ACPI: thinkpad-acpi: checkpoint sysfs interface version due to hotkey
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob93cf241cfbe9b62e4580446552873858dc8967a9
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/syscalls.h>
57 #include <linux/times.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/kprobes.h>
60 #include <linux/delayacct.h>
61 #include <linux/reciprocal_div.h>
62 #include <linux/unistd.h>
64 #include <asm/tlb.h>
67 * Scheduler clock - returns current time in nanosec units.
68 * This is default implementation.
69 * Architectures and sub-architectures can override this.
71 unsigned long long __attribute__((weak)) sched_clock(void)
73 return (unsigned long long)jiffies * (1000000000 / HZ);
77 * Convert user-nice values [ -20 ... 0 ... 19 ]
78 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
79 * and back.
81 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
82 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
83 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86 * 'User priority' is the nice value converted to something we
87 * can work with better when scaling various scheduler parameters,
88 * it's a [ 0 ... 39 ] range.
90 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
91 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
92 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95 * Some helpers for converting nanosecond timing to jiffy resolution
97 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
98 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104 * These are the 'tuning knobs' of the scheduler:
106 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
107 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
108 * Timeslices get refilled after they expire.
110 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
111 #define DEF_TIMESLICE (100 * HZ / 1000)
113 #ifdef CONFIG_SMP
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 #endif
134 #define SCALE_PRIO(x, prio) \
135 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
139 * to time slice values: [800ms ... 100ms ... 5ms]
141 static unsigned int static_prio_timeslice(int static_prio)
143 if (static_prio == NICE_TO_PRIO(19))
144 return 1;
146 if (static_prio < NICE_TO_PRIO(0))
147 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
148 else
149 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 static inline int rt_policy(int policy)
154 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
155 return 1;
156 return 0;
159 static inline int task_has_rt_policy(struct task_struct *p)
161 return rt_policy(p->policy);
165 * This is the priority-queue data structure of the RT scheduling class:
167 struct rt_prio_array {
168 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
169 struct list_head queue[MAX_RT_PRIO];
172 struct load_stat {
173 struct load_weight load;
174 u64 load_update_start, load_update_last;
175 unsigned long delta_fair, delta_exec, delta_stat;
178 /* CFS-related fields in a runqueue */
179 struct cfs_rq {
180 struct load_weight load;
181 unsigned long nr_running;
183 s64 fair_clock;
184 u64 exec_clock;
185 s64 wait_runtime;
186 u64 sleeper_bonus;
187 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189 struct rb_root tasks_timeline;
190 struct rb_node *rb_leftmost;
191 struct rb_node *rb_load_balance_curr;
192 #ifdef CONFIG_FAIR_GROUP_SCHED
193 /* 'curr' points to currently running entity on this cfs_rq.
194 * It is set to NULL otherwise (i.e when none are currently running).
196 struct sched_entity *curr;
197 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
200 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
201 * (like users, containers etc.)
203 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
204 * list is used during load balance.
206 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
207 #endif
210 /* Real-Time classes' related field in a runqueue: */
211 struct rt_rq {
212 struct rt_prio_array active;
213 int rt_load_balance_idx;
214 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
218 * This is the main, per-CPU runqueue data structure.
220 * Locking rule: those places that want to lock multiple runqueues
221 * (such as the load balancing or the thread migration code), lock
222 * acquire operations must be ordered by ascending &runqueue.
224 struct rq {
225 spinlock_t lock; /* runqueue lock */
228 * nr_running and cpu_load should be in the same cacheline because
229 * remote CPUs use both these fields when doing load calculation.
231 unsigned long nr_running;
232 #define CPU_LOAD_IDX_MAX 5
233 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
234 unsigned char idle_at_tick;
235 #ifdef CONFIG_NO_HZ
236 unsigned char in_nohz_recently;
237 #endif
238 struct load_stat ls; /* capture load from *all* tasks on this cpu */
239 unsigned long nr_load_updates;
240 u64 nr_switches;
242 struct cfs_rq cfs;
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
245 #endif
246 struct rt_rq rt;
249 * This is part of a global counter where only the total sum
250 * over all CPUs matters. A task can increase this counter on
251 * one CPU and if it got migrated afterwards it may decrease
252 * it on another CPU. Always updated under the runqueue lock:
254 unsigned long nr_uninterruptible;
256 struct task_struct *curr, *idle;
257 unsigned long next_balance;
258 struct mm_struct *prev_mm;
260 u64 clock, prev_clock_raw;
261 s64 clock_max_delta;
263 unsigned int clock_warps, clock_overflows;
264 unsigned int clock_unstable_events;
266 struct sched_class *load_balance_class;
268 atomic_t nr_iowait;
270 #ifdef CONFIG_SMP
271 struct sched_domain *sd;
273 /* For active balancing */
274 int active_balance;
275 int push_cpu;
276 int cpu; /* cpu of this runqueue */
278 struct task_struct *migration_thread;
279 struct list_head migration_queue;
280 #endif
282 #ifdef CONFIG_SCHEDSTATS
283 /* latency stats */
284 struct sched_info rq_sched_info;
286 /* sys_sched_yield() stats */
287 unsigned long yld_exp_empty;
288 unsigned long yld_act_empty;
289 unsigned long yld_both_empty;
290 unsigned long yld_cnt;
292 /* schedule() stats */
293 unsigned long sched_switch;
294 unsigned long sched_cnt;
295 unsigned long sched_goidle;
297 /* try_to_wake_up() stats */
298 unsigned long ttwu_cnt;
299 unsigned long ttwu_local;
300 #endif
301 struct lock_class_key rq_lock_key;
304 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
305 static DEFINE_MUTEX(sched_hotcpu_mutex);
307 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
309 rq->curr->sched_class->check_preempt_curr(rq, p);
312 static inline int cpu_of(struct rq *rq)
314 #ifdef CONFIG_SMP
315 return rq->cpu;
316 #else
317 return 0;
318 #endif
322 * Per-runqueue clock, as finegrained as the platform can give us:
324 static unsigned long long __rq_clock(struct rq *rq)
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
332 * Protect against sched_clock() occasionally going backwards:
334 if (unlikely(delta < 0)) {
335 clock++;
336 rq->clock_warps++;
337 } else {
339 * Catch too large forward jumps too:
341 if (unlikely(delta > 2*TICK_NSEC)) {
342 clock++;
343 rq->clock_overflows++;
344 } else {
345 if (unlikely(delta > rq->clock_max_delta))
346 rq->clock_max_delta = delta;
347 clock += delta;
351 rq->prev_clock_raw = now;
352 rq->clock = clock;
354 return clock;
357 static inline unsigned long long rq_clock(struct rq *rq)
359 int this_cpu = smp_processor_id();
361 if (this_cpu == cpu_of(rq))
362 return __rq_clock(rq);
364 return rq->clock;
368 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
369 * See detach_destroy_domains: synchronize_sched for details.
371 * The domain tree of any CPU may only be accessed from within
372 * preempt-disabled sections.
374 #define for_each_domain(cpu, __sd) \
375 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
377 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
378 #define this_rq() (&__get_cpu_var(runqueues))
379 #define task_rq(p) cpu_rq(task_cpu(p))
380 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
383 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
384 * clock constructed from sched_clock():
386 unsigned long long cpu_clock(int cpu)
388 struct rq *rq = cpu_rq(cpu);
389 unsigned long long now;
390 unsigned long flags;
392 spin_lock_irqsave(&rq->lock, flags);
393 now = rq_clock(rq);
394 spin_unlock_irqrestore(&rq->lock, flags);
396 return now;
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 /* Change a task's ->cfs_rq if it moves across CPUs */
401 static inline void set_task_cfs_rq(struct task_struct *p)
403 p->se.cfs_rq = &task_rq(p)->cfs;
405 #else
406 static inline void set_task_cfs_rq(struct task_struct *p)
409 #endif
411 #ifndef prepare_arch_switch
412 # define prepare_arch_switch(next) do { } while (0)
413 #endif
414 #ifndef finish_arch_switch
415 # define finish_arch_switch(prev) do { } while (0)
416 #endif
418 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
419 static inline int task_running(struct rq *rq, struct task_struct *p)
421 return rq->curr == p;
424 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
428 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
430 #ifdef CONFIG_DEBUG_SPINLOCK
431 /* this is a valid case when another task releases the spinlock */
432 rq->lock.owner = current;
433 #endif
435 * If we are tracking spinlock dependencies then we have to
436 * fix up the runqueue lock - which gets 'carried over' from
437 * prev into current:
439 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
441 spin_unlock_irq(&rq->lock);
444 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
445 static inline int task_running(struct rq *rq, struct task_struct *p)
447 #ifdef CONFIG_SMP
448 return p->oncpu;
449 #else
450 return rq->curr == p;
451 #endif
454 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
456 #ifdef CONFIG_SMP
458 * We can optimise this out completely for !SMP, because the
459 * SMP rebalancing from interrupt is the only thing that cares
460 * here.
462 next->oncpu = 1;
463 #endif
464 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
465 spin_unlock_irq(&rq->lock);
466 #else
467 spin_unlock(&rq->lock);
468 #endif
471 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
473 #ifdef CONFIG_SMP
475 * After ->oncpu is cleared, the task can be moved to a different CPU.
476 * We must ensure this doesn't happen until the switch is completely
477 * finished.
479 smp_wmb();
480 prev->oncpu = 0;
481 #endif
482 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
483 local_irq_enable();
484 #endif
486 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
489 * __task_rq_lock - lock the runqueue a given task resides on.
490 * Must be called interrupts disabled.
492 static inline struct rq *__task_rq_lock(struct task_struct *p)
493 __acquires(rq->lock)
495 struct rq *rq;
497 repeat_lock_task:
498 rq = task_rq(p);
499 spin_lock(&rq->lock);
500 if (unlikely(rq != task_rq(p))) {
501 spin_unlock(&rq->lock);
502 goto repeat_lock_task;
504 return rq;
508 * task_rq_lock - lock the runqueue a given task resides on and disable
509 * interrupts. Note the ordering: we can safely lookup the task_rq without
510 * explicitly disabling preemption.
512 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
513 __acquires(rq->lock)
515 struct rq *rq;
517 repeat_lock_task:
518 local_irq_save(*flags);
519 rq = task_rq(p);
520 spin_lock(&rq->lock);
521 if (unlikely(rq != task_rq(p))) {
522 spin_unlock_irqrestore(&rq->lock, *flags);
523 goto repeat_lock_task;
525 return rq;
528 static inline void __task_rq_unlock(struct rq *rq)
529 __releases(rq->lock)
531 spin_unlock(&rq->lock);
534 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
535 __releases(rq->lock)
537 spin_unlock_irqrestore(&rq->lock, *flags);
541 * this_rq_lock - lock this runqueue and disable interrupts.
543 static inline struct rq *this_rq_lock(void)
544 __acquires(rq->lock)
546 struct rq *rq;
548 local_irq_disable();
549 rq = this_rq();
550 spin_lock(&rq->lock);
552 return rq;
556 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
558 void sched_clock_unstable_event(void)
560 unsigned long flags;
561 struct rq *rq;
563 rq = task_rq_lock(current, &flags);
564 rq->prev_clock_raw = sched_clock();
565 rq->clock_unstable_events++;
566 task_rq_unlock(rq, &flags);
570 * resched_task - mark a task 'to be rescheduled now'.
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
576 #ifdef CONFIG_SMP
578 #ifndef tsk_is_polling
579 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
580 #endif
582 static void resched_task(struct task_struct *p)
584 int cpu;
586 assert_spin_locked(&task_rq(p)->lock);
588 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
589 return;
591 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
593 cpu = task_cpu(p);
594 if (cpu == smp_processor_id())
595 return;
597 /* NEED_RESCHED must be visible before we test polling */
598 smp_mb();
599 if (!tsk_is_polling(p))
600 smp_send_reschedule(cpu);
603 static void resched_cpu(int cpu)
605 struct rq *rq = cpu_rq(cpu);
606 unsigned long flags;
608 if (!spin_trylock_irqsave(&rq->lock, flags))
609 return;
610 resched_task(cpu_curr(cpu));
611 spin_unlock_irqrestore(&rq->lock, flags);
613 #else
614 static inline void resched_task(struct task_struct *p)
616 assert_spin_locked(&task_rq(p)->lock);
617 set_tsk_need_resched(p);
619 #endif
621 static u64 div64_likely32(u64 divident, unsigned long divisor)
623 #if BITS_PER_LONG == 32
624 if (likely(divident <= 0xffffffffULL))
625 return (u32)divident / divisor;
626 do_div(divident, divisor);
628 return divident;
629 #else
630 return divident / divisor;
631 #endif
634 #if BITS_PER_LONG == 32
635 # define WMULT_CONST (~0UL)
636 #else
637 # define WMULT_CONST (1UL << 32)
638 #endif
640 #define WMULT_SHIFT 32
642 static inline unsigned long
643 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
644 struct load_weight *lw)
646 u64 tmp;
648 if (unlikely(!lw->inv_weight))
649 lw->inv_weight = WMULT_CONST / lw->weight;
651 tmp = (u64)delta_exec * weight;
653 * Check whether we'd overflow the 64-bit multiplication:
655 if (unlikely(tmp > WMULT_CONST)) {
656 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
657 >> (WMULT_SHIFT/2);
658 } else {
659 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
662 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
665 static inline unsigned long
666 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
668 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
671 static void update_load_add(struct load_weight *lw, unsigned long inc)
673 lw->weight += inc;
674 lw->inv_weight = 0;
677 static void update_load_sub(struct load_weight *lw, unsigned long dec)
679 lw->weight -= dec;
680 lw->inv_weight = 0;
683 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
685 if (rq->curr != rq->idle && ls->load.weight) {
686 ls->delta_exec += ls->delta_stat;
687 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
688 ls->delta_stat = 0;
693 * Update delta_exec, delta_fair fields for rq.
695 * delta_fair clock advances at a rate inversely proportional to
696 * total load (rq->ls.load.weight) on the runqueue, while
697 * delta_exec advances at the same rate as wall-clock (provided
698 * cpu is not idle).
700 * delta_exec / delta_fair is a measure of the (smoothened) load on this
701 * runqueue over any given interval. This (smoothened) load is used
702 * during load balance.
704 * This function is called /before/ updating rq->ls.load
705 * and when switching tasks.
707 static void update_curr_load(struct rq *rq, u64 now)
709 struct load_stat *ls = &rq->ls;
710 u64 start;
712 start = ls->load_update_start;
713 ls->load_update_start = now;
714 ls->delta_stat += now - start;
716 * Stagger updates to ls->delta_fair. Very frequent updates
717 * can be expensive.
719 if (ls->delta_stat >= sysctl_sched_stat_granularity)
720 __update_curr_load(rq, ls);
724 * To aid in avoiding the subversion of "niceness" due to uneven distribution
725 * of tasks with abnormal "nice" values across CPUs the contribution that
726 * each task makes to its run queue's load is weighted according to its
727 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
728 * scaled version of the new time slice allocation that they receive on time
729 * slice expiry etc.
733 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
734 * If static_prio_timeslice() is ever changed to break this assumption then
735 * this code will need modification
737 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
738 #define load_weight(lp) \
739 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
740 #define PRIO_TO_LOAD_WEIGHT(prio) \
741 load_weight(static_prio_timeslice(prio))
742 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
743 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
745 #define WEIGHT_IDLEPRIO 2
746 #define WMULT_IDLEPRIO (1 << 31)
749 * Nice levels are multiplicative, with a gentle 10% change for every
750 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
751 * nice 1, it will get ~10% less CPU time than another CPU-bound task
752 * that remained on nice 0.
754 * The "10% effect" is relative and cumulative: from _any_ nice level,
755 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
756 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
757 * If a task goes up by ~10% and another task goes down by ~10% then
758 * the relative distance between them is ~25%.)
760 static const int prio_to_weight[40] = {
761 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
762 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
763 /* 0 */ NICE_0_LOAD /* 1024 */,
764 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
765 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
769 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
771 * In cases where the weight does not change often, we can use the
772 * precalculated inverse to speed up arithmetics by turning divisions
773 * into multiplications:
775 static const u32 prio_to_wmult[40] = {
776 /* -20 */ 48356, 60446, 75558, 94446, 118058,
777 /* -15 */ 147573, 184467, 230589, 288233, 360285,
778 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
779 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
780 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
781 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
782 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
783 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
786 static inline void
787 inc_load(struct rq *rq, const struct task_struct *p, u64 now)
789 update_curr_load(rq, now);
790 update_load_add(&rq->ls.load, p->se.load.weight);
793 static inline void
794 dec_load(struct rq *rq, const struct task_struct *p, u64 now)
796 update_curr_load(rq, now);
797 update_load_sub(&rq->ls.load, p->se.load.weight);
800 static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
802 rq->nr_running++;
803 inc_load(rq, p, now);
806 static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
808 rq->nr_running--;
809 dec_load(rq, p, now);
812 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
815 * runqueue iterator, to support SMP load-balancing between different
816 * scheduling classes, without having to expose their internal data
817 * structures to the load-balancing proper:
819 struct rq_iterator {
820 void *arg;
821 struct task_struct *(*start)(void *);
822 struct task_struct *(*next)(void *);
825 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
826 unsigned long max_nr_move, unsigned long max_load_move,
827 struct sched_domain *sd, enum cpu_idle_type idle,
828 int *all_pinned, unsigned long *load_moved,
829 int this_best_prio, int best_prio, int best_prio_seen,
830 struct rq_iterator *iterator);
832 #include "sched_stats.h"
833 #include "sched_rt.c"
834 #include "sched_fair.c"
835 #include "sched_idletask.c"
836 #ifdef CONFIG_SCHED_DEBUG
837 # include "sched_debug.c"
838 #endif
840 #define sched_class_highest (&rt_sched_class)
842 static void set_load_weight(struct task_struct *p)
844 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
845 p->se.wait_runtime = 0;
847 if (task_has_rt_policy(p)) {
848 p->se.load.weight = prio_to_weight[0] * 2;
849 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
850 return;
854 * SCHED_IDLE tasks get minimal weight:
856 if (p->policy == SCHED_IDLE) {
857 p->se.load.weight = WEIGHT_IDLEPRIO;
858 p->se.load.inv_weight = WMULT_IDLEPRIO;
859 return;
862 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
863 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
866 static void
867 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
869 sched_info_queued(p);
870 p->sched_class->enqueue_task(rq, p, wakeup, now);
871 p->se.on_rq = 1;
874 static void
875 dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
877 p->sched_class->dequeue_task(rq, p, sleep, now);
878 p->se.on_rq = 0;
882 * __normal_prio - return the priority that is based on the static prio
884 static inline int __normal_prio(struct task_struct *p)
886 return p->static_prio;
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
896 static inline int normal_prio(struct task_struct *p)
898 int prio;
900 if (task_has_rt_policy(p))
901 prio = MAX_RT_PRIO-1 - p->rt_priority;
902 else
903 prio = __normal_prio(p);
904 return prio;
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
914 static int effective_prio(struct task_struct *p)
916 p->normal_prio = normal_prio(p);
918 * If we are RT tasks or we were boosted to RT priority,
919 * keep the priority unchanged. Otherwise, update priority
920 * to the normal priority:
922 if (!rt_prio(p->prio))
923 return p->normal_prio;
924 return p->prio;
928 * activate_task - move a task to the runqueue.
930 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
932 u64 now = rq_clock(rq);
934 if (p->state == TASK_UNINTERRUPTIBLE)
935 rq->nr_uninterruptible--;
937 enqueue_task(rq, p, wakeup, now);
938 inc_nr_running(p, rq, now);
942 * activate_idle_task - move idle task to the _front_ of runqueue.
944 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
946 u64 now = rq_clock(rq);
948 if (p->state == TASK_UNINTERRUPTIBLE)
949 rq->nr_uninterruptible--;
951 enqueue_task(rq, p, 0, now);
952 inc_nr_running(p, rq, now);
956 * deactivate_task - remove a task from the runqueue.
958 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
960 u64 now = rq_clock(rq);
962 if (p->state == TASK_UNINTERRUPTIBLE)
963 rq->nr_uninterruptible++;
965 dequeue_task(rq, p, sleep, now);
966 dec_nr_running(p, rq, now);
970 * task_curr - is this task currently executing on a CPU?
971 * @p: the task in question.
973 inline int task_curr(const struct task_struct *p)
975 return cpu_curr(task_cpu(p)) == p;
978 /* Used instead of source_load when we know the type == 0 */
979 unsigned long weighted_cpuload(const int cpu)
981 return cpu_rq(cpu)->ls.load.weight;
984 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
986 #ifdef CONFIG_SMP
987 task_thread_info(p)->cpu = cpu;
988 set_task_cfs_rq(p);
989 #endif
992 #ifdef CONFIG_SMP
994 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
996 int old_cpu = task_cpu(p);
997 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
998 u64 clock_offset, fair_clock_offset;
1000 clock_offset = old_rq->clock - new_rq->clock;
1001 fair_clock_offset = old_rq->cfs.fair_clock -
1002 new_rq->cfs.fair_clock;
1003 if (p->se.wait_start)
1004 p->se.wait_start -= clock_offset;
1005 if (p->se.wait_start_fair)
1006 p->se.wait_start_fair -= fair_clock_offset;
1007 if (p->se.sleep_start)
1008 p->se.sleep_start -= clock_offset;
1009 if (p->se.block_start)
1010 p->se.block_start -= clock_offset;
1011 if (p->se.sleep_start_fair)
1012 p->se.sleep_start_fair -= fair_clock_offset;
1014 __set_task_cpu(p, new_cpu);
1017 struct migration_req {
1018 struct list_head list;
1020 struct task_struct *task;
1021 int dest_cpu;
1023 struct completion done;
1027 * The task's runqueue lock must be held.
