4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
34 #include <linux/suspend.h>
35 #include <linux/pagemap.h>
36 #include <asm/uaccess.h>
38 #include <linux/proc_fs.h>
40 EXPORT_SYMBOL(journal_start
);
41 EXPORT_SYMBOL(journal_restart
);
42 EXPORT_SYMBOL(journal_extend
);
43 EXPORT_SYMBOL(journal_stop
);
44 EXPORT_SYMBOL(journal_lock_updates
);
45 EXPORT_SYMBOL(journal_unlock_updates
);
46 EXPORT_SYMBOL(journal_get_write_access
);
47 EXPORT_SYMBOL(journal_get_create_access
);
48 EXPORT_SYMBOL(journal_get_undo_access
);
49 EXPORT_SYMBOL(journal_dirty_data
);
50 EXPORT_SYMBOL(journal_dirty_metadata
);
51 EXPORT_SYMBOL(journal_release_buffer
);
52 EXPORT_SYMBOL(journal_forget
);
54 EXPORT_SYMBOL(journal_sync_buffer
);
56 EXPORT_SYMBOL(journal_flush
);
57 EXPORT_SYMBOL(journal_revoke
);
59 EXPORT_SYMBOL(journal_init_dev
);
60 EXPORT_SYMBOL(journal_init_inode
);
61 EXPORT_SYMBOL(journal_update_format
);
62 EXPORT_SYMBOL(journal_check_used_features
);
63 EXPORT_SYMBOL(journal_check_available_features
);
64 EXPORT_SYMBOL(journal_set_features
);
65 EXPORT_SYMBOL(journal_create
);
66 EXPORT_SYMBOL(journal_load
);
67 EXPORT_SYMBOL(journal_destroy
);
68 EXPORT_SYMBOL(journal_update_superblock
);
69 EXPORT_SYMBOL(journal_abort
);
70 EXPORT_SYMBOL(journal_errno
);
71 EXPORT_SYMBOL(journal_ack_err
);
72 EXPORT_SYMBOL(journal_clear_err
);
73 EXPORT_SYMBOL(log_wait_commit
);
74 EXPORT_SYMBOL(journal_start_commit
);
75 EXPORT_SYMBOL(journal_force_commit_nested
);
76 EXPORT_SYMBOL(journal_wipe
);
77 EXPORT_SYMBOL(journal_blocks_per_page
);
78 EXPORT_SYMBOL(journal_invalidatepage
);
79 EXPORT_SYMBOL(journal_try_to_free_buffers
);
80 EXPORT_SYMBOL(journal_force_commit
);
82 static int journal_convert_superblock_v1(journal_t
*, journal_superblock_t
*);
83 static void __journal_abort_soft (journal_t
*journal
, int errno
);
86 * Helper function used to manage commit timeouts
89 static void commit_timeout(unsigned long __data
)
91 struct task_struct
* p
= (struct task_struct
*) __data
;
97 * kjournald: The main thread function used to manage a logging device
100 * This kernel thread is responsible for two things:
102 * 1) COMMIT: Every so often we need to commit the current state of the
103 * filesystem to disk. The journal thread is responsible for writing
104 * all of the metadata buffers to disk.
106 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
107 * of the data in that part of the log has been rewritten elsewhere on
108 * the disk. Flushing these old buffers to reclaim space in the log is
109 * known as checkpointing, and this thread is responsible for that job.
112 static int kjournald(void *arg
)
114 journal_t
*journal
= (journal_t
*) arg
;
115 transaction_t
*transaction
;
116 struct timer_list timer
;
118 daemonize("kjournald");
120 /* Set up an interval timer which can be used to trigger a
121 commit wakeup after the commit interval expires */
123 timer
.data
= (unsigned long) current
;
124 timer
.function
= commit_timeout
;
125 journal
->j_commit_timer
= &timer
;
127 /* Record that the journal thread is running */
128 journal
->j_task
= current
;
129 wake_up(&journal
->j_wait_done_commit
);
131 printk(KERN_INFO
"kjournald starting. Commit interval %ld seconds\n",
132 journal
->j_commit_interval
/ HZ
);
135 * And now, wait forever for commit wakeup events.
137 spin_lock(&journal
->j_state_lock
);
140 if (journal
->j_flags
& JFS_UNMOUNT
)
143 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
144 journal
->j_commit_sequence
, journal
->j_commit_request
);
146 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
147 jbd_debug(1, "OK, requests differ\n");
148 spin_unlock(&journal
->j_state_lock
);
149 del_timer_sync(journal
->j_commit_timer
);
150 journal_commit_transaction(journal
);
151 spin_lock(&journal
->j_state_lock
);
155 wake_up(&journal
->j_wait_done_commit
);
156 if (freezing(current
)) {
158 * The simpler the better. Flushing journal isn't a
159 * good idea, because that depends on threads that may
160 * be already stopped.
162 jbd_debug(1, "Now suspending kjournald\n");
163 spin_unlock(&journal
->j_state_lock
);
165 spin_lock(&journal
->j_state_lock
);
168 * We assume on resume that commits are already there,
172 int should_sleep
= 1;
174 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
176 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
178 transaction
= journal
->j_running_transaction
;
179 if (transaction
&& time_after_eq(jiffies
,
180 transaction
->t_expires
))
182 if (journal
->j_flags
& JFS_UNMOUNT
)
185 spin_unlock(&journal
->j_state_lock
);
187 spin_lock(&journal
->j_state_lock
);
189 finish_wait(&journal
->j_wait_commit
, &wait
);
192 jbd_debug(1, "kjournald wakes\n");
195 * Were we woken up by a commit wakeup event?
197 transaction
= journal
->j_running_transaction
;
198 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
199 journal
->j_commit_request
= transaction
->t_tid
;
200 jbd_debug(1, "woke because of timeout\n");
205 spin_unlock(&journal
->j_state_lock
);
206 del_timer_sync(journal
->j_commit_timer
);
207 journal
->j_task
= NULL
;
208 wake_up(&journal
->j_wait_done_commit
);
209 jbd_debug(1, "Journal thread exiting.\n");
213 static void journal_start_thread(journal_t
*journal
)
215 kernel_thread(kjournald
, journal
, CLONE_VM
|CLONE_FS
|CLONE_FILES
);
216 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= 0);
219 static void journal_kill_thread(journal_t
*journal
)
221 spin_lock(&journal
->j_state_lock
);
222 journal
->j_flags
|= JFS_UNMOUNT
;
224 while (journal
->j_task
) {
225 wake_up(&journal
->j_wait_commit
);
226 spin_unlock(&journal
->j_state_lock
);
227 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== 0);
228 spin_lock(&journal
->j_state_lock
);
230 spin_unlock(&journal
->j_state_lock
);
234 * journal_write_metadata_buffer: write a metadata buffer to the journal.
