drm/i915: Set the multiplier for SDVO on G33 platform
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blobf611e216b0bc60a195c8042e2101e27391ff49c7
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/i2c.h>
28 #include <linux/kernel.h>
29 #include "drmP.h"
30 #include "intel_drv.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "intel_dp.h"
35 #include "drm_crtc_helper.h"
37 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
39 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
40 static void intel_update_watermarks(struct drm_device *dev);
42 typedef struct {
43 /* given values */
44 int n;
45 int m1, m2;
46 int p1, p2;
47 /* derived values */
48 int dot;
49 int vco;
50 int m;
51 int p;
52 } intel_clock_t;
54 typedef struct {
55 int min, max;
56 } intel_range_t;
58 typedef struct {
59 int dot_limit;
60 int p2_slow, p2_fast;
61 } intel_p2_t;
63 #define INTEL_P2_NUM 2
64 typedef struct intel_limit intel_limit_t;
65 struct intel_limit {
66 intel_range_t dot, vco, n, m, m1, m2, p, p1;
67 intel_p2_t p2;
68 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
69 int, int, intel_clock_t *);
72 #define I8XX_DOT_MIN 25000
73 #define I8XX_DOT_MAX 350000
74 #define I8XX_VCO_MIN 930000
75 #define I8XX_VCO_MAX 1400000
76 #define I8XX_N_MIN 3
77 #define I8XX_N_MAX 16
78 #define I8XX_M_MIN 96
79 #define I8XX_M_MAX 140
80 #define I8XX_M1_MIN 18
81 #define I8XX_M1_MAX 26
82 #define I8XX_M2_MIN 6
83 #define I8XX_M2_MAX 16
84 #define I8XX_P_MIN 4
85 #define I8XX_P_MAX 128
86 #define I8XX_P1_MIN 2
87 #define I8XX_P1_MAX 33
88 #define I8XX_P1_LVDS_MIN 1
89 #define I8XX_P1_LVDS_MAX 6
90 #define I8XX_P2_SLOW 4
91 #define I8XX_P2_FAST 2
92 #define I8XX_P2_LVDS_SLOW 14
93 #define I8XX_P2_LVDS_FAST 7
94 #define I8XX_P2_SLOW_LIMIT 165000
96 #define I9XX_DOT_MIN 20000
97 #define I9XX_DOT_MAX 400000
98 #define I9XX_VCO_MIN 1400000
99 #define I9XX_VCO_MAX 2800000
100 #define IGD_VCO_MIN 1700000
101 #define IGD_VCO_MAX 3500000
102 #define I9XX_N_MIN 1
103 #define I9XX_N_MAX 6
104 /* IGD's Ncounter is a ring counter */
105 #define IGD_N_MIN 3
106 #define IGD_N_MAX 6
107 #define I9XX_M_MIN 70
108 #define I9XX_M_MAX 120
109 #define IGD_M_MIN 2
110 #define IGD_M_MAX 256
111 #define I9XX_M1_MIN 10
112 #define I9XX_M1_MAX 22
113 #define I9XX_M2_MIN 5
114 #define I9XX_M2_MAX 9
115 /* IGD M1 is reserved, and must be 0 */
116 #define IGD_M1_MIN 0
117 #define IGD_M1_MAX 0
118 #define IGD_M2_MIN 0
119 #define IGD_M2_MAX 254
120 #define I9XX_P_SDVO_DAC_MIN 5
121 #define I9XX_P_SDVO_DAC_MAX 80
122 #define I9XX_P_LVDS_MIN 7
123 #define I9XX_P_LVDS_MAX 98
124 #define IGD_P_LVDS_MIN 7
125 #define IGD_P_LVDS_MAX 112
126 #define I9XX_P1_MIN 1
127 #define I9XX_P1_MAX 8
128 #define I9XX_P2_SDVO_DAC_SLOW 10
129 #define I9XX_P2_SDVO_DAC_FAST 5
130 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
131 #define I9XX_P2_LVDS_SLOW 14
132 #define I9XX_P2_LVDS_FAST 7
133 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
135 /*The parameter is for SDVO on G4x platform*/
136 #define G4X_DOT_SDVO_MIN 25000
137 #define G4X_DOT_SDVO_MAX 270000
138 #define G4X_VCO_MIN 1750000
139 #define G4X_VCO_MAX 3500000
140 #define G4X_N_SDVO_MIN 1
141 #define G4X_N_SDVO_MAX 4
142 #define G4X_M_SDVO_MIN 104
143 #define G4X_M_SDVO_MAX 138
144 #define G4X_M1_SDVO_MIN 17
145 #define G4X_M1_SDVO_MAX 23
146 #define G4X_M2_SDVO_MIN 5
147 #define G4X_M2_SDVO_MAX 11
148 #define G4X_P_SDVO_MIN 10
149 #define G4X_P_SDVO_MAX 30
150 #define G4X_P1_SDVO_MIN 1
151 #define G4X_P1_SDVO_MAX 3
152 #define G4X_P2_SDVO_SLOW 10
153 #define G4X_P2_SDVO_FAST 10
154 #define G4X_P2_SDVO_LIMIT 270000
156 /*The parameter is for HDMI_DAC on G4x platform*/
157 #define G4X_DOT_HDMI_DAC_MIN 22000
158 #define G4X_DOT_HDMI_DAC_MAX 400000
159 #define G4X_N_HDMI_DAC_MIN 1
160 #define G4X_N_HDMI_DAC_MAX 4
161 #define G4X_M_HDMI_DAC_MIN 104
162 #define G4X_M_HDMI_DAC_MAX 138
163 #define G4X_M1_HDMI_DAC_MIN 16
164 #define G4X_M1_HDMI_DAC_MAX 23
165 #define G4X_M2_HDMI_DAC_MIN 5
166 #define G4X_M2_HDMI_DAC_MAX 11
167 #define G4X_P_HDMI_DAC_MIN 5
168 #define G4X_P_HDMI_DAC_MAX 80
169 #define G4X_P1_HDMI_DAC_MIN 1
170 #define G4X_P1_HDMI_DAC_MAX 8
171 #define G4X_P2_HDMI_DAC_SLOW 10
172 #define G4X_P2_HDMI_DAC_FAST 5
173 #define G4X_P2_HDMI_DAC_LIMIT 165000
175 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
176 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
177 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
178 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
179 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
180 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
181 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
182 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
183 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
184 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
185 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
186 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
187 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
188 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
189 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
190 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
191 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
192 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
194 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
195 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
196 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
197 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
198 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
199 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
200 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
201 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
202 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
203 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
204 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
205 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
206 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
207 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
208 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
209 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
210 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
211 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
213 /*The parameter is for DISPLAY PORT on G4x platform*/
214 #define G4X_DOT_DISPLAY_PORT_MIN 161670
215 #define G4X_DOT_DISPLAY_PORT_MAX 227000
216 #define G4X_N_DISPLAY_PORT_MIN 1
217 #define G4X_N_DISPLAY_PORT_MAX 2
218 #define G4X_M_DISPLAY_PORT_MIN 97
219 #define G4X_M_DISPLAY_PORT_MAX 108
220 #define G4X_M1_DISPLAY_PORT_MIN 0x10
221 #define G4X_M1_DISPLAY_PORT_MAX 0x12
222 #define G4X_M2_DISPLAY_PORT_MIN 0x05
223 #define G4X_M2_DISPLAY_PORT_MAX 0x06
224 #define G4X_P_DISPLAY_PORT_MIN 10
225 #define G4X_P_DISPLAY_PORT_MAX 20
226 #define G4X_P1_DISPLAY_PORT_MIN 1
227 #define G4X_P1_DISPLAY_PORT_MAX 2
228 #define G4X_P2_DISPLAY_PORT_SLOW 10
229 #define G4X_P2_DISPLAY_PORT_FAST 10
230 #define G4X_P2_DISPLAY_PORT_LIMIT 0
232 /* IGDNG */
233 /* as we calculate clock using (register_value + 2) for
234 N/M1/M2, so here the range value for them is (actual_value-2).
236 #define IGDNG_DOT_MIN 25000
237 #define IGDNG_DOT_MAX 350000
238 #define IGDNG_VCO_MIN 1760000
239 #define IGDNG_VCO_MAX 3510000
240 #define IGDNG_N_MIN 1
241 #define IGDNG_N_MAX 5
242 #define IGDNG_M_MIN 79
243 #define IGDNG_M_MAX 118
244 #define IGDNG_M1_MIN 12
245 #define IGDNG_M1_MAX 23
246 #define IGDNG_M2_MIN 5
247 #define IGDNG_M2_MAX 9
248 #define IGDNG_P_SDVO_DAC_MIN 5
249 #define IGDNG_P_SDVO_DAC_MAX 80
250 #define IGDNG_P_LVDS_MIN 28
251 #define IGDNG_P_LVDS_MAX 112
252 #define IGDNG_P1_MIN 1
253 #define IGDNG_P1_MAX 8
254 #define IGDNG_P2_SDVO_DAC_SLOW 10
255 #define IGDNG_P2_SDVO_DAC_FAST 5
256 #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
257 #define IGDNG_P2_LVDS_FAST 7 /* double channel */
258 #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
260 static bool
261 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
262 int target, int refclk, intel_clock_t *best_clock);
263 static bool
264 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
265 int target, int refclk, intel_clock_t *best_clock);
266 static bool
267 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
268 int target, int refclk, intel_clock_t *best_clock);
270 static bool
271 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
272 int target, int refclk, intel_clock_t *best_clock);
273 static bool
274 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
275 int target, int refclk, intel_clock_t *best_clock);
277 static const intel_limit_t intel_limits_i8xx_dvo = {
278 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
279 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
280 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
281 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
282 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
283 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
284 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
285 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
286 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
287 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
288 .find_pll = intel_find_best_PLL,
291 static const intel_limit_t intel_limits_i8xx_lvds = {
292 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
293 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
294 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
295 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
296 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
297 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
298 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
299 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
300 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
301 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
302 .find_pll = intel_find_best_PLL,
305 static const intel_limit_t intel_limits_i9xx_sdvo = {
306 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
307 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
308 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
309 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
310 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
311 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
312 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
313 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
314 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
315 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
316 .find_pll = intel_find_best_PLL,
319 static const intel_limit_t intel_limits_i9xx_lvds = {
320 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
321 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
322 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
323 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
324 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
325 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
326 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
327 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
328 /* The single-channel range is 25-112Mhz, and dual-channel
329 * is 80-224Mhz. Prefer single channel as much as possible.
