4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/syscalls.h>
57 #include <linux/times.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/kprobes.h>
60 #include <linux/delayacct.h>
61 #include <linux/reciprocal_div.h>
62 #include <linux/unistd.h>
67 * Scheduler clock - returns current time in nanosec units.
68 * This is default implementation.
69 * Architectures and sub-architectures can override this.
71 unsigned long long __attribute__((weak
)) sched_clock(void)
73 return (unsigned long long)jiffies
* (1000000000 / HZ
);
77 * Convert user-nice values [ -20 ... 0 ... 19 ]
78 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
82 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
83 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86 * 'User priority' is the nice value converted to something we
87 * can work with better when scaling various scheduler parameters,
88 * it's a [ 0 ... 39 ] range.
90 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
91 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
92 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95 * Some helpers for converting nanosecond timing to jiffy resolution
97 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
98 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104 * These are the 'tuning knobs' of the scheduler:
106 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
107 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
108 * Timeslices get refilled after they expire.
110 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
111 #define DEF_TIMESLICE (100 * HZ / 1000)
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
120 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
127 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
129 sg
->__cpu_power
+= val
;
130 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
134 #define SCALE_PRIO(x, prio) \
135 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
139 * to time slice values: [800ms ... 100ms ... 5ms]
141 static unsigned int static_prio_timeslice(int static_prio
)
143 if (static_prio
== NICE_TO_PRIO(19))
146 if (static_prio
< NICE_TO_PRIO(0))
147 return SCALE_PRIO(DEF_TIMESLICE
* 4, static_prio
);
149 return SCALE_PRIO(DEF_TIMESLICE
, static_prio
);
152 static inline int rt_policy(int policy
)
154 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
159 static inline int task_has_rt_policy(struct task_struct
*p
)
161 return rt_policy(p
->policy
);
165 * This is the priority-queue data structure of the RT scheduling class:
167 struct rt_prio_array
{
168 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
169 struct list_head queue
[MAX_RT_PRIO
];
173 struct load_weight load
;
174 u64 load_update_start
, load_update_last
;
175 unsigned long delta_fair
, delta_exec
, delta_stat
;
178 /* CFS-related fields in a runqueue */
180 struct load_weight load
;
181 unsigned long nr_running
;
187 unsigned long wait_runtime_overruns
, wait_runtime_underruns
;
189 struct rb_root tasks_timeline
;
190 struct rb_node
*rb_leftmost
;
191 struct rb_node
*rb_load_balance_curr
;
192 #ifdef CONFIG_FAIR_GROUP_SCHED
193 /* 'curr' points to currently running entity on this cfs_rq.
194 * It is set to NULL otherwise (i.e when none are currently running).
196 struct sched_entity
*curr
;
197 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
199 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
200 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
201 * (like users, containers etc.)
203 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
204 * list is used during load balance.
206 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
210 /* Real-Time classes' related field in a runqueue: */
212 struct rt_prio_array active
;
213 int rt_load_balance_idx
;
214 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
218 * This is the main, per-CPU runqueue data structure.
220 * Locking rule: those places that want to lock multiple runqueues
221 * (such as the load balancing or the thread migration code), lock
222 * acquire operations must be ordered by ascending &runqueue.
225 spinlock_t lock
; /* runqueue lock */
228 * nr_running and cpu_load should be in the same cacheline because
229 * remote CPUs use both these fields when doing load calculation.
231 unsigned long nr_running
;
232 #define CPU_LOAD_IDX_MAX 5
233 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
234 unsigned char idle_at_tick
;
236 unsigned char in_nohz_recently
;
238 struct load_stat ls
; /* capture load from *all* tasks on this cpu */
239 unsigned long nr_load_updates
;
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
249 * This is part of a global counter where only the total sum
250 * over all CPUs matters. A task can increase this counter on
251 * one CPU and if it got migrated afterwards it may decrease
252 * it on another CPU. Always updated under the runqueue lock:
254 unsigned long nr_uninterruptible
;
256 struct task_struct
*curr
, *idle
;
257 unsigned long next_balance
;
258 struct mm_struct
*prev_mm
;
260 u64 clock
, prev_clock_raw
;
263 unsigned int clock_warps
, clock_overflows
;
264 unsigned int clock_unstable_events
;
266 struct sched_class
*load_balance_class
;
271 struct sched_domain
*sd
;
273 /* For active balancing */
276 int cpu
; /* cpu of this runqueue */
278 struct task_struct
*migration_thread
;
279 struct list_head migration_queue
;
282 #ifdef CONFIG_SCHEDSTATS
284 struct sched_info rq_sched_info
;
286 /* sys_sched_yield() stats */
287 unsigned long yld_exp_empty
;
288 unsigned long yld_act_empty
;
289 unsigned long yld_both_empty
;
290 unsigned long yld_cnt
;
292 /* schedule() stats */
293 unsigned long sched_switch
;
294 unsigned long sched_cnt
;
295 unsigned long sched_goidle
;
297 /* try_to_wake_up() stats */
298 unsigned long ttwu_cnt
;
299 unsigned long ttwu_local
;
301 struct lock_class_key rq_lock_key
;
304 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
305 static DEFINE_MUTEX(sched_hotcpu_mutex
);
307 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
309 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
312 static inline int cpu_of(struct rq
*rq
)
322 * Per-runqueue clock, as finegrained as the platform can give us:
324 static unsigned long long __rq_clock(struct rq
*rq
)
326 u64 prev_raw
= rq
->prev_clock_raw
;
327 u64 now
= sched_clock();
328 s64 delta
= now
- prev_raw
;
329 u64 clock
= rq
->clock
;
332 * Protect against sched_clock() occasionally going backwards:
334 if (unlikely(delta
< 0)) {
339 * Catch too large forward jumps too:
341 if (unlikely(delta
> 2*TICK_NSEC
)) {
343 rq
->clock_overflows
++;
345 if (unlikely(delta
> rq
->clock_max_delta
))
346 rq
->clock_max_delta
= delta
;
351 rq
->prev_clock_raw
= now
;
357 static inline unsigned long long rq_clock(struct rq
*rq
)
359 int this_cpu
= smp_processor_id();
361 if (this_cpu
== cpu_of(rq
))
362 return __rq_clock(rq
);
368 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
369 * See detach_destroy_domains: synchronize_sched for details.
371 * The domain tree of any CPU may only be accessed from within
372 * preempt-disabled sections.
374 #define for_each_domain(cpu, __sd) \
375 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
377 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
378 #define this_rq() (&__get_cpu_var(runqueues))
379 #define task_rq(p) cpu_rq(task_cpu(p))
380 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
383 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
384 * clock constructed from sched_clock():
386 unsigned long long cpu_clock(int cpu
)
388 struct rq
*rq
= cpu_rq(cpu
);
389 unsigned long long now
;
392 spin_lock_irqsave(&rq
->lock
, flags
);
394 spin_unlock_irqrestore(&rq
->lock
, flags
);
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 /* Change a task's ->cfs_rq if it moves across CPUs */
401 static inline void set_task_cfs_rq(struct task_struct
*p
)
403 p
->se
.cfs_rq
= &task_rq(p
)->cfs
;
406 static inline void set_task_cfs_rq(struct task_struct
*p
)
411 #ifndef prepare_arch_switch
412 # define prepare_arch_switch(next) do { } while (0)
414 #ifndef finish_arch_switch
415 # define finish_arch_switch(prev) do { } while (0)
418 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
419 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
421 return rq
->curr
== p
;
424 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
428 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
430 #ifdef CONFIG_DEBUG_SPINLOCK
431 /* this is a valid case when another task releases the spinlock */
432 rq
->lock
.owner
= current
;
435 * If we are tracking spinlock dependencies then we have to
436 * fix up the runqueue lock - which gets 'carried over' from
439 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
441 spin_unlock_irq(&rq
->lock
);
444 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
445 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
450 return rq
->curr
== p
;
454 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
458 * We can optimise this out completely for !SMP, because the
459 * SMP rebalancing from interrupt is the only thing that cares
464 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
465 spin_unlock_irq(&rq
->lock
);
467 spin_unlock(&rq
->lock
);
471 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
475 * After ->oncpu is cleared, the task can be moved to a different CPU.
476 * We must ensure this doesn't happen until the switch is completely
482 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
486 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
489 * __task_rq_lock - lock the runqueue a given task resides on.
490 * Must be called interrupts disabled.
492 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
499 spin_lock(&rq
->lock
);
500 if (unlikely(rq
!= task_rq(p
))) {
501 spin_unlock(&rq
->lock
);
502 goto repeat_lock_task
;
508 * task_rq_lock - lock the runqueue a given task resides on and disable
509 * interrupts. Note the ordering: we can safely lookup the task_rq without
510 * explicitly disabling preemption.
512 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
518 local_irq_save(*flags
);
520 spin_lock(&rq
->lock
);
521 if (unlikely(rq
!= task_rq(p
))) {
522 spin_unlock_irqrestore(&rq
->lock
, *flags
);
523 goto repeat_lock_task
;
528 static inline void __task_rq_unlock(struct rq
*rq
)
531 spin_unlock(&rq
->lock
);
534 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
537 spin_unlock_irqrestore(&rq
->lock
, *flags
);
541 * this_rq_lock - lock this runqueue and disable interrupts.
543 static inline struct rq
*this_rq_lock(void)
550 spin_lock(&rq
->lock
);
556 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
558 void sched_clock_unstable_event(void)
563 rq
= task_rq_lock(current
, &flags
);
564 rq
->prev_clock_raw
= sched_clock();
565 rq
->clock_unstable_events
++;
566 task_rq_unlock(rq
, &flags
);
570 * resched_task - mark a task 'to be rescheduled now'.
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
578 #ifndef tsk_is_polling
579 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
582 static void resched_task(struct task_struct
*p
)
586 assert_spin_locked(&task_rq(p
)->lock
);
588 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
591 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
594 if (cpu
== smp_processor_id())
597 /* NEED_RESCHED must be visible before we test polling */
599 if (!tsk_is_polling(p
))
600 smp_send_reschedule(cpu
);
603 static void resched_cpu(int cpu
)
605 struct rq
*rq
= cpu_rq(cpu
);
608 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
610 resched_task(cpu_curr(cpu
));
611 spin_unlock_irqrestore(&rq
->lock
, flags
);
614 static inline void resched_task(struct task_struct
*p
)
616 assert_spin_locked(&task_rq(p
)->lock
);
617 set_tsk_need_resched(p
);
621 static u64
div64_likely32(u64 divident
, unsigned long divisor
)
623 #if BITS_PER_LONG == 32
624 if (likely(divident
<= 0xffffffffULL
))
625 return (u32
)divident
/ divisor
;
626 do_div(divident
, divisor
);
630 return divident
/ divisor
;
634 #if BITS_PER_LONG == 32
635 # define WMULT_CONST (~0UL)
637 # define WMULT_CONST (1UL << 32)
640 #define WMULT_SHIFT 32
642 static inline unsigned long
643 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
644 struct load_weight
*lw
)
648 if (unlikely(!lw
->inv_weight
))
649 lw
->inv_weight
= WMULT_CONST
/ lw
->weight
;
651 tmp
= (u64
)delta_exec
* weight
;
653 * Check whether we'd overflow the 64-bit multiplication:
655 if (unlikely(tmp
> WMULT_CONST
)) {
656 tmp
= ((tmp
>> WMULT_SHIFT
/2) * lw
->inv_weight
)
659 tmp
= (tmp
* lw
->inv_weight
) >> WMULT_SHIFT
;
662 return (unsigned long)min(tmp
, (u64
)sysctl_sched_runtime_limit
);
665 static inline unsigned long
666 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
668 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
671 static void update_load_add(struct load_weight
*lw
, unsigned long inc
)
677 static void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
683 static void __update_curr_load(struct rq
*rq
, struct load_stat
*ls
)
685 if (rq
->curr
!= rq
->idle
&& ls
->load
.weight
) {
686 ls
->delta_exec
+= ls
->delta_stat
;
687 ls
->delta_fair
+= calc_delta_fair(ls
->delta_stat
, &ls
->load
);
693 * Update delta_exec, delta_fair fields for rq.
695 * delta_fair clock advances at a rate inversely proportional to
696 * total load (rq->ls.load.weight) on the runqueue, while
697 * delta_exec advances at the same rate as wall-clock (provided
700 * delta_exec / delta_fair is a measure of the (smoothened) load on this
701 * runqueue over any given interval. This (smoothened) load is used
702 * during load balance.
704 * This function is called /before/ updating rq->ls.load
705 * and when switching tasks.
707 static void update_curr_load(struct rq
*rq
, u64 now
)
709 struct load_stat
*ls
= &rq
->ls
;
712 start
= ls
->load_update_start
;
713 ls
->load_update_start
= now
;
714 ls
->delta_stat
+= now
- start
;
716 * Stagger updates to ls->delta_fair. Very frequent updates
719 if (ls
->delta_stat
>= sysctl_sched_stat_granularity
)
720 __update_curr_load(rq
, ls
);
724 * To aid in avoiding the subversion of "niceness" due to uneven distribution
725 * of tasks with abnormal "nice" values across CPUs the contribution that
726 * each task makes to its run queue's load is weighted according to its
727 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
728 * scaled version of the new time slice allocation that they receive on time
733 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
734 * If static_prio_timeslice() is ever changed to break this assumption then
735 * this code will need modification
737 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
738 #define load_weight(lp) \
739 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
740 #define PRIO_TO_LOAD_WEIGHT(prio) \
741 load_weight(static_prio_timeslice(prio))
742 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
743 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
745 #define WEIGHT_IDLEPRIO 2
746 #define WMULT_IDLEPRIO (1 << 31)
749 * Nice levels are multiplicative, with a gentle 10% change for every
750 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
751 * nice 1, it will get ~10% less CPU time than another CPU-bound task
752 * that remained on nice 0.
754 * The "10% effect" is relative and cumulative: from _any_ nice level,
755 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
756 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
757 * If a task goes up by ~10% and another task goes down by ~10% then
758 * the relative distance between them is ~25%.)
760 static const int prio_to_weight
[40] = {
761 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
762 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
763 /* 0 */ NICE_0_LOAD
/* 1024 */,
764 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
765 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
769 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
771 * In cases where the weight does not change often, we can use the
772 * precalculated inverse to speed up arithmetics by turning divisions
773 * into multiplications:
775 static const u32 prio_to_wmult
[40] = {
776 /* -20 */ 48356, 60446, 75558, 94446, 118058,
777 /* -15 */ 147573, 184467, 230589, 288233, 360285,
778 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
779 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
780 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
781 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
782 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
783 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
787 inc_load(struct rq
*rq
, const struct task_struct
*p
, u64 now
)
789 update_curr_load(rq
, now
);
790 update_load_add(&rq
->ls
.load
, p
->se
.load
.weight
);
794 dec_load(struct rq
*rq
, const struct task_struct
*p
, u64 now
)
796 update_curr_load(rq
, now
);
797 update_load_sub(&rq
->ls
.load
, p
->se
.load
.weight
);
800 static inline void inc_nr_running(struct task_struct
*p
, struct rq
*rq
, u64 now
)
803 inc_load(rq
, p
, now
);
806 static inline void dec_nr_running(struct task_struct
*p
, struct rq
*rq
, u64 now
)
809 dec_load(rq
, p
, now
);
812 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
815 * runqueue iterator, to support SMP load-balancing between different
816 * scheduling classes, without having to expose their internal data
817 * structures to the load-balancing proper:
821 struct task_struct
*(*start
)(void *);
822 struct task_struct
*(*next
)(void *);
825 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
826 unsigned long max_nr_move
, unsigned long max_load_move
,
827 struct sched_domain
*sd
, enum cpu_idle_type idle
,
828 int *all_pinned
, unsigned long *load_moved
,
829 int this_best_prio
, int best_prio
, int best_prio_seen
,
830 struct rq_iterator
*iterator
);
832 #include "sched_stats.h"
833 #include "sched_rt.c"
834 #include "sched_fair.c"
835 #include "sched_idletask.c"
836 #ifdef CONFIG_SCHED_DEBUG
837 # include "sched_debug.c"
840 #define sched_class_highest (&rt_sched_class)
842 static void set_load_weight(struct task_struct
*p
)
844 task_rq(p
)->cfs
.wait_runtime
-= p
->se
.wait_runtime
;
845 p
->se
.wait_runtime
= 0;
847 if (task_has_rt_policy(p
)) {
848 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
849 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
854 * SCHED_IDLE tasks get minimal weight:
856 if (p
->policy
== SCHED_IDLE
) {
857 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
858 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
862 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
863 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
867 enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
, u64 now
)
869 sched_info_queued(p
);
870 p
->sched_class
->enqueue_task(rq
, p
, wakeup
, now
);
875 dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
, u64 now
)
877 p
->sched_class
->dequeue_task(rq
, p
, sleep
, now
);
882 * __normal_prio - return the priority that is based on the static prio
884 static inline int __normal_prio(struct task_struct
*p
)
886 return p
->static_prio
;
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
896 static inline int normal_prio(struct task_struct
*p
)
900 if (task_has_rt_policy(p
))
901 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
903 prio
= __normal_prio(p
);
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
914 static int effective_prio(struct task_struct
*p
)
916 p
->normal_prio
= normal_prio(p
);
918 * If we are RT tasks or we were boosted to RT priority,
919 * keep the priority unchanged. Otherwise, update priority
920 * to the normal priority:
922 if (!rt_prio(p
->prio
))
923 return p
->normal_prio
;
928 * activate_task - move a task to the runqueue.
930 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
932 u64 now
= rq_clock(rq
);
934 if (p
->state
== TASK_UNINTERRUPTIBLE
)
935 rq
->nr_uninterruptible
--;
937 enqueue_task(rq
, p
, wakeup
, now
);
938 inc_nr_running(p
, rq
, now
);
942 * activate_idle_task - move idle task to the _front_ of runqueue.
944 static inline void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
946 u64 now
= rq_clock(rq
);
948 if (p
->state
== TASK_UNINTERRUPTIBLE
)
949 rq
->nr_uninterruptible
--;
951 enqueue_task(rq
, p
, 0, now
);
952 inc_nr_running(p
, rq
, now
);
956 * deactivate_task - remove a task from the runqueue.