236 * Writes a metadata buffer to a given disk block. The actual IO is not
237 * performed but a new buffer_head is constructed which labels the data
238 * to be written with the correct destination disk block.
240 * Any magic-number escaping which needs to be done will cause a
241 * copy-out here. If the buffer happens to start with the
242 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
243 * magic number is only written to the log for descripter blocks. In
244 * this case, we copy the data and replace the first word with 0, and we
245 * return a result code which indicates that this buffer needs to be
246 * marked as an escaped buffer in the corresponding log descriptor
247 * block. The missing word can then be restored when the block is read
250 * If the source buffer has already been modified by a new transaction
251 * since we took the last commit snapshot, we use the frozen copy of
252 * that data for IO. If we end up using the existing buffer_head's data
253 * for the write, then we *have* to lock the buffer to prevent anyone
254 * else from using and possibly modifying it while the IO is in
257 * The function returns a pointer to the buffer_heads to be used for IO.
259 * We assume that the journal has already been locked in this function.
266 * Bit 0 set == escape performed on the data
267 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
270 int journal_write_metadata_buffer(transaction_t
*transaction
,
271 struct journal_head
*jh_in
,
272 struct journal_head
**jh_out
,
275 int need_copy_out
= 0;
276 int done_copy_out
= 0;
279 struct buffer_head
*new_bh
;
280 struct journal_head
*new_jh
;
281 struct page
*new_page
;
282 unsigned int new_offset
;
283 struct buffer_head
*bh_in
= jh2bh(jh_in
);
286 * The buffer really shouldn't be locked: only the current committing
287 * transaction is allowed to write it, so nobody else is allowed
290 * akpm: except if we're journalling data, and write() output is
291 * also part of a shared mapping, and another thread has
292 * decided to launch a writepage() against this buffer.
294 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
296 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
299 * If a new transaction has already done a buffer copy-out, then
300 * we use that version of the data for the commit.
302 jbd_lock_bh_state(bh_in
);
304 if (jh_in
->b_frozen_data
) {
306 new_page
= virt_to_page(jh_in
->b_frozen_data
);
307 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
309 new_page
= jh2bh(jh_in
)->b_page
;
310 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
313 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
317 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
318 cpu_to_be32(JFS_MAGIC_NUMBER
)) {
322 kunmap_atomic(mapped_data
, KM_USER0
);
325 * Do we need to do a data copy?
327 if (need_copy_out
&& !done_copy_out
) {
330 jbd_unlock_bh_state(bh_in
);
331 tmp
= jbd_rep_kmalloc(bh_in
->b_size
, GFP_NOFS
);
332 jbd_lock_bh_state(bh_in
);
333 if (jh_in
->b_frozen_data
) {
338 jh_in
->b_frozen_data
= tmp
;
339 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
340 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
341 kunmap_atomic(mapped_data
, KM_USER0
);
343 new_page
= virt_to_page(tmp
);
344 new_offset
= offset_in_page(tmp
);
349 * Did we need to do an escaping? Now we've done all the
350 * copying, we can finally do so.
353 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
354 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
355 kunmap_atomic(mapped_data
, KM_USER0
);
358 /* keep subsequent assertions sane */
360 init_buffer(new_bh
, NULL
, NULL
);
361 atomic_set(&new_bh
->b_count
, 1);
362 jbd_unlock_bh_state(bh_in
);
364 new_jh
= journal_add_journal_head(new_bh
); /* This sleeps */
366 set_bh_page(new_bh
, new_page
, new_offset
);
367 new_jh
->b_transaction
= NULL
;
368 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
369 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
370 new_bh
->b_blocknr
= blocknr
;
371 set_buffer_mapped(new_bh
);
372 set_buffer_dirty(new_bh
);
377 * The to-be-written buffer needs to get moved to the io queue,
378 * and the original buffer whose contents we are shadowing or
379 * copying is moved to the transaction's shadow queue.
381 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
382 journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
383 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
384 journal_file_buffer(new_jh
, transaction
, BJ_IO
);
386 return do_escape
| (done_copy_out
<< 1);
390 * Allocation code for the journal file. Manage the space left in the
391 * journal, so that we can begin checkpointing when appropriate.
395 * __log_space_left: Return the number of free blocks left in the journal.
397 * Called with the journal already locked.
399 * Called under j_state_lock
402 int __log_space_left(journal_t
*journal
)
404 int left
= journal
->j_free
;
406 assert_spin_locked(&journal
->j_state_lock
);
409 * Be pessimistic here about the number of those free blocks which
410 * might be required for log descriptor control blocks.
413 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
415 left
-= MIN_LOG_RESERVED_BLOCKS
;
424 * Called under j_state_lock. Returns true if a transaction was started.
426 int __log_start_commit(journal_t
*journal
, tid_t target
)
429 * Are we already doing a recent enough commit?
431 if (!tid_geq(journal
->j_commit_request
, target
)) {
433 * We want a new commit: OK, mark the request and wakup the
434 * commit thread. We do _not_ do the commit ourselves.
437 journal
->j_commit_request
= target
;
438 jbd_debug(1, "JBD: requesting commit %d/%d\n",
439 journal
->j_commit_request
,
440 journal
->j_commit_sequence
);
441 wake_up(&journal
->j_wait_commit
);
447 int log_start_commit(journal_t
*journal
, tid_t tid
)
451 spin_lock(&journal
->j_state_lock
);
452 ret
= __log_start_commit(journal
, tid
);
453 spin_unlock(&journal
->j_state_lock
);
458 * Force and wait upon a commit if the calling process is not within
459 * transaction. This is used for forcing out undo-protected data which contains
460 * bitmaps, when the fs is running out of space.
462 * We can only force the running transaction if we don't have an active handle;
463 * otherwise, we will deadlock.
465 * Returns true if a transaction was started.
467 int journal_force_commit_nested(journal_t
*journal
)
469 transaction_t
*transaction
= NULL
;
472 spin_lock(&journal
->j_state_lock
);
473 if (journal
->j_running_transaction
&& !current
->journal_info
) {
474 transaction
= journal
->j_running_transaction
;
475 __log_start_commit(journal
, transaction
->t_tid
);
476 } else if (journal
->j_committing_transaction
)
477 transaction
= journal
->j_committing_transaction
;
480 spin_unlock(&journal
->j_state_lock
);
481 return 0; /* Nothing to retry */
484 tid
= transaction
->t_tid
;
485 spin_unlock(&journal
->j_state_lock
);
486 log_wait_commit(journal
, tid
);
491 * Start a commit of the current running transaction (if any). Returns true
492 * if a transaction was started, and fills its tid in at *ptid
494 int journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
498 spin_lock(&journal
->j_state_lock
);
499 if (journal
->j_running_transaction
) {
500 tid_t tid
= journal
->j_running_transaction
->t_tid
;
502 ret
= __log_start_commit(journal
, tid
);
505 } else if (journal
->j_committing_transaction
&& ptid
) {
507 * If ext3_write_super() recently started a commit, then we
508 * have to wait for completion of that transaction
510 *ptid
= journal
->j_committing_transaction
->t_tid
;
513 spin_unlock(&journal
->j_state_lock
);
518 * Wait for a specified commit to complete.
