them about moving exiting tasks or
6303 * kernel threads (both mm NULL), since they never
6304 * leave kernel.
6306 if (p->mm && printk_ratelimit()) {
6307 printk(KERN_INFO "process %d (%s) no "
6308 "longer affine to cpu%d\n",
6309 task_pid_nr(p), p->comm, dead_cpu);
6313 move:
6314 /* It can have affinity changed while we were choosing. */
6315 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6316 goto again;
6320 * While a dead CPU has no uninterruptible tasks queued at this point,
6321 * it might still have a nonzero ->nr_uninterruptible counter, because
6322 * for performance reasons the counter is not stricly tracking tasks to
6323 * their home CPUs. So we just add the counter to another CPU's counter,
6324 * to keep the global sum constant after CPU-down:
6326 static void migrate_nr_uninterruptible(struct rq *rq_src)
6328 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6329 unsigned long flags;
6331 local_irq_save(flags);
6332 double_rq_lock(rq_src, rq_dest);
6333 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6334 rq_src->nr_uninterruptible = 0;
6335 double_rq_unlock(rq_src, rq_dest);
6336 local_irq_restore(flags);
6339 /* Run through task list and migrate tasks from the dead cpu. */
6340 static void migrate_live_tasks(int src_cpu)
6342 struct task_struct *p, *t;
6344 read_lock(&tasklist_lock);
6346 do_each_thread(t, p) {
6347 if (p == current)
6348 continue;
6350 if (task_cpu(p) == src_cpu)
6351 move_task_off_dead_cpu(src_cpu, p);
6352 } while_each_thread(t, p);
6354 read_unlock(&tasklist_lock);
6358 * Schedules idle task to be the next runnable task on current CPU.
6359 * It does so by boosting its priority to highest possible.
6360 * Used by CPU offline code.
6362 void sched_idle_next(void)
6364 int this_cpu = smp_processor_id();
6365 struct rq *rq = cpu_rq(this_cpu);
6366 struct task_struct *p = rq->idle;
6367 unsigned long flags;
6369 /* cpu has to be offline */
6370 BUG_ON(cpu_online(this_cpu));
6373 * Strictly not necessary since rest of the CPUs are stopped by now
6374 * and interrupts disabled on the current cpu.
6376 spin_lock_irqsave(&rq->lock, flags);
6378 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6380 update_rq_clock(rq);
6381 activate_task(rq, p, 0);
6383 spin_unlock_irqrestore(&rq->lock, flags);
6387 * Ensures that the idle task is using init_mm right before its cpu goes
6388 * offline.
6390 void idle_task_exit(void)
6392 struct mm_struct *mm = current->active_mm;
6394 BUG_ON(cpu_online(smp_processor_id()));
6396 if (mm != &init_mm)
6397 switch_mm(mm, &init_mm, current);
6398 mmdrop(mm);
6401 /* called under rq->lock with disabled interrupts */
6402 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6404 struct rq *rq = cpu_rq(dead_cpu);
6406 /* Must be exiting, otherwise would be on tasklist. */
6407 BUG_ON(!p->exit_state);
6409 /* Cannot have done final schedule yet: would have vanished. */
6410 BUG_ON(p->state == TASK_DEAD);
6412 get_task_struct(p);
6415 * Drop lock around migration; if someone else moves it,
6416 * that's OK. No task can be added to this CPU, so iteration is
6417 * fine.
6419 spin_unlock_irq(&rq->lock);
6420 move_task_off_dead_cpu(dead_cpu, p);
6421 spin_lock_irq(&rq->lock);
6423 put_task_struct(p);
6426 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6427 static void migrate_dead_tasks(unsigned int dead_cpu)
6429 struct rq *rq = cpu_rq(dead_cpu);
6430 struct task_struct *next;
6432 for ( ; ; ) {
6433 if (!rq->nr_running)
6434 break;
6435 update_rq_clock(rq);
6436 next = pick_next_task(rq, rq->curr);
6437 if (!next)
6438 break;
6439 next->sched_class->put_prev_task(rq, next);
6440 migrate_dead(dead_cpu, next);
6444 #endif /* CONFIG_HOTPLUG_CPU */
6446 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6448 static struct ctl_table sd_ctl_dir[] = {
6450 .procname = "sched_domain",
6451 .mode = 0555,
6453 {0, },
6456 static struct ctl_table sd_ctl_root[] = {
6458 .ctl_name = CTL_KERN,
6459 .procname = "kernel",
6460 .mode = 0555,
6461 .child = sd_ctl_dir,
6463 {0, },
6466 static struct ctl_table *sd_alloc_ctl_entry(int n)
6468 struct ctl_table *entry =
6469 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6471 return entry;
6474 static void sd_free_ctl_entry(struct ctl_table **tablep)
6476 struct ctl_table *entry;
6479 * In the intermediate directories, both the child directory and
6480 * procname are dynamically allocated and could fail but the mode
6481 * will always be set. In the lowest directory the names are
6482 * static strings and all have proc handlers.
6484 for (entry = *tablep; entry->mode; entry++) {
6485 if (entry->child)
6486 sd_free_ctl_entry(&entry->child);
6487 if (entry->proc_handler == NULL)
6488 kfree(entry->procname);
6491 kfree(*tablep);
6492 *tablep = NULL;
6495 static void
6496 set_table_entry(struct ctl_table *entry,
6497 const char *procname, void *data, int maxlen,
6498 mode_t mode, proc_handler *proc_handler)
6500 entry->procname = procname;
6501 entry->data = data;
6502 entry->maxlen = maxlen;
6503 entry->mode = mode;
6504 entry->proc_handler = proc_handler;
6507 static struct ctl_table *
6508 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6510 struct ctl_table *table = sd_alloc_ctl_entry(13);
6512 if (table == NULL)
6513 return NULL;
6515 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6516 sizeof(long), 0644, proc_doulongvec_minmax);
6517 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6518 sizeof(long), 0644, proc_doulongvec_minmax);
6519 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6520 sizeof(int), 0644, proc_dointvec_minmax);
6521 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6522 sizeof(int), 0644, proc_dointvec_minmax);
6523 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6524 sizeof(int), 0644, proc_dointvec_minmax);
6525 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6526 sizeof(int), 0644, proc_dointvec_minmax);
6527 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6528 sizeof(int), 0644, proc_dointvec_minmax);
6529 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6530 sizeof(int), 0644, proc_dointvec_minmax);
6531 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6532 sizeof(int), 0644, proc_dointvec_minmax);
6533 set_table_entry(&table[9], "cache_nice_tries",
6534 &sd->cache_nice_tries,
6535 sizeof(int), 0644, proc_dointvec_minmax);
6536 set_table_entry(&table[10], "flags", &sd->flags,
6537 sizeof(int), 0644, proc_dointvec_minmax);
6538 set_table_entry(&table[11], "name", sd->name,
6539 CORENAME_MAX_SIZE, 0444, proc_dostring);
6540 /* &table[12] is terminator */
6542 return table;
6545 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6547 struct ctl_table *entry, *table;
6548 struct sched_domain *sd;
6549 int domain_num = 0, i;
6550 char buf[32];
6552 for_each_domain(cpu, sd)
6553 domain_num++;
6554 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6555 if (table == NULL)
6556 return NULL;
6558 i = 0;
6559 for_each_domain(cpu, sd) {
6560 snprintf(buf, 32, "domain%d", i);
6561 entry->procname = kstrdup(buf, GFP_KERNEL);
6562 entry->mode = 0555;
6563 entry->child = sd_alloc_ctl_domain_table(sd);
6564 entry++;
6565 i++;
6567 return table;
6570 static struct ctl_table_header *sd_sysctl_header;
6571 static void register_sched_domain_sysctl(void)
6573 int i, cpu_num = num_online_cpus();
6574 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6575 char buf[32];
6577 WARN_ON(sd_ctl_dir[0].child);
6578 sd_ctl_dir[0].child = entry;
6580 if (entry == NULL)
6581 return;
6583 for_each_online_cpu(i) {
6584 snprintf(buf, 32, "cpu%d", i);
6585 entry->procname = kstrdup(buf, GFP_KERNEL);
6586 entry->mode = 0555;
6587 entry->child = sd_alloc_ctl_cpu_table(i);
6588 entry++;
6591 WARN_ON(sd_sysctl_header);
6592 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6595 /* may be called multiple times per register */
6596 static void unregister_sched_domain_sysctl(void)
6598 if (sd_sysctl_header)
6599 unregister_sysctl_table(sd_sysctl_header);
6600 sd_sysctl_header = NULL;
6601 if (sd_ctl_dir[0].child)
6602 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6604 #else
6605 static void register_sched_domain_sysctl(void)
6608 static void unregister_sched_domain_sysctl(void)
6611 #endif
6613 static void set_rq_online(struct rq *rq)
6615 if (!rq->online) {
6616 const struct sched_class *class;
6618 cpumask_set_cpu(rq->cpu, rq->rd->online);
6619 rq->online = 1;
6621 for_each_class(class) {
6622 if (class->rq_online)
6623 class->rq_online(rq);
6628 static void set_rq_offline(struct rq *rq)
6630 if (rq->online) {
6631 const struct sched_class *class;
6633 for_each_class(class) {
6634 if (class->rq_offline)
6635 class->rq_offline(rq);
6638 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6639 rq->online = 0;
6644 * migration_call - callback that gets triggered when a CPU is added.
6645 * Here we can start up the necessary migration thread for the new CPU.
6647 static int __cpuinit
6648 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6650 struct task_struct *p;
6651 int cpu = (long)hcpu;
6652 unsigned long flags;
6653 struct rq *rq;
6655 switch (action) {
6657 case CPU_UP_PREPARE:
6658 case CPU_UP_PREPARE_FROZEN:
6659 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6660 if (IS_ERR(p))
6661 return NOTIFY_BAD;
6662 kthread_bind(p, cpu);
6663 /* Must be high prio: stop_machine expects to yield to it. */
6664 rq = task_rq_lock(p, &flags);
6665 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6666 task_rq_unlock(rq, &flags);
6667 cpu_rq(cpu)->migration_thread = p;
6668 break;
6670 case CPU_ONLINE:
6671 case CPU_ONLINE_FROZEN:
6672 /* Strictly unnecessary, as first user will wake it. */
6673 wake_up_process(cpu_rq(cpu)->migration_thread);
6675 /* Update our root-domain */
6676 rq = cpu_rq(cpu);
6677 spin_lock_irqsave(&rq->lock, flags);
6678 if (rq->rd) {
6679 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6681 set_rq_online(rq);
6683 spin_unlock_irqrestore(&rq->lock, flags);
6684 break;
6686 #ifdef CONFIG_HOTPLUG_CPU
6687 case CPU_UP_CANCELED:
6688 case CPU_UP_CANCELED_FROZEN:
6689 if (!cpu_rq(cpu)->migration_thread)
6690 break;
6691 /* Unbind it from offline cpu so it can run. Fall thru. */
6692 kthread_bind(cpu_rq(cpu)->migration_thread,
6693 cpumask_any(cpu_online_mask));
6694 kthread_stop(cpu_rq(cpu)->migration_thread);
6695 cpu_rq(cpu)->migration_thread = NULL;
6696 break;
6698 case CPU_DEAD:
6699 case CPU_DEAD_FROZEN:
6700 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6701 migrate_live_tasks(cpu);
6702 rq = cpu_rq(cpu);
6703 kthread_stop(rq->migration_thread);
6704 rq->migration_thread = NULL;
6705 /* Idle task back to normal (off runqueue, low prio) */
6706 spin_lock_irq(&rq->lock);
6707 update_rq_clock(rq);
6708 deactivate_task(rq, rq->idle, 0);
6709 rq->idle->static_prio = MAX_PRIO;
6710 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6711 rq->idle->sched_class = &idle_sched_class;
6712 migrate_dead_tasks(cpu);
6713 spin_unlock_irq(&rq->lock);
6714 cpuset_unlock();
6715 migrate_nr_uninterruptible(rq);
6716 BUG_ON(rq->nr_running != 0);
6719 * No need to migrate the tasks: it was best-effort if
6720 * they didn't take sched_hotcpu_mutex. Just wake up
6721 * the requestors.