958 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
960 u64 now
= rq_clock(rq
);
962 if (p
->state
== TASK_UNINTERRUPTIBLE
)
963 rq
->nr_uninterruptible
++;
965 dequeue_task(rq
, p
, sleep
, now
);
966 dec_nr_running(p
, rq
, now
);
970 * task_curr - is this task currently executing on a CPU?
971 * @p: the task in question.
973 inline int task_curr(const struct task_struct
*p
)
975 return cpu_curr(task_cpu(p
)) == p
;
978 /* Used instead of source_load when we know the type == 0 */
979 unsigned long weighted_cpuload(const int cpu
)
981 return cpu_rq(cpu
)->ls
.load
.weight
;
984 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
987 task_thread_info(p
)->cpu
= cpu
;
994 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
996 int old_cpu
= task_cpu(p
);
997 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
998 u64 clock_offset
, fair_clock_offset
;
1000 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1001 fair_clock_offset
= old_rq
->cfs
.fair_clock
-
1002 new_rq
->cfs
.fair_clock
;
1003 if (p
->se
.wait_start
)
1004 p
->se
.wait_start
-= clock_offset
;
1005 if (p
->se
.wait_start_fair
)
1006 p
->se
.wait_start_fair
-= fair_clock_offset
;
1007 if (p
->se
.sleep_start
)
1008 p
->se
.sleep_start
-= clock_offset
;
1009 if (p
->se
.block_start
)
1010 p
->se
.block_start
-= clock_offset
;
1011 if (p
->se
.sleep_start_fair
)
1012 p
->se
.sleep_start_fair
-= fair_clock_offset
;
1014 __set_task_cpu(p
, new_cpu
);
1017 struct migration_req
{
1018 struct list_head list
;
1020 struct task_struct
*task
;
1023 struct completion done
;
1027 * The task's runqueue lock must be held.
1028 * Returns true if you have to wait for migration thread.
1031 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1033 struct rq
*rq
= task_rq(p
);
1036 * If the task is not on a runqueue (and not running), then
1037 * it is sufficient to simply update the task's cpu field.
1039 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1040 set_task_cpu(p
, dest_cpu
);
1044 init_completion(&req
->done
);
1046 req
->dest_cpu
= dest_cpu
;
1047 list_add(&req
->list
, &rq
->migration_queue
);
1053 * wait_task_inactive - wait for a thread to unschedule.
1055 * The caller must ensure that the task *will* unschedule sometime soon,
1056 * else this function might spin for a *long* time. This function can't
1057 * be called with interrupts off, or it may introduce deadlock with
1058 * smp_call_function() if an IPI is sent by the same process we are
1059 * waiting to become inactive.
1061 void wait_task_inactive(struct task_struct
*p
)
1063 unsigned long flags
;
1069 * We do the initial early heuristics without holding
1070 * any task-queue locks at all. We'll only try to get
1071 * the runqueue lock when things look like they will
1077 * If the task is actively running on another CPU
1078 * still, just relax and busy-wait without holding
1081 * NOTE! Since we don't hold any locks, it's not
1082 * even sure that "rq" stays as the right runqueue!
1083 * But we don't care, since "task_running()" will
1084 * return false if the runqueue has changed and p
1085 * is actually now running somewhere else!
1087 while (task_running(rq
, p
))
1091 * Ok, time to look more closely! We need the rq
1092 * lock now, to be *sure*. If we're wrong, we'll
1093 * just go back and repeat.
1095 rq
= task_rq_lock(p
, &flags
);
1096 running
= task_running(rq
, p
);
1097 on_rq
= p
->se
.on_rq
;
1098 task_rq_unlock(rq
, &flags
);
1101 * Was it really running after all now that we
1102 * checked with the proper locks actually held?
1104 * Oops. Go back and try again..
1106 if (unlikely(running
)) {
1112 * It's not enough that it's not actively running,
1113 * it must be off the runqueue _entirely_, and not
1116 * So if it wa still runnable (but just not actively
1117 * running right now), it's preempted, and we should
1118 * yield - it could be a while.
1120 if (unlikely(on_rq
)) {
1126 * Ahh, all good. It wasn't running, and it wasn't
1127 * runnable, which means that it will never become
1128 * running in the future either. We're all done!
1133 * kick_process - kick a running thread to enter/exit the kernel
1134 * @p: the to-be-kicked thread
1136 * Cause a process which is running on another CPU to enter
1137 * kernel-mode, without any delay. (to get signals handled.)
1139 * NOTE: this function doesnt have to take the runqueue lock,
1140 * because all it wants to ensure is that the remote task enters
1141 * the kernel. If the IPI races and the task has been migrated
1142 * to another CPU then no harm is done and the purpose has been
1145 void kick_process(struct task_struct
*p
)
1151 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1152 smp_send_reschedule(cpu
);
1157 * Return a low guess at the load of a migration-source cpu weighted
1158 * according to the scheduling class and "nice" value.
1160 * We want to under-estimate the load of migration sources, to
1161 * balance conservatively.
1163 static inline unsigned long source_load(int cpu
, int type
)
1165 struct rq
*rq
= cpu_rq(cpu
);
1166 unsigned long total
= weighted_cpuload(cpu
);
1171 return min(rq
->cpu_load
[type
-1], total
);
1175 * Return a high guess at the load of a migration-target cpu weighted
1176 * according to the scheduling class and "nice" value.
1178 static inline unsigned long target_load(int cpu
, int type
)
1180 struct rq
*rq
= cpu_rq(cpu
);
1181 unsigned long total
= weighted_cpuload(cpu
);
1186 return max(rq
->cpu_load
[type
-1], total
);
1190 * Return the average load per task on the cpu's run queue
1192 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1194 struct rq
*rq
= cpu_rq(cpu
);
1195 unsigned long total
= weighted_cpuload(cpu
);
1196 unsigned long n
= rq
->nr_running
;
1198 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1202 * find_idlest_group finds and returns the least busy CPU group within the
1205 static struct sched_group
*
1206 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1208 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1209 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1210 int load_idx
= sd
->forkexec_idx
;
1211 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1214 unsigned long load
, avg_load
;
1218 /* Skip over this group if it has no CPUs allowed */
1219 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1222 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1224 /* Tally up the load of all CPUs in the group */
1227 for_each_cpu_mask(i
, group
->cpumask
) {
1228 /* Bias balancing toward cpus of our domain */
1230 load
= source_load(i
, load_idx
);
1232 load
= target_load(i
, load_idx
);
1237 /* Adjust by relative CPU power of the group */
1238 avg_load
= sg_div_cpu_power(group
,
1239 avg_load
* SCHED_LOAD_SCALE
);
1242 this_load
= avg_load
;
1244 } else if (avg_load
< min_load
) {
1245 min_load
= avg_load
;
1249 group
= group
->next
;
1250 } while (group
!= sd
->groups
);
1252 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1258 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1261 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1264 unsigned long load
, min_load
= ULONG_MAX
;
1268 /* Traverse only the allowed CPUs */
1269 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1271 for_each_cpu_mask(i
, tmp
) {
1272 load
= weighted_cpuload(i
);
1274 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1284 * sched_balance_self: balance the current task (running on cpu) in domains
1285 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1288 * Balance, ie. select the least loaded group.
1290 * Returns the target CPU number, or the same CPU if no balancing is needed.
1292 * preempt must be disabled.
1294 static int sched_balance_self(int cpu
, int flag
)
1296 struct task_struct
*t
= current
;
1297 struct sched_domain
*tmp
, *sd
= NULL
;
1299 for_each_domain(cpu
, tmp
) {
1301 * If power savings logic is enabled for a domain, stop there.
1303 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1305 if (tmp
->flags
& flag
)
1311 struct sched_group
*group
;
1312 int new_cpu
, weight
;
1314 if (!(sd
->flags
& flag
)) {
1320 group
= find_idlest_group(sd
, t
, cpu
);
1326 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1327 if (new_cpu
== -1 || new_cpu
== cpu
) {
1328 /* Now try balancing at a lower domain level of cpu */
1333 /* Now try balancing at a lower domain level of new_cpu */
1336 weight
= cpus_weight(span
);
1337 for_each_domain(cpu
, tmp
) {
1338 if (weight
<= cpus_weight(tmp
->span
))
1340 if (tmp
->flags
& flag
)
1343 /* while loop will break here if sd == NULL */
1349 #endif /* CONFIG_SMP */
1352 * wake_idle() will wake a task on an idle cpu if task->cpu is
1353 * not idle and an idle cpu is available. The span of cpus to
1354 * search starts with cpus closest then further out as needed,
1355 * so we always favor a closer, idle cpu.
1357 * Returns the CPU we should wake onto.
1359 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1360 static int wake_idle(int cpu
, struct task_struct
*p
)
1363 struct sched_domain
*sd
;
1367 * If it is idle, then it is the best cpu to run this task.
1369 * This cpu is also the best, if it has more than one task already.
1370 * Siblings must be also busy(in most cases) as they didn't already
1371 * pickup the extra load from this cpu and hence we need not check
1372 * sibling runqueue info. This will avoid the checks and cache miss
1373 * penalities associated with that.
1375 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1378 for_each_domain(cpu
, sd
) {
1379 if (sd
->flags
& SD_WAKE_IDLE
) {
1380 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1381 for_each_cpu_mask(i
, tmp
) {
1392 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1399 * try_to_wake_up - wake up a thread
1400 * @p: the to-be-woken-up thread
1401 * @state: the mask of task states that can be woken
1402 * @sync: do a synchronous wakeup?
1404 * Put it on the run-queue if it's not already there. The "current"
1405 * thread is always on the run-queue (except when the actual
1406 * re-schedule is in progress), and as such you're allowed to do
1407 * the simpler "current->state = TASK_RUNNING" to mark yourself
1408 * runnable without the overhead of this.
1410 * returns failure only if the task is already active.
1412 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1414 int cpu
, this_cpu
, success
= 0;
1415 unsigned long flags
;
1419 struct sched_domain
*sd
, *this_sd
= NULL
;
1420 unsigned long load
, this_load
;
1424 rq
= task_rq_lock(p
, &flags
);
1425 old_state
= p
->state
;
1426 if (!(old_state
& state
))
1433 this_cpu
= smp_processor_id();
1436 if (unlikely(task_running(rq
, p
)))
1441 schedstat_inc(rq
, ttwu_cnt
);
1442 if (cpu
== this_cpu
) {
1443 schedstat_inc(rq
, ttwu_local
);
1447 for_each_domain(this_cpu
, sd
) {
1448 if (cpu_isset(cpu
, sd
->span
)) {
1449 schedstat_inc(sd
, ttwu_wake_remote
);
1455 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1459 * Check for affine wakeup and passive balancing possibilities.
1462 int idx
= this_sd
->wake_idx
;
1463 unsigned int imbalance
;
1465 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1467 load
= source_load(cpu
, idx
);
1468 this_load
= target_load(this_cpu
, idx
);
1470 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1472 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1473 unsigned long tl
= this_load
;
1474 unsigned long tl_per_task
;
1476 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1479 * If sync wakeup then subtract the (maximum possible)
1480 * effect of the currently running task from the load
1481 * of the current CPU:
1484 tl
-= current
->se
.load
.weight
;
1487 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1488 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1490 * This domain has SD_WAKE_AFFINE and
1491 * p is cache cold in this domain, and
1492 * there is no bad imbalance.
1494 schedstat_inc(this_sd
, ttwu_move_affine
);
1500 * Start passive balancing when half the imbalance_pct
1503 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1504 if (imbalance
*this_load
<= 100*load
) {
1505 schedstat_inc(this_sd
, ttwu_move_balance
);
1511 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1513 new_cpu
= wake_idle(new_cpu
, p
);
1514 if (new_cpu
!= cpu
) {
1515 set_task_cpu(p
, new_cpu
);
1516 task_rq_unlock(rq
, &flags
);
1517 /* might preempt at this point */
1518 rq
= task_rq_lock(p
, &flags
);
1519 old_state
= p
->state
;
1520 if (!(old_state
& state
))
1525 this_cpu
= smp_processor_id();
1530 #endif /* CONFIG_SMP */
1531 activate_task(rq
, p
, 1);
1533 * Sync wakeups (i.e. those types of wakeups where the waker
1534 * has indicated that it will leave the CPU in short order)
1535 * don't trigger a preemption, if the woken up task will run on
1536 * this cpu. (in this case the 'I will reschedule' promise of
1537 * the waker guarantees that the freshly woken up task is going
1538 * to be considered on this CPU.)
1540 if (!sync
|| cpu
!= this_cpu
)
1541 check_preempt_curr(rq
, p
);
1545 p
->state
= TASK_RUNNING
;
1547 task_rq_unlock(rq
, &flags
);
1552 int fastcall
wake_up_process(struct task_struct
*p
)
1554 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1555 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1557 EXPORT_SYMBOL(wake_up_process
);
1559 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1561 return try_to_wake_up(p
, state
, 0);
1565 * Perform scheduler related setup for a newly forked process p.
1566 * p is forked by current.
1568 * __sched_fork() is basic setup used by init_idle() too:
1570 static void __sched_fork(struct task_struct
*p
)
1572 p
->se
.wait_start_fair
= 0;
1573 p
->se
.wait_start
= 0;
1574 p
->se
.exec_start
= 0;
1575 p
->se
.sum_exec_runtime
= 0;
1576 p
->se
.delta_exec
= 0;
1577 p
->se
.delta_fair_run
= 0;
1578 p
->se
.delta_fair_sleep
= 0;
1579 p
->se
.wait_runtime
= 0;
1580 p
->se
.sum_wait_runtime
= 0;
1581 p
->se
.sum_sleep_runtime
= 0;
1582 p
->se
.sleep_start
= 0;
1583 p
->se
.sleep_start_fair
= 0;
1584 p
->se
.block_start
= 0;
1585 p
->se
.sleep_max
= 0;
1586 p
->se
.block_max
= 0;
1589 p
->se
.wait_runtime_overruns
= 0;
1590 p
->se
.wait_runtime_underruns
= 0;
1592 INIT_LIST_HEAD(&p
->run_list
);
1596 * We mark the process as running here, but have not actually
1597 * inserted it onto the runqueue yet. This guarantees that
1598 * nobody will actually run it, and a signal or other external
1599 * event cannot wake it up and insert it on the runqueue either.
1601 p
->state
= TASK_RUNNING
;
1605 * fork()/clone()-time setup:
1607 void sched_fork(struct task_struct
*p
, int clone_flags
)
1609 int cpu
= get_cpu();
1614 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1616 __set_task_cpu(p
, cpu
);
1619 * Make sure we do not leak PI boosting priority to the child:
1621 p
->prio
= current
->normal_prio
;
1623 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1624 if (likely(sched_info_on()))
1625 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1627 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1630 #ifdef CONFIG_PREEMPT
1631 /* Want to start with kernel preemption disabled. */
1632 task_thread_info(p
)->preempt_count
= 1;
1638 * After fork, child runs first. (default) If set to 0 then
1639 * parent will (try to) run first.
1641 unsigned int __read_mostly sysctl_sched_child_runs_first
= 1;
1644 * wake_up_new_task - wake up a newly created task for the first time.
1646 * This function will do some initial scheduler statistics housekeeping
1647 * that must be done for every newly created context, then puts the task
1648 * on the runqueue and wakes it.
1650 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1652 unsigned long flags
;
1656 rq
= task_rq_lock(p
, &flags
);
1657 BUG_ON(p
->state
!= TASK_RUNNING
);
1658 this_cpu
= smp_processor_id(); /* parent's CPU */
1660 p
->prio
= effective_prio(p
);
1662 if (!sysctl_sched_child_runs_first
|| (clone_flags
& CLONE_VM
) ||
1663 task_cpu(p
) != this_cpu
|| !current
->se
.on_rq
) {
1664 activate_task(rq
, p
, 0);
1667 * Let the scheduling class do new task startup
1668 * management (if any):
1670 p
->sched_class
->task_new(rq
, p
);
1672 check_preempt_curr(rq
, p
);
1673 task_rq_unlock(rq
, &flags
);
1677 * prepare_task_switch - prepare to switch tasks
1678 * @rq: the runqueue preparing to switch
1679 * @next: the task we are going to switch to.
1681 * This is called with the rq lock held and interrupts off. It must
1682 * be paired with a subsequent finish_task_switch after the context
1685 * prepare_task_switch sets up locking and calls architecture specific
1688 static inline void prepare_task_switch(struct rq
*rq
, struct task_struct
*next
)
1690 prepare_lock_switch(rq
, next
);
1691 prepare_arch_switch(next
);
1695 * finish_task_switch - clean up after a task-switch
1696 * @rq: runqueue associated with task-switch
1697 * @prev: the thread we just switched away from.
1699 * finish_task_switch must be called after the context switch, paired
1700 * with a prepare_task_switch call before the context switch.
1701 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1702 * and do any other architecture-specific cleanup actions.
1704 * Note that we may have delayed dropping an mm in context_switch(). If
1705 * so, we finish that here outside of the runqueue lock. (Doing it
1706 * with the lock held can cause deadlocks; see schedule() for
1709 static inline void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1710 __releases(rq
->lock
)
1712 struct mm_struct
*mm
= rq
->prev_mm
;
1718 * A task struct has one reference for the use as "current".
1719 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1720 * schedule one last time. The schedule call will never return, and
1721 * the scheduled task must drop that reference.
1722 * The test for TASK_DEAD must occur while the runqueue locks are
1723 * still held, otherwise prev could be scheduled on another cpu, die
1724 * there before we look at prev->state, and then the reference would
1726 * Manfred Spraul <manfred@colorfullife.com>
1728 prev_state
= prev
->state
;
1729 finish_arch_switch(prev
);
1730 finish_lock_switch(rq
, prev
);
1733 if (unlikely(prev_state
== TASK_DEAD
)) {
1735 * Remove function-return probe instances associated with this
1736 * task and put them back on the free list.
1738 kprobe_flush_task(prev
);
1739 put_task_struct(prev
);
1744 * schedule_tail - first thing a freshly forked thread must call.
1745 * @prev: the thread we just switched away from.
1747 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1748 __releases(rq
->lock
)
1750 struct rq
*rq
= this_rq();
1752 finish_task_switch(rq
, prev
);
1753 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1754 /* In this case, finish_task_switch does not reenable preemption */
1757 if (current
->set_child_tid
)
1758 put_user(current
->pid
, current
->set_child_tid
);
1762 * context_switch - switch to the new MM and the new
1763 * thread's register state.
