[PATCH] SUNRPC: don't reencode when looping in call transmit.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobb6506671b2be08c8da0a5582800d3ec0fffc7280
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t *p)
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t;
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
200 struct runqueue {
201 spinlock_t lock;
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long prio_bias;
210 unsigned long cpu_load[3];
211 #endif
212 unsigned long long nr_switches;
215 * This is part of a global counter where only the total sum
216 * over all CPUs matters. A task can increase this counter on
217 * one CPU and if it got migrated afterwards it may decrease
218 * it on another CPU. Always updated under the runqueue lock:
220 unsigned long nr_uninterruptible;
222 unsigned long expired_timestamp;
223 unsigned long long timestamp_last_tick;
224 task_t *curr, *idle;
225 struct mm_struct *prev_mm;
226 prio_array_t *active, *expired, arrays[2];
227 int best_expired_prio;
228 atomic_t nr_iowait;
230 #ifdef CONFIG_SMP
231 struct sched_domain *sd;
233 /* For active balancing */
234 int active_balance;
235 int push_cpu;
237 task_t *migration_thread;
238 struct list_head migration_queue;
239 #endif
241 #ifdef CONFIG_SCHEDSTATS
242 /* latency stats */
243 struct sched_info rq_sched_info;
245 /* sys_sched_yield() stats */
246 unsigned long yld_exp_empty;
247 unsigned long yld_act_empty;
248 unsigned long yld_both_empty;
249 unsigned long yld_cnt;
251 /* schedule() stats */
252 unsigned long sched_switch;
253 unsigned long sched_cnt;
254 unsigned long sched_goidle;
256 /* try_to_wake_up() stats */
257 unsigned long ttwu_cnt;
258 unsigned long ttwu_local;
259 #endif
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
265 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266 * See detach_destroy_domains: synchronize_sched for details.
268 * The domain tree of any CPU may only be accessed from within
269 * preempt-disabled sections.
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
274 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
275 #define this_rq() (&__get_cpu_var(runqueues))
276 #define task_rq(p) cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next) do { } while (0)
281 #endif
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev) do { } while (0)
284 #endif
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
289 return rq->curr == p;
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
298 #ifdef CONFIG_DEBUG_SPINLOCK
299 /* this is a valid case when another task releases the spinlock */
300 rq->lock.owner = current;
301 #endif
302 spin_unlock_irq(&rq->lock);
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
308 #ifdef CONFIG_SMP
309 return p->oncpu;
310 #else
311 return rq->curr == p;
312 #endif
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
317 #ifdef CONFIG_SMP
319 * We can optimise this out completely for !SMP, because the
320 * SMP rebalancing from interrupt is the only thing that cares
321 * here.
323 next->oncpu = 1;
324 #endif
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326 spin_unlock_irq(&rq->lock);
327 #else
328 spin_unlock(&rq->lock);
329 #endif
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
334 #ifdef CONFIG_SMP
336 * After ->oncpu is cleared, the task can be moved to a different CPU.
337 * We must ensure this doesn't happen until the switch is completely
338 * finished.
340 smp_wmb();
341 prev->oncpu = 0;
342 #endif
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344 local_irq_enable();
345 #endif
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
350 * task_rq_lock - lock the runqueue a given task resides on and disable
351 * interrupts. Note the ordering: we can safely lookup the task_rq without
352 * explicitly disabling preemption.
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355 __acquires(rq->lock)
357 struct runqueue *rq;
359 repeat_lock_task:
360 local_irq_save(*flags);
361 rq = task_rq(p);
362 spin_lock(&rq->lock);
363 if (unlikely(rq != task_rq(p))) {
364 spin_unlock_irqrestore(&rq->lock, *flags);
365 goto repeat_lock_task;
367 return rq;
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371 __releases(rq->lock)
373 spin_unlock_irqrestore(&rq->lock, *flags);
376 #ifdef CONFIG_SCHEDSTATS
378 * bump this up when changing the output format or the meaning of an existing
379 * format, so that tools can adapt (or abort)
381 #define SCHEDSTAT_VERSION 12
383 static int show_schedstat(struct seq_file *seq, void *v)
385 int cpu;
387 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388 seq_printf(seq, "timestamp %lu\n", jiffies);
389 for_each_online_cpu(cpu) {
390 runqueue_t *rq = cpu_rq(cpu);
391 #ifdef CONFIG_SMP
392 struct sched_domain *sd;
393 int dcnt = 0;
394 #endif
396 /* runqueue-specific stats */
397 seq_printf(seq,
398 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399 cpu, rq->yld_both_empty,
400 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402 rq->ttwu_cnt, rq->ttwu_local,
403 rq->rq_sched_info.cpu_time,
404 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
406 seq_printf(seq, "\n");
408 #ifdef CONFIG_SMP
409 /* domain-specific stats */
410 preempt_disable();
411 for_each_domain(cpu, sd) {
412 enum idle_type itype;
413 char mask_str[NR_CPUS];
415 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418 itype++) {
419 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420 sd->lb_cnt[itype],
421 sd->lb_balanced[itype],
422 sd->lb_failed[itype],
423 sd->lb_imbalance[itype],
424 sd->lb_gained[itype],
425 sd->lb_hot_gained[itype],
426 sd->lb_nobusyq[itype],
427 sd->lb_nobusyg[itype]);
429 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
435 preempt_enable();
436 #endif
438 return 0;
441 static int schedstat_open(struct inode *inode, struct file *file)
443 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444 char *buf = kmalloc(size, GFP_KERNEL);
445 struct seq_file *m;
446 int res;
448 if (!buf)
449 return -ENOMEM;
450 res = single_open(file, show_schedstat, NULL);
451 if (!res) {
452 m = file->private_data;
453 m->buf = buf;
454 m->size = size;
455 } else
456 kfree(buf);
457 return res;
460 struct file_operations proc_schedstat_operations = {
461 .open = schedstat_open,
462 .read = seq_read,
463 .llseek = seq_lseek,
464 .release = single_release,
467 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field) do { } while (0)
471 # define schedstat_add(rq, field, amt) do { } while (0)
472 #endif
475 * rq_lock - lock a given runqueue and disable interrupts.
477 static inline runqueue_t *this_rq_lock(void)
478 __acquires(rq->lock)
480 runqueue_t *rq;
482 local_irq_disable();
483 rq = this_rq();
484 spin_lock(&rq->lock);
486 return rq;
489 #ifdef CONFIG_SCHEDSTATS
491 * Called when a process is dequeued from the active array and given
492 * the cpu. We should note that with the exception of interactive
493 * tasks, the expired queue will become the active queue after the active
494 * queue is empty, without explicitly dequeuing and requeuing tasks in the
495 * expired queue. (Interactive tasks may be requeued directly to the
496 * active queue, thus delaying tasks in the expired queue from running;
497 * see scheduler_tick()).
499 * This function is only called from sched_info_arrive(), rather than
500 * dequeue_task(). Even though a task may be queued and dequeued multiple
501 * times as it is shuffled about, we're really interested in knowing how
502 * long it was from the *first* time it was queued to the time that it
503 * finally hit a cpu.
505 static inline void sched_info_dequeued(task_t *t)
507 t->sched_info.last_queued = 0;
511 * Called when a task finally hits the cpu. We can now calculate how
512 * long it was waiting to run. We also note when it began so that we
513 * can keep stats on how long its timeslice is.
515 static inline void sched_info_arrive(task_t *t)
517 unsigned long now = jiffies, diff = 0;
518 struct runqueue *rq = task_rq(t);
520 if (t->sched_info.last_queued)
521 diff = now - t->sched_info.last_queued;
522 sched_info_dequeued(t);
523 t->sched_info.run_delay += diff;
524 t->sched_info.last_arrival = now;
525 t->sched_info.pcnt++;
527 if (!rq)
528 return;
530 rq->rq_sched_info.run_delay += diff;
531 rq->rq_sched_info.pcnt++;
535 * Called when a process is queued into either the active or expired
536 * array. The time is noted and later used to determine how long we
537 * had to wait for us to reach the cpu. Since the expired queue will
538 * become the active queue after active queue is empty, without dequeuing
539 * and requeuing any tasks, we are interested in queuing to either. It
540 * is unusual but not impossible for tasks to be dequeued and immediately
541 * requeued in the same or another array: this can happen in sched_yield(),
542 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543 * to runqueue.
545 * This function is only called from enqueue_task(), but also only updates
546 * the timestamp if it is already not set. It's assumed that
547 * sched_info_dequeued() will clear that stamp when appropriate.
549 static inline void sched_info_queued(task_t *t)
551 if (!t->sched_info.last_queued)
552 t->sched_info.last_queued = jiffies;
556 * Called when a process ceases being the active-running process, either
557 * voluntarily or involuntarily. Now we can calculate how long we ran.
559 static inline void sched_info_depart(task_t *t)
561 struct runqueue *rq = task_rq(t);
562 unsigned long diff = jiffies - t->sched_info.last_arrival;
564 t->sched_info.cpu_time += diff;
566 if (rq)
567 rq->rq_sched_info.cpu_time += diff;
571 * Called when tasks are switched involuntarily due, typically, to expiring
572 * their time slice. (This may also be called when switching to or from
573 * the idle task.) We are only called when prev != next.
575 static inline void sched_info_switch(task_t *prev, task_t *next)
577 struct runqueue *rq = task_rq(prev);
580 * prev now departs the cpu. It's not interesting to record
581 * stats about how efficient we were at scheduling the idle
582 * process, however.
584 if (prev != rq->idle)
585 sched_info_depart(prev);
587 if (next != rq->idle)
588 sched_info_arrive(next);
590 #else
591 #define sched_info_queued(t) do { } while (0)
592 #define sched_info_switch(t, next) do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
596 * Adding/removing a task to/from a priority array:
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
600 array->nr_active--;
601 list_del(&p->run_list);
602 if (list_empty(array->queue + p->prio))
603 __clear_bit(p->prio, array->bitmap);
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
608 sched_info_queued(p);
609 list_add_tail(&p->run_list, array->queue + p->prio);
610 __set_bit(p->prio, array->bitmap);
611 array->nr_active++;
612 p->array = array;
616 * Put task to the end of the run list without the overhead of dequeue
617 * followed by enqueue.
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
621 list_move_tail(&p->run_list, array->queue + p->prio);
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
626 list_add(&p->run_list, array->queue + p->prio);
627 __set_bit(p->prio, array->bitmap);
628 array->nr_active++;
629 p->array = array;
633 * effective_prio - return the priority that is based on the static
634 * priority but is modified by bonuses/penalties.
636 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637 * into the -5 ... 0 ... +5 bonus/penalty range.
639 * We use 25% of the full 0...39 priority range so that:
641 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
644 * Both properties are important to certain workloads.
646 static int effective_prio(task_t *p)
648 int bonus, prio;
650 if (rt_task(p))
651 return p->prio;
653 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
655 prio = p->static_prio - bonus;
656 if (prio < MAX_RT_PRIO)
657 prio = MAX_RT_PRIO;
658 if (prio > MAX_PRIO-1)
659 prio = MAX_PRIO-1;
660 return prio;
663 #ifdef CONFIG_SMP
664 static inline void inc_prio_bias(runqueue_t *rq, int prio)
666 rq->prio_bias += MAX_PRIO - prio;
669 static inline void dec_prio_bias(runqueue_t *rq, int prio)
671 rq->prio_bias -= MAX_PRIO - prio;
674 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
676 rq->nr_running++;
677 if (rt_task(p)) {
678 if (p != rq->migration_thread)
680 * The migration thread does the actual balancing. Do
681 * not bias by its priority as the ultra high priority
682 * will skew balancing adversely.
684 inc_prio_bias(rq, p->prio);
685 } else
686 inc_prio_bias(rq, p->static_prio);
689 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
691 rq->nr_running--;
692 if (rt_task(p)) {
693 if (p != rq->migration_thread)
694 dec_prio_bias(rq, p->prio);
695 } else
696 dec_prio_bias(rq, p->static_prio);
698 #else
699 static inline void inc_prio_bias(runqueue_t *rq, int prio)
703 static inline void dec_prio_bias(runqueue_t *rq, int prio)
707 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
709 rq->nr_running++;
712 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
714 rq->nr_running--;
716 #endif
719 * __activate_task - move a task to the runqueue.
721 static inline void __activate_task(task_t *p, runqueue_t *rq)
723 enqueue_task(p, rq->active);
724 inc_nr_running(p, rq);
728 * __activate_idle_task - move idle task to the _front_ of runqueue.