6723 spin_lock_irq(&rq->lock);
6724 while (!list_empty(&rq->migration_queue)) {
6725 struct migration_req *req;
6727 req = list_entry(rq->migration_queue.next,
6728 struct migration_req, list);
6729 list_del_init(&req->list);
6730 spin_unlock_irq(&rq->lock);
6731 complete(&req->done);
6732 spin_lock_irq(&rq->lock);
6734 spin_unlock_irq(&rq->lock);
6735 break;
6737 case CPU_DYING:
6738 case CPU_DYING_FROZEN:
6739 /* Update our root-domain */
6740 rq = cpu_rq(cpu);
6741 spin_lock_irqsave(&rq->lock, flags);
6742 if (rq->rd) {
6743 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6744 set_rq_offline(rq);
6746 spin_unlock_irqrestore(&rq->lock, flags);
6747 break;
6748 #endif
6750 return NOTIFY_OK;
6753 /* Register at highest priority so that task migration (migrate_all_tasks)
6754 * happens before everything else.
6756 static struct notifier_block __cpuinitdata migration_notifier = {
6757 .notifier_call = migration_call,
6758 .priority = 10
6761 static int __init migration_init(void)
6763 void *cpu = (void *)(long)smp_processor_id();
6764 int err;
6766 /* Start one for the boot CPU: */
6767 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6768 BUG_ON(err == NOTIFY_BAD);
6769 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6770 register_cpu_notifier(&migration_notifier);
6772 return err;
6774 early_initcall(migration_init);
6775 #endif
6777 #ifdef CONFIG_SMP
6779 #ifdef CONFIG_SCHED_DEBUG
6781 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6782 struct cpumask *groupmask)
6784 struct sched_group *group = sd->groups;
6785 char str[256];
6787 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6788 cpumask_clear(groupmask);
6790 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6792 if (!(sd->flags & SD_LOAD_BALANCE)) {
6793 printk("does not load-balance\n");
6794 if (sd->parent)
6795 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6796 " has parent");
6797 return -1;
6800 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6802 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6803 printk(KERN_ERR "ERROR: domain->span does not contain "
6804 "CPU%d\n", cpu);
6806 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6807 printk(KERN_ERR "ERROR: domain->groups does not contain"
6808 " CPU%d\n", cpu);
6811 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6812 do {
6813 if (!group) {
6814 printk("\n");
6815 printk(KERN_ERR "ERROR: group is NULL\n");
6816 break;
6819 if (!group->__cpu_power) {
6820 printk(KERN_CONT "\n");
6821 printk(KERN_ERR "ERROR: domain->cpu_power not "
6822 "set\n");
6823 break;
6826 if (!cpumask_weight(sched_group_cpus(group))) {
6827 printk(KERN_CONT "\n");
6828 printk(KERN_ERR "ERROR: empty group\n");
6829 break;
6832 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6833 printk(KERN_CONT "\n");
6834 printk(KERN_ERR "ERROR: repeated CPUs\n");
6835 break;
6838 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6840 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6841 printk(KERN_CONT " %s", str);
6843 group = group->next;
6844 } while (group != sd->groups);
6845 printk(KERN_CONT "\n");
6847 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6848 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6850 if (sd->parent &&
6851 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6852 printk(KERN_ERR "ERROR: parent span is not a superset "
6853 "of domain->span\n");
6854 return 0;
6857 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6859 cpumask_var_t groupmask;
6860 int level = 0;
6862 if (!sd) {
6863 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6864 return;
6867 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6869 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6870 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6871 return;
6874 for (;;) {
6875 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6876 break;
6877 level++;
6878 sd = sd->parent;
6879 if (!sd)
6880 break;
6882 free_cpumask_var(groupmask);
6884 #else /* !CONFIG_SCHED_DEBUG */
6885 # define sched_domain_debug(sd, cpu) do { } while (0)
6886 #endif /* CONFIG_SCHED_DEBUG */
6888 static int sd_degenerate(struct sched_domain *sd)
6890 if (cpumask_weight(sched_domain_span(sd)) == 1)
6891 return 1;
6893 /* Following flags need at least 2 groups */
6894 if (sd->flags & (SD_LOAD_BALANCE |
6895 SD_BALANCE_NEWIDLE |
6896 SD_BALANCE_FORK |
6897 SD_BALANCE_EXEC |
6898 SD_SHARE_CPUPOWER |
6899 SD_SHARE_PKG_RESOURCES)) {
6900 if (sd->groups != sd->groups->next)
6901 return 0;
6904 /* Following flags don't use groups */
6905 if (sd->flags & (SD_WAKE_IDLE |
6906 SD_WAKE_AFFINE |
6907 SD_WAKE_BALANCE))
6908 return 0;
6910 return 1;
6913 static int
6914 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6916 unsigned long cflags = sd->flags, pflags = parent->flags;
6918 if (sd_degenerate(parent))
6919 return 1;
6921 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6922 return 0;
6924 /* Does parent contain flags not in child? */
6925 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6926 if (cflags & SD_WAKE_AFFINE)
6927 pflags &= ~SD_WAKE_BALANCE;
6928 /* Flags needing groups don't count if only 1 group in parent */
6929 if (parent->groups == parent->groups->next) {
6930 pflags &= ~(SD_LOAD_BALANCE |
6931 SD_BALANCE_NEWIDLE |
6932 SD_BALANCE_FORK |
6933 SD_BALANCE_EXEC |
6934 SD_SHARE_CPUPOWER |
6935 SD_SHARE_PKG_RESOURCES);
6936 if (nr_node_ids == 1)
6937 pflags &= ~SD_SERIALIZE;
6939 if (~cflags & pflags)
6940 return 0;
6942 return 1;
6945 static void free_rootdomain(struct root_domain *rd)
6947 cpupri_cleanup(&rd->cpupri);
6949 free_cpumask_var(rd->rto_mask);
6950 free_cpumask_var(rd->online);
6951 free_cpumask_var(rd->span);
6952 kfree(rd);
6955 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6957 unsigned long flags;
6959 spin_lock_irqsave(&rq->lock, flags);
6961 if (rq->rd) {
6962 struct root_domain *old_rd = rq->rd;
6964 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6965 set_rq_offline(rq);
6967 cpumask_clear_cpu(rq->cpu, old_rd->span);
6969 if (atomic_dec_and_test(&old_rd->refcount))
6970 free_rootdomain(old_rd);
6973 atomic_inc(&rd->refcount);
6974 rq->rd = rd;
6976 cpumask_set_cpu(rq->cpu, rd->span);
6977 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6978 set_rq_online(rq);
6980 spin_unlock_irqrestore(&rq->lock, flags);
6983 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
6985 memset(rd, 0, sizeof(*rd));
6987 if (bootmem) {
6988 alloc_bootmem_cpumask_var(&def_root_domain.span);
6989 alloc_bootmem_cpumask_var(&def_root_domain.online);
6990 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6991 cpupri_init(&rd->cpupri, true);
6992 return 0;
6995 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6996 goto out;
6997 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6998 goto free_span;
6999 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7000 goto free_online;
7002 if (cpupri_init(&rd->cpupri, false) != 0)
7003 goto free_rto_mask;
7004 return 0;
7006 free_rto_mask:
7007 free_cpumask_var(rd->rto_mask);
7008 free_online:
7009 free_cpumask_var(rd->online);
7010 free_span:
7011 free_cpumask_var(rd->span);
7012 out:
7013 return -ENOMEM;
7016 static void init_defrootdomain(void)
7018 init_rootdomain(&def_root_domain, true);
7020 atomic_set(&def_root_domain.refcount, 1);
7023 static struct root_domain *alloc_rootdomain(void)
7025 struct root_domain *rd;
7027 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7028 if (!rd)
7029 return NULL;
7031 if (init_rootdomain(rd, false) != 0) {
7032 kfree(rd);
7033 return NULL;
7036 return rd;
7040 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7041 * hold the hotplug lock.
7043 static void
7044 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7046 struct rq *rq = cpu_rq(cpu);
7047 struct sched_domain *tmp;
7049 /* Remove the sched domains which do not contribute to scheduling. */
7050 for (tmp = sd; tmp; ) {
7051 struct sched_domain *parent = tmp->parent;
7052 if (!parent)
7053 break;
7055 if (sd_parent_degenerate(tmp, parent)) {
7056 tmp->parent = parent->parent;
7057 if (parent->parent)
7058 parent->parent->child = tmp;
7059 } else
7060 tmp = tmp->parent;
7063 if (sd && sd_degenerate(sd)) {
7064 sd = sd->parent;
7065 if (sd)
7066 sd->child = NULL;
7069 sched_domain_debug(sd, cpu);
7071 rq_attach_root(rq, rd);
7072 rcu_assign_pointer(rq->sd, sd);
7075 /* cpus with isolated domains */
7076 static cpumask_var_t cpu_isolated_map;
7078 /* Setup the mask of cpus configured for isolated domains */
7079 static int __init isolated_cpu_setup(char *str)
7081 cpulist_parse(str, cpu_isolated_map);
7082 return 1;
7085 __setup("isolcpus=", isolated_cpu_setup);
7088 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7089 * to a function which identifies what group(along with sched group) a CPU
7090 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7091 * (due to the fact that we keep track of groups covered with a struct cpumask).
7093 * init_sched_build_groups will build a circular linked list of the groups
7094 * covered by the given span, and will set each group's ->cpumask correctly,
7095 * and ->cpu_power to 0.