1766 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1767 struct task_struct
*next
)
1769 struct mm_struct
*mm
, *oldmm
;
1771 prepare_task_switch(rq
, next
);
1773 oldmm
= prev
->active_mm
;
1775 * For paravirt, this is coupled with an exit in switch_to to
1776 * combine the page table reload and the switch backend into
1779 arch_enter_lazy_cpu_mode();
1781 if (unlikely(!mm
)) {
1782 next
->active_mm
= oldmm
;
1783 atomic_inc(&oldmm
->mm_count
);
1784 enter_lazy_tlb(oldmm
, next
);
1786 switch_mm(oldmm
, mm
, next
);
1788 if (unlikely(!prev
->mm
)) {
1789 prev
->active_mm
= NULL
;
1790 rq
->prev_mm
= oldmm
;
1793 * Since the runqueue lock will be released by the next
1794 * task (which is an invalid locking op but in the case
1795 * of the scheduler it's an obvious special-case), so we
1796 * do an early lockdep release here:
1798 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1799 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1802 /* Here we just switch the register state and the stack. */
1803 switch_to(prev
, next
, prev
);
1807 * this_rq must be evaluated again because prev may have moved
1808 * CPUs since it called schedule(), thus the 'rq' on its stack
1809 * frame will be invalid.
1811 finish_task_switch(this_rq(), prev
);
1815 * nr_running, nr_uninterruptible and nr_context_switches:
1817 * externally visible scheduler statistics: current number of runnable
1818 * threads, current number of uninterruptible-sleeping threads, total
1819 * number of context switches performed since bootup.
1821 unsigned long nr_running(void)
1823 unsigned long i
, sum
= 0;
1825 for_each_online_cpu(i
)
1826 sum
+= cpu_rq(i
)->nr_running
;
1831 unsigned long nr_uninterruptible(void)
1833 unsigned long i
, sum
= 0;
1835 for_each_possible_cpu(i
)
1836 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1839 * Since we read the counters lockless, it might be slightly
1840 * inaccurate. Do not allow it to go below zero though:
1842 if (unlikely((long)sum
< 0))
1848 unsigned long long nr_context_switches(void)
1851 unsigned long long sum
= 0;
1853 for_each_possible_cpu(i
)
1854 sum
+= cpu_rq(i
)->nr_switches
;
1859 unsigned long nr_iowait(void)
1861 unsigned long i
, sum
= 0;
1863 for_each_possible_cpu(i
)
1864 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1869 unsigned long nr_active(void)
1871 unsigned long i
, running
= 0, uninterruptible
= 0;
1873 for_each_online_cpu(i
) {
1874 running
+= cpu_rq(i
)->nr_running
;
1875 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1878 if (unlikely((long)uninterruptible
< 0))
1879 uninterruptible
= 0;
1881 return running
+ uninterruptible
;
1885 * Update rq->cpu_load[] statistics. This function is usually called every
1886 * scheduler tick (TICK_NSEC).
1888 static void update_cpu_load(struct rq
*this_rq
)
1890 u64 fair_delta64
, exec_delta64
, idle_delta64
, sample_interval64
, tmp64
;
1891 unsigned long total_load
= this_rq
->ls
.load
.weight
;
1892 unsigned long this_load
= total_load
;
1893 struct load_stat
*ls
= &this_rq
->ls
;
1894 u64 now
= __rq_clock(this_rq
);
1897 this_rq
->nr_load_updates
++;
1898 if (unlikely(!(sysctl_sched_features
& SCHED_FEAT_PRECISE_CPU_LOAD
)))
1901 /* Update delta_fair/delta_exec fields first */
1902 update_curr_load(this_rq
, now
);
1904 fair_delta64
= ls
->delta_fair
+ 1;
1907 exec_delta64
= ls
->delta_exec
+ 1;
1910 sample_interval64
= now
- ls
->load_update_last
;
1911 ls
->load_update_last
= now
;
1913 if ((s64
)sample_interval64
< (s64
)TICK_NSEC
)
1914 sample_interval64
= TICK_NSEC
;
1916 if (exec_delta64
> sample_interval64
)
1917 exec_delta64
= sample_interval64
;
1919 idle_delta64
= sample_interval64
- exec_delta64
;
1921 tmp64
= div64_64(SCHED_LOAD_SCALE
* exec_delta64
, fair_delta64
);
1922 tmp64
= div64_64(tmp64
* exec_delta64
, sample_interval64
);
1924 this_load
= (unsigned long)tmp64
;
1928 /* Update our load: */
1929 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
1930 unsigned long old_load
, new_load
;
1932 /* scale is effectively 1 << i now, and >> i divides by scale */
1934 old_load
= this_rq
->cpu_load
[i
];
1935 new_load
= this_load
;
1937 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
1944 * double_rq_lock - safely lock two runqueues
1946 * Note this does not disable interrupts like task_rq_lock,
1947 * you need to do so manually before calling.
1949 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1950 __acquires(rq1
->lock
)
1951 __acquires(rq2
->lock
)
1953 BUG_ON(!irqs_disabled());
1955 spin_lock(&rq1
->lock
);
1956 __acquire(rq2
->lock
); /* Fake it out ;) */
1959 spin_lock(&rq1
->lock
);
1960 spin_lock(&rq2
->lock
);
1962 spin_lock(&rq2
->lock
);
1963 spin_lock(&rq1
->lock
);
1969 * double_rq_unlock - safely unlock two runqueues
1971 * Note this does not restore interrupts like task_rq_unlock,
1972 * you need to do so manually after calling.
1974 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1975 __releases(rq1
->lock
)
1976 __releases(rq2
->lock
)
1978 spin_unlock(&rq1
->lock
);
1980 spin_unlock(&rq2
->lock
);
1982 __release(rq2
->lock
);
1986 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1988 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1989 __releases(this_rq
->lock
)
1990 __acquires(busiest
->lock
)
1991 __acquires(this_rq
->lock
)
1993 if (unlikely(!irqs_disabled())) {
1994 /* printk() doesn't work good under rq->lock */
1995 spin_unlock(&this_rq
->lock
);
1998 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1999 if (busiest
< this_rq
) {
2000 spin_unlock(&this_rq
->lock
);
2001 spin_lock(&busiest
->lock
);
2002 spin_lock(&this_rq
->lock
);
2004 spin_lock(&busiest
->lock
);
2009 * If dest_cpu is allowed for this process, migrate the task to it.
2010 * This is accomplished by forcing the cpu_allowed mask to only
2011 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2012 * the cpu_allowed mask is restored.
2014 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2016 struct migration_req req
;
2017 unsigned long flags
;
2020 rq
= task_rq_lock(p
, &flags
);
2021 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2022 || unlikely(cpu_is_offline(dest_cpu
)))
2025 /* force the process onto the specified CPU */
2026 if (migrate_task(p
, dest_cpu
, &req
)) {
2027 /* Need to wait for migration thread (might exit: take ref). */
2028 struct task_struct
*mt
= rq
->migration_thread
;
2030 get_task_struct(mt
);
2031 task_rq_unlock(rq
, &flags
);
2032 wake_up_process(mt
);
2033 put_task_struct(mt
);
2034 wait_for_completion(&req
.done
);
2039 task_rq_unlock(rq
, &flags
);
2043 * sched_exec - execve() is a valuable balancing opportunity, because at
2044 * this point the task has the smallest effective memory and cache footprint.
2046 void sched_exec(void)
2048 int new_cpu
, this_cpu
= get_cpu();
2049 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2051 if (new_cpu
!= this_cpu
)
2052 sched_migrate_task(current
, new_cpu
);
2056 * pull_task - move a task from a remote runqueue to the local runqueue.
2057 * Both runqueues must be locked.
2059 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2060 struct rq
*this_rq
, int this_cpu
)
2062 deactivate_task(src_rq
, p
, 0);
2063 set_task_cpu(p
, this_cpu
);
2064 activate_task(this_rq
, p
, 0);
2066 * Note that idle threads have a prio of MAX_PRIO, for this test
2067 * to be always true for them.
2069 check_preempt_curr(this_rq
, p
);
2073 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2076 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2077 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2081 * We do not migrate tasks that are:
2082 * 1) running (obviously), or
2083 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2084 * 3) are cache-hot on their current CPU.
2086 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2090 if (task_running(rq
, p
))
2094 * Aggressive migration if too many balance attempts have failed:
2096 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
2102 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2103 unsigned long max_nr_move
, unsigned long max_load_move
,
2104 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2105 int *all_pinned
, unsigned long *load_moved
,
2106 int this_best_prio
, int best_prio
, int best_prio_seen
,
2107 struct rq_iterator
*iterator
)
2109 int pulled
= 0, pinned
= 0, skip_for_load
;
2110 struct task_struct
*p
;
2111 long rem_load_move
= max_load_move
;
2113 if (max_nr_move
== 0 || max_load_move
== 0)
2119 * Start the load-balancing iterator:
2121 p
= iterator
->start(iterator
->arg
);
2126 * To help distribute high priority tasks accross CPUs we don't
2127 * skip a task if it will be the highest priority task (i.e. smallest
2128 * prio value) on its new queue regardless of its load weight
2130 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2131 SCHED_LOAD_SCALE_FUZZ
;
2132 if (skip_for_load
&& p
->prio
< this_best_prio
)
2133 skip_for_load
= !best_prio_seen
&& p
->prio
== best_prio
;
2134 if (skip_for_load
||
2135 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2137 best_prio_seen
|= p
->prio
== best_prio
;
2138 p
= iterator
->next(iterator
->arg
);
2142 pull_task(busiest
, p
, this_rq
, this_cpu
);
2144 rem_load_move
-= p
->se
.load
.weight
;
2147 * We only want to steal up to the prescribed number of tasks
2148 * and the prescribed amount of weighted load.
2150 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2151 if (p
->prio
< this_best_prio
)
2152 this_best_prio
= p
->prio
;
2153 p
= iterator
->next(iterator
->arg
);
2158 * Right now, this is the only place pull_task() is called,
2159 * so we can safely collect pull_task() stats here rather than
2160 * inside pull_task().
2162 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2165 *all_pinned
= pinned
;
2166 *load_moved
= max_load_move
- rem_load_move
;
2171 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2172 * load from busiest to this_rq, as part of a balancing operation within
2173 * "domain". Returns the number of tasks moved.
2175 * Called with both runqueues locked.
2177 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2178 unsigned long max_nr_move
, unsigned long max_load_move
,
2179 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2182 struct sched_class
*class = sched_class_highest
;
2183 unsigned long load_moved
, total_nr_moved
= 0, nr_moved
;
2184 long rem_load_move
= max_load_move
;
2187 nr_moved
= class->load_balance(this_rq
, this_cpu
, busiest
,
2188 max_nr_move
, (unsigned long)rem_load_move
,
2189 sd
, idle
, all_pinned
, &load_moved
);
2190 total_nr_moved
+= nr_moved
;
2191 max_nr_move
-= nr_moved
;
2192 rem_load_move
-= load_moved
;
2193 class = class->next
;
2194 } while (class && max_nr_move
&& rem_load_move
> 0);
2196 return total_nr_moved
;
2200 * find_busiest_group finds and returns the busiest CPU group within the
2201 * domain. It calculates and returns the amount of weighted load which
2202 * should be moved to restore balance via the imbalance parameter.
2204 static struct sched_group
*
2205 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2206 unsigned long *imbalance
, enum cpu_idle_type idle
,
2207 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2209 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2210 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2211 unsigned long max_pull
;
2212 unsigned long busiest_load_per_task
, busiest_nr_running
;
2213 unsigned long this_load_per_task
, this_nr_running
;
2215 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2216 int power_savings_balance
= 1;
2217 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2218 unsigned long min_nr_running
= ULONG_MAX
;
2219 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2222 max_load
= this_load
= total_load
= total_pwr
= 0;
2223 busiest_load_per_task
= busiest_nr_running
= 0;
2224 this_load_per_task
= this_nr_running
= 0;
2225 if (idle
== CPU_NOT_IDLE
)
2226 load_idx
= sd
->busy_idx
;
2227 else if (idle
== CPU_NEWLY_IDLE
)
2228 load_idx
= sd
->newidle_idx
;
2230 load_idx
= sd
->idle_idx
;
2233 unsigned long load
, group_capacity
;
2236 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2237 unsigned long sum_nr_running
, sum_weighted_load
;
2239 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2242 balance_cpu
= first_cpu(group
->cpumask
);
2244 /* Tally up the load of all CPUs in the group */
2245 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2247 for_each_cpu_mask(i
, group
->cpumask
) {
2250 if (!cpu_isset(i
, *cpus
))
2255 if (*sd_idle
&& rq
->nr_running
)
2258 /* Bias balancing toward cpus of our domain */
2260 if (idle_cpu(i
) && !first_idle_cpu
) {
2265 load
= target_load(i
, load_idx
);
2267 load
= source_load(i
, load_idx
);
2270 sum_nr_running
+= rq
->nr_running
;
2271 sum_weighted_load
+= weighted_cpuload(i
);
2275 * First idle cpu or the first cpu(busiest) in this sched group
2276 * is eligible for doing load balancing at this and above
2277 * domains. In the newly idle case, we will allow all the cpu's
2278 * to do the newly idle load balance.
2280 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2281 balance_cpu
!= this_cpu
&& balance
) {
2286 total_load
+= avg_load
;
2287 total_pwr
+= group
->__cpu_power
;
2289 /* Adjust by relative CPU power of the group */
2290 avg_load
= sg_div_cpu_power(group
,
2291 avg_load
* SCHED_LOAD_SCALE
);
2293 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2296 this_load
= avg_load
;
2298 this_nr_running
= sum_nr_running
;
2299 this_load_per_task
= sum_weighted_load
;
2300 } else if (avg_load
> max_load
&&
2301 sum_nr_running
> group_capacity
) {
2302 max_load
= avg_load
;
2304 busiest_nr_running
= sum_nr_running
;
2305 busiest_load_per_task
= sum_weighted_load
;
2308 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2310 * Busy processors will not participate in power savings
2313 if (idle
== CPU_NOT_IDLE
||
2314 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2318 * If the local group is idle or completely loaded
2319 * no need to do power savings balance at this domain
2321 if (local_group
&& (this_nr_running
>= group_capacity
||
2323 power_savings_balance
= 0;
2326 * If a group is already running at full capacity or idle,
2327 * don't include that group in power savings calculations
2329 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2334 * Calculate the group which has the least non-idle load.
2335 * This is the group from where we need to pick up the load
2338 if ((sum_nr_running
< min_nr_running
) ||
2339 (sum_nr_running
== min_nr_running
&&
2340 first_cpu(group
->cpumask
) <
2341 first_cpu(group_min
->cpumask
))) {
2343 min_nr_running
= sum_nr_running
;
2344 min_load_per_task
= sum_weighted_load
/
2349 * Calculate the group which is almost near its
2350 * capacity but still has some space to pick up some load
2351 * from other group and save more power
2353 if (sum_nr_running
<= group_capacity
- 1) {
2354 if (sum_nr_running
> leader_nr_running
||
2355 (sum_nr_running
== leader_nr_running
&&
2356 first_cpu(group
->cpumask
) >
2357 first_cpu(group_leader
->cpumask
))) {
2358 group_leader
= group
;
2359 leader_nr_running
= sum_nr_running
;
2364 group
= group
->next
;
2365 } while (group
!= sd
->groups
);
2367 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2370 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2372 if (this_load
>= avg_load
||
2373 100*max_load
<= sd
->imbalance_pct
*this_load
)
2376 busiest_load_per_task
/= busiest_nr_running
;
2378 * We're trying to get all the cpus to the average_load, so we don't
2379 * want to push ourselves above the average load, nor do we wish to
2380 * reduce the max loaded cpu below the average load, as either of these
2381 * actions would just result in more rebalancing later, and ping-pong
2382 * tasks around. Thus we look for the minimum possible imbalance.
2383 * Negative imbalances (*we* are more loaded than anyone else) will
2384 * be counted as no imbalance for these purposes -- we can't fix that
2385 * by pulling tasks to us. Be careful of negative numbers as they'll
2386 * appear as very large values with unsigned longs.
2388 if (max_load
<= busiest_load_per_task
)
2392 * In the presence of smp nice balancing, certain scenarios can have
2393 * max load less than avg load(as we skip the groups at or below
2394 * its cpu_power, while calculating max_load..)
2396 if (max_load
< avg_load
) {
2398 goto small_imbalance
;
2401 /* Don't want to pull so many tasks that a group would go idle */
2402 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2404 /* How much load to actually move to equalise the imbalance */
2405 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2406 (avg_load
- this_load
) * this->__cpu_power
)
2410 * if *imbalance is less than the average load per runnable task
2411 * there is no gaurantee that any tasks will be moved so we'll have
2412 * a think about bumping its value to force at least one task to be
2415 if (*imbalance
+ SCHED_LOAD_SCALE_FUZZ
< busiest_load_per_task
/2) {
2416 unsigned long tmp
, pwr_now
, pwr_move
;
2420 pwr_move
= pwr_now
= 0;
2422 if (this_nr_running
) {
2423 this_load_per_task
/= this_nr_running
;
2424 if (busiest_load_per_task
> this_load_per_task
)
2427 this_load_per_task
= SCHED_LOAD_SCALE
;
2429 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2430 busiest_load_per_task
* imbn
) {
2431 *imbalance
= busiest_load_per_task
;
2436 * OK, we don't have enough imbalance to justify moving tasks,
2437 * however we may be able to increase total CPU power used by
2441 pwr_now
+= busiest
->__cpu_power
*
2442 min(busiest_load_per_task
, max_load
);
2443 pwr_now
+= this->__cpu_power
*
2444 min(this_load_per_task
, this_load
);
2445 pwr_now
/= SCHED_LOAD_SCALE
;
2447 /* Amount of load we'd subtract */
2448 tmp
= sg_div_cpu_power(busiest
,
2449 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2451 pwr_move
+= busiest
->__cpu_power
*
2452 min(busiest_load_per_task
, max_load
- tmp
);
2454 /* Amount of load we'd add */
2455 if (max_load
* busiest
->__cpu_power
<
2456 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2457 tmp
= sg_div_cpu_power(this,
2458 max_load
* busiest
->__cpu_power
);
2460 tmp
= sg_div_cpu_power(this,
2461 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2462 pwr_move
+= this->__cpu_power
*
2463 min(this_load_per_task
, this_load
+ tmp
);
2464 pwr_move
/= SCHED_LOAD_SCALE
;
2466 /* Move if we gain throughput */
2467 if (pwr_move
<= pwr_now
)
2470 *imbalance
= busiest_load_per_task
;
2476 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2477 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2480 if (this == group_leader
&& group_leader
!= group_min
) {
2481 *imbalance
= min_load_per_task
;
2491 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2494 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2495 unsigned long imbalance
, cpumask_t
*cpus
)
2497 struct rq
*busiest
= NULL
, *rq
;
2498 unsigned long max_load
= 0;
2501 for_each_cpu_mask(i
, group
->cpumask
) {
2504 if (!cpu_isset(i
, *cpus
))
2508 wl
= weighted_cpuload(i
);
2510 if (rq
->nr_running
== 1 && wl
> imbalance
)
2513 if (wl
> max_load
) {
2523 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2524 * so long as it is large enough.