730 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
732 enqueue_task_head(p, rq->active);
733 inc_nr_running(p, rq);
736 static int recalc_task_prio(task_t *p, unsigned long long now)
738 /* Caller must always ensure 'now >= p->timestamp' */
739 unsigned long long __sleep_time = now - p->timestamp;
740 unsigned long sleep_time;
742 if (__sleep_time > NS_MAX_SLEEP_AVG)
743 sleep_time = NS_MAX_SLEEP_AVG;
744 else
745 sleep_time = (unsigned long)__sleep_time;
747 if (likely(sleep_time > 0)) {
749 * User tasks that sleep a long time are categorised as
750 * idle and will get just interactive status to stay active &
751 * prevent them suddenly becoming cpu hogs and starving
752 * other processes.
754 if (p->mm && p->activated != -1 &&
755 sleep_time > INTERACTIVE_SLEEP(p)) {
756 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
757 DEF_TIMESLICE);
758 } else {
760 * The lower the sleep avg a task has the more
761 * rapidly it will rise with sleep time.
763 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
766 * Tasks waking from uninterruptible sleep are
767 * limited in their sleep_avg rise as they
768 * are likely to be waiting on I/O
770 if (p->activated == -1 && p->mm) {
771 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
772 sleep_time = 0;
773 else if (p->sleep_avg + sleep_time >=
774 INTERACTIVE_SLEEP(p)) {
775 p->sleep_avg = INTERACTIVE_SLEEP(p);
776 sleep_time = 0;
781 * This code gives a bonus to interactive tasks.
783 * The boost works by updating the 'average sleep time'
784 * value here, based on ->timestamp. The more time a
785 * task spends sleeping, the higher the average gets -
786 * and the higher the priority boost gets as well.
788 p->sleep_avg += sleep_time;
790 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
791 p->sleep_avg = NS_MAX_SLEEP_AVG;
795 return effective_prio(p);
799 * activate_task - move a task to the runqueue and do priority recalculation
801 * Update all the scheduling statistics stuff. (sleep average
802 * calculation, priority modifiers, etc.)
804 static void activate_task(task_t *p, runqueue_t *rq, int local)
806 unsigned long long now;
808 now = sched_clock();
809 #ifdef CONFIG_SMP
810 if (!local) {
811 /* Compensate for drifting sched_clock */
812 runqueue_t *this_rq = this_rq();
813 now = (now - this_rq->timestamp_last_tick)
814 + rq->timestamp_last_tick;
816 #endif
818 if (!rt_task(p))
819 p->prio = recalc_task_prio(p, now);
822 * This checks to make sure it's not an uninterruptible task
823 * that is now waking up.
825 if (!p->activated) {
827 * Tasks which were woken up by interrupts (ie. hw events)
828 * are most likely of interactive nature. So we give them
829 * the credit of extending their sleep time to the period
830 * of time they spend on the runqueue, waiting for execution
831 * on a CPU, first time around:
833 if (in_interrupt())
834 p->activated = 2;
835 else {
837 * Normal first-time wakeups get a credit too for
838 * on-runqueue time, but it will be weighted down:
840 p->activated = 1;
843 p->timestamp = now;
845 __activate_task(p, rq);
849 * deactivate_task - remove a task from the runqueue.
851 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
853 dec_nr_running(p, rq);
854 dequeue_task(p, p->array);
855 p->array = NULL;
859 * resched_task - mark a task 'to be rescheduled now'.
861 * On UP this means the setting of the need_resched flag, on SMP it
862 * might also involve a cross-CPU call to trigger the scheduler on
863 * the target CPU.
865 #ifdef CONFIG_SMP
866 static void resched_task(task_t *p)
868 int cpu;
870 assert_spin_locked(&task_rq(p)->lock);
872 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
873 return;
875 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
877 cpu = task_cpu(p);
878 if (cpu == smp_processor_id())
879 return;
881 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
882 smp_mb();
883 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
884 smp_send_reschedule(cpu);
886 #else
887 static inline void resched_task(task_t *p)
889 assert_spin_locked(&task_rq(p)->lock);
890 set_tsk_need_resched(p);
892 #endif
895 * task_curr - is this task currently executing on a CPU?
896 * @p: the task in question.
898 inline int task_curr(const task_t *p)
900 return cpu_curr(task_cpu(p)) == p;
903 #ifdef CONFIG_SMP
904 typedef struct {
905 struct list_head list;
907 task_t *task;
908 int dest_cpu;
910 struct completion done;
911 } migration_req_t;
914 * The task's runqueue lock must be held.
915 * Returns true if you have to wait for migration thread.
917 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
919 runqueue_t *rq = task_rq(p);
922 * If the task is not on a runqueue (and not running), then
923 * it is sufficient to simply update the task's cpu field.
925 if (!p->array && !task_running(rq, p)) {
926 set_task_cpu(p, dest_cpu);
927 return 0;
930 init_completion(&req->done);
931 req->task = p;
932 req->dest_cpu = dest_cpu;
933 list_add(&req->list, &rq->migration_queue);
934 return 1;
938 * wait_task_inactive - wait for a thread to unschedule.
940 * The caller must ensure that the task *will* unschedule sometime soon,
941 * else this function might spin for a *long* time. This function can't
942 * be called with interrupts off, or it may introduce deadlock with
943 * smp_call_function() if an IPI is sent by the same process we are
944 * waiting to become inactive.
946 void wait_task_inactive(task_t *p)
948 unsigned long flags;
949 runqueue_t *rq;
950 int preempted;
952 repeat:
953 rq = task_rq_lock(p, &flags);
954 /* Must be off runqueue entirely, not preempted. */
955 if (unlikely(p->array || task_running(rq, p))) {
956 /* If it's preempted, we yield. It could be a while. */
957 preempted = !task_running(rq, p);
958 task_rq_unlock(rq, &flags);
959 cpu_relax();
960 if (preempted)
961 yield();
962 goto repeat;
964 task_rq_unlock(rq, &flags);
967 /***
968 * kick_process - kick a running thread to enter/exit the kernel
969 * @p: the to-be-kicked thread
971 * Cause a process which is running on another CPU to enter
972 * kernel-mode, without any delay. (to get signals handled.)
974 * NOTE: this function doesnt have to take the runqueue lock,
975 * because all it wants to ensure is that the remote task enters
976 * the kernel. If the IPI races and the task has been migrated
977 * to another CPU then no harm is done and the purpose has been
978 * achieved as well.
980 void kick_process(task_t *p)
982 int cpu;
984 preempt_disable();
985 cpu = task_cpu(p);
986 if ((cpu != smp_processor_id()) && task_curr(p))
987 smp_send_reschedule(cpu);
988 preempt_enable();
992 * Return a low guess at the load of a migration-source cpu.
994 * We want to under-estimate the load of migration sources, to
995 * balance conservatively.
997 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
999 runqueue_t *rq = cpu_rq(cpu);
1000 unsigned long running = rq->nr_running;
1001 unsigned long source_load, cpu_load = rq->cpu_load[type-1],
1002 load_now = running * SCHED_LOAD_SCALE;
1004 if (type == 0)
1005 source_load = load_now;
1006 else
1007 source_load = min(cpu_load, load_now);
1009 if (running > 1 || (idle == NOT_IDLE && running))
1011 * If we are busy rebalancing the load is biased by
1012 * priority to create 'nice' support across cpus. When
1013 * idle rebalancing we should only bias the source_load if
1014 * there is more than one task running on that queue to
1015 * prevent idle rebalance from trying to pull tasks from a
1016 * queue with only one running task.
1018 source_load = source_load * rq->prio_bias / running;
1020 return source_load;
1023 static inline unsigned long source_load(int cpu, int type)
1025 return __source_load(cpu, type, NOT_IDLE);
1029 * Return a high guess at the load of a migration-target cpu
1031 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1033 runqueue_t *rq = cpu_rq(cpu);
1034 unsigned long running = rq->nr_running;
1035 unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1036 load_now = running * SCHED_LOAD_SCALE;
1038 if (type == 0)
1039 target_load = load_now;
1040 else
1041 target_load = max(cpu_load, load_now);
1043 if (running > 1 || (idle == NOT_IDLE && running))
1044 target_load = target_load * rq->prio_bias / running;
1046 return target_load;
1049 static inline unsigned long target_load(int cpu, int type)
1051 return __target_load(cpu, type, NOT_IDLE);
1055 * find_idlest_group finds and returns the least busy CPU group within the
1056 * domain.
1058 static struct sched_group *
1059 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1061 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1062 unsigned long min_load = ULONG_MAX, this_load = 0;
1063 int load_idx = sd->forkexec_idx;
1064 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1066 do {
1067 unsigned long load, avg_load;
1068 int local_group;
1069 int i;
1071 /* Skip over this group if it has no CPUs allowed */
1072 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1073 goto nextgroup;
1075 local_group = cpu_isset(this_cpu, group->cpumask);
1077 /* Tally up the load of all CPUs in the group */
1078 avg_load = 0;
1080 for_each_cpu_mask(i, group->cpumask) {
1081 /* Bias balancing toward cpus of our domain */
1082 if (local_group)
1083 load = source_load(i, load_idx);
1084 else
1085 load = target_load(i, load_idx);
1087 avg_load += load;
1090 /* Adjust by relative CPU power of the group */
1091 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1093 if (local_group) {
1094 this_load = avg_load;
1095 this = group;
1096 } else if (avg_load < min_load) {
1097 min_load = avg_load;
1098 idlest = group;
1100 nextgroup:
1101 group = group->next;
1102 } while (group != sd->groups);
1104 if (!idlest || 100*this_load < imbalance*min_load)
1105 return NULL;
1106 return idlest;
1110 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1112 static int
1113 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1115 cpumask_t tmp;
1116 unsigned long load, min_load = ULONG_MAX;
1117 int idlest = -1;
1118 int i;
1120 /* Traverse only the allowed CPUs */
1121 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1123 for_each_cpu_mask(i, tmp) {
1124 load = source_load(i, 0);
1126 if (load < min_load || (load == min_load && i == this_cpu)) {
1127 min_load = load;
1128 idlest = i;
1132 return idlest;
1136 * sched_balance_self: balance the current task (running on cpu) in domains
1137 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1138 * SD_BALANCE_EXEC.
1140 * Balance, ie. select the least loaded group.
1142 * Returns the target CPU number, or the same CPU if no balancing is needed.
1144 * preempt must be disabled.
1146 static int sched_balance_self(int cpu, int flag)
1148 struct task_struct *t = current;
1149 struct sched_domain *tmp, *sd = NULL;
1151 for_each_domain(cpu, tmp)
1152 if (tmp->flags & flag)
1153 sd = tmp;
1155 while (sd) {
1156 cpumask_t span;
1157 struct sched_group *group;
1158 int new_cpu;
1159 int weight;
1161 span = sd->span;
1162 group = find_idlest_group(sd, t, cpu);
1163 if (!group)
1164 goto nextlevel;
1166 new_cpu = find_idlest_cpu(group, t, cpu);
1167 if (new_cpu == -1 || new_cpu == cpu)
1168 goto nextlevel;
1170 /* Now try balancing at a lower domain level */
1171 cpu = new_cpu;
1172 nextlevel:
1173 sd = NULL;
1174 weight = cpus_weight(span);
1175 for_each_domain(cpu, tmp) {
1176 if (weight <= cpus_weight(tmp->span))
1177 break;
1178 if (tmp->flags & flag)
1179 sd = tmp;
1181 /* while loop will break here if sd == NULL */
1184 return cpu;
1187 #endif /* CONFIG_SMP */
1190 * wake_idle() will wake a task on an idle cpu if task->cpu is
1191 * not idle and an idle cpu is available. The span of cpus to
1192 * search starts with cpus closest then further out as needed,
1193 * so we always favor a closer, idle cpu.
1195 * Returns the CPU we should wake onto.
1197 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1198 static int wake_idle(int cpu, task_t *p)
1200 cpumask_t tmp;
1201 struct sched_domain *sd;
1202 int i;
1204 if (idle_cpu(cpu))
1205 return cpu;
1207 for_each_domain(cpu, sd) {
1208 if (sd->flags & SD_WAKE_IDLE) {
1209 cpus_and(tmp, sd->span, p->cpus_allowed);
1210 for_each_cpu_mask(i, tmp) {
1211 if (idle_cpu(i))
1212 return i;
1215 else
1216 break;
1218 return cpu;
1220 #else
1221 static inline int wake_idle(int cpu, task_t *p)
1223 return cpu;
1225 #endif
1227 /***
1228 * try_to_wake_up - wake up a thread
1229 * @p: the to-be-woken-up thread
1230 * @state: the mask of task states that can be woken
1231 * @sync: do a synchronous wakeup?
1233 * Put it on the run-queue if it's not already there. The "current"
1234 * thread is always on the run-queue (except when the actual
1235 * re-schedule is in progress), and as such you're allowed to do
1236 * the simpler "current->state = TASK_RUNNING" to mark yourself
1237 * runnable without the overhead of this.