7097 static void
7098 init_sched_build_groups(const struct cpumask *span,
7099 const struct cpumask *cpu_map,
7100 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7101 struct sched_group **sg,
7102 struct cpumask *tmpmask),
7103 struct cpumask *covered, struct cpumask *tmpmask)
7105 struct sched_group *first = NULL, *last = NULL;
7106 int i;
7108 cpumask_clear(covered);
7110 for_each_cpu(i, span) {
7111 struct sched_group *sg;
7112 int group = group_fn(i, cpu_map, &sg, tmpmask);
7113 int j;
7115 if (cpumask_test_cpu(i, covered))
7116 continue;
7118 cpumask_clear(sched_group_cpus(sg));
7119 sg->__cpu_power = 0;
7121 for_each_cpu(j, span) {
7122 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7123 continue;
7125 cpumask_set_cpu(j, covered);
7126 cpumask_set_cpu(j, sched_group_cpus(sg));
7128 if (!first)
7129 first = sg;
7130 if (last)
7131 last->next = sg;
7132 last = sg;
7134 last->next = first;
7137 #define SD_NODES_PER_DOMAIN 16
7139 #ifdef CONFIG_NUMA
7142 * find_next_best_node - find the next node to include in a sched_domain
7143 * @node: node whose sched_domain we're building
7144 * @used_nodes: nodes already in the sched_domain
7146 * Find the next node to include in a given scheduling domain. Simply
7147 * finds the closest node not already in the @used_nodes map.
7149 * Should use nodemask_t.
7151 static int find_next_best_node(int node, nodemask_t *used_nodes)
7153 int i, n, val, min_val, best_node = 0;
7155 min_val = INT_MAX;
7157 for (i = 0; i < nr_node_ids; i++) {
7158 /* Start at @node */
7159 n = (node + i) % nr_node_ids;
7161 if (!nr_cpus_node(n))
7162 continue;
7164 /* Skip already used nodes */
7165 if (node_isset(n, *used_nodes))
7166 continue;
7168 /* Simple min distance search */
7169 val = node_distance(node, n);
7171 if (val < min_val) {
7172 min_val = val;
7173 best_node = n;
7177 node_set(best_node, *used_nodes);
7178 return best_node;
7182 * sched_domain_node_span - get a cpumask for a node's sched_domain
7183 * @node: node whose cpumask we're constructing
7184 * @span: resulting cpumask
7186 * Given a node, construct a good cpumask for its sched_domain to span. It
7187 * should be one that prevents unnecessary balancing, but also spreads tasks
7188 * out optimally.
7190 static void sched_domain_node_span(int node, struct cpumask *span)
7192 nodemask_t used_nodes;
7193 int i;
7195 cpumask_clear(span);
7196 nodes_clear(used_nodes);
7198 cpumask_or(span, span, cpumask_of_node(node));
7199 node_set(node, used_nodes);
7201 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7202 int next_node = find_next_best_node(node, &used_nodes);
7204 cpumask_or(span, span, cpumask_of_node(next_node));
7207 #endif /* CONFIG_NUMA */
7209 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7212 * The cpus mask in sched_group and sched_domain hangs off the end.
7213 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7214 * for nr_cpu_ids < CONFIG_NR_CPUS.
7216 struct static_sched_group {
7217 struct sched_group sg;
7218 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7221 struct static_sched_domain {
7222 struct sched_domain sd;
7223 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7227 * SMT sched-domains:
7229 #ifdef CONFIG_SCHED_SMT
7230 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7231 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7233 static int
7234 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7235 struct sched_group **sg, struct cpumask *unused)
7237 if (sg)
7238 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7239 return cpu;
7241 #endif /* CONFIG_SCHED_SMT */
7244 * multi-core sched-domains:
7246 #ifdef CONFIG_SCHED_MC
7247 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7248 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7249 #endif /* CONFIG_SCHED_MC */
7251 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7252 static int
7253 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7254 struct sched_group **sg, struct cpumask *mask)
7256 int group;
7258 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7259 group = cpumask_first(mask);
7260 if (sg)
7261 *sg = &per_cpu(sched_group_core, group).sg;
7262 return group;
7264 #elif defined(CONFIG_SCHED_MC)
7265 static int
7266 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7267 struct sched_group **sg, struct cpumask *unused)
7269 if (sg)
7270 *sg = &per_cpu(sched_group_core, cpu).sg;
7271 return cpu;
7273 #endif
7275 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7276 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7278 static int
7279 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7280 struct sched_group **sg, struct cpumask *mask)
7282 int group;
7283 #ifdef CONFIG_SCHED_MC
7284 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7285 group = cpumask_first(mask);
7286 #elif defined(CONFIG_SCHED_SMT)
7287 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7288 group = cpumask_first(mask);
7289 #else
7290 group = cpu;
7291 #endif
7292 if (sg)
7293 *sg = &per_cpu(sched_group_phys, group).sg;
7294 return group;
7297 #ifdef CONFIG_NUMA
7299 * The init_sched_build_groups can't handle what we want to do with node
7300 * groups, so roll our own. Now each node has its own list of groups which
7301 * gets dynamically allocated.
7303 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7304 static struct sched_group ***sched_group_nodes_bycpu;
7306 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7307 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7309 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7310 struct sched_group **sg,
7311 struct cpumask *nodemask)
7313 int group;
7315 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7316 group = cpumask_first(nodemask);
7318 if (sg)
7319 *sg = &per_cpu(sched_group_allnodes, group).sg;
7320 return group;
7323 static void init_numa_sched_groups_power(struct sched_group *group_head)
7325 struct sched_group *sg = group_head;
7326 int j;
7328 if (!sg)
7329 return;
7330 do {
7331 for_each_cpu(j, sched_group_cpus(sg)) {
7332 struct sched_domain *sd;
7334 sd = &per_cpu(phys_domains, j).sd;
7335 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7337 * Only add "power" once for each
7338 * physical package.
7340 continue;
7343 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7345 sg = sg->next;
7346 } while (sg != group_head);
7348 #endif /* CONFIG_NUMA */
7350 #ifdef CONFIG_NUMA
7351 /* Free memory allocated for various sched_group structures */
7352 static void free_sched_groups(const struct cpumask *cpu_map,
7353 struct cpumask *nodemask)
7355 int cpu, i;
7357 for_each_cpu(cpu, cpu_map) {
7358 struct sched_group **sched_group_nodes
7359 = sched_group_nodes_bycpu[cpu];
7361 if (!sched_group_nodes)
7362 continue;
7364 for (i = 0; i < nr_node_ids; i++) {
7365 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7367 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7368 if (cpumask_empty(nodemask))
7369 continue;
7371 if (sg == NULL)
7372 continue;
7373 sg = sg->next;
7374 next_sg:
7375 oldsg = sg;
7376 sg = sg->next;
7377 kfree(oldsg);
7378 if (oldsg != sched_group_nodes[i])
7379 goto next_sg;
7381 kfree(sched_group_nodes);
7382 sched_group_nodes_bycpu[cpu] = NULL;
7385 #else /* !CONFIG_NUMA */
7386 static void free_sched_groups(const struct cpumask *cpu_map,
7387 struct cpumask *nodemask)
7390 #endif /* CONFIG_NUMA */
7393 * Initialize sched groups cpu_power.
7395 * cpu_power indicates the capacity of sched group, which is used while
7396 * distributing the load between different sched groups in a sched domain.
7397 * Typically cpu_power for all the groups in a sched domain will be same unless
7398 * there are asymmetries in the topology. If there are asymmetries, group
7399 * having more cpu_power will pickup more load compared to the group having
7400 * less cpu_power.
7402 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7403 * the maximum number of tasks a group can handle in the presence of other idle
7404 * or lightly loaded groups in the same sched domain.
7406 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7408 struct sched_domain *child;
7409 struct sched_group *group;
7411 WARN_ON(!sd || !sd->groups);
7413 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7414 return;
7416 child = sd->child;
7418 sd->groups->__cpu_power = 0;
7421 * For perf policy, if the groups in child domain share resources
7422 * (for example cores sharing some portions of the cache hierarchy
7423 * or SMT), then set this domain groups cpu_power such that each group
7424 * can handle only one task, when there are other idle groups in the
7425 * same sched domain.
7427 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7428 (child->flags &
7429 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7430 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7431 return;
7435 * add cpu_power of each child group to this groups cpu_power
7437 group = child->groups;
7438 do {
7439 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7440 group = group->next;
7441 } while (group != child->groups);
7445 * Initializers for schedule domains
7446 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7449 #ifdef CONFIG_SCHED_DEBUG
7450 # define SD_INIT_NAME(sd, type) sd->name = #type
7451 #else
7452 # define SD_INIT_NAME(sd, type) do { } while (0)
7453 #endif
7455 #define SD_INIT(sd, type) sd_init_##type(sd)
7457 #define SD_INIT_FUNC(type) \
7458 static noinline void sd_init_##type(struct sched_domain *sd) \
7460 memset(sd, 0, sizeof(*sd)); \
7461 *sd = SD_##type##_INIT; \
7462 sd->level = SD_LV_##type; \
7463 SD_INIT_NAME(sd, type); \
7466 SD_INIT_FUNC(CPU)
7467 #ifdef CONFIG_NUMA
7468 SD_INIT_FUNC(ALLNODES)
7469 SD_INIT_FUNC(NODE)
7470 #endif
7471 #ifdef CONFIG_SCHED_SMT
7472 SD_INIT_FUNC(SIBLING)
7473 #endif
7474 #ifdef CONFIG_SCHED_MC
7475 SD_INIT_FUNC(MC)
7476 #endif
7478 static int default_relax_domain_level = -1;
7480 static int __init setup_relax_domain_level(char *str)
7482 unsigned long val;
7484 val = simple_strtoul(str, NULL, 0);
7485 if (val < SD_LV_MAX)
7486 default_relax_domain_level = val;
7488 return 1;
7490 __setup("relax_domain_level=", setup_relax_domain_level);
7492 static void set_domain_attribute(struct sched_domain *sd,
7493 struct sched_domain_attr *attr)
7495 int request;
7497 if (!attr || attr->relax_domain_level < 0) {
7498 if (default_relax_domain_level < 0)
7499 return;
7500 else
7501 request = default_relax_domain_level;
7502 } else
7503 request = attr->relax_domain_level;
7504 if (request < sd->level) {
7505 /* turn off idle balance on this domain */
7506 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7507 } else {
7508 /* turn on idle balance on this domain */
7509 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7514 * Build sched domains for a given set of cpus and attach the sched domains
7515 * to the individual cpus
7517 static int __build_sched_domains(const struct cpumask *cpu_map,
7518 struct sched_domain_attr *attr)
7520 int i, err = -ENOMEM;
7521 struct root_domain *rd;
7522 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7523 tmpmask;
7524 #ifdef CONFIG_NUMA
7525 cpumask_var_t domainspan, covered, notcovered;
7526 struct sched_group **sched_group_nodes = NULL;
7527 int sd_allnodes = 0;
7529 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7530 goto out;
7531 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7532 goto free_domainspan;
7533 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7534 goto free_covered;
7535 #endif
7537 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7538 goto free_notcovered;
7539 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7540 goto free_nodemask;
7541 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7542 goto free_this_sibling_map;
7543 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7544 goto free_this_core_map;
7545 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7546 goto free_send_covered;
7548 #ifdef CONFIG_NUMA
7550 * Allocate the per-node list of sched groups
7552 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7553 GFP_KERNEL);
7554 if (!sched_group_nodes) {
7555 printk(KERN_WARNING "Can not alloc sched group node list\n");
7556 goto free_tmpmask;
7558 #endif
7560 rd = alloc_rootdomain();
7561 if (!rd) {
7562 printk(KERN_WARNING "Cannot alloc root domain\n");
7563 goto free_sched_groups;
7566 #ifdef CONFIG_NUMA
7567 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7568 #endif
7571 * Set up domains for cpus specified by the cpu_map.