2526 #define MAX_PINNED_INTERVAL 512
2528 static inline unsigned long minus_1_or_zero(unsigned long n
)
2530 return n
> 0 ? n
- 1 : 0;
2534 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2535 * tasks if there is an imbalance.
2537 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2538 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2541 int nr_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2542 struct sched_group
*group
;
2543 unsigned long imbalance
;
2545 cpumask_t cpus
= CPU_MASK_ALL
;
2546 unsigned long flags
;
2549 * When power savings policy is enabled for the parent domain, idle
2550 * sibling can pick up load irrespective of busy siblings. In this case,
2551 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2552 * portraying it as CPU_NOT_IDLE.
2554 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2555 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2558 schedstat_inc(sd
, lb_cnt
[idle
]);
2561 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2568 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2572 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2574 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2578 BUG_ON(busiest
== this_rq
);
2580 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2583 if (busiest
->nr_running
> 1) {
2585 * Attempt to move tasks. If find_busiest_group has found
2586 * an imbalance but busiest->nr_running <= 1, the group is
2587 * still unbalanced. nr_moved simply stays zero, so it is
2588 * correctly treated as an imbalance.
2590 local_irq_save(flags
);
2591 double_rq_lock(this_rq
, busiest
);
2592 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2593 minus_1_or_zero(busiest
->nr_running
),
2594 imbalance
, sd
, idle
, &all_pinned
);
2595 double_rq_unlock(this_rq
, busiest
);
2596 local_irq_restore(flags
);
2599 * some other cpu did the load balance for us.
2601 if (nr_moved
&& this_cpu
!= smp_processor_id())
2602 resched_cpu(this_cpu
);
2604 /* All tasks on this runqueue were pinned by CPU affinity */
2605 if (unlikely(all_pinned
)) {
2606 cpu_clear(cpu_of(busiest
), cpus
);
2607 if (!cpus_empty(cpus
))
2614 schedstat_inc(sd
, lb_failed
[idle
]);
2615 sd
->nr_balance_failed
++;
2617 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2619 spin_lock_irqsave(&busiest
->lock
, flags
);
2621 /* don't kick the migration_thread, if the curr
2622 * task on busiest cpu can't be moved to this_cpu
2624 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2625 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2627 goto out_one_pinned
;
2630 if (!busiest
->active_balance
) {
2631 busiest
->active_balance
= 1;
2632 busiest
->push_cpu
= this_cpu
;
2635 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2637 wake_up_process(busiest
->migration_thread
);
2640 * We've kicked active balancing, reset the failure
2643 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2646 sd
->nr_balance_failed
= 0;
2648 if (likely(!active_balance
)) {
2649 /* We were unbalanced, so reset the balancing interval */
2650 sd
->balance_interval
= sd
->min_interval
;
2653 * If we've begun active balancing, start to back off. This
2654 * case may not be covered by the all_pinned logic if there
2655 * is only 1 task on the busy runqueue (because we don't call
2658 if (sd
->balance_interval
< sd
->max_interval
)
2659 sd
->balance_interval
*= 2;
2662 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2663 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2668 schedstat_inc(sd
, lb_balanced
[idle
]);
2670 sd
->nr_balance_failed
= 0;
2673 /* tune up the balancing interval */
2674 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2675 (sd
->balance_interval
< sd
->max_interval
))
2676 sd
->balance_interval
*= 2;
2678 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2679 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2685 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2686 * tasks if there is an imbalance.
2688 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2689 * this_rq is locked.
2692 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2694 struct sched_group
*group
;
2695 struct rq
*busiest
= NULL
;
2696 unsigned long imbalance
;
2700 cpumask_t cpus
= CPU_MASK_ALL
;
2703 * When power savings policy is enabled for the parent domain, idle
2704 * sibling can pick up load irrespective of busy siblings. In this case,
2705 * let the state of idle sibling percolate up as IDLE, instead of
2706 * portraying it as CPU_NOT_IDLE.
2708 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2709 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2712 schedstat_inc(sd
, lb_cnt
[CPU_NEWLY_IDLE
]);
2714 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2715 &sd_idle
, &cpus
, NULL
);
2717 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2721 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2724 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2728 BUG_ON(busiest
== this_rq
);
2730 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2733 if (busiest
->nr_running
> 1) {
2734 /* Attempt to move tasks */
2735 double_lock_balance(this_rq
, busiest
);
2736 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2737 minus_1_or_zero(busiest
->nr_running
),
2738 imbalance
, sd
, CPU_NEWLY_IDLE
,
2740 spin_unlock(&busiest
->lock
);
2742 if (unlikely(all_pinned
)) {
2743 cpu_clear(cpu_of(busiest
), cpus
);
2744 if (!cpus_empty(cpus
))
2750 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2751 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2752 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2755 sd
->nr_balance_failed
= 0;
2760 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2761 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2762 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2764 sd
->nr_balance_failed
= 0;
2770 * idle_balance is called by schedule() if this_cpu is about to become
2771 * idle. Attempts to pull tasks from other CPUs.
2773 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2775 struct sched_domain
*sd
;
2776 int pulled_task
= -1;
2777 unsigned long next_balance
= jiffies
+ HZ
;
2779 for_each_domain(this_cpu
, sd
) {
2780 unsigned long interval
;
2782 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2785 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2786 /* If we've pulled tasks over stop searching: */
2787 pulled_task
= load_balance_newidle(this_cpu
,
2790 interval
= msecs_to_jiffies(sd
->balance_interval
);
2791 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2792 next_balance
= sd
->last_balance
+ interval
;
2796 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2798 * We are going idle. next_balance may be set based on
2799 * a busy processor. So reset next_balance.
2801 this_rq
->next_balance
= next_balance
;
2806 * active_load_balance is run by migration threads. It pushes running tasks
2807 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2808 * running on each physical CPU where possible, and avoids physical /
2809 * logical imbalances.
2811 * Called with busiest_rq locked.
2813 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2815 int target_cpu
= busiest_rq
->push_cpu
;
2816 struct sched_domain
*sd
;
2817 struct rq
*target_rq
;
2819 /* Is there any task to move? */
2820 if (busiest_rq
->nr_running
<= 1)
2823 target_rq
= cpu_rq(target_cpu
);
2826 * This condition is "impossible", if it occurs
2827 * we need to fix it. Originally reported by
2828 * Bjorn Helgaas on a 128-cpu setup.
2830 BUG_ON(busiest_rq
== target_rq
);
2832 /* move a task from busiest_rq to target_rq */
2833 double_lock_balance(busiest_rq
, target_rq
);
2835 /* Search for an sd spanning us and the target CPU. */
2836 for_each_domain(target_cpu
, sd
) {
2837 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2838 cpu_isset(busiest_cpu
, sd
->span
))
2843 schedstat_inc(sd
, alb_cnt
);
2845 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1,
2846 RTPRIO_TO_LOAD_WEIGHT(100), sd
, CPU_IDLE
,
2848 schedstat_inc(sd
, alb_pushed
);
2850 schedstat_inc(sd
, alb_failed
);
2852 spin_unlock(&target_rq
->lock
);
2857 atomic_t load_balancer
;
2859 } nohz ____cacheline_aligned
= {
2860 .load_balancer
= ATOMIC_INIT(-1),
2861 .cpu_mask
= CPU_MASK_NONE
,
2865 * This routine will try to nominate the ilb (idle load balancing)
2866 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2867 * load balancing on behalf of all those cpus. If all the cpus in the system
2868 * go into this tickless mode, then there will be no ilb owner (as there is
2869 * no need for one) and all the cpus will sleep till the next wakeup event
2872 * For the ilb owner, tick is not stopped. And this tick will be used
2873 * for idle load balancing. ilb owner will still be part of
2876 * While stopping the tick, this cpu will become the ilb owner if there
2877 * is no other owner. And will be the owner till that cpu becomes busy
2878 * or if all cpus in the system stop their ticks at which point
2879 * there is no need for ilb owner.
2881 * When the ilb owner becomes busy, it nominates another owner, during the
2882 * next busy scheduler_tick()
2884 int select_nohz_load_balancer(int stop_tick
)
2886 int cpu
= smp_processor_id();
2889 cpu_set(cpu
, nohz
.cpu_mask
);
2890 cpu_rq(cpu
)->in_nohz_recently
= 1;
2893 * If we are going offline and still the leader, give up!
2895 if (cpu_is_offline(cpu
) &&
2896 atomic_read(&nohz
.load_balancer
) == cpu
) {
2897 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2902 /* time for ilb owner also to sleep */
2903 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
2904 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2905 atomic_set(&nohz
.load_balancer
, -1);
2909 if (atomic_read(&nohz
.load_balancer
) == -1) {
2910 /* make me the ilb owner */
2911 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
2913 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
2916 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
2919 cpu_clear(cpu
, nohz
.cpu_mask
);
2921 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2922 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2929 static DEFINE_SPINLOCK(balancing
);
2932 * It checks each scheduling domain to see if it is due to be balanced,
2933 * and initiates a balancing operation if so.
2935 * Balancing parameters are set up in arch_init_sched_domains.
2937 static inline void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
2940 struct rq
*rq
= cpu_rq(cpu
);
2941 unsigned long interval
;
2942 struct sched_domain
*sd
;
2943 /* Earliest time when we have to do rebalance again */
2944 unsigned long next_balance
= jiffies
+ 60*HZ
;
2946 for_each_domain(cpu
, sd
) {
2947 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2950 interval
= sd
->balance_interval
;
2951 if (idle
!= CPU_IDLE
)
2952 interval
*= sd
->busy_factor
;
2954 /* scale ms to jiffies */
2955 interval
= msecs_to_jiffies(interval
);
2956 if (unlikely(!interval
))
2958 if (interval
> HZ
*NR_CPUS
/10)
2959 interval
= HZ
*NR_CPUS
/10;
2962 if (sd
->flags
& SD_SERIALIZE
) {
2963 if (!spin_trylock(&balancing
))
2967 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
2968 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
2970 * We've pulled tasks over so either we're no
2971 * longer idle, or one of our SMT siblings is
2974 idle
= CPU_NOT_IDLE
;
2976 sd
->last_balance
= jiffies
;
2978 if (sd
->flags
& SD_SERIALIZE
)
2979 spin_unlock(&balancing
);
2981 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2982 next_balance
= sd
->last_balance
+ interval
;
2985 * Stop the load balance at this level. There is another
2986 * CPU in our sched group which is doing load balancing more
2992 rq
->next_balance
= next_balance
;
2996 * run_rebalance_domains is triggered when needed from the scheduler tick.
2997 * In CONFIG_NO_HZ case, the idle load balance owner will do the
2998 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3000 static void run_rebalance_domains(struct softirq_action
*h
)
3002 int this_cpu
= smp_processor_id();
3003 struct rq
*this_rq
= cpu_rq(this_cpu
);
3004 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3005 CPU_IDLE
: CPU_NOT_IDLE
;
3007 rebalance_domains(this_cpu
, idle
);
3011 * If this cpu is the owner for idle load balancing, then do the
3012 * balancing on behalf of the other idle cpus whose ticks are
3015 if (this_rq
->idle_at_tick
&&
3016 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3017 cpumask_t cpus
= nohz
.cpu_mask
;
3021 cpu_clear(this_cpu
, cpus
);
3022 for_each_cpu_mask(balance_cpu
, cpus
) {
3024 * If this cpu gets work to do, stop the load balancing
3025 * work being done for other cpus. Next load
3026 * balancing owner will pick it up.
3031 rebalance_domains(balance_cpu
, SCHED_IDLE
);
3033 rq
= cpu_rq(balance_cpu
);
3034 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3035 this_rq
->next_balance
= rq
->next_balance
;
3042 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3044 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3045 * idle load balancing owner or decide to stop the periodic load balancing,
3046 * if the whole system is idle.
3048 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3052 * If we were in the nohz mode recently and busy at the current
3053 * scheduler tick, then check if we need to nominate new idle
3056 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3057 rq
->in_nohz_recently
= 0;
3059 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3060 cpu_clear(cpu
, nohz
.cpu_mask
);
3061 atomic_set(&nohz
.load_balancer
, -1);
3064 if (atomic_read(&nohz
.load_balancer
) == -1) {
3066 * simple selection for now: Nominate the
3067 * first cpu in the nohz list to be the next
3070 * TBD: Traverse the sched domains and nominate
3071 * the nearest cpu in the nohz.cpu_mask.
3073 int ilb
= first_cpu(nohz
.cpu_mask
);
3081 * If this cpu is idle and doing idle load balancing for all the
3082 * cpus with ticks stopped, is it time for that to stop?
3084 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3085 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3091 * If this cpu is idle and the idle load balancing is done by
3092 * someone else, then no need raise the SCHED_SOFTIRQ
3094 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3095 cpu_isset(cpu
, nohz
.cpu_mask
))
3098 if (time_after_eq(jiffies
, rq
->next_balance
))
3099 raise_softirq(SCHED_SOFTIRQ
);
3102 #else /* CONFIG_SMP */
3105 * on UP we do not need to balance between CPUs:
3107 static inline void idle_balance(int cpu
, struct rq
*rq
)
3111 /* Avoid "used but not defined" warning on UP */
3112 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3113 unsigned long max_nr_move
, unsigned long max_load_move
,
3114 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3115 int *all_pinned
, unsigned long *load_moved
,
3116 int this_best_prio
, int best_prio
, int best_prio_seen
,
3117 struct rq_iterator
*iterator
)
3126 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3128 EXPORT_PER_CPU_SYMBOL(kstat
);
3131 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3132 * that have not yet been banked in case the task is currently running.
3134 unsigned long long task_sched_runtime(struct task_struct
*p
)
3136 unsigned long flags
;
3140 rq
= task_rq_lock(p
, &flags
);
3141 ns
= p
->se
.sum_exec_runtime
;
3142 if (rq
->curr
== p
) {
3143 delta_exec
= rq_clock(rq
) - p
->se
.exec_start
;
3144 if ((s64
)delta_exec
> 0)
3147 task_rq_unlock(rq
, &flags
);
3153 * Account user cpu time to a process.
3154 * @p: the process that the cpu time gets accounted to
3155 * @hardirq_offset: the offset to subtract from hardirq_count()
3156 * @cputime: the cpu time spent in user space since the last update
3158 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3160 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3163 p
->utime
= cputime_add(p
->utime
, cputime
);
3165 /* Add user time to cpustat. */
3166 tmp
= cputime_to_cputime64(cputime
);
3167 if (TASK_NICE(p
) > 0)
3168 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3170 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3174 * Account system cpu time to a process.
3175 * @p: the process that the cpu time gets accounted to
3176 * @hardirq_offset: the offset to subtract from hardirq_count()
3177 * @cputime: the cpu time spent in kernel space since the last update
3179 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3182 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3183 struct rq
*rq
= this_rq();
3186 p
->stime
= cputime_add(p
->stime
, cputime
);
3188 /* Add system time to cpustat. */
3189 tmp
= cputime_to_cputime64(cputime
);
3190 if (hardirq_count() - hardirq_offset
)
3191 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3192 else if (softirq_count())
3193 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3194 else if (p
!= rq
->idle
)
3195 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3196 else if (atomic_read(&rq
->nr_iowait
) > 0)
3197 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3199 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3200 /* Account for system time used */
3201 acct_update_integrals(p
);
3205 * Account for involuntary wait time.
3206 * @p: the process from which the cpu time has been stolen
3207 * @steal: the cpu time spent in involuntary wait
3209 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3211 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3212 cputime64_t tmp
= cputime_to_cputime64(steal
);
3213 struct rq
*rq
= this_rq();
3215 if (p
== rq
->idle
) {
3216 p
->stime
= cputime_add(p
->stime
, steal
);
3217 if (atomic_read(&rq
->nr_iowait
) > 0)
3218 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3220 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3222 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3226 * This function gets called by the timer code, with HZ frequency.
3227 * We call it with interrupts disabled.
3229 * It also gets called by the fork code, when changing the parent's
3232 void scheduler_tick(void)
3234 int cpu
= smp_processor_id();
3235 struct rq
*rq
= cpu_rq(cpu
);
3236 struct task_struct
*curr
= rq
->curr
;
3238 spin_lock(&rq
->lock
);
3239 if (curr
!= rq
->idle
) /* FIXME: needed? */
3240 curr
->sched_class
->task_tick(rq
, curr
);
3241 update_cpu_load(rq
);
3242 spin_unlock(&rq
->lock
);
3245 rq
->idle_at_tick
= idle_cpu(cpu
);
3246 trigger_load_balance(rq
, cpu
);
3250 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3252 void fastcall
add_preempt_count(int val
)
3257 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3259 preempt_count() += val
;
3261 * Spinlock count overflowing soon?
3263 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3266 EXPORT_SYMBOL(add_preempt_count
);
3268 void fastcall
sub_preempt_count(int val
)
3273 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3276 * Is the spinlock portion underflowing?