1239 * returns failure only if the task is already active.
1241 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1243 int cpu, this_cpu, success = 0;
1244 unsigned long flags;
1245 long old_state;
1246 runqueue_t *rq;
1247 #ifdef CONFIG_SMP
1248 unsigned long load, this_load;
1249 struct sched_domain *sd, *this_sd = NULL;
1250 int new_cpu;
1251 #endif
1253 rq = task_rq_lock(p, &flags);
1254 old_state = p->state;
1255 if (!(old_state & state))
1256 goto out;
1258 if (p->array)
1259 goto out_running;
1261 cpu = task_cpu(p);
1262 this_cpu = smp_processor_id();
1264 #ifdef CONFIG_SMP
1265 if (unlikely(task_running(rq, p)))
1266 goto out_activate;
1268 new_cpu = cpu;
1270 schedstat_inc(rq, ttwu_cnt);
1271 if (cpu == this_cpu) {
1272 schedstat_inc(rq, ttwu_local);
1273 goto out_set_cpu;
1276 for_each_domain(this_cpu, sd) {
1277 if (cpu_isset(cpu, sd->span)) {
1278 schedstat_inc(sd, ttwu_wake_remote);
1279 this_sd = sd;
1280 break;
1284 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1285 goto out_set_cpu;
1288 * Check for affine wakeup and passive balancing possibilities.
1290 if (this_sd) {
1291 int idx = this_sd->wake_idx;
1292 unsigned int imbalance;
1294 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1296 load = source_load(cpu, idx);
1297 this_load = target_load(this_cpu, idx);
1299 new_cpu = this_cpu; /* Wake to this CPU if we can */
1301 if (this_sd->flags & SD_WAKE_AFFINE) {
1302 unsigned long tl = this_load;
1304 * If sync wakeup then subtract the (maximum possible)
1305 * effect of the currently running task from the load
1306 * of the current CPU:
1308 if (sync)
1309 tl -= SCHED_LOAD_SCALE;
1311 if ((tl <= load &&
1312 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1313 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1315 * This domain has SD_WAKE_AFFINE and
1316 * p is cache cold in this domain, and
1317 * there is no bad imbalance.
1319 schedstat_inc(this_sd, ttwu_move_affine);
1320 goto out_set_cpu;
1325 * Start passive balancing when half the imbalance_pct
1326 * limit is reached.
1328 if (this_sd->flags & SD_WAKE_BALANCE) {
1329 if (imbalance*this_load <= 100*load) {
1330 schedstat_inc(this_sd, ttwu_move_balance);
1331 goto out_set_cpu;
1336 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1337 out_set_cpu:
1338 new_cpu = wake_idle(new_cpu, p);
1339 if (new_cpu != cpu) {
1340 set_task_cpu(p, new_cpu);
1341 task_rq_unlock(rq, &flags);
1342 /* might preempt at this point */
1343 rq = task_rq_lock(p, &flags);
1344 old_state = p->state;
1345 if (!(old_state & state))
1346 goto out;
1347 if (p->array)
1348 goto out_running;
1350 this_cpu = smp_processor_id();
1351 cpu = task_cpu(p);
1354 out_activate:
1355 #endif /* CONFIG_SMP */
1356 if (old_state == TASK_UNINTERRUPTIBLE) {
1357 rq->nr_uninterruptible--;
1359 * Tasks on involuntary sleep don't earn
1360 * sleep_avg beyond just interactive state.
1362 p->activated = -1;
1366 * Tasks that have marked their sleep as noninteractive get
1367 * woken up without updating their sleep average. (i.e. their
1368 * sleep is handled in a priority-neutral manner, no priority
1369 * boost and no penalty.)
1371 if (old_state & TASK_NONINTERACTIVE)
1372 __activate_task(p, rq);
1373 else
1374 activate_task(p, rq, cpu == this_cpu);
1376 * Sync wakeups (i.e. those types of wakeups where the waker
1377 * has indicated that it will leave the CPU in short order)
1378 * don't trigger a preemption, if the woken up task will run on
1379 * this cpu. (in this case the 'I will reschedule' promise of
1380 * the waker guarantees that the freshly woken up task is going
1381 * to be considered on this CPU.)
1383 if (!sync || cpu != this_cpu) {
1384 if (TASK_PREEMPTS_CURR(p, rq))
1385 resched_task(rq->curr);
1387 success = 1;
1389 out_running:
1390 p->state = TASK_RUNNING;
1391 out:
1392 task_rq_unlock(rq, &flags);
1394 return success;
1397 int fastcall wake_up_process(task_t *p)
1399 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1400 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1403 EXPORT_SYMBOL(wake_up_process);
1405 int fastcall wake_up_state(task_t *p, unsigned int state)
1407 return try_to_wake_up(p, state, 0);
1411 * Perform scheduler related setup for a newly forked process p.
1412 * p is forked by current.
1414 void fastcall sched_fork(task_t *p, int clone_flags)
1416 int cpu = get_cpu();
1418 #ifdef CONFIG_SMP
1419 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1420 #endif
1421 set_task_cpu(p, cpu);
1424 * We mark the process as running here, but have not actually
1425 * inserted it onto the runqueue yet. This guarantees that
1426 * nobody will actually run it, and a signal or other external
1427 * event cannot wake it up and insert it on the runqueue either.
1429 p->state = TASK_RUNNING;
1430 INIT_LIST_HEAD(&p->run_list);
1431 p->array = NULL;
1432 #ifdef CONFIG_SCHEDSTATS
1433 memset(&p->sched_info, 0, sizeof(p->sched_info));
1434 #endif
1435 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1436 p->oncpu = 0;
1437 #endif
1438 #ifdef CONFIG_PREEMPT
1439 /* Want to start with kernel preemption disabled. */
1440 p->thread_info->preempt_count = 1;
1441 #endif
1443 * Share the timeslice between parent and child, thus the
1444 * total amount of pending timeslices in the system doesn't change,
1445 * resulting in more scheduling fairness.
1447 local_irq_disable();
1448 p->time_slice = (current->time_slice + 1) >> 1;
1450 * The remainder of the first timeslice might be recovered by
1451 * the parent if the child exits early enough.
1453 p->first_time_slice = 1;
1454 current->time_slice >>= 1;
1455 p->timestamp = sched_clock();
1456 if (unlikely(!current->time_slice)) {
1458 * This case is rare, it happens when the parent has only
1459 * a single jiffy left from its timeslice. Taking the
1460 * runqueue lock is not a problem.
1462 current->time_slice = 1;
1463 scheduler_tick();
1465 local_irq_enable();
1466 put_cpu();
1470 * wake_up_new_task - wake up a newly created task for the first time.
1472 * This function will do some initial scheduler statistics housekeeping
1473 * that must be done for every newly created context, then puts the task
1474 * on the runqueue and wakes it.
1476 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1478 unsigned long flags;
1479 int this_cpu, cpu;
1480 runqueue_t *rq, *this_rq;
1482 rq = task_rq_lock(p, &flags);
1483 BUG_ON(p->state != TASK_RUNNING);
1484 this_cpu = smp_processor_id();
1485 cpu = task_cpu(p);
1488 * We decrease the sleep average of forking parents
1489 * and children as well, to keep max-interactive tasks
1490 * from forking tasks that are max-interactive. The parent
1491 * (current) is done further down, under its lock.
1493 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1494 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1496 p->prio = effective_prio(p);
1498 if (likely(cpu == this_cpu)) {
1499 if (!(clone_flags & CLONE_VM)) {
1501 * The VM isn't cloned, so we're in a good position to
1502 * do child-runs-first in anticipation of an exec. This
1503 * usually avoids a lot of COW overhead.
1505 if (unlikely(!current->array))
1506 __activate_task(p, rq);
1507 else {
1508 p->prio = current->prio;
1509 list_add_tail(&p->run_list, &current->run_list);
1510 p->array = current->array;
1511 p->array->nr_active++;
1512 inc_nr_running(p, rq);
1514 set_need_resched();
1515 } else
1516 /* Run child last */
1517 __activate_task(p, rq);
1519 * We skip the following code due to cpu == this_cpu
1521 * task_rq_unlock(rq, &flags);
1522 * this_rq = task_rq_lock(current, &flags);
1524 this_rq = rq;
1525 } else {
1526 this_rq = cpu_rq(this_cpu);
1529 * Not the local CPU - must adjust timestamp. This should
1530 * get optimised away in the !CONFIG_SMP case.
1532 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1533 + rq->timestamp_last_tick;
1534 __activate_task(p, rq);
1535 if (TASK_PREEMPTS_CURR(p, rq))
1536 resched_task(rq->curr);
1539 * Parent and child are on different CPUs, now get the
1540 * parent runqueue to update the parent's ->sleep_avg:
1542 task_rq_unlock(rq, &flags);
1543 this_rq = task_rq_lock(current, &flags);
1545 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1546 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1547 task_rq_unlock(this_rq, &flags);
1551 * Potentially available exiting-child timeslices are
1552 * retrieved here - this way the parent does not get
1553 * penalized for creating too many threads.
1555 * (this cannot be used to 'generate' timeslices
1556 * artificially, because any timeslice recovered here
1557 * was given away by the parent in the first place.)
1559 void fastcall sched_exit(task_t *p)
1561 unsigned long flags;
1562 runqueue_t *rq;
1565 * If the child was a (relative-) CPU hog then decrease
1566 * the sleep_avg of the parent as well.
1568 rq = task_rq_lock(p->parent, &flags);
1569 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1570 p->parent->time_slice += p->time_slice;
1571 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1572 p->parent->time_slice = task_timeslice(p);
1574 if (p->sleep_avg < p->parent->sleep_avg)
1575 p->parent->sleep_avg = p->parent->sleep_avg /
1576 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1577 (EXIT_WEIGHT + 1);
1578 task_rq_unlock(rq, &flags);
1582 * prepare_task_switch - prepare to switch tasks
1583 * @rq: the runqueue preparing to switch
1584 * @next: the task we are going to switch to.
1586 * This is called with the rq lock held and interrupts off. It must
1587 * be paired with a subsequent finish_task_switch after the context
1588 * switch.
1590 * prepare_task_switch sets up locking and calls architecture specific
1591 * hooks.
1593 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1595 prepare_lock_switch(rq, next);
1596 prepare_arch_switch(next);
1600 * finish_task_switch - clean up after a task-switch
1601 * @rq: runqueue associated with task-switch
1602 * @prev: the thread we just switched away from.
1604 * finish_task_switch must be called after the context switch, paired
1605 * with a prepare_task_switch call before the context switch.
1606 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1607 * and do any other architecture-specific cleanup actions.
1609 * Note that we may have delayed dropping an mm in context_switch(). If
1610 * so, we finish that here outside of the runqueue lock. (Doing it
1611 * with the lock held can cause deadlocks; see schedule() for
1612 * details.)
1614 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1615 __releases(rq->lock)
1617 struct mm_struct *mm = rq->prev_mm;
1618 unsigned long prev_task_flags;
1620 rq->prev_mm = NULL;
1623 * A task struct has one reference for the use as "current".
1624 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1625 * calls schedule one last time. The schedule call will never return,
1626 * and the scheduled task must drop that reference.
1627 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1628 * still held, otherwise prev could be scheduled on another cpu, die
1629 * there before we look at prev->state, and then the reference would
1630 * be dropped twice.
1631 * Manfred Spraul <manfred@colorfullife.com>
1633 prev_task_flags = prev->flags;
1634 finish_arch_switch(prev);
1635 finish_lock_switch(rq, prev);
1636 if (mm)
1637 mmdrop(mm);
1638 if (unlikely(prev_task_flags & PF_DEAD))
1639 put_task_struct(prev);
1643 * schedule_tail - first thing a freshly forked thread must call.
1644 * @prev: the thread we just switched away from.
1646 asmlinkage void schedule_tail(task_t *prev)
1647 __releases(rq->lock)
1649 runqueue_t *rq = this_rq();
1650 finish_task_switch(rq, prev);
1651 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1652 /* In this case, finish_task_switch does not reenable preemption */
1653 preempt_enable();
1654 #endif
1655 if (current->set_child_tid)
1656 put_user(current->pid, current->set_child_tid);
1660 * context_switch - switch to the new MM and the new
1661 * thread's register state.
1663 static inline
1664 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1666 struct mm_struct *mm = next->mm;
1667 struct mm_struct *oldmm = prev->active_mm;
1669 if (unlikely(!mm)) {
1670 next->active_mm = oldmm;
1671 atomic_inc(&oldmm->mm_count);
1672 enter_lazy_tlb(oldmm, next);
1673 } else
1674 switch_mm(oldmm, mm, next);
1676 if (unlikely(!prev->mm)) {
1677 prev->active_mm = NULL;
1678 WARN_ON(rq->prev_mm);
1679 rq->prev_mm = oldmm;
1682 /* Here we just switch the register state and the stack. */
1683 switch_to(prev, next, prev);
1685 return prev;
1689 * nr_running, nr_uninterruptible and nr_context_switches:
1691 * externally visible scheduler statistics: current number of runnable
1692 * threads, current number of uninterruptible-sleeping threads, total
1693 * number of context switches performed since bootup.