519 * The caller may not hold the journal lock.
521 int log_wait_commit(journal_t
*journal
, tid_t tid
)
525 #ifdef CONFIG_JBD_DEBUG
526 spin_lock(&journal
->j_state_lock
);
527 if (!tid_geq(journal
->j_commit_request
, tid
)) {
529 "%s: error: j_commit_request=%d, tid=%d\n",
530 __FUNCTION__
, journal
->j_commit_request
, tid
);
532 spin_unlock(&journal
->j_state_lock
);
534 spin_lock(&journal
->j_state_lock
);
535 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
536 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
537 tid
, journal
->j_commit_sequence
);
538 wake_up(&journal
->j_wait_commit
);
539 spin_unlock(&journal
->j_state_lock
);
540 wait_event(journal
->j_wait_done_commit
,
541 !tid_gt(tid
, journal
->j_commit_sequence
));
542 spin_lock(&journal
->j_state_lock
);
544 spin_unlock(&journal
->j_state_lock
);
546 if (unlikely(is_journal_aborted(journal
))) {
547 printk(KERN_EMERG
"journal commit I/O error\n");
554 * Log buffer allocation routines:
557 int journal_next_log_block(journal_t
*journal
, unsigned long *retp
)
559 unsigned long blocknr
;
561 spin_lock(&journal
->j_state_lock
);
562 J_ASSERT(journal
->j_free
> 1);
564 blocknr
= journal
->j_head
;
567 if (journal
->j_head
== journal
->j_last
)
568 journal
->j_head
= journal
->j_first
;
569 spin_unlock(&journal
->j_state_lock
);
570 return journal_bmap(journal
, blocknr
, retp
);
574 * Conversion of logical to physical block numbers for the journal
576 * On external journals the journal blocks are identity-mapped, so
577 * this is a no-op. If needed, we can use j_blk_offset - everything is
580 int journal_bmap(journal_t
*journal
, unsigned long blocknr
,
586 if (journal
->j_inode
) {
587 ret
= bmap(journal
->j_inode
, blocknr
);
591 char b
[BDEVNAME_SIZE
];
593 printk(KERN_ALERT
"%s: journal block not found "
594 "at offset %lu on %s\n",
597 bdevname(journal
->j_dev
, b
));
599 __journal_abort_soft(journal
, err
);
602 *retp
= blocknr
; /* +journal->j_blk_offset */
608 * We play buffer_head aliasing tricks to write data/metadata blocks to
609 * the journal without copying their contents, but for journal
610 * descriptor blocks we do need to generate bona fide buffers.
612 * After the caller of journal_get_descriptor_buffer() has finished modifying
613 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
614 * But we don't bother doing that, so there will be coherency problems with
615 * mmaps of blockdevs which hold live JBD-controlled filesystems.
617 struct journal_head
*journal_get_descriptor_buffer(journal_t
*journal
)
619 struct buffer_head
*bh
;
620 unsigned long blocknr
;
623 err
= journal_next_log_block(journal
, &blocknr
);
628 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
630 memset(bh
->b_data
, 0, journal
->j_blocksize
);
631 set_buffer_uptodate(bh
);
633 BUFFER_TRACE(bh
, "return this buffer");
634 return journal_add_journal_head(bh
);
638 * Management for journal control blocks: functions to create and
639 * destroy journal_t structures, and to initialise and read existing
640 * journal blocks from disk. */
642 /* First: create and setup a journal_t object in memory. We initialise
643 * very few fields yet: that has to wait until we have created the
644 * journal structures from from scratch, or loaded them from disk. */
646 static journal_t
* journal_init_common (void)
651 journal
= jbd_kmalloc(sizeof(*journal
), GFP_KERNEL
);
654 memset(journal
, 0, sizeof(*journal
));
656 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
657 init_waitqueue_head(&journal
->j_wait_logspace
);
658 init_waitqueue_head(&journal
->j_wait_done_commit
);
659 init_waitqueue_head(&journal
->j_wait_checkpoint
);
660 init_waitqueue_head(&journal
->j_wait_commit
);
661 init_waitqueue_head(&journal
->j_wait_updates
);
662 init_MUTEX(&journal
->j_barrier
);
663 init_MUTEX(&journal
->j_checkpoint_sem
);
664 spin_lock_init(&journal
->j_revoke_lock
);
665 spin_lock_init(&journal
->j_list_lock
);
666 spin_lock_init(&journal
->j_state_lock
);
668 journal
->j_commit_interval
= (HZ
* JBD_DEFAULT_MAX_COMMIT_AGE
);
670 /* The journal is marked for error until we succeed with recovery! */
671 journal
->j_flags
= JFS_ABORT
;
673 /* Set up a default-sized revoke table for the new mount. */
674 err
= journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
684 /* journal_init_dev and journal_init_inode:
686 * Create a journal structure assigned some fixed set of disk blocks to
687 * the journal. We don't actually touch those disk blocks yet, but we
688 * need to set up all of the mapping information to tell the journaling
689 * system where the journal blocks are.
694 * journal_t * journal_init_dev() - creates an initialises a journal structure
695 * @bdev: Block device on which to create the journal
696 * @fs_dev: Device which hold journalled filesystem for this journal.
697 * @start: Block nr Start of journal.
698 * @len: Lenght of the journal in blocks.
699 * @blocksize: blocksize of journalling device
700 * @returns: a newly created journal_t *
702 * journal_init_dev creates a journal which maps a fixed contiguous
703 * range of blocks on an arbitrary block device.
706 journal_t
* journal_init_dev(struct block_device
*bdev
,
707 struct block_device
*fs_dev
,
708 int start
, int len
, int blocksize
)
710 journal_t
*journal
= journal_init_common();
711 struct buffer_head
*bh
;
717 journal
->j_dev
= bdev
;
718 journal
->j_fs_dev
= fs_dev
;
719 journal
->j_blk_offset
= start
;
720 journal
->j_maxlen
= len
;
721 journal
->j_blocksize
= blocksize
;
723 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
724 J_ASSERT(bh
!= NULL
);
725 journal
->j_sb_buffer
= bh
;
726 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
728 /* journal descriptor can store up to n blocks -bzzz */
729 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
730 journal
->j_wbufsize
= n
;
731 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
732 if (!journal
->j_wbuf
) {
733 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
743 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
744 * @inode: An inode to create the journal in
746 * journal_init_inode creates a journal which maps an on-disk inode as
747 * the journal. The inode must exist already, must support bmap() and
748 * must have all data blocks preallocated.