7573 for_each_cpu(i, cpu_map) {
7574 struct sched_domain *sd = NULL, *p;
7576 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7578 #ifdef CONFIG_NUMA
7579 if (cpumask_weight(cpu_map) >
7580 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7581 sd = &per_cpu(allnodes_domains, i).sd;
7582 SD_INIT(sd, ALLNODES);
7583 set_domain_attribute(sd, attr);
7584 cpumask_copy(sched_domain_span(sd), cpu_map);
7585 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7586 p = sd;
7587 sd_allnodes = 1;
7588 } else
7589 p = NULL;
7591 sd = &per_cpu(node_domains, i).sd;
7592 SD_INIT(sd, NODE);
7593 set_domain_attribute(sd, attr);
7594 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7595 sd->parent = p;
7596 if (p)
7597 p->child = sd;
7598 cpumask_and(sched_domain_span(sd),
7599 sched_domain_span(sd), cpu_map);
7600 #endif
7602 p = sd;
7603 sd = &per_cpu(phys_domains, i).sd;
7604 SD_INIT(sd, CPU);
7605 set_domain_attribute(sd, attr);
7606 cpumask_copy(sched_domain_span(sd), nodemask);
7607 sd->parent = p;
7608 if (p)
7609 p->child = sd;
7610 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7612 #ifdef CONFIG_SCHED_MC
7613 p = sd;
7614 sd = &per_cpu(core_domains, i).sd;
7615 SD_INIT(sd, MC);
7616 set_domain_attribute(sd, attr);
7617 cpumask_and(sched_domain_span(sd), cpu_map,
7618 cpu_coregroup_mask(i));
7619 sd->parent = p;
7620 p->child = sd;
7621 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7622 #endif
7624 #ifdef CONFIG_SCHED_SMT
7625 p = sd;
7626 sd = &per_cpu(cpu_domains, i).sd;
7627 SD_INIT(sd, SIBLING);
7628 set_domain_attribute(sd, attr);
7629 cpumask_and(sched_domain_span(sd),
7630 &per_cpu(cpu_sibling_map, i), cpu_map);
7631 sd->parent = p;
7632 p->child = sd;
7633 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7634 #endif
7637 #ifdef CONFIG_SCHED_SMT
7638 /* Set up CPU (sibling) groups */
7639 for_each_cpu(i, cpu_map) {
7640 cpumask_and(this_sibling_map,
7641 &per_cpu(cpu_sibling_map, i), cpu_map);
7642 if (i != cpumask_first(this_sibling_map))
7643 continue;
7645 init_sched_build_groups(this_sibling_map, cpu_map,
7646 &cpu_to_cpu_group,
7647 send_covered, tmpmask);
7649 #endif
7651 #ifdef CONFIG_SCHED_MC
7652 /* Set up multi-core groups */
7653 for_each_cpu(i, cpu_map) {
7654 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7655 if (i != cpumask_first(this_core_map))
7656 continue;
7658 init_sched_build_groups(this_core_map, cpu_map,
7659 &cpu_to_core_group,
7660 send_covered, tmpmask);
7662 #endif
7664 /* Set up physical groups */
7665 for (i = 0; i < nr_node_ids; i++) {
7666 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7667 if (cpumask_empty(nodemask))
7668 continue;
7670 init_sched_build_groups(nodemask, cpu_map,
7671 &cpu_to_phys_group,
7672 send_covered, tmpmask);
7675 #ifdef CONFIG_NUMA
7676 /* Set up node groups */
7677 if (sd_allnodes) {
7678 init_sched_build_groups(cpu_map, cpu_map,
7679 &cpu_to_allnodes_group,
7680 send_covered, tmpmask);
7683 for (i = 0; i < nr_node_ids; i++) {
7684 /* Set up node groups */
7685 struct sched_group *sg, *prev;
7686 int j;
7688 cpumask_clear(covered);
7689 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7690 if (cpumask_empty(nodemask)) {
7691 sched_group_nodes[i] = NULL;
7692 continue;
7695 sched_domain_node_span(i, domainspan);
7696 cpumask_and(domainspan, domainspan, cpu_map);
7698 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7699 GFP_KERNEL, i);
7700 if (!sg) {
7701 printk(KERN_WARNING "Can not alloc domain group for "
7702 "node %d\n", i);
7703 goto error;
7705 sched_group_nodes[i] = sg;
7706 for_each_cpu(j, nodemask) {
7707 struct sched_domain *sd;
7709 sd = &per_cpu(node_domains, j).sd;
7710 sd->groups = sg;
7712 sg->__cpu_power = 0;
7713 cpumask_copy(sched_group_cpus(sg), nodemask);
7714 sg->next = sg;
7715 cpumask_or(covered, covered, nodemask);
7716 prev = sg;
7718 for (j = 0; j < nr_node_ids; j++) {
7719 int n = (i + j) % nr_node_ids;
7721 cpumask_complement(notcovered, covered);
7722 cpumask_and(tmpmask, notcovered, cpu_map);
7723 cpumask_and(tmpmask, tmpmask, domainspan);
7724 if (cpumask_empty(tmpmask))
7725 break;
7727 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7728 if (cpumask_empty(tmpmask))
7729 continue;
7731 sg = kmalloc_node(sizeof(struct sched_group) +
7732 cpumask_size(),
7733 GFP_KERNEL, i);
7734 if (!sg) {
7735 printk(KERN_WARNING
7736 "Can not alloc domain group for node %d\n", j);
7737 goto error;
7739 sg->__cpu_power = 0;
7740 cpumask_copy(sched_group_cpus(sg), tmpmask);
7741 sg->next = prev->next;
7742 cpumask_or(covered, covered, tmpmask);
7743 prev->next = sg;
7744 prev = sg;
7747 #endif
7749 /* Calculate CPU power for physical packages and nodes */
7750 #ifdef CONFIG_SCHED_SMT
7751 for_each_cpu(i, cpu_map) {
7752 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7754 init_sched_groups_power(i, sd);
7756 #endif
7757 #ifdef CONFIG_SCHED_MC
7758 for_each_cpu(i, cpu_map) {
7759 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7761 init_sched_groups_power(i, sd);
7763 #endif
7765 for_each_cpu(i, cpu_map) {
7766 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7768 init_sched_groups_power(i, sd);
7771 #ifdef CONFIG_NUMA
7772 for (i = 0; i < nr_node_ids; i++)
7773 init_numa_sched_groups_power(sched_group_nodes[i]);
7775 if (sd_allnodes) {
7776 struct sched_group *sg;
7778 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7779 tmpmask);
7780 init_numa_sched_groups_power(sg);
7782 #endif
7784 /* Attach the domains */
7785 for_each_cpu(i, cpu_map) {
7786 struct sched_domain *sd;
7787 #ifdef CONFIG_SCHED_SMT
7788 sd = &per_cpu(cpu_domains, i).sd;
7789 #elif defined(CONFIG_SCHED_MC)
7790 sd = &per_cpu(core_domains, i).sd;
7791 #else
7792 sd = &per_cpu(phys_domains, i).sd;
7793 #endif
7794 cpu_attach_domain(sd, rd, i);
7797 err = 0;
7799 free_tmpmask:
7800 free_cpumask_var(tmpmask);
7801 free_send_covered:
7802 free_cpumask_var(send_covered);
7803 free_this_core_map:
7804 free_cpumask_var(this_core_map);
7805 free_this_sibling_map:
7806 free_cpumask_var(this_sibling_map);
7807 free_nodemask:
7808 free_cpumask_var(nodemask);
7809 free_notcovered:
7810 #ifdef CONFIG_NUMA
7811 free_cpumask_var(notcovered);
7812 free_covered:
7813 free_cpumask_var(covered);
7814 free_domainspan:
7815 free_cpumask_var(domainspan);
7816 out:
7817 #endif
7818 return err;
7820 free_sched_groups:
7821 #ifdef CONFIG_NUMA
7822 kfree(sched_group_nodes);
7823 #endif
7824 goto free_tmpmask;
7826 #ifdef CONFIG_NUMA
7827 error:
7828 free_sched_groups(cpu_map, tmpmask);
7829 free_rootdomain(rd);
7830 goto free_tmpmask;
7831 #endif
7834 static int build_sched_domains(const struct cpumask *cpu_map)
7836 return __build_sched_domains(cpu_map, NULL);
7839 static struct cpumask *doms_cur; /* current sched domains */
7840 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7841 static struct sched_domain_attr *dattr_cur;
7842 /* attribues of custom domains in 'doms_cur' */
7845 * Special case: If a kmalloc of a doms_cur partition (array of
7846 * cpumask) fails, then fallback to a single sched domain,
7847 * as determined by the single cpumask fallback_doms.
7849 static cpumask_var_t fallback_doms;
7852 * arch_update_cpu_topology lets virtualized architectures update the
7853 * cpu core maps. It is supposed to return 1 if the topology changed
7854 * or 0 if it stayed the same.
7856 int __attribute__((weak)) arch_update_cpu_topology(void)
7858 return 0;
7862 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7863 * For now this just excludes isolated cpus, but could be used to
7864 * exclude other special cases in the future.
7866 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7868 int err;
7870 arch_update_cpu_topology();
7871 ndoms_cur = 1;
7872 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7873 if (!doms_cur)
7874 doms_cur = fallback_doms;
7875 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7876 dattr_cur = NULL;
7877 err = build_sched_domains(doms_cur);
7878 register_sched_domain_sysctl();
7880 return err;
7883 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7884 struct cpumask *tmpmask)
7886 free_sched_groups(cpu_map, tmpmask);
7890 * Detach sched domains from a group of cpus specified in cpu_map
7891 * These cpus will now be attached to the NULL domain
7893 static void detach_destroy_domains(const struct cpumask *cpu_map)
7895 /* Save because hotplug lock held. */
7896 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7897 int i;
7899 for_each_cpu(i, cpu_map)
7900 cpu_attach_domain(NULL, &def_root_domain, i);
7901 synchronize_sched();
7902 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7905 /* handle null as "default" */
7906 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7907 struct sched_domain_attr *new, int idx_new)
7909 struct sched_domain_attr tmp;
7911 /* fast path */
7912 if (!new && !cur)
7913 return 1;
7915 tmp = SD_ATTR_INIT;
7916 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7917 new ? (new + idx_new) : &tmp,
7918 sizeof(struct sched_domain_attr));
7922 * Partition sched domains as specified by the 'ndoms_new'
7923 * cpumasks in the array doms_new[] of cpumasks. This compares
7924 * doms_new[] to the current sched domain partitioning, doms_cur[].
7925 * It destroys each deleted domain and builds each new domain.
7927 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7928 * The masks don't intersect (don't overlap.) We should setup one
7929 * sched domain for each mask. CPUs not in any of the cpumasks will
7930 * not be load balanced. If the same cpumask appears both in the
7931 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7932 * it as it is.
