2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
46 #include <asm/byteorder.h>
48 #include <asm/system.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
75 __le32 branch_address
;
77 __le16 transfer_status
;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
96 struct page
*pages
[AR_BUFFERS
];
98 struct descriptor
*descriptors
;
99 dma_addr_t descriptors_bus
;
101 unsigned int last_buffer_index
;
103 struct tasklet_struct tasklet
;
108 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
109 struct descriptor
*d
,
110 struct descriptor
*last
);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer
{
117 struct list_head list
;
118 dma_addr_t buffer_bus
;
121 struct descriptor buffer
[0];
125 struct fw_ohci
*ohci
;
127 int total_allocation
;
132 * List of page-sized buffers for storing DMA descriptors.
133 * Head of list contains buffers in use and tail of list contains
136 struct list_head buffer_list
;
139 * Pointer to a buffer inside buffer_list that contains the tail
140 * end of the current DMA program.
142 struct descriptor_buffer
*buffer_tail
;
145 * The descriptor containing the branch address of the first
146 * descriptor that has not yet been filled by the device.
148 struct descriptor
*last
;
151 * The last descriptor in the DMA program. It contains the branch
152 * address that must be updated upon appending a new descriptor.
154 struct descriptor
*prev
;
156 descriptor_callback_t callback
;
158 struct tasklet_struct tasklet
;
161 #define IT_HEADER_SY(v) ((v) << 0)
162 #define IT_HEADER_TCODE(v) ((v) << 4)
163 #define IT_HEADER_CHANNEL(v) ((v) << 8)
164 #define IT_HEADER_TAG(v) ((v) << 14)
165 #define IT_HEADER_SPEED(v) ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 struct fw_iso_context base
;
170 struct context context
;
173 size_t header_length
;
179 #define CONFIG_ROM_SIZE 1024
184 __iomem
char *registers
;
187 int request_generation
; /* for timestamping incoming requests */
189 unsigned int pri_req_max
;
192 bool csr_state_setclear_abdicate
;
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
201 struct mutex phy_reg_mutex
;
204 dma_addr_t misc_buffer_bus
;
206 struct ar_context ar_request_ctx
;
207 struct ar_context ar_response_ctx
;
208 struct context at_request_ctx
;
209 struct context at_response_ctx
;
211 u32 it_context_support
;
212 u32 it_context_mask
; /* unoccupied IT contexts */
213 struct iso_context
*it_context_list
;
214 u64 ir_context_channels
; /* unoccupied channels */
215 u32 ir_context_support
;
216 u32 ir_context_mask
; /* unoccupied IR contexts */
217 struct iso_context
*ir_context_list
;
218 u64 mc_channels
; /* channels in use by the multichannel IR context */
222 dma_addr_t config_rom_bus
;
223 __be32
*next_config_rom
;
224 dma_addr_t next_config_rom_bus
;
228 dma_addr_t self_id_bus
;
229 struct tasklet_struct bus_reset_tasklet
;
231 u32 self_id_buffer
[512];
234 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
236 return container_of(card
, struct fw_ohci
, card
);
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI1394_PCI_HCI_Control 0x40
257 #define SELF_ID_BUF_SIZE 0x800
258 #define OHCI_TCODE_PHY_PACKET 0x0e
259 #define OHCI_VERSION_1_1 0x010010
261 static char ohci_driver_name
[] = KBUILD_MODNAME
;
263 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
264 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
265 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
266 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
268 #define QUIRK_CYCLE_TIMER 1
269 #define QUIRK_RESET_PACKET 2
270 #define QUIRK_BE_HEADERS 4
271 #define QUIRK_NO_1394A 8
272 #define QUIRK_NO_MSI 16
274 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
275 static const struct {
276 unsigned short vendor
, device
, revision
, flags
;
278 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
281 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
284 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
287 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
290 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
293 {PCI_VENDOR_ID_O2
, PCI_ANY_ID
, PCI_ANY_ID
,
296 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
299 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
300 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
302 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
305 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
306 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
309 /* This overrides anything that was found in ohci_quirks[]. */
310 static int param_quirks
;
311 module_param_named(quirks
, param_quirks
, int, 0644);
312 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
313 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
314 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
315 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS
)
316 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
317 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
320 #define OHCI_PARAM_DEBUG_AT_AR 1
321 #define OHCI_PARAM_DEBUG_SELFIDS 2
322 #define OHCI_PARAM_DEBUG_IRQS 4
323 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
325 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
327 static int param_debug
;
328 module_param_named(debug
, param_debug
, int, 0644);
329 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
330 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
331 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
332 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
333 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
334 ", or a combination, or all = -1)");
336 static void log_irqs(u32 evt
)
338 if (likely(!(param_debug
&
339 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
342 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
343 !(evt
& OHCI1394_busReset
))
346 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
347 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
348 evt
& OHCI1394_RQPkt
? " AR_req" : "",
349 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
350 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
351 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
352 evt
& OHCI1394_isochRx
? " IR" : "",
353 evt
& OHCI1394_isochTx
? " IT" : "",
354 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
355 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
356 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
357 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
358 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
359 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
360 evt
& OHCI1394_busReset
? " busReset" : "",
361 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
362 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
363 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
364 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
365 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
366 OHCI1394_cycleInconsistent
|
367 OHCI1394_regAccessFail
| OHCI1394_busReset
)
371 static const char *speed
[] = {
372 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
374 static const char *power
[] = {
375 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
376 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
378 static const char port
[] = { '.', '-', 'p', 'c', };
380 static char _p(u32
*s
, int shift
)
382 return port
[*s
>> shift
& 3];
385 static void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
)
387 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
390 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
391 self_id_count
, generation
, node_id
);
393 for (; self_id_count
--; ++s
)
394 if ((*s
& 1 << 23) == 0)
395 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
396 "%s gc=%d %s %s%s%s\n",
397 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
398 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
399 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
400 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
402 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
404 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
405 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
408 static const char *evts
[] = {
409 [0x00] = "evt_no_status", [0x01] = "-reserved-",
410 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
411 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
412 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
413 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
414 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
415 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
416 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
417 [0x10] = "-reserved-", [0x11] = "ack_complete",
418 [0x12] = "ack_pending ", [0x13] = "-reserved-",
419 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
420 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
421 [0x18] = "-reserved-", [0x19] = "-reserved-",
422 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
423 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
424 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
425 [0x20] = "pending/cancelled",
427 static const char *tcodes
[] = {
428 [0x0] = "QW req", [0x1] = "BW req",
429 [0x2] = "W resp", [0x3] = "-reserved-",
430 [0x4] = "QR req", [0x5] = "BR req",
431 [0x6] = "QR resp", [0x7] = "BR resp",
432 [0x8] = "cycle start", [0x9] = "Lk req",
433 [0xa] = "async stream packet", [0xb] = "Lk resp",
434 [0xc] = "-reserved-", [0xd] = "-reserved-",
435 [0xe] = "link internal", [0xf] = "-reserved-",
438 static void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
)
440 int tcode
= header
[0] >> 4 & 0xf;
443 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
446 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
449 if (evt
== OHCI1394_evt_bus_reset
) {
450 fw_notify("A%c evt_bus_reset, generation %d\n",
451 dir
, (header
[2] >> 16) & 0xff);
456 case 0x0: case 0x6: case 0x8:
457 snprintf(specific
, sizeof(specific
), " = %08x",
458 be32_to_cpu((__force __be32
)header
[3]));
460 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
461 snprintf(specific
, sizeof(specific
), " %x,%x",
462 header
[3] >> 16, header
[3] & 0xffff);
470 fw_notify("A%c %s, %s\n", dir
, evts
[evt
], tcodes
[tcode
]);
473 fw_notify("A%c %s, PHY %08x %08x\n",
474 dir
, evts
[evt
], header
[1], header
[2]);
476 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
477 fw_notify("A%c spd %x tl %02x, "
480 dir
, speed
, header
[0] >> 10 & 0x3f,
481 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
482 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
485 fw_notify("A%c spd %x tl %02x, "
488 dir
, speed
, header
[0] >> 10 & 0x3f,
489 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
490 tcodes
[tcode
], specific
);
496 #define param_debug 0
497 static inline void log_irqs(u32 evt
) {}
498 static inline void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
) {}
499 static inline void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
) {}
501 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
503 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
505 writel(data
, ohci
->registers
+ offset
);
508 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
510 return readl(ohci
->registers
+ offset
);
513 static inline void flush_writes(const struct fw_ohci
*ohci
)
515 /* Do a dummy read to flush writes. */
516 reg_read(ohci
, OHCI1394_Version
);
520 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
521 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
522 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
523 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
525 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
530 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
531 for (i
= 0; i
< 3 + 100; i
++) {
532 val
= reg_read(ohci
, OHCI1394_PhyControl
);
534 return -ENODEV
; /* Card was ejected. */
536 if (val
& OHCI1394_PhyControl_ReadDone
)
537 return OHCI1394_PhyControl_ReadData(val
);
540 * Try a few times without waiting. Sleeping is necessary
541 * only when the link/PHY interface is busy.
546 fw_error("failed to read phy reg\n");
551 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
555 reg_write(ohci
, OHCI1394_PhyControl
,
556 OHCI1394_PhyControl_Write(addr
, val
));
557 for (i
= 0; i
< 3 + 100; i
++) {
558 val
= reg_read(ohci
, OHCI1394_PhyControl
);
560 return -ENODEV
; /* Card was ejected. */
562 if (!(val
& OHCI1394_PhyControl_WritePending
))
568 fw_error("failed to write phy reg\n");
573 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
574 int clear_bits
, int set_bits
)
576 int ret
= read_phy_reg(ohci
, addr
);
581 * The interrupt status bits are cleared by writing a one bit.
582 * Avoid clearing them unless explicitly requested in set_bits.