750 journal_t
* journal_init_inode (struct inode
*inode
)
752 struct buffer_head
*bh
;
753 journal_t
*journal
= journal_init_common();
756 unsigned long blocknr
;
761 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
762 journal
->j_inode
= inode
;
764 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
765 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
766 (long long) inode
->i_size
,
767 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
769 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
770 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
772 /* journal descriptor can store up to n blocks -bzzz */
773 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
774 journal
->j_wbufsize
= n
;
775 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
776 if (!journal
->j_wbuf
) {
777 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
783 err
= journal_bmap(journal
, 0, &blocknr
);
784 /* If that failed, give up */
786 printk(KERN_ERR
"%s: Cannnot locate journal superblock\n",
792 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
793 J_ASSERT(bh
!= NULL
);
794 journal
->j_sb_buffer
= bh
;
795 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
801 * If the journal init or create aborts, we need to mark the journal
802 * superblock as being NULL to prevent the journal destroy from writing
803 * back a bogus superblock.
805 static void journal_fail_superblock (journal_t
*journal
)
807 struct buffer_head
*bh
= journal
->j_sb_buffer
;
809 journal
->j_sb_buffer
= NULL
;
813 * Given a journal_t structure, initialise the various fields for
814 * startup of a new journaling session. We use this both when creating
815 * a journal, and after recovering an old journal to reset it for
819 static int journal_reset(journal_t
*journal
)
821 journal_superblock_t
*sb
= journal
->j_superblock
;
822 unsigned int first
, last
;
824 first
= be32_to_cpu(sb
->s_first
);
825 last
= be32_to_cpu(sb
->s_maxlen
);
827 journal
->j_first
= first
;
828 journal
->j_last
= last
;
830 journal
->j_head
= first
;
831 journal
->j_tail
= first
;
832 journal
->j_free
= last
- first
;
834 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
835 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
836 journal
->j_commit_request
= journal
->j_commit_sequence
;
838 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
840 /* Add the dynamic fields and write it to disk. */
841 journal_update_superblock(journal
, 1);
842 journal_start_thread(journal
);
847 * int journal_create() - Initialise the new journal file
848 * @journal: Journal to create. This structure must have been initialised
850 * Given a journal_t structure which tells us which disk blocks we can
851 * use, create a new journal superblock and initialise all of the
852 * journal fields from scratch.
854 int journal_create(journal_t
*journal
)
856 unsigned long blocknr
;
857 struct buffer_head
*bh
;
858 journal_superblock_t
*sb
;
861 if (journal
->j_maxlen
< JFS_MIN_JOURNAL_BLOCKS
) {
862 printk (KERN_ERR
"Journal length (%d blocks) too short.\n",
864 journal_fail_superblock(journal
);
868 if (journal
->j_inode
== NULL
) {
870 * We don't know what block to start at!
873 "%s: creation of journal on external device!\n",
878 /* Zero out the entire journal on disk. We cannot afford to
879 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
880 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
881 for (i
= 0; i
< journal
->j_maxlen
; i
++) {
882 err
= journal_bmap(journal
, i
, &blocknr
);
885 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
887 memset (bh
->b_data
, 0, journal
->j_blocksize
);
888 BUFFER_TRACE(bh
, "marking dirty");
889 mark_buffer_dirty(bh
);
890 BUFFER_TRACE(bh
, "marking uptodate");
891 set_buffer_uptodate(bh
);
896 sync_blockdev(journal
->j_dev
);
897 jbd_debug(1, "JBD: journal cleared.\n");
899 /* OK, fill in the initial static fields in the new superblock */
900 sb
= journal
->j_superblock
;
902 sb
->s_header
.h_magic
= cpu_to_be32(JFS_MAGIC_NUMBER
);
903 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
905 sb
->s_blocksize
= cpu_to_be32(journal
->j_blocksize
);
906 sb
->s_maxlen
= cpu_to_be32(journal
->j_maxlen
);
907 sb
->s_first
= cpu_to_be32(1);
909 journal
->j_transaction_sequence
= 1;
911 journal
->j_flags
&= ~JFS_ABORT
;
912 journal
->j_format_version
= 2;
914 return journal_reset(journal
);
918 * void journal_update_superblock() - Update journal sb on disk.
919 * @journal: The journal to update.
920 * @wait: Set to '0' if you don't want to wait for IO completion.
922 * Update a journal's dynamic superblock fields and write it to disk,
923 * optionally waiting for the IO to complete.
925 void journal_update_superblock(journal_t
*journal
, int wait
)
927 journal_superblock_t
*sb
= journal
->j_superblock
;
928 struct buffer_head
*bh
= journal
->j_sb_buffer
;
931 * As a special case, if the on-disk copy is already marked as needing
932 * no recovery (s_start == 0) and there are no outstanding transactions
933 * in the filesystem, then we can safely defer the superblock update
934 * until the next commit by setting JFS_FLUSHED. This avoids
935 * attempting a write to a potential-readonly device.
937 if (sb
->s_start
== 0 && journal
->j_tail_sequence
==
938 journal
->j_transaction_sequence
) {
939 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
940 "(start %ld, seq %d, errno %d)\n",
941 journal
->j_tail
, journal
->j_tail_sequence
,
946 spin_lock(&journal
->j_state_lock
);
947 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
948 journal
->j_tail
, journal
->j_tail_sequence
, journal
->j_errno
);
950 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
951 sb
->s_start
= cpu_to_be32(journal
->j_tail
);
952 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
953 spin_unlock(&journal
->j_state_lock
);
955 BUFFER_TRACE(bh
, "marking dirty");
956 mark_buffer_dirty(bh
);
958 sync_dirty_buffer(bh
);
960 ll_rw_block(SWRITE
, 1, &bh
);
963 /* If we have just flushed the log (by marking s_start==0), then
964 * any future commit will have to be careful to update the
965 * superblock again to re-record the true start of the log. */
967 spin_lock(&journal
->j_state_lock
);
969 journal
->j_flags
&= ~JFS_FLUSHED
;
971 journal
->j_flags
|= JFS_FLUSHED
;
972 spin_unlock(&journal
->j_state_lock
);
976 * Read the superblock for a given journal, performing initial
977 * validation of the format.