3278 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3279 !(preempt_count() & PREEMPT_MASK
)))
3282 preempt_count() -= val
;
3284 EXPORT_SYMBOL(sub_preempt_count
);
3289 * Print scheduling while atomic bug:
3291 static noinline
void __schedule_bug(struct task_struct
*prev
)
3293 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3294 prev
->comm
, preempt_count(), prev
->pid
);
3295 debug_show_held_locks(prev
);
3296 if (irqs_disabled())
3297 print_irqtrace_events(prev
);
3302 * Various schedule()-time debugging checks and statistics:
3304 static inline void schedule_debug(struct task_struct
*prev
)
3307 * Test if we are atomic. Since do_exit() needs to call into
3308 * schedule() atomically, we ignore that path for now.
3309 * Otherwise, whine if we are scheduling when we should not be.
3311 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3312 __schedule_bug(prev
);
3314 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3316 schedstat_inc(this_rq(), sched_cnt
);
3320 * Pick up the highest-prio task:
3322 static inline struct task_struct
*
3323 pick_next_task(struct rq
*rq
, struct task_struct
*prev
, u64 now
)
3325 struct sched_class
*class;
3326 struct task_struct
*p
;
3329 * Optimization: we know that if all tasks are in
3330 * the fair class we can call that function directly:
3332 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3333 p
= fair_sched_class
.pick_next_task(rq
, now
);
3338 class = sched_class_highest
;
3340 p
= class->pick_next_task(rq
, now
);
3344 * Will never be NULL as the idle class always
3345 * returns a non-NULL p:
3347 class = class->next
;
3352 * schedule() is the main scheduler function.
3354 asmlinkage
void __sched
schedule(void)
3356 struct task_struct
*prev
, *next
;
3364 cpu
= smp_processor_id();
3368 switch_count
= &prev
->nivcsw
;
3370 release_kernel_lock(prev
);
3371 need_resched_nonpreemptible
:
3373 schedule_debug(prev
);
3375 spin_lock_irq(&rq
->lock
);
3376 clear_tsk_need_resched(prev
);
3378 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3379 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3380 unlikely(signal_pending(prev
)))) {
3381 prev
->state
= TASK_RUNNING
;
3383 deactivate_task(rq
, prev
, 1);
3385 switch_count
= &prev
->nvcsw
;
3388 if (unlikely(!rq
->nr_running
))
3389 idle_balance(cpu
, rq
);
3391 now
= __rq_clock(rq
);
3392 prev
->sched_class
->put_prev_task(rq
, prev
, now
);
3393 next
= pick_next_task(rq
, prev
, now
);
3395 sched_info_switch(prev
, next
);
3397 if (likely(prev
!= next
)) {
3402 context_switch(rq
, prev
, next
); /* unlocks the rq */
3404 spin_unlock_irq(&rq
->lock
);
3406 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3407 cpu
= smp_processor_id();
3409 goto need_resched_nonpreemptible
;
3411 preempt_enable_no_resched();
3412 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3415 EXPORT_SYMBOL(schedule
);
3417 #ifdef CONFIG_PREEMPT
3419 * this is the entry point to schedule() from in-kernel preemption
3420 * off of preempt_enable. Kernel preemptions off return from interrupt
3421 * occur there and call schedule directly.
3423 asmlinkage
void __sched
preempt_schedule(void)
3425 struct thread_info
*ti
= current_thread_info();
3426 #ifdef CONFIG_PREEMPT_BKL
3427 struct task_struct
*task
= current
;
3428 int saved_lock_depth
;
3431 * If there is a non-zero preempt_count or interrupts are disabled,
3432 * we do not want to preempt the current task. Just return..
3434 if (likely(ti
->preempt_count
|| irqs_disabled()))
3438 add_preempt_count(PREEMPT_ACTIVE
);
3440 * We keep the big kernel semaphore locked, but we
3441 * clear ->lock_depth so that schedule() doesnt
3442 * auto-release the semaphore:
3444 #ifdef CONFIG_PREEMPT_BKL
3445 saved_lock_depth
= task
->lock_depth
;
3446 task
->lock_depth
= -1;
3449 #ifdef CONFIG_PREEMPT_BKL
3450 task
->lock_depth
= saved_lock_depth
;
3452 sub_preempt_count(PREEMPT_ACTIVE
);
3454 /* we could miss a preemption opportunity between schedule and now */
3456 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3459 EXPORT_SYMBOL(preempt_schedule
);
3462 * this is the entry point to schedule() from kernel preemption
3463 * off of irq context.
3464 * Note, that this is called and return with irqs disabled. This will
3465 * protect us against recursive calling from irq.
3467 asmlinkage
void __sched
preempt_schedule_irq(void)
3469 struct thread_info
*ti
= current_thread_info();
3470 #ifdef CONFIG_PREEMPT_BKL
3471 struct task_struct
*task
= current
;
3472 int saved_lock_depth
;
3474 /* Catch callers which need to be fixed */
3475 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3478 add_preempt_count(PREEMPT_ACTIVE
);
3480 * We keep the big kernel semaphore locked, but we
3481 * clear ->lock_depth so that schedule() doesnt
3482 * auto-release the semaphore:
3484 #ifdef CONFIG_PREEMPT_BKL
3485 saved_lock_depth
= task
->lock_depth
;
3486 task
->lock_depth
= -1;
3490 local_irq_disable();
3491 #ifdef CONFIG_PREEMPT_BKL
3492 task
->lock_depth
= saved_lock_depth
;
3494 sub_preempt_count(PREEMPT_ACTIVE
);
3496 /* we could miss a preemption opportunity between schedule and now */
3498 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3502 #endif /* CONFIG_PREEMPT */
3504 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3507 return try_to_wake_up(curr
->private, mode
, sync
);
3509 EXPORT_SYMBOL(default_wake_function
);
3512 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3513 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3514 * number) then we wake all the non-exclusive tasks and one exclusive task.
3516 * There are circumstances in which we can try to wake a task which has already
3517 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3518 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3520 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3521 int nr_exclusive
, int sync
, void *key
)
3523 struct list_head
*tmp
, *next
;
3525 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3526 wait_queue_t
*curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3527 unsigned flags
= curr
->flags
;
3529 if (curr
->func(curr
, mode
, sync
, key
) &&
3530 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3536 * __wake_up - wake up threads blocked on a waitqueue.
3538 * @mode: which threads
3539 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3540 * @key: is directly passed to the wakeup function
3542 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3543 int nr_exclusive
, void *key
)
3545 unsigned long flags
;
3547 spin_lock_irqsave(&q
->lock
, flags
);
3548 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3549 spin_unlock_irqrestore(&q
->lock
, flags
);
3551 EXPORT_SYMBOL(__wake_up
);
3554 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3556 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3558 __wake_up_common(q
, mode
, 1, 0, NULL
);
3562 * __wake_up_sync - wake up threads blocked on a waitqueue.
3564 * @mode: which threads
3565 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3567 * The sync wakeup differs that the waker knows that it will schedule
3568 * away soon, so while the target thread will be woken up, it will not
3569 * be migrated to another CPU - ie. the two threads are 'synchronized'
3570 * with each other. This can prevent needless bouncing between CPUs.
3572 * On UP it can prevent extra preemption.
3575 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3577 unsigned long flags
;
3583 if (unlikely(!nr_exclusive
))
3586 spin_lock_irqsave(&q
->lock
, flags
);
3587 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3588 spin_unlock_irqrestore(&q
->lock
, flags
);
3590 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3592 void fastcall
complete(struct completion
*x
)
3594 unsigned long flags
;
3596 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3598 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3600 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3602 EXPORT_SYMBOL(complete
);
3604 void fastcall
complete_all(struct completion
*x
)
3606 unsigned long flags
;
3608 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3609 x
->done
+= UINT_MAX
/2;
3610 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3612 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3614 EXPORT_SYMBOL(complete_all
);
3616 void fastcall __sched
wait_for_completion(struct completion
*x
)
3620 spin_lock_irq(&x
->wait
.lock
);
3622 DECLARE_WAITQUEUE(wait
, current
);
3624 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3625 __add_wait_queue_tail(&x
->wait
, &wait
);
3627 __set_current_state(TASK_UNINTERRUPTIBLE
);
3628 spin_unlock_irq(&x
->wait
.lock
);
3630 spin_lock_irq(&x
->wait
.lock
);
3632 __remove_wait_queue(&x
->wait
, &wait
);
3635 spin_unlock_irq(&x
->wait
.lock
);
3637 EXPORT_SYMBOL(wait_for_completion
);
3639 unsigned long fastcall __sched
3640 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3644 spin_lock_irq(&x
->wait
.lock
);
3646 DECLARE_WAITQUEUE(wait
, current
);
3648 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3649 __add_wait_queue_tail(&x
->wait
, &wait
);
3651 __set_current_state(TASK_UNINTERRUPTIBLE
);
3652 spin_unlock_irq(&x
->wait
.lock
);
3653 timeout
= schedule_timeout(timeout
);
3654 spin_lock_irq(&x
->wait
.lock
);
3656 __remove_wait_queue(&x
->wait
, &wait
);
3660 __remove_wait_queue(&x
->wait
, &wait
);
3664 spin_unlock_irq(&x
->wait
.lock
);
3667 EXPORT_SYMBOL(wait_for_completion_timeout
);
3669 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3675 spin_lock_irq(&x
->wait
.lock
);
3677 DECLARE_WAITQUEUE(wait
, current
);
3679 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3680 __add_wait_queue_tail(&x
->wait
, &wait
);
3682 if (signal_pending(current
)) {
3684 __remove_wait_queue(&x
->wait
, &wait
);
3687 __set_current_state(TASK_INTERRUPTIBLE
);
3688 spin_unlock_irq(&x
->wait
.lock
);
3690 spin_lock_irq(&x
->wait
.lock
);
3692 __remove_wait_queue(&x
->wait
, &wait
);
3696 spin_unlock_irq(&x
->wait
.lock
);
3700 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3702 unsigned long fastcall __sched
3703 wait_for_completion_interruptible_timeout(struct completion
*x
,
3704 unsigned long timeout
)
3708 spin_lock_irq(&x
->wait
.lock
);
3710 DECLARE_WAITQUEUE(wait
, current
);
3712 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3713 __add_wait_queue_tail(&x
->wait
, &wait
);
3715 if (signal_pending(current
)) {
3716 timeout
= -ERESTARTSYS
;
3717 __remove_wait_queue(&x
->wait
, &wait
);
3720 __set_current_state(TASK_INTERRUPTIBLE
);
3721 spin_unlock_irq(&x
->wait
.lock
);
3722 timeout
= schedule_timeout(timeout
);
3723 spin_lock_irq(&x
->wait
.lock
);
3725 __remove_wait_queue(&x
->wait
, &wait
);
3729 __remove_wait_queue(&x
->wait
, &wait
);
3733 spin_unlock_irq(&x
->wait
.lock
);
3736 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3739 sleep_on_head(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3741 spin_lock_irqsave(&q
->lock
, *flags
);
3742 __add_wait_queue(q
, wait
);
3743 spin_unlock(&q
->lock
);
3747 sleep_on_tail(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3749 spin_lock_irq(&q
->lock
);
3750 __remove_wait_queue(q
, wait
);
3751 spin_unlock_irqrestore(&q
->lock
, *flags
);
3754 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3756 unsigned long flags
;
3759 init_waitqueue_entry(&wait
, current
);
3761 current
->state
= TASK_INTERRUPTIBLE
;
3763 sleep_on_head(q
, &wait
, &flags
);
3765 sleep_on_tail(q
, &wait
, &flags
);
3767 EXPORT_SYMBOL(interruptible_sleep_on
);
3770 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3772 unsigned long flags
;
3775 init_waitqueue_entry(&wait
, current
);
3777 current
->state
= TASK_INTERRUPTIBLE
;
3779 sleep_on_head(q
, &wait
, &flags
);
3780 timeout
= schedule_timeout(timeout
);
3781 sleep_on_tail(q
, &wait
, &flags
);
3785 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3787 void __sched
sleep_on(wait_queue_head_t
*q
)
3789 unsigned long flags
;
3792 init_waitqueue_entry(&wait
, current
);
3794 current
->state
= TASK_UNINTERRUPTIBLE
;
3796 sleep_on_head(q
, &wait
, &flags
);
3798 sleep_on_tail(q
, &wait
, &flags
);
3800 EXPORT_SYMBOL(sleep_on
);
3802 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3804 unsigned long flags
;
3807 init_waitqueue_entry(&wait
, current
);
3809 current
->state
= TASK_UNINTERRUPTIBLE
;
3811 sleep_on_head(q
, &wait
, &flags
);
3812 timeout
= schedule_timeout(timeout
);
3813 sleep_on_tail(q
, &wait
, &flags
);
3817 EXPORT_SYMBOL(sleep_on_timeout
);
3819 #ifdef CONFIG_RT_MUTEXES
3822 * rt_mutex_setprio - set the current priority of a task
3824 * @prio: prio value (kernel-internal form)
3826 * This function changes the 'effective' priority of a task. It does
3827 * not touch ->normal_prio like __setscheduler().
3829 * Used by the rt_mutex code to implement priority inheritance logic.
3831 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3833 unsigned long flags
;
3838 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3840 rq
= task_rq_lock(p
, &flags
);
3844 on_rq
= p
->se
.on_rq
;
3846 dequeue_task(rq
, p
, 0, now
);
3849 p
->sched_class
= &rt_sched_class
;
3851 p
->sched_class
= &fair_sched_class
;
3856 enqueue_task(rq
, p
, 0, now
);
3858 * Reschedule if we are currently running on this runqueue and
3859 * our priority decreased, or if we are not currently running on
3860 * this runqueue and our priority is higher than the current's
3862 if (task_running(rq
, p
)) {
3863 if (p
->prio
> oldprio
)
3864 resched_task(rq
->curr
);
3866 check_preempt_curr(rq
, p
);
3869 task_rq_unlock(rq
, &flags
);
3874 void set_user_nice(struct task_struct
*p
, long nice
)
3876 int old_prio
, delta
, on_rq
;
3877 unsigned long flags
;
3881 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3884 * We have to be careful, if called from sys_setpriority(),
3885 * the task might be in the middle of scheduling on another CPU.
3887 rq
= task_rq_lock(p
, &flags
);
3890 * The RT priorities are set via sched_setscheduler(), but we still
3891 * allow the 'normal' nice value to be set - but as expected
3892 * it wont have any effect on scheduling until the task is
3893 * SCHED_FIFO/SCHED_RR:
3895 if (task_has_rt_policy(p
)) {
3896 p
->static_prio
= NICE_TO_PRIO(nice
);
3899 on_rq
= p
->se
.on_rq
;
3901 dequeue_task(rq
, p
, 0, now
);
3902 dec_load(rq
, p
, now
);
3905 p
->static_prio
= NICE_TO_PRIO(nice
);
3908 p
->prio
= effective_prio(p
);
3909 delta
= p
->prio
- old_prio
;
3912 enqueue_task(rq
, p
, 0, now
);
3913 inc_load(rq
, p
, now
);
3915 * If the task increased its priority or is running and
3916 * lowered its priority, then reschedule its CPU:
3918 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3919 resched_task(rq
->curr
);
3922 task_rq_unlock(rq
, &flags
);
3924 EXPORT_SYMBOL(set_user_nice
);
3927 * can_nice - check if a task can reduce its nice value
3931 int can_nice(const struct task_struct
*p
, const int nice
)
3933 /* convert nice value [19,-20] to rlimit style value [1,40] */
3934 int nice_rlim
= 20 - nice
;
3936 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3937 capable(CAP_SYS_NICE
));
3940 #ifdef __ARCH_WANT_SYS_NICE
3943 * sys_nice - change the priority of the current process.
3944 * @increment: priority increment
3946 * sys_setpriority is a more generic, but much slower function that
3947 * does similar things.
3949 asmlinkage
long sys_nice(int increment
)
3954 * Setpriority might change our priority at the same moment.
3955 * We don't have to worry. Conceptually one call occurs first
3956 * and we have a single winner.
3958 if (increment
< -40)
3963 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3969 if (increment
< 0 && !can_nice(current
, nice
))
3972 retval
= security_task_setnice(current
, nice
);
3976 set_user_nice(current
, nice
);
3983 * task_prio - return the priority value of a given task.
3984 * @p: the task in question.
3986 * This is the priority value as seen by users in /proc.
3987 * RT tasks are offset by -200. Normal tasks are centered
3988 * around 0, value goes from -16 to +15.
3990 int task_prio(const struct task_struct
*p
)
3992 return p
->prio
- MAX_RT_PRIO
;
3996 * task_nice - return the nice value of a given task.
3997 * @p: the task in question.
3999 int task_nice(const struct task_struct
*p
)
4001 return TASK_NICE(p
);
4003 EXPORT_SYMBOL_GPL(task_nice
);
4006 * idle_cpu - is a given cpu idle currently?
4007 * @cpu: the processor in question.
4009 int idle_cpu(int cpu
)
4011 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4015 * idle_task - return the idle task for a given cpu.
4016 * @cpu: the processor in question.
4018 struct task_struct
*idle_task(int cpu
)
4020 return cpu_rq(cpu
)->idle
;
4024 * find_process_by_pid - find a process with a matching PID value.
4025 * @pid: the pid in question.
4027 static inline struct task_struct
*find_process_by_pid(pid_t pid
)
4029 return pid
? find_task_by_pid(pid
) : current
;
4032 /* Actually do priority change: must hold rq lock. */
4034 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4036 BUG_ON(p
->se
.on_rq
);
4039 switch (p
->policy
) {
4043 p
->sched_class
= &fair_sched_class
;
4047 p
->sched_class
= &rt_sched_class
;
4051 p
->rt_priority
= prio
;
4052 p
->normal_prio
= normal_prio(p
);
4053 /* we are holding p->pi_lock already */
4054 p
->prio
= rt_mutex_getprio(p
);
4059 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4060 * @p: the task in question.
4061 * @policy: new policy.
4062 * @param: structure containing the new RT priority.
4064 * NOTE that the task may be already dead.
4066 int sched_setscheduler(struct task_struct
*p
, int policy
,
4067 struct sched_param
*param
)
4069 int retval
, oldprio
, oldpolicy
= -1, on_rq
;
4070 unsigned long flags
;
4073 /* may grab non-irq protected spin_locks */
4074 BUG_ON(in_interrupt());
4076 /* double check policy once rq lock held */
4078 policy
= oldpolicy
= p
->policy
;
4079 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4080 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4081 policy
!= SCHED_IDLE
)
4084 * Valid priorities for SCHED_FIFO and SCHED_RR are
4085 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4086 * SCHED_BATCH and SCHED_IDLE is 0.