331 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
332 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
333 .find_pll = intel_find_best_PLL,
336 /* below parameter and function is for G4X Chipset Family*/
337 static const intel_limit_t intel_limits_g4x_sdvo = {
338 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
339 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
340 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
341 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
342 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
343 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
344 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
345 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
346 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
347 .p2_slow = G4X_P2_SDVO_SLOW,
348 .p2_fast = G4X_P2_SDVO_FAST
350 .find_pll = intel_g4x_find_best_PLL,
353 static const intel_limit_t intel_limits_g4x_hdmi = {
354 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
355 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
356 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
357 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
358 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
359 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
360 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
361 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
362 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
363 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
364 .p2_fast = G4X_P2_HDMI_DAC_FAST
366 .find_pll = intel_g4x_find_best_PLL,
369 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
370 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
371 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
372 .vco = { .min = G4X_VCO_MIN,
373 .max = G4X_VCO_MAX },
374 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
375 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
376 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
377 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
378 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
379 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
380 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
381 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
382 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
383 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
384 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
385 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
386 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
387 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
388 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
390 .find_pll = intel_g4x_find_best_PLL,
393 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
394 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
395 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
396 .vco = { .min = G4X_VCO_MIN,
397 .max = G4X_VCO_MAX },
398 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
399 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
400 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
401 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
402 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
403 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
404 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
405 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
406 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
407 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
408 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
409 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
410 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
411 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
412 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
414 .find_pll = intel_g4x_find_best_PLL,
417 static const intel_limit_t intel_limits_g4x_display_port = {
418 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
419 .max = G4X_DOT_DISPLAY_PORT_MAX },
420 .vco = { .min = G4X_VCO_MIN,
421 .max = G4X_VCO_MAX},
422 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
423 .max = G4X_N_DISPLAY_PORT_MAX },
424 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
425 .max = G4X_M_DISPLAY_PORT_MAX },
426 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
427 .max = G4X_M1_DISPLAY_PORT_MAX },
428 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
429 .max = G4X_M2_DISPLAY_PORT_MAX },
430 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
431 .max = G4X_P_DISPLAY_PORT_MAX },
432 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
433 .max = G4X_P1_DISPLAY_PORT_MAX},
434 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
435 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
436 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
437 .find_pll = intel_find_pll_g4x_dp,
440 static const intel_limit_t intel_limits_igd_sdvo = {
441 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
442 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
443 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
444 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
445 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
446 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
447 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
448 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
449 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
450 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
451 .find_pll = intel_find_best_PLL,
454 static const intel_limit_t intel_limits_igd_lvds = {
455 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
456 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
457 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
458 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
459 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
460 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
461 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
462 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
463 /* IGD only supports single-channel mode. */
464 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
465 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
466 .find_pll = intel_find_best_PLL,
469 static const intel_limit_t intel_limits_igdng_sdvo = {
470 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
471 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
472 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
473 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
474 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
475 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
476 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
477 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
478 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
479 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
480 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
481 .find_pll = intel_igdng_find_best_PLL,
484 static const intel_limit_t intel_limits_igdng_lvds = {
485 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
486 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
487 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
488 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
489 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
490 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
491 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
492 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
493 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
494 .p2_slow = IGDNG_P2_LVDS_SLOW,
495 .p2_fast = IGDNG_P2_LVDS_FAST },
496 .find_pll = intel_igdng_find_best_PLL,
499 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
501 const intel_limit_t *limit;
502 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
503 limit = &intel_limits_igdng_lvds;
504 else
505 limit = &intel_limits_igdng_sdvo;
507 return limit;
510 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
512 struct drm_device *dev = crtc->dev;
513 struct drm_i915_private *dev_priv = dev->dev_private;
514 const intel_limit_t *limit;
516 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
517 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
518 LVDS_CLKB_POWER_UP)
519 /* LVDS with dual channel */
520 limit = &intel_limits_g4x_dual_channel_lvds;
521 else
522 /* LVDS with dual channel */
523 limit = &intel_limits_g4x_single_channel_lvds;
524 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
525 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
526 limit = &intel_limits_g4x_hdmi;
527 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
528 limit = &intel_limits_g4x_sdvo;
529 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
530 limit = &intel_limits_g4x_display_port;
531 } else /* The option is for other outputs */
532 limit = &intel_limits_i9xx_sdvo;
534 return limit;
537 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
539 struct drm_device *dev = crtc->dev;
540 const intel_limit_t *limit;
542 if (IS_IGDNG(dev))
543 limit = intel_igdng_limit(crtc);
544 else if (IS_G4X(dev)) {
545 limit = intel_g4x_limit(crtc);
546 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
547 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
548 limit = &intel_limits_i9xx_lvds;
549 else
550 limit = &intel_limits_i9xx_sdvo;
551 } else if (IS_IGD(dev)) {
552 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
553 limit = &intel_limits_igd_lvds;
554 else
555 limit = &intel_limits_igd_sdvo;
556 } else {
557 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
558 limit = &intel_limits_i8xx_lvds;
559 else
560 limit = &intel_limits_i8xx_dvo;
562 return limit;
565 /* m1 is reserved as 0 in IGD, n is a ring counter */
566 static void igd_clock(int refclk, intel_clock_t *clock)
568 clock->m = clock->m2 + 2;
569 clock->p = clock->p1 * clock->p2;
570 clock->vco = refclk * clock->m / clock->n;
571 clock->dot = clock->vco / clock->p;
574 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
576 if (IS_IGD(dev)) {
577 igd_clock(refclk, clock);
578 return;
580 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
581 clock->p = clock->p1 * clock->p2;
582 clock->vco = refclk * clock->m / (clock->n + 2);
583 clock->dot = clock->vco / clock->p;
587 * Returns whether any output on the specified pipe is of the specified type
589 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
591 struct drm_device *dev = crtc->dev;
592 struct drm_mode_config *mode_config = &dev->mode_config;
593 struct drm_connector *l_entry;
595 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
596 if (l_entry->encoder &&
597 l_entry->encoder->crtc == crtc) {
598 struct intel_output *intel_output = to_intel_output(l_entry);
599 if (intel_output->type == type)
600 return true;
603 return false;
606 struct drm_connector *
607 intel_pipe_get_output (struct drm_crtc *crtc)
609 struct drm_device *dev = crtc->dev;
610 struct drm_mode_config *mode_config = &dev->mode_config;
611 struct drm_connector *l_entry, *ret = NULL;
613 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614 if (l_entry->encoder &&
615 l_entry->encoder->crtc == crtc) {
616 ret = l_entry;
617 break;
620 return ret;
623 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
625 * Returns whether the given set of divisors are valid for a given refclk with
626 * the given connectors.
629 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
631 const intel_limit_t *limit = intel_limit (crtc);
632 struct drm_device *dev = crtc->dev;
634 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
635 INTELPllInvalid ("p1 out of range\n");
636 if (clock->p < limit->p.min || limit->p.max < clock->p)
637 INTELPllInvalid ("p out of range\n");
638 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
639 INTELPllInvalid ("m2 out of range\n");
640 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
641 INTELPllInvalid ("m1 out of range\n");
642 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
643 INTELPllInvalid ("m1 <= m2\n");
644 if (clock->m < limit->m.min || limit->m.max < clock->m)
645 INTELPllInvalid ("m out of range\n");
646 if (clock->n < limit->n.min || limit->n.max < clock->n)
647 INTELPllInvalid ("n out of range\n");
648 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
649 INTELPllInvalid ("vco out of range\n");
650 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
651 * connector, etc., rather than just a single range.
653 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
654 INTELPllInvalid ("dot out of range\n");
656 return true;
659 static bool
660 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
661 int target, int refclk, intel_clock_t *best_clock)
664 struct drm_device *dev = crtc->dev;
665 struct drm_i915_private *dev_priv = dev->dev_private;
666 intel_clock_t clock;
667 int err = target;
669 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
670 (I915_READ(LVDS)) != 0) {
672 * For LVDS, if the panel is on, just rely on its current
673 * settings for dual-channel. We haven't figured out how to
674 * reliably set up different single/dual channel state, if we
675 * even can.
677 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
678 LVDS_CLKB_POWER_UP)
679 clock.p2 = limit->p2.p2_fast;
680 else
681 clock.p2 = limit->p2.p2_slow;
682 } else {
683 if (target < limit->p2.dot_limit)
684 clock.p2 = limit->p2.p2_slow;
685 else
686 clock.p2 = limit->p2.p2_fast;
689 memset (best_clock, 0, sizeof (*best_clock));