980 static int journal_get_superblock(journal_t
*journal
)
982 struct buffer_head
*bh
;
983 journal_superblock_t
*sb
;
986 bh
= journal
->j_sb_buffer
;
988 J_ASSERT(bh
!= NULL
);
989 if (!buffer_uptodate(bh
)) {
990 ll_rw_block(READ
, 1, &bh
);
992 if (!buffer_uptodate(bh
)) {
994 "JBD: IO error reading journal superblock\n");
999 sb
= journal
->j_superblock
;
1003 if (sb
->s_header
.h_magic
!= cpu_to_be32(JFS_MAGIC_NUMBER
) ||
1004 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1005 printk(KERN_WARNING
"JBD: no valid journal superblock found\n");
1009 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1010 case JFS_SUPERBLOCK_V1
:
1011 journal
->j_format_version
= 1;
1013 case JFS_SUPERBLOCK_V2
:
1014 journal
->j_format_version
= 2;
1017 printk(KERN_WARNING
"JBD: unrecognised superblock format ID\n");
1021 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1022 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1023 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1024 printk (KERN_WARNING
"JBD: journal file too short\n");
1031 journal_fail_superblock(journal
);
1036 * Load the on-disk journal superblock and read the key fields into the
1040 static int load_superblock(journal_t
*journal
)
1043 journal_superblock_t
*sb
;
1045 err
= journal_get_superblock(journal
);
1049 sb
= journal
->j_superblock
;
1051 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1052 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1053 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1054 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1055 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1062 * int journal_load() - Read journal from disk.
1063 * @journal: Journal to act on.
1065 * Given a journal_t structure which tells us which disk blocks contain
1066 * a journal, read the journal from disk to initialise the in-memory
1069 int journal_load(journal_t
*journal
)
1073 err
= load_superblock(journal
);
1077 /* If this is a V2 superblock, then we have to check the
1078 * features flags on it. */
1080 if (journal
->j_format_version
>= 2) {
1081 journal_superblock_t
*sb
= journal
->j_superblock
;
1083 if ((sb
->s_feature_ro_compat
&
1084 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES
)) ||
1085 (sb
->s_feature_incompat
&
1086 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES
))) {
1087 printk (KERN_WARNING
1088 "JBD: Unrecognised features on journal\n");
1093 /* Let the recovery code check whether it needs to recover any
1094 * data from the journal. */
1095 if (journal_recover(journal
))
1096 goto recovery_error
;
1098 /* OK, we've finished with the dynamic journal bits:
1099 * reinitialise the dynamic contents of the superblock in memory
1100 * and reset them on disk. */
1101 if (journal_reset(journal
))
1102 goto recovery_error
;
1104 journal
->j_flags
&= ~JFS_ABORT
;
1105 journal
->j_flags
|= JFS_LOADED
;
1109 printk (KERN_WARNING
"JBD: recovery failed\n");
1114 * void journal_destroy() - Release a journal_t structure.
1115 * @journal: Journal to act on.
1117 * Release a journal_t structure once it is no longer in use by the
1120 void journal_destroy(journal_t
*journal
)
1122 /* Wait for the commit thread to wake up and die. */
1123 journal_kill_thread(journal
);
1125 /* Force a final log commit */
1126 if (journal
->j_running_transaction
)
1127 journal_commit_transaction(journal
);
1129 /* Force any old transactions to disk */
1131 /* Totally anal locking here... */
1132 spin_lock(&journal
->j_list_lock
);
1133 while (journal
->j_checkpoint_transactions
!= NULL
) {
1134 spin_unlock(&journal
->j_list_lock
);
1135 log_do_checkpoint(journal
);
1136 spin_lock(&journal
->j_list_lock
);
1139 J_ASSERT(journal
->j_running_transaction
== NULL
);
1140 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1141 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1142 spin_unlock(&journal
->j_list_lock
);
1144 /* We can now mark the journal as empty. */
1145 journal
->j_tail
= 0;
1146 journal
->j_tail_sequence
= ++journal
->j_transaction_sequence
;
1147 if (journal
->j_sb_buffer
) {
1148 journal_update_superblock(journal
, 1);
1149 brelse(journal
->j_sb_buffer
);
1152 if (journal
->j_inode
)
1153 iput(journal
->j_inode
);
1154 if (journal
->j_revoke
)
1155 journal_destroy_revoke(journal
);
1156 kfree(journal
->j_wbuf
);
1162 *int journal_check_used_features () - Check if features specified are used.
1163 * @journal: Journal to check.
1164 * @compat: bitmask of compatible features
1165 * @ro: bitmask of features that force read-only mount
1166 * @incompat: bitmask of incompatible features
1168 * Check whether the journal uses all of a given set of
1169 * features. Return true (non-zero) if it does.
1172 int journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1173 unsigned long ro
, unsigned long incompat
)
1175 journal_superblock_t
*sb
;
1177 if (!compat
&& !ro
&& !incompat
)
1179 if (journal
->j_format_version
== 1)
1182 sb
= journal
->j_superblock
;
1184 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1185 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1186 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1193 * int journal_check_available_features() - Check feature set in journalling layer
1194 * @journal: Journal to check.
1195 * @compat: bitmask of compatible features
1196 * @ro: bitmask of features that force read-only mount
1197 * @incompat: bitmask of incompatible features
1199 * Check whether the journaling code supports the use of
1200 * all of a given set of features on this journal. Return true
1201 * (non-zero) if it can. */
1203 int journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1204 unsigned long ro
, unsigned long incompat
)
1206 journal_superblock_t
*sb
;
1208 if (!compat
&& !ro
&& !incompat
)
1211 sb
= journal
->j_superblock
;
1213 /* We can support any known requested features iff the
1214 * superblock is in version 2. Otherwise we fail to support any
1215 * extended sb features. */
1217 if (journal
->j_format_version
!= 2)
1220 if ((compat
& JFS_KNOWN_COMPAT_FEATURES
) == compat
&&
1221 (ro
& JFS_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1222 (incompat
& JFS_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1229 * int journal_set_features () - Mark a given journal feature in the superblock
1230 * @journal: Journal to act on.
1231 * @compat: bitmask of compatible features
1232 * @ro: bitmask of features that force read-only mount
1233 * @incompat: bitmask of incompatible features
1235 * Mark a given journal feature as present on the
1236 * superblock. Returns true if the requested features could be set.
1240 int journal_set_features (journal_t
*journal
, unsigned long compat
,
1241 unsigned long ro
, unsigned long incompat
)
1243 journal_superblock_t
*sb
;
1245 if (journal_check_used_features(journal
, compat
, ro
, incompat
))
1248 if (!journal_check_available_features(journal
, compat
, ro
, incompat
))
1251 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1252 compat
, ro
, incompat
);
1254 sb
= journal
->j_superblock
;
1256 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1257 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1258 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1265 * int journal_update_format () - Update on-disk journal structure.
1266 * @journal: Journal to act on.