4088 if (param
->sched_priority
< 0 ||
4089 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4090 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4092 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4096 * Allow unprivileged RT tasks to decrease priority:
4098 if (!capable(CAP_SYS_NICE
)) {
4099 if (rt_policy(policy
)) {
4100 unsigned long rlim_rtprio
;
4102 if (!lock_task_sighand(p
, &flags
))
4104 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4105 unlock_task_sighand(p
, &flags
);
4107 /* can't set/change the rt policy */
4108 if (policy
!= p
->policy
&& !rlim_rtprio
)
4111 /* can't increase priority */
4112 if (param
->sched_priority
> p
->rt_priority
&&
4113 param
->sched_priority
> rlim_rtprio
)
4117 * Like positive nice levels, dont allow tasks to
4118 * move out of SCHED_IDLE either:
4120 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4123 /* can't change other user's priorities */
4124 if ((current
->euid
!= p
->euid
) &&
4125 (current
->euid
!= p
->uid
))
4129 retval
= security_task_setscheduler(p
, policy
, param
);
4133 * make sure no PI-waiters arrive (or leave) while we are
4134 * changing the priority of the task:
4136 spin_lock_irqsave(&p
->pi_lock
, flags
);
4138 * To be able to change p->policy safely, the apropriate
4139 * runqueue lock must be held.
4141 rq
= __task_rq_lock(p
);
4142 /* recheck policy now with rq lock held */
4143 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4144 policy
= oldpolicy
= -1;
4145 __task_rq_unlock(rq
);
4146 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4149 on_rq
= p
->se
.on_rq
;
4151 deactivate_task(rq
, p
, 0);
4153 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4155 activate_task(rq
, p
, 0);
4157 * Reschedule if we are currently running on this runqueue and
4158 * our priority decreased, or if we are not currently running on
4159 * this runqueue and our priority is higher than the current's
4161 if (task_running(rq
, p
)) {
4162 if (p
->prio
> oldprio
)
4163 resched_task(rq
->curr
);
4165 check_preempt_curr(rq
, p
);
4168 __task_rq_unlock(rq
);
4169 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4171 rt_mutex_adjust_pi(p
);
4175 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4178 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4180 struct sched_param lparam
;
4181 struct task_struct
*p
;
4184 if (!param
|| pid
< 0)
4186 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4191 p
= find_process_by_pid(pid
);
4193 retval
= sched_setscheduler(p
, policy
, &lparam
);
4200 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4201 * @pid: the pid in question.
4202 * @policy: new policy.
4203 * @param: structure containing the new RT priority.
4205 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4206 struct sched_param __user
*param
)
4208 /* negative values for policy are not valid */
4212 return do_sched_setscheduler(pid
, policy
, param
);
4216 * sys_sched_setparam - set/change the RT priority of a thread
4217 * @pid: the pid in question.
4218 * @param: structure containing the new RT priority.
4220 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4222 return do_sched_setscheduler(pid
, -1, param
);
4226 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4227 * @pid: the pid in question.
4229 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4231 struct task_struct
*p
;
4232 int retval
= -EINVAL
;
4238 read_lock(&tasklist_lock
);
4239 p
= find_process_by_pid(pid
);
4241 retval
= security_task_getscheduler(p
);
4245 read_unlock(&tasklist_lock
);
4252 * sys_sched_getscheduler - get the RT priority of a thread
4253 * @pid: the pid in question.
4254 * @param: structure containing the RT priority.
4256 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4258 struct sched_param lp
;
4259 struct task_struct
*p
;
4260 int retval
= -EINVAL
;
4262 if (!param
|| pid
< 0)
4265 read_lock(&tasklist_lock
);
4266 p
= find_process_by_pid(pid
);
4271 retval
= security_task_getscheduler(p
);
4275 lp
.sched_priority
= p
->rt_priority
;
4276 read_unlock(&tasklist_lock
);
4279 * This one might sleep, we cannot do it with a spinlock held ...
4281 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4287 read_unlock(&tasklist_lock
);
4291 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4293 cpumask_t cpus_allowed
;
4294 struct task_struct
*p
;
4297 mutex_lock(&sched_hotcpu_mutex
);
4298 read_lock(&tasklist_lock
);
4300 p
= find_process_by_pid(pid
);
4302 read_unlock(&tasklist_lock
);
4303 mutex_unlock(&sched_hotcpu_mutex
);
4308 * It is not safe to call set_cpus_allowed with the
4309 * tasklist_lock held. We will bump the task_struct's
4310 * usage count and then drop tasklist_lock.
4313 read_unlock(&tasklist_lock
);
4316 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4317 !capable(CAP_SYS_NICE
))
4320 retval
= security_task_setscheduler(p
, 0, NULL
);
4324 cpus_allowed
= cpuset_cpus_allowed(p
);
4325 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4326 retval
= set_cpus_allowed(p
, new_mask
);
4330 mutex_unlock(&sched_hotcpu_mutex
);
4334 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4335 cpumask_t
*new_mask
)
4337 if (len
< sizeof(cpumask_t
)) {
4338 memset(new_mask
, 0, sizeof(cpumask_t
));
4339 } else if (len
> sizeof(cpumask_t
)) {
4340 len
= sizeof(cpumask_t
);
4342 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4346 * sys_sched_setaffinity - set the cpu affinity of a process
4347 * @pid: pid of the process
4348 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4349 * @user_mask_ptr: user-space pointer to the new cpu mask
4351 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4352 unsigned long __user
*user_mask_ptr
)
4357 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4361 return sched_setaffinity(pid
, new_mask
);
4365 * Represents all cpu's present in the system
4366 * In systems capable of hotplug, this map could dynamically grow
4367 * as new cpu's are detected in the system via any platform specific
4368 * method, such as ACPI for e.g.
4371 cpumask_t cpu_present_map __read_mostly
;
4372 EXPORT_SYMBOL(cpu_present_map
);
4375 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4376 EXPORT_SYMBOL(cpu_online_map
);
4378 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4379 EXPORT_SYMBOL(cpu_possible_map
);
4382 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4384 struct task_struct
*p
;
4387 mutex_lock(&sched_hotcpu_mutex
);
4388 read_lock(&tasklist_lock
);
4391 p
= find_process_by_pid(pid
);
4395 retval
= security_task_getscheduler(p
);
4399 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4402 read_unlock(&tasklist_lock
);
4403 mutex_unlock(&sched_hotcpu_mutex
);
4411 * sys_sched_getaffinity - get the cpu affinity of a process
4412 * @pid: pid of the process
4413 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4414 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4416 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4417 unsigned long __user
*user_mask_ptr
)
4422 if (len
< sizeof(cpumask_t
))
4425 ret
= sched_getaffinity(pid
, &mask
);
4429 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4432 return sizeof(cpumask_t
);
4436 * sys_sched_yield - yield the current processor to other threads.
4438 * This function yields the current CPU to other tasks. If there are no
4439 * other threads running on this CPU then this function will return.
4441 asmlinkage
long sys_sched_yield(void)
4443 struct rq
*rq
= this_rq_lock();
4445 schedstat_inc(rq
, yld_cnt
);
4446 if (unlikely(rq
->nr_running
== 1))
4447 schedstat_inc(rq
, yld_act_empty
);
4449 current
->sched_class
->yield_task(rq
, current
);
4452 * Since we are going to call schedule() anyway, there's
4453 * no need to preempt or enable interrupts:
4455 __release(rq
->lock
);
4456 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4457 _raw_spin_unlock(&rq
->lock
);
4458 preempt_enable_no_resched();
4465 static void __cond_resched(void)
4467 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4468 __might_sleep(__FILE__
, __LINE__
);
4471 * The BKS might be reacquired before we have dropped
4472 * PREEMPT_ACTIVE, which could trigger a second
4473 * cond_resched() call.
4476 add_preempt_count(PREEMPT_ACTIVE
);
4478 sub_preempt_count(PREEMPT_ACTIVE
);
4479 } while (need_resched());
4482 int __sched
cond_resched(void)
4484 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4485 system_state
== SYSTEM_RUNNING
) {
4491 EXPORT_SYMBOL(cond_resched
);
4494 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4495 * call schedule, and on return reacquire the lock.
4497 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4498 * operations here to prevent schedule() from being called twice (once via
4499 * spin_unlock(), once by hand).
4501 int cond_resched_lock(spinlock_t
*lock
)
4505 if (need_lockbreak(lock
)) {
4511 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4512 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4513 _raw_spin_unlock(lock
);
4514 preempt_enable_no_resched();
4521 EXPORT_SYMBOL(cond_resched_lock
);
4523 int __sched
cond_resched_softirq(void)
4525 BUG_ON(!in_softirq());
4527 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4535 EXPORT_SYMBOL(cond_resched_softirq
);
4538 * yield - yield the current processor to other threads.
4540 * This is a shortcut for kernel-space yielding - it marks the
4541 * thread runnable and calls sys_sched_yield().
4543 void __sched
yield(void)
4545 set_current_state(TASK_RUNNING
);
4548 EXPORT_SYMBOL(yield
);
4551 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4552 * that process accounting knows that this is a task in IO wait state.
4554 * But don't do that if it is a deliberate, throttling IO wait (this task
4555 * has set its backing_dev_info: the queue against which it should throttle)
4557 void __sched
io_schedule(void)
4559 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4561 delayacct_blkio_start();
4562 atomic_inc(&rq
->nr_iowait
);
4564 atomic_dec(&rq
->nr_iowait
);
4565 delayacct_blkio_end();
4567 EXPORT_SYMBOL(io_schedule
);
4569 long __sched
io_schedule_timeout(long timeout
)
4571 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4574 delayacct_blkio_start();
4575 atomic_inc(&rq
->nr_iowait
);
4576 ret
= schedule_timeout(timeout
);
4577 atomic_dec(&rq
->nr_iowait
);
4578 delayacct_blkio_end();
4583 * sys_sched_get_priority_max - return maximum RT priority.
4584 * @policy: scheduling class.
4586 * this syscall returns the maximum rt_priority that can be used
4587 * by a given scheduling class.
4589 asmlinkage
long sys_sched_get_priority_max(int policy
)
4596 ret
= MAX_USER_RT_PRIO
-1;
4608 * sys_sched_get_priority_min - return minimum RT priority.
4609 * @policy: scheduling class.
4611 * this syscall returns the minimum rt_priority that can be used
4612 * by a given scheduling class.
4614 asmlinkage
long sys_sched_get_priority_min(int policy
)
4632 * sys_sched_rr_get_interval - return the default timeslice of a process.
4633 * @pid: pid of the process.
4634 * @interval: userspace pointer to the timeslice value.
4636 * this syscall writes the default timeslice value of a given process
4637 * into the user-space timespec buffer. A value of '0' means infinity.
4640 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4642 struct task_struct
*p
;
4643 int retval
= -EINVAL
;
4650 read_lock(&tasklist_lock
);
4651 p
= find_process_by_pid(pid
);
4655 retval
= security_task_getscheduler(p
);
4659 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4660 0 : static_prio_timeslice(p
->static_prio
), &t
);
4661 read_unlock(&tasklist_lock
);
4662 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4666 read_unlock(&tasklist_lock
);
4670 static const char stat_nam
[] = "RSDTtZX";
4672 static void show_task(struct task_struct
*p
)
4674 unsigned long free
= 0;
4677 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4678 printk("%-13.13s %c", p
->comm
,
4679 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4680 #if BITS_PER_LONG == 32
4681 if (state
== TASK_RUNNING
)
4682 printk(" running ");
4684 printk(" %08lx ", thread_saved_pc(p
));
4686 if (state
== TASK_RUNNING
)
4687 printk(" running task ");
4689 printk(" %016lx ", thread_saved_pc(p
));
4691 #ifdef CONFIG_DEBUG_STACK_USAGE
4693 unsigned long *n
= end_of_stack(p
);
4696 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4699 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4701 if (state
!= TASK_RUNNING
)
4702 show_stack(p
, NULL
);
4705 void show_state_filter(unsigned long state_filter
)
4707 struct task_struct
*g
, *p
;
4709 #if BITS_PER_LONG == 32
4711 " task PC stack pid father\n");
4714 " task PC stack pid father\n");
4716 read_lock(&tasklist_lock
);
4717 do_each_thread(g
, p
) {
4719 * reset the NMI-timeout, listing all files on a slow
4720 * console might take alot of time:
4722 touch_nmi_watchdog();
4723 if (!state_filter
|| (p
->state
& state_filter
))
4725 } while_each_thread(g
, p
);
4727 touch_all_softlockup_watchdogs();
4729 #ifdef CONFIG_SCHED_DEBUG
4730 sysrq_sched_debug_show();
4732 read_unlock(&tasklist_lock
);
4734 * Only show locks if all tasks are dumped:
4736 if (state_filter
== -1)
4737 debug_show_all_locks();
4740 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4742 idle
->sched_class
= &idle_sched_class
;
4746 * init_idle - set up an idle thread for a given CPU
4747 * @idle: task in question
4748 * @cpu: cpu the idle task belongs to
4750 * NOTE: this function does not set the idle thread's NEED_RESCHED
4751 * flag, to make booting more robust.
4753 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4755 struct rq
*rq
= cpu_rq(cpu
);
4756 unsigned long flags
;
4759 idle
->se
.exec_start
= sched_clock();
4761 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4762 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4763 __set_task_cpu(idle
, cpu
);
4765 spin_lock_irqsave(&rq
->lock
, flags
);
4766 rq
->curr
= rq
->idle
= idle
;
4767 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4770 spin_unlock_irqrestore(&rq
->lock
, flags
);
4772 /* Set the preempt count _outside_ the spinlocks! */
4773 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4774 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4776 task_thread_info(idle
)->preempt_count
= 0;
4779 * The idle tasks have their own, simple scheduling class:
4781 idle
->sched_class
= &idle_sched_class
;
4785 * In a system that switches off the HZ timer nohz_cpu_mask
4786 * indicates which cpus entered this state. This is used
4787 * in the rcu update to wait only for active cpus. For system
4788 * which do not switch off the HZ timer nohz_cpu_mask should
4789 * always be CPU_MASK_NONE.
4791 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4794 * Increase the granularity value when there are more CPUs,
4795 * because with more CPUs the 'effective latency' as visible
4796 * to users decreases. But the relationship is not linear,
4797 * so pick a second-best guess by going with the log2 of the
4800 * This idea comes from the SD scheduler of Con Kolivas:
4802 static inline void sched_init_granularity(void)
4804 unsigned int factor
= 1 + ilog2(num_online_cpus());
4805 const unsigned long gran_limit
= 100000000;
4807 sysctl_sched_granularity
*= factor
;
4808 if (sysctl_sched_granularity
> gran_limit
)
4809 sysctl_sched_granularity
= gran_limit
;
4811 sysctl_sched_runtime_limit
= sysctl_sched_granularity
* 4;
4812 sysctl_sched_wakeup_granularity
= sysctl_sched_granularity
/ 2;
4817 * This is how migration works:
4819 * 1) we queue a struct migration_req structure in the source CPU's
4820 * runqueue and wake up that CPU's migration thread.
4821 * 2) we down() the locked semaphore => thread blocks.
4822 * 3) migration thread wakes up (implicitly it forces the migrated
4823 * thread off the CPU)
4824 * 4) it gets the migration request and checks whether the migrated
4825 * task is still in the wrong runqueue.
4826 * 5) if it's in the wrong runqueue then the migration thread removes
4827 * it and puts it into the right queue.
4828 * 6) migration thread up()s the semaphore.
4829 * 7) we wake up and the migration is done.
4833 * Change a given task's CPU affinity. Migrate the thread to a
4834 * proper CPU and schedule it away if the CPU it's executing on
4835 * is removed from the allowed bitmask.
4837 * NOTE: the caller must have a valid reference to the task, the
4838 * task must not exit() & deallocate itself prematurely. The
4839 * call is not atomic; no spinlocks may be held.
4841 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4843 struct migration_req req
;
4844 unsigned long flags
;
4848 rq
= task_rq_lock(p
, &flags
);
4849 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4854 p
->cpus_allowed
= new_mask
;
4855 /* Can the task run on the task's current CPU? If so, we're done */
4856 if (cpu_isset(task_cpu(p
), new_mask
))
4859 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4860 /* Need help from migration thread: drop lock and wait. */
4861 task_rq_unlock(rq
, &flags
);
4862 wake_up_process(rq
->migration_thread
);
4863 wait_for_completion(&req
.done
);
4864 tlb_migrate_finish(p
->mm
);
4868 task_rq_unlock(rq
, &flags
);
4872 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4875 * Move (not current) task off this cpu, onto dest cpu. We're doing
4876 * this because either it can't run here any more (set_cpus_allowed()
4877 * away from this CPU, or CPU going down), or because we're
4878 * attempting to rebalance this task on exec (sched_exec).
4880 * So we race with normal scheduler movements, but that's OK, as long
4881 * as the task is no longer on this CPU.
4883 * Returns non-zero if task was successfully migrated.