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
692 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
693 /* m1 is always 0 in IGD */
694 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
695 break;
696 for (clock.n = limit->n.min; clock.n <= limit->n.max;
697 clock.n++) {
698 for (clock.p1 = limit->p1.min;
699 clock.p1 <= limit->p1.max; clock.p1++) {
700 int this_err;
702 intel_clock(dev, refclk, &clock);
704 if (!intel_PLL_is_valid(crtc, &clock))
705 continue;
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
717 return (err != target);
720 static bool
721 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
722 int target, int refclk, intel_clock_t *best_clock)
724 struct drm_device *dev = crtc->dev;
725 struct drm_i915_private *dev_priv = dev->dev_private;
726 intel_clock_t clock;
727 int max_n;
728 bool found;
729 /* approximately equals target * 0.00488 */
730 int err_most = (target >> 8) + (target >> 10);
731 found = false;
733 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
734 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
735 LVDS_CLKB_POWER_UP)
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
748 /* based on hardware requriment prefer smaller n to precision */
749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750 /* based on hardware requirment prefere larger m1,m2, p1 */
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
759 intel_clock(dev, refclk, &clock);
760 if (!intel_PLL_is_valid(crtc, &clock))
761 continue;
762 this_err = abs(clock.dot - target) ;
763 if (this_err < err_most) {
764 *best_clock = clock;
765 err_most = this_err;
766 max_n = clock.n;
767 found = true;
773 return found;
776 static bool
777 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
778 int target, int refclk, intel_clock_t *best_clock)
780 struct drm_device *dev = crtc->dev;
781 intel_clock_t clock;
782 if (target < 200000) {
783 clock.n = 1;
784 clock.p1 = 2;
785 clock.p2 = 10;
786 clock.m1 = 12;
787 clock.m2 = 9;
788 } else {
789 clock.n = 2;
790 clock.p1 = 1;
791 clock.p2 = 10;
792 clock.m1 = 14;
793 clock.m2 = 8;
795 intel_clock(dev, refclk, &clock);
796 memcpy(best_clock, &clock, sizeof(intel_clock_t));
797 return true;
800 static bool
801 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
802 int target, int refclk, intel_clock_t *best_clock)
804 struct drm_device *dev = crtc->dev;
805 struct drm_i915_private *dev_priv = dev->dev_private;
806 intel_clock_t clock;
807 int max_n;
808 bool found;
809 int err_most = 47;
810 found = false;
812 /* eDP has only 2 clock choice, no n/m/p setting */
813 if (HAS_eDP)
814 return true;
816 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
817 return intel_find_pll_igdng_dp(limit, crtc, target,
818 refclk, best_clock);
820 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
821 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
822 LVDS_CLKB_POWER_UP)
823 clock.p2 = limit->p2.p2_fast;
824 else
825 clock.p2 = limit->p2.p2_slow;
826 } else {
827 if (target < limit->p2.dot_limit)
828 clock.p2 = limit->p2.p2_slow;
829 else
830 clock.p2 = limit->p2.p2_fast;
833 memset(best_clock, 0, sizeof(*best_clock));
834 max_n = limit->n.max;
835 /* based on hardware requriment prefer smaller n to precision */
836 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
837 /* based on hardware requirment prefere larger m1,m2, p1 */
838 for (clock.m1 = limit->m1.max;
839 clock.m1 >= limit->m1.min; clock.m1--) {
840 for (clock.m2 = limit->m2.max;
841 clock.m2 >= limit->m2.min; clock.m2--) {
842 for (clock.p1 = limit->p1.max;
843 clock.p1 >= limit->p1.min; clock.p1--) {
844 int this_err;
846 intel_clock(dev, refclk, &clock);
847 if (!intel_PLL_is_valid(crtc, &clock))
848 continue;
849 this_err = abs((10000 - (target*10000/clock.dot)));
850 if (this_err < err_most) {
851 *best_clock = clock;
852 err_most = this_err;
853 max_n = clock.n;
854 found = true;
855 /* found on first matching */
856 goto out;
862 out:
863 return found;
866 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
867 static bool
868 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
869 int target, int refclk, intel_clock_t *best_clock)
871 intel_clock_t clock;
872 if (target < 200000) {
873 clock.p1 = 2;
874 clock.p2 = 10;
875 clock.n = 2;
876 clock.m1 = 23;
877 clock.m2 = 8;
878 } else {
879 clock.p1 = 1;
880 clock.p2 = 10;
881 clock.n = 1;
882 clock.m1 = 14;
883 clock.m2 = 2;
885 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
886 clock.p = (clock.p1 * clock.p2);
887 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
888 memcpy(best_clock, &clock, sizeof(intel_clock_t));
889 return true;
892 void
893 intel_wait_for_vblank(struct drm_device *dev)
895 /* Wait for 20ms, i.e. one cycle at 50hz. */
896 mdelay(20);
899 static int
900 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
901 struct drm_framebuffer *old_fb)
903 struct drm_device *dev = crtc->dev;
904 struct drm_i915_private *dev_priv = dev->dev_private;
905 struct drm_i915_master_private *master_priv;
906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
907 struct intel_framebuffer *intel_fb;
908 struct drm_i915_gem_object *obj_priv;
909 struct drm_gem_object *obj;
910 int pipe = intel_crtc->pipe;
911 unsigned long Start, Offset;
912 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
913 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
914 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
915 int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
916 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
917 u32 dspcntr, alignment;
918 int ret;
920 /* no fb bound */
921 if (!crtc->fb) {
922 DRM_DEBUG("No FB bound\n");
923 return 0;
926 switch (pipe) {
927 case 0:
928 case 1:
929 break;
930 default:
931 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
932 return -EINVAL;
935 intel_fb = to_intel_framebuffer(crtc->fb);
936 obj = intel_fb->obj;
937 obj_priv = obj->driver_private;
939 switch (obj_priv->tiling_mode) {
940 case I915_TILING_NONE:
941 alignment = 64 * 1024;
942 break;
943 case I915_TILING_X:
944 /* pin() will align the object as required by fence */
945 alignment = 0;
946 break;
947 case I915_TILING_Y:
948 /* FIXME: Is this true? */
949 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
950 return -EINVAL;
951 default:
952 BUG();
955 mutex_lock(&dev->struct_mutex);
956 ret = i915_gem_object_pin(obj, alignment);
957 if (ret != 0) {
958 mutex_unlock(&dev->struct_mutex);
959 return ret;
962 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
963 if (ret != 0) {
964 i915_gem_object_unpin(obj);
965 mutex_unlock(&dev->struct_mutex);
966 return ret;
969 /* Pre-i965 needs to install a fence for tiled scan-out */
970 if (!IS_I965G(dev) &&
971 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
972 obj_priv->tiling_mode != I915_TILING_NONE) {
973 ret = i915_gem_object_get_fence_reg(obj);
974 if (ret != 0) {
975 i915_gem_object_unpin(obj);
976 mutex_unlock(&dev->struct_mutex);
977 return ret;
981 dspcntr = I915_READ(dspcntr_reg);
982 /* Mask out pixel format bits in case we change it */
983 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
984 switch (crtc->fb->bits_per_pixel) {
985 case 8:
986 dspcntr |= DISPPLANE_8BPP;
987 break;
988 case 16:
989 if (crtc->fb->depth == 15)
990 dspcntr |= DISPPLANE_15_16BPP;
991 else
992 dspcntr |= DISPPLANE_16BPP;
993 break;
994 case 24:
995 case 32:
996 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
997 break;
998 default:
999 DRM_ERROR("Unknown color depth\n");
1000 i915_gem_object_unpin(obj);
1001 mutex_unlock(&dev->struct_mutex);
1002 return -EINVAL;
1004 if (IS_I965G(dev)) {
1005 if (obj_priv->tiling_mode != I915_TILING_NONE)
1006 dspcntr |= DISPPLANE_TILED;
1007 else
1008 dspcntr &= ~DISPPLANE_TILED;
1011 I915_WRITE(dspcntr_reg, dspcntr);
1013 Start = obj_priv->gtt_offset;
1014 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1016 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1017 I915_WRITE(dspstride, crtc->fb->pitch);
1018 if (IS_I965G(dev)) {
1019 I915_WRITE(dspbase, Offset);
1020 I915_READ(dspbase);
1021 I915_WRITE(dspsurf, Start);
1022 I915_READ(dspsurf);
1023 I915_WRITE(dsptileoff, (y << 16) | x);
1024 } else {
1025 I915_WRITE(dspbase, Start + Offset);
1026 I915_READ(dspbase);
1029 intel_wait_for_vblank(dev);
1031 if (old_fb) {
1032 intel_fb = to_intel_framebuffer(old_fb);
1033 i915_gem_object_unpin(intel_fb->obj);
1035 mutex_unlock(&dev->struct_mutex);
1037 if (!dev->primary->master)
1038 return 0;
1040 master_priv = dev->primary->master->driver_priv;
1041 if (!master_priv->sarea_priv)
1042 return 0;
1044 if (pipe) {
1045 master_priv->sarea_priv->pipeB_x = x;
1046 master_priv->sarea_priv->pipeB_y = y;
1047 } else {
1048 master_priv->sarea_priv->pipeA_x = x;
1049 master_priv->sarea_priv->pipeA_y = y;
1052 return 0;
1055 /* Disable the VGA plane that we never use */
1056 static void i915_disable_vga (struct drm_device *dev)
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 u8 sr1;
1060 u32 vga_reg;
1062 if (IS_IGDNG(dev))
1063 vga_reg = CPU_VGACNTRL;
1064 else
1065 vga_reg = VGACNTRL;
1067 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1068 return;
1070 I915_WRITE8(VGA_SR_INDEX, 1);
1071 sr1 = I915_READ8(VGA_SR_DATA);
1072 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1073 udelay(100);
1075 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1078 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1080 struct drm_device *dev = crtc->dev;
1081 struct drm_i915_private *dev_priv = dev->dev_private;
1082 u32 dpa_ctl;
1084 DRM_DEBUG("\n");
1085 dpa_ctl = I915_READ(DP_A);
1086 dpa_ctl &= ~DP_PLL_ENABLE;
1087 I915_WRITE(DP_A, dpa_ctl);
1090 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1092 struct drm_device *dev = crtc->dev;
1093 struct drm_i915_private *dev_priv = dev->dev_private;
1094 u32 dpa_ctl;
1096 dpa_ctl = I915_READ(DP_A);
1097 dpa_ctl |= DP_PLL_ENABLE;
1098 I915_WRITE(DP_A, dpa_ctl);
1099 udelay(200);
1103 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1105 struct drm_device *dev = crtc->dev;
1106 struct drm_i915_private *dev_priv = dev->dev_private;
1107 u32 dpa_ctl;
1109 DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1110 dpa_ctl = I915_READ(DP_A);
1111 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1113 if (clock < 200000) {
1114 u32 temp;
1115 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1116 /* workaround for 160Mhz:
1117 1) program 0x4600c bits 15:0 = 0x8124
1118 2) program 0x46010 bit 0 = 1
1119 3) program 0x46034 bit 24 = 1
1120 4) program 0x64000 bit 14 = 1
1122 temp = I915_READ(0x4600c);
1123 temp &= 0xffff0000;
1124 I915_WRITE(0x4600c, temp | 0x8124);
1126 temp = I915_READ(0x46010);
1127 I915_WRITE(0x46010, temp | 1);
1129 temp = I915_READ(0x46034);
1130 I915_WRITE(0x46034, temp | (1 << 24));
1131 } else {
1132 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1134 I915_WRITE(DP_A, dpa_ctl);
1136 udelay(500);
1139 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1141 struct drm_device *dev = crtc->dev;
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1144 int pipe = intel_crtc->pipe;
1145 int plane = intel_crtc->plane;
1146 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1147 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1148 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1149 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1150 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1151 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1152 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1153 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1154 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1155 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1156 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1157 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1158 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1159 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1160 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1161 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1162 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1163 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1164 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1165 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1166 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1167 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1168 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1169 u32 temp;
1170 int tries = 5, j, n;
1172 /* XXX: When our outputs are all unaware of DPMS modes other than off
1173 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1175 switch (mode) {
1176 case DRM_MODE_DPMS_ON:
1177 case DRM_MODE_DPMS_STANDBY:
1178 case DRM_MODE_DPMS_SUSPEND:
1179 DRM_DEBUG("crtc %d dpms on\n", pipe);
1180 if (HAS_eDP) {
1181 /* enable eDP PLL */
1182 igdng_enable_pll_edp(crtc);
1183 } else {
1184 /* enable PCH DPLL */
1185 temp = I915_READ(pch_dpll_reg);
1186 if ((temp & DPLL_VCO_ENABLE) == 0) {
1187 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1188 I915_READ(pch_dpll_reg);
1191 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1192 temp = I915_READ(fdi_rx_reg);
1193 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1194 FDI_SEL_PCDCLK |
1195 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1196 I915_READ(fdi_rx_reg);
1197 udelay(200);
1199 /* Enable CPU FDI TX PLL, always on for IGDNG */
1200 temp = I915_READ(fdi_tx_reg);
1201 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1202 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1203 I915_READ(fdi_tx_reg);