585 clear_bits
|= PHY_INT_STATUS_BITS
;
587 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
590 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
594 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
598 return read_phy_reg(ohci
, addr
);
601 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
603 struct fw_ohci
*ohci
= fw_ohci(card
);
606 mutex_lock(&ohci
->phy_reg_mutex
);
607 ret
= read_phy_reg(ohci
, addr
);
608 mutex_unlock(&ohci
->phy_reg_mutex
);
613 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
614 int clear_bits
, int set_bits
)
616 struct fw_ohci
*ohci
= fw_ohci(card
);
619 mutex_lock(&ohci
->phy_reg_mutex
);
620 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
621 mutex_unlock(&ohci
->phy_reg_mutex
);
626 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
628 return page_private(ctx
->pages
[i
]);
631 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
633 struct descriptor
*d
;
635 d
= &ctx
->descriptors
[index
];
636 d
->branch_address
&= cpu_to_le32(~0xf);
637 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
638 d
->transfer_status
= 0;
640 wmb(); /* finish init of new descriptors before branch_address update */
641 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
642 d
->branch_address
|= cpu_to_le32(1);
644 ctx
->last_buffer_index
= index
;
646 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
649 static void ar_context_release(struct ar_context
*ctx
)
654 vm_unmap_ram(ctx
->buffer
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
);
656 for (i
= 0; i
< AR_BUFFERS
; i
++)
658 dma_unmap_page(ctx
->ohci
->card
.device
,
659 ar_buffer_bus(ctx
, i
),
660 PAGE_SIZE
, DMA_FROM_DEVICE
);
661 __free_page(ctx
->pages
[i
]);
665 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
667 if (reg_read(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
668 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
669 flush_writes(ctx
->ohci
);
671 fw_error("AR error: %s; DMA stopped\n", error_msg
);
673 /* FIXME: restart? */
676 static inline unsigned int ar_next_buffer_index(unsigned int index
)
678 return (index
+ 1) % AR_BUFFERS
;
681 static inline unsigned int ar_prev_buffer_index(unsigned int index
)
683 return (index
- 1 + AR_BUFFERS
) % AR_BUFFERS
;
686 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
688 return ar_next_buffer_index(ctx
->last_buffer_index
);
692 * We search for the buffer that contains the last AR packet DMA data written
695 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
696 unsigned int *buffer_offset
)
698 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
699 __le16 res_count
, next_res_count
;
701 i
= ar_first_buffer_index(ctx
);
702 res_count
= ACCESS_ONCE(ctx
->descriptors
[i
].res_count
);
704 /* A buffer that is not yet completely filled must be the last one. */
705 while (i
!= last
&& res_count
== 0) {
707 /* Peek at the next descriptor. */
708 next_i
= ar_next_buffer_index(i
);
709 rmb(); /* read descriptors in order */
710 next_res_count
= ACCESS_ONCE(
711 ctx
->descriptors
[next_i
].res_count
);
713 * If the next descriptor is still empty, we must stop at this
716 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
718 * The exception is when the DMA data for one packet is
719 * split over three buffers; in this case, the middle
720 * buffer's descriptor might be never updated by the
721 * controller and look still empty, and we have to peek
724 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
725 next_i
= ar_next_buffer_index(next_i
);
727 next_res_count
= ACCESS_ONCE(
728 ctx
->descriptors
[next_i
].res_count
);
729 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
730 goto next_buffer_is_active
;
736 next_buffer_is_active
:
738 res_count
= next_res_count
;
741 rmb(); /* read res_count before the DMA data */
743 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
744 if (*buffer_offset
> PAGE_SIZE
) {
746 ar_context_abort(ctx
, "corrupted descriptor");
752 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
753 unsigned int end_buffer_index
,
754 unsigned int end_buffer_offset
)
758 i
= ar_first_buffer_index(ctx
);
759 while (i
!= end_buffer_index
) {
760 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
761 ar_buffer_bus(ctx
, i
),
762 PAGE_SIZE
, DMA_FROM_DEVICE
);
763 i
= ar_next_buffer_index(i
);
765 if (end_buffer_offset
> 0)
766 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
767 ar_buffer_bus(ctx
, i
),
768 end_buffer_offset
, DMA_FROM_DEVICE
);
771 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
772 #define cond_le32_to_cpu(v) \
773 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
775 #define cond_le32_to_cpu(v) le32_to_cpu(v)
778 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
780 struct fw_ohci
*ohci
= ctx
->ohci
;
782 u32 status
, length
, tcode
;
785 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
786 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
787 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
789 tcode
= (p
.header
[0] >> 4) & 0x0f;
791 case TCODE_WRITE_QUADLET_REQUEST
:
792 case TCODE_READ_QUADLET_RESPONSE
:
793 p
.header
[3] = (__force __u32
) buffer
[3];
794 p
.header_length
= 16;
795 p
.payload_length
= 0;
798 case TCODE_READ_BLOCK_REQUEST
:
799 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
800 p
.header_length
= 16;
801 p
.payload_length
= 0;
804 case TCODE_WRITE_BLOCK_REQUEST
:
805 case TCODE_READ_BLOCK_RESPONSE
:
806 case TCODE_LOCK_REQUEST
:
807 case TCODE_LOCK_RESPONSE
:
808 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
809 p
.header_length
= 16;
810 p
.payload_length
= p
.header
[3] >> 16;
811 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
812 ar_context_abort(ctx
, "invalid packet length");
817 case TCODE_WRITE_RESPONSE
:
818 case TCODE_READ_QUADLET_REQUEST
:
819 case OHCI_TCODE_PHY_PACKET
:
820 p
.header_length
= 12;
821 p
.payload_length
= 0;
825 ar_context_abort(ctx
, "invalid tcode");
829 p
.payload
= (void *) buffer
+ p
.header_length
;
831 /* FIXME: What to do about evt_* errors? */
832 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
833 status
= cond_le32_to_cpu(buffer
[length
]);
834 evt
= (status
>> 16) & 0x1f;
837 p
.speed
= (status
>> 21) & 0x7;
838 p
.timestamp
= status
& 0xffff;
839 p
.generation
= ohci
->request_generation
;
841 log_ar_at_event('R', p
.speed
, p
.header
, evt
);
844 * Several controllers, notably from NEC and VIA, forget to
845 * write ack_complete status at PHY packet reception.
847 if (evt
== OHCI1394_evt_no_status
&&
848 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
849 p
.ack
= ACK_COMPLETE
;
852 * The OHCI bus reset handler synthesizes a PHY packet with
853 * the new generation number when a bus reset happens (see
854 * section 8.4.2.3). This helps us determine when a request
855 * was received and make sure we send the response in the same
856 * generation. We only need this for requests; for responses
857 * we use the unique tlabel for finding the matching
860 * Alas some chips sometimes emit bus reset packets with a
861 * wrong generation. We set the correct generation for these
862 * at a slightly incorrect time (in bus_reset_tasklet).
864 if (evt
== OHCI1394_evt_bus_reset
) {
865 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
866 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
867 } else if (ctx
== &ohci
->ar_request_ctx
) {
868 fw_core_handle_request(&ohci
->card
, &p
);
870 fw_core_handle_response(&ohci
->card
, &p
);
873 return buffer
+ length
+ 1;
876 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
881 next
= handle_ar_packet(ctx
, p
);
890 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
894 i
= ar_first_buffer_index(ctx
);
895 while (i
!= end_buffer
) {
896 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
897 ar_buffer_bus(ctx
, i
),
898 PAGE_SIZE
, DMA_FROM_DEVICE
);
899 ar_context_link_page(ctx
, i
);
900 i
= ar_next_buffer_index(i
);
904 static void ar_context_tasklet(unsigned long data
)
906 struct ar_context
*ctx
= (struct ar_context
*)data
;
907 unsigned int end_buffer_index
, end_buffer_offset
;
914 end_buffer_index
= ar_search_last_active_buffer(ctx
,
916 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
917 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
919 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
921 * The filled part of the overall buffer wraps around; handle
922 * all packets up to the buffer end here. If the last packet
923 * wraps around, its tail will be visible after the buffer end
924 * because the buffer start pages are mapped there again.
926 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
927 p
= handle_ar_packets(ctx
, p
, buffer_end
);
930 /* adjust p to point back into the actual buffer */
931 p
-= AR_BUFFERS
* PAGE_SIZE
;
934 p
= handle_ar_packets(ctx
, p
, end
);
937 ar_context_abort(ctx
, "inconsistent descriptor");
942 ar_recycle_buffers(ctx
, end_buffer_index
);
950 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
951 unsigned int descriptors_offset
, u32 regs
)
955 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
956 struct descriptor
*d
;
960 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
962 for (i
= 0; i
< AR_BUFFERS
; i
++) {
963 ctx
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
);
966 dma_addr
= dma_map_page(ohci
->card
.device
, ctx
->pages
[i
],
967 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
968 if (dma_mapping_error(ohci
->card
.device
, dma_addr
)) {
969 __free_page(ctx
->pages
[i
]);
970 ctx
->pages
[i
] = NULL
;
973 set_page_private(ctx
->pages
[i
], dma_addr
);
976 for (i
= 0; i
< AR_BUFFERS
; i
++)
977 pages
[i
] = ctx
->pages
[i
];
978 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
979 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
980 ctx
->buffer
= vm_map_ram(pages
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
,
985 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
986 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
988 for (i
= 0; i
< AR_BUFFERS
; i
++) {
989 d
= &ctx
->descriptors
[i
];
990 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
991 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
993 DESCRIPTOR_BRANCH_ALWAYS
);
994 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
995 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
996 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
1002 ar_context_release(ctx
);
1007 static void ar_context_run(struct ar_context
*ctx
)
1011 for (i
= 0; i
< AR_BUFFERS
; i
++)
1012 ar_context_link_page(ctx
, i
);
1014 ctx
->pointer
= ctx
->buffer
;
1016 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1017 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1020 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1024 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1026 /* figure out which descriptor the branch address goes in */
1027 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1033 static void context_tasklet(unsigned long data
)
1035 struct context
*ctx
= (struct context
*) data
;
1036 struct descriptor
*d
, *last
;
1039 struct descriptor_buffer
*desc
;
1041 desc
= list_entry(ctx
->buffer_list
.next
,
1042 struct descriptor_buffer
, list
);
1044 while (last
->branch_address
!= 0) {
1045 struct descriptor_buffer
*old_desc
= desc
;
1046 address
= le32_to_cpu(last
->branch_address
);
1050 /* If the branch address points to a buffer outside of the
1051 * current buffer, advance to the next buffer. */
1052 if (address
< desc
->buffer_bus
||
1053 address
>= desc
->buffer_bus
+ desc
->used
)
1054 desc
= list_entry(desc
->list
.next
,
1055 struct descriptor_buffer
, list
);
1056 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1057 last
= find_branch_descriptor(d
, z
);
1059 if (!ctx
->callback(ctx
, d
, last
))
1062 if (old_desc
!= desc
) {
1063 /* If we've advanced to the next buffer, move the
1064 * previous buffer to the free list. */
1065 unsigned long flags
;
1067 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1068 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1069 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1076 * Allocate a new buffer and add it to the list of free buffers for this
1077 * context. Must be called with ohci->lock held.