1028 * Returns true if you have to wait for migration thread.
1030 static int
1031 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1033 struct rq *rq = task_rq(p);
1036 * If the task is not on a runqueue (and not running), then
1037 * it is sufficient to simply update the task's cpu field.
1039 if (!p->se.on_rq && !task_running(rq, p)) {
1040 set_task_cpu(p, dest_cpu);
1041 return 0;
1044 init_completion(&req->done);
1045 req->task = p;
1046 req->dest_cpu = dest_cpu;
1047 list_add(&req->list, &rq->migration_queue);
1049 return 1;
1053 * wait_task_inactive - wait for a thread to unschedule.
1055 * The caller must ensure that the task *will* unschedule sometime soon,
1056 * else this function might spin for a *long* time. This function can't
1057 * be called with interrupts off, or it may introduce deadlock with
1058 * smp_call_function() if an IPI is sent by the same process we are
1059 * waiting to become inactive.
1061 void wait_task_inactive(struct task_struct *p)
1063 unsigned long flags;
1064 int running, on_rq;
1065 struct rq *rq;
1067 repeat:
1069 * We do the initial early heuristics without holding
1070 * any task-queue locks at all. We'll only try to get
1071 * the runqueue lock when things look like they will
1072 * work out!
1074 rq = task_rq(p);
1077 * If the task is actively running on another CPU
1078 * still, just relax and busy-wait without holding
1079 * any locks.
1081 * NOTE! Since we don't hold any locks, it's not
1082 * even sure that "rq" stays as the right runqueue!
1083 * But we don't care, since "task_running()" will
1084 * return false if the runqueue has changed and p
1085 * is actually now running somewhere else!
1087 while (task_running(rq, p))
1088 cpu_relax();
1091 * Ok, time to look more closely! We need the rq
1092 * lock now, to be *sure*. If we're wrong, we'll
1093 * just go back and repeat.
1095 rq = task_rq_lock(p, &flags);
1096 running = task_running(rq, p);
1097 on_rq = p->se.on_rq;
1098 task_rq_unlock(rq, &flags);
1101 * Was it really running after all now that we
1102 * checked with the proper locks actually held?
1104 * Oops. Go back and try again..
1106 if (unlikely(running)) {
1107 cpu_relax();
1108 goto repeat;
1112 * It's not enough that it's not actively running,
1113 * it must be off the runqueue _entirely_, and not
1114 * preempted!
1116 * So if it wa still runnable (but just not actively
1117 * running right now), it's preempted, and we should
1118 * yield - it could be a while.
1120 if (unlikely(on_rq)) {
1121 yield();
1122 goto repeat;
1126 * Ahh, all good. It wasn't running, and it wasn't
1127 * runnable, which means that it will never become
1128 * running in the future either. We're all done!
1132 /***
1133 * kick_process - kick a running thread to enter/exit the kernel
1134 * @p: the to-be-kicked thread
1136 * Cause a process which is running on another CPU to enter
1137 * kernel-mode, without any delay. (to get signals handled.)
1139 * NOTE: this function doesnt have to take the runqueue lock,
1140 * because all it wants to ensure is that the remote task enters
1141 * the kernel. If the IPI races and the task has been migrated
1142 * to another CPU then no harm is done and the purpose has been
1143 * achieved as well.
1145 void kick_process(struct task_struct *p)
1147 int cpu;
1149 preempt_disable();
1150 cpu = task_cpu(p);
1151 if ((cpu != smp_processor_id()) && task_curr(p))
1152 smp_send_reschedule(cpu);
1153 preempt_enable();
1157 * Return a low guess at the load of a migration-source cpu weighted
1158 * according to the scheduling class and "nice" value.
1160 * We want to under-estimate the load of migration sources, to
1161 * balance conservatively.
1163 static inline unsigned long source_load(int cpu, int type)
1165 struct rq *rq = cpu_rq(cpu);
1166 unsigned long total = weighted_cpuload(cpu);
1168 if (type == 0)
1169 return total;
1171 return min(rq->cpu_load[type-1], total);
1175 * Return a high guess at the load of a migration-target cpu weighted
1176 * according to the scheduling class and "nice" value.
1178 static inline unsigned long target_load(int cpu, int type)
1180 struct rq *rq = cpu_rq(cpu);
1181 unsigned long total = weighted_cpuload(cpu);
1183 if (type == 0)
1184 return total;
1186 return max(rq->cpu_load[type-1], total);
1190 * Return the average load per task on the cpu's run queue
1192 static inline unsigned long cpu_avg_load_per_task(int cpu)
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long total = weighted_cpuload(cpu);
1196 unsigned long n = rq->nr_running;
1198 return n ? total / n : SCHED_LOAD_SCALE;
1202 * find_idlest_group finds and returns the least busy CPU group within the
1203 * domain.
1205 static struct sched_group *
1206 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1208 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1209 unsigned long min_load = ULONG_MAX, this_load = 0;
1210 int load_idx = sd->forkexec_idx;
1211 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1213 do {
1214 unsigned long load, avg_load;
1215 int local_group;
1216 int i;
1218 /* Skip over this group if it has no CPUs allowed */
1219 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1220 goto nextgroup;
1222 local_group = cpu_isset(this_cpu, group->cpumask);
1224 /* Tally up the load of all CPUs in the group */
1225 avg_load = 0;
1227 for_each_cpu_mask(i, group->cpumask) {
1228 /* Bias balancing toward cpus of our domain */
1229 if (local_group)
1230 load = source_load(i, load_idx);
1231 else
1232 load = target_load(i, load_idx);
1234 avg_load += load;
1237 /* Adjust by relative CPU power of the group */
1238 avg_load = sg_div_cpu_power(group,
1239 avg_load * SCHED_LOAD_SCALE);
1241 if (local_group) {
1242 this_load = avg_load;
1243 this = group;
1244 } else if (avg_load < min_load) {
1245 min_load = avg_load;
1246 idlest = group;
1248 nextgroup:
1249 group = group->next;
1250 } while (group != sd->groups);
1252 if (!idlest || 100*this_load < imbalance*min_load)
1253 return NULL;
1254 return idlest;
1258 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1260 static int
1261 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1263 cpumask_t tmp;
1264 unsigned long load, min_load = ULONG_MAX;
1265 int idlest = -1;
1266 int i;
1268 /* Traverse only the allowed CPUs */
1269 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1271 for_each_cpu_mask(i, tmp) {
1272 load = weighted_cpuload(i);
1274 if (load < min_load || (load == min_load && i == this_cpu)) {
1275 min_load = load;
1276 idlest = i;
1280 return idlest;
1284 * sched_balance_self: balance the current task (running on cpu) in domains
1285 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1286 * SD_BALANCE_EXEC.
1288 * Balance, ie. select the least loaded group.
1290 * Returns the target CPU number, or the same CPU if no balancing is needed.
1292 * preempt must be disabled.
1294 static int sched_balance_self(int cpu, int flag)
1296 struct task_struct *t = current;
1297 struct sched_domain *tmp, *sd = NULL;
1299 for_each_domain(cpu, tmp) {
1301 * If power savings logic is enabled for a domain, stop there.
1303 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1304 break;
1305 if (tmp->flags & flag)
1306 sd = tmp;
1309 while (sd) {
1310 cpumask_t span;
1311 struct sched_group *group;
1312 int new_cpu, weight;
1314 if (!(sd->flags & flag)) {
1315 sd = sd->child;
1316 continue;
1319 span = sd->span;
1320 group = find_idlest_group(sd, t, cpu);
1321 if (!group) {
1322 sd = sd->child;
1323 continue;
1326 new_cpu = find_idlest_cpu(group, t, cpu);
1327 if (new_cpu == -1 || new_cpu == cpu) {
1328 /* Now try balancing at a lower domain level of cpu */
1329 sd = sd->child;
1330 continue;
1333 /* Now try balancing at a lower domain level of new_cpu */
1334 cpu = new_cpu;
1335 sd = NULL;
1336 weight = cpus_weight(span);
1337 for_each_domain(cpu, tmp) {
1338 if (weight <= cpus_weight(tmp->span))
1339 break;
1340 if (tmp->flags & flag)
1341 sd = tmp;
1343 /* while loop will break here if sd == NULL */
1346 return cpu;
1349 #endif /* CONFIG_SMP */
1352 * wake_idle() will wake a task on an idle cpu if task->cpu is
1353 * not idle and an idle cpu is available. The span of cpus to
1354 * search starts with cpus closest then further out as needed,
1355 * so we always favor a closer, idle cpu.
1357 * Returns the CPU we should wake onto.
1359 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1360 static int wake_idle(int cpu, struct task_struct *p)
1362 cpumask_t tmp;
1363 struct sched_domain *sd;
1364 int i;
1367 * If it is idle, then it is the best cpu to run this task.
1369 * This cpu is also the best, if it has more than one task already.
1370 * Siblings must be also busy(in most cases) as they didn't already
1371 * pickup the extra load from this cpu and hence we need not check
1372 * sibling runqueue info. This will avoid the checks and cache miss
1373 * penalities associated with that.
1375 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1376 return cpu;
1378 for_each_domain(cpu, sd) {
1379 if (sd->flags & SD_WAKE_IDLE) {
1380 cpus_and(tmp, sd->span, p->cpus_allowed);
1381 for_each_cpu_mask(i, tmp) {
1382 if (idle_cpu(i))
1383 return i;
1385 } else {
1386 break;
1389 return cpu;
1391 #else
1392 static inline int wake_idle(int cpu, struct task_struct *p)
1394 return cpu;
1396 #endif
1398 /***
1399 * try_to_wake_up - wake up a thread
1400 * @p: the to-be-woken-up thread
1401 * @state: the mask of task states that can be woken
1402 * @sync: do a synchronous wakeup?
1404 * Put it on the run-queue if it's not already there. The "current"
1405 * thread is always on the run-queue (except when the actual
1406 * re-schedule is in progress), and as such you're allowed to do
1407 * the simpler "current->state = TASK_RUNNING" to mark yourself
1408 * runnable without the overhead of this.
1410 * returns failure only if the task is already active.
1412 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1414 int cpu, this_cpu, success = 0;
1415 unsigned long flags;
1416 long old_state;
1417 struct rq *rq;
1418 #ifdef CONFIG_SMP
1419 struct sched_domain *sd, *this_sd = NULL;
1420 unsigned long load, this_load;
1421 int new_cpu;
1422 #endif
1424 rq = task_rq_lock(p, &flags);
1425 old_state = p->state;
1426 if (!(old_state & state))
1427 goto out;
1429 if (p->se.on_rq)
1430 goto out_running;
1432 cpu = task_cpu(p);
1433 this_cpu = smp_processor_id();
1435 #ifdef CONFIG_SMP
1436 if (unlikely(task_running(rq, p)))
1437 goto out_activate;
1439 new_cpu = cpu;
1441 schedstat_inc(rq, ttwu_cnt);
1442 if (cpu == this_cpu) {
1443 schedstat_inc(rq, ttwu_local);
1444 goto out_set_cpu;
1447 for_each_domain(this_cpu, sd) {
1448 if (cpu_isset(cpu, sd->span)) {
1449 schedstat_inc(sd, ttwu_wake_remote);
1450 this_sd = sd;
1451 break;
1455 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1456 goto out_set_cpu;
1459 * Check for affine wakeup and passive balancing possibilities.
1461 if (this_sd) {
1462 int idx = this_sd->wake_idx;
1463 unsigned int imbalance;
1465 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1467 load = source_load(cpu, idx);
1468 this_load = target_load(this_cpu, idx);
1470 new_cpu = this_cpu; /* Wake to this CPU if we can */
1472 if (this_sd->flags & SD_WAKE_AFFINE) {
1473 unsigned long tl = this_load;
1474 unsigned long tl_per_task;
1476 tl_per_task = cpu_avg_load_per_task(this_cpu);
1479 * If sync wakeup then subtract the (maximum possible)
1480 * effect of the currently running task from the load
1481 * of the current CPU:
1483 if (sync)
1484 tl -= current->se.load.weight;
1486 if ((tl <= load &&
1487 tl + target_load(cpu, idx) <= tl_per_task) ||
1488 100*(tl + p->se.load.weight) <= imbalance*load) {
1490 * This domain has SD_WAKE_AFFINE and
1491 * p is cache cold in this domain, and
1492 * there is no bad imbalance.
1494 schedstat_inc(this_sd, ttwu_move_affine);
1495 goto out_set_cpu;
1500 * Start passive balancing when half the imbalance_pct
1501 * limit is reached.
1503 if (this_sd->flags & SD_WAKE_BALANCE) {
1504 if (imbalance*this_load <= 100*load) {
1505 schedstat_inc(this_sd, ttwu_move_balance);
1506 goto out_set_cpu;
1511 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1512 out_set_cpu:
1513 new_cpu = wake_idle(new_cpu, p);
1514 if (new_cpu != cpu) {
1515 set_task_cpu(p, new_cpu);
1516 task_rq_unlock(rq, &flags);
1517 /* might preempt at this point */
1518 rq = task_rq_lock(p, &flags);
1519 old_state = p->state;
1520 if (!(old_state & state))
1521 goto out;
1522 if (p->se.on_rq)
1523 goto out_running;
1525 this_cpu = smp_processor_id();
1526 cpu = task_cpu(p);
1529 out_activate:
1530 #endif /* CONFIG_SMP */
1531 activate_task(rq, p, 1);
1533 * Sync wakeups (i.e. those types of wakeups where the waker
1534 * has indicated that it will leave the CPU in short order)
1535 * don't trigger a preemption, if the woken up task will run on
1536 * this cpu. (in this case the 'I will reschedule' promise of
1537 * the waker guarantees that the freshly woken up task is going
1538 * to be considered on this CPU.)
1540 if (!sync || cpu != this_cpu)
1541 check_preempt_curr(rq, p);
1542 success = 1;
1544 out_running:
1545 p->state = TASK_RUNNING;
1546 out:
1547 task_rq_unlock(rq, &flags);
1549 return success;
1552 int fastcall wake_up_process(struct task_struct *p)
1554 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1555 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1557 EXPORT_SYMBOL(wake_up_process);
1559 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1561 return try_to_wake_up(p, state, 0);
1565 * Perform scheduler related setup for a newly forked process p.
1566 * p is forked by current.
1568 * __sched_fork() is basic setup used by init_idle() too:
1570 static void __sched_fork(struct task_struct *p)
1572 p->se.wait_start_fair = 0;
1573 p->se.wait_start = 0;
1574 p->se.exec_start = 0;
1575 p->se.sum_exec_runtime = 0;
1576 p->se.delta_exec = 0;
1577 p->se.delta_fair_run = 0;
1578 p->se.delta_fair_sleep = 0;
1579 p->se.wait_runtime = 0;
1580 p->se.sum_wait_runtime = 0;
1581 p->se.sum_sleep_runtime = 0;
1582 p->se.sleep_start = 0;
1583 p->se.sleep_start_fair = 0;
1584 p->se.block_start = 0;
1585 p->se.sleep_max = 0;
1586 p->se.block_max = 0;
1587 p->se.exec_max = 0;
1588 p->se.wait_max = 0;
1589 p->se.wait_runtime_overruns = 0;
1590 p->se.wait_runtime_underruns = 0;
1592 INIT_LIST_HEAD(&p->run_list);
1593 p->se.on_rq = 0;
1596 * We mark the process as running here, but have not actually
1597 * inserted it onto the runqueue yet. This guarantees that
1598 * nobody will actually run it, and a signal or other external
1599 * event cannot wake it up and insert it on the runqueue either.
1601 p->state = TASK_RUNNING;
1605 * fork()/clone()-time setup:
1607 void sched_fork(struct task_struct *p, int clone_flags)
1609 int cpu = get_cpu();
1611 __sched_fork(p);
1613 #ifdef CONFIG_SMP
1614 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1615 #endif
1616 __set_task_cpu(p, cpu);
1619 * Make sure we do not leak PI boosting priority to the child:
1621 p->prio = current->normal_prio;
1623 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1624 if (likely(sched_info_on()))
1625 memset(&p->sched_info, 0, sizeof(p->sched_info));
1626 #endif
1627 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1628 p->oncpu = 0;
1629 #endif
1630 #ifdef CONFIG_PREEMPT
1631 /* Want to start with kernel preemption disabled. */
1632 task_thread_info(p)->preempt_count = 1;
1633 #endif
1634 put_cpu();
1638 * After fork, child runs first. (default) If set to 0 then
1639 * parent will (try to) run first.
1641 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1644 * wake_up_new_task - wake up a newly created task for the first time.
1646 * This function will do some initial scheduler statistics housekeeping
1647 * that must be done for every newly created context, then puts the task
1648 * on the runqueue and wakes it.
1650 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1652 unsigned long flags;
1653 struct rq *rq;
1654 int this_cpu;
1656 rq = task_rq_lock(p, &flags);
1657 BUG_ON(p->state != TASK_RUNNING);
1658 this_cpu = smp_processor_id(); /* parent's CPU */
1660 p->prio = effective_prio(p);
1662 if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
1663 task_cpu(p) != this_cpu || !current->se.on_rq) {
1664 activate_task(rq, p, 0);
1665 } else {
1667 * Let the scheduling class do new task startup
1668 * management (if any):
1670 p->sched_class->task_new(rq, p);
1672 check_preempt_curr(rq, p);
1673 task_rq_unlock(rq, &flags);
1677 * prepare_task_switch - prepare to switch tasks
1678 * @rq: the runqueue preparing to switch
1679 * @next: the task we are going to switch to.
1681 * This is called with the rq lock held and interrupts off. It must
1682 * be paired with a subsequent finish_task_switch after the context
1683 * switch.
1685 * prepare_task_switch sets up locking and calls architecture specific
1686 * hooks.
1688 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1690 prepare_lock_switch(rq, next);
1691 prepare_arch_switch(next);
1695 * finish_task_switch - clean up after a task-switch
1696 * @rq: runqueue associated with task-switch
1697 * @prev: the thread we just switched away from.
1699 * finish_task_switch must be called after the context switch, paired
1700 * with a prepare_task_switch call before the context switch.
1701 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1702 * and do any other architecture-specific cleanup actions.
1704 * Note that we may have delayed dropping an mm in context_switch(). If
1705 * so, we finish that here outside of the runqueue lock. (Doing it
1706 * with the lock held can cause deadlocks; see schedule() for
1707 * details.)
1709 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1710 __releases(rq->lock)
1712 struct mm_struct *mm = rq->prev_mm;
1713 long prev_state;
1715 rq->prev_mm = NULL;
1718 * A task struct has one reference for the use as "current".
1719 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1720 * schedule one last time. The schedule call will never return, and
1721 * the scheduled task must drop that reference.
1722 * The test for TASK_DEAD must occur while the runqueue locks are
1723 * still held, otherwise prev could be scheduled on another cpu, die
1724 * there before we look at prev->state, and then the reference would
1725 * be dropped twice.
1726 * Manfred Spraul <manfred@colorfullife.com>
1728 prev_state = prev->state;
1729 finish_arch_switch(prev);
1730 finish_lock_switch(rq, prev);
1731 if (mm)
1732 mmdrop(mm);
1733 if (unlikely(prev_state == TASK_DEAD)) {
1735 * Remove function-return probe instances associated with this
1736 * task and put them back on the free list.
1738 kprobe_flush_task(prev);
1739 put_task_struct(prev);
1744 * schedule_tail - first thing a freshly forked thread must call.
1745 * @prev: the thread we just switched away from.
1747 asmlinkage void schedule_tail(struct task_struct *prev)
1748 __releases(rq->lock)
1750 struct rq *rq = this_rq();
1752 finish_task_switch(rq, prev);
1753 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1754 /* In this case, finish_task_switch does not reenable preemption */
1755 preempt_enable();
1756 #endif
1757 if (current->set_child_tid)
1758 put_user(current->pid, current->set_child_tid);
1762 * context_switch - switch to the new MM and the new
1763 * thread's register state.
1765 static inline void
1766 context_switch(struct rq *rq, struct task_struct *prev,
1767 struct task_struct *next)
1769 struct mm_struct *mm, *oldmm;
1771 prepare_task_switch(rq, next);
1772 mm = next->mm;
1773 oldmm = prev->active_mm;
1775 * For paravirt, this is coupled with an exit in switch_to to
1776 * combine the page table reload and the switch backend into
1777 * one hypercall.
1779 arch_enter_lazy_cpu_mode();
1781 if (unlikely(!mm)) {
1782 next->active_mm = oldmm;
1783 atomic_inc(&oldmm->mm_count);
1784 enter_lazy_tlb(oldmm, next);
1785 } else
1786 switch_mm(oldmm, mm, next);
1788 if (unlikely(!prev->mm)) {
1789 prev->active_mm = NULL;
1790 rq->prev_mm = oldmm;
1793 * Since the runqueue lock will be released by the next
1794 * task (which is an invalid locking op but in the case
1795 * of the scheduler it's an obvious special-case), so we
1796 * do an early lockdep release here:
1798 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1799 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1800 #endif
1802 /* Here we just switch the register state and the stack. */
1803 switch_to(prev, next, prev);
1805 barrier();
1807 * this_rq must be evaluated again because prev may have moved
1808 * CPUs since it called schedule(), thus the 'rq' on its stack
1809 * frame will be invalid.
1811 finish_task_switch(this_rq(), prev);
1815 * nr_running, nr_uninterruptible and nr_context_switches:
1817 * externally visible scheduler statistics: current number of runnable
1818 * threads, current number of uninterruptible-sleeping threads, total
1819 * number of context switches performed since bootup.