7934 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7935 * ownership of it and will kfree it when done with it. If the caller
7936 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7937 * ndoms_new == 1, and partition_sched_domains() will fallback to
7938 * the single partition 'fallback_doms', it also forces the domains
7939 * to be rebuilt.
7941 * If doms_new == NULL it will be replaced with cpu_online_mask.
7942 * ndoms_new == 0 is a special case for destroying existing domains,
7943 * and it will not create the default domain.
7945 * Call with hotplug lock held
7947 /* FIXME: Change to struct cpumask *doms_new[] */
7948 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7949 struct sched_domain_attr *dattr_new)
7951 int i, j, n;
7952 int new_topology;
7954 mutex_lock(&sched_domains_mutex);
7956 /* always unregister in case we don't destroy any domains */
7957 unregister_sched_domain_sysctl();
7959 /* Let architecture update cpu core mappings. */
7960 new_topology = arch_update_cpu_topology();
7962 n = doms_new ? ndoms_new : 0;
7964 /* Destroy deleted domains */
7965 for (i = 0; i < ndoms_cur; i++) {
7966 for (j = 0; j < n && !new_topology; j++) {
7967 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7968 && dattrs_equal(dattr_cur, i, dattr_new, j))
7969 goto match1;
7971 /* no match - a current sched domain not in new doms_new[] */
7972 detach_destroy_domains(doms_cur + i);
7973 match1:
7977 if (doms_new == NULL) {
7978 ndoms_cur = 0;
7979 doms_new = fallback_doms;
7980 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7981 WARN_ON_ONCE(dattr_new);
7984 /* Build new domains */
7985 for (i = 0; i < ndoms_new; i++) {
7986 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7987 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7988 && dattrs_equal(dattr_new, i, dattr_cur, j))
7989 goto match2;
7991 /* no match - add a new doms_new */
7992 __build_sched_domains(doms_new + i,
7993 dattr_new ? dattr_new + i : NULL);
7994 match2:
7998 /* Remember the new sched domains */
7999 if (doms_cur != fallback_doms)
8000 kfree(doms_cur);
8001 kfree(dattr_cur); /* kfree(NULL) is safe */
8002 doms_cur = doms_new;
8003 dattr_cur = dattr_new;
8004 ndoms_cur = ndoms_new;
8006 register_sched_domain_sysctl();
8008 mutex_unlock(&sched_domains_mutex);
8011 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8012 static void arch_reinit_sched_domains(void)
8014 get_online_cpus();
8016 /* Destroy domains first to force the rebuild */
8017 partition_sched_domains(0, NULL, NULL);
8019 rebuild_sched_domains();
8020 put_online_cpus();
8023 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8025 unsigned int level = 0;
8027 if (sscanf(buf, "%u", &level) != 1)
8028 return -EINVAL;
8031 * level is always be positive so don't check for
8032 * level < POWERSAVINGS_BALANCE_NONE which is 0
8033 * What happens on 0 or 1 byte write,
8034 * need to check for count as well?
8037 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8038 return -EINVAL;
8040 if (smt)
8041 sched_smt_power_savings = level;
8042 else
8043 sched_mc_power_savings = level;
8045 arch_reinit_sched_domains();
8047 return count;
8050 #ifdef CONFIG_SCHED_MC
8051 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8052 char *page)
8054 return sprintf(page, "%u\n", sched_mc_power_savings);
8056 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8057 const char *buf, size_t count)
8059 return sched_power_savings_store(buf, count, 0);
8061 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8062 sched_mc_power_savings_show,
8063 sched_mc_power_savings_store);
8064 #endif
8066 #ifdef CONFIG_SCHED_SMT
8067 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8068 char *page)
8070 return sprintf(page, "%u\n", sched_smt_power_savings);
8072 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8073 const char *buf, size_t count)
8075 return sched_power_savings_store(buf, count, 1);
8077 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8078 sched_smt_power_savings_show,
8079 sched_smt_power_savings_store);
8080 #endif
8082 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8084 int err = 0;
8086 #ifdef CONFIG_SCHED_SMT
8087 if (smt_capable())
8088 err = sysfs_create_file(&cls->kset.kobj,
8089 &attr_sched_smt_power_savings.attr);
8090 #endif
8091 #ifdef CONFIG_SCHED_MC
8092 if (!err && mc_capable())
8093 err = sysfs_create_file(&cls->kset.kobj,
8094 &attr_sched_mc_power_savings.attr);
8095 #endif
8096 return err;
8098 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8100 #ifndef CONFIG_CPUSETS
8102 * Add online and remove offline CPUs from the scheduler domains.
8103 * When cpusets are enabled they take over this function.
8105 static int update_sched_domains(struct notifier_block *nfb,
8106 unsigned long action, void *hcpu)
8108 switch (action) {
8109 case CPU_ONLINE:
8110 case CPU_ONLINE_FROZEN:
8111 case CPU_DEAD:
8112 case CPU_DEAD_FROZEN:
8113 partition_sched_domains(1, NULL, NULL);
8114 return NOTIFY_OK;
8116 default:
8117 return NOTIFY_DONE;
8120 #endif
8122 static int update_runtime(struct notifier_block *nfb,
8123 unsigned long action, void *hcpu)
8125 int cpu = (int)(long)hcpu;
8127 switch (action) {
8128 case CPU_DOWN_PREPARE:
8129 case CPU_DOWN_PREPARE_FROZEN:
8130 disable_runtime(cpu_rq(cpu));
8131 return NOTIFY_OK;
8133 case CPU_DOWN_FAILED:
8134 case CPU_DOWN_FAILED_FROZEN:
8135 case CPU_ONLINE:
8136 case CPU_ONLINE_FROZEN:
8137 enable_runtime(cpu_rq(cpu));
8138 return NOTIFY_OK;
8140 default:
8141 return NOTIFY_DONE;
8145 void __init sched_init_smp(void)
8147 cpumask_var_t non_isolated_cpus;
8149 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8151 #if defined(CONFIG_NUMA)
8152 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8153 GFP_KERNEL);
8154 BUG_ON(sched_group_nodes_bycpu == NULL);
8155 #endif
8156 get_online_cpus();
8157 mutex_lock(&sched_domains_mutex);
8158 arch_init_sched_domains(cpu_online_mask);
8159 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8160 if (cpumask_empty(non_isolated_cpus))
8161 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8162 mutex_unlock(&sched_domains_mutex);
8163 put_online_cpus();
8165 #ifndef CONFIG_CPUSETS
8166 /* XXX: Theoretical race here - CPU may be hotplugged now */
8167 hotcpu_notifier(update_sched_domains, 0);
8168 #endif
8170 /* RT runtime code needs to handle some hotplug events */
8171 hotcpu_notifier(update_runtime, 0);
8173 init_hrtick();
8175 /* Move init over to a non-isolated CPU */
8176 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8177 BUG();
8178 sched_init_granularity();
8179 free_cpumask_var(non_isolated_cpus);
8181 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8182 init_sched_rt_class();
8184 #else
8185 void __init sched_init_smp(void)
8187 sched_init_granularity();
8189 #endif /* CONFIG_SMP */
8191 int in_sched_functions(unsigned long addr)
8193 return in_lock_functions(addr) ||
8194 (addr >= (unsigned long)__sched_text_start
8195 && addr < (unsigned long)__sched_text_end);
8198 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8200 cfs_rq->tasks_timeline = RB_ROOT;
8201 INIT_LIST_HEAD(&cfs_rq->tasks);
8202 #ifdef CONFIG_FAIR_GROUP_SCHED
8203 cfs_rq->rq = rq;
8204 #endif
8205 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8208 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8210 struct rt_prio_array *array;
8211 int i;
8213 array = &rt_rq->active;
8214 for (i = 0; i < MAX_RT_PRIO; i++) {
8215 INIT_LIST_HEAD(array->queue + i);
8216 __clear_bit(i, array->bitmap);
8218 /* delimiter for bitsearch: */
8219 __set_bit(MAX_RT_PRIO, array->bitmap);
8221 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8222 rt_rq->highest_prio = MAX_RT_PRIO;
8223 #endif
8224 #ifdef CONFIG_SMP
8225 rt_rq->rt_nr_migratory = 0;
8226 rt_rq->overloaded = 0;
8227 #endif
8229 rt_rq->rt_time = 0;
8230 rt_rq->rt_throttled = 0;
8231 rt_rq->rt_runtime = 0;
8232 spin_lock_init(&rt_rq->rt_runtime_lock);
8234 #ifdef CONFIG_RT_GROUP_SCHED
8235 rt_rq->rt_nr_boosted = 0;
8236 rt_rq->rq = rq;
8237 #endif
8240 #ifdef CONFIG_FAIR_GROUP_SCHED
8241 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8242 struct sched_entity *se, int cpu, int add,
8243 struct sched_entity *parent)
8245 struct rq *rq = cpu_rq(cpu);
8246 tg->cfs_rq[cpu] = cfs_rq;
8247 init_cfs_rq(cfs_rq, rq);
8248 cfs_rq->tg = tg;
8249 if (add)
8250 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8252 tg->se[cpu] = se;
8253 /* se could be NULL for init_task_group */
8254 if (!se)
8255 return;
8257 if (!parent)
8258 se->cfs_rq = &rq->cfs;
8259 else
8260 se->cfs_rq = parent->my_q;
8262 se->my_q = cfs_rq;
8263 se->load.weight = tg->shares;
8264 se->load.inv_weight = 0;
8265 se->parent = parent;
8267 #endif
8269 #ifdef CONFIG_RT_GROUP_SCHED
8270 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8271 struct sched_rt_entity *rt_se, int cpu, int add,
8272 struct sched_rt_entity *parent)
8274 struct rq *rq = cpu_rq(cpu);
8276 tg->rt_rq[cpu] = rt_rq;
8277 init_rt_rq(rt_rq, rq);
8278 rt_rq->tg = tg;
8279 rt_rq->rt_se = rt_se;
8280 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8281 if (add)
8282 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8284 tg->rt_se[cpu] = rt_se;
8285 if (!rt_se)
8286 return;
8288 if (!parent)
8289 rt_se->rt_rq = &rq->rt;
8290 else
8291 rt_se->rt_rq = parent->my_q;
8293 rt_se->my_q = rt_rq;
8294 rt_se->parent = parent;
8295 INIT_LIST_HEAD(&rt_se->run_list);
8297 #endif
8299 void __init sched_init(void)
8301 int i, j;
8302 unsigned long alloc_size = 0, ptr;
8304 #ifdef CONFIG_FAIR_GROUP_SCHED
8305 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8306 #endif
8307 #ifdef CONFIG_RT_GROUP_SCHED
8308 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8309 #endif
8310 #ifdef CONFIG_USER_SCHED
8311 alloc_size *= 2;
8312 #endif
8314 * As sched_init() is called before page_alloc is setup,
8315 * we use alloc_bootmem().