1204 udelay(100);
1208 /* Enable CPU pipe */
1209 temp = I915_READ(pipeconf_reg);
1210 if ((temp & PIPEACONF_ENABLE) == 0) {
1211 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1212 I915_READ(pipeconf_reg);
1213 udelay(100);
1216 /* configure and enable CPU plane */
1217 temp = I915_READ(dspcntr_reg);
1218 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1219 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1220 /* Flush the plane changes */
1221 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1224 if (!HAS_eDP) {
1225 /* enable CPU FDI TX and PCH FDI RX */
1226 temp = I915_READ(fdi_tx_reg);
1227 temp |= FDI_TX_ENABLE;
1228 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1229 temp &= ~FDI_LINK_TRAIN_NONE;
1230 temp |= FDI_LINK_TRAIN_PATTERN_1;
1231 I915_WRITE(fdi_tx_reg, temp);
1232 I915_READ(fdi_tx_reg);
1234 temp = I915_READ(fdi_rx_reg);
1235 temp &= ~FDI_LINK_TRAIN_NONE;
1236 temp |= FDI_LINK_TRAIN_PATTERN_1;
1237 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1238 I915_READ(fdi_rx_reg);
1240 udelay(150);
1242 /* Train FDI. */
1243 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1244 for train result */
1245 temp = I915_READ(fdi_rx_imr_reg);
1246 temp &= ~FDI_RX_SYMBOL_LOCK;
1247 temp &= ~FDI_RX_BIT_LOCK;
1248 I915_WRITE(fdi_rx_imr_reg, temp);
1249 I915_READ(fdi_rx_imr_reg);
1250 udelay(150);
1252 temp = I915_READ(fdi_rx_iir_reg);
1253 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1255 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1256 for (j = 0; j < tries; j++) {
1257 temp = I915_READ(fdi_rx_iir_reg);
1258 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1259 if (temp & FDI_RX_BIT_LOCK)
1260 break;
1261 udelay(200);
1263 if (j != tries)
1264 I915_WRITE(fdi_rx_iir_reg,
1265 temp | FDI_RX_BIT_LOCK);
1266 else
1267 DRM_DEBUG("train 1 fail\n");
1268 } else {
1269 I915_WRITE(fdi_rx_iir_reg,
1270 temp | FDI_RX_BIT_LOCK);
1271 DRM_DEBUG("train 1 ok 2!\n");
1273 temp = I915_READ(fdi_tx_reg);
1274 temp &= ~FDI_LINK_TRAIN_NONE;
1275 temp |= FDI_LINK_TRAIN_PATTERN_2;
1276 I915_WRITE(fdi_tx_reg, temp);
1278 temp = I915_READ(fdi_rx_reg);
1279 temp &= ~FDI_LINK_TRAIN_NONE;
1280 temp |= FDI_LINK_TRAIN_PATTERN_2;
1281 I915_WRITE(fdi_rx_reg, temp);
1283 udelay(150);
1285 temp = I915_READ(fdi_rx_iir_reg);
1286 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1288 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1289 for (j = 0; j < tries; j++) {
1290 temp = I915_READ(fdi_rx_iir_reg);
1291 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1292 if (temp & FDI_RX_SYMBOL_LOCK)
1293 break;
1294 udelay(200);
1296 if (j != tries) {
1297 I915_WRITE(fdi_rx_iir_reg,
1298 temp | FDI_RX_SYMBOL_LOCK);
1299 DRM_DEBUG("train 2 ok 1!\n");
1300 } else
1301 DRM_DEBUG("train 2 fail\n");
1302 } else {
1303 I915_WRITE(fdi_rx_iir_reg,
1304 temp | FDI_RX_SYMBOL_LOCK);
1305 DRM_DEBUG("train 2 ok 2!\n");
1307 DRM_DEBUG("train done\n");
1309 /* set transcoder timing */
1310 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1311 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1312 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1314 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1315 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1316 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1318 /* enable PCH transcoder */
1319 temp = I915_READ(transconf_reg);
1320 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1321 I915_READ(transconf_reg);
1323 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1326 /* enable normal */
1328 temp = I915_READ(fdi_tx_reg);
1329 temp &= ~FDI_LINK_TRAIN_NONE;
1330 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1331 FDI_TX_ENHANCE_FRAME_ENABLE);
1332 I915_READ(fdi_tx_reg);
1334 temp = I915_READ(fdi_rx_reg);
1335 temp &= ~FDI_LINK_TRAIN_NONE;
1336 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1337 FDI_RX_ENHANCE_FRAME_ENABLE);
1338 I915_READ(fdi_rx_reg);
1340 /* wait one idle pattern time */
1341 udelay(100);
1345 intel_crtc_load_lut(crtc);
1347 break;
1348 case DRM_MODE_DPMS_OFF:
1349 DRM_DEBUG("crtc %d dpms off\n", pipe);
1351 i915_disable_vga(dev);
1353 /* Disable display plane */
1354 temp = I915_READ(dspcntr_reg);
1355 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1356 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1357 /* Flush the plane changes */
1358 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1359 I915_READ(dspbase_reg);
1362 /* disable cpu pipe, disable after all planes disabled */
1363 temp = I915_READ(pipeconf_reg);
1364 if ((temp & PIPEACONF_ENABLE) != 0) {
1365 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1366 I915_READ(pipeconf_reg);
1367 n = 0;
1368 /* wait for cpu pipe off, pipe state */
1369 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1370 n++;
1371 if (n < 60) {
1372 udelay(500);
1373 continue;
1374 } else {
1375 DRM_DEBUG("pipe %d off delay\n", pipe);
1376 break;
1379 } else
1380 DRM_DEBUG("crtc %d is disabled\n", pipe);
1382 if (HAS_eDP) {
1383 igdng_disable_pll_edp(crtc);
1386 /* disable CPU FDI tx and PCH FDI rx */
1387 temp = I915_READ(fdi_tx_reg);
1388 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1389 I915_READ(fdi_tx_reg);
1391 temp = I915_READ(fdi_rx_reg);
1392 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1393 I915_READ(fdi_rx_reg);
1395 udelay(100);
1397 /* still set train pattern 1 */
1398 temp = I915_READ(fdi_tx_reg);
1399 temp &= ~FDI_LINK_TRAIN_NONE;
1400 temp |= FDI_LINK_TRAIN_PATTERN_1;
1401 I915_WRITE(fdi_tx_reg, temp);
1403 temp = I915_READ(fdi_rx_reg);
1404 temp &= ~FDI_LINK_TRAIN_NONE;
1405 temp |= FDI_LINK_TRAIN_PATTERN_1;
1406 I915_WRITE(fdi_rx_reg, temp);
1408 udelay(100);
1410 /* disable PCH transcoder */
1411 temp = I915_READ(transconf_reg);
1412 if ((temp & TRANS_ENABLE) != 0) {
1413 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1414 I915_READ(transconf_reg);
1415 n = 0;
1416 /* wait for PCH transcoder off, transcoder state */
1417 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1418 n++;
1419 if (n < 60) {
1420 udelay(500);
1421 continue;
1422 } else {
1423 DRM_DEBUG("transcoder %d off delay\n", pipe);
1424 break;
1429 /* disable PCH DPLL */
1430 temp = I915_READ(pch_dpll_reg);
1431 if ((temp & DPLL_VCO_ENABLE) != 0) {
1432 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1433 I915_READ(pch_dpll_reg);
1436 temp = I915_READ(fdi_rx_reg);
1437 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1438 temp &= ~FDI_SEL_PCDCLK;
1439 temp &= ~FDI_RX_PLL_ENABLE;
1440 I915_WRITE(fdi_rx_reg, temp);
1441 I915_READ(fdi_rx_reg);
1444 /* Disable CPU FDI TX PLL */
1445 temp = I915_READ(fdi_tx_reg);
1446 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1447 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1448 I915_READ(fdi_tx_reg);
1449 udelay(100);
1452 /* Disable PF */
1453 temp = I915_READ(pf_ctl_reg);
1454 if ((temp & PF_ENABLE) != 0) {
1455 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1456 I915_READ(pf_ctl_reg);
1458 I915_WRITE(pf_win_size, 0);
1460 /* Wait for the clocks to turn off. */
1461 udelay(150);
1462 break;
1466 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1468 struct drm_device *dev = crtc->dev;
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1471 int pipe = intel_crtc->pipe;
1472 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1473 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1474 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
1475 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1476 u32 temp;
1478 /* XXX: When our outputs are all unaware of DPMS modes other than off
1479 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1481 switch (mode) {
1482 case DRM_MODE_DPMS_ON:
1483 case DRM_MODE_DPMS_STANDBY:
1484 case DRM_MODE_DPMS_SUSPEND:
1485 /* Enable the DPLL */
1486 temp = I915_READ(dpll_reg);
1487 if ((temp & DPLL_VCO_ENABLE) == 0) {
1488 I915_WRITE(dpll_reg, temp);
1489 I915_READ(dpll_reg);
1490 /* Wait for the clocks to stabilize. */
1491 udelay(150);
1492 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1493 I915_READ(dpll_reg);
1494 /* Wait for the clocks to stabilize. */
1495 udelay(150);
1496 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1497 I915_READ(dpll_reg);
1498 /* Wait for the clocks to stabilize. */
1499 udelay(150);
1502 /* Enable the pipe */
1503 temp = I915_READ(pipeconf_reg);
1504 if ((temp & PIPEACONF_ENABLE) == 0)
1505 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1507 /* Enable the plane */
1508 temp = I915_READ(dspcntr_reg);
1509 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1510 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1511 /* Flush the plane changes */
1512 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1515 intel_crtc_load_lut(crtc);
1517 /* Give the overlay scaler a chance to enable if it's on this pipe */
1518 //intel_crtc_dpms_video(crtc, true); TODO
1519 intel_update_watermarks(dev);
1520 break;
1521 case DRM_MODE_DPMS_OFF:
1522 intel_update_watermarks(dev);
1523 /* Give the overlay scaler a chance to disable if it's on this pipe */
1524 //intel_crtc_dpms_video(crtc, FALSE); TODO
1526 /* Disable the VGA plane that we never use */
1527 i915_disable_vga(dev);
1529 /* Disable display plane */
1530 temp = I915_READ(dspcntr_reg);
1531 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1532 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1533 /* Flush the plane changes */
1534 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1535 I915_READ(dspbase_reg);
1538 if (!IS_I9XX(dev)) {
1539 /* Wait for vblank for the disable to take effect */
1540 intel_wait_for_vblank(dev);
1543 /* Next, disable display pipes */
1544 temp = I915_READ(pipeconf_reg);
1545 if ((temp & PIPEACONF_ENABLE) != 0) {
1546 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1547 I915_READ(pipeconf_reg);
1550 /* Wait for vblank for the disable to take effect. */
1551 intel_wait_for_vblank(dev);
1553 temp = I915_READ(dpll_reg);
1554 if ((temp & DPLL_VCO_ENABLE) != 0) {
1555 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1556 I915_READ(dpll_reg);
1559 /* Wait for the clocks to turn off. */
1560 udelay(150);
1561 break;
1566 * Sets the power management mode of the pipe and plane.
1568 * This code should probably grow support for turning the cursor off and back
1569 * on appropriately at the same time as we're turning the pipe off/on.
1571 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1573 struct drm_device *dev = crtc->dev;
1574 struct drm_i915_master_private *master_priv;
1575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1576 int pipe = intel_crtc->pipe;
1577 bool enabled;
1579 if (IS_IGDNG(dev))
1580 igdng_crtc_dpms(crtc, mode);
1581 else
1582 i9xx_crtc_dpms(crtc, mode);
1584 if (!dev->primary->master)
1585 return;
1587 master_priv = dev->primary->master->driver_priv;
1588 if (!master_priv->sarea_priv)
1589 return;
1591 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1593 switch (pipe) {
1594 case 0:
1595 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1596 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1597 break;
1598 case 1:
1599 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1600 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1601 break;
1602 default:
1603 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1604 break;
1607 intel_crtc->dpms_mode = mode;
1610 static void intel_crtc_prepare (struct drm_crtc *crtc)
1612 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1613 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1616 static void intel_crtc_commit (struct drm_crtc *crtc)
1618 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1619 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1622 void intel_encoder_prepare (struct drm_encoder *encoder)
1624 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1625 /* lvds has its own version of prepare see intel_lvds_prepare */
1626 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1629 void intel_encoder_commit (struct drm_encoder *encoder)
1631 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1632 /* lvds has its own version of commit see intel_lvds_commit */
1633 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1636 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1637 struct drm_display_mode *mode,
1638 struct drm_display_mode *adjusted_mode)
1640 struct drm_device *dev = crtc->dev;
1641 if (IS_IGDNG(dev)) {
1642 /* FDI link clock is fixed at 2.7G */
1643 if (mode->clock * 3 > 27000 * 4)
1644 return MODE_CLOCK_HIGH;
1646 return true;
1650 /** Returns the core display clock speed for i830 - i945 */
1651 static int intel_get_core_clock_speed(struct drm_device *dev)
1654 /* Core clock values taken from the published datasheets.
1655 * The 830 may go up to 166 Mhz, which we should check.
1657 if (IS_I945G(dev))
1658 return 400000;
1659 else if (IS_I915G(dev))
1660 return 333000;
1661 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
1662 return 200000;
1663 else if (IS_I915GM(dev)) {
1664 u16 gcfgc = 0;
1666 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1668 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1669 return 133000;
1670 else {
1671 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1672 case GC_DISPLAY_CLOCK_333_MHZ:
1673 return 333000;
1674 default:
1675 case GC_DISPLAY_CLOCK_190_200_MHZ:
1676 return 190000;
1679 } else if (IS_I865G(dev))
1680 return 266000;
1681 else if (IS_I855(dev)) {
1682 u16 hpllcc = 0;
1683 /* Assume that the hardware is in the high speed state. This
1684 * should be the default.