4885 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4887 struct rq
*rq_dest
, *rq_src
;
4890 if (unlikely(cpu_is_offline(dest_cpu
)))
4893 rq_src
= cpu_rq(src_cpu
);
4894 rq_dest
= cpu_rq(dest_cpu
);
4896 double_rq_lock(rq_src
, rq_dest
);
4897 /* Already moved. */
4898 if (task_cpu(p
) != src_cpu
)
4900 /* Affinity changed (again). */
4901 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4904 on_rq
= p
->se
.on_rq
;
4906 deactivate_task(rq_src
, p
, 0);
4907 set_task_cpu(p
, dest_cpu
);
4909 activate_task(rq_dest
, p
, 0);
4910 check_preempt_curr(rq_dest
, p
);
4914 double_rq_unlock(rq_src
, rq_dest
);
4919 * migration_thread - this is a highprio system thread that performs
4920 * thread migration by bumping thread off CPU then 'pushing' onto
4923 static int migration_thread(void *data
)
4925 int cpu
= (long)data
;
4929 BUG_ON(rq
->migration_thread
!= current
);
4931 set_current_state(TASK_INTERRUPTIBLE
);
4932 while (!kthread_should_stop()) {
4933 struct migration_req
*req
;
4934 struct list_head
*head
;
4936 spin_lock_irq(&rq
->lock
);
4938 if (cpu_is_offline(cpu
)) {
4939 spin_unlock_irq(&rq
->lock
);
4943 if (rq
->active_balance
) {
4944 active_load_balance(rq
, cpu
);
4945 rq
->active_balance
= 0;
4948 head
= &rq
->migration_queue
;
4950 if (list_empty(head
)) {
4951 spin_unlock_irq(&rq
->lock
);
4953 set_current_state(TASK_INTERRUPTIBLE
);
4956 req
= list_entry(head
->next
, struct migration_req
, list
);
4957 list_del_init(head
->next
);
4959 spin_unlock(&rq
->lock
);
4960 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
4963 complete(&req
->done
);
4965 __set_current_state(TASK_RUNNING
);
4969 /* Wait for kthread_stop */
4970 set_current_state(TASK_INTERRUPTIBLE
);
4971 while (!kthread_should_stop()) {
4973 set_current_state(TASK_INTERRUPTIBLE
);
4975 __set_current_state(TASK_RUNNING
);
4979 #ifdef CONFIG_HOTPLUG_CPU
4981 * Figure out where task on dead CPU should go, use force if neccessary.
4982 * NOTE: interrupts should be disabled by the caller
4984 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
4986 unsigned long flags
;
4993 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
4994 cpus_and(mask
, mask
, p
->cpus_allowed
);
4995 dest_cpu
= any_online_cpu(mask
);
4997 /* On any allowed CPU? */
4998 if (dest_cpu
== NR_CPUS
)
4999 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5001 /* No more Mr. Nice Guy. */
5002 if (dest_cpu
== NR_CPUS
) {
5003 rq
= task_rq_lock(p
, &flags
);
5004 cpus_setall(p
->cpus_allowed
);
5005 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5006 task_rq_unlock(rq
, &flags
);
5009 * Don't tell them about moving exiting tasks or
5010 * kernel threads (both mm NULL), since they never
5013 if (p
->mm
&& printk_ratelimit())
5014 printk(KERN_INFO
"process %d (%s) no "
5015 "longer affine to cpu%d\n",
5016 p
->pid
, p
->comm
, dead_cpu
);
5018 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5023 * While a dead CPU has no uninterruptible tasks queued at this point,
5024 * it might still have a nonzero ->nr_uninterruptible counter, because
5025 * for performance reasons the counter is not stricly tracking tasks to
5026 * their home CPUs. So we just add the counter to another CPU's counter,
5027 * to keep the global sum constant after CPU-down:
5029 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5031 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5032 unsigned long flags
;
5034 local_irq_save(flags
);
5035 double_rq_lock(rq_src
, rq_dest
);
5036 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5037 rq_src
->nr_uninterruptible
= 0;
5038 double_rq_unlock(rq_src
, rq_dest
);
5039 local_irq_restore(flags
);
5042 /* Run through task list and migrate tasks from the dead cpu. */
5043 static void migrate_live_tasks(int src_cpu
)
5045 struct task_struct
*p
, *t
;
5047 write_lock_irq(&tasklist_lock
);
5049 do_each_thread(t
, p
) {
5053 if (task_cpu(p
) == src_cpu
)
5054 move_task_off_dead_cpu(src_cpu
, p
);
5055 } while_each_thread(t
, p
);
5057 write_unlock_irq(&tasklist_lock
);
5061 * Schedules idle task to be the next runnable task on current CPU.
5062 * It does so by boosting its priority to highest possible and adding it to
5063 * the _front_ of the runqueue. Used by CPU offline code.
5065 void sched_idle_next(void)
5067 int this_cpu
= smp_processor_id();
5068 struct rq
*rq
= cpu_rq(this_cpu
);
5069 struct task_struct
*p
= rq
->idle
;
5070 unsigned long flags
;
5072 /* cpu has to be offline */
5073 BUG_ON(cpu_online(this_cpu
));
5076 * Strictly not necessary since rest of the CPUs are stopped by now
5077 * and interrupts disabled on the current cpu.
5079 spin_lock_irqsave(&rq
->lock
, flags
);
5081 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5083 /* Add idle task to the _front_ of its priority queue: */
5084 activate_idle_task(p
, rq
);
5086 spin_unlock_irqrestore(&rq
->lock
, flags
);
5090 * Ensures that the idle task is using init_mm right before its cpu goes
5093 void idle_task_exit(void)
5095 struct mm_struct
*mm
= current
->active_mm
;
5097 BUG_ON(cpu_online(smp_processor_id()));
5100 switch_mm(mm
, &init_mm
, current
);
5104 /* called under rq->lock with disabled interrupts */
5105 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5107 struct rq
*rq
= cpu_rq(dead_cpu
);
5109 /* Must be exiting, otherwise would be on tasklist. */
5110 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5112 /* Cannot have done final schedule yet: would have vanished. */
5113 BUG_ON(p
->state
== TASK_DEAD
);
5118 * Drop lock around migration; if someone else moves it,
5119 * that's OK. No task can be added to this CPU, so iteration is
5121 * NOTE: interrupts should be left disabled --dev@
5123 spin_unlock(&rq
->lock
);
5124 move_task_off_dead_cpu(dead_cpu
, p
);
5125 spin_lock(&rq
->lock
);
5130 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5131 static void migrate_dead_tasks(unsigned int dead_cpu
)
5133 struct rq
*rq
= cpu_rq(dead_cpu
);
5134 struct task_struct
*next
;
5137 if (!rq
->nr_running
)
5139 next
= pick_next_task(rq
, rq
->curr
, rq_clock(rq
));
5142 migrate_dead(dead_cpu
, next
);
5145 #endif /* CONFIG_HOTPLUG_CPU */
5148 * migration_call - callback that gets triggered when a CPU is added.
5149 * Here we can start up the necessary migration thread for the new CPU.
5151 static int __cpuinit
5152 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5154 struct task_struct
*p
;
5155 int cpu
= (long)hcpu
;
5156 unsigned long flags
;
5160 case CPU_LOCK_ACQUIRE
:
5161 mutex_lock(&sched_hotcpu_mutex
);
5164 case CPU_UP_PREPARE
:
5165 case CPU_UP_PREPARE_FROZEN
:
5166 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5169 kthread_bind(p
, cpu
);
5170 /* Must be high prio: stop_machine expects to yield to it. */
5171 rq
= task_rq_lock(p
, &flags
);
5172 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5173 task_rq_unlock(rq
, &flags
);
5174 cpu_rq(cpu
)->migration_thread
= p
;
5178 case CPU_ONLINE_FROZEN
:
5179 /* Strictly unneccessary, as first user will wake it. */
5180 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5183 #ifdef CONFIG_HOTPLUG_CPU
5184 case CPU_UP_CANCELED
:
5185 case CPU_UP_CANCELED_FROZEN
:
5186 if (!cpu_rq(cpu
)->migration_thread
)
5188 /* Unbind it from offline cpu so it can run. Fall thru. */
5189 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5190 any_online_cpu(cpu_online_map
));
5191 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5192 cpu_rq(cpu
)->migration_thread
= NULL
;
5196 case CPU_DEAD_FROZEN
:
5197 migrate_live_tasks(cpu
);
5199 kthread_stop(rq
->migration_thread
);
5200 rq
->migration_thread
= NULL
;
5201 /* Idle task back to normal (off runqueue, low prio) */
5202 rq
= task_rq_lock(rq
->idle
, &flags
);
5203 deactivate_task(rq
, rq
->idle
, 0);
5204 rq
->idle
->static_prio
= MAX_PRIO
;
5205 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5206 rq
->idle
->sched_class
= &idle_sched_class
;
5207 migrate_dead_tasks(cpu
);
5208 task_rq_unlock(rq
, &flags
);
5209 migrate_nr_uninterruptible(rq
);
5210 BUG_ON(rq
->nr_running
!= 0);
5212 /* No need to migrate the tasks: it was best-effort if
5213 * they didn't take sched_hotcpu_mutex. Just wake up
5214 * the requestors. */
5215 spin_lock_irq(&rq
->lock
);
5216 while (!list_empty(&rq
->migration_queue
)) {
5217 struct migration_req
*req
;
5219 req
= list_entry(rq
->migration_queue
.next
,
5220 struct migration_req
, list
);
5221 list_del_init(&req
->list
);
5222 complete(&req
->done
);
5224 spin_unlock_irq(&rq
->lock
);
5227 case CPU_LOCK_RELEASE
:
5228 mutex_unlock(&sched_hotcpu_mutex
);
5234 /* Register at highest priority so that task migration (migrate_all_tasks)
5235 * happens before everything else.
5237 static struct notifier_block __cpuinitdata migration_notifier
= {
5238 .notifier_call
= migration_call
,
5242 int __init
migration_init(void)
5244 void *cpu
= (void *)(long)smp_processor_id();
5247 /* Start one for the boot CPU: */
5248 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5249 BUG_ON(err
== NOTIFY_BAD
);
5250 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5251 register_cpu_notifier(&migration_notifier
);
5259 /* Number of possible processor ids */
5260 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5261 EXPORT_SYMBOL(nr_cpu_ids
);
5263 #undef SCHED_DOMAIN_DEBUG
5264 #ifdef SCHED_DOMAIN_DEBUG
5265 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5270 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5274 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5279 struct sched_group
*group
= sd
->groups
;
5280 cpumask_t groupmask
;
5282 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5283 cpus_clear(groupmask
);
5286 for (i
= 0; i
< level
+ 1; i
++)
5288 printk("domain %d: ", level
);
5290 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5291 printk("does not load-balance\n");
5293 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5298 printk("span %s\n", str
);
5300 if (!cpu_isset(cpu
, sd
->span
))
5301 printk(KERN_ERR
"ERROR: domain->span does not contain "
5303 if (!cpu_isset(cpu
, group
->cpumask
))
5304 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5308 for (i
= 0; i
< level
+ 2; i
++)
5314 printk(KERN_ERR
"ERROR: group is NULL\n");
5318 if (!group
->__cpu_power
) {
5320 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5324 if (!cpus_weight(group
->cpumask
)) {
5326 printk(KERN_ERR
"ERROR: empty group\n");
5329 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5331 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5334 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5336 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5339 group
= group
->next
;
5340 } while (group
!= sd
->groups
);
5343 if (!cpus_equal(sd
->span
, groupmask
))
5344 printk(KERN_ERR
"ERROR: groups don't span "
5352 if (!cpus_subset(groupmask
, sd
->span
))
5353 printk(KERN_ERR
"ERROR: parent span is not a superset "
5354 "of domain->span\n");
5359 # define sched_domain_debug(sd, cpu) do { } while (0)
5362 static int sd_degenerate(struct sched_domain
*sd
)
5364 if (cpus_weight(sd
->span
) == 1)
5367 /* Following flags need at least 2 groups */
5368 if (sd
->flags
& (SD_LOAD_BALANCE
|
5369 SD_BALANCE_NEWIDLE
|
5373 SD_SHARE_PKG_RESOURCES
)) {
5374 if (sd
->groups
!= sd
->groups
->next
)
5378 /* Following flags don't use groups */
5379 if (sd
->flags
& (SD_WAKE_IDLE
|
5388 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5390 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5392 if (sd_degenerate(parent
))
5395 if (!cpus_equal(sd
->span
, parent
->span
))
5398 /* Does parent contain flags not in child? */
5399 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5400 if (cflags
& SD_WAKE_AFFINE
)
5401 pflags
&= ~SD_WAKE_BALANCE
;
5402 /* Flags needing groups don't count if only 1 group in parent */
5403 if (parent
->groups
== parent
->groups
->next
) {
5404 pflags
&= ~(SD_LOAD_BALANCE
|
5405 SD_BALANCE_NEWIDLE
|
5409 SD_SHARE_PKG_RESOURCES
);
5411 if (~cflags
& pflags
)
5418 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5419 * hold the hotplug lock.
5421 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5423 struct rq
*rq
= cpu_rq(cpu
);
5424 struct sched_domain
*tmp
;
5426 /* Remove the sched domains which do not contribute to scheduling. */
5427 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5428 struct sched_domain
*parent
= tmp
->parent
;
5431 if (sd_parent_degenerate(tmp
, parent
)) {
5432 tmp
->parent
= parent
->parent
;
5434 parent
->parent
->child
= tmp
;
5438 if (sd
&& sd_degenerate(sd
)) {
5444 sched_domain_debug(sd
, cpu
);
5446 rcu_assign_pointer(rq
->sd
, sd
);
5449 /* cpus with isolated domains */
5450 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5452 /* Setup the mask of cpus configured for isolated domains */
5453 static int __init
isolated_cpu_setup(char *str
)
5455 int ints
[NR_CPUS
], i
;
5457 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5458 cpus_clear(cpu_isolated_map
);
5459 for (i
= 1; i
<= ints
[0]; i
++)
5460 if (ints
[i
] < NR_CPUS
)
5461 cpu_set(ints
[i
], cpu_isolated_map
);
5465 __setup ("isolcpus=", isolated_cpu_setup
);
5468 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5469 * to a function which identifies what group(along with sched group) a CPU
5470 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5471 * (due to the fact that we keep track of groups covered with a cpumask_t).
5473 * init_sched_build_groups will build a circular linked list of the groups
5474 * covered by the given span, and will set each group's ->cpumask correctly,
5475 * and ->cpu_power to 0.
5478 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5479 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5480 struct sched_group
**sg
))
5482 struct sched_group
*first
= NULL
, *last
= NULL
;
5483 cpumask_t covered
= CPU_MASK_NONE
;
5486 for_each_cpu_mask(i
, span
) {
5487 struct sched_group
*sg
;
5488 int group
= group_fn(i
, cpu_map
, &sg
);
5491 if (cpu_isset(i
, covered
))
5494 sg
->cpumask
= CPU_MASK_NONE
;
5495 sg
->__cpu_power
= 0;
5497 for_each_cpu_mask(j
, span
) {
5498 if (group_fn(j
, cpu_map
, NULL
) != group
)
5501 cpu_set(j
, covered
);
5502 cpu_set(j
, sg
->cpumask
);
5513 #define SD_NODES_PER_DOMAIN 16
5518 * find_next_best_node - find the next node to include in a sched_domain
5519 * @node: node whose sched_domain we're building
5520 * @used_nodes: nodes already in the sched_domain
5522 * Find the next node to include in a given scheduling domain. Simply
5523 * finds the closest node not already in the @used_nodes map.
5525 * Should use nodemask_t.
5527 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5529 int i
, n
, val
, min_val
, best_node
= 0;
5533 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5534 /* Start at @node */
5535 n
= (node
+ i
) % MAX_NUMNODES
;
5537 if (!nr_cpus_node(n
))
5540 /* Skip already used nodes */
5541 if (test_bit(n
, used_nodes
))
5544 /* Simple min distance search */
5545 val
= node_distance(node
, n
);
5547 if (val
< min_val
) {
5553 set_bit(best_node
, used_nodes
);
5558 * sched_domain_node_span - get a cpumask for a node's sched_domain
5559 * @node: node whose cpumask we're constructing
5560 * @size: number of nodes to include in this span
5562 * Given a node, construct a good cpumask for its sched_domain to span. It
5563 * should be one that prevents unnecessary balancing, but also spreads tasks
5566 static cpumask_t
sched_domain_node_span(int node
)
5568 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5569 cpumask_t span
, nodemask
;
5573 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5575 nodemask
= node_to_cpumask(node
);
5576 cpus_or(span
, span
, nodemask
);
5577 set_bit(node
, used_nodes
);
5579 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5580 int next_node
= find_next_best_node(node
, used_nodes
);
5582 nodemask
= node_to_cpumask(next_node
);
5583 cpus_or(span
, span
, nodemask
);
5590 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5593 * SMT sched-domains:
5595 #ifdef CONFIG_SCHED_SMT
5596 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5597 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5599 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5600 struct sched_group
**sg
)
5603 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5609 * multi-core sched-domains:
5611 #ifdef CONFIG_SCHED_MC
5612 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5613 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5616 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5617 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5618 struct sched_group
**sg
)
5621 cpumask_t mask
= cpu_sibling_map
[cpu
];
5622 cpus_and(mask
, mask
, *cpu_map
);
5623 group
= first_cpu(mask
);
5625 *sg
= &per_cpu(sched_group_core
, group
);
5628 #elif defined(CONFIG_SCHED_MC)
5629 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5630 struct sched_group
**sg
)
5633 *sg
= &per_cpu(sched_group_core
, cpu
);
5638 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5639 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5641 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5642 struct sched_group
**sg
)
5645 #ifdef CONFIG_SCHED_MC
5646 cpumask_t mask
= cpu_coregroup_map(cpu
);
5647 cpus_and(mask
, mask
, *cpu_map
);
5648 group
= first_cpu(mask
);
5649 #elif defined(CONFIG_SCHED_SMT)
5650 cpumask_t mask
= cpu_sibling_map
[cpu
];
5651 cpus_and(mask
, mask
, *cpu_map
);
5652 group
= first_cpu(mask
);
5657 *sg
= &per_cpu(sched_group_phys
, group
);
5663 * The init_sched_build_groups can't handle what we want to do with node
5664 * groups, so roll our own. Now each node has its own list of groups which
5665 * gets dynamically allocated.
5667 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5668 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5670 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5671 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5673 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5674 struct sched_group
**sg
)
5676 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5679 cpus_and(nodemask
, nodemask
, *cpu_map
);
5680 group
= first_cpu(nodemask
);
5683 *sg
= &per_cpu(sched_group_allnodes
, group
);
5687 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5689 struct sched_group
*sg
= group_head
;
5695 for_each_cpu_mask(j
, sg
->cpumask
) {
5696 struct sched_domain
*sd
;
5698 sd
= &per_cpu(phys_domains
, j
);
5699 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5701 * Only add "power" once for each
5707 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5710 if (sg
!= group_head
)
5716 /* Free memory allocated for various sched_group structures */
5717 static void free_sched_groups(const cpumask_t
*cpu_map
)
5721 for_each_cpu_mask(cpu
, *cpu_map
) {
5722 struct sched_group
**sched_group_nodes
5723 = sched_group_nodes_bycpu
[cpu
];
5725 if (!sched_group_nodes
)
5728 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5729 cpumask_t nodemask
= node_to_cpumask(i
);
5730 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5732 cpus_and(nodemask
, nodemask
, *cpu_map
);
5733 if (cpus_empty(nodemask
))
5743 if (oldsg
!= sched_group_nodes
[i
])
5746 kfree(sched_group_nodes
);
5747 sched_group_nodes_bycpu
[cpu
] = NULL
;
5751 static void free_sched_groups(const cpumask_t
*cpu_map
)
5757 * Initialize sched groups cpu_power.