1268 * Given an initialised but unloaded journal struct, poke about in the
1269 * on-disk structure to update it to the most recent supported version.
1271 int journal_update_format (journal_t
*journal
)
1273 journal_superblock_t
*sb
;
1276 err
= journal_get_superblock(journal
);
1280 sb
= journal
->j_superblock
;
1282 switch (be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1283 case JFS_SUPERBLOCK_V2
:
1285 case JFS_SUPERBLOCK_V1
:
1286 return journal_convert_superblock_v1(journal
, sb
);
1293 static int journal_convert_superblock_v1(journal_t
*journal
,
1294 journal_superblock_t
*sb
)
1296 int offset
, blocksize
;
1297 struct buffer_head
*bh
;
1300 "JBD: Converting superblock from version 1 to 2.\n");
1302 /* Pre-initialise new fields to zero */
1303 offset
= ((char *) &(sb
->s_feature_compat
)) - ((char *) sb
);
1304 blocksize
= be32_to_cpu(sb
->s_blocksize
);
1305 memset(&sb
->s_feature_compat
, 0, blocksize
-offset
);
1307 sb
->s_nr_users
= cpu_to_be32(1);
1308 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1309 journal
->j_format_version
= 2;
1311 bh
= journal
->j_sb_buffer
;
1312 BUFFER_TRACE(bh
, "marking dirty");
1313 mark_buffer_dirty(bh
);
1314 sync_dirty_buffer(bh
);
1320 * int journal_flush () - Flush journal
1321 * @journal: Journal to act on.
1323 * Flush all data for a given journal to disk and empty the journal.
1324 * Filesystems can use this when remounting readonly to ensure that
1325 * recovery does not need to happen on remount.
1328 int journal_flush(journal_t
*journal
)
1331 transaction_t
*transaction
= NULL
;
1332 unsigned long old_tail
;
1334 spin_lock(&journal
->j_state_lock
);
1336 /* Force everything buffered to the log... */
1337 if (journal
->j_running_transaction
) {
1338 transaction
= journal
->j_running_transaction
;
1339 __log_start_commit(journal
, transaction
->t_tid
);
1340 } else if (journal
->j_committing_transaction
)
1341 transaction
= journal
->j_committing_transaction
;
1343 /* Wait for the log commit to complete... */
1345 tid_t tid
= transaction
->t_tid
;
1347 spin_unlock(&journal
->j_state_lock
);
1348 log_wait_commit(journal
, tid
);
1350 spin_unlock(&journal
->j_state_lock
);
1353 /* ...and flush everything in the log out to disk. */
1354 spin_lock(&journal
->j_list_lock
);
1355 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1356 spin_unlock(&journal
->j_list_lock
);
1357 err
= log_do_checkpoint(journal
);
1358 spin_lock(&journal
->j_list_lock
);
1360 spin_unlock(&journal
->j_list_lock
);
1361 cleanup_journal_tail(journal
);
1363 /* Finally, mark the journal as really needing no recovery.
1364 * This sets s_start==0 in the underlying superblock, which is
1365 * the magic code for a fully-recovered superblock. Any future
1366 * commits of data to the journal will restore the current
1368 spin_lock(&journal
->j_state_lock
);
1369 old_tail
= journal
->j_tail
;
1370 journal
->j_tail
= 0;
1371 spin_unlock(&journal
->j_state_lock
);
1372 journal_update_superblock(journal
, 1);
1373 spin_lock(&journal
->j_state_lock
);
1374 journal
->j_tail
= old_tail
;
1376 J_ASSERT(!journal
->j_running_transaction
);
1377 J_ASSERT(!journal
->j_committing_transaction
);
1378 J_ASSERT(!journal
->j_checkpoint_transactions
);
1379 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1380 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1381 spin_unlock(&journal
->j_state_lock
);
1386 * int journal_wipe() - Wipe journal contents
1387 * @journal: Journal to act on.
1388 * @write: flag (see below)
1390 * Wipe out all of the contents of a journal, safely. This will produce
1391 * a warning if the journal contains any valid recovery information.
1392 * Must be called between journal_init_*() and journal_load().
1394 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1395 * we merely suppress recovery.
1398 int journal_wipe(journal_t
*journal
, int write
)
1400 journal_superblock_t
*sb
;
1403 J_ASSERT (!(journal
->j_flags
& JFS_LOADED
));
1405 err
= load_superblock(journal
);
1409 sb
= journal
->j_superblock
;
1411 if (!journal
->j_tail
)
1414 printk (KERN_WARNING
"JBD: %s recovery information on journal\n",
1415 write
? "Clearing" : "Ignoring");
1417 err
= journal_skip_recovery(journal
);
1419 journal_update_superblock(journal
, 1);
1426 * journal_dev_name: format a character string to describe on what
1427 * device this journal is present.
1430 static const char *journal_dev_name(journal_t
*journal
, char *buffer
)
1432 struct block_device
*bdev
;
1434 if (journal
->j_inode
)
1435 bdev
= journal
->j_inode
->i_sb
->s_bdev
;
1437 bdev
= journal
->j_dev
;
1439 return bdevname(bdev
, buffer
);
1443 * Journal abort has very specific semantics, which we describe
1444 * for journal abort.
1446 * Two internal function, which provide abort to te jbd layer
1451 * Quick version for internal journal use (doesn't lock the journal).
1452 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1453 * and don't attempt to make any other journal updates.
1455 void __journal_abort_hard(journal_t
*journal
)
1457 transaction_t
*transaction
;
1458 char b
[BDEVNAME_SIZE
];
1460 if (journal
->j_flags
& JFS_ABORT
)
1463 printk(KERN_ERR
"Aborting journal on device %s.\n",
1464 journal_dev_name(journal
, b
));
1466 spin_lock(&journal
->j_state_lock
);
1467 journal
->j_flags
|= JFS_ABORT
;
1468 transaction
= journal
->j_running_transaction
;
1470 __log_start_commit(journal
, transaction
->t_tid
);
1471 spin_unlock(&journal
->j_state_lock
);
1474 /* Soft abort: record the abort error status in the journal superblock,
1475 * but don't do any other IO. */
1476 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1478 if (journal
->j_flags
& JFS_ABORT
)
1481 if (!journal
->j_errno
)
1482 journal
->j_errno
= errno
;
1484 __journal_abort_hard(journal
);
1487 journal_update_superblock(journal
, 1);
1491 * void journal_abort () - Shutdown the journal immediately.
1492 * @journal: the journal to shutdown.
1493 * @errno: an error number to record in the journal indicating
1494 * the reason for the shutdown.
1496 * Perform a complete, immediate shutdown of the ENTIRE
1497 * journal (not of a single transaction). This operation cannot be
1498 * undone without closing and reopening the journal.