1695 unsigned long nr_running(void)
1697 unsigned long i, sum = 0;
1699 for_each_online_cpu(i)
1700 sum += cpu_rq(i)->nr_running;
1702 return sum;
1705 unsigned long nr_uninterruptible(void)
1707 unsigned long i, sum = 0;
1709 for_each_cpu(i)
1710 sum += cpu_rq(i)->nr_uninterruptible;
1713 * Since we read the counters lockless, it might be slightly
1714 * inaccurate. Do not allow it to go below zero though:
1716 if (unlikely((long)sum < 0))
1717 sum = 0;
1719 return sum;
1722 unsigned long long nr_context_switches(void)
1724 unsigned long long i, sum = 0;
1726 for_each_cpu(i)
1727 sum += cpu_rq(i)->nr_switches;
1729 return sum;
1732 unsigned long nr_iowait(void)
1734 unsigned long i, sum = 0;
1736 for_each_cpu(i)
1737 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1739 return sum;
1742 #ifdef CONFIG_SMP
1745 * double_rq_lock - safely lock two runqueues
1747 * Note this does not disable interrupts like task_rq_lock,
1748 * you need to do so manually before calling.
1750 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1751 __acquires(rq1->lock)
1752 __acquires(rq2->lock)
1754 if (rq1 == rq2) {
1755 spin_lock(&rq1->lock);
1756 __acquire(rq2->lock); /* Fake it out ;) */
1757 } else {
1758 if (rq1 < rq2) {
1759 spin_lock(&rq1->lock);
1760 spin_lock(&rq2->lock);
1761 } else {
1762 spin_lock(&rq2->lock);
1763 spin_lock(&rq1->lock);
1769 * double_rq_unlock - safely unlock two runqueues
1771 * Note this does not restore interrupts like task_rq_unlock,
1772 * you need to do so manually after calling.
1774 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1775 __releases(rq1->lock)
1776 __releases(rq2->lock)
1778 spin_unlock(&rq1->lock);
1779 if (rq1 != rq2)
1780 spin_unlock(&rq2->lock);
1781 else
1782 __release(rq2->lock);
1786 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1788 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1789 __releases(this_rq->lock)
1790 __acquires(busiest->lock)
1791 __acquires(this_rq->lock)
1793 if (unlikely(!spin_trylock(&busiest->lock))) {
1794 if (busiest < this_rq) {
1795 spin_unlock(&this_rq->lock);
1796 spin_lock(&busiest->lock);
1797 spin_lock(&this_rq->lock);
1798 } else
1799 spin_lock(&busiest->lock);
1804 * If dest_cpu is allowed for this process, migrate the task to it.
1805 * This is accomplished by forcing the cpu_allowed mask to only
1806 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1807 * the cpu_allowed mask is restored.
1809 static void sched_migrate_task(task_t *p, int dest_cpu)
1811 migration_req_t req;
1812 runqueue_t *rq;
1813 unsigned long flags;
1815 rq = task_rq_lock(p, &flags);
1816 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1817 || unlikely(cpu_is_offline(dest_cpu)))
1818 goto out;
1820 /* force the process onto the specified CPU */
1821 if (migrate_task(p, dest_cpu, &req)) {
1822 /* Need to wait for migration thread (might exit: take ref). */
1823 struct task_struct *mt = rq->migration_thread;
1824 get_task_struct(mt);
1825 task_rq_unlock(rq, &flags);
1826 wake_up_process(mt);
1827 put_task_struct(mt);
1828 wait_for_completion(&req.done);
1829 return;
1831 out:
1832 task_rq_unlock(rq, &flags);
1836 * sched_exec - execve() is a valuable balancing opportunity, because at
1837 * this point the task has the smallest effective memory and cache footprint.
1839 void sched_exec(void)
1841 int new_cpu, this_cpu = get_cpu();
1842 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1843 put_cpu();
1844 if (new_cpu != this_cpu)
1845 sched_migrate_task(current, new_cpu);
1849 * pull_task - move a task from a remote runqueue to the local runqueue.
1850 * Both runqueues must be locked.
1852 static inline
1853 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1854 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1856 dequeue_task(p, src_array);
1857 dec_nr_running(p, src_rq);
1858 set_task_cpu(p, this_cpu);
1859 inc_nr_running(p, this_rq);
1860 enqueue_task(p, this_array);
1861 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1862 + this_rq->timestamp_last_tick;
1864 * Note that idle threads have a prio of MAX_PRIO, for this test
1865 * to be always true for them.
1867 if (TASK_PREEMPTS_CURR(p, this_rq))
1868 resched_task(this_rq->curr);
1872 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1874 static inline
1875 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1876 struct sched_domain *sd, enum idle_type idle,
1877 int *all_pinned)
1880 * We do not migrate tasks that are:
1881 * 1) running (obviously), or
1882 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1883 * 3) are cache-hot on their current CPU.
1885 if (!cpu_isset(this_cpu, p->cpus_allowed))
1886 return 0;
1887 *all_pinned = 0;
1889 if (task_running(rq, p))
1890 return 0;
1893 * Aggressive migration if:
1894 * 1) task is cache cold, or
1895 * 2) too many balance attempts have failed.
1898 if (sd->nr_balance_failed > sd->cache_nice_tries)
1899 return 1;
1901 if (task_hot(p, rq->timestamp_last_tick, sd))
1902 return 0;
1903 return 1;
1907 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1908 * as part of a balancing operation within "domain". Returns the number of
1909 * tasks moved.
1911 * Called with both runqueues locked.
1913 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1914 unsigned long max_nr_move, struct sched_domain *sd,
1915 enum idle_type idle, int *all_pinned)
1917 prio_array_t *array, *dst_array;
1918 struct list_head *head, *curr;
1919 int idx, pulled = 0, pinned = 0;
1920 task_t *tmp;
1922 if (max_nr_move == 0)
1923 goto out;
1925 pinned = 1;
1928 * We first consider expired tasks. Those will likely not be
1929 * executed in the near future, and they are most likely to
1930 * be cache-cold, thus switching CPUs has the least effect
1931 * on them.
1933 if (busiest->expired->nr_active) {
1934 array = busiest->expired;
1935 dst_array = this_rq->expired;
1936 } else {
1937 array = busiest->active;
1938 dst_array = this_rq->active;
1941 new_array:
1942 /* Start searching at priority 0: */
1943 idx = 0;
1944 skip_bitmap:
1945 if (!idx)
1946 idx = sched_find_first_bit(array->bitmap);
1947 else
1948 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1949 if (idx >= MAX_PRIO) {
1950 if (array == busiest->expired && busiest->active->nr_active) {
1951 array = busiest->active;
1952 dst_array = this_rq->active;
1953 goto new_array;
1955 goto out;
1958 head = array->queue + idx;
1959 curr = head->prev;
1960 skip_queue:
1961 tmp = list_entry(curr, task_t, run_list);
1963 curr = curr->prev;
1965 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1966 if (curr != head)
1967 goto skip_queue;
1968 idx++;
1969 goto skip_bitmap;
1972 #ifdef CONFIG_SCHEDSTATS
1973 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1974 schedstat_inc(sd, lb_hot_gained[idle]);
1975 #endif
1977 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1978 pulled++;
1980 /* We only want to steal up to the prescribed number of tasks. */
1981 if (pulled < max_nr_move) {
1982 if (curr != head)
1983 goto skip_queue;
1984 idx++;
1985 goto skip_bitmap;
1987 out:
1989 * Right now, this is the only place pull_task() is called,
1990 * so we can safely collect pull_task() stats here rather than
1991 * inside pull_task().
1993 schedstat_add(sd, lb_gained[idle], pulled);
1995 if (all_pinned)
1996 *all_pinned = pinned;
1997 return pulled;
2001 * find_busiest_group finds and returns the busiest CPU group within the
2002 * domain. It calculates and returns the number of tasks which should be
2003 * moved to restore balance via the imbalance parameter.
2005 static struct sched_group *
2006 find_busiest_group(struct sched_domain *sd, int this_cpu,
2007 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2009 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2010 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2011 unsigned long max_pull;
2012 int load_idx;
2014 max_load = this_load = total_load = total_pwr = 0;
2015 if (idle == NOT_IDLE)
2016 load_idx = sd->busy_idx;
2017 else if (idle == NEWLY_IDLE)
2018 load_idx = sd->newidle_idx;
2019 else
2020 load_idx = sd->idle_idx;
2022 do {
2023 unsigned long load;
2024 int local_group;
2025 int i;
2027 local_group = cpu_isset(this_cpu, group->cpumask);
2029 /* Tally up the load of all CPUs in the group */
2030 avg_load = 0;
2032 for_each_cpu_mask(i, group->cpumask) {
2033 if (*sd_idle && !idle_cpu(i))
2034 *sd_idle = 0;
2036 /* Bias balancing toward cpus of our domain */
2037 if (local_group)
2038 load = __target_load(i, load_idx, idle);
2039 else
2040 load = __source_load(i, load_idx, idle);
2042 avg_load += load;
2045 total_load += avg_load;
2046 total_pwr += group->cpu_power;
2048 /* Adjust by relative CPU power of the group */
2049 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2051 if (local_group) {
2052 this_load = avg_load;
2053 this = group;
2054 } else if (avg_load > max_load) {
2055 max_load = avg_load;
2056 busiest = group;
2058 group = group->next;
2059 } while (group != sd->groups);
2061 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2062 goto out_balanced;
2064 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2066 if (this_load >= avg_load ||
2067 100*max_load <= sd->imbalance_pct*this_load)
2068 goto out_balanced;
2071 * We're trying to get all the cpus to the average_load, so we don't
2072 * want to push ourselves above the average load, nor do we wish to
2073 * reduce the max loaded cpu below the average load, as either of these
2074 * actions would just result in more rebalancing later, and ping-pong
2075 * tasks around. Thus we look for the minimum possible imbalance.
2076 * Negative imbalances (*we* are more loaded than anyone else) will
2077 * be counted as no imbalance for these purposes -- we can't fix that
2078 * by pulling tasks to us. Be careful of negative numbers as they'll
2079 * appear as very large values with unsigned longs.
2082 /* Don't want to pull so many tasks that a group would go idle */
2083 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2085 /* How much load to actually move to equalise the imbalance */
2086 *imbalance = min(max_pull * busiest->cpu_power,
2087 (avg_load - this_load) * this->cpu_power)
2088 / SCHED_LOAD_SCALE;
2090 if (*imbalance < SCHED_LOAD_SCALE) {
2091 unsigned long pwr_now = 0, pwr_move = 0;
2092 unsigned long tmp;
2094 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2095 *imbalance = 1;
2096 return busiest;
2100 * OK, we don't have enough imbalance to justify moving tasks,
2101 * however we may be able to increase total CPU power used by
2102 * moving them.
2105 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2106 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2107 pwr_now /= SCHED_LOAD_SCALE;
2109 /* Amount of load we'd subtract */
2110 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2111 if (max_load > tmp)
2112 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2113 max_load - tmp);
2115 /* Amount of load we'd add */
2116 if (max_load*busiest->cpu_power <
2117 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2118 tmp = max_load*busiest->cpu_power/this->cpu_power;
2119 else
2120 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2121 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2122 pwr_move /= SCHED_LOAD_SCALE;
2124 /* Move if we gain throughput */
2125 if (pwr_move <= pwr_now)
2126 goto out_balanced;
2128 *imbalance = 1;
2129 return busiest;
2132 /* Get rid of the scaling factor, rounding down as we divide */
2133 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2134 return busiest;
2136 out_balanced:
2138 *imbalance = 0;
2139 return NULL;
2143 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2145 static runqueue_t *find_busiest_queue(struct sched_group *group,
2146 enum idle_type idle)
2148 unsigned long load, max_load = 0;
2149 runqueue_t *busiest = NULL;
2150 int i;
2152 for_each_cpu_mask(i, group->cpumask) {
2153 load = __source_load(i, 0, idle);
2155 if (load > max_load) {
2156 max_load = load;
2157 busiest = cpu_rq(i);
2161 return busiest;
2165 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2166 * so long as it is large enough.
2168 #define MAX_PINNED_INTERVAL 512
2171 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2172 * tasks if there is an imbalance.
2174 * Called with this_rq unlocked.