1686 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1687 case GC_CLOCK_133_200:
1688 case GC_CLOCK_100_200:
1689 return 200000;
1690 case GC_CLOCK_166_250:
1691 return 250000;
1692 case GC_CLOCK_100_133:
1693 return 133000;
1695 } else /* 852, 830 */
1696 return 133000;
1698 return 0; /* Silence gcc warning */
1702 * Return the pipe currently connected to the panel fitter,
1703 * or -1 if the panel fitter is not present or not in use
1705 static int intel_panel_fitter_pipe (struct drm_device *dev)
1707 struct drm_i915_private *dev_priv = dev->dev_private;
1708 u32 pfit_control;
1710 /* i830 doesn't have a panel fitter */
1711 if (IS_I830(dev))
1712 return -1;
1714 pfit_control = I915_READ(PFIT_CONTROL);
1716 /* See if the panel fitter is in use */
1717 if ((pfit_control & PFIT_ENABLE) == 0)
1718 return -1;
1720 /* 965 can place panel fitter on either pipe */
1721 if (IS_I965G(dev))
1722 return (pfit_control >> 29) & 0x3;
1724 /* older chips can only use pipe 1 */
1725 return 1;
1728 struct fdi_m_n {
1729 u32 tu;
1730 u32 gmch_m;
1731 u32 gmch_n;
1732 u32 link_m;
1733 u32 link_n;
1736 static void
1737 fdi_reduce_ratio(u32 *num, u32 *den)
1739 while (*num > 0xffffff || *den > 0xffffff) {
1740 *num >>= 1;
1741 *den >>= 1;
1745 #define DATA_N 0x800000
1746 #define LINK_N 0x80000
1748 static void
1749 igdng_compute_m_n(int bytes_per_pixel, int nlanes,
1750 int pixel_clock, int link_clock,
1751 struct fdi_m_n *m_n)
1753 u64 temp;
1755 m_n->tu = 64; /* default size */
1757 temp = (u64) DATA_N * pixel_clock;
1758 temp = div_u64(temp, link_clock);
1759 m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
1760 m_n->gmch_n = DATA_N;
1761 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
1763 temp = (u64) LINK_N * pixel_clock;
1764 m_n->link_m = div_u64(temp, link_clock);
1765 m_n->link_n = LINK_N;
1766 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
1770 struct intel_watermark_params {
1771 unsigned long fifo_size;
1772 unsigned long max_wm;
1773 unsigned long default_wm;
1774 unsigned long guard_size;
1775 unsigned long cacheline_size;
1778 /* IGD has different values for various configs */
1779 static struct intel_watermark_params igd_display_wm = {
1780 IGD_DISPLAY_FIFO,
1781 IGD_MAX_WM,
1782 IGD_DFT_WM,
1783 IGD_GUARD_WM,
1784 IGD_FIFO_LINE_SIZE
1786 static struct intel_watermark_params igd_display_hplloff_wm = {
1787 IGD_DISPLAY_FIFO,
1788 IGD_MAX_WM,
1789 IGD_DFT_HPLLOFF_WM,
1790 IGD_GUARD_WM,
1791 IGD_FIFO_LINE_SIZE
1793 static struct intel_watermark_params igd_cursor_wm = {
1794 IGD_CURSOR_FIFO,
1795 IGD_CURSOR_MAX_WM,
1796 IGD_CURSOR_DFT_WM,
1797 IGD_CURSOR_GUARD_WM,
1798 IGD_FIFO_LINE_SIZE,
1800 static struct intel_watermark_params igd_cursor_hplloff_wm = {
1801 IGD_CURSOR_FIFO,
1802 IGD_CURSOR_MAX_WM,
1803 IGD_CURSOR_DFT_WM,
1804 IGD_CURSOR_GUARD_WM,
1805 IGD_FIFO_LINE_SIZE
1807 static struct intel_watermark_params i945_wm_info = {
1808 I945_FIFO_SIZE,
1809 I915_MAX_WM,
1812 I915_FIFO_LINE_SIZE
1814 static struct intel_watermark_params i915_wm_info = {
1815 I915_FIFO_SIZE,
1816 I915_MAX_WM,
1819 I915_FIFO_LINE_SIZE
1821 static struct intel_watermark_params i855_wm_info = {
1822 I855GM_FIFO_SIZE,
1823 I915_MAX_WM,
1826 I830_FIFO_LINE_SIZE
1828 static struct intel_watermark_params i830_wm_info = {
1829 I830_FIFO_SIZE,
1830 I915_MAX_WM,
1833 I830_FIFO_LINE_SIZE
1837 * intel_calculate_wm - calculate watermark level
1838 * @clock_in_khz: pixel clock
1839 * @wm: chip FIFO params
1840 * @pixel_size: display pixel size
1841 * @latency_ns: memory latency for the platform
1843 * Calculate the watermark level (the level at which the display plane will
1844 * start fetching from memory again). Each chip has a different display
1845 * FIFO size and allocation, so the caller needs to figure that out and pass
1846 * in the correct intel_watermark_params structure.
1848 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1849 * on the pixel size. When it reaches the watermark level, it'll start
1850 * fetching FIFO line sized based chunks from memory until the FIFO fills
1851 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1852 * will occur, and a display engine hang could result.
1854 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1855 struct intel_watermark_params *wm,
1856 int pixel_size,
1857 unsigned long latency_ns)
1859 long entries_required, wm_size;
1861 entries_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
1862 entries_required /= wm->cacheline_size;
1864 DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
1866 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
1868 DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
1870 /* Don't promote wm_size to unsigned... */
1871 if (wm_size > (long)wm->max_wm)
1872 wm_size = wm->max_wm;
1873 if (wm_size <= 0)
1874 wm_size = wm->default_wm;
1875 return wm_size;
1878 struct cxsr_latency {
1879 int is_desktop;
1880 unsigned long fsb_freq;
1881 unsigned long mem_freq;
1882 unsigned long display_sr;
1883 unsigned long display_hpll_disable;
1884 unsigned long cursor_sr;
1885 unsigned long cursor_hpll_disable;
1888 static struct cxsr_latency cxsr_latency_table[] = {
1889 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
1890 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
1891 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
1893 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
1894 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
1895 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
1897 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
1898 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
1899 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
1901 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
1902 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
1903 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
1905 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
1906 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
1907 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
1909 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
1910 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
1911 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
1914 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
1915 int mem)
1917 int i;
1918 struct cxsr_latency *latency;
1920 if (fsb == 0 || mem == 0)
1921 return NULL;
1923 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
1924 latency = &cxsr_latency_table[i];
1925 if (is_desktop == latency->is_desktop &&
1926 fsb == latency->fsb_freq && mem == latency->mem_freq)
1927 break;
1929 if (i >= ARRAY_SIZE(cxsr_latency_table)) {
1930 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1931 return NULL;
1933 return latency;
1936 static void igd_disable_cxsr(struct drm_device *dev)
1938 struct drm_i915_private *dev_priv = dev->dev_private;
1939 u32 reg;
1941 /* deactivate cxsr */
1942 reg = I915_READ(DSPFW3);
1943 reg &= ~(IGD_SELF_REFRESH_EN);
1944 I915_WRITE(DSPFW3, reg);
1945 DRM_INFO("Big FIFO is disabled\n");
1948 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
1949 int pixel_size)
1951 struct drm_i915_private *dev_priv = dev->dev_private;
1952 u32 reg;
1953 unsigned long wm;
1954 struct cxsr_latency *latency;
1956 latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
1957 dev_priv->mem_freq);
1958 if (!latency) {
1959 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1960 igd_disable_cxsr(dev);
1961 return;
1964 /* Display SR */
1965 wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
1966 latency->display_sr);
1967 reg = I915_READ(DSPFW1);
1968 reg &= 0x7fffff;
1969 reg |= wm << 23;
1970 I915_WRITE(DSPFW1, reg);
1971 DRM_DEBUG("DSPFW1 register is %x\n", reg);
1973 /* cursor SR */
1974 wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
1975 latency->cursor_sr);
1976 reg = I915_READ(DSPFW3);
1977 reg &= ~(0x3f << 24);
1978 reg |= (wm & 0x3f) << 24;
1979 I915_WRITE(DSPFW3, reg);
1981 /* Display HPLL off SR */
1982 wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
1983 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
1984 reg = I915_READ(DSPFW3);
1985 reg &= 0xfffffe00;
1986 reg |= wm & 0x1ff;
1987 I915_WRITE(DSPFW3, reg);
1989 /* cursor HPLL off SR */
1990 wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
1991 latency->cursor_hpll_disable);
1992 reg = I915_READ(DSPFW3);
1993 reg &= ~(0x3f << 16);
1994 reg |= (wm & 0x3f) << 16;
1995 I915_WRITE(DSPFW3, reg);
1996 DRM_DEBUG("DSPFW3 register is %x\n", reg);
1998 /* activate cxsr */
1999 reg = I915_READ(DSPFW3);
2000 reg |= IGD_SELF_REFRESH_EN;
2001 I915_WRITE(DSPFW3, reg);
2003 DRM_INFO("Big FIFO is enabled\n");
2005 return;
2008 const static int latency_ns = 3000; /* default for non-igd platforms */
2010 static int intel_get_fifo_size(struct drm_device *dev, int plane)
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 uint32_t dsparb = I915_READ(DSPARB);
2014 int size;
2016 if (IS_I9XX(dev)) {
2017 if (plane == 0)
2018 size = dsparb & 0x7f;
2019 else
2020 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2021 (dsparb & 0x7f);
2022 } else if (IS_I85X(dev)) {
2023 if (plane == 0)
2024 size = dsparb & 0x1ff;
2025 else
2026 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2027 (dsparb & 0x1ff);
2028 size >>= 1; /* Convert to cachelines */
2029 } else if (IS_845G(dev)) {
2030 size = dsparb & 0x7f;
2031 size >>= 2; /* Convert to cachelines */
2032 } else {
2033 size = dsparb & 0x7f;
2034 size >>= 1; /* Convert to cachelines */
2037 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2038 size);
2040 return size;
2043 static void i965_update_wm(struct drm_device *dev)
2045 struct drm_i915_private *dev_priv = dev->dev_private;
2047 DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2049 /* 965 has limitations... */
2050 I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2051 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2054 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2055 int planeb_clock, int sr_hdisplay, int pixel_size)
2057 struct drm_i915_private *dev_priv = dev->dev_private;
2058 uint32_t fwater_lo;
2059 uint32_t fwater_hi;
2060 int total_size, cacheline_size, cwm, srwm = 1;
2061 int planea_wm, planeb_wm;
2062 struct intel_watermark_params planea_params, planeb_params;
2063 unsigned long line_time_us;
2064 int sr_clock, sr_entries = 0;
2066 /* Create copies of the base settings for each pipe */
2067 if (IS_I965GM(dev) || IS_I945GM(dev))
2068 planea_params = planeb_params = i945_wm_info;
2069 else if (IS_I9XX(dev))
2070 planea_params = planeb_params = i915_wm_info;
2071 else
2072 planea_params = planeb_params = i855_wm_info;
2074 /* Grab a couple of global values before we overwrite them */
2075 total_size = planea_params.fifo_size;
2076 cacheline_size = planea_params.cacheline_size;
2078 /* Update per-plane FIFO sizes */
2079 planea_params.fifo_size = intel_get_fifo_size(dev, 0);
2080 planeb_params.fifo_size = intel_get_fifo_size(dev, 1);
2082 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2083 pixel_size, latency_ns);
2084 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2085 pixel_size, latency_ns);
2086 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2089 * Overlay gets an aggressive default since video jitter is bad.
2091 cwm = 2;
2093 /* Calc sr entries for one plane configs */
2094 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2095 /* self-refresh has much higher latency */
2096 const static int sr_latency_ns = 6000;
2098 sr_clock = planea_clock ? planea_clock : planeb_clock;
2099 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2101 /* Use ns/us then divide to preserve precision */
2102 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2103 pixel_size * sr_hdisplay) / 1000;
2104 sr_entries = roundup(sr_entries / cacheline_size, 1);
2105 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2106 srwm = total_size - sr_entries;
2107 if (srwm < 0)
2108 srwm = 1;
2109 if (IS_I9XX(dev))
2110 I915_WRITE(FW_BLC_SELF, (srwm & 0x3f));
2113 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2114 planea_wm, planeb_wm, cwm, srwm);
2116 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2117 fwater_hi = (cwm & 0x1f);
2119 /* Set request length to 8 cachelines per fetch */
2120 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2121 fwater_hi = fwater_hi | (1 << 8);
2123 I915_WRITE(FW_BLC, fwater_lo);
2124 I915_WRITE(FW_BLC2, fwater_hi);
2127 static void i830_update_wm(struct drm_device *dev, int planea_clock,
2128 int pixel_size)
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2132 int planea_wm;
2134 i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);
2136 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2137 pixel_size, latency_ns);
2138 fwater_lo |= (3<<8) | planea_wm;
2140 DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
2142 I915_WRITE(FW_BLC, fwater_lo);
2146 * intel_update_watermarks - update FIFO watermark values based on current modes
2148 * Calculate watermark values for the various WM regs based on current mode
2149 * and plane configuration.
2151 * There are several cases to deal with here:
2152 * - normal (i.e. non-self-refresh)
2153 * - self-refresh (SR) mode
2154 * - lines are large relative to FIFO size (buffer can hold up to 2)
2155 * - lines are small relative to FIFO size (buffer can hold more than 2
2156 * lines), so need to account for TLB latency
2158 * The normal calculation is:
2159 * watermark = dotclock * bytes per pixel * latency
2160 * where latency is platform & configuration dependent (we assume pessimal
2161 * values here).
2163 * The SR calculation is:
2164 * watermark = (trunc(latency/line time)+1) * surface width *
2165 * bytes per pixel
2166 * where
2167 * line time = htotal / dotclock
2168 * and latency is assumed to be high, as above.
2170 * The final value programmed to the register should always be rounded up,
2171 * and include an extra 2 entries to account for clock crossings.
2173 * We don't use the sprite, so we can ignore that. And on Crestline we have
2174 * to set the non-SR watermarks to 8.