1821 unsigned long nr_running(void)
1823 unsigned long i, sum = 0;
1825 for_each_online_cpu(i)
1826 sum += cpu_rq(i)->nr_running;
1828 return sum;
1831 unsigned long nr_uninterruptible(void)
1833 unsigned long i, sum = 0;
1835 for_each_possible_cpu(i)
1836 sum += cpu_rq(i)->nr_uninterruptible;
1839 * Since we read the counters lockless, it might be slightly
1840 * inaccurate. Do not allow it to go below zero though:
1842 if (unlikely((long)sum < 0))
1843 sum = 0;
1845 return sum;
1848 unsigned long long nr_context_switches(void)
1850 int i;
1851 unsigned long long sum = 0;
1853 for_each_possible_cpu(i)
1854 sum += cpu_rq(i)->nr_switches;
1856 return sum;
1859 unsigned long nr_iowait(void)
1861 unsigned long i, sum = 0;
1863 for_each_possible_cpu(i)
1864 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1866 return sum;
1869 unsigned long nr_active(void)
1871 unsigned long i, running = 0, uninterruptible = 0;
1873 for_each_online_cpu(i) {
1874 running += cpu_rq(i)->nr_running;
1875 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1878 if (unlikely((long)uninterruptible < 0))
1879 uninterruptible = 0;
1881 return running + uninterruptible;
1885 * Update rq->cpu_load[] statistics. This function is usually called every
1886 * scheduler tick (TICK_NSEC).
1888 static void update_cpu_load(struct rq *this_rq)
1890 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1891 unsigned long total_load = this_rq->ls.load.weight;
1892 unsigned long this_load = total_load;
1893 struct load_stat *ls = &this_rq->ls;
1894 u64 now = __rq_clock(this_rq);
1895 int i, scale;
1897 this_rq->nr_load_updates++;
1898 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1899 goto do_avg;
1901 /* Update delta_fair/delta_exec fields first */
1902 update_curr_load(this_rq, now);
1904 fair_delta64 = ls->delta_fair + 1;
1905 ls->delta_fair = 0;
1907 exec_delta64 = ls->delta_exec + 1;
1908 ls->delta_exec = 0;
1910 sample_interval64 = now - ls->load_update_last;
1911 ls->load_update_last = now;
1913 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1914 sample_interval64 = TICK_NSEC;
1916 if (exec_delta64 > sample_interval64)
1917 exec_delta64 = sample_interval64;
1919 idle_delta64 = sample_interval64 - exec_delta64;
1921 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1922 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1924 this_load = (unsigned long)tmp64;
1926 do_avg:
1928 /* Update our load: */
1929 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1930 unsigned long old_load, new_load;
1932 /* scale is effectively 1 << i now, and >> i divides by scale */
1934 old_load = this_rq->cpu_load[i];
1935 new_load = this_load;
1937 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1941 #ifdef CONFIG_SMP
1944 * double_rq_lock - safely lock two runqueues
1946 * Note this does not disable interrupts like task_rq_lock,
1947 * you need to do so manually before calling.
1949 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1950 __acquires(rq1->lock)
1951 __acquires(rq2->lock)
1953 BUG_ON(!irqs_disabled());
1954 if (rq1 == rq2) {
1955 spin_lock(&rq1->lock);
1956 __acquire(rq2->lock); /* Fake it out ;) */
1957 } else {
1958 if (rq1 < rq2) {
1959 spin_lock(&rq1->lock);
1960 spin_lock(&rq2->lock);
1961 } else {
1962 spin_lock(&rq2->lock);
1963 spin_lock(&rq1->lock);
1969 * double_rq_unlock - safely unlock two runqueues
1971 * Note this does not restore interrupts like task_rq_unlock,
1972 * you need to do so manually after calling.
1974 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1975 __releases(rq1->lock)
1976 __releases(rq2->lock)
1978 spin_unlock(&rq1->lock);
1979 if (rq1 != rq2)
1980 spin_unlock(&rq2->lock);
1981 else
1982 __release(rq2->lock);
1986 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1988 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1989 __releases(this_rq->lock)
1990 __acquires(busiest->lock)
1991 __acquires(this_rq->lock)
1993 if (unlikely(!irqs_disabled())) {
1994 /* printk() doesn't work good under rq->lock */
1995 spin_unlock(&this_rq->lock);
1996 BUG_ON(1);
1998 if (unlikely(!spin_trylock(&busiest->lock))) {
1999 if (busiest < this_rq) {
2000 spin_unlock(&this_rq->lock);
2001 spin_lock(&busiest->lock);
2002 spin_lock(&this_rq->lock);
2003 } else
2004 spin_lock(&busiest->lock);
2009 * If dest_cpu is allowed for this process, migrate the task to it.
2010 * This is accomplished by forcing the cpu_allowed mask to only
2011 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2012 * the cpu_allowed mask is restored.
2014 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2016 struct migration_req req;
2017 unsigned long flags;
2018 struct rq *rq;
2020 rq = task_rq_lock(p, &flags);
2021 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2022 || unlikely(cpu_is_offline(dest_cpu)))
2023 goto out;
2025 /* force the process onto the specified CPU */
2026 if (migrate_task(p, dest_cpu, &req)) {
2027 /* Need to wait for migration thread (might exit: take ref). */
2028 struct task_struct *mt = rq->migration_thread;
2030 get_task_struct(mt);
2031 task_rq_unlock(rq, &flags);
2032 wake_up_process(mt);
2033 put_task_struct(mt);
2034 wait_for_completion(&req.done);
2036 return;
2038 out:
2039 task_rq_unlock(rq, &flags);
2043 * sched_exec - execve() is a valuable balancing opportunity, because at
2044 * this point the task has the smallest effective memory and cache footprint.
2046 void sched_exec(void)
2048 int new_cpu, this_cpu = get_cpu();
2049 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2050 put_cpu();
2051 if (new_cpu != this_cpu)
2052 sched_migrate_task(current, new_cpu);
2056 * pull_task - move a task from a remote runqueue to the local runqueue.
2057 * Both runqueues must be locked.
2059 static void pull_task(struct rq *src_rq, struct task_struct *p,
2060 struct rq *this_rq, int this_cpu)
2062 deactivate_task(src_rq, p, 0);
2063 set_task_cpu(p, this_cpu);
2064 activate_task(this_rq, p, 0);
2066 * Note that idle threads have a prio of MAX_PRIO, for this test
2067 * to be always true for them.
2069 check_preempt_curr(this_rq, p);
2073 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2075 static
2076 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2077 struct sched_domain *sd, enum cpu_idle_type idle,
2078 int *all_pinned)
2081 * We do not migrate tasks that are:
2082 * 1) running (obviously), or
2083 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2084 * 3) are cache-hot on their current CPU.
2086 if (!cpu_isset(this_cpu, p->cpus_allowed))
2087 return 0;
2088 *all_pinned = 0;
2090 if (task_running(rq, p))
2091 return 0;
2094 * Aggressive migration if too many balance attempts have failed:
2096 if (sd->nr_balance_failed > sd->cache_nice_tries)
2097 return 1;
2099 return 1;
2102 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2103 unsigned long max_nr_move, unsigned long max_load_move,
2104 struct sched_domain *sd, enum cpu_idle_type idle,
2105 int *all_pinned, unsigned long *load_moved,
2106 int this_best_prio, int best_prio, int best_prio_seen,
2107 struct rq_iterator *iterator)
2109 int pulled = 0, pinned = 0, skip_for_load;
2110 struct task_struct *p;
2111 long rem_load_move = max_load_move;
2113 if (max_nr_move == 0 || max_load_move == 0)
2114 goto out;
2116 pinned = 1;
2119 * Start the load-balancing iterator:
2121 p = iterator->start(iterator->arg);
2122 next:
2123 if (!p)
2124 goto out;
2126 * To help distribute high priority tasks accross CPUs we don't
2127 * skip a task if it will be the highest priority task (i.e. smallest
2128 * prio value) on its new queue regardless of its load weight
2130 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2131 SCHED_LOAD_SCALE_FUZZ;
2132 if (skip_for_load && p->prio < this_best_prio)
2133 skip_for_load = !best_prio_seen && p->prio == best_prio;
2134 if (skip_for_load ||
2135 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2137 best_prio_seen |= p->prio == best_prio;
2138 p = iterator->next(iterator->arg);
2139 goto next;
2142 pull_task(busiest, p, this_rq, this_cpu);
2143 pulled++;
2144 rem_load_move -= p->se.load.weight;
2147 * We only want to steal up to the prescribed number of tasks
2148 * and the prescribed amount of weighted load.
2150 if (pulled < max_nr_move && rem_load_move > 0) {
2151 if (p->prio < this_best_prio)
2152 this_best_prio = p->prio;
2153 p = iterator->next(iterator->arg);
2154 goto next;
2156 out:
2158 * Right now, this is the only place pull_task() is called,
2159 * so we can safely collect pull_task() stats here rather than
2160 * inside pull_task().
2162 schedstat_add(sd, lb_gained[idle], pulled);
2164 if (all_pinned)
2165 *all_pinned = pinned;
2166 *load_moved = max_load_move - rem_load_move;
2167 return pulled;
2171 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2172 * load from busiest to this_rq, as part of a balancing operation within
2173 * "domain". Returns the number of tasks moved.
2175 * Called with both runqueues locked.
2177 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2178 unsigned long max_nr_move, unsigned long max_load_move,
2179 struct sched_domain *sd, enum cpu_idle_type idle,
2180 int *all_pinned)
2182 struct sched_class *class = sched_class_highest;
2183 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2184 long rem_load_move = max_load_move;
2186 do {
2187 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2188 max_nr_move, (unsigned long)rem_load_move,
2189 sd, idle, all_pinned, &load_moved);
2190 total_nr_moved += nr_moved;
2191 max_nr_move -= nr_moved;
2192 rem_load_move -= load_moved;
2193 class = class->next;
2194 } while (class && max_nr_move && rem_load_move > 0);
2196 return total_nr_moved;
2200 * find_busiest_group finds and returns the busiest CPU group within the
2201 * domain. It calculates and returns the amount of weighted load which
2202 * should be moved to restore balance via the imbalance parameter.
2204 static struct sched_group *
2205 find_busiest_group(struct sched_domain *sd, int this_cpu,
2206 unsigned long *imbalance, enum cpu_idle_type idle,
2207 int *sd_idle, cpumask_t *cpus, int *balance)
2209 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2210 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2211 unsigned long max_pull;
2212 unsigned long busiest_load_per_task, busiest_nr_running;
2213 unsigned long this_load_per_task, this_nr_running;
2214 int load_idx;
2215 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2216 int power_savings_balance = 1;
2217 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2218 unsigned long min_nr_running = ULONG_MAX;
2219 struct sched_group *group_min = NULL, *group_leader = NULL;
2220 #endif
2222 max_load = this_load = total_load = total_pwr = 0;
2223 busiest_load_per_task = busiest_nr_running = 0;
2224 this_load_per_task = this_nr_running = 0;
2225 if (idle == CPU_NOT_IDLE)
2226 load_idx = sd->busy_idx;
2227 else if (idle == CPU_NEWLY_IDLE)
2228 load_idx = sd->newidle_idx;
2229 else
2230 load_idx = sd->idle_idx;
2232 do {
2233 unsigned long load, group_capacity;
2234 int local_group;
2235 int i;
2236 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2237 unsigned long sum_nr_running, sum_weighted_load;
2239 local_group = cpu_isset(this_cpu, group->cpumask);
2241 if (local_group)
2242 balance_cpu = first_cpu(group->cpumask);
2244 /* Tally up the load of all CPUs in the group */
2245 sum_weighted_load = sum_nr_running = avg_load = 0;
2247 for_each_cpu_mask(i, group->cpumask) {
2248 struct rq *rq;
2250 if (!cpu_isset(i, *cpus))
2251 continue;
2253 rq = cpu_rq(i);
2255 if (*sd_idle && rq->nr_running)
2256 *sd_idle = 0;
2258 /* Bias balancing toward cpus of our domain */
2259 if (local_group) {
2260 if (idle_cpu(i) && !first_idle_cpu) {
2261 first_idle_cpu = 1;
2262 balance_cpu = i;
2265 load = target_load(i, load_idx);
2266 } else
2267 load = source_load(i, load_idx);
2269 avg_load += load;
2270 sum_nr_running += rq->nr_running;
2271 sum_weighted_load += weighted_cpuload(i);
2275 * First idle cpu or the first cpu(busiest) in this sched group
2276 * is eligible for doing load balancing at this and above
2277 * domains. In the newly idle case, we will allow all the cpu's
2278 * to do the newly idle load balance.
2280 if (idle != CPU_NEWLY_IDLE && local_group &&
2281 balance_cpu != this_cpu && balance) {
2282 *balance = 0;
2283 goto ret;
2286 total_load += avg_load;
2287 total_pwr += group->__cpu_power;
2289 /* Adjust by relative CPU power of the group */
2290 avg_load = sg_div_cpu_power(group,
2291 avg_load * SCHED_LOAD_SCALE);
2293 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2295 if (local_group) {
2296 this_load = avg_load;
2297 this = group;
2298 this_nr_running = sum_nr_running;
2299 this_load_per_task = sum_weighted_load;
2300 } else if (avg_load > max_load &&
2301 sum_nr_running > group_capacity) {
2302 max_load = avg_load;
2303 busiest = group;
2304 busiest_nr_running = sum_nr_running;
2305 busiest_load_per_task = sum_weighted_load;
2308 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2310 * Busy processors will not participate in power savings
2311 * balance.
2313 if (idle == CPU_NOT_IDLE ||
2314 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2315 goto group_next;
2318 * If the local group is idle or completely loaded
2319 * no need to do power savings balance at this domain
2321 if (local_group && (this_nr_running >= group_capacity ||
2322 !this_nr_running))
2323 power_savings_balance = 0;
2326 * If a group is already running at full capacity or idle,
2327 * don't include that group in power savings calculations
2329 if (!power_savings_balance || sum_nr_running >= group_capacity
2330 || !sum_nr_running)
2331 goto group_next;
2334 * Calculate the group which has the least non-idle load.
2335 * This is the group from where we need to pick up the load
2336 * for saving power
2338 if ((sum_nr_running < min_nr_running) ||
2339 (sum_nr_running == min_nr_running &&
2340 first_cpu(group->cpumask) <
2341 first_cpu(group_min->cpumask))) {
2342 group_min = group;
2343 min_nr_running = sum_nr_running;
2344 min_load_per_task = sum_weighted_load /
2345 sum_nr_running;
2349 * Calculate the group which is almost near its
2350 * capacity but still has some space to pick up some load
2351 * from other group and save more power
2353 if (sum_nr_running <= group_capacity - 1) {
2354 if (sum_nr_running > leader_nr_running ||
2355 (sum_nr_running == leader_nr_running &&
2356 first_cpu(group->cpumask) >
2357 first_cpu(group_leader->cpumask))) {
2358 group_leader = group;
2359 leader_nr_running = sum_nr_running;
2362 group_next:
2363 #endif
2364 group = group->next;
2365 } while (group != sd->groups);
2367 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2368 goto out_balanced;
2370 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2372 if (this_load >= avg_load ||
2373 100*max_load <= sd->imbalance_pct*this_load)
2374 goto out_balanced;
2376 busiest_load_per_task /= busiest_nr_running;
2378 * We're trying to get all the cpus to the average_load, so we don't
2379 * want to push ourselves above the average load, nor do we wish to
2380 * reduce the max loaded cpu below the average load, as either of these
2381 * actions would just result in more rebalancing later, and ping-pong
2382 * tasks around. Thus we look for the minimum possible imbalance.
2383 * Negative imbalances (*we* are more loaded than anyone else) will
2384 * be counted as no imbalance for these purposes -- we can't fix that
2385 * by pulling tasks to us. Be careful of negative numbers as they'll
2386 * appear as very large values with unsigned longs.
2388 if (max_load <= busiest_load_per_task)
2389 goto out_balanced;
2392 * In the presence of smp nice balancing, certain scenarios can have
2393 * max load less than avg load(as we skip the groups at or below
2394 * its cpu_power, while calculating max_load..)
2396 if (max_load < avg_load) {
2397 *imbalance = 0;
2398 goto small_imbalance;
2401 /* Don't want to pull so many tasks that a group would go idle */
2402 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2404 /* How much load to actually move to equalise the imbalance */
2405 *imbalance = min(max_pull * busiest->__cpu_power,
2406 (avg_load - this_load) * this->__cpu_power)
2407 / SCHED_LOAD_SCALE;
2410 * if *imbalance is less than the average load per runnable task
2411 * there is no gaurantee that any tasks will be moved so we'll have
2412 * a think about bumping its value to force at least one task to be
2413 * moved
2415 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2416 unsigned long tmp, pwr_now, pwr_move;
2417 unsigned int imbn;
2419 small_imbalance:
2420 pwr_move = pwr_now = 0;
2421 imbn = 2;
2422 if (this_nr_running) {
2423 this_load_per_task /= this_nr_running;
2424 if (busiest_load_per_task > this_load_per_task)
2425 imbn = 1;
2426 } else
2427 this_load_per_task = SCHED_LOAD_SCALE;
2429 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2430 busiest_load_per_task * imbn) {
2431 *imbalance = busiest_load_per_task;
2432 return busiest;
2436 * OK, we don't have enough imbalance to justify moving tasks,
2437 * however we may be able to increase total CPU power used by
2438 * moving them.
2441 pwr_now += busiest->__cpu_power *
2442 min(busiest_load_per_task, max_load);
2443 pwr_now += this->__cpu_power *
2444 min(this_load_per_task, this_load);
2445 pwr_now /= SCHED_LOAD_SCALE;
2447 /* Amount of load we'd subtract */
2448 tmp = sg_div_cpu_power(busiest,
2449 busiest_load_per_task * SCHED_LOAD_SCALE);
2450 if (max_load > tmp)
2451 pwr_move += busiest->__cpu_power *
2452 min(busiest_load_per_task, max_load - tmp);
2454 /* Amount of load we'd add */
2455 if (max_load * busiest->__cpu_power <
2456 busiest_load_per_task * SCHED_LOAD_SCALE)
2457 tmp = sg_div_cpu_power(this,
2458 max_load * busiest->__cpu_power);
2459 else
2460 tmp = sg_div_cpu_power(this,
2461 busiest_load_per_task * SCHED_LOAD_SCALE);
2462 pwr_move += this->__cpu_power *
2463 min(this_load_per_task, this_load + tmp);
2464 pwr_move /= SCHED_LOAD_SCALE;
2466 /* Move if we gain throughput */
2467 if (pwr_move <= pwr_now)
2468 goto out_balanced;
2470 *imbalance = busiest_load_per_task;
2473 return busiest;
2475 out_balanced:
2476 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2477 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2478 goto ret;
2480 if (this == group_leader && group_leader != group_min) {
2481 *imbalance = min_load_per_task;
2482 return group_min;
2484 #endif
2485 ret:
2486 *imbalance = 0;
2487 return NULL;
2491 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2493 static struct rq *
2494 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2495 unsigned long imbalance, cpumask_t *cpus)
2497 struct rq *busiest = NULL, *rq;
2498 unsigned long max_load = 0;
2499 int i;
2501 for_each_cpu_mask(i, group->cpumask) {
2502 unsigned long wl;
2504 if (!cpu_isset(i, *cpus))
2505 continue;
2507 rq = cpu_rq(i);
2508 wl = weighted_cpuload(i);
2510 if (rq->nr_running == 1 && wl > imbalance)
2511 continue;
2513 if (wl > max_load) {
2514 max_load = wl;
2515 busiest = rq;
2519 return busiest;
2523 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2524 * so long as it is large enough.
2526 #define MAX_PINNED_INTERVAL 512
2528 static inline unsigned long minus_1_or_zero(unsigned long n)
2530 return n > 0 ? n - 1 : 0;
2534 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2535 * tasks if there is an imbalance.
2537 static int load_balance(int this_cpu, struct rq *this_rq,
2538 struct sched_domain *sd, enum cpu_idle_type idle,
2539 int *balance)
2541 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2542 struct sched_group *group;
2543 unsigned long imbalance;
2544 struct rq *busiest;
2545 cpumask_t cpus = CPU_MASK_ALL;
2546 unsigned long flags;
2549 * When power savings policy is enabled for the parent domain, idle
2550 * sibling can pick up load irrespective of busy siblings. In this case,
2551 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2552 * portraying it as CPU_NOT_IDLE.
2554 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2555 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2556 sd_idle = 1;
2558 schedstat_inc(sd, lb_cnt[idle]);
2560 redo:
2561 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2562 &cpus, balance);
2564 if (*balance == 0)
2565 goto out_balanced;
2567 if (!group) {
2568 schedstat_inc(sd, lb_nobusyg[idle]);
2569 goto out_balanced;
2572 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2573 if (!busiest) {
2574 schedstat_inc(sd, lb_nobusyq[idle]);
2575 goto out_balanced;
2578 BUG_ON(busiest == this_rq);
2580 schedstat_add(sd, lb_imbalance[idle], imbalance);
2582 nr_moved = 0;
2583 if (busiest->nr_running > 1) {
2585 * Attempt to move tasks. If find_busiest_group has found
2586 * an imbalance but busiest->nr_running <= 1, the group is
2587 * still unbalanced. nr_moved simply stays zero, so it is
2588 * correctly treated as an imbalance.
2590 local_irq_save(flags);
2591 double_rq_lock(this_rq, busiest);
2592 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2593 minus_1_or_zero(busiest->nr_running),
2594 imbalance, sd, idle, &all_pinned);
2595 double_rq_unlock(this_rq, busiest);
2596 local_irq_restore(flags);
2599 * some other cpu did the load balance for us.