2176 static int load_balance(int this_cpu, runqueue_t *this_rq,
2177 struct sched_domain *sd, enum idle_type idle)
2179 struct sched_group *group;
2180 runqueue_t *busiest;
2181 unsigned long imbalance;
2182 int nr_moved, all_pinned = 0;
2183 int active_balance = 0;
2184 int sd_idle = 0;
2186 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2187 sd_idle = 1;
2189 schedstat_inc(sd, lb_cnt[idle]);
2191 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2192 if (!group) {
2193 schedstat_inc(sd, lb_nobusyg[idle]);
2194 goto out_balanced;
2197 busiest = find_busiest_queue(group, idle);
2198 if (!busiest) {
2199 schedstat_inc(sd, lb_nobusyq[idle]);
2200 goto out_balanced;
2203 BUG_ON(busiest == this_rq);
2205 schedstat_add(sd, lb_imbalance[idle], imbalance);
2207 nr_moved = 0;
2208 if (busiest->nr_running > 1) {
2210 * Attempt to move tasks. If find_busiest_group has found
2211 * an imbalance but busiest->nr_running <= 1, the group is
2212 * still unbalanced. nr_moved simply stays zero, so it is
2213 * correctly treated as an imbalance.
2215 double_rq_lock(this_rq, busiest);
2216 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2217 imbalance, sd, idle, &all_pinned);
2218 double_rq_unlock(this_rq, busiest);
2220 /* All tasks on this runqueue were pinned by CPU affinity */
2221 if (unlikely(all_pinned))
2222 goto out_balanced;
2225 if (!nr_moved) {
2226 schedstat_inc(sd, lb_failed[idle]);
2227 sd->nr_balance_failed++;
2229 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2231 spin_lock(&busiest->lock);
2233 /* don't kick the migration_thread, if the curr
2234 * task on busiest cpu can't be moved to this_cpu
2236 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2237 spin_unlock(&busiest->lock);
2238 all_pinned = 1;
2239 goto out_one_pinned;
2242 if (!busiest->active_balance) {
2243 busiest->active_balance = 1;
2244 busiest->push_cpu = this_cpu;
2245 active_balance = 1;
2247 spin_unlock(&busiest->lock);
2248 if (active_balance)
2249 wake_up_process(busiest->migration_thread);
2252 * We've kicked active balancing, reset the failure
2253 * counter.
2255 sd->nr_balance_failed = sd->cache_nice_tries+1;
2257 } else
2258 sd->nr_balance_failed = 0;
2260 if (likely(!active_balance)) {
2261 /* We were unbalanced, so reset the balancing interval */
2262 sd->balance_interval = sd->min_interval;
2263 } else {
2265 * If we've begun active balancing, start to back off. This
2266 * case may not be covered by the all_pinned logic if there
2267 * is only 1 task on the busy runqueue (because we don't call
2268 * move_tasks).
2270 if (sd->balance_interval < sd->max_interval)
2271 sd->balance_interval *= 2;
2274 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2275 return -1;
2276 return nr_moved;
2278 out_balanced:
2279 schedstat_inc(sd, lb_balanced[idle]);
2281 sd->nr_balance_failed = 0;
2283 out_one_pinned:
2284 /* tune up the balancing interval */
2285 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2286 (sd->balance_interval < sd->max_interval))
2287 sd->balance_interval *= 2;
2289 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2290 return -1;
2291 return 0;
2295 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2296 * tasks if there is an imbalance.
2298 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2299 * this_rq is locked.
2301 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2302 struct sched_domain *sd)
2304 struct sched_group *group;
2305 runqueue_t *busiest = NULL;
2306 unsigned long imbalance;
2307 int nr_moved = 0;
2308 int sd_idle = 0;
2310 if (sd->flags & SD_SHARE_CPUPOWER)
2311 sd_idle = 1;
2313 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2314 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2315 if (!group) {
2316 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2317 goto out_balanced;
2320 busiest = find_busiest_queue(group, NEWLY_IDLE);
2321 if (!busiest) {
2322 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2323 goto out_balanced;
2326 BUG_ON(busiest == this_rq);
2328 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2330 nr_moved = 0;
2331 if (busiest->nr_running > 1) {
2332 /* Attempt to move tasks */
2333 double_lock_balance(this_rq, busiest);
2334 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2335 imbalance, sd, NEWLY_IDLE, NULL);
2336 spin_unlock(&busiest->lock);
2339 if (!nr_moved) {
2340 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2341 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2342 return -1;
2343 } else
2344 sd->nr_balance_failed = 0;
2346 return nr_moved;
2348 out_balanced:
2349 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2350 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2351 return -1;
2352 sd->nr_balance_failed = 0;
2353 return 0;
2357 * idle_balance is called by schedule() if this_cpu is about to become
2358 * idle. Attempts to pull tasks from other CPUs.
2360 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2362 struct sched_domain *sd;
2364 for_each_domain(this_cpu, sd) {
2365 if (sd->flags & SD_BALANCE_NEWIDLE) {
2366 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2367 /* We've pulled tasks over so stop searching */
2368 break;
2375 * active_load_balance is run by migration threads. It pushes running tasks
2376 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2377 * running on each physical CPU where possible, and avoids physical /
2378 * logical imbalances.
2380 * Called with busiest_rq locked.
2382 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2384 struct sched_domain *sd;
2385 runqueue_t *target_rq;
2386 int target_cpu = busiest_rq->push_cpu;
2388 if (busiest_rq->nr_running <= 1)
2389 /* no task to move */
2390 return;
2392 target_rq = cpu_rq(target_cpu);
2395 * This condition is "impossible", if it occurs
2396 * we need to fix it. Originally reported by
2397 * Bjorn Helgaas on a 128-cpu setup.
2399 BUG_ON(busiest_rq == target_rq);
2401 /* move a task from busiest_rq to target_rq */
2402 double_lock_balance(busiest_rq, target_rq);
2404 /* Search for an sd spanning us and the target CPU. */
2405 for_each_domain(target_cpu, sd)
2406 if ((sd->flags & SD_LOAD_BALANCE) &&
2407 cpu_isset(busiest_cpu, sd->span))
2408 break;
2410 if (unlikely(sd == NULL))
2411 goto out;
2413 schedstat_inc(sd, alb_cnt);
2415 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2416 schedstat_inc(sd, alb_pushed);
2417 else
2418 schedstat_inc(sd, alb_failed);
2419 out:
2420 spin_unlock(&target_rq->lock);
2424 * rebalance_tick will get called every timer tick, on every CPU.
2426 * It checks each scheduling domain to see if it is due to be balanced,
2427 * and initiates a balancing operation if so.
2429 * Balancing parameters are set up in arch_init_sched_domains.
2432 /* Don't have all balancing operations going off at once */
2433 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2435 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2436 enum idle_type idle)
2438 unsigned long old_load, this_load;
2439 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2440 struct sched_domain *sd;
2441 int i;
2443 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2444 /* Update our load */
2445 for (i = 0; i < 3; i++) {
2446 unsigned long new_load = this_load;
2447 int scale = 1 << i;
2448 old_load = this_rq->cpu_load[i];
2450 * Round up the averaging division if load is increasing. This
2451 * prevents us from getting stuck on 9 if the load is 10, for
2452 * example.
2454 if (new_load > old_load)
2455 new_load += scale-1;
2456 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2459 for_each_domain(this_cpu, sd) {
2460 unsigned long interval;
2462 if (!(sd->flags & SD_LOAD_BALANCE))
2463 continue;
2465 interval = sd->balance_interval;
2466 if (idle != SCHED_IDLE)
2467 interval *= sd->busy_factor;
2469 /* scale ms to jiffies */
2470 interval = msecs_to_jiffies(interval);
2471 if (unlikely(!interval))
2472 interval = 1;
2474 if (j - sd->last_balance >= interval) {
2475 if (load_balance(this_cpu, this_rq, sd, idle)) {
2477 * We've pulled tasks over so either we're no
2478 * longer idle, or one of our SMT siblings is
2479 * not idle.
2481 idle = NOT_IDLE;
2483 sd->last_balance += interval;
2487 #else
2489 * on UP we do not need to balance between CPUs:
2491 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2494 static inline void idle_balance(int cpu, runqueue_t *rq)
2497 #endif
2499 static inline int wake_priority_sleeper(runqueue_t *rq)
2501 int ret = 0;
2502 #ifdef CONFIG_SCHED_SMT
2503 spin_lock(&rq->lock);
2505 * If an SMT sibling task has been put to sleep for priority
2506 * reasons reschedule the idle task to see if it can now run.
2508 if (rq->nr_running) {
2509 resched_task(rq->idle);
2510 ret = 1;
2512 spin_unlock(&rq->lock);
2513 #endif
2514 return ret;
2517 DEFINE_PER_CPU(struct kernel_stat, kstat);
2519 EXPORT_PER_CPU_SYMBOL(kstat);
2522 * This is called on clock ticks and on context switches.
2523 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2525 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2526 unsigned long long now)
2528 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2529 p->sched_time += now - last;
2533 * Return current->sched_time plus any more ns on the sched_clock
2534 * that have not yet been banked.
2536 unsigned long long current_sched_time(const task_t *tsk)
2538 unsigned long long ns;
2539 unsigned long flags;
2540 local_irq_save(flags);
2541 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2542 ns = tsk->sched_time + (sched_clock() - ns);
2543 local_irq_restore(flags);
2544 return ns;
2548 * We place interactive tasks back into the active array, if possible.
2550 * To guarantee that this does not starve expired tasks we ignore the
2551 * interactivity of a task if the first expired task had to wait more
2552 * than a 'reasonable' amount of time. This deadline timeout is
2553 * load-dependent, as the frequency of array switched decreases with
2554 * increasing number of running tasks. We also ignore the interactivity
2555 * if a better static_prio task has expired:
2557 #define EXPIRED_STARVING(rq) \
2558 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2559 (jiffies - (rq)->expired_timestamp >= \
2560 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2561 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2564 * Account user cpu time to a process.
2565 * @p: the process that the cpu time gets accounted to
2566 * @hardirq_offset: the offset to subtract from hardirq_count()
2567 * @cputime: the cpu time spent in user space since the last update
2569 void account_user_time(struct task_struct *p, cputime_t cputime)
2571 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2572 cputime64_t tmp;
2574 p->utime = cputime_add(p->utime, cputime);
2576 /* Add user time to cpustat. */
2577 tmp = cputime_to_cputime64(cputime);
2578 if (TASK_NICE(p) > 0)
2579 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2580 else
2581 cpustat->user = cputime64_add(cpustat->user, tmp);
2585 * Account system cpu time to a process.
2586 * @p: the process that the cpu time gets accounted to
2587 * @hardirq_offset: the offset to subtract from hardirq_count()
2588 * @cputime: the cpu time spent in kernel space since the last update
2590 void account_system_time(struct task_struct *p, int hardirq_offset,
2591 cputime_t cputime)
2593 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2594 runqueue_t *rq = this_rq();
2595 cputime64_t tmp;
2597 p->stime = cputime_add(p->stime, cputime);
2599 /* Add system time to cpustat. */
2600 tmp = cputime_to_cputime64(cputime);
2601 if (hardirq_count() - hardirq_offset)
2602 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2603 else if (softirq_count())
2604 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2605 else if (p != rq->idle)
2606 cpustat->system = cputime64_add(cpustat->system, tmp);
2607 else if (atomic_read(&rq->nr_iowait) > 0)
2608 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2609 else
2610 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2611 /* Account for system time used */
2612 acct_update_integrals(p);
2616 * Account for involuntary wait time.
2617 * @p: the process from which the cpu time has been stolen
2618 * @steal: the cpu time spent in involuntary wait
2620 void account_steal_time(struct task_struct *p, cputime_t steal)
2622 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2623 cputime64_t tmp = cputime_to_cputime64(steal);
2624 runqueue_t *rq = this_rq();
2626 if (p == rq->idle) {
2627 p->stime = cputime_add(p->stime, steal);
2628 if (atomic_read(&rq->nr_iowait) > 0)
2629 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2630 else
2631 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2632 } else
2633 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2637 * This function gets called by the timer code, with HZ frequency.
2638 * We call it with interrupts disabled.
2640 * It also gets called by the fork code, when changing the parent's
2641 * timeslices.
2643 void scheduler_tick(void)
2645 int cpu = smp_processor_id();
2646 runqueue_t *rq = this_rq();
2647 task_t *p = current;
2648 unsigned long long now = sched_clock();
2650 update_cpu_clock(p, rq, now);
2652 rq->timestamp_last_tick = now;
2654 if (p == rq->idle) {
2655 if (wake_priority_sleeper(rq))
2656 goto out;
2657 rebalance_tick(cpu, rq, SCHED_IDLE);
2658 return;
2661 /* Task might have expired already, but not scheduled off yet */
2662 if (p->array != rq->active) {
2663 set_tsk_need_resched(p);
2664 goto out;
2666 spin_lock(&rq->lock);
2668 * The task was running during this tick - update the
2669 * time slice counter. Note: we do not update a thread's
2670 * priority until it either goes to sleep or uses up its
2671 * timeslice. This makes it possible for interactive tasks
2672 * to use up their timeslices at their highest priority levels.