2176 static void intel_update_watermarks(struct drm_device *dev)
2178 struct drm_crtc *crtc;
2179 struct intel_crtc *intel_crtc;
2180 int sr_hdisplay = 0;
2181 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2182 int enabled = 0, pixel_size = 0;
2184 if (DSPARB_HWCONTROL(dev))
2185 return;
2187 /* Get the clock config from both planes */
2188 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2189 intel_crtc = to_intel_crtc(crtc);
2190 if (crtc->enabled) {
2191 enabled++;
2192 if (intel_crtc->plane == 0) {
2193 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2194 intel_crtc->pipe, crtc->mode.clock);
2195 planea_clock = crtc->mode.clock;
2196 } else {
2197 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2198 intel_crtc->pipe, crtc->mode.clock);
2199 planeb_clock = crtc->mode.clock;
2201 sr_hdisplay = crtc->mode.hdisplay;
2202 sr_clock = crtc->mode.clock;
2203 if (crtc->fb)
2204 pixel_size = crtc->fb->bits_per_pixel / 8;
2205 else
2206 pixel_size = 4; /* by default */
2210 if (enabled <= 0)
2211 return;
2213 /* Single plane configs can enable self refresh */
2214 if (enabled == 1 && IS_IGD(dev))
2215 igd_enable_cxsr(dev, sr_clock, pixel_size);
2216 else if (IS_IGD(dev))
2217 igd_disable_cxsr(dev);
2219 if (IS_I965G(dev))
2220 i965_update_wm(dev);
2221 else if (IS_I9XX(dev) || IS_MOBILE(dev))
2222 i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
2223 pixel_size);
2224 else
2225 i830_update_wm(dev, planea_clock, pixel_size);
2228 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2229 struct drm_display_mode *mode,
2230 struct drm_display_mode *adjusted_mode,
2231 int x, int y,
2232 struct drm_framebuffer *old_fb)
2234 struct drm_device *dev = crtc->dev;
2235 struct drm_i915_private *dev_priv = dev->dev_private;
2236 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2237 int pipe = intel_crtc->pipe;
2238 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2239 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2240 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2241 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
2242 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2243 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2244 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2245 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2246 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2247 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2248 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2249 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
2250 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
2251 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2252 int refclk, num_outputs = 0;
2253 intel_clock_t clock;
2254 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
2255 bool ok, is_sdvo = false, is_dvo = false;
2256 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2257 bool is_edp = false;
2258 struct drm_mode_config *mode_config = &dev->mode_config;
2259 struct drm_connector *connector;
2260 const intel_limit_t *limit;
2261 int ret;
2262 struct fdi_m_n m_n = {0};
2263 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2264 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2265 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2266 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2267 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2268 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2269 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2270 int lvds_reg = LVDS;
2271 u32 temp;
2272 int sdvo_pixel_multiply;
2273 int target_clock;
2275 drm_vblank_pre_modeset(dev, pipe);
2277 list_for_each_entry(connector, &mode_config->connector_list, head) {
2278 struct intel_output *intel_output = to_intel_output(connector);
2280 if (!connector->encoder || connector->encoder->crtc != crtc)
2281 continue;
2283 switch (intel_output->type) {
2284 case INTEL_OUTPUT_LVDS:
2285 is_lvds = true;
2286 break;
2287 case INTEL_OUTPUT_SDVO:
2288 case INTEL_OUTPUT_HDMI:
2289 is_sdvo = true;
2290 if (intel_output->needs_tv_clock)
2291 is_tv = true;
2292 break;
2293 case INTEL_OUTPUT_DVO:
2294 is_dvo = true;
2295 break;
2296 case INTEL_OUTPUT_TVOUT:
2297 is_tv = true;
2298 break;
2299 case INTEL_OUTPUT_ANALOG:
2300 is_crt = true;
2301 break;
2302 case INTEL_OUTPUT_DISPLAYPORT:
2303 is_dp = true;
2304 break;
2305 case INTEL_OUTPUT_EDP:
2306 is_edp = true;
2307 break;
2310 num_outputs++;
2313 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2314 refclk = dev_priv->lvds_ssc_freq * 1000;
2315 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2316 } else if (IS_I9XX(dev)) {
2317 refclk = 96000;
2318 if (IS_IGDNG(dev))
2319 refclk = 120000; /* 120Mhz refclk */
2320 } else {
2321 refclk = 48000;
2326 * Returns a set of divisors for the desired target clock with the given
2327 * refclk, or FALSE. The returned values represent the clock equation:
2328 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2330 limit = intel_limit(crtc);
2331 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2332 if (!ok) {
2333 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2334 drm_vblank_post_modeset(dev, pipe);
2335 return -EINVAL;
2338 /* SDVO TV has fixed PLL values depend on its clock range,
2339 this mirrors vbios setting. */
2340 if (is_sdvo && is_tv) {
2341 if (adjusted_mode->clock >= 100000
2342 && adjusted_mode->clock < 140500) {
2343 clock.p1 = 2;
2344 clock.p2 = 10;
2345 clock.n = 3;
2346 clock.m1 = 16;
2347 clock.m2 = 8;
2348 } else if (adjusted_mode->clock >= 140500
2349 && adjusted_mode->clock <= 200000) {
2350 clock.p1 = 1;
2351 clock.p2 = 10;
2352 clock.n = 6;
2353 clock.m1 = 12;
2354 clock.m2 = 8;
2358 /* FDI link */
2359 if (IS_IGDNG(dev)) {
2360 int lane, link_bw;
2361 /* eDP doesn't require FDI link, so just set DP M/N
2362 according to current link config */
2363 if (is_edp) {
2364 struct drm_connector *edp;
2365 target_clock = mode->clock;
2366 edp = intel_pipe_get_output(crtc);
2367 intel_edp_link_config(to_intel_output(edp),
2368 &lane, &link_bw);
2369 } else {
2370 /* DP over FDI requires target mode clock
2371 instead of link clock */
2372 if (is_dp)
2373 target_clock = mode->clock;
2374 else
2375 target_clock = adjusted_mode->clock;
2376 lane = 4;
2377 link_bw = 270000;
2379 igdng_compute_m_n(3, lane, target_clock,
2380 link_bw, &m_n);
2383 if (IS_IGD(dev))
2384 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2385 else
2386 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2388 if (!IS_IGDNG(dev))
2389 dpll = DPLL_VGA_MODE_DIS;
2391 if (IS_I9XX(dev)) {
2392 if (is_lvds)
2393 dpll |= DPLLB_MODE_LVDS;
2394 else
2395 dpll |= DPLLB_MODE_DAC_SERIAL;
2396 if (is_sdvo) {
2397 dpll |= DPLL_DVO_HIGH_SPEED;
2398 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2399 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2400 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2401 else if (IS_IGDNG(dev))
2402 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2404 if (is_dp)
2405 dpll |= DPLL_DVO_HIGH_SPEED;
2407 /* compute bitmask from p1 value */
2408 if (IS_IGD(dev))
2409 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2410 else {
2411 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2412 /* also FPA1 */
2413 if (IS_IGDNG(dev))
2414 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2416 switch (clock.p2) {
2417 case 5:
2418 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2419 break;
2420 case 7:
2421 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2422 break;
2423 case 10:
2424 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2425 break;
2426 case 14:
2427 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2428 break;
2430 if (IS_I965G(dev) && !IS_IGDNG(dev))
2431 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2432 } else {
2433 if (is_lvds) {
2434 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2435 } else {
2436 if (clock.p1 == 2)
2437 dpll |= PLL_P1_DIVIDE_BY_TWO;
2438 else
2439 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2440 if (clock.p2 == 4)
2441 dpll |= PLL_P2_DIVIDE_BY_4;
2445 if (is_sdvo && is_tv)
2446 dpll |= PLL_REF_INPUT_TVCLKINBC;
2447 else if (is_tv)
2448 /* XXX: just matching BIOS for now */
2449 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
2450 dpll |= 3;
2451 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2452 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2453 else
2454 dpll |= PLL_REF_INPUT_DREFCLK;
2456 /* setup pipeconf */
2457 pipeconf = I915_READ(pipeconf_reg);
2459 /* Set up the display plane register */
2460 dspcntr = DISPPLANE_GAMMA_ENABLE;
2462 /* IGDNG's plane is forced to pipe, bit 24 is to
2463 enable color space conversion */
2464 if (!IS_IGDNG(dev)) {
2465 if (pipe == 0)
2466 dspcntr |= DISPPLANE_SEL_PIPE_A;
2467 else
2468 dspcntr |= DISPPLANE_SEL_PIPE_B;
2471 if (pipe == 0 && !IS_I965G(dev)) {
2472 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2473 * core speed.
2475 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2476 * pipe == 0 check?
2478 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
2479 pipeconf |= PIPEACONF_DOUBLE_WIDE;
2480 else
2481 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2484 dspcntr |= DISPLAY_PLANE_ENABLE;
2485 pipeconf |= PIPEACONF_ENABLE;
2486 dpll |= DPLL_VCO_ENABLE;
2489 /* Disable the panel fitter if it was on our pipe */
2490 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
2491 I915_WRITE(PFIT_CONTROL, 0);
2493 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2494 drm_mode_debug_printmodeline(mode);
2496 /* assign to IGDNG registers */
2497 if (IS_IGDNG(dev)) {
2498 fp_reg = pch_fp_reg;
2499 dpll_reg = pch_dpll_reg;
2502 if (is_edp) {
2503 igdng_disable_pll_edp(crtc);
2504 } else if ((dpll & DPLL_VCO_ENABLE)) {
2505 I915_WRITE(fp_reg, fp);
2506 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2507 I915_READ(dpll_reg);
2508 udelay(150);
2511 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2512 * This is an exception to the general rule that mode_set doesn't turn
2513 * things on.
2515 if (is_lvds) {
2516 u32 lvds;
2518 if (IS_IGDNG(dev))
2519 lvds_reg = PCH_LVDS;
2521 lvds = I915_READ(lvds_reg);
2522 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2523 /* Set the B0-B3 data pairs corresponding to whether we're going to
2524 * set the DPLLs for dual-channel mode or not.
2526 if (clock.p2 == 7)
2527 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2528 else
2529 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2531 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2532 * appropriately here, but we need to look more thoroughly into how
2533 * panels behave in the two modes.
2536 I915_WRITE(lvds_reg, lvds);
2537 I915_READ(lvds_reg);
2539 if (is_dp)
2540 intel_dp_set_m_n(crtc, mode, adjusted_mode);
2542 if (!is_edp) {
2543 I915_WRITE(fp_reg, fp);
2544 I915_WRITE(dpll_reg, dpll);
2545 I915_READ(dpll_reg);
2546 /* Wait for the clocks to stabilize. */
2547 udelay(150);
2549 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2550 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2551 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2552 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2553 } else {
2554 /* write it again -- the BIOS does, after all */
2555 I915_WRITE(dpll_reg, dpll);
2557 I915_READ(dpll_reg);
2558 /* Wait for the clocks to stabilize. */
2559 udelay(150);
2562 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2563 ((adjusted_mode->crtc_htotal - 1) << 16));
2564 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
2565 ((adjusted_mode->crtc_hblank_end - 1) << 16));
2566 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
2567 ((adjusted_mode->crtc_hsync_end - 1) << 16));
2568 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
2569 ((adjusted_mode->crtc_vtotal - 1) << 16));
2570 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
2571 ((adjusted_mode->crtc_vblank_end - 1) << 16));
2572 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
2573 ((adjusted_mode->crtc_vsync_end - 1) << 16));
2574 /* pipesrc and dspsize control the size that is scaled from, which should
2575 * always be the user's requested size.