8317 if (alloc_size) {
8318 ptr = (unsigned long)alloc_bootmem(alloc_size);
8320 #ifdef CONFIG_FAIR_GROUP_SCHED
8321 init_task_group.se = (struct sched_entity **)ptr;
8322 ptr += nr_cpu_ids * sizeof(void **);
8324 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8325 ptr += nr_cpu_ids * sizeof(void **);
8327 #ifdef CONFIG_USER_SCHED
8328 root_task_group.se = (struct sched_entity **)ptr;
8329 ptr += nr_cpu_ids * sizeof(void **);
8331 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8332 ptr += nr_cpu_ids * sizeof(void **);
8333 #endif /* CONFIG_USER_SCHED */
8334 #endif /* CONFIG_FAIR_GROUP_SCHED */
8335 #ifdef CONFIG_RT_GROUP_SCHED
8336 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8337 ptr += nr_cpu_ids * sizeof(void **);
8339 init_task_group.rt_rq = (struct rt_rq **)ptr;
8340 ptr += nr_cpu_ids * sizeof(void **);
8342 #ifdef CONFIG_USER_SCHED
8343 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8344 ptr += nr_cpu_ids * sizeof(void **);
8346 root_task_group.rt_rq = (struct rt_rq **)ptr;
8347 ptr += nr_cpu_ids * sizeof(void **);
8348 #endif /* CONFIG_USER_SCHED */
8349 #endif /* CONFIG_RT_GROUP_SCHED */
8352 #ifdef CONFIG_SMP
8353 init_defrootdomain();
8354 #endif
8356 init_rt_bandwidth(&def_rt_bandwidth,
8357 global_rt_period(), global_rt_runtime());
8359 #ifdef CONFIG_RT_GROUP_SCHED
8360 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8361 global_rt_period(), global_rt_runtime());
8362 #ifdef CONFIG_USER_SCHED
8363 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8364 global_rt_period(), RUNTIME_INF);
8365 #endif /* CONFIG_USER_SCHED */
8366 #endif /* CONFIG_RT_GROUP_SCHED */
8368 #ifdef CONFIG_GROUP_SCHED
8369 list_add(&init_task_group.list, &task_groups);
8370 INIT_LIST_HEAD(&init_task_group.children);
8372 #ifdef CONFIG_USER_SCHED
8373 INIT_LIST_HEAD(&root_task_group.children);
8374 init_task_group.parent = &root_task_group;
8375 list_add(&init_task_group.siblings, &root_task_group.children);
8376 #endif /* CONFIG_USER_SCHED */
8377 #endif /* CONFIG_GROUP_SCHED */
8379 for_each_possible_cpu(i) {
8380 struct rq *rq;
8382 rq = cpu_rq(i);
8383 spin_lock_init(&rq->lock);
8384 rq->nr_running = 0;
8385 init_cfs_rq(&rq->cfs, rq);
8386 init_rt_rq(&rq->rt, rq);
8387 #ifdef CONFIG_FAIR_GROUP_SCHED
8388 init_task_group.shares = init_task_group_load;
8389 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8390 #ifdef CONFIG_CGROUP_SCHED
8392 * How much cpu bandwidth does init_task_group get?
8394 * In case of task-groups formed thr' the cgroup filesystem, it
8395 * gets 100% of the cpu resources in the system. This overall
8396 * system cpu resource is divided among the tasks of
8397 * init_task_group and its child task-groups in a fair manner,
8398 * based on each entity's (task or task-group's) weight
8399 * (se->load.weight).
8401 * In other words, if init_task_group has 10 tasks of weight
8402 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8403 * then A0's share of the cpu resource is:
8405 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8407 * We achieve this by letting init_task_group's tasks sit
8408 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8410 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8411 #elif defined CONFIG_USER_SCHED
8412 root_task_group.shares = NICE_0_LOAD;
8413 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8415 * In case of task-groups formed thr' the user id of tasks,
8416 * init_task_group represents tasks belonging to root user.
8417 * Hence it forms a sibling of all subsequent groups formed.
8418 * In this case, init_task_group gets only a fraction of overall
8419 * system cpu resource, based on the weight assigned to root
8420 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8421 * by letting tasks of init_task_group sit in a separate cfs_rq
8422 * (init_cfs_rq) and having one entity represent this group of
8423 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8425 init_tg_cfs_entry(&init_task_group,
8426 &per_cpu(init_cfs_rq, i),
8427 &per_cpu(init_sched_entity, i), i, 1,
8428 root_task_group.se[i]);
8430 #endif
8431 #endif /* CONFIG_FAIR_GROUP_SCHED */
8433 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8434 #ifdef CONFIG_RT_GROUP_SCHED
8435 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8436 #ifdef CONFIG_CGROUP_SCHED
8437 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8438 #elif defined CONFIG_USER_SCHED
8439 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8440 init_tg_rt_entry(&init_task_group,
8441 &per_cpu(init_rt_rq, i),
8442 &per_cpu(init_sched_rt_entity, i), i, 1,
8443 root_task_group.rt_se[i]);
8444 #endif
8445 #endif
8447 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8448 rq->cpu_load[j] = 0;
8449 #ifdef CONFIG_SMP
8450 rq->sd = NULL;
8451 rq->rd = NULL;
8452 rq->active_balance = 0;
8453 rq->next_balance = jiffies;
8454 rq->push_cpu = 0;
8455 rq->cpu = i;
8456 rq->online = 0;
8457 rq->migration_thread = NULL;
8458 INIT_LIST_HEAD(&rq->migration_queue);
8459 rq_attach_root(rq, &def_root_domain);
8460 #endif
8461 init_rq_hrtick(rq);
8462 atomic_set(&rq->nr_iowait, 0);
8465 set_load_weight(&init_task);
8467 #ifdef CONFIG_PREEMPT_NOTIFIERS
8468 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8469 #endif
8471 #ifdef CONFIG_SMP
8472 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8473 #endif
8475 #ifdef CONFIG_RT_MUTEXES
8476 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8477 #endif
8480 * The boot idle thread does lazy MMU switching as well:
8482 atomic_inc(&init_mm.mm_count);
8483 enter_lazy_tlb(&init_mm, current);
8486 * Make us the idle thread. Technically, schedule() should not be
8487 * called from this thread, however somewhere below it might be,
8488 * but because we are the idle thread, we just pick up running again
8489 * when this runqueue becomes "idle".
8491 init_idle(current, smp_processor_id());
8493 * During early bootup we pretend to be a normal task:
8495 current->sched_class = &fair_sched_class;
8497 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8498 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8499 #ifdef CONFIG_SMP
8500 #ifdef CONFIG_NO_HZ
8501 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8502 #endif
8503 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8504 #endif /* SMP */
8506 scheduler_running = 1;
8509 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8510 void __might_sleep(char *file, int line)
8512 #ifdef in_atomic
8513 static unsigned long prev_jiffy; /* ratelimiting */
8515 if ((!in_atomic() && !irqs_disabled()) ||
8516 system_state != SYSTEM_RUNNING || oops_in_progress)
8517 return;
8518 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8519 return;
8520 prev_jiffy = jiffies;
8522 printk(KERN_ERR
8523 "BUG: sleeping function called from invalid context at %s:%d\n",
8524 file, line);
8525 printk(KERN_ERR
8526 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8527 in_atomic(), irqs_disabled(),
8528 current->pid, current->comm);
8530 debug_show_held_locks(current);
8531 if (irqs_disabled())
8532 print_irqtrace_events(current);
8533 dump_stack();
8534 #endif
8536 EXPORT_SYMBOL(__might_sleep);
8537 #endif
8539 #ifdef CONFIG_MAGIC_SYSRQ
8540 static void normalize_task(struct rq *rq, struct task_struct *p)
8542 int on_rq;
8544 update_rq_clock(rq);
8545 on_rq = p->se.on_rq;
8546 if (on_rq)
8547 deactivate_task(rq, p, 0);
8548 __setscheduler(rq, p, SCHED_NORMAL, 0);
8549 if (on_rq) {
8550 activate_task(rq, p, 0);
8551 resched_task(rq->curr);
8555 void normalize_rt_tasks(void)
8557 struct task_struct *g, *p;
8558 unsigned long flags;
8559 struct rq *rq;
8561 read_lock_irqsave(&tasklist_lock, flags);
8562 do_each_thread(g, p) {
8564 * Only normalize user tasks:
8566 if (!p->mm)
8567 continue;
8569 p->se.exec_start = 0;
8570 #ifdef CONFIG_SCHEDSTATS
8571 p->se.wait_start = 0;
8572 p->se.sleep_start = 0;
8573 p->se.block_start = 0;
8574 #endif
8576 if (!rt_task(p)) {
8578 * Renice negative nice level userspace
8579 * tasks back to 0:
8581 if (TASK_NICE(p) < 0 && p->mm)
8582 set_user_nice(p, 0);
8583 continue;
8586 spin_lock(&p->pi_lock);
8587 rq = __task_rq_lock(p);
8589 normalize_task(rq, p);
8591 __task_rq_unlock(rq);
8592 spin_unlock(&p->pi_lock);
8593 } while_each_thread(g, p);
8595 read_unlock_irqrestore(&tasklist_lock, flags);
8598 #endif /* CONFIG_MAGIC_SYSRQ */
8600 #ifdef CONFIG_IA64
8602 * These functions are only useful for the IA64 MCA handling.
8604 * They can only be called when the whole system has been
8605 * stopped - every CPU needs to be quiescent, and no scheduling
8606 * activity can take place. Using them for anything else would
8607 * be a serious bug, and as a result, they aren't even visible
8608 * under any other configuration.
8612 * curr_task - return the current task for a given cpu.
8613 * @cpu: the processor in question.
8615 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8617 struct task_struct *curr_task(int cpu)
8619 return cpu_curr(cpu);
8623 * set_curr_task - set the current task for a given cpu.
8624 * @cpu: the processor in question.
8625 * @p: the task pointer to set.
8627 * Description: This function must only be used when non-maskable interrupts
8628 * are serviced on a separate stack. It allows the architecture to switch the
8629 * notion of the current task on a cpu in a non-blocking manner. This function
8630 * must be called with all CPU's synchronized, and interrupts disabled, the
8631 * and caller must save the original value of the current task (see
8632 * curr_task() above) and restore that value before reenabling interrupts and
8633 * re-starting the system.