1500 * The journal_abort function is intended to support higher level error
1501 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1504 * Journal abort has very specific semantics. Any existing dirty,
1505 * unjournaled buffers in the main filesystem will still be written to
1506 * disk by bdflush, but the journaling mechanism will be suspended
1507 * immediately and no further transaction commits will be honoured.
1509 * Any dirty, journaled buffers will be written back to disk without
1510 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1511 * filesystem, but we _do_ attempt to leave as much data as possible
1512 * behind for fsck to use for cleanup.
1514 * Any attempt to get a new transaction handle on a journal which is in
1515 * ABORT state will just result in an -EROFS error return. A
1516 * journal_stop on an existing handle will return -EIO if we have
1517 * entered abort state during the update.
1519 * Recursive transactions are not disturbed by journal abort until the
1520 * final journal_stop, which will receive the -EIO error.
1522 * Finally, the journal_abort call allows the caller to supply an errno
1523 * which will be recorded (if possible) in the journal superblock. This
1524 * allows a client to record failure conditions in the middle of a
1525 * transaction without having to complete the transaction to record the
1526 * failure to disk. ext3_error, for example, now uses this
1529 * Errors which originate from within the journaling layer will NOT
1530 * supply an errno; a null errno implies that absolutely no further
1531 * writes are done to the journal (unless there are any already in
1536 void journal_abort(journal_t
*journal
, int errno
)
1538 __journal_abort_soft(journal
, errno
);
1542 * int journal_errno () - returns the journal's error state.
1543 * @journal: journal to examine.
1545 * This is the errno numbet set with journal_abort(), the last
1546 * time the journal was mounted - if the journal was stopped
1547 * without calling abort this will be 0.
1549 * If the journal has been aborted on this mount time -EROFS will
1552 int journal_errno(journal_t
*journal
)
1556 spin_lock(&journal
->j_state_lock
);
1557 if (journal
->j_flags
& JFS_ABORT
)
1560 err
= journal
->j_errno
;
1561 spin_unlock(&journal
->j_state_lock
);
1566 * int journal_clear_err () - clears the journal's error state
1567 * @journal: journal to act on.
1569 * An error must be cleared or Acked to take a FS out of readonly
1572 int journal_clear_err(journal_t
*journal
)
1576 spin_lock(&journal
->j_state_lock
);
1577 if (journal
->j_flags
& JFS_ABORT
)
1580 journal
->j_errno
= 0;
1581 spin_unlock(&journal
->j_state_lock
);
1586 * void journal_ack_err() - Ack journal err.
1587 * @journal: journal to act on.
1589 * An error must be cleared or Acked to take a FS out of readonly
1592 void journal_ack_err(journal_t
*journal
)
1594 spin_lock(&journal
->j_state_lock
);
1595 if (journal
->j_errno
)
1596 journal
->j_flags
|= JFS_ACK_ERR
;
1597 spin_unlock(&journal
->j_state_lock
);
1600 int journal_blocks_per_page(struct inode
*inode
)
1602 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1606 * Simple support for retrying memory allocations. Introduced to help to
1607 * debug different VM deadlock avoidance strategies.
1609 void * __jbd_kmalloc (const char *where
, size_t size
, gfp_t flags
, int retry
)
1611 return kmalloc(size
, flags
| (retry
? __GFP_NOFAIL
: 0));
1615 * Journal_head storage management
1617 static kmem_cache_t
*journal_head_cache
;
1618 #ifdef CONFIG_JBD_DEBUG
1619 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
1622 static int journal_init_journal_head_cache(void)
1626 J_ASSERT(journal_head_cache
== 0);
1627 journal_head_cache
= kmem_cache_create("journal_head",
1628 sizeof(struct journal_head
),
1634 if (journal_head_cache
== 0) {
1636 printk(KERN_EMERG
"JBD: no memory for journal_head cache\n");
1641 static void journal_destroy_journal_head_cache(void)
1643 J_ASSERT(journal_head_cache
!= NULL
);
1644 kmem_cache_destroy(journal_head_cache
);
1645 journal_head_cache
= NULL
;
1649 * journal_head splicing and dicing
1651 static struct journal_head
*journal_alloc_journal_head(void)
1653 struct journal_head
*ret
;
1654 static unsigned long last_warning
;
1656 #ifdef CONFIG_JBD_DEBUG
1657 atomic_inc(&nr_journal_heads
);
1659 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1661 jbd_debug(1, "out of memory for journal_head\n");
1662 if (time_after(jiffies
, last_warning
+ 5*HZ
)) {
1663 printk(KERN_NOTICE
"ENOMEM in %s, retrying.\n",
1665 last_warning
= jiffies
;
1669 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1675 static void journal_free_journal_head(struct journal_head
*jh
)
1677 #ifdef CONFIG_JBD_DEBUG
1678 atomic_dec(&nr_journal_heads
);
1679 memset(jh
, 0x5b, sizeof(*jh
));
1681 kmem_cache_free(journal_head_cache
, jh
);
1685 * A journal_head is attached to a buffer_head whenever JBD has an
1686 * interest in the buffer.
1688 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1689 * is set. This bit is tested in core kernel code where we need to take
1690 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1693 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1695 * When a buffer has its BH_JBD bit set it is immune from being released by
1696 * core kernel code, mainly via ->b_count.
1698 * A journal_head may be detached from its buffer_head when the journal_head's
1699 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1700 * Various places in JBD call journal_remove_journal_head() to indicate that the
1701 * journal_head can be dropped if needed.
1703 * Various places in the kernel want to attach a journal_head to a buffer_head
1704 * _before_ attaching the journal_head to a transaction. To protect the
1705 * journal_head in this situation, journal_add_journal_head elevates the
1706 * journal_head's b_jcount refcount by one. The caller must call
1707 * journal_put_journal_head() to undo this.
1709 * So the typical usage would be:
1711 * (Attach a journal_head if needed. Increments b_jcount)
1712 * struct journal_head *jh = journal_add_journal_head(bh);
1714 * jh->b_transaction = xxx;
1715 * journal_put_journal_head(jh);
1717 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1718 * because it has a non-zero b_transaction.
1722 * Give a buffer_head a journal_head.
1724 * Doesn't need the journal lock.