2674 if (rt_task(p)) {
2676 * RR tasks need a special form of timeslice management.
2677 * FIFO tasks have no timeslices.
2679 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2680 p->time_slice = task_timeslice(p);
2681 p->first_time_slice = 0;
2682 set_tsk_need_resched(p);
2684 /* put it at the end of the queue: */
2685 requeue_task(p, rq->active);
2687 goto out_unlock;
2689 if (!--p->time_slice) {
2690 dequeue_task(p, rq->active);
2691 set_tsk_need_resched(p);
2692 p->prio = effective_prio(p);
2693 p->time_slice = task_timeslice(p);
2694 p->first_time_slice = 0;
2696 if (!rq->expired_timestamp)
2697 rq->expired_timestamp = jiffies;
2698 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2699 enqueue_task(p, rq->expired);
2700 if (p->static_prio < rq->best_expired_prio)
2701 rq->best_expired_prio = p->static_prio;
2702 } else
2703 enqueue_task(p, rq->active);
2704 } else {
2706 * Prevent a too long timeslice allowing a task to monopolize
2707 * the CPU. We do this by splitting up the timeslice into
2708 * smaller pieces.
2710 * Note: this does not mean the task's timeslices expire or
2711 * get lost in any way, they just might be preempted by
2712 * another task of equal priority. (one with higher
2713 * priority would have preempted this task already.) We
2714 * requeue this task to the end of the list on this priority
2715 * level, which is in essence a round-robin of tasks with
2716 * equal priority.
2718 * This only applies to tasks in the interactive
2719 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2721 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2722 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2723 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2724 (p->array == rq->active)) {
2726 requeue_task(p, rq->active);
2727 set_tsk_need_resched(p);
2730 out_unlock:
2731 spin_unlock(&rq->lock);
2732 out:
2733 rebalance_tick(cpu, rq, NOT_IDLE);
2736 #ifdef CONFIG_SCHED_SMT
2737 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2739 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2740 if (rq->curr == rq->idle && rq->nr_running)
2741 resched_task(rq->idle);
2744 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2746 struct sched_domain *tmp, *sd = NULL;
2747 cpumask_t sibling_map;
2748 int i;
2750 for_each_domain(this_cpu, tmp)
2751 if (tmp->flags & SD_SHARE_CPUPOWER)
2752 sd = tmp;
2754 if (!sd)
2755 return;
2758 * Unlock the current runqueue because we have to lock in
2759 * CPU order to avoid deadlocks. Caller knows that we might
2760 * unlock. We keep IRQs disabled.
2762 spin_unlock(&this_rq->lock);
2764 sibling_map = sd->span;
2766 for_each_cpu_mask(i, sibling_map)
2767 spin_lock(&cpu_rq(i)->lock);
2769 * We clear this CPU from the mask. This both simplifies the
2770 * inner loop and keps this_rq locked when we exit:
2772 cpu_clear(this_cpu, sibling_map);
2774 for_each_cpu_mask(i, sibling_map) {
2775 runqueue_t *smt_rq = cpu_rq(i);
2777 wakeup_busy_runqueue(smt_rq);
2780 for_each_cpu_mask(i, sibling_map)
2781 spin_unlock(&cpu_rq(i)->lock);
2783 * We exit with this_cpu's rq still held and IRQs
2784 * still disabled:
2789 * number of 'lost' timeslices this task wont be able to fully
2790 * utilize, if another task runs on a sibling. This models the
2791 * slowdown effect of other tasks running on siblings:
2793 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2795 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2798 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2800 struct sched_domain *tmp, *sd = NULL;
2801 cpumask_t sibling_map;
2802 prio_array_t *array;
2803 int ret = 0, i;
2804 task_t *p;
2806 for_each_domain(this_cpu, tmp)
2807 if (tmp->flags & SD_SHARE_CPUPOWER)
2808 sd = tmp;
2810 if (!sd)
2811 return 0;
2814 * The same locking rules and details apply as for
2815 * wake_sleeping_dependent():
2817 spin_unlock(&this_rq->lock);
2818 sibling_map = sd->span;
2819 for_each_cpu_mask(i, sibling_map)
2820 spin_lock(&cpu_rq(i)->lock);
2821 cpu_clear(this_cpu, sibling_map);
2824 * Establish next task to be run - it might have gone away because
2825 * we released the runqueue lock above:
2827 if (!this_rq->nr_running)
2828 goto out_unlock;
2829 array = this_rq->active;
2830 if (!array->nr_active)
2831 array = this_rq->expired;
2832 BUG_ON(!array->nr_active);
2834 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2835 task_t, run_list);
2837 for_each_cpu_mask(i, sibling_map) {
2838 runqueue_t *smt_rq = cpu_rq(i);
2839 task_t *smt_curr = smt_rq->curr;
2841 /* Kernel threads do not participate in dependent sleeping */
2842 if (!p->mm || !smt_curr->mm || rt_task(p))
2843 goto check_smt_task;
2846 * If a user task with lower static priority than the
2847 * running task on the SMT sibling is trying to schedule,
2848 * delay it till there is proportionately less timeslice
2849 * left of the sibling task to prevent a lower priority
2850 * task from using an unfair proportion of the
2851 * physical cpu's resources. -ck
2853 if (rt_task(smt_curr)) {
2855 * With real time tasks we run non-rt tasks only
2856 * per_cpu_gain% of the time.
2858 if ((jiffies % DEF_TIMESLICE) >
2859 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2860 ret = 1;
2861 } else
2862 if (smt_curr->static_prio < p->static_prio &&
2863 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2864 smt_slice(smt_curr, sd) > task_timeslice(p))
2865 ret = 1;
2867 check_smt_task:
2868 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2869 rt_task(smt_curr))
2870 continue;
2871 if (!p->mm) {
2872 wakeup_busy_runqueue(smt_rq);
2873 continue;
2877 * Reschedule a lower priority task on the SMT sibling for
2878 * it to be put to sleep, or wake it up if it has been put to
2879 * sleep for priority reasons to see if it should run now.
2881 if (rt_task(p)) {
2882 if ((jiffies % DEF_TIMESLICE) >
2883 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2884 resched_task(smt_curr);
2885 } else {
2886 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2887 smt_slice(p, sd) > task_timeslice(smt_curr))
2888 resched_task(smt_curr);
2889 else
2890 wakeup_busy_runqueue(smt_rq);
2893 out_unlock:
2894 for_each_cpu_mask(i, sibling_map)
2895 spin_unlock(&cpu_rq(i)->lock);
2896 return ret;
2898 #else
2899 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2903 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2905 return 0;
2907 #endif
2909 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2911 void fastcall add_preempt_count(int val)
2914 * Underflow?
2916 BUG_ON((preempt_count() < 0));
2917 preempt_count() += val;
2919 * Spinlock count overflowing soon?
2921 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2923 EXPORT_SYMBOL(add_preempt_count);
2925 void fastcall sub_preempt_count(int val)
2928 * Underflow?
2930 BUG_ON(val > preempt_count());
2932 * Is the spinlock portion underflowing?
2934 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2935 preempt_count() -= val;
2937 EXPORT_SYMBOL(sub_preempt_count);
2939 #endif
2942 * schedule() is the main scheduler function.
2944 asmlinkage void __sched schedule(void)
2946 long *switch_count;
2947 task_t *prev, *next;
2948 runqueue_t *rq;
2949 prio_array_t *array;
2950 struct list_head *queue;
2951 unsigned long long now;
2952 unsigned long run_time;
2953 int cpu, idx, new_prio;
2956 * Test if we are atomic. Since do_exit() needs to call into
2957 * schedule() atomically, we ignore that path for now.
2958 * Otherwise, whine if we are scheduling when we should not be.
2960 if (likely(!current->exit_state)) {
2961 if (unlikely(in_atomic())) {
2962 printk(KERN_ERR "scheduling while atomic: "
2963 "%s/0x%08x/%d\n",
2964 current->comm, preempt_count(), current->pid);
2965 dump_stack();
2968 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2970 need_resched:
2971 preempt_disable();
2972 prev = current;
2973 release_kernel_lock(prev);
2974 need_resched_nonpreemptible:
2975 rq = this_rq();
2978 * The idle thread is not allowed to schedule!
2979 * Remove this check after it has been exercised a bit.
2981 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2982 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2983 dump_stack();
2986 schedstat_inc(rq, sched_cnt);
2987 now = sched_clock();
2988 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2989 run_time = now - prev->timestamp;
2990 if (unlikely((long long)(now - prev->timestamp) < 0))
2991 run_time = 0;
2992 } else
2993 run_time = NS_MAX_SLEEP_AVG;
2996 * Tasks charged proportionately less run_time at high sleep_avg to
2997 * delay them losing their interactive status
2999 run_time /= (CURRENT_BONUS(prev) ? : 1);
3001 spin_lock_irq(&rq->lock);
3003 if (unlikely(prev->flags & PF_DEAD))
3004 prev->state = EXIT_DEAD;
3006 switch_count = &prev->nivcsw;
3007 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3008 switch_count = &prev->nvcsw;
3009 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3010 unlikely(signal_pending(prev))))
3011 prev->state = TASK_RUNNING;
3012 else {
3013 if (prev->state == TASK_UNINTERRUPTIBLE)
3014 rq->nr_uninterruptible++;
3015 deactivate_task(prev, rq);
3019 cpu = smp_processor_id();
3020 if (unlikely(!rq->nr_running)) {
3021 go_idle:
3022 idle_balance(cpu, rq);
3023 if (!rq->nr_running) {
3024 next = rq->idle;
3025 rq->expired_timestamp = 0;
3026 wake_sleeping_dependent(cpu, rq);
3028 * wake_sleeping_dependent() might have released
3029 * the runqueue, so break out if we got new
3030 * tasks meanwhile:
3032 if (!rq->nr_running)
3033 goto switch_tasks;
3035 } else {
3036 if (dependent_sleeper(cpu, rq)) {
3037 next = rq->idle;
3038 goto switch_tasks;
3041 * dependent_sleeper() releases and reacquires the runqueue
3042 * lock, hence go into the idle loop if the rq went
3043 * empty meanwhile:
3045 if (unlikely(!rq->nr_running))
3046 goto go_idle;
3049 array = rq->active;
3050 if (unlikely(!array->nr_active)) {
3052 * Switch the active and expired arrays.
3054 schedstat_inc(rq, sched_switch);
3055 rq->active = rq->expired;
3056 rq->expired = array;
3057 array = rq->active;
3058 rq->expired_timestamp = 0;
3059 rq->best_expired_prio = MAX_PRIO;
3062 idx = sched_find_first_bit(array->bitmap);
3063 queue = array->queue + idx;
3064 next = list_entry(queue->next, task_t, run_list);
3066 if (!rt_task(next) && next->activated > 0) {
3067 unsigned long long delta = now - next->timestamp;
3068 if (unlikely((long long)(now - next->timestamp) < 0))
3069 delta = 0;
3071 if (next->activated == 1)
3072 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3074 array = next->array;
3075 new_prio = recalc_task_prio(next, next->timestamp + delta);
3077 if (unlikely(next->prio != new_prio)) {
3078 dequeue_task(next, array);
3079 next->prio = new_prio;
3080 enqueue_task(next, array);
3081 } else
3082 requeue_task(next, array);
3084 next->activated = 0;
3085 switch_tasks:
3086 if (next == rq->idle)
3087 schedstat_inc(rq, sched_goidle);
3088 prefetch(next);
3089 prefetch_stack(next);
3090 clear_tsk_need_resched(prev);
3091 rcu_qsctr_inc(task_cpu(prev));
3093 update_cpu_clock(prev, rq, now);
3095 prev->sleep_avg -= run_time;
3096 if ((long)prev->sleep_avg <= 0)
3097 prev->sleep_avg = 0;
3098 prev->timestamp = prev->last_ran = now;
3100 sched_info_switch(prev, next);
3101 if (likely(prev != next)) {
3102 next->timestamp = now;
3103 rq->nr_switches++;
3104 rq->curr = next;
3105 ++*switch_count;
3107 prepare_task_switch(rq, next);
3108 prev = context_switch(rq, prev, next);
3109 barrier();
3111 * this_rq must be evaluated again because prev may have moved
3112 * CPUs since it called schedule(), thus the 'rq' on its stack
3113 * frame will be invalid.