1079 static int context_add_buffer(struct context
*ctx
)
1081 struct descriptor_buffer
*desc
;
1082 dma_addr_t
uninitialized_var(bus_addr
);
1086 * 16MB of descriptors should be far more than enough for any DMA
1087 * program. This will catch run-away userspace or DoS attacks.
1089 if (ctx
->total_allocation
>= 16*1024*1024)
1092 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1093 &bus_addr
, GFP_ATOMIC
);
1097 offset
= (void *)&desc
->buffer
- (void *)desc
;
1098 desc
->buffer_size
= PAGE_SIZE
- offset
;
1099 desc
->buffer_bus
= bus_addr
+ offset
;
1102 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1103 ctx
->total_allocation
+= PAGE_SIZE
;
1108 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1109 u32 regs
, descriptor_callback_t callback
)
1113 ctx
->total_allocation
= 0;
1115 INIT_LIST_HEAD(&ctx
->buffer_list
);
1116 if (context_add_buffer(ctx
) < 0)
1119 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1120 struct descriptor_buffer
, list
);
1122 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1123 ctx
->callback
= callback
;
1126 * We put a dummy descriptor in the buffer that has a NULL
1127 * branch address and looks like it's been sent. That way we
1128 * have a descriptor to append DMA programs to.
1130 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1131 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1132 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1133 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1134 ctx
->last
= ctx
->buffer_tail
->buffer
;
1135 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1140 static void context_release(struct context
*ctx
)
1142 struct fw_card
*card
= &ctx
->ohci
->card
;
1143 struct descriptor_buffer
*desc
, *tmp
;
1145 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1146 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1148 ((void *)&desc
->buffer
- (void *)desc
));
1151 /* Must be called with ohci->lock held */
1152 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1153 int z
, dma_addr_t
*d_bus
)
1155 struct descriptor
*d
= NULL
;
1156 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1158 if (z
* sizeof(*d
) > desc
->buffer_size
)
1161 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1162 /* No room for the descriptor in this buffer, so advance to the
1165 if (desc
->list
.next
== &ctx
->buffer_list
) {
1166 /* If there is no free buffer next in the list,
1168 if (context_add_buffer(ctx
) < 0)
1171 desc
= list_entry(desc
->list
.next
,
1172 struct descriptor_buffer
, list
);
1173 ctx
->buffer_tail
= desc
;
1176 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1177 memset(d
, 0, z
* sizeof(*d
));
1178 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1183 static void context_run(struct context
*ctx
, u32 extra
)
1185 struct fw_ohci
*ohci
= ctx
->ohci
;
1187 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1188 le32_to_cpu(ctx
->last
->branch_address
));
1189 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1190 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1191 ctx
->running
= true;
1195 static void context_append(struct context
*ctx
,
1196 struct descriptor
*d
, int z
, int extra
)
1199 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1201 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1203 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1205 wmb(); /* finish init of new descriptors before branch_address update */
1206 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1207 ctx
->prev
= find_branch_descriptor(d
, z
);
1210 static void context_stop(struct context
*ctx
)
1215 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1216 ctx
->running
= false;
1218 for (i
= 0; i
< 1000; i
++) {
1219 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
1220 if ((reg
& CONTEXT_ACTIVE
) == 0)
1226 fw_error("Error: DMA context still active (0x%08x)\n", reg
);
1229 struct driver_data
{
1231 struct fw_packet
*packet
;
1235 * This function apppends a packet to the DMA queue for transmission.
1236 * Must always be called with the ochi->lock held to ensure proper
1237 * generation handling and locking around packet queue manipulation.
1239 static int at_context_queue_packet(struct context
*ctx
,
1240 struct fw_packet
*packet
)
1242 struct fw_ohci
*ohci
= ctx
->ohci
;
1243 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1244 struct driver_data
*driver_data
;
1245 struct descriptor
*d
, *last
;
1249 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1251 packet
->ack
= RCODE_SEND_ERROR
;
1255 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1256 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1259 * The DMA format for asyncronous link packets is different
1260 * from the IEEE1394 layout, so shift the fields around
1264 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1265 header
= (__le32
*) &d
[1];
1267 case TCODE_WRITE_QUADLET_REQUEST
:
1268 case TCODE_WRITE_BLOCK_REQUEST
:
1269 case TCODE_WRITE_RESPONSE
:
1270 case TCODE_READ_QUADLET_REQUEST
:
1271 case TCODE_READ_BLOCK_REQUEST
:
1272 case TCODE_READ_QUADLET_RESPONSE
:
1273 case TCODE_READ_BLOCK_RESPONSE
:
1274 case TCODE_LOCK_REQUEST
:
1275 case TCODE_LOCK_RESPONSE
:
1276 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1277 (packet
->speed
<< 16));
1278 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1279 (packet
->header
[0] & 0xffff0000));
1280 header
[2] = cpu_to_le32(packet
->header
[2]);
1282 if (TCODE_IS_BLOCK_PACKET(tcode
))
1283 header
[3] = cpu_to_le32(packet
->header
[3]);
1285 header
[3] = (__force __le32
) packet
->header
[3];
1287 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1290 case TCODE_LINK_INTERNAL
:
1291 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1292 (packet
->speed
<< 16));
1293 header
[1] = cpu_to_le32(packet
->header
[1]);
1294 header
[2] = cpu_to_le32(packet
->header
[2]);
1295 d
[0].req_count
= cpu_to_le16(12);
1297 if (is_ping_packet(&packet
->header
[1]))
1298 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1301 case TCODE_STREAM_DATA
:
1302 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1303 (packet
->speed
<< 16));
1304 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1305 d
[0].req_count
= cpu_to_le16(8);
1310 packet
->ack
= RCODE_SEND_ERROR
;
1314 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1315 driver_data
= (struct driver_data
*) &d
[3];
1316 driver_data
->packet
= packet
;
1317 packet
->driver_data
= driver_data
;
1319 if (packet
->payload_length
> 0) {
1320 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1321 payload_bus
= dma_map_single(ohci
->card
.device
,
1323 packet
->payload_length
,
1325 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1326 packet
->ack
= RCODE_SEND_ERROR
;
1329 packet
->payload_bus
= payload_bus
;
1330 packet
->payload_mapped
= true;
1332 memcpy(driver_data
->inline_data
, packet
->payload
,
1333 packet
->payload_length
);
1334 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1337 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1338 d
[2].data_address
= cpu_to_le32(payload_bus
);
1346 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1347 DESCRIPTOR_IRQ_ALWAYS
|
1348 DESCRIPTOR_BRANCH_ALWAYS
);
1350 /* FIXME: Document how the locking works. */
1351 if (ohci
->generation
!= packet
->generation
) {
1352 if (packet
->payload_mapped
)
1353 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1354 packet
->payload_length
, DMA_TO_DEVICE
);
1355 packet
->ack
= RCODE_GENERATION
;
1359 context_append(ctx
, d
, z
, 4 - z
);
1362 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1364 context_run(ctx
, 0);
1369 static void at_context_flush(struct context
*ctx
)
1371 tasklet_disable(&ctx
->tasklet
);
1373 ctx
->flushing
= true;
1374 context_tasklet((unsigned long)ctx
);
1375 ctx
->flushing
= false;
1377 tasklet_enable(&ctx
->tasklet
);
1380 static int handle_at_packet(struct context
*context
,
1381 struct descriptor
*d
,
1382 struct descriptor
*last
)
1384 struct driver_data
*driver_data
;
1385 struct fw_packet
*packet
;
1386 struct fw_ohci
*ohci
= context
->ohci
;
1389 if (last
->transfer_status
== 0 && !context
->flushing
)
1390 /* This descriptor isn't done yet, stop iteration. */
1393 driver_data
= (struct driver_data
*) &d
[3];
1394 packet
= driver_data
->packet
;
1396 /* This packet was cancelled, just continue. */
1399 if (packet
->payload_mapped
)
1400 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1401 packet
->payload_length
, DMA_TO_DEVICE
);
1403 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1404 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1406 log_ar_at_event('T', packet
->speed
, packet
->header
, evt
);
1409 case OHCI1394_evt_timeout
:
1410 /* Async response transmit timed out. */
1411 packet
->ack
= RCODE_CANCELLED
;
1414 case OHCI1394_evt_flushed
:
1416 * The packet was flushed should give same error as
1417 * when we try to use a stale generation count.
1419 packet
->ack
= RCODE_GENERATION
;
1422 case OHCI1394_evt_missing_ack
:
1423 if (context
->flushing
)
1424 packet
->ack
= RCODE_GENERATION
;
1427 * Using a valid (current) generation count, but the
1428 * node is not on the bus or not sending acks.