2601 if (nr_moved && this_cpu != smp_processor_id())
2602 resched_cpu(this_cpu);
2604 /* All tasks on this runqueue were pinned by CPU affinity */
2605 if (unlikely(all_pinned)) {
2606 cpu_clear(cpu_of(busiest), cpus);
2607 if (!cpus_empty(cpus))
2608 goto redo;
2609 goto out_balanced;
2613 if (!nr_moved) {
2614 schedstat_inc(sd, lb_failed[idle]);
2615 sd->nr_balance_failed++;
2617 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2619 spin_lock_irqsave(&busiest->lock, flags);
2621 /* don't kick the migration_thread, if the curr
2622 * task on busiest cpu can't be moved to this_cpu
2624 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2625 spin_unlock_irqrestore(&busiest->lock, flags);
2626 all_pinned = 1;
2627 goto out_one_pinned;
2630 if (!busiest->active_balance) {
2631 busiest->active_balance = 1;
2632 busiest->push_cpu = this_cpu;
2633 active_balance = 1;
2635 spin_unlock_irqrestore(&busiest->lock, flags);
2636 if (active_balance)
2637 wake_up_process(busiest->migration_thread);
2640 * We've kicked active balancing, reset the failure
2641 * counter.
2643 sd->nr_balance_failed = sd->cache_nice_tries+1;
2645 } else
2646 sd->nr_balance_failed = 0;
2648 if (likely(!active_balance)) {
2649 /* We were unbalanced, so reset the balancing interval */
2650 sd->balance_interval = sd->min_interval;
2651 } else {
2653 * If we've begun active balancing, start to back off. This
2654 * case may not be covered by the all_pinned logic if there
2655 * is only 1 task on the busy runqueue (because we don't call
2656 * move_tasks).
2658 if (sd->balance_interval < sd->max_interval)
2659 sd->balance_interval *= 2;
2662 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2663 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2664 return -1;
2665 return nr_moved;
2667 out_balanced:
2668 schedstat_inc(sd, lb_balanced[idle]);
2670 sd->nr_balance_failed = 0;
2672 out_one_pinned:
2673 /* tune up the balancing interval */
2674 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2675 (sd->balance_interval < sd->max_interval))
2676 sd->balance_interval *= 2;
2678 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2679 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2680 return -1;
2681 return 0;
2685 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2686 * tasks if there is an imbalance.
2688 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2689 * this_rq is locked.
2691 static int
2692 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2694 struct sched_group *group;
2695 struct rq *busiest = NULL;
2696 unsigned long imbalance;
2697 int nr_moved = 0;
2698 int sd_idle = 0;
2699 int all_pinned = 0;
2700 cpumask_t cpus = CPU_MASK_ALL;
2703 * When power savings policy is enabled for the parent domain, idle
2704 * sibling can pick up load irrespective of busy siblings. In this case,
2705 * let the state of idle sibling percolate up as IDLE, instead of
2706 * portraying it as CPU_NOT_IDLE.
2708 if (sd->flags & SD_SHARE_CPUPOWER &&
2709 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2710 sd_idle = 1;
2712 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2713 redo:
2714 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2715 &sd_idle, &cpus, NULL);
2716 if (!group) {
2717 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2718 goto out_balanced;
2721 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2722 &cpus);
2723 if (!busiest) {
2724 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2725 goto out_balanced;
2728 BUG_ON(busiest == this_rq);
2730 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2732 nr_moved = 0;
2733 if (busiest->nr_running > 1) {
2734 /* Attempt to move tasks */
2735 double_lock_balance(this_rq, busiest);
2736 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2737 minus_1_or_zero(busiest->nr_running),
2738 imbalance, sd, CPU_NEWLY_IDLE,
2739 &all_pinned);
2740 spin_unlock(&busiest->lock);
2742 if (unlikely(all_pinned)) {
2743 cpu_clear(cpu_of(busiest), cpus);
2744 if (!cpus_empty(cpus))
2745 goto redo;
2749 if (!nr_moved) {
2750 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2751 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2752 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2753 return -1;
2754 } else
2755 sd->nr_balance_failed = 0;
2757 return nr_moved;
2759 out_balanced:
2760 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2761 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2762 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2763 return -1;
2764 sd->nr_balance_failed = 0;
2766 return 0;
2770 * idle_balance is called by schedule() if this_cpu is about to become
2771 * idle. Attempts to pull tasks from other CPUs.
2773 static void idle_balance(int this_cpu, struct rq *this_rq)
2775 struct sched_domain *sd;
2776 int pulled_task = -1;
2777 unsigned long next_balance = jiffies + HZ;
2779 for_each_domain(this_cpu, sd) {
2780 unsigned long interval;
2782 if (!(sd->flags & SD_LOAD_BALANCE))
2783 continue;
2785 if (sd->flags & SD_BALANCE_NEWIDLE)
2786 /* If we've pulled tasks over stop searching: */
2787 pulled_task = load_balance_newidle(this_cpu,
2788 this_rq, sd);
2790 interval = msecs_to_jiffies(sd->balance_interval);
2791 if (time_after(next_balance, sd->last_balance + interval))
2792 next_balance = sd->last_balance + interval;
2793 if (pulled_task)
2794 break;
2796 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2798 * We are going idle. next_balance may be set based on
2799 * a busy processor. So reset next_balance.
2801 this_rq->next_balance = next_balance;
2806 * active_load_balance is run by migration threads. It pushes running tasks
2807 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2808 * running on each physical CPU where possible, and avoids physical /
2809 * logical imbalances.
2811 * Called with busiest_rq locked.
2813 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2815 int target_cpu = busiest_rq->push_cpu;
2816 struct sched_domain *sd;
2817 struct rq *target_rq;
2819 /* Is there any task to move? */
2820 if (busiest_rq->nr_running <= 1)
2821 return;
2823 target_rq = cpu_rq(target_cpu);
2826 * This condition is "impossible", if it occurs
2827 * we need to fix it. Originally reported by
2828 * Bjorn Helgaas on a 128-cpu setup.
2830 BUG_ON(busiest_rq == target_rq);
2832 /* move a task from busiest_rq to target_rq */
2833 double_lock_balance(busiest_rq, target_rq);
2835 /* Search for an sd spanning us and the target CPU. */
2836 for_each_domain(target_cpu, sd) {
2837 if ((sd->flags & SD_LOAD_BALANCE) &&
2838 cpu_isset(busiest_cpu, sd->span))
2839 break;
2842 if (likely(sd)) {
2843 schedstat_inc(sd, alb_cnt);
2845 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2846 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2847 NULL))
2848 schedstat_inc(sd, alb_pushed);
2849 else
2850 schedstat_inc(sd, alb_failed);
2852 spin_unlock(&target_rq->lock);
2855 #ifdef CONFIG_NO_HZ
2856 static struct {
2857 atomic_t load_balancer;
2858 cpumask_t cpu_mask;
2859 } nohz ____cacheline_aligned = {
2860 .load_balancer = ATOMIC_INIT(-1),
2861 .cpu_mask = CPU_MASK_NONE,
2865 * This routine will try to nominate the ilb (idle load balancing)
2866 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2867 * load balancing on behalf of all those cpus. If all the cpus in the system
2868 * go into this tickless mode, then there will be no ilb owner (as there is
2869 * no need for one) and all the cpus will sleep till the next wakeup event
2870 * arrives...
2872 * For the ilb owner, tick is not stopped. And this tick will be used
2873 * for idle load balancing. ilb owner will still be part of
2874 * nohz.cpu_mask..
2876 * While stopping the tick, this cpu will become the ilb owner if there
2877 * is no other owner. And will be the owner till that cpu becomes busy
2878 * or if all cpus in the system stop their ticks at which point
2879 * there is no need for ilb owner.
2881 * When the ilb owner becomes busy, it nominates another owner, during the
2882 * next busy scheduler_tick()
2884 int select_nohz_load_balancer(int stop_tick)
2886 int cpu = smp_processor_id();
2888 if (stop_tick) {
2889 cpu_set(cpu, nohz.cpu_mask);
2890 cpu_rq(cpu)->in_nohz_recently = 1;
2893 * If we are going offline and still the leader, give up!
2895 if (cpu_is_offline(cpu) &&
2896 atomic_read(&nohz.load_balancer) == cpu) {
2897 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2898 BUG();
2899 return 0;
2902 /* time for ilb owner also to sleep */
2903 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2904 if (atomic_read(&nohz.load_balancer) == cpu)
2905 atomic_set(&nohz.load_balancer, -1);
2906 return 0;
2909 if (atomic_read(&nohz.load_balancer) == -1) {
2910 /* make me the ilb owner */
2911 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2912 return 1;
2913 } else if (atomic_read(&nohz.load_balancer) == cpu)
2914 return 1;
2915 } else {
2916 if (!cpu_isset(cpu, nohz.cpu_mask))
2917 return 0;
2919 cpu_clear(cpu, nohz.cpu_mask);
2921 if (atomic_read(&nohz.load_balancer) == cpu)
2922 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2923 BUG();
2925 return 0;
2927 #endif
2929 static DEFINE_SPINLOCK(balancing);
2932 * It checks each scheduling domain to see if it is due to be balanced,
2933 * and initiates a balancing operation if so.
2935 * Balancing parameters are set up in arch_init_sched_domains.
2937 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2939 int balance = 1;
2940 struct rq *rq = cpu_rq(cpu);
2941 unsigned long interval;
2942 struct sched_domain *sd;
2943 /* Earliest time when we have to do rebalance again */
2944 unsigned long next_balance = jiffies + 60*HZ;
2946 for_each_domain(cpu, sd) {
2947 if (!(sd->flags & SD_LOAD_BALANCE))
2948 continue;
2950 interval = sd->balance_interval;
2951 if (idle != CPU_IDLE)
2952 interval *= sd->busy_factor;
2954 /* scale ms to jiffies */
2955 interval = msecs_to_jiffies(interval);
2956 if (unlikely(!interval))
2957 interval = 1;
2958 if (interval > HZ*NR_CPUS/10)
2959 interval = HZ*NR_CPUS/10;
2962 if (sd->flags & SD_SERIALIZE) {
2963 if (!spin_trylock(&balancing))
2964 goto out;
2967 if (time_after_eq(jiffies, sd->last_balance + interval)) {
2968 if (load_balance(cpu, rq, sd, idle, &balance)) {
2970 * We've pulled tasks over so either we're no
2971 * longer idle, or one of our SMT siblings is
2972 * not idle.
2974 idle = CPU_NOT_IDLE;
2976 sd->last_balance = jiffies;
2978 if (sd->flags & SD_SERIALIZE)
2979 spin_unlock(&balancing);
2980 out:
2981 if (time_after(next_balance, sd->last_balance + interval))
2982 next_balance = sd->last_balance + interval;
2985 * Stop the load balance at this level. There is another
2986 * CPU in our sched group which is doing load balancing more
2987 * actively.
2989 if (!balance)
2990 break;
2992 rq->next_balance = next_balance;
2996 * run_rebalance_domains is triggered when needed from the scheduler tick.
2997 * In CONFIG_NO_HZ case, the idle load balance owner will do the
2998 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3000 static void run_rebalance_domains(struct softirq_action *h)
3002 int this_cpu = smp_processor_id();
3003 struct rq *this_rq = cpu_rq(this_cpu);
3004 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3005 CPU_IDLE : CPU_NOT_IDLE;
3007 rebalance_domains(this_cpu, idle);
3009 #ifdef CONFIG_NO_HZ
3011 * If this cpu is the owner for idle load balancing, then do the
3012 * balancing on behalf of the other idle cpus whose ticks are
3013 * stopped.
3015 if (this_rq->idle_at_tick &&
3016 atomic_read(&nohz.load_balancer) == this_cpu) {
3017 cpumask_t cpus = nohz.cpu_mask;
3018 struct rq *rq;
3019 int balance_cpu;
3021 cpu_clear(this_cpu, cpus);
3022 for_each_cpu_mask(balance_cpu, cpus) {
3024 * If this cpu gets work to do, stop the load balancing
3025 * work being done for other cpus. Next load
3026 * balancing owner will pick it up.
3028 if (need_resched())
3029 break;
3031 rebalance_domains(balance_cpu, SCHED_IDLE);
3033 rq = cpu_rq(balance_cpu);
3034 if (time_after(this_rq->next_balance, rq->next_balance))
3035 this_rq->next_balance = rq->next_balance;
3038 #endif
3042 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3044 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3045 * idle load balancing owner or decide to stop the periodic load balancing,
3046 * if the whole system is idle.
3048 static inline void trigger_load_balance(struct rq *rq, int cpu)
3050 #ifdef CONFIG_NO_HZ
3052 * If we were in the nohz mode recently and busy at the current
3053 * scheduler tick, then check if we need to nominate new idle
3054 * load balancer.
3056 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3057 rq->in_nohz_recently = 0;
3059 if (atomic_read(&nohz.load_balancer) == cpu) {
3060 cpu_clear(cpu, nohz.cpu_mask);
3061 atomic_set(&nohz.load_balancer, -1);
3064 if (atomic_read(&nohz.load_balancer) == -1) {
3066 * simple selection for now: Nominate the
3067 * first cpu in the nohz list to be the next
3068 * ilb owner.
3070 * TBD: Traverse the sched domains and nominate
3071 * the nearest cpu in the nohz.cpu_mask.
3073 int ilb = first_cpu(nohz.cpu_mask);
3075 if (ilb != NR_CPUS)
3076 resched_cpu(ilb);
3081 * If this cpu is idle and doing idle load balancing for all the
3082 * cpus with ticks stopped, is it time for that to stop?
3084 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3085 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3086 resched_cpu(cpu);
3087 return;
3091 * If this cpu is idle and the idle load balancing is done by
3092 * someone else, then no need raise the SCHED_SOFTIRQ
3094 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3095 cpu_isset(cpu, nohz.cpu_mask))
3096 return;
3097 #endif
3098 if (time_after_eq(jiffies, rq->next_balance))
3099 raise_softirq(SCHED_SOFTIRQ);
3102 #else /* CONFIG_SMP */
3105 * on UP we do not need to balance between CPUs:
3107 static inline void idle_balance(int cpu, struct rq *rq)
3111 /* Avoid "used but not defined" warning on UP */
3112 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3113 unsigned long max_nr_move, unsigned long max_load_move,
3114 struct sched_domain *sd, enum cpu_idle_type idle,
3115 int *all_pinned, unsigned long *load_moved,
3116 int this_best_prio, int best_prio, int best_prio_seen,
3117 struct rq_iterator *iterator)
3119 *load_moved = 0;
3121 return 0;
3124 #endif
3126 DEFINE_PER_CPU(struct kernel_stat, kstat);
3128 EXPORT_PER_CPU_SYMBOL(kstat);
3131 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3132 * that have not yet been banked in case the task is currently running.
3134 unsigned long long task_sched_runtime(struct task_struct *p)
3136 unsigned long flags;
3137 u64 ns, delta_exec;
3138 struct rq *rq;
3140 rq = task_rq_lock(p, &flags);
3141 ns = p->se.sum_exec_runtime;
3142 if (rq->curr == p) {
3143 delta_exec = rq_clock(rq) - p->se.exec_start;
3144 if ((s64)delta_exec > 0)
3145 ns += delta_exec;
3147 task_rq_unlock(rq, &flags);
3149 return ns;
3153 * Account user cpu time to a process.
3154 * @p: the process that the cpu time gets accounted to
3155 * @hardirq_offset: the offset to subtract from hardirq_count()
3156 * @cputime: the cpu time spent in user space since the last update
3158 void account_user_time(struct task_struct *p, cputime_t cputime)
3160 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3161 cputime64_t tmp;
3163 p->utime = cputime_add(p->utime, cputime);
3165 /* Add user time to cpustat. */
3166 tmp = cputime_to_cputime64(cputime);
3167 if (TASK_NICE(p) > 0)
3168 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3169 else
3170 cpustat->user = cputime64_add(cpustat->user, tmp);
3174 * Account system cpu time to a process.
3175 * @p: the process that the cpu time gets accounted to
3176 * @hardirq_offset: the offset to subtract from hardirq_count()
3177 * @cputime: the cpu time spent in kernel space since the last update
3179 void account_system_time(struct task_struct *p, int hardirq_offset,
3180 cputime_t cputime)
3182 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3183 struct rq *rq = this_rq();
3184 cputime64_t tmp;
3186 p->stime = cputime_add(p->stime, cputime);
3188 /* Add system time to cpustat. */
3189 tmp = cputime_to_cputime64(cputime);
3190 if (hardirq_count() - hardirq_offset)
3191 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3192 else if (softirq_count())
3193 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3194 else if (p != rq->idle)
3195 cpustat->system = cputime64_add(cpustat->system, tmp);
3196 else if (atomic_read(&rq->nr_iowait) > 0)
3197 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3198 else
3199 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3200 /* Account for system time used */
3201 acct_update_integrals(p);
3205 * Account for involuntary wait time.
3206 * @p: the process from which the cpu time has been stolen
3207 * @steal: the cpu time spent in involuntary wait
3209 void account_steal_time(struct task_struct *p, cputime_t steal)
3211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3212 cputime64_t tmp = cputime_to_cputime64(steal);
3213 struct rq *rq = this_rq();
3215 if (p == rq->idle) {
3216 p->stime = cputime_add(p->stime, steal);
3217 if (atomic_read(&rq->nr_iowait) > 0)
3218 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3219 else
3220 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3221 } else
3222 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3226 * This function gets called by the timer code, with HZ frequency.
3227 * We call it with interrupts disabled.
3229 * It also gets called by the fork code, when changing the parent's
3230 * timeslices.
3232 void scheduler_tick(void)
3234 int cpu = smp_processor_id();
3235 struct rq *rq = cpu_rq(cpu);
3236 struct task_struct *curr = rq->curr;
3238 spin_lock(&rq->lock);
3239 if (curr != rq->idle) /* FIXME: needed? */
3240 curr->sched_class->task_tick(rq, curr);
3241 update_cpu_load(rq);
3242 spin_unlock(&rq->lock);
3244 #ifdef CONFIG_SMP
3245 rq->idle_at_tick = idle_cpu(cpu);
3246 trigger_load_balance(rq, cpu);
3247 #endif
3250 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3252 void fastcall add_preempt_count(int val)
3255 * Underflow?
3257 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3258 return;
3259 preempt_count() += val;
3261 * Spinlock count overflowing soon?
3263 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3264 PREEMPT_MASK - 10);
3266 EXPORT_SYMBOL(add_preempt_count);
3268 void fastcall sub_preempt_count(int val)
3271 * Underflow?
3273 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3274 return;
3276 * Is the spinlock portion underflowing?
3278 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3279 !(preempt_count() & PREEMPT_MASK)))
3280 return;
3282 preempt_count() -= val;
3284 EXPORT_SYMBOL(sub_preempt_count);
3286 #endif
3289 * Print scheduling while atomic bug:
3291 static noinline void __schedule_bug(struct task_struct *prev)
3293 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3294 prev->comm, preempt_count(), prev->pid);
3295 debug_show_held_locks(prev);
3296 if (irqs_disabled())
3297 print_irqtrace_events(prev);
3298 dump_stack();
3302 * Various schedule()-time debugging checks and statistics:
3304 static inline void schedule_debug(struct task_struct *prev)
3307 * Test if we are atomic. Since do_exit() needs to call into
3308 * schedule() atomically, we ignore that path for now.
3309 * Otherwise, whine if we are scheduling when we should not be.
3311 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3312 __schedule_bug(prev);
3314 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3316 schedstat_inc(this_rq(), sched_cnt);
3320 * Pick up the highest-prio task:
3322 static inline struct task_struct *
3323 pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3325 struct sched_class *class;
3326 struct task_struct *p;
3329 * Optimization: we know that if all tasks are in
3330 * the fair class we can call that function directly:
3332 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3333 p = fair_sched_class.pick_next_task(rq, now);
3334 if (likely(p))
3335 return p;
3338 class = sched_class_highest;
3339 for ( ; ; ) {
3340 p = class->pick_next_task(rq, now);
3341 if (p)
3342 return p;
3344 * Will never be NULL as the idle class always
3345 * returns a non-NULL p:
3347 class = class->next;
3352 * schedule() is the main scheduler function.
3354 asmlinkage void __sched schedule(void)
3356 struct task_struct *prev, *next;
3357 long *switch_count;
3358 struct rq *rq;
3359 u64 now;
3360 int cpu;
3362 need_resched:
3363 preempt_disable();
3364 cpu = smp_processor_id();
3365 rq = cpu_rq(cpu);
3366 rcu_qsctr_inc(cpu);
3367 prev = rq->curr;
3368 switch_count = &prev->nivcsw;
3370 release_kernel_lock(prev);
3371 need_resched_nonpreemptible:
3373 schedule_debug(prev);
3375 spin_lock_irq(&rq->lock);
3376 clear_tsk_need_resched(prev);
3378 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3379 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3380 unlikely(signal_pending(prev)))) {
3381 prev->state = TASK_RUNNING;
3382 } else {
3383 deactivate_task(rq, prev, 1);
3385 switch_count = &prev->nvcsw;
3388 if (unlikely(!rq->nr_running))
3389 idle_balance(cpu, rq);
3391 now = __rq_clock(rq);
3392 prev->sched_class->put_prev_task(rq, prev, now);
3393 next = pick_next_task(rq, prev, now);
3395 sched_info_switch(prev, next);
3397 if (likely(prev != next)) {
3398 rq->nr_switches++;
3399 rq->curr = next;
3400 ++*switch_count;
3402 context_switch(rq, prev, next); /* unlocks the rq */
3403 } else
3404 spin_unlock_irq(&rq->lock);
3406 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3407 cpu = smp_processor_id();
3408 rq = cpu_rq(cpu);
3409 goto need_resched_nonpreemptible;
3411 preempt_enable_no_resched();
3412 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3413 goto need_resched;
3415 EXPORT_SYMBOL(schedule);
3417 #ifdef CONFIG_PREEMPT
3419 * this is the entry point to schedule() from in-kernel preemption
3420 * off of preempt_enable. Kernel preemptions off return from interrupt
3421 * occur there and call schedule directly.