2577 if (!IS_IGDNG(dev)) {
2578 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
2579 (mode->hdisplay - 1));
2580 I915_WRITE(dsppos_reg, 0);
2582 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2584 if (IS_IGDNG(dev)) {
2585 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
2586 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
2587 I915_WRITE(link_m1_reg, m_n.link_m);
2588 I915_WRITE(link_n1_reg, m_n.link_n);
2590 if (is_edp) {
2591 igdng_set_pll_edp(crtc, adjusted_mode->clock);
2592 } else {
2593 /* enable FDI RX PLL too */
2594 temp = I915_READ(fdi_rx_reg);
2595 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
2596 udelay(200);
2600 I915_WRITE(pipeconf_reg, pipeconf);
2601 I915_READ(pipeconf_reg);
2603 intel_wait_for_vblank(dev);
2605 I915_WRITE(dspcntr_reg, dspcntr);
2607 /* Flush the plane changes */
2608 ret = intel_pipe_set_base(crtc, x, y, old_fb);
2610 intel_update_watermarks(dev);
2612 drm_vblank_post_modeset(dev, pipe);
2614 return ret;
2617 /** Loads the palette/gamma unit for the CRTC with the prepared values */
2618 void intel_crtc_load_lut(struct drm_crtc *crtc)
2620 struct drm_device *dev = crtc->dev;
2621 struct drm_i915_private *dev_priv = dev->dev_private;
2622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2623 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
2624 int i;
2626 /* The clocks have to be on to load the palette. */
2627 if (!crtc->enabled)
2628 return;
2630 /* use legacy palette for IGDNG */
2631 if (IS_IGDNG(dev))
2632 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
2633 LGC_PALETTE_B;
2635 for (i = 0; i < 256; i++) {
2636 I915_WRITE(palreg + 4 * i,
2637 (intel_crtc->lut_r[i] << 16) |
2638 (intel_crtc->lut_g[i] << 8) |
2639 intel_crtc->lut_b[i]);
2643 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
2644 struct drm_file *file_priv,
2645 uint32_t handle,
2646 uint32_t width, uint32_t height)
2648 struct drm_device *dev = crtc->dev;
2649 struct drm_i915_private *dev_priv = dev->dev_private;
2650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651 struct drm_gem_object *bo;
2652 struct drm_i915_gem_object *obj_priv;
2653 int pipe = intel_crtc->pipe;
2654 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
2655 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
2656 uint32_t temp = I915_READ(control);
2657 size_t addr;
2658 int ret;
2660 DRM_DEBUG("\n");
2662 /* if we want to turn off the cursor ignore width and height */
2663 if (!handle) {
2664 DRM_DEBUG("cursor off\n");
2665 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2666 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
2667 temp |= CURSOR_MODE_DISABLE;
2668 } else {
2669 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
2671 addr = 0;
2672 bo = NULL;
2673 mutex_lock(&dev->struct_mutex);
2674 goto finish;
2677 /* Currently we only support 64x64 cursors */
2678 if (width != 64 || height != 64) {
2679 DRM_ERROR("we currently only support 64x64 cursors\n");
2680 return -EINVAL;
2683 bo = drm_gem_object_lookup(dev, file_priv, handle);
2684 if (!bo)
2685 return -ENOENT;
2687 obj_priv = bo->driver_private;
2689 if (bo->size < width * height * 4) {
2690 DRM_ERROR("buffer is to small\n");
2691 ret = -ENOMEM;
2692 goto fail;
2695 /* we only need to pin inside GTT if cursor is non-phy */
2696 mutex_lock(&dev->struct_mutex);
2697 if (!dev_priv->cursor_needs_physical) {
2698 ret = i915_gem_object_pin(bo, PAGE_SIZE);
2699 if (ret) {
2700 DRM_ERROR("failed to pin cursor bo\n");
2701 goto fail_locked;
2703 addr = obj_priv->gtt_offset;
2704 } else {
2705 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
2706 if (ret) {
2707 DRM_ERROR("failed to attach phys object\n");
2708 goto fail_locked;
2710 addr = obj_priv->phys_obj->handle->busaddr;
2713 if (!IS_I9XX(dev))
2714 I915_WRITE(CURSIZE, (height << 12) | width);
2716 /* Hooray for CUR*CNTR differences */
2717 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2718 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
2719 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
2720 temp |= (pipe << 28); /* Connect to correct pipe */
2721 } else {
2722 temp &= ~(CURSOR_FORMAT_MASK);
2723 temp |= CURSOR_ENABLE;
2724 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
2727 finish:
2728 I915_WRITE(control, temp);
2729 I915_WRITE(base, addr);
2731 if (intel_crtc->cursor_bo) {
2732 if (dev_priv->cursor_needs_physical) {
2733 if (intel_crtc->cursor_bo != bo)
2734 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
2735 } else
2736 i915_gem_object_unpin(intel_crtc->cursor_bo);
2737 drm_gem_object_unreference(intel_crtc->cursor_bo);
2739 mutex_unlock(&dev->struct_mutex);
2741 intel_crtc->cursor_addr = addr;
2742 intel_crtc->cursor_bo = bo;
2744 return 0;
2745 fail:
2746 mutex_lock(&dev->struct_mutex);
2747 fail_locked:
2748 drm_gem_object_unreference(bo);
2749 mutex_unlock(&dev->struct_mutex);
2750 return ret;
2753 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
2755 struct drm_device *dev = crtc->dev;
2756 struct drm_i915_private *dev_priv = dev->dev_private;
2757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2758 int pipe = intel_crtc->pipe;
2759 uint32_t temp = 0;
2760 uint32_t adder;
2762 if (x < 0) {
2763 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
2764 x = -x;
2766 if (y < 0) {
2767 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
2768 y = -y;
2771 temp |= x << CURSOR_X_SHIFT;
2772 temp |= y << CURSOR_Y_SHIFT;
2774 adder = intel_crtc->cursor_addr;
2775 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
2776 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
2778 return 0;
2781 /** Sets the color ramps on behalf of RandR */
2782 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
2783 u16 blue, int regno)
2785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2787 intel_crtc->lut_r[regno] = red >> 8;
2788 intel_crtc->lut_g[regno] = green >> 8;
2789 intel_crtc->lut_b[regno] = blue >> 8;
2792 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2793 u16 *blue, uint32_t size)
2795 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2796 int i;
2798 if (size != 256)
2799 return;
2801 for (i = 0; i < 256; i++) {
2802 intel_crtc->lut_r[i] = red[i] >> 8;
2803 intel_crtc->lut_g[i] = green[i] >> 8;
2804 intel_crtc->lut_b[i] = blue[i] >> 8;
2807 intel_crtc_load_lut(crtc);
2811 * Get a pipe with a simple mode set on it for doing load-based monitor
2812 * detection.
2814 * It will be up to the load-detect code to adjust the pipe as appropriate for
2815 * its requirements. The pipe will be connected to no other outputs.
2817 * Currently this code will only succeed if there is a pipe with no outputs
2818 * configured for it. In the future, it could choose to temporarily disable
2819 * some outputs to free up a pipe for its use.
2821 * \return crtc, or NULL if no pipes are available.
2824 /* VESA 640x480x72Hz mode to set on the pipe */
2825 static struct drm_display_mode load_detect_mode = {
2826 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
2827 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
2830 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
2831 struct drm_display_mode *mode,
2832 int *dpms_mode)
2834 struct intel_crtc *intel_crtc;
2835 struct drm_crtc *possible_crtc;
2836 struct drm_crtc *supported_crtc =NULL;
2837 struct drm_encoder *encoder = &intel_output->enc;
2838 struct drm_crtc *crtc = NULL;
2839 struct drm_device *dev = encoder->dev;
2840 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2841 struct drm_crtc_helper_funcs *crtc_funcs;
2842 int i = -1;
2845 * Algorithm gets a little messy:
2846 * - if the connector already has an assigned crtc, use it (but make
2847 * sure it's on first)
2848 * - try to find the first unused crtc that can drive this connector,
2849 * and use that if we find one
2850 * - if there are no unused crtcs available, try to use the first
2851 * one we found that supports the connector
2854 /* See if we already have a CRTC for this connector */
2855 if (encoder->crtc) {
2856 crtc = encoder->crtc;
2857 /* Make sure the crtc and connector are running */
2858 intel_crtc = to_intel_crtc(crtc);
2859 *dpms_mode = intel_crtc->dpms_mode;
2860 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2861 crtc_funcs = crtc->helper_private;
2862 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2863 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2865 return crtc;
2868 /* Find an unused one (if possible) */
2869 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
2870 i++;
2871 if (!(encoder->possible_crtcs & (1 << i)))
2872 continue;
2873 if (!possible_crtc->enabled) {
2874 crtc = possible_crtc;
2875 break;
2877 if (!supported_crtc)
2878 supported_crtc = possible_crtc;
2882 * If we didn't find an unused CRTC, don't use any.
2884 if (!crtc) {
2885 return NULL;
2888 encoder->crtc = crtc;
2889 intel_output->base.encoder = encoder;
2890 intel_output->load_detect_temp = true;
2892 intel_crtc = to_intel_crtc(crtc);
2893 *dpms_mode = intel_crtc->dpms_mode;
2895 if (!crtc->enabled) {
2896 if (!mode)
2897 mode = &load_detect_mode;
2898 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
2899 } else {
2900 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2901 crtc_funcs = crtc->helper_private;
2902 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2905 /* Add this connector to the crtc */
2906 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
2907 encoder_funcs->commit(encoder);
2909 /* let the connector get through one full cycle before testing */
2910 intel_wait_for_vblank(dev);
2912 return crtc;
2915 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
2917 struct drm_encoder *encoder = &intel_output->enc;
2918 struct drm_device *dev = encoder->dev;
2919 struct drm_crtc *crtc = encoder->crtc;
2920 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2921 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2923 if (intel_output->load_detect_temp) {
2924 encoder->crtc = NULL;
2925 intel_output->base.encoder = NULL;
2926 intel_output->load_detect_temp = false;
2927 crtc->enabled = drm_helper_crtc_in_use(crtc);
2928 drm_helper_disable_unused_functions(dev);
2931 /* Switch crtc and output back off if necessary */
2932 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
2933 if (encoder->crtc == crtc)
2934 encoder_funcs->dpms(encoder, dpms_mode);
2935 crtc_funcs->dpms(crtc, dpms_mode);
2939 /* Returns the clock of the currently programmed mode of the given pipe. */
2940 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
2942 struct drm_i915_private *dev_priv = dev->dev_private;
2943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2944 int pipe = intel_crtc->pipe;
2945 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
2946 u32 fp;
2947 intel_clock_t clock;
2949 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
2950 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
2951 else
2952 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
2954 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
2955 if (IS_IGD(dev)) {
2956 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
2957 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
2958 } else {
2959 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
2960 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
2963 if (IS_I9XX(dev)) {
2964 if (IS_IGD(dev))
2965 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
2966 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
2967 else
2968 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
2969 DPLL_FPA01_P1_POST_DIV_SHIFT);
2971 switch (dpll & DPLL_MODE_MASK) {
2972 case DPLLB_MODE_DAC_SERIAL:
2973 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
2974 5 : 10;
2975 break;
2976 case DPLLB_MODE_LVDS:
2977 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
2978 7 : 14;
2979 break;
2980 default:
2981 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
2982 "mode\n", (int)(dpll & DPLL_MODE_MASK));
2983 return 0;
2986 /* XXX: Handle the 100Mhz refclk */
2987 intel_clock(dev, 96000, &clock);
2988 } else {
2989 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2991 if (is_lvds) {
2992 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
2993 DPLL_FPA01_P1_POST_DIV_SHIFT);
2994 clock.p2 = 14;
2996 if ((dpll & PLL_REF_INPUT_MASK) ==
2997 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
2998 /* XXX: might not be 66MHz */
2999 intel_clock(dev, 66000, &clock);
3000 } else
3001 intel_clock(dev, 48000, &clock);
3002 } else {
3003 if (dpll & PLL_P1_DIVIDE_BY_TWO)
3004 clock.p1 = 2;
3005 else {
3006 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3007 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3009 if (dpll & PLL_P2_DIVIDE_BY_4)
3010 clock.p2 = 4;
3011 else
3012 clock.p2 = 2;
3014 intel_clock(dev, 48000, &clock);
3018 /* XXX: It would be nice to validate the clocks, but we can't reuse
3019 * i830PllIsValid() because it relies on the xf86_config connector
3020 * configuration being accurate, which it isn't necessarily.