3115 finish_task_switch(this_rq(), prev);
3116 } else
3117 spin_unlock_irq(&rq->lock);
3119 prev = current;
3120 if (unlikely(reacquire_kernel_lock(prev) < 0))
3121 goto need_resched_nonpreemptible;
3122 preempt_enable_no_resched();
3123 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3124 goto need_resched;
3127 EXPORT_SYMBOL(schedule);
3129 #ifdef CONFIG_PREEMPT
3131 * this is is the entry point to schedule() from in-kernel preemption
3132 * off of preempt_enable. Kernel preemptions off return from interrupt
3133 * occur there and call schedule directly.
3135 asmlinkage void __sched preempt_schedule(void)
3137 struct thread_info *ti = current_thread_info();
3138 #ifdef CONFIG_PREEMPT_BKL
3139 struct task_struct *task = current;
3140 int saved_lock_depth;
3141 #endif
3143 * If there is a non-zero preempt_count or interrupts are disabled,
3144 * we do not want to preempt the current task. Just return..
3146 if (unlikely(ti->preempt_count || irqs_disabled()))
3147 return;
3149 need_resched:
3150 add_preempt_count(PREEMPT_ACTIVE);
3152 * We keep the big kernel semaphore locked, but we
3153 * clear ->lock_depth so that schedule() doesnt
3154 * auto-release the semaphore:
3156 #ifdef CONFIG_PREEMPT_BKL
3157 saved_lock_depth = task->lock_depth;
3158 task->lock_depth = -1;
3159 #endif
3160 schedule();
3161 #ifdef CONFIG_PREEMPT_BKL
3162 task->lock_depth = saved_lock_depth;
3163 #endif
3164 sub_preempt_count(PREEMPT_ACTIVE);
3166 /* we could miss a preemption opportunity between schedule and now */
3167 barrier();
3168 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3169 goto need_resched;
3172 EXPORT_SYMBOL(preempt_schedule);
3175 * this is is the entry point to schedule() from kernel preemption
3176 * off of irq context.
3177 * Note, that this is called and return with irqs disabled. This will
3178 * protect us against recursive calling from irq.
3180 asmlinkage void __sched preempt_schedule_irq(void)
3182 struct thread_info *ti = current_thread_info();
3183 #ifdef CONFIG_PREEMPT_BKL
3184 struct task_struct *task = current;
3185 int saved_lock_depth;
3186 #endif
3187 /* Catch callers which need to be fixed*/
3188 BUG_ON(ti->preempt_count || !irqs_disabled());
3190 need_resched:
3191 add_preempt_count(PREEMPT_ACTIVE);
3193 * We keep the big kernel semaphore locked, but we
3194 * clear ->lock_depth so that schedule() doesnt
3195 * auto-release the semaphore:
3197 #ifdef CONFIG_PREEMPT_BKL
3198 saved_lock_depth = task->lock_depth;
3199 task->lock_depth = -1;
3200 #endif
3201 local_irq_enable();
3202 schedule();
3203 local_irq_disable();
3204 #ifdef CONFIG_PREEMPT_BKL
3205 task->lock_depth = saved_lock_depth;
3206 #endif
3207 sub_preempt_count(PREEMPT_ACTIVE);
3209 /* we could miss a preemption opportunity between schedule and now */
3210 barrier();
3211 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3212 goto need_resched;
3215 #endif /* CONFIG_PREEMPT */
3217 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3218 void *key)
3220 task_t *p = curr->private;
3221 return try_to_wake_up(p, mode, sync);
3224 EXPORT_SYMBOL(default_wake_function);
3227 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3228 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3229 * number) then we wake all the non-exclusive tasks and one exclusive task.
3231 * There are circumstances in which we can try to wake a task which has already
3232 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3233 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3235 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3236 int nr_exclusive, int sync, void *key)
3238 struct list_head *tmp, *next;
3240 list_for_each_safe(tmp, next, &q->task_list) {
3241 wait_queue_t *curr;
3242 unsigned flags;
3243 curr = list_entry(tmp, wait_queue_t, task_list);
3244 flags = curr->flags;
3245 if (curr->func(curr, mode, sync, key) &&
3246 (flags & WQ_FLAG_EXCLUSIVE) &&
3247 !--nr_exclusive)
3248 break;
3253 * __wake_up - wake up threads blocked on a waitqueue.
3254 * @q: the waitqueue
3255 * @mode: which threads
3256 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3257 * @key: is directly passed to the wakeup function
3259 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3260 int nr_exclusive, void *key)
3262 unsigned long flags;
3264 spin_lock_irqsave(&q->lock, flags);
3265 __wake_up_common(q, mode, nr_exclusive, 0, key);
3266 spin_unlock_irqrestore(&q->lock, flags);
3269 EXPORT_SYMBOL(__wake_up);
3272 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3274 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3276 __wake_up_common(q, mode, 1, 0, NULL);
3280 * __wake_up_sync - wake up threads blocked on a waitqueue.
3281 * @q: the waitqueue
3282 * @mode: which threads
3283 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3285 * The sync wakeup differs that the waker knows that it will schedule
3286 * away soon, so while the target thread will be woken up, it will not
3287 * be migrated to another CPU - ie. the two threads are 'synchronized'
3288 * with each other. This can prevent needless bouncing between CPUs.
3290 * On UP it can prevent extra preemption.
3292 void fastcall
3293 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3295 unsigned long flags;
3296 int sync = 1;
3298 if (unlikely(!q))
3299 return;
3301 if (unlikely(!nr_exclusive))
3302 sync = 0;
3304 spin_lock_irqsave(&q->lock, flags);
3305 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3306 spin_unlock_irqrestore(&q->lock, flags);
3308 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3310 void fastcall complete(struct completion *x)
3312 unsigned long flags;
3314 spin_lock_irqsave(&x->wait.lock, flags);
3315 x->done++;
3316 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3317 1, 0, NULL);
3318 spin_unlock_irqrestore(&x->wait.lock, flags);
3320 EXPORT_SYMBOL(complete);
3322 void fastcall complete_all(struct completion *x)
3324 unsigned long flags;
3326 spin_lock_irqsave(&x->wait.lock, flags);
3327 x->done += UINT_MAX/2;
3328 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3329 0, 0, NULL);
3330 spin_unlock_irqrestore(&x->wait.lock, flags);
3332 EXPORT_SYMBOL(complete_all);
3334 void fastcall __sched wait_for_completion(struct completion *x)
3336 might_sleep();
3337 spin_lock_irq(&x->wait.lock);
3338 if (!x->done) {
3339 DECLARE_WAITQUEUE(wait, current);
3341 wait.flags |= WQ_FLAG_EXCLUSIVE;
3342 __add_wait_queue_tail(&x->wait, &wait);
3343 do {
3344 __set_current_state(TASK_UNINTERRUPTIBLE);
3345 spin_unlock_irq(&x->wait.lock);
3346 schedule();
3347 spin_lock_irq(&x->wait.lock);
3348 } while (!x->done);
3349 __remove_wait_queue(&x->wait, &wait);
3351 x->done--;
3352 spin_unlock_irq(&x->wait.lock);
3354 EXPORT_SYMBOL(wait_for_completion);
3356 unsigned long fastcall __sched
3357 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3359 might_sleep();
3361 spin_lock_irq(&x->wait.lock);
3362 if (!x->done) {
3363 DECLARE_WAITQUEUE(wait, current);
3365 wait.flags |= WQ_FLAG_EXCLUSIVE;
3366 __add_wait_queue_tail(&x->wait, &wait);
3367 do {
3368 __set_current_state(TASK_UNINTERRUPTIBLE);
3369 spin_unlock_irq(&x->wait.lock);
3370 timeout = schedule_timeout(timeout);
3371 spin_lock_irq(&x->wait.lock);
3372 if (!timeout) {
3373 __remove_wait_queue(&x->wait, &wait);
3374 goto out;
3376 } while (!x->done);
3377 __remove_wait_queue(&x->wait, &wait);
3379 x->done--;
3380 out:
3381 spin_unlock_irq(&x->wait.lock);
3382 return timeout;
3384 EXPORT_SYMBOL(wait_for_completion_timeout);
3386 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3388 int ret = 0;
3390 might_sleep();
3392 spin_lock_irq(&x->wait.lock);
3393 if (!x->done) {
3394 DECLARE_WAITQUEUE(wait, current);
3396 wait.flags |= WQ_FLAG_EXCLUSIVE;
3397 __add_wait_queue_tail(&x->wait, &wait);
3398 do {
3399 if (signal_pending(current)) {
3400 ret = -ERESTARTSYS;
3401 __remove_wait_queue(&x->wait, &wait);
3402 goto out;
3404 __set_current_state(TASK_INTERRUPTIBLE);
3405 spin_unlock_irq(&x->wait.lock);
3406 schedule();
3407 spin_lock_irq(&x->wait.lock);
3408 } while (!x->done);
3409 __remove_wait_queue(&x->wait, &wait);
3411 x->done--;
3412 out:
3413 spin_unlock_irq(&x->wait.lock);
3415 return ret;
3417 EXPORT_SYMBOL(wait_for_completion_interruptible);
3419 unsigned long fastcall __sched
3420 wait_for_completion_interruptible_timeout(struct completion *x,
3421 unsigned long timeout)
3423 might_sleep();
3425 spin_lock_irq(&x->wait.lock);
3426 if (!x->done) {
3427 DECLARE_WAITQUEUE(wait, current);
3429 wait.flags |= WQ_FLAG_EXCLUSIVE;
3430 __add_wait_queue_tail(&x->wait, &wait);
3431 do {
3432 if (signal_pending(current)) {
3433 timeout = -ERESTARTSYS;
3434 __remove_wait_queue(&x->wait, &wait);
3435 goto out;
3437 __set_current_state(TASK_INTERRUPTIBLE);
3438 spin_unlock_irq(&x->wait.lock);
3439 timeout = schedule_timeout(timeout);
3440 spin_lock_irq(&x->wait.lock);
3441 if (!timeout) {
3442 __remove_wait_queue(&x->wait, &wait);
3443 goto out;
3445 } while (!x->done);
3446 __remove_wait_queue(&x->wait, &wait);
3448 x->done--;
3449 out:
3450 spin_unlock_irq(&x->wait.lock);
3451 return timeout;
3453 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3456 #define SLEEP_ON_VAR \
3457 unsigned long flags; \
3458 wait_queue_t wait; \
3459 init_waitqueue_entry(&wait, current);
3461 #define SLEEP_ON_HEAD \
3462 spin_lock_irqsave(&q->lock,flags); \
3463 __add_wait_queue(q, &wait); \
3464 spin_unlock(&q->lock);
3466 #define SLEEP_ON_TAIL \
3467 spin_lock_irq(&q->lock); \
3468 __remove_wait_queue(q, &wait); \
3469 spin_unlock_irqrestore(&q->lock, flags);
3471 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3473 SLEEP_ON_VAR
3475 current->state = TASK_INTERRUPTIBLE;
3477 SLEEP_ON_HEAD
3478 schedule();
3479 SLEEP_ON_TAIL
3482 EXPORT_SYMBOL(interruptible_sleep_on);
3484 long fastcall __sched
3485 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3487 SLEEP_ON_VAR
3489 current->state = TASK_INTERRUPTIBLE;
3491 SLEEP_ON_HEAD
3492 timeout = schedule_timeout(timeout);
3493 SLEEP_ON_TAIL
3495 return timeout;
3498 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3500 void fastcall __sched sleep_on(wait_queue_head_t *q)
3502 SLEEP_ON_VAR
3504 current->state = TASK_UNINTERRUPTIBLE;
3506 SLEEP_ON_HEAD
3507 schedule();
3508 SLEEP_ON_TAIL
3511 EXPORT_SYMBOL(sleep_on);
3513 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3515 SLEEP_ON_VAR
3517 current->state = TASK_UNINTERRUPTIBLE;
3519 SLEEP_ON_HEAD
3520 timeout = schedule_timeout(timeout);
3521 SLEEP_ON_TAIL
3523 return timeout;
3526 EXPORT_SYMBOL(sleep_on_timeout);
3528 void set_user_nice(task_t *p, long nice)
3530 unsigned long flags;
3531 prio_array_t *array;
3532 runqueue_t *rq;
3533 int old_prio, new_prio, delta;
3535 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3536 return;
3538 * We have to be careful, if called from sys_setpriority(),
3539 * the task might be in the middle of scheduling on another CPU.