1430 packet
->ack
= RCODE_NO_ACK
;
1434 case ACK_COMPLETE
+ 0x10:
1435 case ACK_PENDING
+ 0x10:
1436 case ACK_BUSY_X
+ 0x10:
1437 case ACK_BUSY_A
+ 0x10:
1438 case ACK_BUSY_B
+ 0x10:
1439 case ACK_DATA_ERROR
+ 0x10:
1440 case ACK_TYPE_ERROR
+ 0x10:
1441 packet
->ack
= evt
- 0x10;
1444 case OHCI1394_evt_no_status
:
1445 if (context
->flushing
) {
1446 packet
->ack
= RCODE_GENERATION
;
1452 packet
->ack
= RCODE_SEND_ERROR
;
1456 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1461 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1462 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1463 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1464 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1465 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1467 static void handle_local_rom(struct fw_ohci
*ohci
,
1468 struct fw_packet
*packet
, u32 csr
)
1470 struct fw_packet response
;
1471 int tcode
, length
, i
;
1473 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1474 if (TCODE_IS_BLOCK_PACKET(tcode
))
1475 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1479 i
= csr
- CSR_CONFIG_ROM
;
1480 if (i
+ length
> CONFIG_ROM_SIZE
) {
1481 fw_fill_response(&response
, packet
->header
,
1482 RCODE_ADDRESS_ERROR
, NULL
, 0);
1483 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1484 fw_fill_response(&response
, packet
->header
,
1485 RCODE_TYPE_ERROR
, NULL
, 0);
1487 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1488 (void *) ohci
->config_rom
+ i
, length
);
1491 fw_core_handle_response(&ohci
->card
, &response
);
1494 static void handle_local_lock(struct fw_ohci
*ohci
,
1495 struct fw_packet
*packet
, u32 csr
)
1497 struct fw_packet response
;
1498 int tcode
, length
, ext_tcode
, sel
, try;
1499 __be32
*payload
, lock_old
;
1500 u32 lock_arg
, lock_data
;
1502 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1503 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1504 payload
= packet
->payload
;
1505 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1507 if (tcode
== TCODE_LOCK_REQUEST
&&
1508 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1509 lock_arg
= be32_to_cpu(payload
[0]);
1510 lock_data
= be32_to_cpu(payload
[1]);
1511 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1515 fw_fill_response(&response
, packet
->header
,
1516 RCODE_TYPE_ERROR
, NULL
, 0);
1520 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1521 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1522 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1523 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1525 for (try = 0; try < 20; try++)
1526 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1527 lock_old
= cpu_to_be32(reg_read(ohci
,
1529 fw_fill_response(&response
, packet
->header
,
1531 &lock_old
, sizeof(lock_old
));
1535 fw_error("swap not done (CSR lock timeout)\n");
1536 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1539 fw_core_handle_response(&ohci
->card
, &response
);
1542 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1546 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1547 packet
->ack
= ACK_PENDING
;
1548 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1552 ((unsigned long long)
1553 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1555 csr
= offset
- CSR_REGISTER_BASE
;
1557 /* Handle config rom reads. */
1558 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1559 handle_local_rom(ctx
->ohci
, packet
, csr
);
1561 case CSR_BUS_MANAGER_ID
:
1562 case CSR_BANDWIDTH_AVAILABLE
:
1563 case CSR_CHANNELS_AVAILABLE_HI
:
1564 case CSR_CHANNELS_AVAILABLE_LO
:
1565 handle_local_lock(ctx
->ohci
, packet
, csr
);
1568 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1569 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1571 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1575 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1576 packet
->ack
= ACK_COMPLETE
;
1577 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1581 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1583 unsigned long flags
;
1586 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1588 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1589 ctx
->ohci
->generation
== packet
->generation
) {
1590 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1591 handle_local_request(ctx
, packet
);
1595 ret
= at_context_queue_packet(ctx
, packet
);
1596 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1599 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1603 static void detect_dead_context(struct fw_ohci
*ohci
,
1604 const char *name
, unsigned int regs
)
1608 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1609 if (ctl
& CONTEXT_DEAD
) {
1610 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1611 fw_error("DMA context %s has stopped, error code: %s\n",
1612 name
, evts
[ctl
& 0x1f]);
1614 fw_error("DMA context %s has stopped, error code: %#x\n",
1620 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1625 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1626 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1627 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1628 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1629 for (i
= 0; i
< 32; ++i
) {
1630 if (!(ohci
->it_context_support
& (1 << i
)))
1632 sprintf(name
, "IT%u", i
);
1633 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1635 for (i
= 0; i
< 32; ++i
) {
1636 if (!(ohci
->ir_context_support
& (1 << i
)))
1638 sprintf(name
, "IR%u", i
);
1639 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1641 /* TODO: maybe try to flush and restart the dead contexts */
1644 static u32
cycle_timer_ticks(u32 cycle_timer
)
1648 ticks
= cycle_timer
& 0xfff;
1649 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1650 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1656 * Some controllers exhibit one or more of the following bugs when updating the
1657 * iso cycle timer register:
1658 * - When the lowest six bits are wrapping around to zero, a read that happens
1659 * at the same time will return garbage in the lowest ten bits.
1660 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1661 * not incremented for about 60 ns.
1662 * - Occasionally, the entire register reads zero.
1664 * To catch these, we read the register three times and ensure that the
1665 * difference between each two consecutive reads is approximately the same, i.e.
1666 * less than twice the other. Furthermore, any negative difference indicates an
1667 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1668 * execute, so we have enough precision to compute the ratio of the differences.)
1670 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1677 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1679 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1682 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1686 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1687 t0
= cycle_timer_ticks(c0
);
1688 t1
= cycle_timer_ticks(c1
);
1689 t2
= cycle_timer_ticks(c2
);
1692 } while ((diff01
<= 0 || diff12
<= 0 ||
1693 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1701 * This function has to be called at least every 64 seconds. The bus_time
1702 * field stores not only the upper 25 bits of the BUS_TIME register but also
1703 * the most significant bit of the cycle timer in bit 6 so that we can detect
1704 * changes in this bit.
1706 static u32
update_bus_time(struct fw_ohci
*ohci
)
1708 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1710 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1711 ohci
->bus_time
+= 0x40;
1713 return ohci
->bus_time
| cycle_time_seconds
;
1716 static void bus_reset_tasklet(unsigned long data
)
1718 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
1719 int self_id_count
, i
, j
, reg
;
1720 int generation
, new_generation
;
1721 unsigned long flags
;
1722 void *free_rom
= NULL
;
1723 dma_addr_t free_rom_bus
= 0;
1726 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1727 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1728 fw_notify("node ID not valid, new bus reset in progress\n");
1731 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1732 fw_notify("malconfigured bus\n");
1735 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1736 OHCI1394_NodeID_nodeNumber
);
1738 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1739 if (!(ohci
->is_root
&& is_new_root
))
1740 reg_write(ohci
, OHCI1394_LinkControlSet
,
1741 OHCI1394_LinkControl_cycleMaster
);
1742 ohci
->is_root
= is_new_root
;
1744 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1745 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1746 fw_notify("inconsistent self IDs\n");
1750 * The count in the SelfIDCount register is the number of
1751 * bytes in the self ID receive buffer. Since we also receive
1752 * the inverted quadlets and a header quadlet, we shift one
1753 * bit extra to get the actual number of self IDs.
1755 self_id_count
= (reg
>> 3) & 0xff;
1756 if (self_id_count
== 0 || self_id_count
> 252) {
1757 fw_notify("inconsistent self IDs\n");
1760 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1763 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1764 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1]) {
1765 fw_notify("inconsistent self IDs\n");
1768 ohci
->self_id_buffer
[j
] =
1769 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1774 * Check the consistency of the self IDs we just read. The
1775 * problem we face is that a new bus reset can start while we
1776 * read out the self IDs from the DMA buffer. If this happens,
1777 * the DMA buffer will be overwritten with new self IDs and we
1778 * will read out inconsistent data. The OHCI specification
1779 * (section 11.2) recommends a technique similar to
1780 * linux/seqlock.h, where we remember the generation of the
1781 * self IDs in the buffer before reading them out and compare
1782 * it to the current generation after reading them out. If
1783 * the two generations match we know we have a consistent set
1787 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1788 if (new_generation
!= generation
) {
1789 fw_notify("recursive bus reset detected, "
1790 "discarding self ids\n");
1794 /* FIXME: Document how the locking works. */
1795 spin_lock_irqsave(&ohci
->lock
, flags
);
1797 ohci
->generation
= -1; /* prevent AT packet queueing */
1798 context_stop(&ohci
->at_request_ctx
);
1799 context_stop(&ohci
->at_response_ctx
);
1801 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1804 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1805 * packets in the AT queues and software needs to drain them.
1806 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1808 at_context_flush(&ohci
->at_request_ctx
);
1809 at_context_flush(&ohci
->at_response_ctx
);
1811 spin_lock_irqsave(&ohci
->lock
, flags
);
1813 ohci
->generation
= generation
;
1814 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1816 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
1817 ohci
->request_generation
= generation
;
1820 * This next bit is unrelated to the AT context stuff but we
1821 * have to do it under the spinlock also. If a new config rom
1822 * was set up before this reset, the old one is now no longer
1823 * in use and we can free it. Update the config rom pointers
1824 * to point to the current config rom and clear the
1825 * next_config_rom pointer so a new update can take place.