3423 asmlinkage void __sched preempt_schedule(void)
3425 struct thread_info *ti = current_thread_info();
3426 #ifdef CONFIG_PREEMPT_BKL
3427 struct task_struct *task = current;
3428 int saved_lock_depth;
3429 #endif
3431 * If there is a non-zero preempt_count or interrupts are disabled,
3432 * we do not want to preempt the current task. Just return..
3434 if (likely(ti->preempt_count || irqs_disabled()))
3435 return;
3437 need_resched:
3438 add_preempt_count(PREEMPT_ACTIVE);
3440 * We keep the big kernel semaphore locked, but we
3441 * clear ->lock_depth so that schedule() doesnt
3442 * auto-release the semaphore:
3444 #ifdef CONFIG_PREEMPT_BKL
3445 saved_lock_depth = task->lock_depth;
3446 task->lock_depth = -1;
3447 #endif
3448 schedule();
3449 #ifdef CONFIG_PREEMPT_BKL
3450 task->lock_depth = saved_lock_depth;
3451 #endif
3452 sub_preempt_count(PREEMPT_ACTIVE);
3454 /* we could miss a preemption opportunity between schedule and now */
3455 barrier();
3456 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3457 goto need_resched;
3459 EXPORT_SYMBOL(preempt_schedule);
3462 * this is the entry point to schedule() from kernel preemption
3463 * off of irq context.
3464 * Note, that this is called and return with irqs disabled. This will
3465 * protect us against recursive calling from irq.
3467 asmlinkage void __sched preempt_schedule_irq(void)
3469 struct thread_info *ti = current_thread_info();
3470 #ifdef CONFIG_PREEMPT_BKL
3471 struct task_struct *task = current;
3472 int saved_lock_depth;
3473 #endif
3474 /* Catch callers which need to be fixed */
3475 BUG_ON(ti->preempt_count || !irqs_disabled());
3477 need_resched:
3478 add_preempt_count(PREEMPT_ACTIVE);
3480 * We keep the big kernel semaphore locked, but we
3481 * clear ->lock_depth so that schedule() doesnt
3482 * auto-release the semaphore:
3484 #ifdef CONFIG_PREEMPT_BKL
3485 saved_lock_depth = task->lock_depth;
3486 task->lock_depth = -1;
3487 #endif
3488 local_irq_enable();
3489 schedule();
3490 local_irq_disable();
3491 #ifdef CONFIG_PREEMPT_BKL
3492 task->lock_depth = saved_lock_depth;
3493 #endif
3494 sub_preempt_count(PREEMPT_ACTIVE);
3496 /* we could miss a preemption opportunity between schedule and now */
3497 barrier();
3498 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3499 goto need_resched;
3502 #endif /* CONFIG_PREEMPT */
3504 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3505 void *key)
3507 return try_to_wake_up(curr->private, mode, sync);
3509 EXPORT_SYMBOL(default_wake_function);
3512 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3513 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3514 * number) then we wake all the non-exclusive tasks and one exclusive task.
3516 * There are circumstances in which we can try to wake a task which has already
3517 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3518 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3520 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3521 int nr_exclusive, int sync, void *key)
3523 struct list_head *tmp, *next;
3525 list_for_each_safe(tmp, next, &q->task_list) {
3526 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3527 unsigned flags = curr->flags;
3529 if (curr->func(curr, mode, sync, key) &&
3530 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3531 break;
3536 * __wake_up - wake up threads blocked on a waitqueue.
3537 * @q: the waitqueue
3538 * @mode: which threads
3539 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3540 * @key: is directly passed to the wakeup function
3542 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3543 int nr_exclusive, void *key)
3545 unsigned long flags;
3547 spin_lock_irqsave(&q->lock, flags);
3548 __wake_up_common(q, mode, nr_exclusive, 0, key);
3549 spin_unlock_irqrestore(&q->lock, flags);
3551 EXPORT_SYMBOL(__wake_up);
3554 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3556 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3558 __wake_up_common(q, mode, 1, 0, NULL);
3562 * __wake_up_sync - wake up threads blocked on a waitqueue.
3563 * @q: the waitqueue
3564 * @mode: which threads
3565 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3567 * The sync wakeup differs that the waker knows that it will schedule
3568 * away soon, so while the target thread will be woken up, it will not
3569 * be migrated to another CPU - ie. the two threads are 'synchronized'
3570 * with each other. This can prevent needless bouncing between CPUs.
3572 * On UP it can prevent extra preemption.
3574 void fastcall
3575 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3577 unsigned long flags;
3578 int sync = 1;
3580 if (unlikely(!q))
3581 return;
3583 if (unlikely(!nr_exclusive))
3584 sync = 0;
3586 spin_lock_irqsave(&q->lock, flags);
3587 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3588 spin_unlock_irqrestore(&q->lock, flags);
3590 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3592 void fastcall complete(struct completion *x)
3594 unsigned long flags;
3596 spin_lock_irqsave(&x->wait.lock, flags);
3597 x->done++;
3598 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3599 1, 0, NULL);
3600 spin_unlock_irqrestore(&x->wait.lock, flags);
3602 EXPORT_SYMBOL(complete);
3604 void fastcall complete_all(struct completion *x)
3606 unsigned long flags;
3608 spin_lock_irqsave(&x->wait.lock, flags);
3609 x->done += UINT_MAX/2;
3610 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3611 0, 0, NULL);
3612 spin_unlock_irqrestore(&x->wait.lock, flags);
3614 EXPORT_SYMBOL(complete_all);
3616 void fastcall __sched wait_for_completion(struct completion *x)
3618 might_sleep();
3620 spin_lock_irq(&x->wait.lock);
3621 if (!x->done) {
3622 DECLARE_WAITQUEUE(wait, current);
3624 wait.flags |= WQ_FLAG_EXCLUSIVE;
3625 __add_wait_queue_tail(&x->wait, &wait);
3626 do {
3627 __set_current_state(TASK_UNINTERRUPTIBLE);
3628 spin_unlock_irq(&x->wait.lock);
3629 schedule();
3630 spin_lock_irq(&x->wait.lock);
3631 } while (!x->done);
3632 __remove_wait_queue(&x->wait, &wait);
3634 x->done--;
3635 spin_unlock_irq(&x->wait.lock);
3637 EXPORT_SYMBOL(wait_for_completion);
3639 unsigned long fastcall __sched
3640 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3642 might_sleep();
3644 spin_lock_irq(&x->wait.lock);
3645 if (!x->done) {
3646 DECLARE_WAITQUEUE(wait, current);
3648 wait.flags |= WQ_FLAG_EXCLUSIVE;
3649 __add_wait_queue_tail(&x->wait, &wait);
3650 do {
3651 __set_current_state(TASK_UNINTERRUPTIBLE);
3652 spin_unlock_irq(&x->wait.lock);
3653 timeout = schedule_timeout(timeout);
3654 spin_lock_irq(&x->wait.lock);
3655 if (!timeout) {
3656 __remove_wait_queue(&x->wait, &wait);
3657 goto out;
3659 } while (!x->done);
3660 __remove_wait_queue(&x->wait, &wait);
3662 x->done--;
3663 out:
3664 spin_unlock_irq(&x->wait.lock);
3665 return timeout;
3667 EXPORT_SYMBOL(wait_for_completion_timeout);
3669 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3671 int ret = 0;
3673 might_sleep();
3675 spin_lock_irq(&x->wait.lock);
3676 if (!x->done) {
3677 DECLARE_WAITQUEUE(wait, current);
3679 wait.flags |= WQ_FLAG_EXCLUSIVE;
3680 __add_wait_queue_tail(&x->wait, &wait);
3681 do {
3682 if (signal_pending(current)) {
3683 ret = -ERESTARTSYS;
3684 __remove_wait_queue(&x->wait, &wait);
3685 goto out;
3687 __set_current_state(TASK_INTERRUPTIBLE);
3688 spin_unlock_irq(&x->wait.lock);
3689 schedule();
3690 spin_lock_irq(&x->wait.lock);
3691 } while (!x->done);
3692 __remove_wait_queue(&x->wait, &wait);
3694 x->done--;
3695 out:
3696 spin_unlock_irq(&x->wait.lock);
3698 return ret;
3700 EXPORT_SYMBOL(wait_for_completion_interruptible);
3702 unsigned long fastcall __sched
3703 wait_for_completion_interruptible_timeout(struct completion *x,
3704 unsigned long timeout)
3706 might_sleep();
3708 spin_lock_irq(&x->wait.lock);
3709 if (!x->done) {
3710 DECLARE_WAITQUEUE(wait, current);
3712 wait.flags |= WQ_FLAG_EXCLUSIVE;
3713 __add_wait_queue_tail(&x->wait, &wait);
3714 do {
3715 if (signal_pending(current)) {
3716 timeout = -ERESTARTSYS;
3717 __remove_wait_queue(&x->wait, &wait);
3718 goto out;
3720 __set_current_state(TASK_INTERRUPTIBLE);
3721 spin_unlock_irq(&x->wait.lock);
3722 timeout = schedule_timeout(timeout);
3723 spin_lock_irq(&x->wait.lock);
3724 if (!timeout) {
3725 __remove_wait_queue(&x->wait, &wait);
3726 goto out;
3728 } while (!x->done);
3729 __remove_wait_queue(&x->wait, &wait);
3731 x->done--;
3732 out:
3733 spin_unlock_irq(&x->wait.lock);
3734 return timeout;
3736 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3738 static inline void
3739 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3741 spin_lock_irqsave(&q->lock, *flags);
3742 __add_wait_queue(q, wait);
3743 spin_unlock(&q->lock);
3746 static inline void
3747 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3749 spin_lock_irq(&q->lock);
3750 __remove_wait_queue(q, wait);
3751 spin_unlock_irqrestore(&q->lock, *flags);
3754 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3756 unsigned long flags;
3757 wait_queue_t wait;
3759 init_waitqueue_entry(&wait, current);
3761 current->state = TASK_INTERRUPTIBLE;
3763 sleep_on_head(q, &wait, &flags);
3764 schedule();
3765 sleep_on_tail(q, &wait, &flags);
3767 EXPORT_SYMBOL(interruptible_sleep_on);
3769 long __sched
3770 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3772 unsigned long flags;
3773 wait_queue_t wait;
3775 init_waitqueue_entry(&wait, current);
3777 current->state = TASK_INTERRUPTIBLE;
3779 sleep_on_head(q, &wait, &flags);
3780 timeout = schedule_timeout(timeout);
3781 sleep_on_tail(q, &wait, &flags);
3783 return timeout;
3785 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3787 void __sched sleep_on(wait_queue_head_t *q)
3789 unsigned long flags;
3790 wait_queue_t wait;
3792 init_waitqueue_entry(&wait, current);
3794 current->state = TASK_UNINTERRUPTIBLE;
3796 sleep_on_head(q, &wait, &flags);
3797 schedule();
3798 sleep_on_tail(q, &wait, &flags);
3800 EXPORT_SYMBOL(sleep_on);
3802 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3804 unsigned long flags;
3805 wait_queue_t wait;
3807 init_waitqueue_entry(&wait, current);
3809 current->state = TASK_UNINTERRUPTIBLE;
3811 sleep_on_head(q, &wait, &flags);
3812 timeout = schedule_timeout(timeout);
3813 sleep_on_tail(q, &wait, &flags);
3815 return timeout;
3817 EXPORT_SYMBOL(sleep_on_timeout);
3819 #ifdef CONFIG_RT_MUTEXES
3822 * rt_mutex_setprio - set the current priority of a task
3823 * @p: task
3824 * @prio: prio value (kernel-internal form)
3826 * This function changes the 'effective' priority of a task. It does
3827 * not touch ->normal_prio like __setscheduler().
3829 * Used by the rt_mutex code to implement priority inheritance logic.
3831 void rt_mutex_setprio(struct task_struct *p, int prio)
3833 unsigned long flags;
3834 int oldprio, on_rq;
3835 struct rq *rq;
3836 u64 now;
3838 BUG_ON(prio < 0 || prio > MAX_PRIO);
3840 rq = task_rq_lock(p, &flags);
3841 now = rq_clock(rq);
3843 oldprio = p->prio;
3844 on_rq = p->se.on_rq;
3845 if (on_rq)
3846 dequeue_task(rq, p, 0, now);
3848 if (rt_prio(prio))
3849 p->sched_class = &rt_sched_class;
3850 else
3851 p->sched_class = &fair_sched_class;
3853 p->prio = prio;
3855 if (on_rq) {
3856 enqueue_task(rq, p, 0, now);
3858 * Reschedule if we are currently running on this runqueue and
3859 * our priority decreased, or if we are not currently running on
3860 * this runqueue and our priority is higher than the current's
3862 if (task_running(rq, p)) {
3863 if (p->prio > oldprio)
3864 resched_task(rq->curr);
3865 } else {
3866 check_preempt_curr(rq, p);
3869 task_rq_unlock(rq, &flags);
3872 #endif
3874 void set_user_nice(struct task_struct *p, long nice)
3876 int old_prio, delta, on_rq;
3877 unsigned long flags;
3878 struct rq *rq;
3879 u64 now;
3881 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3882 return;
3884 * We have to be careful, if called from sys_setpriority(),
3885 * the task might be in the middle of scheduling on another CPU.
3887 rq = task_rq_lock(p, &flags);
3888 now = rq_clock(rq);
3890 * The RT priorities are set via sched_setscheduler(), but we still
3891 * allow the 'normal' nice value to be set - but as expected
3892 * it wont have any effect on scheduling until the task is
3893 * SCHED_FIFO/SCHED_RR:
3895 if (task_has_rt_policy(p)) {
3896 p->static_prio = NICE_TO_PRIO(nice);
3897 goto out_unlock;
3899 on_rq = p->se.on_rq;
3900 if (on_rq) {
3901 dequeue_task(rq, p, 0, now);
3902 dec_load(rq, p, now);
3905 p->static_prio = NICE_TO_PRIO(nice);
3906 set_load_weight(p);
3907 old_prio = p->prio;
3908 p->prio = effective_prio(p);
3909 delta = p->prio - old_prio;
3911 if (on_rq) {
3912 enqueue_task(rq, p, 0, now);
3913 inc_load(rq, p, now);
3915 * If the task increased its priority or is running and
3916 * lowered its priority, then reschedule its CPU:
3918 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3919 resched_task(rq->curr);
3921 out_unlock:
3922 task_rq_unlock(rq, &flags);
3924 EXPORT_SYMBOL(set_user_nice);
3927 * can_nice - check if a task can reduce its nice value
3928 * @p: task
3929 * @nice: nice value
3931 int can_nice(const struct task_struct *p, const int nice)
3933 /* convert nice value [19,-20] to rlimit style value [1,40] */
3934 int nice_rlim = 20 - nice;
3936 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3937 capable(CAP_SYS_NICE));
3940 #ifdef __ARCH_WANT_SYS_NICE
3943 * sys_nice - change the priority of the current process.
3944 * @increment: priority increment
3946 * sys_setpriority is a more generic, but much slower function that
3947 * does similar things.
3949 asmlinkage long sys_nice(int increment)
3951 long nice, retval;
3954 * Setpriority might change our priority at the same moment.
3955 * We don't have to worry. Conceptually one call occurs first
3956 * and we have a single winner.
3958 if (increment < -40)
3959 increment = -40;
3960 if (increment > 40)
3961 increment = 40;
3963 nice = PRIO_TO_NICE(current->static_prio) + increment;
3964 if (nice < -20)
3965 nice = -20;
3966 if (nice > 19)
3967 nice = 19;
3969 if (increment < 0 && !can_nice(current, nice))
3970 return -EPERM;
3972 retval = security_task_setnice(current, nice);
3973 if (retval)
3974 return retval;
3976 set_user_nice(current, nice);
3977 return 0;
3980 #endif
3983 * task_prio - return the priority value of a given task.
3984 * @p: the task in question.
3986 * This is the priority value as seen by users in /proc.
3987 * RT tasks are offset by -200. Normal tasks are centered
3988 * around 0, value goes from -16 to +15.
3990 int task_prio(const struct task_struct *p)
3992 return p->prio - MAX_RT_PRIO;
3996 * task_nice - return the nice value of a given task.
3997 * @p: the task in question.
3999 int task_nice(const struct task_struct *p)
4001 return TASK_NICE(p);
4003 EXPORT_SYMBOL_GPL(task_nice);
4006 * idle_cpu - is a given cpu idle currently?
4007 * @cpu: the processor in question.
4009 int idle_cpu(int cpu)
4011 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4015 * idle_task - return the idle task for a given cpu.
4016 * @cpu: the processor in question.
4018 struct task_struct *idle_task(int cpu)
4020 return cpu_rq(cpu)->idle;
4024 * find_process_by_pid - find a process with a matching PID value.
4025 * @pid: the pid in question.
4027 static inline struct task_struct *find_process_by_pid(pid_t pid)
4029 return pid ? find_task_by_pid(pid) : current;
4032 /* Actually do priority change: must hold rq lock. */
4033 static void
4034 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4036 BUG_ON(p->se.on_rq);
4038 p->policy = policy;
4039 switch (p->policy) {
4040 case SCHED_NORMAL:
4041 case SCHED_BATCH:
4042 case SCHED_IDLE:
4043 p->sched_class = &fair_sched_class;
4044 break;
4045 case SCHED_FIFO:
4046 case SCHED_RR:
4047 p->sched_class = &rt_sched_class;
4048 break;
4051 p->rt_priority = prio;
4052 p->normal_prio = normal_prio(p);
4053 /* we are holding p->pi_lock already */
4054 p->prio = rt_mutex_getprio(p);
4055 set_load_weight(p);
4059 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4060 * @p: the task in question.
4061 * @policy: new policy.
4062 * @param: structure containing the new RT priority.
4064 * NOTE that the task may be already dead.
4066 int sched_setscheduler(struct task_struct *p, int policy,
4067 struct sched_param *param)
4069 int retval, oldprio, oldpolicy = -1, on_rq;
4070 unsigned long flags;
4071 struct rq *rq;
4073 /* may grab non-irq protected spin_locks */
4074 BUG_ON(in_interrupt());
4075 recheck:
4076 /* double check policy once rq lock held */
4077 if (policy < 0)
4078 policy = oldpolicy = p->policy;
4079 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4080 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4081 policy != SCHED_IDLE)
4082 return -EINVAL;
4084 * Valid priorities for SCHED_FIFO and SCHED_RR are
4085 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4086 * SCHED_BATCH and SCHED_IDLE is 0.
4088 if (param->sched_priority < 0 ||
4089 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4090 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4091 return -EINVAL;
4092 if (rt_policy(policy) != (param->sched_priority != 0))
4093 return -EINVAL;
4096 * Allow unprivileged RT tasks to decrease priority:
4098 if (!capable(CAP_SYS_NICE)) {
4099 if (rt_policy(policy)) {
4100 unsigned long rlim_rtprio;
4102 if (!lock_task_sighand(p, &flags))
4103 return -ESRCH;
4104 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4105 unlock_task_sighand(p, &flags);
4107 /* can't set/change the rt policy */
4108 if (policy != p->policy && !rlim_rtprio)
4109 return -EPERM;
4111 /* can't increase priority */
4112 if (param->sched_priority > p->rt_priority &&
4113 param->sched_priority > rlim_rtprio)
4114 return -EPERM;
4117 * Like positive nice levels, dont allow tasks to
4118 * move out of SCHED_IDLE either:
4120 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4121 return -EPERM;
4123 /* can't change other user's priorities */
4124 if ((current->euid != p->euid) &&
4125 (current->euid != p->uid))
4126 return -EPERM;
4129 retval = security_task_setscheduler(p, policy, param);
4130 if (retval)
4131 return retval;
4133 * make sure no PI-waiters arrive (or leave) while we are
4134 * changing the priority of the task:
4136 spin_lock_irqsave(&p->pi_lock, flags);
4138 * To be able to change p->policy safely, the apropriate
4139 * runqueue lock must be held.
4141 rq = __task_rq_lock(p);
4142 /* recheck policy now with rq lock held */
4143 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4144 policy = oldpolicy = -1;
4145 __task_rq_unlock(rq);
4146 spin_unlock_irqrestore(&p->pi_lock, flags);
4147 goto recheck;
4149 on_rq = p->se.on_rq;
4150 if (on_rq)
4151 deactivate_task(rq, p, 0);
4152 oldprio = p->prio;
4153 __setscheduler(rq, p, policy, param->sched_priority);
4154 if (on_rq) {
4155 activate_task(rq, p, 0);
4157 * Reschedule if we are currently running on this runqueue and
4158 * our priority decreased, or if we are not currently running on
4159 * this runqueue and our priority is higher than the current's
4161 if (task_running(rq, p)) {
4162 if (p->prio > oldprio)
4163 resched_task(rq->curr);
4164 } else {
4165 check_preempt_curr(rq, p);
4168 __task_rq_unlock(rq);
4169 spin_unlock_irqrestore(&p->pi_lock, flags);
4171 rt_mutex_adjust_pi(p);
4173 return 0;
4175 EXPORT_SYMBOL_GPL(sched_setscheduler);
4177 static int
4178 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4180 struct sched_param lparam;
4181 struct task_struct *p;
4182 int retval;
4184 if (!param || pid < 0)
4185 return -EINVAL;
4186 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4187 return -EFAULT;
4189 rcu_read_lock();
4190 retval = -ESRCH;
4191 p = find_process_by_pid(pid);
4192 if (p != NULL)
4193 retval = sched_setscheduler(p, policy, &lparam);
4194 rcu_read_unlock();
4196 return retval;
4200 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4201 * @pid: the pid in question.