8635 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8637 void set_curr_task(int cpu, struct task_struct *p)
8639 cpu_curr(cpu) = p;
8642 #endif
8644 #ifdef CONFIG_FAIR_GROUP_SCHED
8645 static void free_fair_sched_group(struct task_group *tg)
8647 int i;
8649 for_each_possible_cpu(i) {
8650 if (tg->cfs_rq)
8651 kfree(tg->cfs_rq[i]);
8652 if (tg->se)
8653 kfree(tg->se[i]);
8656 kfree(tg->cfs_rq);
8657 kfree(tg->se);
8660 static
8661 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8663 struct cfs_rq *cfs_rq;
8664 struct sched_entity *se;
8665 struct rq *rq;
8666 int i;
8668 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8669 if (!tg->cfs_rq)
8670 goto err;
8671 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8672 if (!tg->se)
8673 goto err;
8675 tg->shares = NICE_0_LOAD;
8677 for_each_possible_cpu(i) {
8678 rq = cpu_rq(i);
8680 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8681 GFP_KERNEL, cpu_to_node(i));
8682 if (!cfs_rq)
8683 goto err;
8685 se = kzalloc_node(sizeof(struct sched_entity),
8686 GFP_KERNEL, cpu_to_node(i));
8687 if (!se)
8688 goto err;
8690 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8693 return 1;
8695 err:
8696 return 0;
8699 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8701 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8702 &cpu_rq(cpu)->leaf_cfs_rq_list);
8705 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8707 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8709 #else /* !CONFG_FAIR_GROUP_SCHED */
8710 static inline void free_fair_sched_group(struct task_group *tg)
8714 static inline
8715 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8717 return 1;
8720 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8724 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8727 #endif /* CONFIG_FAIR_GROUP_SCHED */
8729 #ifdef CONFIG_RT_GROUP_SCHED
8730 static void free_rt_sched_group(struct task_group *tg)
8732 int i;
8734 destroy_rt_bandwidth(&tg->rt_bandwidth);
8736 for_each_possible_cpu(i) {
8737 if (tg->rt_rq)
8738 kfree(tg->rt_rq[i]);
8739 if (tg->rt_se)
8740 kfree(tg->rt_se[i]);
8743 kfree(tg->rt_rq);
8744 kfree(tg->rt_se);
8747 static
8748 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8750 struct rt_rq *rt_rq;
8751 struct sched_rt_entity *rt_se;
8752 struct rq *rq;
8753 int i;
8755 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8756 if (!tg->rt_rq)
8757 goto err;
8758 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8759 if (!tg->rt_se)
8760 goto err;
8762 init_rt_bandwidth(&tg->rt_bandwidth,
8763 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8765 for_each_possible_cpu(i) {
8766 rq = cpu_rq(i);
8768 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8769 GFP_KERNEL, cpu_to_node(i));
8770 if (!rt_rq)
8771 goto err;
8773 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8774 GFP_KERNEL, cpu_to_node(i));
8775 if (!rt_se)
8776 goto err;
8778 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8781 return 1;
8783 err:
8784 return 0;
8787 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8789 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8790 &cpu_rq(cpu)->leaf_rt_rq_list);
8793 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8795 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8797 #else /* !CONFIG_RT_GROUP_SCHED */
8798 static inline void free_rt_sched_group(struct task_group *tg)
8802 static inline
8803 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8805 return 1;
8808 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8812 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8815 #endif /* CONFIG_RT_GROUP_SCHED */
8817 #ifdef CONFIG_GROUP_SCHED
8818 static void free_sched_group(struct task_group *tg)
8820 free_fair_sched_group(tg);
8821 free_rt_sched_group(tg);
8822 kfree(tg);
8825 /* allocate runqueue etc for a new task group */
8826 struct task_group *sched_create_group(struct task_group *parent)
8828 struct task_group *tg;
8829 unsigned long flags;
8830 int i;
8832 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8833 if (!tg)
8834 return ERR_PTR(-ENOMEM);
8836 if (!alloc_fair_sched_group(tg, parent))
8837 goto err;
8839 if (!alloc_rt_sched_group(tg, parent))
8840 goto err;
8842 spin_lock_irqsave(&task_group_lock, flags);
8843 for_each_possible_cpu(i) {
8844 register_fair_sched_group(tg, i);
8845 register_rt_sched_group(tg, i);
8847 list_add_rcu(&tg->list, &task_groups);
8849 WARN_ON(!parent); /* root should already exist */
8851 tg->parent = parent;
8852 INIT_LIST_HEAD(&tg->children);
8853 list_add_rcu(&tg->siblings, &parent->children);
8854 spin_unlock_irqrestore(&task_group_lock, flags);
8856 return tg;
8858 err:
8859 free_sched_group(tg);
8860 return ERR_PTR(-ENOMEM);
8863 /* rcu callback to free various structures associated with a task group */
8864 static void free_sched_group_rcu(struct rcu_head *rhp)
8866 /* now it should be safe to free those cfs_rqs */
8867 free_sched_group(container_of(rhp, struct task_group, rcu));
8870 /* Destroy runqueue etc associated with a task group */
8871 void sched_destroy_group(struct task_group *tg)
8873 unsigned long flags;
8874 int i;
8876 spin_lock_irqsave(&task_group_lock, flags);
8877 for_each_possible_cpu(i) {
8878 unregister_fair_sched_group(tg, i);
8879 unregister_rt_sched_group(tg, i);
8881 list_del_rcu(&tg->list);
8882 list_del_rcu(&tg->siblings);
8883 spin_unlock_irqrestore(&task_group_lock, flags);
8885 /* wait for possible concurrent references to cfs_rqs complete */
8886 call_rcu(&tg->rcu, free_sched_group_rcu);
8889 /* change task's runqueue when it moves between groups.
8890 * The caller of this function should have put the task in its new group
8891 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8892 * reflect its new group.
8894 void sched_move_task(struct task_struct *tsk)
8896 int on_rq, running;
8897 unsigned long flags;
8898 struct rq *rq;
8900 rq = task_rq_lock(tsk, &flags);
8902 update_rq_clock(rq);
8904 running = task_current(rq, tsk);
8905 on_rq = tsk->se.on_rq;
8907 if (on_rq)
8908 dequeue_task(rq, tsk, 0);
8909 if (unlikely(running))
8910 tsk->sched_class->put_prev_task(rq, tsk);
8912 set_task_rq(tsk, task_cpu(tsk));
8914 #ifdef CONFIG_FAIR_GROUP_SCHED
8915 if (tsk->sched_class->moved_group)
8916 tsk->sched_class->moved_group(tsk);
8917 #endif
8919 if (unlikely(running))
8920 tsk->sched_class->set_curr_task(rq);
8921 if (on_rq)
8922 enqueue_task(rq, tsk, 0);
8924 task_rq_unlock(rq, &flags);
8926 #endif /* CONFIG_GROUP_SCHED */
8928 #ifdef CONFIG_FAIR_GROUP_SCHED
8929 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8931 struct cfs_rq *cfs_rq = se->cfs_rq;
8932 int on_rq;
8934 on_rq = se->on_rq;
8935 if (on_rq)
8936 dequeue_entity(cfs_rq, se, 0);
8938 se->load.weight = shares;
8939 se->load.inv_weight = 0;
8941 if (on_rq)
8942 enqueue_entity(cfs_rq, se, 0);
8945 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8947 struct cfs_rq *cfs_rq = se->cfs_rq;
8948 struct rq *rq = cfs_rq->rq;
8949 unsigned long flags;
8951 spin_lock_irqsave(&rq->lock, flags);
8952 __set_se_shares(se, shares);
8953 spin_unlock_irqrestore(&rq->lock, flags);
8956 static DEFINE_MUTEX(shares_mutex);
8958 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8960 int i;
8961 unsigned long flags;
8964 * We can't change the weight of the root cgroup.
8966 if (!tg->se[0])
8967 return -EINVAL;
8969 if (shares < MIN_SHARES)
8970 shares = MIN_SHARES;
8971 else if (shares > MAX_SHARES)
8972 shares = MAX_SHARES;
8974 mutex_lock(&shares_mutex);
8975 if (tg->shares == shares)
8976 goto done;
8978 spin_lock_irqsave(&task_group_lock, flags);
8979 for_each_possible_cpu(i)
8980 unregister_fair_sched_group(tg, i);
8981 list_del_rcu(&tg->siblings);
8982 spin_unlock_irqrestore(&task_group_lock, flags);
8984 /* wait for any ongoing reference to this group to finish */
8985 synchronize_sched();
8988 * Now we are free to modify the group's share on each cpu
8989 * w/o tripping rebalance_share or load_balance_fair.
8991 tg->shares = shares;
8992 for_each_possible_cpu(i) {
8994 * force a rebalance
8996 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8997 set_se_shares(tg->se[i], shares);
9001 * Enable load balance activity on this group, by inserting it back on
9002 * each cpu's rq->leaf_cfs_rq_list.
9004 spin_lock_irqsave(&task_group_lock, flags);
9005 for_each_possible_cpu(i)
9006 register_fair_sched_group(tg, i);
9007 list_add_rcu(&tg->siblings, &tg->parent->children);
9008 spin_unlock_irqrestore(&task_group_lock, flags);
9009 done:
9010 mutex_unlock(&shares_mutex);
9011 return 0;
9014 unsigned long sched_group_shares(struct task_group *tg)
9016 return tg->shares;
9018 #endif
9020 #ifdef CONFIG_RT_GROUP_SCHED
9022 * Ensure that the real time constraints are schedulable.
9024 static DEFINE_MUTEX(rt_constraints_mutex);
9026 static unsigned long to_ratio(u64 period, u64 runtime)
9028 if (runtime == RUNTIME_INF)
9029 return 1ULL << 20;
9031 return div64_u64(runtime << 20, period);
9034 /* Must be called with tasklist_lock held */
9035 static inline int tg_has_rt_tasks(struct task_group *tg)
9037 struct task_struct *g, *p;
9039 do_each_thread(g, p) {
9040 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9041 return 1;
9042 } while_each_thread(g, p);
9044 return 0;
9047 struct rt_schedulable_data {
9048 struct task_group *tg;
9049 u64 rt_period;
9050 u64 rt_runtime;
9053 static int tg_schedulable(struct task_group *tg, void *data)
9055 struct rt_schedulable_data *d = data;
9056 struct task_group *child;
9057 unsigned long total, sum = 0;
9058 u64 period, runtime;
9060 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9061 runtime = tg->rt_bandwidth.rt_runtime;
9063 if (tg == d->tg) {
9064 period = d->rt_period;
9065 runtime = d->rt_runtime;
9068 #ifdef CONFIG_USER_SCHED
9069 if (tg == &root_task_group) {
9070 period = global_rt_period();
9071 runtime = global_rt_runtime();
9073 #endif
9076 * Cannot have more runtime than the period.
9078 if (runtime > period && runtime != RUNTIME_INF)
9079 return -EINVAL;
9082 * Ensure we don't starve existing RT tasks.
9084 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9085 return -EBUSY;
9087 total = to_ratio(period, runtime);
9090 * Nobody can have more than the global setting allows.
9092 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9093 return -EINVAL;
9096 * The sum of our children's runtime should not exceed our own.