1828 if (ohci
->next_config_rom
!= NULL
) {
1829 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1830 free_rom
= ohci
->config_rom
;
1831 free_rom_bus
= ohci
->config_rom_bus
;
1833 ohci
->config_rom
= ohci
->next_config_rom
;
1834 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1835 ohci
->next_config_rom
= NULL
;
1838 * Restore config_rom image and manually update
1839 * config_rom registers. Writing the header quadlet
1840 * will indicate that the config rom is ready, so we
1843 reg_write(ohci
, OHCI1394_BusOptions
,
1844 be32_to_cpu(ohci
->config_rom
[2]));
1845 ohci
->config_rom
[0] = ohci
->next_header
;
1846 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
1847 be32_to_cpu(ohci
->next_header
));
1850 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1851 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
1852 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
1855 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1858 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1859 free_rom
, free_rom_bus
);
1861 log_selfids(ohci
->node_id
, generation
,
1862 self_id_count
, ohci
->self_id_buffer
);
1864 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1865 self_id_count
, ohci
->self_id_buffer
,
1866 ohci
->csr_state_setclear_abdicate
);
1867 ohci
->csr_state_setclear_abdicate
= false;
1870 static irqreturn_t
irq_handler(int irq
, void *data
)
1872 struct fw_ohci
*ohci
= data
;
1873 u32 event
, iso_event
;
1876 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1878 if (!event
|| !~event
)
1882 * busReset and postedWriteErr must not be cleared yet
1883 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1885 reg_write(ohci
, OHCI1394_IntEventClear
,
1886 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
1889 if (event
& OHCI1394_selfIDComplete
)
1890 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1892 if (event
& OHCI1394_RQPkt
)
1893 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1895 if (event
& OHCI1394_RSPkt
)
1896 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1898 if (event
& OHCI1394_reqTxComplete
)
1899 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1901 if (event
& OHCI1394_respTxComplete
)
1902 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1904 if (event
& OHCI1394_isochRx
) {
1905 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1906 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1909 i
= ffs(iso_event
) - 1;
1911 &ohci
->ir_context_list
[i
].context
.tasklet
);
1912 iso_event
&= ~(1 << i
);
1916 if (event
& OHCI1394_isochTx
) {
1917 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1918 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1921 i
= ffs(iso_event
) - 1;
1923 &ohci
->it_context_list
[i
].context
.tasklet
);
1924 iso_event
&= ~(1 << i
);
1928 if (unlikely(event
& OHCI1394_regAccessFail
))
1929 fw_error("Register access failure - "
1930 "please notify linux1394-devel@lists.sf.net\n");
1932 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
1933 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
1934 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
1935 reg_write(ohci
, OHCI1394_IntEventClear
,
1936 OHCI1394_postedWriteErr
);
1937 fw_error("PCI posted write error\n");
1940 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
1941 if (printk_ratelimit())
1942 fw_notify("isochronous cycle too long\n");
1943 reg_write(ohci
, OHCI1394_LinkControlSet
,
1944 OHCI1394_LinkControl_cycleMaster
);
1947 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
1949 * We need to clear this event bit in order to make
1950 * cycleMatch isochronous I/O work. In theory we should
1951 * stop active cycleMatch iso contexts now and restart
1952 * them at least two cycles later. (FIXME?)
1954 if (printk_ratelimit())
1955 fw_notify("isochronous cycle inconsistent\n");
1958 if (unlikely(event
& OHCI1394_unrecoverableError
))
1959 handle_dead_contexts(ohci
);
1961 if (event
& OHCI1394_cycle64Seconds
) {
1962 spin_lock(&ohci
->lock
);
1963 update_bus_time(ohci
);
1964 spin_unlock(&ohci
->lock
);
1971 static int software_reset(struct fw_ohci
*ohci
)
1976 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1977 for (i
= 0; i
< 500; i
++) {
1978 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
1980 return -ENODEV
; /* Card was ejected. */
1982 if (!(val
& OHCI1394_HCControl_softReset
))
1991 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
1993 size_t size
= length
* 4;
1995 memcpy(dest
, src
, size
);
1996 if (size
< CONFIG_ROM_SIZE
)
1997 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
2000 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2003 int ret
, clear
, set
, offset
;
2005 /* Check if the driver should configure link and PHY. */
2006 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2007 OHCI1394_HCControl_programPhyEnable
))
2010 /* Paranoia: check whether the PHY supports 1394a, too. */
2011 enable_1394a
= false;
2012 ret
= read_phy_reg(ohci
, 2);
2015 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2016 ret
= read_paged_phy_reg(ohci
, 1, 8);
2020 enable_1394a
= true;
2023 if (ohci
->quirks
& QUIRK_NO_1394A
)
2024 enable_1394a
= false;
2026 /* Configure PHY and link consistently. */
2029 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2031 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2034 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2039 offset
= OHCI1394_HCControlSet
;
2041 offset
= OHCI1394_HCControlClear
;
2042 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2044 /* Clean up: configuration has been taken care of. */
2045 reg_write(ohci
, OHCI1394_HCControlClear
,
2046 OHCI1394_HCControl_programPhyEnable
);
2051 static int ohci_enable(struct fw_card
*card
,
2052 const __be32
*config_rom
, size_t length
)
2054 struct fw_ohci
*ohci
= fw_ohci(card
);
2055 struct pci_dev
*dev
= to_pci_dev(card
->device
);
2056 u32 lps
, seconds
, version
, irqs
;
2059 if (software_reset(ohci
)) {
2060 fw_error("Failed to reset ohci card.\n");
2065 * Now enable LPS, which we need in order to start accessing
2066 * most of the registers. In fact, on some cards (ALI M5251),
2067 * accessing registers in the SClk domain without LPS enabled
2068 * will lock up the machine. Wait 50msec to make sure we have
2069 * full link enabled. However, with some cards (well, at least
2070 * a JMicron PCIe card), we have to try again sometimes.
2072 reg_write(ohci
, OHCI1394_HCControlSet
,
2073 OHCI1394_HCControl_LPS
|
2074 OHCI1394_HCControl_postedWriteEnable
);
2077 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2079 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2080 OHCI1394_HCControl_LPS
;
2084 fw_error("Failed to set Link Power Status\n");
2088 reg_write(ohci
, OHCI1394_HCControlClear
,
2089 OHCI1394_HCControl_noByteSwapData
);
2091 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2092 reg_write(ohci
, OHCI1394_LinkControlSet
,
2093 OHCI1394_LinkControl_cycleTimerEnable
|
2094 OHCI1394_LinkControl_cycleMaster
);
2096 reg_write(ohci
, OHCI1394_ATRetries
,
2097 OHCI1394_MAX_AT_REQ_RETRIES
|
2098 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2099 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2102 seconds
= lower_32_bits(get_seconds());
2103 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, seconds
<< 25);
2104 ohci
->bus_time
= seconds
& ~0x3f;
2106 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2107 if (version
>= OHCI_VERSION_1_1
) {
2108 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2110 card
->broadcast_channel_auto_allocated
= true;
2113 /* Get implemented bits of the priority arbitration request counter. */
2114 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2115 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2116 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2117 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2119 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
2120 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2121 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2123 ret
= configure_1394a_enhancements(ohci
);
2127 /* Activate link_on bit and contender bit in our self ID packets.*/
2128 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2133 * When the link is not yet enabled, the atomic config rom
2134 * update mechanism described below in ohci_set_config_rom()
2135 * is not active. We have to update ConfigRomHeader and
2136 * BusOptions manually, and the write to ConfigROMmap takes
2137 * effect immediately. We tie this to the enabling of the
2138 * link, so we have a valid config rom before enabling - the
2139 * OHCI requires that ConfigROMhdr and BusOptions have valid
2140 * values before enabling.
2142 * However, when the ConfigROMmap is written, some controllers
2143 * always read back quadlets 0 and 2 from the config rom to
2144 * the ConfigRomHeader and BusOptions registers on bus reset.
2145 * They shouldn't do that in this initial case where the link
2146 * isn't enabled. This means we have to use the same
2147 * workaround here, setting the bus header to 0 and then write
2148 * the right values in the bus reset tasklet.
2152 ohci
->next_config_rom
=
2153 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2154 &ohci
->next_config_rom_bus
,
2156 if (ohci
->next_config_rom
== NULL
)
2159 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2162 * In the suspend case, config_rom is NULL, which
2163 * means that we just reuse the old config rom.
2165 ohci
->next_config_rom
= ohci
->config_rom
;
2166 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2169 ohci
->next_header
= ohci
->next_config_rom
[0];
2170 ohci
->next_config_rom
[0] = 0;
2171 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2172 reg_write(ohci
, OHCI1394_BusOptions
,
2173 be32_to_cpu(ohci
->next_config_rom
[2]));
2174 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2176 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2178 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
2179 pci_enable_msi(dev
);
2180 if (request_irq(dev
->irq
, irq_handler
,
2181 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
2182 ohci_driver_name
, ohci
)) {
2183 fw_error("Failed to allocate interrupt %d.\n", dev
->irq
);
2184 pci_disable_msi(dev
);
2187 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2188 ohci
->next_config_rom
,
2189 ohci
->next_config_rom_bus
);
2190 ohci
->next_config_rom
= NULL
;
2195 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2196 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2197 OHCI1394_isochTx
| OHCI1394_isochRx
|
2198 OHCI1394_postedWriteErr
|
2199 OHCI1394_selfIDComplete
|
2200 OHCI1394_regAccessFail
|
2201 OHCI1394_cycle64Seconds
|
2202 OHCI1394_cycleInconsistent
|
2203 OHCI1394_unrecoverableError
|
2204 OHCI1394_cycleTooLong
|
2205 OHCI1394_masterIntEnable
;
2206 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2207 irqs
|= OHCI1394_busReset
;
2208 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2210 reg_write(ohci
, OHCI1394_HCControlSet
,
2211 OHCI1394_HCControl_linkEnable
|
2212 OHCI1394_HCControl_BIBimageValid
);
2214 reg_write(ohci
, OHCI1394_LinkControlSet
,
2215 OHCI1394_LinkControl_rcvSelfID
|
2216 OHCI1394_LinkControl_rcvPhyPkt
);
2218 ar_context_run(&ohci
->ar_request_ctx
);
2219 ar_context_run(&ohci
->ar_response_ctx
);
2223 /* We are ready to go, reset bus to finish initialization. */
2224 fw_schedule_bus_reset(&ohci
->card
, false, true);
2229 static int ohci_set_config_rom(struct fw_card
*card
,
2230 const __be32
*config_rom
, size_t length
)
2232 struct fw_ohci
*ohci
;
2233 unsigned long flags
;
2234 __be32
*next_config_rom
;
2235 dma_addr_t
uninitialized_var(next_config_rom_bus
);
2237 ohci
= fw_ohci(card
);
2240 * When the OHCI controller is enabled, the config rom update
2241 * mechanism is a bit tricky, but easy enough to use. See
2242 * section 5.5.6 in the OHCI specification.