4202 * @policy: new policy.
4203 * @param: structure containing the new RT priority.
4205 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4206 struct sched_param __user *param)
4208 /* negative values for policy are not valid */
4209 if (policy < 0)
4210 return -EINVAL;
4212 return do_sched_setscheduler(pid, policy, param);
4216 * sys_sched_setparam - set/change the RT priority of a thread
4217 * @pid: the pid in question.
4218 * @param: structure containing the new RT priority.
4220 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4222 return do_sched_setscheduler(pid, -1, param);
4226 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4227 * @pid: the pid in question.
4229 asmlinkage long sys_sched_getscheduler(pid_t pid)
4231 struct task_struct *p;
4232 int retval = -EINVAL;
4234 if (pid < 0)
4235 goto out_nounlock;
4237 retval = -ESRCH;
4238 read_lock(&tasklist_lock);
4239 p = find_process_by_pid(pid);
4240 if (p) {
4241 retval = security_task_getscheduler(p);
4242 if (!retval)
4243 retval = p->policy;
4245 read_unlock(&tasklist_lock);
4247 out_nounlock:
4248 return retval;
4252 * sys_sched_getscheduler - get the RT priority of a thread
4253 * @pid: the pid in question.
4254 * @param: structure containing the RT priority.
4256 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4258 struct sched_param lp;
4259 struct task_struct *p;
4260 int retval = -EINVAL;
4262 if (!param || pid < 0)
4263 goto out_nounlock;
4265 read_lock(&tasklist_lock);
4266 p = find_process_by_pid(pid);
4267 retval = -ESRCH;
4268 if (!p)
4269 goto out_unlock;
4271 retval = security_task_getscheduler(p);
4272 if (retval)
4273 goto out_unlock;
4275 lp.sched_priority = p->rt_priority;
4276 read_unlock(&tasklist_lock);
4279 * This one might sleep, we cannot do it with a spinlock held ...
4281 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4283 out_nounlock:
4284 return retval;
4286 out_unlock:
4287 read_unlock(&tasklist_lock);
4288 return retval;
4291 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4293 cpumask_t cpus_allowed;
4294 struct task_struct *p;
4295 int retval;
4297 mutex_lock(&sched_hotcpu_mutex);
4298 read_lock(&tasklist_lock);
4300 p = find_process_by_pid(pid);
4301 if (!p) {
4302 read_unlock(&tasklist_lock);
4303 mutex_unlock(&sched_hotcpu_mutex);
4304 return -ESRCH;
4308 * It is not safe to call set_cpus_allowed with the
4309 * tasklist_lock held. We will bump the task_struct's
4310 * usage count and then drop tasklist_lock.
4312 get_task_struct(p);
4313 read_unlock(&tasklist_lock);
4315 retval = -EPERM;
4316 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4317 !capable(CAP_SYS_NICE))
4318 goto out_unlock;
4320 retval = security_task_setscheduler(p, 0, NULL);
4321 if (retval)
4322 goto out_unlock;
4324 cpus_allowed = cpuset_cpus_allowed(p);
4325 cpus_and(new_mask, new_mask, cpus_allowed);
4326 retval = set_cpus_allowed(p, new_mask);
4328 out_unlock:
4329 put_task_struct(p);
4330 mutex_unlock(&sched_hotcpu_mutex);
4331 return retval;
4334 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4335 cpumask_t *new_mask)
4337 if (len < sizeof(cpumask_t)) {
4338 memset(new_mask, 0, sizeof(cpumask_t));
4339 } else if (len > sizeof(cpumask_t)) {
4340 len = sizeof(cpumask_t);
4342 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4346 * sys_sched_setaffinity - set the cpu affinity of a process
4347 * @pid: pid of the process
4348 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4349 * @user_mask_ptr: user-space pointer to the new cpu mask
4351 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4352 unsigned long __user *user_mask_ptr)
4354 cpumask_t new_mask;
4355 int retval;
4357 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4358 if (retval)
4359 return retval;
4361 return sched_setaffinity(pid, new_mask);
4365 * Represents all cpu's present in the system
4366 * In systems capable of hotplug, this map could dynamically grow
4367 * as new cpu's are detected in the system via any platform specific
4368 * method, such as ACPI for e.g.
4371 cpumask_t cpu_present_map __read_mostly;
4372 EXPORT_SYMBOL(cpu_present_map);
4374 #ifndef CONFIG_SMP
4375 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4376 EXPORT_SYMBOL(cpu_online_map);
4378 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4379 EXPORT_SYMBOL(cpu_possible_map);
4380 #endif
4382 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4384 struct task_struct *p;
4385 int retval;
4387 mutex_lock(&sched_hotcpu_mutex);
4388 read_lock(&tasklist_lock);
4390 retval = -ESRCH;
4391 p = find_process_by_pid(pid);
4392 if (!p)
4393 goto out_unlock;
4395 retval = security_task_getscheduler(p);
4396 if (retval)
4397 goto out_unlock;
4399 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4401 out_unlock:
4402 read_unlock(&tasklist_lock);
4403 mutex_unlock(&sched_hotcpu_mutex);
4404 if (retval)
4405 return retval;
4407 return 0;
4411 * sys_sched_getaffinity - get the cpu affinity of a process
4412 * @pid: pid of the process
4413 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4414 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4416 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4417 unsigned long __user *user_mask_ptr)
4419 int ret;
4420 cpumask_t mask;
4422 if (len < sizeof(cpumask_t))
4423 return -EINVAL;
4425 ret = sched_getaffinity(pid, &mask);
4426 if (ret < 0)
4427 return ret;
4429 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4430 return -EFAULT;
4432 return sizeof(cpumask_t);
4436 * sys_sched_yield - yield the current processor to other threads.
4438 * This function yields the current CPU to other tasks. If there are no
4439 * other threads running on this CPU then this function will return.
4441 asmlinkage long sys_sched_yield(void)
4443 struct rq *rq = this_rq_lock();
4445 schedstat_inc(rq, yld_cnt);
4446 if (unlikely(rq->nr_running == 1))
4447 schedstat_inc(rq, yld_act_empty);
4448 else
4449 current->sched_class->yield_task(rq, current);
4452 * Since we are going to call schedule() anyway, there's
4453 * no need to preempt or enable interrupts:
4455 __release(rq->lock);
4456 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4457 _raw_spin_unlock(&rq->lock);
4458 preempt_enable_no_resched();
4460 schedule();
4462 return 0;
4465 static void __cond_resched(void)
4467 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4468 __might_sleep(__FILE__, __LINE__);
4469 #endif
4471 * The BKS might be reacquired before we have dropped
4472 * PREEMPT_ACTIVE, which could trigger a second
4473 * cond_resched() call.
4475 do {
4476 add_preempt_count(PREEMPT_ACTIVE);
4477 schedule();
4478 sub_preempt_count(PREEMPT_ACTIVE);
4479 } while (need_resched());
4482 int __sched cond_resched(void)
4484 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4485 system_state == SYSTEM_RUNNING) {
4486 __cond_resched();
4487 return 1;
4489 return 0;
4491 EXPORT_SYMBOL(cond_resched);
4494 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4495 * call schedule, and on return reacquire the lock.
4497 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4498 * operations here to prevent schedule() from being called twice (once via
4499 * spin_unlock(), once by hand).
4501 int cond_resched_lock(spinlock_t *lock)
4503 int ret = 0;
4505 if (need_lockbreak(lock)) {
4506 spin_unlock(lock);
4507 cpu_relax();
4508 ret = 1;
4509 spin_lock(lock);
4511 if (need_resched() && system_state == SYSTEM_RUNNING) {
4512 spin_release(&lock->dep_map, 1, _THIS_IP_);
4513 _raw_spin_unlock(lock);
4514 preempt_enable_no_resched();
4515 __cond_resched();
4516 ret = 1;
4517 spin_lock(lock);
4519 return ret;
4521 EXPORT_SYMBOL(cond_resched_lock);
4523 int __sched cond_resched_softirq(void)
4525 BUG_ON(!in_softirq());
4527 if (need_resched() && system_state == SYSTEM_RUNNING) {
4528 local_bh_enable();
4529 __cond_resched();
4530 local_bh_disable();
4531 return 1;
4533 return 0;
4535 EXPORT_SYMBOL(cond_resched_softirq);
4538 * yield - yield the current processor to other threads.
4540 * This is a shortcut for kernel-space yielding - it marks the
4541 * thread runnable and calls sys_sched_yield().
4543 void __sched yield(void)
4545 set_current_state(TASK_RUNNING);
4546 sys_sched_yield();
4548 EXPORT_SYMBOL(yield);
4551 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4552 * that process accounting knows that this is a task in IO wait state.
4554 * But don't do that if it is a deliberate, throttling IO wait (this task
4555 * has set its backing_dev_info: the queue against which it should throttle)
4557 void __sched io_schedule(void)
4559 struct rq *rq = &__raw_get_cpu_var(runqueues);
4561 delayacct_blkio_start();
4562 atomic_inc(&rq->nr_iowait);
4563 schedule();
4564 atomic_dec(&rq->nr_iowait);
4565 delayacct_blkio_end();
4567 EXPORT_SYMBOL(io_schedule);
4569 long __sched io_schedule_timeout(long timeout)
4571 struct rq *rq = &__raw_get_cpu_var(runqueues);
4572 long ret;
4574 delayacct_blkio_start();
4575 atomic_inc(&rq->nr_iowait);
4576 ret = schedule_timeout(timeout);
4577 atomic_dec(&rq->nr_iowait);
4578 delayacct_blkio_end();
4579 return ret;
4583 * sys_sched_get_priority_max - return maximum RT priority.
4584 * @policy: scheduling class.
4586 * this syscall returns the maximum rt_priority that can be used
4587 * by a given scheduling class.
4589 asmlinkage long sys_sched_get_priority_max(int policy)
4591 int ret = -EINVAL;
4593 switch (policy) {
4594 case SCHED_FIFO:
4595 case SCHED_RR:
4596 ret = MAX_USER_RT_PRIO-1;
4597 break;
4598 case SCHED_NORMAL:
4599 case SCHED_BATCH:
4600 case SCHED_IDLE:
4601 ret = 0;
4602 break;
4604 return ret;
4608 * sys_sched_get_priority_min - return minimum RT priority.
4609 * @policy: scheduling class.
4611 * this syscall returns the minimum rt_priority that can be used
4612 * by a given scheduling class.
4614 asmlinkage long sys_sched_get_priority_min(int policy)
4616 int ret = -EINVAL;
4618 switch (policy) {
4619 case SCHED_FIFO:
4620 case SCHED_RR:
4621 ret = 1;
4622 break;
4623 case SCHED_NORMAL:
4624 case SCHED_BATCH:
4625 case SCHED_IDLE:
4626 ret = 0;
4628 return ret;
4632 * sys_sched_rr_get_interval - return the default timeslice of a process.
4633 * @pid: pid of the process.
4634 * @interval: userspace pointer to the timeslice value.
4636 * this syscall writes the default timeslice value of a given process
4637 * into the user-space timespec buffer. A value of '0' means infinity.
4639 asmlinkage
4640 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4642 struct task_struct *p;
4643 int retval = -EINVAL;
4644 struct timespec t;
4646 if (pid < 0)
4647 goto out_nounlock;
4649 retval = -ESRCH;
4650 read_lock(&tasklist_lock);
4651 p = find_process_by_pid(pid);
4652 if (!p)
4653 goto out_unlock;
4655 retval = security_task_getscheduler(p);
4656 if (retval)
4657 goto out_unlock;
4659 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4660 0 : static_prio_timeslice(p->static_prio), &t);
4661 read_unlock(&tasklist_lock);
4662 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4663 out_nounlock:
4664 return retval;
4665 out_unlock:
4666 read_unlock(&tasklist_lock);
4667 return retval;
4670 static const char stat_nam[] = "RSDTtZX";
4672 static void show_task(struct task_struct *p)
4674 unsigned long free = 0;
4675 unsigned state;
4677 state = p->state ? __ffs(p->state) + 1 : 0;
4678 printk("%-13.13s %c", p->comm,
4679 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4680 #if BITS_PER_LONG == 32
4681 if (state == TASK_RUNNING)
4682 printk(" running ");
4683 else
4684 printk(" %08lx ", thread_saved_pc(p));
4685 #else
4686 if (state == TASK_RUNNING)
4687 printk(" running task ");
4688 else
4689 printk(" %016lx ", thread_saved_pc(p));
4690 #endif
4691 #ifdef CONFIG_DEBUG_STACK_USAGE
4693 unsigned long *n = end_of_stack(p);
4694 while (!*n)
4695 n++;
4696 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4698 #endif
4699 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4701 if (state != TASK_RUNNING)
4702 show_stack(p, NULL);
4705 void show_state_filter(unsigned long state_filter)
4707 struct task_struct *g, *p;
4709 #if BITS_PER_LONG == 32
4710 printk(KERN_INFO
4711 " task PC stack pid father\n");
4712 #else
4713 printk(KERN_INFO
4714 " task PC stack pid father\n");
4715 #endif
4716 read_lock(&tasklist_lock);
4717 do_each_thread(g, p) {
4719 * reset the NMI-timeout, listing all files on a slow
4720 * console might take alot of time:
4722 touch_nmi_watchdog();
4723 if (!state_filter || (p->state & state_filter))
4724 show_task(p);
4725 } while_each_thread(g, p);
4727 touch_all_softlockup_watchdogs();
4729 #ifdef CONFIG_SCHED_DEBUG
4730 sysrq_sched_debug_show();
4731 #endif
4732 read_unlock(&tasklist_lock);
4734 * Only show locks if all tasks are dumped:
4736 if (state_filter == -1)
4737 debug_show_all_locks();
4740 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4742 idle->sched_class = &idle_sched_class;
4746 * init_idle - set up an idle thread for a given CPU
4747 * @idle: task in question
4748 * @cpu: cpu the idle task belongs to
4750 * NOTE: this function does not set the idle thread's NEED_RESCHED
4751 * flag, to make booting more robust.
4753 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4755 struct rq *rq = cpu_rq(cpu);
4756 unsigned long flags;
4758 __sched_fork(idle);
4759 idle->se.exec_start = sched_clock();
4761 idle->prio = idle->normal_prio = MAX_PRIO;
4762 idle->cpus_allowed = cpumask_of_cpu(cpu);
4763 __set_task_cpu(idle, cpu);
4765 spin_lock_irqsave(&rq->lock, flags);
4766 rq->curr = rq->idle = idle;
4767 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4768 idle->oncpu = 1;
4769 #endif
4770 spin_unlock_irqrestore(&rq->lock, flags);
4772 /* Set the preempt count _outside_ the spinlocks! */
4773 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4774 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4775 #else
4776 task_thread_info(idle)->preempt_count = 0;
4777 #endif
4779 * The idle tasks have their own, simple scheduling class:
4781 idle->sched_class = &idle_sched_class;
4785 * In a system that switches off the HZ timer nohz_cpu_mask
4786 * indicates which cpus entered this state. This is used
4787 * in the rcu update to wait only for active cpus. For system
4788 * which do not switch off the HZ timer nohz_cpu_mask should
4789 * always be CPU_MASK_NONE.
4791 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4794 * Increase the granularity value when there are more CPUs,
4795 * because with more CPUs the 'effective latency' as visible
4796 * to users decreases. But the relationship is not linear,
4797 * so pick a second-best guess by going with the log2 of the
4798 * number of CPUs.
4800 * This idea comes from the SD scheduler of Con Kolivas:
4802 static inline void sched_init_granularity(void)
4804 unsigned int factor = 1 + ilog2(num_online_cpus());
4805 const unsigned long gran_limit = 100000000;
4807 sysctl_sched_granularity *= factor;
4808 if (sysctl_sched_granularity > gran_limit)
4809 sysctl_sched_granularity = gran_limit;
4811 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4812 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4815 #ifdef CONFIG_SMP
4817 * This is how migration works:
4819 * 1) we queue a struct migration_req structure in the source CPU's
4820 * runqueue and wake up that CPU's migration thread.
4821 * 2) we down() the locked semaphore => thread blocks.
4822 * 3) migration thread wakes up (implicitly it forces the migrated
4823 * thread off the CPU)
4824 * 4) it gets the migration request and checks whether the migrated
4825 * task is still in the wrong runqueue.
4826 * 5) if it's in the wrong runqueue then the migration thread removes
4827 * it and puts it into the right queue.
4828 * 6) migration thread up()s the semaphore.
4829 * 7) we wake up and the migration is done.
4833 * Change a given task's CPU affinity. Migrate the thread to a
4834 * proper CPU and schedule it away if the CPU it's executing on
4835 * is removed from the allowed bitmask.
4837 * NOTE: the caller must have a valid reference to the task, the
4838 * task must not exit() & deallocate itself prematurely. The
4839 * call is not atomic; no spinlocks may be held.
4841 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4843 struct migration_req req;
4844 unsigned long flags;
4845 struct rq *rq;
4846 int ret = 0;
4848 rq = task_rq_lock(p, &flags);
4849 if (!cpus_intersects(new_mask, cpu_online_map)) {
4850 ret = -EINVAL;
4851 goto out;
4854 p->cpus_allowed = new_mask;
4855 /* Can the task run on the task's current CPU? If so, we're done */
4856 if (cpu_isset(task_cpu(p), new_mask))
4857 goto out;
4859 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4860 /* Need help from migration thread: drop lock and wait. */
4861 task_rq_unlock(rq, &flags);
4862 wake_up_process(rq->migration_thread);
4863 wait_for_completion(&req.done);
4864 tlb_migrate_finish(p->mm);
4865 return 0;
4867 out:
4868 task_rq_unlock(rq, &flags);
4870 return ret;
4872 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4875 * Move (not current) task off this cpu, onto dest cpu. We're doing
4876 * this because either it can't run here any more (set_cpus_allowed()
4877 * away from this CPU, or CPU going down), or because we're
4878 * attempting to rebalance this task on exec (sched_exec).
4880 * So we race with normal scheduler movements, but that's OK, as long
4881 * as the task is no longer on this CPU.
4883 * Returns non-zero if task was successfully migrated.
4885 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4887 struct rq *rq_dest, *rq_src;
4888 int ret = 0, on_rq;
4890 if (unlikely(cpu_is_offline(dest_cpu)))
4891 return ret;
4893 rq_src = cpu_rq(src_cpu);
4894 rq_dest = cpu_rq(dest_cpu);
4896 double_rq_lock(rq_src, rq_dest);
4897 /* Already moved. */
4898 if (task_cpu(p) != src_cpu)
4899 goto out;
4900 /* Affinity changed (again). */
4901 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4902 goto out;
4904 on_rq = p->se.on_rq;
4905 if (on_rq)
4906 deactivate_task(rq_src, p, 0);
4907 set_task_cpu(p, dest_cpu);
4908 if (on_rq) {
4909 activate_task(rq_dest, p, 0);
4910 check_preempt_curr(rq_dest, p);
4912 ret = 1;
4913 out:
4914 double_rq_unlock(rq_src, rq_dest);
4915 return ret;
4919 * migration_thread - this is a highprio system thread that performs
4920 * thread migration by bumping thread off CPU then 'pushing' onto
4921 * another runqueue.
4923 static int migration_thread(void *data)
4925 int cpu = (long)data;
4926 struct rq *rq;
4928 rq = cpu_rq(cpu);
4929 BUG_ON(rq->migration_thread != current);
4931 set_current_state(TASK_INTERRUPTIBLE);
4932 while (!kthread_should_stop()) {
4933 struct migration_req *req;
4934 struct list_head *head;
4936 spin_lock_irq(&rq->lock);
4938 if (cpu_is_offline(cpu)) {
4939 spin_unlock_irq(&rq->lock);
4940 goto wait_to_die;
4943 if (rq->active_balance) {
4944 active_load_balance(rq, cpu);
4945 rq->active_balance = 0;
4948 head = &rq->migration_queue;
4950 if (list_empty(head)) {
4951 spin_unlock_irq(&rq->lock);
4952 schedule();
4953 set_current_state(TASK_INTERRUPTIBLE);
4954 continue;
4956 req = list_entry(head->next, struct migration_req, list);
4957 list_del_init(head->next);
4959 spin_unlock(&rq->lock);
4960 __migrate_task(req->task, cpu, req->dest_cpu);
4961 local_irq_enable();
4963 complete(&req->done);
4965 __set_current_state(TASK_RUNNING);
4966 return 0;
4968 wait_to_die:
4969 /* Wait for kthread_stop */
4970 set_current_state(TASK_INTERRUPTIBLE);
4971 while (!kthread_should_stop()) {
4972 schedule();
4973 set_current_state(TASK_INTERRUPTIBLE);
4975 __set_current_state(TASK_RUNNING);
4976 return 0;
4979 #ifdef CONFIG_HOTPLUG_CPU
4981 * Figure out where task on dead CPU should go, use force if neccessary.