9098 list_for_each_entry_rcu(child, &tg->children, siblings) {
9099 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9100 runtime = child->rt_bandwidth.rt_runtime;
9102 if (child == d->tg) {
9103 period = d->rt_period;
9104 runtime = d->rt_runtime;
9107 sum += to_ratio(period, runtime);
9110 if (sum > total)
9111 return -EINVAL;
9113 return 0;
9116 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9118 struct rt_schedulable_data data = {
9119 .tg = tg,
9120 .rt_period = period,
9121 .rt_runtime = runtime,
9124 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9127 static int tg_set_bandwidth(struct task_group *tg,
9128 u64 rt_period, u64 rt_runtime)
9130 int i, err = 0;
9132 mutex_lock(&rt_constraints_mutex);
9133 read_lock(&tasklist_lock);
9134 err = __rt_schedulable(tg, rt_period, rt_runtime);
9135 if (err)
9136 goto unlock;
9138 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9139 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9140 tg->rt_bandwidth.rt_runtime = rt_runtime;
9142 for_each_possible_cpu(i) {
9143 struct rt_rq *rt_rq = tg->rt_rq[i];
9145 spin_lock(&rt_rq->rt_runtime_lock);
9146 rt_rq->rt_runtime = rt_runtime;
9147 spin_unlock(&rt_rq->rt_runtime_lock);
9149 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9150 unlock:
9151 read_unlock(&tasklist_lock);
9152 mutex_unlock(&rt_constraints_mutex);
9154 return err;
9157 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9159 u64 rt_runtime, rt_period;
9161 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9162 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9163 if (rt_runtime_us < 0)
9164 rt_runtime = RUNTIME_INF;
9166 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9169 long sched_group_rt_runtime(struct task_group *tg)
9171 u64 rt_runtime_us;
9173 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9174 return -1;
9176 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9177 do_div(rt_runtime_us, NSEC_PER_USEC);
9178 return rt_runtime_us;
9181 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9183 u64 rt_runtime, rt_period;
9185 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9186 rt_runtime = tg->rt_bandwidth.rt_runtime;
9188 if (rt_period == 0)
9189 return -EINVAL;
9191 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9194 long sched_group_rt_period(struct task_group *tg)
9196 u64 rt_period_us;
9198 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9199 do_div(rt_period_us, NSEC_PER_USEC);
9200 return rt_period_us;
9203 static int sched_rt_global_constraints(void)
9205 u64 runtime, period;
9206 int ret = 0;
9208 if (sysctl_sched_rt_period <= 0)
9209 return -EINVAL;
9211 runtime = global_rt_runtime();
9212 period = global_rt_period();
9215 * Sanity check on the sysctl variables.
9217 if (runtime > period && runtime != RUNTIME_INF)
9218 return -EINVAL;
9220 mutex_lock(&rt_constraints_mutex);
9221 read_lock(&tasklist_lock);
9222 ret = __rt_schedulable(NULL, 0, 0);
9223 read_unlock(&tasklist_lock);
9224 mutex_unlock(&rt_constraints_mutex);
9226 return ret;
9228 #else /* !CONFIG_RT_GROUP_SCHED */
9229 static int sched_rt_global_constraints(void)
9231 unsigned long flags;
9232 int i;
9234 if (sysctl_sched_rt_period <= 0)
9235 return -EINVAL;
9237 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9238 for_each_possible_cpu(i) {
9239 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9241 spin_lock(&rt_rq->rt_runtime_lock);
9242 rt_rq->rt_runtime = global_rt_runtime();
9243 spin_unlock(&rt_rq->rt_runtime_lock);
9245 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9247 return 0;
9249 #endif /* CONFIG_RT_GROUP_SCHED */
9251 int sched_rt_handler(struct ctl_table *table, int write,
9252 struct file *filp, void __user *buffer, size_t *lenp,
9253 loff_t *ppos)
9255 int ret;
9256 int old_period, old_runtime;
9257 static DEFINE_MUTEX(mutex);
9259 mutex_lock(&mutex);
9260 old_period = sysctl_sched_rt_period;
9261 old_runtime = sysctl_sched_rt_runtime;
9263 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9265 if (!ret && write) {
9266 ret = sched_rt_global_constraints();
9267 if (ret) {
9268 sysctl_sched_rt_period = old_period;
9269 sysctl_sched_rt_runtime = old_runtime;
9270 } else {
9271 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9272 def_rt_bandwidth.rt_period =
9273 ns_to_ktime(global_rt_period());
9276 mutex_unlock(&mutex);
9278 return ret;
9281 #ifdef CONFIG_CGROUP_SCHED
9283 /* return corresponding task_group object of a cgroup */
9284 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9286 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9287 struct task_group, css);
9290 static struct cgroup_subsys_state *
9291 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9293 struct task_group *tg, *parent;
9295 if (!cgrp->parent) {
9296 /* This is early initialization for the top cgroup */
9297 return &init_task_group.css;
9300 parent = cgroup_tg(cgrp->parent);
9301 tg = sched_create_group(parent);
9302 if (IS_ERR(tg))
9303 return ERR_PTR(-ENOMEM);
9305 return &tg->css;
9308 static void
9309 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9311 struct task_group *tg = cgroup_tg(cgrp);
9313 sched_destroy_group(tg);
9316 static int
9317 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9318 struct task_struct *tsk)
9320 #ifdef CONFIG_RT_GROUP_SCHED
9321 /* Don't accept realtime tasks when there is no way for them to run */
9322 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9323 return -EINVAL;
9324 #else
9325 /* We don't support RT-tasks being in separate groups */
9326 if (tsk->sched_class != &fair_sched_class)
9327 return -EINVAL;
9328 #endif
9330 return 0;
9333 static void
9334 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9335 struct cgroup *old_cont, struct task_struct *tsk)
9337 sched_move_task(tsk);
9340 #ifdef CONFIG_FAIR_GROUP_SCHED
9341 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9342 u64 shareval)
9344 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9347 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9349 struct task_group *tg = cgroup_tg(cgrp);
9351 return (u64) tg->shares;
9353 #endif /* CONFIG_FAIR_GROUP_SCHED */
9355 #ifdef CONFIG_RT_GROUP_SCHED
9356 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9357 s64 val)
9359 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9362 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9364 return sched_group_rt_runtime(cgroup_tg(cgrp));
9367 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9368 u64 rt_period_us)
9370 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9373 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9375 return sched_group_rt_period(cgroup_tg(cgrp));
9377 #endif /* CONFIG_RT_GROUP_SCHED */
9379 static struct cftype cpu_files[] = {
9380 #ifdef CONFIG_FAIR_GROUP_SCHED
9382 .name = "shares",
9383 .read_u64 = cpu_shares_read_u64,
9384 .write_u64 = cpu_shares_write_u64,
9386 #endif
9387 #ifdef CONFIG_RT_GROUP_SCHED
9389 .name = "rt_runtime_us",
9390 .read_s64 = cpu_rt_runtime_read,
9391 .write_s64 = cpu_rt_runtime_write,
9394 .name = "rt_period_us",
9395 .read_u64 = cpu_rt_period_read_uint,
9396 .write_u64 = cpu_rt_period_write_uint,
9398 #endif
9401 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9403 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9406 struct cgroup_subsys cpu_cgroup_subsys = {
9407 .name = "cpu",
9408 .create = cpu_cgroup_create,
9409 .destroy = cpu_cgroup_destroy,
9410 .can_attach = cpu_cgroup_can_attach,
9411 .attach = cpu_cgroup_attach,
9412 .populate = cpu_cgroup_populate,
9413 .subsys_id = cpu_cgroup_subsys_id,
9414 .early_init = 1,
9417 #endif /* CONFIG_CGROUP_SCHED */
9419 #ifdef CONFIG_CGROUP_CPUACCT
9422 * CPU accounting code for task groups.
9424 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9425 * (balbir@in.ibm.com).
9428 /* track cpu usage of a group of tasks and its child groups */
9429 struct cpuacct {
9430 struct cgroup_subsys_state css;
9431 /* cpuusage holds pointer to a u64-type object on every cpu */
9432 u64 *cpuusage;
9433 struct cpuacct *parent;
9436 struct cgroup_subsys cpuacct_subsys;
9438 /* return cpu accounting group corresponding to this container */
9439 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9441 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9442 struct cpuacct, css);
9445 /* return cpu accounting group to which this task belongs */
9446 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9448 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9449 struct cpuacct, css);
9452 /* create a new cpu accounting group */
9453 static struct cgroup_subsys_state *cpuacct_create(
9454 struct cgroup_subsys *ss, struct cgroup *cgrp)
9456 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9458 if (!ca)
9459 return ERR_PTR(-ENOMEM);
9461 ca->cpuusage = alloc_percpu(u64);
9462 if (!ca->cpuusage) {
9463 kfree(ca);
9464 return ERR_PTR(-ENOMEM);
9467 if (cgrp->parent)
9468 ca->parent = cgroup_ca(cgrp->parent);
9470 return &ca->css;
9473 /* destroy an existing cpu accounting group */
9474 static void
9475 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9477 struct cpuacct *ca = cgroup_ca(cgrp);
9479 free_percpu(ca->cpuusage);
9480 kfree(ca);
9483 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9485 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9486 u64 data;
9488 #ifndef CONFIG_64BIT
9490 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9492 spin_lock_irq(&cpu_rq(cpu)->lock);
9493 data = *cpuusage;
9494 spin_unlock_irq(&cpu_rq(cpu)->lock);
9495 #else
9496 data = *cpuusage;
9497 #endif
9499 return data;
9502 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9504 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9506 #ifndef CONFIG_64BIT
9508 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9510 spin_lock_irq(&cpu_rq(cpu)->lock);
9511 *cpuusage = val;
9512 spin_unlock_irq(&cpu_rq(cpu)->lock);
9513 #else
9514 *cpuusage = val;
9515 #endif
9518 /* return total cpu usage (in nanoseconds) of a group */
9519 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9521 struct cpuacct *ca = cgroup_ca(cgrp);
9522 u64 totalcpuusage = 0;
9523 int i;
9525 for_each_present_cpu(i)
9526 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9528 return totalcpuusage;
9531 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9532 u64 reset)
9534 struct cpuacct *ca = cgroup_ca(cgrp);
9535 int err = 0;
9536 int i;
9538 if (reset) {
9539 err = -EINVAL;
9540 goto out;
9543 for_each_present_cpu(i)
9544 cpuacct_cpuusage_write(ca, i, 0);
9546 out:
9547 return err;
9550 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9551 struct seq_file *m)
9553 struct cpuacct *ca = cgroup_ca(cgroup);
9554 u64 percpu;
9555 int i;
9557 for_each_present_cpu(i) {
9558 percpu = cpuacct_cpuusage_read(ca, i);
9559 seq_printf(m, "%llu ", (unsigned long long) percpu);
9561 seq_printf(m, "\n");
9562 return 0;
9565 static struct cftype files[] = {
9567 .name = "usage",
9568 .read_u64 = cpuusage_read,
9569 .write_u64 = cpuusage_write,
9572 .name = "usage_percpu",
9573 .read_seq_string = cpuacct_percpu_seq_read,
9578 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9580 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9584 * charge this task's execution time to its accounting group.
9586 * called with rq->lock held.
9588 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9590 struct cpuacct *ca;
9591 int cpu;
9593 if (!cpuacct_subsys.active)
9594 return;
9596 cpu = task_cpu(tsk);
9597 ca = task_ca(tsk);
9599 for (; ca; ca = ca->parent) {
9600 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9601 *cpuusage += cputime;
9605 struct cgroup_subsys cpuacct_subsys = {
9606 .name = "cpuacct",
9607 .create = cpuacct_create,
9608 .destroy = cpuacct_destroy,
9609 .populate = cpuacct_populate,
9610 .subsys_id = cpuacct_subsys_id,
9612 #endif /* CONFIG_CGROUP_CPUACCT */