2244 * The OHCI controller caches the new config rom address in a
2245 * shadow register (ConfigROMmapNext) and needs a bus reset
2246 * for the changes to take place. When the bus reset is
2247 * detected, the controller loads the new values for the
2248 * ConfigRomHeader and BusOptions registers from the specified
2249 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2250 * shadow register. All automatically and atomically.
2252 * Now, there's a twist to this story. The automatic load of
2253 * ConfigRomHeader and BusOptions doesn't honor the
2254 * noByteSwapData bit, so with a be32 config rom, the
2255 * controller will load be32 values in to these registers
2256 * during the atomic update, even on litte endian
2257 * architectures. The workaround we use is to put a 0 in the
2258 * header quadlet; 0 is endian agnostic and means that the
2259 * config rom isn't ready yet. In the bus reset tasklet we
2260 * then set up the real values for the two registers.
2262 * We use ohci->lock to avoid racing with the code that sets
2263 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2267 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2268 &next_config_rom_bus
, GFP_KERNEL
);
2269 if (next_config_rom
== NULL
)
2272 spin_lock_irqsave(&ohci
->lock
, flags
);
2275 * If there is not an already pending config_rom update,
2276 * push our new allocation into the ohci->next_config_rom
2277 * and then mark the local variable as null so that we
2278 * won't deallocate the new buffer.
2280 * OTOH, if there is a pending config_rom update, just
2281 * use that buffer with the new config_rom data, and
2282 * let this routine free the unused DMA allocation.
2285 if (ohci
->next_config_rom
== NULL
) {
2286 ohci
->next_config_rom
= next_config_rom
;
2287 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2288 next_config_rom
= NULL
;
2291 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2293 ohci
->next_header
= config_rom
[0];
2294 ohci
->next_config_rom
[0] = 0;
2296 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2298 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2300 /* If we didn't use the DMA allocation, delete it. */
2301 if (next_config_rom
!= NULL
)
2302 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2303 next_config_rom
, next_config_rom_bus
);
2306 * Now initiate a bus reset to have the changes take
2307 * effect. We clean up the old config rom memory and DMA
2308 * mappings in the bus reset tasklet, since the OHCI
2309 * controller could need to access it before the bus reset
2313 fw_schedule_bus_reset(&ohci
->card
, true, true);
2318 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2320 struct fw_ohci
*ohci
= fw_ohci(card
);
2322 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2325 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2327 struct fw_ohci
*ohci
= fw_ohci(card
);
2329 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2332 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2334 struct fw_ohci
*ohci
= fw_ohci(card
);
2335 struct context
*ctx
= &ohci
->at_request_ctx
;
2336 struct driver_data
*driver_data
= packet
->driver_data
;
2339 tasklet_disable(&ctx
->tasklet
);
2341 if (packet
->ack
!= 0)
2344 if (packet
->payload_mapped
)
2345 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2346 packet
->payload_length
, DMA_TO_DEVICE
);
2348 log_ar_at_event('T', packet
->speed
, packet
->header
, 0x20);
2349 driver_data
->packet
= NULL
;
2350 packet
->ack
= RCODE_CANCELLED
;
2351 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2354 tasklet_enable(&ctx
->tasklet
);
2359 static int ohci_enable_phys_dma(struct fw_card
*card
,
2360 int node_id
, int generation
)
2362 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2365 struct fw_ohci
*ohci
= fw_ohci(card
);
2366 unsigned long flags
;
2370 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2371 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2374 spin_lock_irqsave(&ohci
->lock
, flags
);
2376 if (ohci
->generation
!= generation
) {
2382 * Note, if the node ID contains a non-local bus ID, physical DMA is
2383 * enabled for _all_ nodes on remote buses.
2386 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2388 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2390 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2394 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2397 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2400 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2402 struct fw_ohci
*ohci
= fw_ohci(card
);
2403 unsigned long flags
;
2406 switch (csr_offset
) {
2407 case CSR_STATE_CLEAR
:
2409 if (ohci
->is_root
&&
2410 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2411 OHCI1394_LinkControl_cycleMaster
))
2412 value
= CSR_STATE_BIT_CMSTR
;
2415 if (ohci
->csr_state_setclear_abdicate
)
2416 value
|= CSR_STATE_BIT_ABDICATE
;
2421 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2423 case CSR_CYCLE_TIME
:
2424 return get_cycle_time(ohci
);
2428 * We might be called just after the cycle timer has wrapped
2429 * around but just before the cycle64Seconds handler, so we
2430 * better check here, too, if the bus time needs to be updated.
2432 spin_lock_irqsave(&ohci
->lock
, flags
);
2433 value
= update_bus_time(ohci
);
2434 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2437 case CSR_BUSY_TIMEOUT
:
2438 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2439 return (value
>> 4) & 0x0ffff00f;
2441 case CSR_PRIORITY_BUDGET
:
2442 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2443 (ohci
->pri_req_max
<< 8);
2451 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2453 struct fw_ohci
*ohci
= fw_ohci(card
);
2454 unsigned long flags
;
2456 switch (csr_offset
) {
2457 case CSR_STATE_CLEAR
:
2458 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2459 reg_write(ohci
, OHCI1394_LinkControlClear
,
2460 OHCI1394_LinkControl_cycleMaster
);
2463 if (value
& CSR_STATE_BIT_ABDICATE
)
2464 ohci
->csr_state_setclear_abdicate
= false;
2468 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2469 reg_write(ohci
, OHCI1394_LinkControlSet
,
2470 OHCI1394_LinkControl_cycleMaster
);
2473 if (value
& CSR_STATE_BIT_ABDICATE
)
2474 ohci
->csr_state_setclear_abdicate
= true;
2478 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2482 case CSR_CYCLE_TIME
:
2483 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2484 reg_write(ohci
, OHCI1394_IntEventSet
,
2485 OHCI1394_cycleInconsistent
);
2490 spin_lock_irqsave(&ohci
->lock
, flags
);
2491 ohci
->bus_time
= (ohci
->bus_time
& 0x7f) | (value
& ~0x7f);
2492 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2495 case CSR_BUSY_TIMEOUT
:
2496 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2497 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2498 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2502 case CSR_PRIORITY_BUDGET
:
2503 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2513 static void copy_iso_headers(struct iso_context
*ctx
, void *p
)
2515 int i
= ctx
->header_length
;
2517 if (i
+ ctx
->base
.header_size
> PAGE_SIZE
)
2521 * The iso header is byteswapped to little endian by
2522 * the controller, but the remaining header quadlets
2523 * are big endian. We want to present all the headers
2524 * as big endian, so we have to swap the first quadlet.
2526 if (ctx
->base
.header_size
> 0)
2527 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
2528 if (ctx
->base
.header_size
> 4)
2529 *(u32
*) (ctx
->header
+ i
+ 4) = __swab32(*(u32
*) p
);
2530 if (ctx
->base
.header_size
> 8)
2531 memcpy(ctx
->header
+ i
+ 8, p
+ 8, ctx
->base
.header_size
- 8);
2532 ctx
->header_length
+= ctx
->base
.header_size
;
2535 static int handle_ir_packet_per_buffer(struct context
*context
,
2536 struct descriptor
*d
,
2537 struct descriptor
*last
)
2539 struct iso_context
*ctx
=
2540 container_of(context
, struct iso_context
, context
);
2541 struct descriptor
*pd
;
2545 for (pd
= d
; pd
<= last
; pd
++)
2546 if (pd
->transfer_status
)
2549 /* Descriptor(s) not done yet, stop iteration */
2553 copy_iso_headers(ctx
, p
);
2555 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
2556 ir_header
= (__le32
*) p
;
2557 ctx
->base
.callback
.sc(&ctx
->base
,
2558 le32_to_cpu(ir_header
[0]) & 0xffff,
2559 ctx
->header_length
, ctx
->header
,
2560 ctx
->base
.callback_data
);
2561 ctx
->header_length
= 0;
2567 /* d == last because each descriptor block is only a single descriptor. */
2568 static int handle_ir_buffer_fill(struct context
*context
,
2569 struct descriptor
*d
,
2570 struct descriptor
*last
)
2572 struct iso_context
*ctx
=
2573 container_of(context
, struct iso_context
, context
);
2575 if (!last
->transfer_status
)
2576 /* Descriptor(s) not done yet, stop iteration */
2579 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
2580 ctx
->base
.callback
.mc(&ctx
->base
,
2581 le32_to_cpu(last
->data_address
) +
2582 le16_to_cpu(last
->req_count
) -
2583 le16_to_cpu(last
->res_count
),
2584 ctx
->base
.callback_data
);
2589 static int handle_it_packet(struct context
*context
,
2590 struct descriptor
*d
,
2591 struct descriptor
*last
)
2593 struct iso_context
*ctx
=
2594 container_of(context
, struct iso_context
, context
);
2596 struct descriptor
*pd
;
2598 for (pd
= d
; pd
<= last
; pd
++)
2599 if (pd
->transfer_status
)
2602 /* Descriptor(s) not done yet, stop iteration */
2605 i
= ctx
->header_length
;
2606 if (i
+ 4 < PAGE_SIZE
) {
2607 /* Present this value as big-endian to match the receive code */
2608 *(__be32
*)(ctx
->header
+ i
) = cpu_to_be32(
2609 ((u32
)le16_to_cpu(pd
->transfer_status
) << 16) |
2610 le16_to_cpu(pd
->res_count
));
2611 ctx
->header_length
+= 4;
2613 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
2614 ctx
->base
.callback
.sc(&ctx
->base
, le16_to_cpu(last
->res_count
),
2615 ctx
->header_length
, ctx
->header
,
2616 ctx
->base