1727 struct journal_head
*journal_add_journal_head(struct buffer_head
*bh
)
1729 struct journal_head
*jh
;
1730 struct journal_head
*new_jh
= NULL
;
1733 if (!buffer_jbd(bh
)) {
1734 new_jh
= journal_alloc_journal_head();
1735 memset(new_jh
, 0, sizeof(*new_jh
));
1738 jbd_lock_bh_journal_head(bh
);
1739 if (buffer_jbd(bh
)) {
1743 (atomic_read(&bh
->b_count
) > 0) ||
1744 (bh
->b_page
&& bh
->b_page
->mapping
));
1747 jbd_unlock_bh_journal_head(bh
);
1752 new_jh
= NULL
; /* We consumed it */
1757 BUFFER_TRACE(bh
, "added journal_head");
1760 jbd_unlock_bh_journal_head(bh
);
1762 journal_free_journal_head(new_jh
);
1763 return bh
->b_private
;
1767 * Grab a ref against this buffer_head's journal_head. If it ended up not
1768 * having a journal_head, return NULL
1770 struct journal_head
*journal_grab_journal_head(struct buffer_head
*bh
)
1772 struct journal_head
*jh
= NULL
;
1774 jbd_lock_bh_journal_head(bh
);
1775 if (buffer_jbd(bh
)) {
1779 jbd_unlock_bh_journal_head(bh
);
1783 static void __journal_remove_journal_head(struct buffer_head
*bh
)
1785 struct journal_head
*jh
= bh2jh(bh
);
1787 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
1790 if (jh
->b_jcount
== 0) {
1791 if (jh
->b_transaction
== NULL
&&
1792 jh
->b_next_transaction
== NULL
&&
1793 jh
->b_cp_transaction
== NULL
) {
1794 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
1795 J_ASSERT_BH(bh
, buffer_jbd(bh
));
1796 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
1797 BUFFER_TRACE(bh
, "remove journal_head");
1798 if (jh
->b_frozen_data
) {
1799 printk(KERN_WARNING
"%s: freeing "
1802 kfree(jh
->b_frozen_data
);
1804 if (jh
->b_committed_data
) {
1805 printk(KERN_WARNING
"%s: freeing "
1806 "b_committed_data\n",
1808 kfree(jh
->b_committed_data
);
1810 bh
->b_private
= NULL
;
1811 jh
->b_bh
= NULL
; /* debug, really */
1812 clear_buffer_jbd(bh
);
1814 journal_free_journal_head(jh
);
1816 BUFFER_TRACE(bh
, "journal_head was locked");
1822 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1823 * and has a zero b_jcount then remove and release its journal_head. If we did
1824 * see that the buffer is not used by any transaction we also "logically"
1825 * decrement ->b_count.
1827 * We in fact take an additional increment on ->b_count as a convenience,
1828 * because the caller usually wants to do additional things with the bh
1829 * after calling here.
1830 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1831 * time. Once the caller has run __brelse(), the buffer is eligible for
1832 * reaping by try_to_free_buffers().
1834 void journal_remove_journal_head(struct buffer_head
*bh
)
1836 jbd_lock_bh_journal_head(bh
);
1837 __journal_remove_journal_head(bh
);
1838 jbd_unlock_bh_journal_head(bh
);
1842 * Drop a reference on the passed journal_head. If it fell to zero then try to
1843 * release the journal_head from the buffer_head.
1845 void journal_put_journal_head(struct journal_head
*jh
)
1847 struct buffer_head
*bh
= jh2bh(jh
);
1849 jbd_lock_bh_journal_head(bh
);
1850 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
1852 if (!jh
->b_jcount
&& !jh
->b_transaction
) {
1853 __journal_remove_journal_head(bh
);
1856 jbd_unlock_bh_journal_head(bh
);
1862 #if defined(CONFIG_JBD_DEBUG)
1863 int journal_enable_debug
;
1864 EXPORT_SYMBOL(journal_enable_debug
);
1867 #if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)
1869 static struct proc_dir_entry
*proc_jbd_debug
;
1871 static int read_jbd_debug(char *page
, char **start
, off_t off
,
1872 int count
, int *eof
, void *data
)
1876 ret
= sprintf(page
+ off
, "%d\n", journal_enable_debug
);
1881 static int write_jbd_debug(struct file
*file
, const char __user
*buffer
,
1882 unsigned long count
, void *data
)
1886 if (count
> ARRAY_SIZE(buf
) - 1)
1887 count
= ARRAY_SIZE(buf
) - 1;
1888 if (copy_from_user(buf
, buffer
, count
))
1890 buf
[ARRAY_SIZE(buf
) - 1] = '\0';
1891 journal_enable_debug
= simple_strtoul(buf
, NULL
, 10);
1895 #define JBD_PROC_NAME "sys/fs/jbd-debug"
1897 static void __init
create_jbd_proc_entry(void)
1899 proc_jbd_debug
= create_proc_entry(JBD_PROC_NAME
, 0644, NULL
);
1900 if (proc_jbd_debug
) {
1901 /* Why is this so hard? */
1902 proc_jbd_debug
->read_proc
= read_jbd_debug
;
1903 proc_jbd_debug
->write_proc
= write_jbd_debug
;
1907 static void __exit
remove_jbd_proc_entry(void)
1910 remove_proc_entry(JBD_PROC_NAME
, NULL
);
1915 #define create_jbd_proc_entry() do {} while (0)
1916 #define remove_jbd_proc_entry() do {} while (0)
1920 kmem_cache_t
*jbd_handle_cache
;
1922 static int __init
journal_init_handle_cache(void)
1924 jbd_handle_cache
= kmem_cache_create("journal_handle",
1930 if (jbd_handle_cache
== NULL
) {
1931 printk(KERN_EMERG
"JBD: failed to create handle cache\n");
1937 static void journal_destroy_handle_cache(void)
1939 if (jbd_handle_cache
)
1940 kmem_cache_destroy(jbd_handle_cache
);
1944 * Module startup and shutdown
1947 static int __init
journal_init_caches(void)
1951 ret
= journal_init_revoke_caches();
1953 ret
= journal_init_journal_head_cache();
1955 ret
= journal_init_handle_cache();
1959 static void journal_destroy_caches(void)
1961 journal_destroy_revoke_caches();
1962 journal_destroy_journal_head_cache();
1963 journal_destroy_handle_cache();
1966 static int __init
journal_init(void)
1970 /* Static check for data structure consistency. There's no code
1971 * invoked --- we'll just get a linker failure if things aren't right.
1973 extern void journal_bad_superblock_size(void);
1974 if (sizeof(struct journal_superblock_s
) != 1024)
1975 journal_bad_superblock_size();
1978 ret
= journal_init_caches();
1980 journal_destroy_caches();
1981 create_jbd_proc_entry();
1985 static void __exit
journal_exit(void)
1987 #ifdef CONFIG_JBD_DEBUG
1988 int n
= atomic_read(&nr_journal_heads
);
1990 printk(KERN_EMERG
"JBD: leaked %d journal_heads!\n", n
);
1992 remove_jbd_proc_entry();
1993 journal_destroy_caches();
1996 MODULE_LICENSE("GPL");
1997 module_init(journal_init
);
1998 module_exit(journal_exit
);