4982 * NOTE: interrupts should be disabled by the caller
4984 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
4986 unsigned long flags;
4987 cpumask_t mask;
4988 struct rq *rq;
4989 int dest_cpu;
4991 restart:
4992 /* On same node? */
4993 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4994 cpus_and(mask, mask, p->cpus_allowed);
4995 dest_cpu = any_online_cpu(mask);
4997 /* On any allowed CPU? */
4998 if (dest_cpu == NR_CPUS)
4999 dest_cpu = any_online_cpu(p->cpus_allowed);
5001 /* No more Mr. Nice Guy. */
5002 if (dest_cpu == NR_CPUS) {
5003 rq = task_rq_lock(p, &flags);
5004 cpus_setall(p->cpus_allowed);
5005 dest_cpu = any_online_cpu(p->cpus_allowed);
5006 task_rq_unlock(rq, &flags);
5009 * Don't tell them about moving exiting tasks or
5010 * kernel threads (both mm NULL), since they never
5011 * leave kernel.
5013 if (p->mm && printk_ratelimit())
5014 printk(KERN_INFO "process %d (%s) no "
5015 "longer affine to cpu%d\n",
5016 p->pid, p->comm, dead_cpu);
5018 if (!__migrate_task(p, dead_cpu, dest_cpu))
5019 goto restart;
5023 * While a dead CPU has no uninterruptible tasks queued at this point,
5024 * it might still have a nonzero ->nr_uninterruptible counter, because
5025 * for performance reasons the counter is not stricly tracking tasks to
5026 * their home CPUs. So we just add the counter to another CPU's counter,
5027 * to keep the global sum constant after CPU-down:
5029 static void migrate_nr_uninterruptible(struct rq *rq_src)
5031 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5032 unsigned long flags;
5034 local_irq_save(flags);
5035 double_rq_lock(rq_src, rq_dest);
5036 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5037 rq_src->nr_uninterruptible = 0;
5038 double_rq_unlock(rq_src, rq_dest);
5039 local_irq_restore(flags);
5042 /* Run through task list and migrate tasks from the dead cpu. */
5043 static void migrate_live_tasks(int src_cpu)
5045 struct task_struct *p, *t;
5047 write_lock_irq(&tasklist_lock);
5049 do_each_thread(t, p) {
5050 if (p == current)
5051 continue;
5053 if (task_cpu(p) == src_cpu)
5054 move_task_off_dead_cpu(src_cpu, p);
5055 } while_each_thread(t, p);
5057 write_unlock_irq(&tasklist_lock);
5061 * Schedules idle task to be the next runnable task on current CPU.
5062 * It does so by boosting its priority to highest possible and adding it to
5063 * the _front_ of the runqueue. Used by CPU offline code.
5065 void sched_idle_next(void)
5067 int this_cpu = smp_processor_id();
5068 struct rq *rq = cpu_rq(this_cpu);
5069 struct task_struct *p = rq->idle;
5070 unsigned long flags;
5072 /* cpu has to be offline */
5073 BUG_ON(cpu_online(this_cpu));
5076 * Strictly not necessary since rest of the CPUs are stopped by now
5077 * and interrupts disabled on the current cpu.
5079 spin_lock_irqsave(&rq->lock, flags);
5081 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5083 /* Add idle task to the _front_ of its priority queue: */
5084 activate_idle_task(p, rq);
5086 spin_unlock_irqrestore(&rq->lock, flags);
5090 * Ensures that the idle task is using init_mm right before its cpu goes
5091 * offline.
5093 void idle_task_exit(void)
5095 struct mm_struct *mm = current->active_mm;
5097 BUG_ON(cpu_online(smp_processor_id()));
5099 if (mm != &init_mm)
5100 switch_mm(mm, &init_mm, current);
5101 mmdrop(mm);
5104 /* called under rq->lock with disabled interrupts */
5105 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5107 struct rq *rq = cpu_rq(dead_cpu);
5109 /* Must be exiting, otherwise would be on tasklist. */
5110 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5112 /* Cannot have done final schedule yet: would have vanished. */
5113 BUG_ON(p->state == TASK_DEAD);
5115 get_task_struct(p);
5118 * Drop lock around migration; if someone else moves it,
5119 * that's OK. No task can be added to this CPU, so iteration is
5120 * fine.
5121 * NOTE: interrupts should be left disabled --dev@
5123 spin_unlock(&rq->lock);
5124 move_task_off_dead_cpu(dead_cpu, p);
5125 spin_lock(&rq->lock);
5127 put_task_struct(p);
5130 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5131 static void migrate_dead_tasks(unsigned int dead_cpu)
5133 struct rq *rq = cpu_rq(dead_cpu);
5134 struct task_struct *next;
5136 for ( ; ; ) {
5137 if (!rq->nr_running)
5138 break;
5139 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5140 if (!next)
5141 break;
5142 migrate_dead(dead_cpu, next);
5145 #endif /* CONFIG_HOTPLUG_CPU */
5148 * migration_call - callback that gets triggered when a CPU is added.
5149 * Here we can start up the necessary migration thread for the new CPU.
5151 static int __cpuinit
5152 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5154 struct task_struct *p;
5155 int cpu = (long)hcpu;
5156 unsigned long flags;
5157 struct rq *rq;
5159 switch (action) {
5160 case CPU_LOCK_ACQUIRE:
5161 mutex_lock(&sched_hotcpu_mutex);
5162 break;
5164 case CPU_UP_PREPARE:
5165 case CPU_UP_PREPARE_FROZEN:
5166 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5167 if (IS_ERR(p))
5168 return NOTIFY_BAD;
5169 kthread_bind(p, cpu);
5170 /* Must be high prio: stop_machine expects to yield to it. */
5171 rq = task_rq_lock(p, &flags);
5172 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5173 task_rq_unlock(rq, &flags);
5174 cpu_rq(cpu)->migration_thread = p;
5175 break;
5177 case CPU_ONLINE:
5178 case CPU_ONLINE_FROZEN:
5179 /* Strictly unneccessary, as first user will wake it. */
5180 wake_up_process(cpu_rq(cpu)->migration_thread);
5181 break;
5183 #ifdef CONFIG_HOTPLUG_CPU
5184 case CPU_UP_CANCELED:
5185 case CPU_UP_CANCELED_FROZEN:
5186 if (!cpu_rq(cpu)->migration_thread)
5187 break;
5188 /* Unbind it from offline cpu so it can run. Fall thru. */
5189 kthread_bind(cpu_rq(cpu)->migration_thread,
5190 any_online_cpu(cpu_online_map));
5191 kthread_stop(cpu_rq(cpu)->migration_thread);
5192 cpu_rq(cpu)->migration_thread = NULL;
5193 break;
5195 case CPU_DEAD:
5196 case CPU_DEAD_FROZEN:
5197 migrate_live_tasks(cpu);
5198 rq = cpu_rq(cpu);
5199 kthread_stop(rq->migration_thread);
5200 rq->migration_thread = NULL;
5201 /* Idle task back to normal (off runqueue, low prio) */
5202 rq = task_rq_lock(rq->idle, &flags);
5203 deactivate_task(rq, rq->idle, 0);
5204 rq->idle->static_prio = MAX_PRIO;
5205 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5206 rq->idle->sched_class = &idle_sched_class;
5207 migrate_dead_tasks(cpu);
5208 task_rq_unlock(rq, &flags);
5209 migrate_nr_uninterruptible(rq);
5210 BUG_ON(rq->nr_running != 0);
5212 /* No need to migrate the tasks: it was best-effort if
5213 * they didn't take sched_hotcpu_mutex. Just wake up
5214 * the requestors. */
5215 spin_lock_irq(&rq->lock);
5216 while (!list_empty(&rq->migration_queue)) {
5217 struct migration_req *req;
5219 req = list_entry(rq->migration_queue.next,
5220 struct migration_req, list);
5221 list_del_init(&req->list);
5222 complete(&req->done);
5224 spin_unlock_irq(&rq->lock);
5225 break;
5226 #endif
5227 case CPU_LOCK_RELEASE:
5228 mutex_unlock(&sched_hotcpu_mutex);
5229 break;
5231 return NOTIFY_OK;
5234 /* Register at highest priority so that task migration (migrate_all_tasks)
5235 * happens before everything else.
5237 static struct notifier_block __cpuinitdata migration_notifier = {
5238 .notifier_call = migration_call,
5239 .priority = 10
5242 int __init migration_init(void)
5244 void *cpu = (void *)(long)smp_processor_id();
5245 int err;
5247 /* Start one for the boot CPU: */
5248 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5249 BUG_ON(err == NOTIFY_BAD);
5250 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5251 register_cpu_notifier(&migration_notifier);
5253 return 0;
5255 #endif
5257 #ifdef CONFIG_SMP
5259 /* Number of possible processor ids */
5260 int nr_cpu_ids __read_mostly = NR_CPUS;
5261 EXPORT_SYMBOL(nr_cpu_ids);
5263 #undef SCHED_DOMAIN_DEBUG
5264 #ifdef SCHED_DOMAIN_DEBUG
5265 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5267 int level = 0;
5269 if (!sd) {
5270 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5271 return;
5274 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5276 do {
5277 int i;
5278 char str[NR_CPUS];
5279 struct sched_group *group = sd->groups;
5280 cpumask_t groupmask;
5282 cpumask_scnprintf(str, NR_CPUS, sd->span);
5283 cpus_clear(groupmask);
5285 printk(KERN_DEBUG);
5286 for (i = 0; i < level + 1; i++)
5287 printk(" ");
5288 printk("domain %d: ", level);
5290 if (!(sd->flags & SD_LOAD_BALANCE)) {
5291 printk("does not load-balance\n");
5292 if (sd->parent)
5293 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5294 " has parent");
5295 break;
5298 printk("span %s\n", str);
5300 if (!cpu_isset(cpu, sd->span))
5301 printk(KERN_ERR "ERROR: domain->span does not contain "
5302 "CPU%d\n", cpu);
5303 if (!cpu_isset(cpu, group->cpumask))
5304 printk(KERN_ERR "ERROR: domain->groups does not contain"
5305 " CPU%d\n", cpu);
5307 printk(KERN_DEBUG);
5308 for (i = 0; i < level + 2; i++)
5309 printk(" ");
5310 printk("groups:");
5311 do {
5312 if (!group) {
5313 printk("\n");
5314 printk(KERN_ERR "ERROR: group is NULL\n");
5315 break;
5318 if (!group->__cpu_power) {
5319 printk("\n");
5320 printk(KERN_ERR "ERROR: domain->cpu_power not "
5321 "set\n");
5324 if (!cpus_weight(group->cpumask)) {
5325 printk("\n");
5326 printk(KERN_ERR "ERROR: empty group\n");
5329 if (cpus_intersects(groupmask, group->cpumask)) {
5330 printk("\n");
5331 printk(KERN_ERR "ERROR: repeated CPUs\n");
5334 cpus_or(groupmask, groupmask, group->cpumask);
5336 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5337 printk(" %s", str);
5339 group = group->next;
5340 } while (group != sd->groups);
5341 printk("\n");
5343 if (!cpus_equal(sd->span, groupmask))
5344 printk(KERN_ERR "ERROR: groups don't span "
5345 "domain->span\n");
5347 level++;
5348 sd = sd->parent;
5349 if (!sd)
5350 continue;
5352 if (!cpus_subset(groupmask, sd->span))
5353 printk(KERN_ERR "ERROR: parent span is not a superset "
5354 "of domain->span\n");
5356 } while (sd);
5358 #else
5359 # define sched_domain_debug(sd, cpu) do { } while (0)
5360 #endif
5362 static int sd_degenerate(struct sched_domain *sd)
5364 if (cpus_weight(sd->span) == 1)
5365 return 1;
5367 /* Following flags need at least 2 groups */
5368 if (sd->flags & (SD_LOAD_BALANCE |
5369 SD_BALANCE_NEWIDLE |
5370 SD_BALANCE_FORK |
5371 SD_BALANCE_EXEC |
5372 SD_SHARE_CPUPOWER |
5373 SD_SHARE_PKG_RESOURCES)) {
5374 if (sd->groups != sd->groups->next)
5375 return 0;
5378 /* Following flags don't use groups */
5379 if (sd->flags & (SD_WAKE_IDLE |
5380 SD_WAKE_AFFINE |
5381 SD_WAKE_BALANCE))
5382 return 0;
5384 return 1;
5387 static int
5388 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5390 unsigned long cflags = sd->flags, pflags = parent->flags;
5392 if (sd_degenerate(parent))
5393 return 1;
5395 if (!cpus_equal(sd->span, parent->span))
5396 return 0;
5398 /* Does parent contain flags not in child? */
5399 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5400 if (cflags & SD_WAKE_AFFINE)
5401 pflags &= ~SD_WAKE_BALANCE;
5402 /* Flags needing groups don't count if only 1 group in parent */
5403 if (parent->groups == parent->groups->next) {
5404 pflags &= ~(SD_LOAD_BALANCE |
5405 SD_BALANCE_NEWIDLE |
5406 SD_BALANCE_FORK |
5407 SD_BALANCE_EXEC |
5408 SD_SHARE_CPUPOWER |
5409 SD_SHARE_PKG_RESOURCES);
5411 if (~cflags & pflags)
5412 return 0;
5414 return 1;
5418 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5419 * hold the hotplug lock.
5421 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5423 struct rq *rq = cpu_rq(cpu);
5424 struct sched_domain *tmp;
5426 /* Remove the sched domains which do not contribute to scheduling. */
5427 for (tmp = sd; tmp; tmp = tmp->parent) {
5428 struct sched_domain *parent = tmp->parent;
5429 if (!parent)
5430 break;
5431 if (sd_parent_degenerate(tmp, parent)) {
5432 tmp->parent = parent->parent;
5433 if (parent->parent)
5434 parent->parent->child = tmp;
5438 if (sd && sd_degenerate(sd)) {
5439 sd = sd->parent;
5440 if (sd)
5441 sd->child = NULL;
5444 sched_domain_debug(sd, cpu);
5446 rcu_assign_pointer(rq->sd, sd);
5449 /* cpus with isolated domains */
5450 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5452 /* Setup the mask of cpus configured for isolated domains */
5453 static int __init isolated_cpu_setup(char *str)
5455 int ints[NR_CPUS], i;
5457 str = get_options(str, ARRAY_SIZE(ints), ints);
5458 cpus_clear(cpu_isolated_map);
5459 for (i = 1; i <= ints[0]; i++)
5460 if (ints[i] < NR_CPUS)
5461 cpu_set(ints[i], cpu_isolated_map);
5462 return 1;
5465 __setup ("isolcpus=", isolated_cpu_setup);
5468 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5469 * to a function which identifies what group(along with sched group) a CPU
5470 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5471 * (due to the fact that we keep track of groups covered with a cpumask_t).
5473 * init_sched_build_groups will build a circular linked list of the groups
5474 * covered by the given span, and will set each group's ->cpumask correctly,
5475 * and ->cpu_power to 0.
5477 static void
5478 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5479 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5480 struct sched_group **sg))
5482 struct sched_group *first = NULL, *last = NULL;
5483 cpumask_t covered = CPU_MASK_NONE;
5484 int i;
5486 for_each_cpu_mask(i, span) {
5487 struct sched_group *sg;
5488 int group = group_fn(i, cpu_map, &sg);
5489 int j;
5491 if (cpu_isset(i, covered))
5492 continue;
5494 sg->cpumask = CPU_MASK_NONE;
5495 sg->__cpu_power = 0;
5497 for_each_cpu_mask(j, span) {
5498 if (group_fn(j, cpu_map, NULL) != group)
5499 continue;
5501 cpu_set(j, covered);
5502 cpu_set(j, sg->cpumask);
5504 if (!first)
5505 first = sg;
5506 if (last)
5507 last->next = sg;
5508 last = sg;
5510 last->next = first;
5513 #define SD_NODES_PER_DOMAIN 16
5515 #ifdef CONFIG_NUMA
5518 * find_next_best_node - find the next node to include in a sched_domain
5519 * @node: node whose sched_domain we're building
5520 * @used_nodes: nodes already in the sched_domain
5522 * Find the next node to include in a given scheduling domain. Simply
5523 * finds the closest node not already in the @used_nodes map.
5525 * Should use nodemask_t.
5527 static int find_next_best_node(int node, unsigned long *used_nodes)
5529 int i, n, val, min_val, best_node = 0;
5531 min_val = INT_MAX;
5533 for (i = 0; i < MAX_NUMNODES; i++) {
5534 /* Start at @node */
5535 n = (node + i) % MAX_NUMNODES;
5537 if (!nr_cpus_node(n))
5538 continue;
5540 /* Skip already used nodes */
5541 if (test_bit(n, used_nodes))
5542 continue;
5544 /* Simple min distance search */
5545 val = node_distance(node, n);
5547 if (val < min_val) {
5548 min_val = val;
5549 best_node = n;
5553 set_bit(best_node, used_nodes);
5554 return best_node;
5558 * sched_domain_node_span - get a cpumask for a node's sched_domain
5559 * @node: node whose cpumask we're constructing
5560 * @size: number of nodes to include in this span
5562 * Given a node, construct a good cpumask for its sched_domain to span. It
5563 * should be one that prevents unnecessary balancing, but also spreads tasks
5564 * out optimally.
5566 static cpumask_t sched_domain_node_span(int node)
5568 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5569 cpumask_t span, nodemask;
5570 int i;
5572 cpus_clear(span);
5573 bitmap_zero(used_nodes, MAX_NUMNODES);
5575 nodemask = node_to_cpumask(node);
5576 cpus_or(span, span, nodemask);
5577 set_bit(node, used_nodes);
5579 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5580 int next_node = find_next_best_node(node, used_nodes);
5582 nodemask = node_to_cpumask(next_node);
5583 cpus_or(span, span, nodemask);
5586 return span;
5588 #endif
5590 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5593 * SMT sched-domains:
5595 #ifdef CONFIG_SCHED_SMT
5596 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5597 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5599 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5600 struct sched_group **sg)
5602 if (sg)
5603 *sg = &per_cpu(sched_group_cpus, cpu);
5604 return cpu;
5606 #endif
5609 * multi-core sched-domains:
5611 #ifdef CONFIG_SCHED_MC
5612 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5613 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5614 #endif
5616 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5617 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5618 struct sched_group **sg)
5620 int group;
5621 cpumask_t mask = cpu_sibling_map[cpu];
5622 cpus_and(mask, mask, *cpu_map);
5623 group = first_cpu(mask);
5624 if (sg)
5625 *sg = &per_cpu(sched_group_core, group);
5626 return group;
5628 #elif defined(CONFIG_SCHED_MC)
5629 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5630 struct sched_group **sg)
5632 if (sg)
5633 *sg = &per_cpu(sched_group_core, cpu);
5634 return cpu;
5636 #endif
5638 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5639 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5641 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5642 struct sched_group **sg)
5644 int group;
5645 #ifdef CONFIG_SCHED_MC
5646 cpumask_t mask = cpu_coregroup_map(cpu);
5647 cpus_and(mask, mask, *cpu_map);
5648 group = first_cpu(mask);
5649 #elif defined(CONFIG_SCHED_SMT)
5650 cpumask_t mask = cpu_sibling_map[cpu];
5651 cpus_and(mask, mask, *cpu_map);
5652 group = first_cpu(mask);
5653 #else
5654 group = cpu;
5655 #endif
5656 if (sg)
5657 *sg = &per_cpu(sched_group_phys, group);
5658 return group;
5661 #ifdef CONFIG_NUMA
5663 * The init_sched_build_groups can't handle what we want to do with node
5664 * groups, so roll our own. Now each node has its own list of groups which
5665 * gets dynamically allocated.
5667 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5668 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5670 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5671 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5673 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5674 struct sched_group **sg)
5676 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5677 int group;
5679 cpus_and(nodemask, nodemask, *cpu_map);
5680 group = first_cpu(nodemask);
5682 if (sg)
5683 *sg = &per_cpu(sched_group_allnodes, group);
5684 return group;
5687 static void init_numa_sched_groups_power(struct sched_group *group_head)
5689 struct sched_group *sg = group_head;
5690 int j;
5692 if (!sg)
5693 return;
5694 next_sg:
5695 for_each_cpu_mask(j, sg->cpumask) {
5696 struct sched_domain *sd;
5698 sd = &per_cpu(phys_domains, j);
5699 if (j != first_cpu(sd->groups->cpumask)) {
5701 * Only add "power" once for each
5702 * physical package.
5704 continue;
5707 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5709 sg = sg->next;
5710 if (sg != group_head)
5711 goto next_sg;
5713 #endif
5715 #ifdef CONFIG_NUMA
5716 /* Free memory allocated for various sched_group structures */
5717 static void free_sched_groups(const cpumask_t *cpu_map)
5719 int cpu, i;
5721 for_each_cpu_mask(cpu, *cpu_map) {
5722 struct sched_group **sched_group_nodes
5723 = sched_group_nodes_bycpu[cpu];
5725 if (!sched_group_nodes)
5726 continue;
5728 for (i = 0; i < MAX_NUMNODES; i++) {
5729 cpumask_t nodemask = node_to_cpumask(i);
5730 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5732 cpus_and(nodemask, nodemask, *cpu_map);
5733 if (cpus_empty(nodemask))
5734 continue;
5736 if (sg == NULL)
5737 continue;
5738 sg = sg->next;
5739 next_sg:
5740 oldsg = sg;
5741 sg = sg->next;
5742 kfree(oldsg);
5743 if (oldsg != sched_group_nodes[i])
5744 goto next_sg;
5746 kfree(sched_group_nodes);
5747 sched_group_nodes_bycpu[cpu] = NULL;
5750 #else
5751 static void free_sched_groups(const cpumask_t *cpu_map)
5754 #endif
5757 * Initialize sched groups cpu_power.
5759 * cpu_power indicates the capacity of sched group, which is used while
5760 * distributing the load between different sched groups in a sched domain.