.callback_data
);
2617 ctx
->header_length
= 0;
2622 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2624 u32 hi
= channels
>> 32, lo
= channels
;
2626 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2627 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2628 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2629 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2631 ohci
->mc_channels
= channels
;
2634 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2635 int type
, int channel
, size_t header_size
)
2637 struct fw_ohci
*ohci
= fw_ohci(card
);
2638 struct iso_context
*uninitialized_var(ctx
);
2639 descriptor_callback_t
uninitialized_var(callback
);
2640 u64
*uninitialized_var(channels
);
2641 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2642 unsigned long flags
;
2643 int index
, ret
= -EBUSY
;
2645 spin_lock_irqsave(&ohci
->lock
, flags
);
2648 case FW_ISO_CONTEXT_TRANSMIT
:
2649 mask
= &ohci
->it_context_mask
;
2650 callback
= handle_it_packet
;
2651 index
= ffs(*mask
) - 1;
2653 *mask
&= ~(1 << index
);
2654 regs
= OHCI1394_IsoXmitContextBase(index
);
2655 ctx
= &ohci
->it_context_list
[index
];
2659 case FW_ISO_CONTEXT_RECEIVE
:
2660 channels
= &ohci
->ir_context_channels
;
2661 mask
= &ohci
->ir_context_mask
;
2662 callback
= handle_ir_packet_per_buffer
;
2663 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2665 *channels
&= ~(1ULL << channel
);
2666 *mask
&= ~(1 << index
);
2667 regs
= OHCI1394_IsoRcvContextBase(index
);
2668 ctx
= &ohci
->ir_context_list
[index
];
2672 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2673 mask
= &ohci
->ir_context_mask
;
2674 callback
= handle_ir_buffer_fill
;
2675 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2677 ohci
->mc_allocated
= true;
2678 *mask
&= ~(1 << index
);
2679 regs
= OHCI1394_IsoRcvContextBase(index
);
2680 ctx
= &ohci
->ir_context_list
[index
];
2689 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2692 return ERR_PTR(ret
);
2694 memset(ctx
, 0, sizeof(*ctx
));
2695 ctx
->header_length
= 0;
2696 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
2697 if (ctx
->header
== NULL
) {
2701 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
2703 goto out_with_header
;
2705 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
)
2706 set_multichannel_mask(ohci
, 0);
2711 free_page((unsigned long)ctx
->header
);
2713 spin_lock_irqsave(&ohci
->lock
, flags
);
2716 case FW_ISO_CONTEXT_RECEIVE
:
2717 *channels
|= 1ULL << channel
;
2720 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2721 ohci
->mc_allocated
= false;
2724 *mask
|= 1 << index
;
2726 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2728 return ERR_PTR(ret
);
2731 static int ohci_start_iso(struct fw_iso_context
*base
,
2732 s32 cycle
, u32 sync
, u32 tags
)
2734 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2735 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
2736 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
2739 /* the controller cannot start without any queued packets */
2740 if (ctx
->context
.last
->branch_address
== 0)
2743 switch (ctx
->base
.type
) {
2744 case FW_ISO_CONTEXT_TRANSMIT
:
2745 index
= ctx
- ohci
->it_context_list
;
2748 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
2749 (cycle
& 0x7fff) << 16;
2751 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
2752 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
2753 context_run(&ctx
->context
, match
);
2756 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2757 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
2759 case FW_ISO_CONTEXT_RECEIVE
:
2760 index
= ctx
- ohci
->ir_context_list
;
2761 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
2763 match
|= (cycle
& 0x07fff) << 12;
2764 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
2767 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
2768 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
2769 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
2770 context_run(&ctx
->context
, control
);
2781 static int ohci_stop_iso(struct fw_iso_context
*base
)
2783 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2784 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2787 switch (ctx
->base
.type
) {
2788 case FW_ISO_CONTEXT_TRANSMIT
:
2789 index
= ctx
- ohci
->it_context_list
;
2790 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
2793 case FW_ISO_CONTEXT_RECEIVE
:
2794 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2795 index
= ctx
- ohci
->ir_context_list
;
2796 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
2800 context_stop(&ctx
->context
);
2801 tasklet_kill(&ctx
->context
.tasklet
);
2806 static void ohci_free_iso_context(struct fw_iso_context
*base
)
2808 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2809 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2810 unsigned long flags
;
2813 ohci_stop_iso(base
);
2814 context_release(&ctx
->context
);
2815 free_page((unsigned long)ctx
->header
);
2817 spin_lock_irqsave(&ohci
->lock
, flags
);
2819 switch (base
->type
) {
2820 case FW_ISO_CONTEXT_TRANSMIT
:
2821 index
= ctx
- ohci
->it_context_list
;
2822 ohci
->it_context_mask
|= 1 << index
;
2825 case FW_ISO_CONTEXT_RECEIVE
:
2826 index
= ctx
- ohci
->ir_context_list
;
2827 ohci
->ir_context_mask
|= 1 << index
;
2828 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
2831 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2832 index
= ctx
- ohci
->ir_context_list
;
2833 ohci
->ir_context_mask
|= 1 << index
;
2834 ohci
->ir_context_channels
|= ohci
->mc_channels
;
2835 ohci
->mc_channels
= 0;
2836 ohci
->mc_allocated
= false;
2840 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2843 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
2845 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2846 unsigned long flags
;
2849 switch (base
->type
) {
2850 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2852 spin_lock_irqsave(&ohci
->lock
, flags
);
2854 /* Don't allow multichannel to grab other contexts' channels. */
2855 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
2856 *channels
= ohci
->ir_context_channels
;
2859 set_multichannel_mask(ohci
, *channels
);
2863 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2874 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
2877 struct iso_context
*ctx
;
2879 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
2880 ctx
= &ohci
->ir_context_list
[i
];
2881 if (ctx
->context
.running
)
2882 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
2885 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
2886 ctx
= &ohci
->it_context_list
[i
];
2887 if (ctx
->context
.running
)
2888 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
2893 static int queue_iso_transmit(struct iso_context
*ctx
,
2894 struct fw_iso_packet
*packet
,
2895 struct fw_iso_buffer
*buffer
,
2896 unsigned long payload
)
2898 struct descriptor
*d
, *last
, *pd
;
2899 struct fw_iso_packet
*p
;
2901 dma_addr_t d_bus
, page_bus
;
2902 u32 z
, header_z
, payload_z
, irq
;
2903 u32 payload_index
, payload_end_index
, next_page_index
;
2904 int page
, end_page
, i
, length
, offset
;
2907 payload_index
= payload
;
2913 if (p
->header_length
> 0)
2916 /* Determine the first page the payload isn't contained in. */
2917 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
2918 if (p
->payload_length
> 0)
2919 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
2925 /* Get header size in number of descriptors. */
2926 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
2928 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
2933 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
2934 d
[0].req_count
= cpu_to_le16(8);
2936 * Link the skip address to this descriptor itself. This causes
2937 * a context to skip a cycle whenever lost cycles or FIFO
2938 * overruns occur, without dropping the data. The application
2939 * should then decide whether this is an error condition or not.
2940 * FIXME: Make the context's cycle-lost behaviour configurable?
2942 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
2944 header
= (__le32
*) &d
[1];
2945 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
2946 IT_HEADER_TAG(p
->tag
) |
2947 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
2948 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
2949 IT_HEADER_SPEED(ctx
->base
.speed
));
2951 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
2952 p
->payload_length
));
2955 if (p
->header_length
> 0) {
2956 d
[2].req_count
= cpu_to_le16(p
->header_length
);
2957 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
2958 memcpy(&d
[z
], p
->header
, p
->header_length
);
2961 pd
= d
+ z
- payload_z
;
2962 payload_end_index
= payload_index
+ p
->payload_length
;
2963 for (i
= 0; i
< payload_z
; i
++) {
2964 page
= payload_index
>> PAGE_SHIFT
;
2965 offset
= payload_index
& ~PAGE_MASK
;
2966 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
2968 min(next_page_index
, payload_end_index
) - payload_index
;
2969 pd
[i
].req_count
= cpu_to_le16(length
);
2971 page_bus
= page_private(buffer
->pages
[page
]);
2972 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
2974 payload_index
+= length
;
2978 irq
= DESCRIPTOR_IRQ_ALWAYS
;
2980 irq
= DESCRIPTOR_NO_IRQ
;
2982 last
= z
== 2 ? d
: d
+ z
- 1;
2983 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
2985 DESCRIPTOR_BRANCH_ALWAYS
|
2988 context_append(&ctx
->context
, d
, z
, header_z
);
2993 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
2994 struct fw_iso_packet
*packet
,
2995 struct fw_iso_buffer
*buffer
,
2996 unsigned long payload
)
2998 struct descriptor
*d
, *pd
;
2999 dma_addr_t d_bus
, page_bus
;
3000 u32 z
, header_z
, rest
;
3002 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3005 * The OHCI controller puts the isochronous header and trailer in the
3006 * buffer, so we need at least 8 bytes.