3023 return clock.dot;
3026 /** Returns the currently programmed mode of the given pipe. */
3027 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3028 struct drm_crtc *crtc)
3030 struct drm_i915_private *dev_priv = dev->dev_private;
3031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3032 int pipe = intel_crtc->pipe;
3033 struct drm_display_mode *mode;
3034 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3035 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3036 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3037 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3039 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3040 if (!mode)
3041 return NULL;
3043 mode->clock = intel_crtc_clock_get(dev, crtc);
3044 mode->hdisplay = (htot & 0xffff) + 1;
3045 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3046 mode->hsync_start = (hsync & 0xffff) + 1;
3047 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3048 mode->vdisplay = (vtot & 0xffff) + 1;
3049 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3050 mode->vsync_start = (vsync & 0xffff) + 1;
3051 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3053 drm_mode_set_name(mode);
3054 drm_mode_set_crtcinfo(mode, 0);
3056 return mode;
3059 static void intel_crtc_destroy(struct drm_crtc *crtc)
3061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3063 if (intel_crtc->mode_set.mode)
3064 drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
3065 drm_crtc_cleanup(crtc);
3066 kfree(intel_crtc);
3069 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3070 .dpms = intel_crtc_dpms,
3071 .mode_fixup = intel_crtc_mode_fixup,
3072 .mode_set = intel_crtc_mode_set,
3073 .mode_set_base = intel_pipe_set_base,
3074 .prepare = intel_crtc_prepare,
3075 .commit = intel_crtc_commit,
3078 static const struct drm_crtc_funcs intel_crtc_funcs = {
3079 .cursor_set = intel_crtc_cursor_set,
3080 .cursor_move = intel_crtc_cursor_move,
3081 .gamma_set = intel_crtc_gamma_set,
3082 .set_config = drm_crtc_helper_set_config,
3083 .destroy = intel_crtc_destroy,
3087 static void intel_crtc_init(struct drm_device *dev, int pipe)
3089 struct intel_crtc *intel_crtc;
3090 int i;
3092 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
3093 if (intel_crtc == NULL)
3094 return;
3096 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
3098 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
3099 intel_crtc->pipe = pipe;
3100 intel_crtc->plane = pipe;
3101 for (i = 0; i < 256; i++) {
3102 intel_crtc->lut_r[i] = i;
3103 intel_crtc->lut_g[i] = i;
3104 intel_crtc->lut_b[i] = i;
3107 intel_crtc->cursor_addr = 0;
3108 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
3109 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
3111 intel_crtc->mode_set.crtc = &intel_crtc->base;
3112 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
3113 intel_crtc->mode_set.num_connectors = 0;
3115 if (i915_fbpercrtc) {
3122 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
3123 struct drm_file *file_priv)
3125 drm_i915_private_t *dev_priv = dev->dev_private;
3126 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
3127 struct drm_crtc *crtc = NULL;
3128 int pipe = -1;
3130 if (!dev_priv) {
3131 DRM_ERROR("called with no initialization\n");
3132 return -EINVAL;
3135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3137 if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
3138 pipe = intel_crtc->pipe;
3139 break;
3143 if (pipe == -1) {
3144 DRM_ERROR("no such CRTC id\n");
3145 return -EINVAL;
3148 pipe_from_crtc_id->pipe = pipe;
3150 return 0;
3153 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
3155 struct drm_crtc *crtc = NULL;
3157 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3159 if (intel_crtc->pipe == pipe)
3160 break;
3162 return crtc;
3165 static int intel_connector_clones(struct drm_device *dev, int type_mask)
3167 int index_mask = 0;
3168 struct drm_connector *connector;
3169 int entry = 0;
3171 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3172 struct intel_output *intel_output = to_intel_output(connector);
3173 if (type_mask & (1 << intel_output->type))
3174 index_mask |= (1 << entry);
3175 entry++;
3177 return index_mask;
3181 static void intel_setup_outputs(struct drm_device *dev)
3183 struct drm_i915_private *dev_priv = dev->dev_private;
3184 struct drm_connector *connector;
3186 intel_crt_init(dev);
3188 /* Set up integrated LVDS */
3189 if (IS_MOBILE(dev) && !IS_I830(dev))
3190 intel_lvds_init(dev);
3192 if (IS_IGDNG(dev)) {
3193 int found;
3195 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
3196 intel_dp_init(dev, DP_A);
3198 if (I915_READ(HDMIB) & PORT_DETECTED) {
3199 /* check SDVOB */
3200 /* found = intel_sdvo_init(dev, HDMIB); */
3201 found = 0;
3202 if (!found)
3203 intel_hdmi_init(dev, HDMIB);
3204 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3205 intel_dp_init(dev, PCH_DP_B);
3208 if (I915_READ(HDMIC) & PORT_DETECTED)
3209 intel_hdmi_init(dev, HDMIC);
3211 if (I915_READ(HDMID) & PORT_DETECTED)
3212 intel_hdmi_init(dev, HDMID);
3214 if (I915_READ(PCH_DP_C) & DP_DETECTED)
3215 intel_dp_init(dev, PCH_DP_C);
3217 if (I915_READ(PCH_DP_D) & DP_DETECTED)
3218 intel_dp_init(dev, PCH_DP_D);
3220 } else if (IS_I9XX(dev)) {
3221 int found;
3222 u32 reg;
3224 if (I915_READ(SDVOB) & SDVO_DETECTED) {
3225 found = intel_sdvo_init(dev, SDVOB);
3226 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3227 intel_hdmi_init(dev, SDVOB);
3228 if (!found && SUPPORTS_INTEGRATED_DP(dev))
3229 intel_dp_init(dev, DP_B);
3232 /* Before G4X SDVOC doesn't have its own detect register */
3233 if (IS_G4X(dev))
3234 reg = SDVOC;
3235 else
3236 reg = SDVOB;
3238 if (I915_READ(reg) & SDVO_DETECTED) {
3239 found = intel_sdvo_init(dev, SDVOC);
3240 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3241 intel_hdmi_init(dev, SDVOC);
3242 if (!found && SUPPORTS_INTEGRATED_DP(dev))
3243 intel_dp_init(dev, DP_C);
3245 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
3246 intel_dp_init(dev, DP_D);
3247 } else
3248 intel_dvo_init(dev);
3250 if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
3251 intel_tv_init(dev);
3253 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3254 struct intel_output *intel_output = to_intel_output(connector);
3255 struct drm_encoder *encoder = &intel_output->enc;
3256 int crtc_mask = 0, clone_mask = 0;
3258 /* valid crtcs */
3259 switch(intel_output->type) {
3260 case INTEL_OUTPUT_HDMI:
3261 crtc_mask = ((1 << 0)|
3262 (1 << 1));
3263 clone_mask = ((1 << INTEL_OUTPUT_HDMI));
3264 break;
3265 case INTEL_OUTPUT_DVO:
3266 case INTEL_OUTPUT_SDVO:
3267 crtc_mask = ((1 << 0)|
3268 (1 << 1));
3269 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3270 (1 << INTEL_OUTPUT_DVO) |
3271 (1 << INTEL_OUTPUT_SDVO));
3272 break;
3273 case INTEL_OUTPUT_ANALOG:
3274 crtc_mask = ((1 << 0)|
3275 (1 << 1));
3276 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3277 (1 << INTEL_OUTPUT_DVO) |
3278 (1 << INTEL_OUTPUT_SDVO));
3279 break;
3280 case INTEL_OUTPUT_LVDS:
3281 crtc_mask = (1 << 1);
3282 clone_mask = (1 << INTEL_OUTPUT_LVDS);
3283 break;
3284 case INTEL_OUTPUT_TVOUT:
3285 crtc_mask = ((1 << 0) |
3286 (1 << 1));
3287 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
3288 break;
3289 case INTEL_OUTPUT_DISPLAYPORT:
3290 crtc_mask = ((1 << 0) |
3291 (1 << 1));
3292 clone_mask = (1 << INTEL_OUTPUT_DISPLAYPORT);
3293 break;
3294 case INTEL_OUTPUT_EDP:
3295 crtc_mask = (1 << 1);
3296 clone_mask = (1 << INTEL_OUTPUT_EDP);
3297 break;
3299 encoder->possible_crtcs = crtc_mask;
3300 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
3304 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
3306 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3307 struct drm_device *dev = fb->dev;
3309 if (fb->fbdev)
3310 intelfb_remove(dev, fb);
3312 drm_framebuffer_cleanup(fb);
3313 mutex_lock(&dev->struct_mutex);
3314 drm_gem_object_unreference(intel_fb->obj);
3315 mutex_unlock(&dev->struct_mutex);
3317 kfree(intel_fb);
3320 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
3321 struct drm_file *file_priv,
3322 unsigned int *handle)
3324 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3325 struct drm_gem_object *object = intel_fb->obj;
3327 return drm_gem_handle_create(file_priv, object, handle);
3330 static const struct drm_framebuffer_funcs intel_fb_funcs = {
3331 .destroy = intel_user_framebuffer_destroy,
3332 .create_handle = intel_user_framebuffer_create_handle,
3335 int intel_framebuffer_create(struct drm_device *dev,
3336 struct drm_mode_fb_cmd *mode_cmd,
3337 struct drm_framebuffer **fb,
3338 struct drm_gem_object *obj)
3340 struct intel_framebuffer *intel_fb;
3341 int ret;
3343 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
3344 if (!intel_fb)
3345 return -ENOMEM;
3347 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
3348 if (ret) {
3349 DRM_ERROR("framebuffer init failed %d\n", ret);
3350 return ret;
3353 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
3355 intel_fb->obj = obj;
3357 *fb = &intel_fb->base;
3359 return 0;
3363 static struct drm_framebuffer *
3364 intel_user_framebuffer_create(struct drm_device *dev,
3365 struct drm_file *filp,
3366 struct drm_mode_fb_cmd *mode_cmd)
3368 struct drm_gem_object *obj;
3369 struct drm_framebuffer *fb;
3370 int ret;
3372 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
3373 if (!obj)
3374 return NULL;
3376 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
3377 if (ret) {
3378 mutex_lock(&dev->struct_mutex);
3379 drm_gem_object_unreference(obj);
3380 mutex_unlock(&dev->struct_mutex);
3381 return NULL;
3384 return fb;
3387 static const struct drm_mode_config_funcs intel_mode_funcs = {
3388 .fb_create = intel_user_framebuffer_create,
3389 .fb_changed = intelfb_probe,
3392 void intel_modeset_init(struct drm_device *dev)
3394 int num_pipe;
3395 int i;
3397 drm_mode_config_init(dev);
3399 dev->mode_config.min_width = 0;
3400 dev->mode_config.min_height = 0;
3402 dev->mode_config.funcs = (void *)&intel_mode_funcs;
3404 if (IS_I965G(dev)) {
3405 dev->mode_config.max_width = 8192;
3406 dev->mode_config.max_height = 8192;
3407 } else if (IS_I9XX(dev)) {
3408 dev->mode_config.max_width = 4096;
3409 dev->mode_config.max_height = 4096;
3410 } else {
3411 dev->mode_config.max_width = 2048;
3412 dev->mode_config.max_height = 2048;
3415 /* set memory base */
3416 if (IS_I9XX(dev))
3417 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
3418 else
3419 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
3421 if (IS_MOBILE(dev) || IS_I9XX(dev))
3422 num_pipe = 2;
3423 else
3424 num_pipe = 1;
3425 DRM_DEBUG("%d display pipe%s available.\n",
3426 num_pipe, num_pipe > 1 ? "s" : "");
3428 for (i = 0; i < num_pipe; i++) {
3429 intel_crtc_init(dev, i);
3432 intel_setup_outputs(dev);
3435 void intel_modeset_cleanup(struct drm_device *dev)
3437 drm_mode_config_cleanup(dev);
3441 /* current intel driver doesn't take advantage of encoders
3442 always give back the encoder for the connector
3444 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
3446 struct intel_output *intel_output = to_intel_output(connector);
3448 return &intel_output->enc;