5759 * cpu_power indicates the capacity of sched group, which is used while
5760 * distributing the load between different sched groups in a sched domain.
5761 * Typically cpu_power for all the groups in a sched domain will be same unless
5762 * there are asymmetries in the topology. If there are asymmetries, group
5763 * having more cpu_power will pickup more load compared to the group having
5766 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5767 * the maximum number of tasks a group can handle in the presence of other idle
5768 * or lightly loaded groups in the same sched domain.
5770 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
5772 struct sched_domain
*child
;
5773 struct sched_group
*group
;
5775 WARN_ON(!sd
|| !sd
->groups
);
5777 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
5782 sd
->groups
->__cpu_power
= 0;
5785 * For perf policy, if the groups in child domain share resources
5786 * (for example cores sharing some portions of the cache hierarchy
5787 * or SMT), then set this domain groups cpu_power such that each group
5788 * can handle only one task, when there are other idle groups in the
5789 * same sched domain.
5791 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
5793 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
5794 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
5799 * add cpu_power of each child group to this groups cpu_power
5801 group
= child
->groups
;
5803 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
5804 group
= group
->next
;
5805 } while (group
!= child
->groups
);
5809 * Build sched domains for a given set of cpus and attach the sched domains
5810 * to the individual cpus
5812 static int build_sched_domains(const cpumask_t
*cpu_map
)
5816 struct sched_group
**sched_group_nodes
= NULL
;
5817 int sd_allnodes
= 0;
5820 * Allocate the per-node list of sched groups
5822 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
5824 if (!sched_group_nodes
) {
5825 printk(KERN_WARNING
"Can not alloc sched group node list\n");
5828 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
5832 * Set up domains for cpus specified by the cpu_map.
5834 for_each_cpu_mask(i
, *cpu_map
) {
5835 struct sched_domain
*sd
= NULL
, *p
;
5836 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
5838 cpus_and(nodemask
, nodemask
, *cpu_map
);
5841 if (cpus_weight(*cpu_map
) >
5842 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
5843 sd
= &per_cpu(allnodes_domains
, i
);
5844 *sd
= SD_ALLNODES_INIT
;
5845 sd
->span
= *cpu_map
;
5846 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
5852 sd
= &per_cpu(node_domains
, i
);
5854 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
5858 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5862 sd
= &per_cpu(phys_domains
, i
);
5864 sd
->span
= nodemask
;
5868 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
5870 #ifdef CONFIG_SCHED_MC
5872 sd
= &per_cpu(core_domains
, i
);
5874 sd
->span
= cpu_coregroup_map(i
);
5875 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5878 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
5881 #ifdef CONFIG_SCHED_SMT
5883 sd
= &per_cpu(cpu_domains
, i
);
5884 *sd
= SD_SIBLING_INIT
;
5885 sd
->span
= cpu_sibling_map
[i
];
5886 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5889 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
5893 #ifdef CONFIG_SCHED_SMT
5894 /* Set up CPU (sibling) groups */
5895 for_each_cpu_mask(i
, *cpu_map
) {
5896 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
5897 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
5898 if (i
!= first_cpu(this_sibling_map
))
5901 init_sched_build_groups(this_sibling_map
, cpu_map
,
5906 #ifdef CONFIG_SCHED_MC
5907 /* Set up multi-core groups */
5908 for_each_cpu_mask(i
, *cpu_map
) {
5909 cpumask_t this_core_map
= cpu_coregroup_map(i
);
5910 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
5911 if (i
!= first_cpu(this_core_map
))
5913 init_sched_build_groups(this_core_map
, cpu_map
,
5914 &cpu_to_core_group
);
5918 /* Set up physical groups */
5919 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5920 cpumask_t nodemask
= node_to_cpumask(i
);
5922 cpus_and(nodemask
, nodemask
, *cpu_map
);
5923 if (cpus_empty(nodemask
))
5926 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
5930 /* Set up node groups */
5932 init_sched_build_groups(*cpu_map
, cpu_map
,
5933 &cpu_to_allnodes_group
);
5935 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5936 /* Set up node groups */
5937 struct sched_group
*sg
, *prev
;
5938 cpumask_t nodemask
= node_to_cpumask(i
);
5939 cpumask_t domainspan
;
5940 cpumask_t covered
= CPU_MASK_NONE
;
5943 cpus_and(nodemask
, nodemask
, *cpu_map
);
5944 if (cpus_empty(nodemask
)) {
5945 sched_group_nodes
[i
] = NULL
;
5949 domainspan
= sched_domain_node_span(i
);
5950 cpus_and(domainspan
, domainspan
, *cpu_map
);
5952 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
5954 printk(KERN_WARNING
"Can not alloc domain group for "
5958 sched_group_nodes
[i
] = sg
;
5959 for_each_cpu_mask(j
, nodemask
) {
5960 struct sched_domain
*sd
;
5962 sd
= &per_cpu(node_domains
, j
);
5965 sg
->__cpu_power
= 0;
5966 sg
->cpumask
= nodemask
;
5968 cpus_or(covered
, covered
, nodemask
);
5971 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
5972 cpumask_t tmp
, notcovered
;
5973 int n
= (i
+ j
) % MAX_NUMNODES
;
5975 cpus_complement(notcovered
, covered
);
5976 cpus_and(tmp
, notcovered
, *cpu_map
);
5977 cpus_and(tmp
, tmp
, domainspan
);
5978 if (cpus_empty(tmp
))
5981 nodemask
= node_to_cpumask(n
);
5982 cpus_and(tmp
, tmp
, nodemask
);
5983 if (cpus_empty(tmp
))
5986 sg
= kmalloc_node(sizeof(struct sched_group
),
5990 "Can not alloc domain group for node %d\n", j
);
5993 sg
->__cpu_power
= 0;
5995 sg
->next
= prev
->next
;
5996 cpus_or(covered
, covered
, tmp
);
6003 /* Calculate CPU power for physical packages and nodes */
6004 #ifdef CONFIG_SCHED_SMT
6005 for_each_cpu_mask(i
, *cpu_map
) {
6006 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6008 init_sched_groups_power(i
, sd
);
6011 #ifdef CONFIG_SCHED_MC
6012 for_each_cpu_mask(i
, *cpu_map
) {
6013 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6015 init_sched_groups_power(i
, sd
);
6019 for_each_cpu_mask(i
, *cpu_map
) {
6020 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6022 init_sched_groups_power(i
, sd
);
6026 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6027 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6030 struct sched_group
*sg
;
6032 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6033 init_numa_sched_groups_power(sg
);
6037 /* Attach the domains */
6038 for_each_cpu_mask(i
, *cpu_map
) {
6039 struct sched_domain
*sd
;
6040 #ifdef CONFIG_SCHED_SMT
6041 sd
= &per_cpu(cpu_domains
, i
);
6042 #elif defined(CONFIG_SCHED_MC)
6043 sd
= &per_cpu(core_domains
, i
);
6045 sd
= &per_cpu(phys_domains
, i
);
6047 cpu_attach_domain(sd
, i
);
6054 free_sched_groups(cpu_map
);
6059 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6061 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6063 cpumask_t cpu_default_map
;
6067 * Setup mask for cpus without special case scheduling requirements.
6068 * For now this just excludes isolated cpus, but could be used to
6069 * exclude other special cases in the future.
6071 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6073 err
= build_sched_domains(&cpu_default_map
);
6078 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6080 free_sched_groups(cpu_map
);
6084 * Detach sched domains from a group of cpus specified in cpu_map
6085 * These cpus will now be attached to the NULL domain
6087 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6091 for_each_cpu_mask(i
, *cpu_map
)
6092 cpu_attach_domain(NULL
, i
);
6093 synchronize_sched();
6094 arch_destroy_sched_domains(cpu_map
);
6098 * Partition sched domains as specified by the cpumasks below.
6099 * This attaches all cpus from the cpumasks to the NULL domain,
6100 * waits for a RCU quiescent period, recalculates sched
6101 * domain information and then attaches them back to the
6102 * correct sched domains
6103 * Call with hotplug lock held
6105 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6107 cpumask_t change_map
;
6110 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6111 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6112 cpus_or(change_map
, *partition1
, *partition2
);
6114 /* Detach sched domains from all of the affected cpus */
6115 detach_destroy_domains(&change_map
);
6116 if (!cpus_empty(*partition1
))
6117 err
= build_sched_domains(partition1
);
6118 if (!err
&& !cpus_empty(*partition2
))
6119 err
= build_sched_domains(partition2
);
6124 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6125 int arch_reinit_sched_domains(void)
6129 mutex_lock(&sched_hotcpu_mutex
);
6130 detach_destroy_domains(&cpu_online_map
);
6131 err
= arch_init_sched_domains(&cpu_online_map
);
6132 mutex_unlock(&sched_hotcpu_mutex
);
6137 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6141 if (buf
[0] != '0' && buf
[0] != '1')
6145 sched_smt_power_savings
= (buf
[0] == '1');
6147 sched_mc_power_savings
= (buf
[0] == '1');
6149 ret
= arch_reinit_sched_domains();
6151 return ret
? ret
: count
;
6154 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6158 #ifdef CONFIG_SCHED_SMT
6160 err
= sysfs_create_file(&cls
->kset
.kobj
,
6161 &attr_sched_smt_power_savings
.attr
);
6163 #ifdef CONFIG_SCHED_MC
6164 if (!err
&& mc_capable())
6165 err
= sysfs_create_file(&cls
->kset
.kobj
,
6166 &attr_sched_mc_power_savings
.attr
);
6172 #ifdef CONFIG_SCHED_MC
6173 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6175 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6177 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6178 const char *buf
, size_t count
)
6180 return sched_power_savings_store(buf
, count
, 0);
6182 SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6183 sched_mc_power_savings_store
);
6186 #ifdef CONFIG_SCHED_SMT
6187 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6189 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6191 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6192 const char *buf
, size_t count
)
6194 return sched_power_savings_store(buf
, count
, 1);
6196 SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6197 sched_smt_power_savings_store
);
6201 * Force a reinitialization of the sched domains hierarchy. The domains
6202 * and groups cannot be updated in place without racing with the balancing
6203 * code, so we temporarily attach all running cpus to the NULL domain
6204 * which will prevent rebalancing while the sched domains are recalculated.
6206 static int update_sched_domains(struct notifier_block
*nfb
,
6207 unsigned long action
, void *hcpu
)
6210 case CPU_UP_PREPARE
:
6211 case CPU_UP_PREPARE_FROZEN
:
6212 case CPU_DOWN_PREPARE
:
6213 case CPU_DOWN_PREPARE_FROZEN
:
6214 detach_destroy_domains(&cpu_online_map
);
6217 case CPU_UP_CANCELED
:
6218 case CPU_UP_CANCELED_FROZEN
:
6219 case CPU_DOWN_FAILED
:
6220 case CPU_DOWN_FAILED_FROZEN
:
6222 case CPU_ONLINE_FROZEN
:
6224 case CPU_DEAD_FROZEN
:
6226 * Fall through and re-initialise the domains.
6233 /* The hotplug lock is already held by cpu_up/cpu_down */
6234 arch_init_sched_domains(&cpu_online_map
);
6239 void __init
sched_init_smp(void)
6241 cpumask_t non_isolated_cpus
;
6243 mutex_lock(&sched_hotcpu_mutex
);
6244 arch_init_sched_domains(&cpu_online_map
);
6245 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6246 if (cpus_empty(non_isolated_cpus
))
6247 cpu_set(smp_processor_id(), non_isolated_cpus
);
6248 mutex_unlock(&sched_hotcpu_mutex
);
6249 /* XXX: Theoretical race here - CPU may be hotplugged now */
6250 hotcpu_notifier(update_sched_domains
, 0);
6252 /* Move init over to a non-isolated CPU */
6253 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6255 sched_init_granularity();
6258 void __init
sched_init_smp(void)
6260 sched_init_granularity();
6262 #endif /* CONFIG_SMP */
6264 int in_sched_functions(unsigned long addr
)
6266 /* Linker adds these: start and end of __sched functions */
6267 extern char __sched_text_start
[], __sched_text_end
[];
6269 return in_lock_functions(addr
) ||
6270 (addr
>= (unsigned long)__sched_text_start
6271 && addr
< (unsigned long)__sched_text_end
);
6274 static inline void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6276 cfs_rq
->tasks_timeline
= RB_ROOT
;
6277 cfs_rq
->fair_clock
= 1;
6278 #ifdef CONFIG_FAIR_GROUP_SCHED
6283 void __init
sched_init(void)
6285 u64 now
= sched_clock();
6286 int highest_cpu
= 0;
6290 * Link up the scheduling class hierarchy:
6292 rt_sched_class
.next
= &fair_sched_class
;
6293 fair_sched_class
.next
= &idle_sched_class
;
6294 idle_sched_class
.next
= NULL
;
6296 for_each_possible_cpu(i
) {
6297 struct rt_prio_array
*array
;
6301 spin_lock_init(&rq
->lock
);
6302 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6305 init_cfs_rq(&rq
->cfs
, rq
);
6306 #ifdef CONFIG_FAIR_GROUP_SCHED
6307 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6308 list_add(&rq
->cfs
.leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6310 rq
->ls
.load_update_last
= now
;
6311 rq
->ls
.load_update_start
= now
;
6313 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6314 rq
->cpu_load
[j
] = 0;
6317 rq
->active_balance
= 0;
6318 rq
->next_balance
= jiffies
;
6321 rq
->migration_thread
= NULL
;
6322 INIT_LIST_HEAD(&rq
->migration_queue
);
6324 atomic_set(&rq
->nr_iowait
, 0);
6326 array
= &rq
->rt
.active
;
6327 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6328 INIT_LIST_HEAD(array
->queue
+ j
);
6329 __clear_bit(j
, array
->bitmap
);
6332 /* delimiter for bitsearch: */
6333 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6336 set_load_weight(&init_task
);
6339 nr_cpu_ids
= highest_cpu
+ 1;
6340 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6343 #ifdef CONFIG_RT_MUTEXES
6344 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6348 * The boot idle thread does lazy MMU switching as well:
6350 atomic_inc(&init_mm
.mm_count
);
6351 enter_lazy_tlb(&init_mm
, current
);
6354 * Make us the idle thread. Technically, schedule() should not be
6355 * called from this thread, however somewhere below it might be,
6356 * but because we are the idle thread, we just pick up running again
6357 * when this runqueue becomes "idle".
6359 init_idle(current
, smp_processor_id());
6361 * During early bootup we pretend to be a normal task:
6363 current
->sched_class
= &fair_sched_class
;
6366 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6367 void __might_sleep(char *file
, int line
)
6370 static unsigned long prev_jiffy
; /* ratelimiting */
6372 if ((in_atomic() || irqs_disabled()) &&
6373 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6374 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6376 prev_jiffy
= jiffies
;
6377 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6378 " context at %s:%d\n", file
, line
);
6379 printk("in_atomic():%d, irqs_disabled():%d\n",
6380 in_atomic(), irqs_disabled());
6381 debug_show_held_locks(current
);
6382 if (irqs_disabled())
6383 print_irqtrace_events(current
);
6388 EXPORT_SYMBOL(__might_sleep
);
6391 #ifdef CONFIG_MAGIC_SYSRQ
6392 void normalize_rt_tasks(void)
6394 struct task_struct
*g
, *p
;
6395 unsigned long flags
;
6399 read_lock_irq(&tasklist_lock
);
6400 do_each_thread(g
, p
) {
6402 p
->se
.wait_runtime
= 0;
6403 p
->se
.wait_start_fair
= 0;
6404 p
->se
.wait_start
= 0;
6405 p
->se
.exec_start
= 0;
6406 p
->se
.sleep_start
= 0;
6407 p
->se
.sleep_start_fair
= 0;
6408 p
->se
.block_start
= 0;
6409 task_rq(p
)->cfs
.fair_clock
= 0;
6410 task_rq(p
)->clock
= 0;
6414 * Renice negative nice level userspace
6417 if (TASK_NICE(p
) < 0 && p
->mm
)
6418 set_user_nice(p
, 0);
6422 spin_lock_irqsave(&p
->pi_lock
, flags
);
6423 rq
= __task_rq_lock(p
);
6426 * Do not touch the migration thread:
6428 if (p
== rq
->migration_thread
)
6432 on_rq
= p
->se
.on_rq
;
6434 deactivate_task(task_rq(p
), p
, 0);
6435 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6437 activate_task(task_rq(p
), p
, 0);
6438 resched_task(rq
->curr
);
6443 __task_rq_unlock(rq
);
6444 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6445 } while_each_thread(g
, p
);
6447 read_unlock_irq(&tasklist_lock
);
6450 #endif /* CONFIG_MAGIC_SYSRQ */
6454 * These functions are only useful for the IA64 MCA handling.
6456 * They can only be called when the whole system has been
6457 * stopped - every CPU needs to be quiescent, and no scheduling
6458 * activity can take place. Using them for anything else would
6459 * be a serious bug, and as a result, they aren't even visible
6460 * under any other configuration.
6464 * curr_task - return the current task for a given cpu.
6465 * @cpu: the processor in question.
6467 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6469 struct task_struct
*curr_task(int cpu
)
6471 return cpu_curr(cpu
);
6475 * set_curr_task - set the current task for a given cpu.
6476 * @cpu: the processor in question.
6477 * @p: the task pointer to set.
6479 * Description: This function must only be used when non-maskable interrupts
6480 * are serviced on a separate stack. It allows the architecture to switch the
6481 * notion of the current task on a cpu in a non-blocking manner. This function
6482 * must be called with all CPU's synchronized, and interrupts disabled, the
6483 * and caller must save the original value of the current task (see
6484 * curr_task() above) and restore that value before reenabling interrupts and
6485 * re-starting the system.
6487 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6489 void set_curr_task(int cpu
, struct task_struct
*p
)