3008 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3009 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3011 /* Get header size in number of descriptors. */
3012 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3013 page
= payload
>> PAGE_SHIFT
;
3014 offset
= payload
& ~PAGE_MASK
;
3015 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3017 for (i
= 0; i
< packet_count
; i
++) {
3018 /* d points to the header descriptor */
3019 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3020 d
= context_get_descriptors(&ctx
->context
,
3021 z
+ header_z
, &d_bus
);
3025 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3026 DESCRIPTOR_INPUT_MORE
);
3027 if (packet
->skip
&& i
== 0)
3028 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3029 d
->req_count
= cpu_to_le16(header_size
);
3030 d
->res_count
= d
->req_count
;
3031 d
->transfer_status
= 0;
3032 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3034 rest
= payload_per_buffer
;
3036 for (j
= 1; j
< z
; j
++) {
3038 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3039 DESCRIPTOR_INPUT_MORE
);
3041 if (offset
+ rest
< PAGE_SIZE
)
3044 length
= PAGE_SIZE
- offset
;
3045 pd
->req_count
= cpu_to_le16(length
);
3046 pd
->res_count
= pd
->req_count
;
3047 pd
->transfer_status
= 0;
3049 page_bus
= page_private(buffer
->pages
[page
]);
3050 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3052 offset
= (offset
+ length
) & ~PAGE_MASK
;
3057 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3058 DESCRIPTOR_INPUT_LAST
|
3059 DESCRIPTOR_BRANCH_ALWAYS
);
3060 if (packet
->interrupt
&& i
== packet_count
- 1)
3061 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3063 context_append(&ctx
->context
, d
, z
, header_z
);
3069 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3070 struct fw_iso_packet
*packet
,
3071 struct fw_iso_buffer
*buffer
,
3072 unsigned long payload
)
3074 struct descriptor
*d
;
3075 dma_addr_t d_bus
, page_bus
;
3076 int page
, offset
, rest
, z
, i
, length
;
3078 page
= payload
>> PAGE_SHIFT
;
3079 offset
= payload
& ~PAGE_MASK
;
3080 rest
= packet
->payload_length
;
3082 /* We need one descriptor for each page in the buffer. */
3083 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3085 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3088 for (i
= 0; i
< z
; i
++) {
3089 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3093 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3094 DESCRIPTOR_BRANCH_ALWAYS
);
3095 if (packet
->skip
&& i
== 0)
3096 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3097 if (packet
->interrupt
&& i
== z
- 1)
3098 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3100 if (offset
+ rest
< PAGE_SIZE
)
3103 length
= PAGE_SIZE
- offset
;
3104 d
->req_count
= cpu_to_le16(length
);
3105 d
->res_count
= d
->req_count
;
3106 d
->transfer_status
= 0;
3108 page_bus
= page_private(buffer
->pages
[page
]);
3109 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3115 context_append(&ctx
->context
, d
, 1, 0);
3121 static int ohci_queue_iso(struct fw_iso_context
*base
,
3122 struct fw_iso_packet
*packet
,
3123 struct fw_iso_buffer
*buffer
,
3124 unsigned long payload
)
3126 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3127 unsigned long flags
;
3130 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3131 switch (base
->type
) {
3132 case FW_ISO_CONTEXT_TRANSMIT
:
3133 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3135 case FW_ISO_CONTEXT_RECEIVE
:
3136 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3138 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3139 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3142 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3147 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3149 struct context
*ctx
=
3150 &container_of(base
, struct iso_context
, base
)->context
;
3152 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3155 static const struct fw_card_driver ohci_driver
= {
3156 .enable
= ohci_enable
,
3157 .read_phy_reg
= ohci_read_phy_reg
,
3158 .update_phy_reg
= ohci_update_phy_reg
,
3159 .set_config_rom
= ohci_set_config_rom
,
3160 .send_request
= ohci_send_request
,
3161 .send_response
= ohci_send_response
,
3162 .cancel_packet
= ohci_cancel_packet
,
3163 .enable_phys_dma
= ohci_enable_phys_dma
,
3164 .read_csr
= ohci_read_csr
,
3165 .write_csr
= ohci_write_csr
,
3167 .allocate_iso_context
= ohci_allocate_iso_context
,
3168 .free_iso_context
= ohci_free_iso_context
,
3169 .set_iso_channels
= ohci_set_iso_channels
,
3170 .queue_iso
= ohci_queue_iso
,
3171 .flush_queue_iso
= ohci_flush_queue_iso
,
3172 .start_iso
= ohci_start_iso
,
3173 .stop_iso
= ohci_stop_iso
,
3176 #ifdef CONFIG_PPC_PMAC
3177 static void pmac_ohci_on(struct pci_dev
*dev
)
3179 if (machine_is(powermac
)) {
3180 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3183 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3184 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3189 static void pmac_ohci_off(struct pci_dev
*dev
)
3191 if (machine_is(powermac
)) {
3192 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3195 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3196 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3201 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3202 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3203 #endif /* CONFIG_PPC_PMAC */
3205 static int __devinit
pci_probe(struct pci_dev
*dev
,
3206 const struct pci_device_id
*ent
)
3208 struct fw_ohci
*ohci
;
3209 u32 bus_options
, max_receive
, link_speed
, version
;
3214 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3215 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3219 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3225 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3229 err
= pci_enable_device(dev
);
3231 fw_error("Failed to enable OHCI hardware\n");
3235 pci_set_master(dev
);
3236 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3237 pci_set_drvdata(dev
, ohci
);
3239 spin_lock_init(&ohci
->lock
);
3240 mutex_init(&ohci
->phy_reg_mutex
);
3242 tasklet_init(&ohci
->bus_reset_tasklet
,
3243 bus_reset_tasklet
, (unsigned long)ohci
);
3245 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3247 fw_error("MMIO resource unavailable\n");
3251 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3252 if (ohci
->registers
== NULL
) {
3253 fw_error("Failed to remap registers\n");
3258 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3259 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3260 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3261 ohci_quirks
[i
].device
== dev
->device
) &&
3262 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3263 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3264 ohci
->quirks
= ohci_quirks
[i
].flags
;
3268 ohci
->quirks
= param_quirks
;
3271 * Because dma_alloc_coherent() allocates at least one page,
3272 * we save space by using a common buffer for the AR request/
3273 * response descriptors and the self IDs buffer.
3275 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3276 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3277 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3279 &ohci
->misc_buffer_bus
,
3281 if (!ohci
->misc_buffer
) {
3286 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3287 OHCI1394_AsReqRcvContextControlSet
);
3291 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3292 OHCI1394_AsRspRcvContextControlSet
);
3294 goto fail_arreq_ctx
;
3296 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3297 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3299 goto fail_arrsp_ctx
;
3301 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3302 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3304 goto fail_atreq_ctx
;
3306 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3307 ohci
->ir_context_channels
= ~0ULL;
3308 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3309 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3310 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3311 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3312 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3313 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3315 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3316 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3317 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3318 ohci
->it_context_mask
= ohci
->it_context_support
;
3319 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3320 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3321 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3323 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3328 ohci
->self_id_cpu
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3329 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3331 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3332 max_receive
= (bus_options
>> 12) & 0xf;
3333 link_speed
= bus_options
& 0x7;
3334 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3335 reg_read(ohci
, OHCI1394_GUIDLo
);
3337 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3341 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3342 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3343 "%d IR + %d IT contexts, quirks 0x%x\n",
3344 dev_name(&dev
->dev
), version
>> 16, version
& 0xff,
3345 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
);
3350 kfree(ohci
->ir_context_list
);
3351 kfree(ohci
->it_context_list
);
3352 context_release(&ohci
->at_response_ctx
);
3354 context_release(&ohci
->at_request_ctx
);
3356 ar_context_release(&ohci
->ar_response_ctx
);
3358 ar_context_release(&ohci
->ar_request_ctx
);
3360 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3361 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3363 pci_iounmap(dev
, ohci
->registers
);
3365 pci_release_region(dev
, 0);
3367 pci_disable_device(dev
);
3373 fw_error("Out of memory\n");
3378 static void pci_remove(struct pci_dev
*dev
)
3380 struct fw_ohci
*ohci
;
3382 ohci
= pci_get_drvdata(dev
);
3383 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3385 fw_core_remove_card(&ohci
->card
);
3388 * FIXME: Fail all pending packets here, now that the upper
3389 * layers can't queue any more.
3392 software_reset(ohci
);
3393 free_irq(dev
->irq
, ohci
);
3395 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3396 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3397 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3398 if (ohci
->config_rom
)
3399 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3400 ohci
->config_rom
, ohci
->config_rom_bus
);
3401 ar_context_release(&ohci
->ar_request_ctx
);
3402 ar_context_release(&ohci
->ar_response_ctx
);
3403 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3404 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3405 context_release(&ohci
->at_request_ctx
);
3406 context_release(&ohci
->at_response_ctx
);
3407 kfree(ohci
->it_context_list
);
3408 kfree(ohci
->ir_context_list
);
3409 pci_disable_msi(dev
);
3410 pci_iounmap(dev
, ohci
->registers
);
3411 pci_release_region(dev
, 0);
3412 pci_disable_device(dev
);
3416 fw_notify("Removed fw-ohci device.\n");
3420 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3422 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3425 software_reset(ohci
);
3426 free_irq(dev
->irq
, ohci
);
3427 pci_disable_msi(dev
);
3428 err
= pci_save_state(dev
);
3430 fw_error("pci_save_state failed\n");
3433 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3435 fw_error("pci_set_power_state failed with %d\n", err
);
3441 static int pci_resume(struct pci_dev
*dev
)
3443 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3447 pci_set_power_state(dev
, PCI_D0
);
3448 pci_restore_state(dev
);
3449 err
= pci_enable_device(dev
);
3451 fw_error("pci_enable_device failed\n");
3455 /* Some systems don't setup GUID register on resume from ram */
3456 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3457 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3458 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3459 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3462 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3466 ohci_resume_iso_dma(ohci
);
3472 static const struct pci_device_id pci_table
[] = {
3473 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3477 MODULE_DEVICE_TABLE(pci
, pci_table
);
3479 static struct pci_driver fw_ohci_pci_driver
= {
3480 .name
= ohci_driver_name
,
3481 .id_table
= pci_table
,
3483 .remove
= pci_remove
,
3485 .resume
= pci_resume
,
3486 .suspend
= pci_suspend
,
3490 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3491 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3492 MODULE_LICENSE("GPL");
3494 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3495 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3496 MODULE_ALIAS("ohci1394");
3499 static int __init
fw_ohci_init(void)
3501 return pci_register_driver(&fw_ohci_pci_driver
);
3504 static void __exit
fw_ohci_cleanup(void)
3506 pci_unregister_driver(&fw_ohci_pci_driver
);
3509 module_init(fw_ohci_init
);
3510 module_exit(fw_ohci_cleanup
);