5761 * Typically cpu_power for all the groups in a sched domain will be same unless
5762 * there are asymmetries in the topology. If there are asymmetries, group
5763 * having more cpu_power will pickup more load compared to the group having
5764 * less cpu_power.
5766 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5767 * the maximum number of tasks a group can handle in the presence of other idle
5768 * or lightly loaded groups in the same sched domain.
5770 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5772 struct sched_domain *child;
5773 struct sched_group *group;
5775 WARN_ON(!sd || !sd->groups);
5777 if (cpu != first_cpu(sd->groups->cpumask))
5778 return;
5780 child = sd->child;
5782 sd->groups->__cpu_power = 0;
5785 * For perf policy, if the groups in child domain share resources
5786 * (for example cores sharing some portions of the cache hierarchy
5787 * or SMT), then set this domain groups cpu_power such that each group
5788 * can handle only one task, when there are other idle groups in the
5789 * same sched domain.
5791 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5792 (child->flags &
5793 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5794 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5795 return;
5799 * add cpu_power of each child group to this groups cpu_power
5801 group = child->groups;
5802 do {
5803 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5804 group = group->next;
5805 } while (group != child->groups);
5809 * Build sched domains for a given set of cpus and attach the sched domains
5810 * to the individual cpus
5812 static int build_sched_domains(const cpumask_t *cpu_map)
5814 int i;
5815 #ifdef CONFIG_NUMA
5816 struct sched_group **sched_group_nodes = NULL;
5817 int sd_allnodes = 0;
5820 * Allocate the per-node list of sched groups
5822 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5823 GFP_KERNEL);
5824 if (!sched_group_nodes) {
5825 printk(KERN_WARNING "Can not alloc sched group node list\n");
5826 return -ENOMEM;
5828 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5829 #endif
5832 * Set up domains for cpus specified by the cpu_map.
5834 for_each_cpu_mask(i, *cpu_map) {
5835 struct sched_domain *sd = NULL, *p;
5836 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5838 cpus_and(nodemask, nodemask, *cpu_map);
5840 #ifdef CONFIG_NUMA
5841 if (cpus_weight(*cpu_map) >
5842 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5843 sd = &per_cpu(allnodes_domains, i);
5844 *sd = SD_ALLNODES_INIT;
5845 sd->span = *cpu_map;
5846 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5847 p = sd;
5848 sd_allnodes = 1;
5849 } else
5850 p = NULL;
5852 sd = &per_cpu(node_domains, i);
5853 *sd = SD_NODE_INIT;
5854 sd->span = sched_domain_node_span(cpu_to_node(i));
5855 sd->parent = p;
5856 if (p)
5857 p->child = sd;
5858 cpus_and(sd->span, sd->span, *cpu_map);
5859 #endif
5861 p = sd;
5862 sd = &per_cpu(phys_domains, i);
5863 *sd = SD_CPU_INIT;
5864 sd->span = nodemask;
5865 sd->parent = p;
5866 if (p)
5867 p->child = sd;
5868 cpu_to_phys_group(i, cpu_map, &sd->groups);
5870 #ifdef CONFIG_SCHED_MC
5871 p = sd;
5872 sd = &per_cpu(core_domains, i);
5873 *sd = SD_MC_INIT;
5874 sd->span = cpu_coregroup_map(i);
5875 cpus_and(sd->span, sd->span, *cpu_map);
5876 sd->parent = p;
5877 p->child = sd;
5878 cpu_to_core_group(i, cpu_map, &sd->groups);
5879 #endif
5881 #ifdef CONFIG_SCHED_SMT
5882 p = sd;
5883 sd = &per_cpu(cpu_domains, i);
5884 *sd = SD_SIBLING_INIT;
5885 sd->span = cpu_sibling_map[i];
5886 cpus_and(sd->span, sd->span, *cpu_map);
5887 sd->parent = p;
5888 p->child = sd;
5889 cpu_to_cpu_group(i, cpu_map, &sd->groups);
5890 #endif
5893 #ifdef CONFIG_SCHED_SMT
5894 /* Set up CPU (sibling) groups */
5895 for_each_cpu_mask(i, *cpu_map) {
5896 cpumask_t this_sibling_map = cpu_sibling_map[i];
5897 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5898 if (i != first_cpu(this_sibling_map))
5899 continue;
5901 init_sched_build_groups(this_sibling_map, cpu_map,
5902 &cpu_to_cpu_group);
5904 #endif
5906 #ifdef CONFIG_SCHED_MC
5907 /* Set up multi-core groups */
5908 for_each_cpu_mask(i, *cpu_map) {
5909 cpumask_t this_core_map = cpu_coregroup_map(i);
5910 cpus_and(this_core_map, this_core_map, *cpu_map);
5911 if (i != first_cpu(this_core_map))
5912 continue;
5913 init_sched_build_groups(this_core_map, cpu_map,
5914 &cpu_to_core_group);
5916 #endif
5918 /* Set up physical groups */
5919 for (i = 0; i < MAX_NUMNODES; i++) {
5920 cpumask_t nodemask = node_to_cpumask(i);
5922 cpus_and(nodemask, nodemask, *cpu_map);
5923 if (cpus_empty(nodemask))
5924 continue;
5926 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
5929 #ifdef CONFIG_NUMA
5930 /* Set up node groups */
5931 if (sd_allnodes)
5932 init_sched_build_groups(*cpu_map, cpu_map,
5933 &cpu_to_allnodes_group);
5935 for (i = 0; i < MAX_NUMNODES; i++) {
5936 /* Set up node groups */
5937 struct sched_group *sg, *prev;
5938 cpumask_t nodemask = node_to_cpumask(i);
5939 cpumask_t domainspan;
5940 cpumask_t covered = CPU_MASK_NONE;
5941 int j;
5943 cpus_and(nodemask, nodemask, *cpu_map);
5944 if (cpus_empty(nodemask)) {
5945 sched_group_nodes[i] = NULL;
5946 continue;
5949 domainspan = sched_domain_node_span(i);
5950 cpus_and(domainspan, domainspan, *cpu_map);
5952 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
5953 if (!sg) {
5954 printk(KERN_WARNING "Can not alloc domain group for "
5955 "node %d\n", i);
5956 goto error;
5958 sched_group_nodes[i] = sg;
5959 for_each_cpu_mask(j, nodemask) {
5960 struct sched_domain *sd;
5962 sd = &per_cpu(node_domains, j);
5963 sd->groups = sg;
5965 sg->__cpu_power = 0;
5966 sg->cpumask = nodemask;
5967 sg->next = sg;
5968 cpus_or(covered, covered, nodemask);
5969 prev = sg;
5971 for (j = 0; j < MAX_NUMNODES; j++) {
5972 cpumask_t tmp, notcovered;
5973 int n = (i + j) % MAX_NUMNODES;
5975 cpus_complement(notcovered, covered);
5976 cpus_and(tmp, notcovered, *cpu_map);
5977 cpus_and(tmp, tmp, domainspan);
5978 if (cpus_empty(tmp))
5979 break;
5981 nodemask = node_to_cpumask(n);
5982 cpus_and(tmp, tmp, nodemask);
5983 if (cpus_empty(tmp))
5984 continue;
5986 sg = kmalloc_node(sizeof(struct sched_group),
5987 GFP_KERNEL, i);
5988 if (!sg) {
5989 printk(KERN_WARNING
5990 "Can not alloc domain group for node %d\n", j);
5991 goto error;
5993 sg->__cpu_power = 0;
5994 sg->cpumask = tmp;
5995 sg->next = prev->next;
5996 cpus_or(covered, covered, tmp);
5997 prev->next = sg;
5998 prev = sg;
6001 #endif
6003 /* Calculate CPU power for physical packages and nodes */
6004 #ifdef CONFIG_SCHED_SMT
6005 for_each_cpu_mask(i, *cpu_map) {
6006 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6008 init_sched_groups_power(i, sd);
6010 #endif
6011 #ifdef CONFIG_SCHED_MC
6012 for_each_cpu_mask(i, *cpu_map) {
6013 struct sched_domain *sd = &per_cpu(core_domains, i);
6015 init_sched_groups_power(i, sd);
6017 #endif
6019 for_each_cpu_mask(i, *cpu_map) {
6020 struct sched_domain *sd = &per_cpu(phys_domains, i);
6022 init_sched_groups_power(i, sd);
6025 #ifdef CONFIG_NUMA
6026 for (i = 0; i < MAX_NUMNODES; i++)
6027 init_numa_sched_groups_power(sched_group_nodes[i]);
6029 if (sd_allnodes) {
6030 struct sched_group *sg;
6032 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6033 init_numa_sched_groups_power(sg);
6035 #endif
6037 /* Attach the domains */
6038 for_each_cpu_mask(i, *cpu_map) {
6039 struct sched_domain *sd;
6040 #ifdef CONFIG_SCHED_SMT
6041 sd = &per_cpu(cpu_domains, i);
6042 #elif defined(CONFIG_SCHED_MC)
6043 sd = &per_cpu(core_domains, i);
6044 #else
6045 sd = &per_cpu(phys_domains, i);
6046 #endif
6047 cpu_attach_domain(sd, i);
6050 return 0;
6052 #ifdef CONFIG_NUMA
6053 error:
6054 free_sched_groups(cpu_map);
6055 return -ENOMEM;
6056 #endif
6059 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6061 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6063 cpumask_t cpu_default_map;
6064 int err;
6067 * Setup mask for cpus without special case scheduling requirements.
6068 * For now this just excludes isolated cpus, but could be used to
6069 * exclude other special cases in the future.
6071 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6073 err = build_sched_domains(&cpu_default_map);
6075 return err;
6078 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6080 free_sched_groups(cpu_map);
6084 * Detach sched domains from a group of cpus specified in cpu_map
6085 * These cpus will now be attached to the NULL domain
6087 static void detach_destroy_domains(const cpumask_t *cpu_map)
6089 int i;
6091 for_each_cpu_mask(i, *cpu_map)
6092 cpu_attach_domain(NULL, i);
6093 synchronize_sched();
6094 arch_destroy_sched_domains(cpu_map);
6098 * Partition sched domains as specified by the cpumasks below.
6099 * This attaches all cpus from the cpumasks to the NULL domain,
6100 * waits for a RCU quiescent period, recalculates sched
6101 * domain information and then attaches them back to the
6102 * correct sched domains
6103 * Call with hotplug lock held
6105 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6107 cpumask_t change_map;
6108 int err = 0;
6110 cpus_and(*partition1, *partition1, cpu_online_map);
6111 cpus_and(*partition2, *partition2, cpu_online_map);
6112 cpus_or(change_map, *partition1, *partition2);
6114 /* Detach sched domains from all of the affected cpus */
6115 detach_destroy_domains(&change_map);
6116 if (!cpus_empty(*partition1))
6117 err = build_sched_domains(partition1);
6118 if (!err && !cpus_empty(*partition2))
6119 err = build_sched_domains(partition2);
6121 return err;
6124 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6125 int arch_reinit_sched_domains(void)
6127 int err;
6129 mutex_lock(&sched_hotcpu_mutex);
6130 detach_destroy_domains(&cpu_online_map);
6131 err = arch_init_sched_domains(&cpu_online_map);
6132 mutex_unlock(&sched_hotcpu_mutex);
6134 return err;
6137 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6139 int ret;
6141 if (buf[0] != '0' && buf[0] != '1')
6142 return -EINVAL;
6144 if (smt)
6145 sched_smt_power_savings = (buf[0] == '1');
6146 else
6147 sched_mc_power_savings = (buf[0] == '1');
6149 ret = arch_reinit_sched_domains();
6151 return ret ? ret : count;
6154 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6156 int err = 0;
6158 #ifdef CONFIG_SCHED_SMT
6159 if (smt_capable())
6160 err = sysfs_create_file(&cls->kset.kobj,
6161 &attr_sched_smt_power_savings.attr);
6162 #endif
6163 #ifdef CONFIG_SCHED_MC
6164 if (!err && mc_capable())
6165 err = sysfs_create_file(&cls->kset.kobj,
6166 &attr_sched_mc_power_savings.attr);
6167 #endif
6168 return err;
6170 #endif
6172 #ifdef CONFIG_SCHED_MC
6173 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6175 return sprintf(page, "%u\n", sched_mc_power_savings);
6177 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6178 const char *buf, size_t count)
6180 return sched_power_savings_store(buf, count, 0);
6182 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6183 sched_mc_power_savings_store);
6184 #endif
6186 #ifdef CONFIG_SCHED_SMT
6187 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6189 return sprintf(page, "%u\n", sched_smt_power_savings);
6191 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6192 const char *buf, size_t count)
6194 return sched_power_savings_store(buf, count, 1);
6196 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6197 sched_smt_power_savings_store);
6198 #endif
6201 * Force a reinitialization of the sched domains hierarchy. The domains
6202 * and groups cannot be updated in place without racing with the balancing
6203 * code, so we temporarily attach all running cpus to the NULL domain
6204 * which will prevent rebalancing while the sched domains are recalculated.
6206 static int update_sched_domains(struct notifier_block *nfb,
6207 unsigned long action, void *hcpu)
6209 switch (action) {
6210 case CPU_UP_PREPARE:
6211 case CPU_UP_PREPARE_FROZEN:
6212 case CPU_DOWN_PREPARE:
6213 case CPU_DOWN_PREPARE_FROZEN:
6214 detach_destroy_domains(&cpu_online_map);
6215 return NOTIFY_OK;
6217 case CPU_UP_CANCELED:
6218 case CPU_UP_CANCELED_FROZEN:
6219 case CPU_DOWN_FAILED:
6220 case CPU_DOWN_FAILED_FROZEN:
6221 case CPU_ONLINE:
6222 case CPU_ONLINE_FROZEN:
6223 case CPU_DEAD:
6224 case CPU_DEAD_FROZEN:
6226 * Fall through and re-initialise the domains.
6228 break;
6229 default:
6230 return NOTIFY_DONE;
6233 /* The hotplug lock is already held by cpu_up/cpu_down */
6234 arch_init_sched_domains(&cpu_online_map);
6236 return NOTIFY_OK;
6239 void __init sched_init_smp(void)
6241 cpumask_t non_isolated_cpus;
6243 mutex_lock(&sched_hotcpu_mutex);
6244 arch_init_sched_domains(&cpu_online_map);
6245 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6246 if (cpus_empty(non_isolated_cpus))
6247 cpu_set(smp_processor_id(), non_isolated_cpus);
6248 mutex_unlock(&sched_hotcpu_mutex);
6249 /* XXX: Theoretical race here - CPU may be hotplugged now */
6250 hotcpu_notifier(update_sched_domains, 0);
6252 /* Move init over to a non-isolated CPU */
6253 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6254 BUG();
6255 sched_init_granularity();
6257 #else
6258 void __init sched_init_smp(void)
6260 sched_init_granularity();
6262 #endif /* CONFIG_SMP */
6264 int in_sched_functions(unsigned long addr)
6266 /* Linker adds these: start and end of __sched functions */
6267 extern char __sched_text_start[], __sched_text_end[];
6269 return in_lock_functions(addr) ||
6270 (addr >= (unsigned long)__sched_text_start
6271 && addr < (unsigned long)__sched_text_end);
6274 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6276 cfs_rq->tasks_timeline = RB_ROOT;
6277 cfs_rq->fair_clock = 1;
6278 #ifdef CONFIG_FAIR_GROUP_SCHED
6279 cfs_rq->rq = rq;
6280 #endif
6283 void __init sched_init(void)
6285 u64 now = sched_clock();
6286 int highest_cpu = 0;
6287 int i, j;
6290 * Link up the scheduling class hierarchy:
6292 rt_sched_class.next = &fair_sched_class;
6293 fair_sched_class.next = &idle_sched_class;
6294 idle_sched_class.next = NULL;
6296 for_each_possible_cpu(i) {
6297 struct rt_prio_array *array;
6298 struct rq *rq;
6300 rq = cpu_rq(i);
6301 spin_lock_init(&rq->lock);
6302 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6303 rq->nr_running = 0;
6304 rq->clock = 1;
6305 init_cfs_rq(&rq->cfs, rq);
6306 #ifdef CONFIG_FAIR_GROUP_SCHED
6307 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6308 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6309 #endif
6310 rq->ls.load_update_last = now;
6311 rq->ls.load_update_start = now;
6313 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6314 rq->cpu_load[j] = 0;
6315 #ifdef CONFIG_SMP
6316 rq->sd = NULL;
6317 rq->active_balance = 0;
6318 rq->next_balance = jiffies;
6319 rq->push_cpu = 0;
6320 rq->cpu = i;
6321 rq->migration_thread = NULL;
6322 INIT_LIST_HEAD(&rq->migration_queue);
6323 #endif
6324 atomic_set(&rq->nr_iowait, 0);
6326 array = &rq->rt.active;
6327 for (j = 0; j < MAX_RT_PRIO; j++) {
6328 INIT_LIST_HEAD(array->queue + j);
6329 __clear_bit(j, array->bitmap);
6331 highest_cpu = i;
6332 /* delimiter for bitsearch: */
6333 __set_bit(MAX_RT_PRIO, array->bitmap);
6336 set_load_weight(&init_task);
6338 #ifdef CONFIG_SMP
6339 nr_cpu_ids = highest_cpu + 1;
6340 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6341 #endif
6343 #ifdef CONFIG_RT_MUTEXES
6344 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6345 #endif
6348 * The boot idle thread does lazy MMU switching as well:
6350 atomic_inc(&init_mm.mm_count);
6351 enter_lazy_tlb(&init_mm, current);
6354 * Make us the idle thread. Technically, schedule() should not be
6355 * called from this thread, however somewhere below it might be,
6356 * but because we are the idle thread, we just pick up running again
6357 * when this runqueue becomes "idle".
6359 init_idle(current, smp_processor_id());
6361 * During early bootup we pretend to be a normal task:
6363 current->sched_class = &fair_sched_class;
6366 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6367 void __might_sleep(char *file, int line)
6369 #ifdef in_atomic
6370 static unsigned long prev_jiffy; /* ratelimiting */
6372 if ((in_atomic() || irqs_disabled()) &&
6373 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6374 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6375 return;
6376 prev_jiffy = jiffies;
6377 printk(KERN_ERR "BUG: sleeping function called from invalid"
6378 " context at %s:%d\n", file, line);
6379 printk("in_atomic():%d, irqs_disabled():%d\n",
6380 in_atomic(), irqs_disabled());
6381 debug_show_held_locks(current);
6382 if (irqs_disabled())
6383 print_irqtrace_events(current);
6384 dump_stack();
6386 #endif
6388 EXPORT_SYMBOL(__might_sleep);
6389 #endif
6391 #ifdef CONFIG_MAGIC_SYSRQ
6392 void normalize_rt_tasks(void)
6394 struct task_struct *g, *p;
6395 unsigned long flags;
6396 struct rq *rq;
6397 int on_rq;
6399 read_lock_irq(&tasklist_lock);
6400 do_each_thread(g, p) {
6401 p->se.fair_key = 0;
6402 p->se.wait_runtime = 0;
6403 p->se.wait_start_fair = 0;
6404 p->se.wait_start = 0;
6405 p->se.exec_start = 0;
6406 p->se.sleep_start = 0;
6407 p->se.sleep_start_fair = 0;
6408 p->se.block_start = 0;
6409 task_rq(p)->cfs.fair_clock = 0;
6410 task_rq(p)->clock = 0;
6412 if (!rt_task(p)) {
6414 * Renice negative nice level userspace
6415 * tasks back to 0:
6417 if (TASK_NICE(p) < 0 && p->mm)
6418 set_user_nice(p, 0);
6419 continue;
6422 spin_lock_irqsave(&p->pi_lock, flags);
6423 rq = __task_rq_lock(p);
6424 #ifdef CONFIG_SMP
6426 * Do not touch the migration thread:
6428 if (p == rq->migration_thread)
6429 goto out_unlock;
6430 #endif
6432 on_rq = p->se.on_rq;
6433 if (on_rq)
6434 deactivate_task(task_rq(p), p, 0);
6435 __setscheduler(rq, p, SCHED_NORMAL, 0);
6436 if (on_rq) {
6437 activate_task(task_rq(p), p, 0);
6438 resched_task(rq->curr);
6440 #ifdef CONFIG_SMP
6441 out_unlock:
6442 #endif
6443 __task_rq_unlock(rq);
6444 spin_unlock_irqrestore(&p->pi_lock, flags);
6445 } while_each_thread(g, p);
6447 read_unlock_irq(&tasklist_lock);
6450 #endif /* CONFIG_MAGIC_SYSRQ */
6452 #ifdef CONFIG_IA64
6454 * These functions are only useful for the IA64 MCA handling.
6456 * They can only be called when the whole system has been
6457 * stopped - every CPU needs to be quiescent, and no scheduling
6458 * activity can take place. Using them for anything else would
6459 * be a serious bug, and as a result, they aren't even visible
6460 * under any other configuration.
6464 * curr_task - return the current task for a given cpu.
6465 * @cpu: the processor in question.
6467 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6469 struct task_struct *curr_task(int cpu)
6471 return cpu_curr(cpu);
6475 * set_curr_task - set the current task for a given cpu.
6476 * @cpu: the processor in question.
6477 * @p: the task pointer to set.
6479 * Description: This function must only be used when non-maskable interrupts
6480 * are serviced on a separate stack. It allows the architecture to switch the
6481 * notion of the current task on a cpu in a non-blocking manner. This function
6482 * must be called with all CPU's synchronized, and interrupts disabled, the
6483 * and caller must save the original value of the current task (see
6484 * curr_task() above) and restore that value before reenabling interrupts and
6485 * re-starting the system.
6487 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6489 void set_curr_task(int cpu, struct task_struct *p)
6491 cpu_curr(cpu) = p;
6494 #endif