3541 rq = task_rq_lock(p, &flags);
3543 * The RT priorities are set via sched_setscheduler(), but we still
3544 * allow the 'normal' nice value to be set - but as expected
3545 * it wont have any effect on scheduling until the task is
3546 * not SCHED_NORMAL:
3548 if (rt_task(p)) {
3549 p->static_prio = NICE_TO_PRIO(nice);
3550 goto out_unlock;
3552 array = p->array;
3553 if (array) {
3554 dequeue_task(p, array);
3555 dec_prio_bias(rq, p->static_prio);
3558 old_prio = p->prio;
3559 new_prio = NICE_TO_PRIO(nice);
3560 delta = new_prio - old_prio;
3561 p->static_prio = NICE_TO_PRIO(nice);
3562 p->prio += delta;
3564 if (array) {
3565 enqueue_task(p, array);
3566 inc_prio_bias(rq, p->static_prio);
3568 * If the task increased its priority or is running and
3569 * lowered its priority, then reschedule its CPU:
3571 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3572 resched_task(rq->curr);
3574 out_unlock:
3575 task_rq_unlock(rq, &flags);
3578 EXPORT_SYMBOL(set_user_nice);
3581 * can_nice - check if a task can reduce its nice value
3582 * @p: task
3583 * @nice: nice value
3585 int can_nice(const task_t *p, const int nice)
3587 /* convert nice value [19,-20] to rlimit style value [1,40] */
3588 int nice_rlim = 20 - nice;
3589 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3590 capable(CAP_SYS_NICE));
3593 #ifdef __ARCH_WANT_SYS_NICE
3596 * sys_nice - change the priority of the current process.
3597 * @increment: priority increment
3599 * sys_setpriority is a more generic, but much slower function that
3600 * does similar things.
3602 asmlinkage long sys_nice(int increment)
3604 int retval;
3605 long nice;
3608 * Setpriority might change our priority at the same moment.
3609 * We don't have to worry. Conceptually one call occurs first
3610 * and we have a single winner.
3612 if (increment < -40)
3613 increment = -40;
3614 if (increment > 40)
3615 increment = 40;
3617 nice = PRIO_TO_NICE(current->static_prio) + increment;
3618 if (nice < -20)
3619 nice = -20;
3620 if (nice > 19)
3621 nice = 19;
3623 if (increment < 0 && !can_nice(current, nice))
3624 return -EPERM;
3626 retval = security_task_setnice(current, nice);
3627 if (retval)
3628 return retval;
3630 set_user_nice(current, nice);
3631 return 0;
3634 #endif
3637 * task_prio - return the priority value of a given task.
3638 * @p: the task in question.
3640 * This is the priority value as seen by users in /proc.
3641 * RT tasks are offset by -200. Normal tasks are centered
3642 * around 0, value goes from -16 to +15.
3644 int task_prio(const task_t *p)
3646 return p->prio - MAX_RT_PRIO;
3650 * task_nice - return the nice value of a given task.
3651 * @p: the task in question.
3653 int task_nice(const task_t *p)
3655 return TASK_NICE(p);
3657 EXPORT_SYMBOL_GPL(task_nice);
3660 * idle_cpu - is a given cpu idle currently?
3661 * @cpu: the processor in question.
3663 int idle_cpu(int cpu)
3665 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3669 * idle_task - return the idle task for a given cpu.
3670 * @cpu: the processor in question.
3672 task_t *idle_task(int cpu)
3674 return cpu_rq(cpu)->idle;
3678 * find_process_by_pid - find a process with a matching PID value.
3679 * @pid: the pid in question.
3681 static inline task_t *find_process_by_pid(pid_t pid)
3683 return pid ? find_task_by_pid(pid) : current;
3686 /* Actually do priority change: must hold rq lock. */
3687 static void __setscheduler(struct task_struct *p, int policy, int prio)
3689 BUG_ON(p->array);
3690 p->policy = policy;
3691 p->rt_priority = prio;
3692 if (policy != SCHED_NORMAL)
3693 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3694 else
3695 p->prio = p->static_prio;
3699 * sched_setscheduler - change the scheduling policy and/or RT priority of
3700 * a thread.
3701 * @p: the task in question.
3702 * @policy: new policy.
3703 * @param: structure containing the new RT priority.
3705 int sched_setscheduler(struct task_struct *p, int policy,
3706 struct sched_param *param)
3708 int retval;
3709 int oldprio, oldpolicy = -1;
3710 prio_array_t *array;
3711 unsigned long flags;
3712 runqueue_t *rq;
3714 recheck:
3715 /* double check policy once rq lock held */
3716 if (policy < 0)
3717 policy = oldpolicy = p->policy;
3718 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3719 policy != SCHED_NORMAL)
3720 return -EINVAL;
3722 * Valid priorities for SCHED_FIFO and SCHED_RR are
3723 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3725 if (param->sched_priority < 0 ||
3726 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3727 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3728 return -EINVAL;
3729 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3730 return -EINVAL;
3733 * Allow unprivileged RT tasks to decrease priority:
3735 if (!capable(CAP_SYS_NICE)) {
3736 /* can't change policy */
3737 if (policy != p->policy &&
3738 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3739 return -EPERM;
3740 /* can't increase priority */
3741 if (policy != SCHED_NORMAL &&
3742 param->sched_priority > p->rt_priority &&
3743 param->sched_priority >
3744 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3745 return -EPERM;
3746 /* can't change other user's priorities */
3747 if ((current->euid != p->euid) &&
3748 (current->euid != p->uid))
3749 return -EPERM;
3752 retval = security_task_setscheduler(p, policy, param);
3753 if (retval)
3754 return retval;
3756 * To be able to change p->policy safely, the apropriate
3757 * runqueue lock must be held.
3759 rq = task_rq_lock(p, &flags);
3760 /* recheck policy now with rq lock held */
3761 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3762 policy = oldpolicy = -1;
3763 task_rq_unlock(rq, &flags);
3764 goto recheck;
3766 array = p->array;
3767 if (array)
3768 deactivate_task(p, rq);
3769 oldprio = p->prio;
3770 __setscheduler(p, policy, param->sched_priority);
3771 if (array) {
3772 __activate_task(p, rq);
3774 * Reschedule if we are currently running on this runqueue and
3775 * our priority decreased, or if we are not currently running on
3776 * this runqueue and our priority is higher than the current's
3778 if (task_running(rq, p)) {
3779 if (p->prio > oldprio)
3780 resched_task(rq->curr);
3781 } else if (TASK_PREEMPTS_CURR(p, rq))
3782 resched_task(rq->curr);
3784 task_rq_unlock(rq, &flags);
3785 return 0;
3787 EXPORT_SYMBOL_GPL(sched_setscheduler);
3789 static int
3790 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3792 int retval;
3793 struct sched_param lparam;
3794 struct task_struct *p;
3796 if (!param || pid < 0)
3797 return -EINVAL;
3798 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3799 return -EFAULT;
3800 read_lock_irq(&tasklist_lock);
3801 p = find_process_by_pid(pid);
3802 if (!p) {
3803 read_unlock_irq(&tasklist_lock);
3804 return -ESRCH;
3806 retval = sched_setscheduler(p, policy, &lparam);
3807 read_unlock_irq(&tasklist_lock);
3808 return retval;
3812 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3813 * @pid: the pid in question.
3814 * @policy: new policy.
3815 * @param: structure containing the new RT priority.
3817 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3818 struct sched_param __user *param)
3820 return do_sched_setscheduler(pid, policy, param);
3824 * sys_sched_setparam - set/change the RT priority of a thread
3825 * @pid: the pid in question.
3826 * @param: structure containing the new RT priority.
3828 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3830 return do_sched_setscheduler(pid, -1, param);
3834 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3835 * @pid: the pid in question.
3837 asmlinkage long sys_sched_getscheduler(pid_t pid)
3839 int retval = -EINVAL;
3840 task_t *p;
3842 if (pid < 0)
3843 goto out_nounlock;
3845 retval = -ESRCH;
3846 read_lock(&tasklist_lock);
3847 p = find_process_by_pid(pid);
3848 if (p) {
3849 retval = security_task_getscheduler(p);
3850 if (!retval)
3851 retval = p->policy;
3853 read_unlock(&tasklist_lock);
3855 out_nounlock:
3856 return retval;
3860 * sys_sched_getscheduler - get the RT priority of a thread
3861 * @pid: the pid in question.
3862 * @param: structure containing the RT priority.
3864 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3866 struct sched_param lp;
3867 int retval = -EINVAL;
3868 task_t *p;
3870 if (!param || pid < 0)
3871 goto out_nounlock;
3873 read_lock(&tasklist_lock);
3874 p = find_process_by_pid(pid);
3875 retval = -ESRCH;
3876 if (!p)
3877 goto out_unlock;
3879 retval = security_task_getscheduler(p);
3880 if (retval)
3881 goto out_unlock;
3883 lp.sched_priority = p->rt_priority;
3884 read_unlock(&tasklist_lock);
3887 * This one might sleep, we cannot do it with a spinlock held ...
3889 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3891 out_nounlock:
3892 return retval;
3894 out_unlock:
3895 read_unlock(&tasklist_lock);
3896 return retval;
3899 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3901 task_t *p;
3902 int retval;
3903 cpumask_t cpus_allowed;
3905 lock_cpu_hotplug();
3906 read_lock(&tasklist_lock);
3908 p = find_process_by_pid(pid);
3909 if (!p) {
3910 read_unlock(&tasklist_lock);
3911 unlock_cpu_hotplug();
3912 return -ESRCH;
3916 * It is not safe to call set_cpus_allowed with the
3917 * tasklist_lock held. We will bump the task_struct's
3918 * usage count and then drop tasklist_lock.
3920 get_task_struct(p);
3921 read_unlock(&tasklist_lock);
3923 retval = -EPERM;
3924 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3925 !capable(CAP_SYS_NICE))
3926 goto out_unlock;
3928 cpus_allowed = cpuset_cpus_allowed(p);
3929 cpus_and(new_mask, new_mask, cpus_allowed);
3930 retval = set_cpus_allowed(p, new_mask);
3932 out_unlock:
3933 put_task_struct(p);
3934 unlock_cpu_hotplug();
3935 return retval;
3938 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3939 cpumask_t *new_mask)
3941 if (len < sizeof(cpumask_t)) {
3942 memset(new_mask, 0, sizeof(cpumask_t));
3943 } else if (len > sizeof(cpumask_t)) {
3944 len = sizeof(cpumask_t);
3946 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3950 * sys_sched_setaffinity - set the cpu affinity of a process
3951 * @pid: pid of the process
3952 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3953 * @user_mask_ptr: user-space pointer to the new cpu mask
3955 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3956 unsigned long __user *user_mask_ptr)
3958 cpumask_t new_mask;
3959 int retval;
3961 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3962 if (retval)
3963 return retval;
3965 return sched_setaffinity(pid, new_mask);
3969 * Represents all cpu's present in the system
3970 * In systems capable of hotplug, this map could dynamically grow
3971 * as new cpu's are detected in the system via any platform specific
3972 * method, such as ACPI for e.g.
3975 cpumask_t cpu_present_map;
3976 EXPORT_SYMBOL(cpu_present_map);
3978 #ifndef CONFIG_SMP
3979 cpumask_t cpu_online_map = CPU_MASK_ALL;
3980 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3981 #endif
3983 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3985 int retval;
3986 task_t *p;
3988 lock_cpu_hotplug();
3989 read_lock(&tasklist_lock);
3991 retval = -ESRCH;
3992 p = find_process_by_pid(pid);
3993 if (!p)
3994 goto out_unlock;
3996 retval = 0;
3997 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3999 out_unlock:
4000 read_unlock(&tasklist_lock);
4001 unlock_cpu_hotplug();
4002 if (retval)
4003 return retval;
4005 return 0;
4009 * sys_sched_getaffinity - get the cpu affinity of a process
4010 * @pid: pid of the process
4011 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4012 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4014 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4015 unsigned long __user *user_mask_ptr)
4017 int ret;
4018 cpumask_t mask;
4020 if (len < sizeof(cpumask_t))
4021 return -EINVAL;
4023 ret = sched_getaffinity(pid, &mask);
4024 if (ret < 0)
4025 return ret;
4027 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4028 return -EFAULT;
4030 return sizeof(cpumask_t);
4034 * sys_sched_yield - yield the current processor to other threads.
4036 * this function yields the current CPU by moving the calling thread
4037 * to the expired array. If there are no other threads running on this
4038 * CPU then this function will return.
4040 asmlinkage long sys_sched_yield(void)
4042 runqueue_t *rq = this_rq_lock();
4043 prio_array_t *array = current->array;
4044 prio_array_t *target = rq->expired;
4046 schedstat_inc(rq, yld_cnt);
4048 * We implement yielding by moving the task into the expired
4049 * queue.
4051 * (special rule: RT tasks will just roundrobin in the active
4052 * array.)
4054 if (rt_task(current))
4055 target = rq->active;
4057 if (array->nr_active == 1) {
4058 schedstat_inc(rq, yld_act_empty);
4059 if (!rq->expired->nr_active)
4060 schedstat_inc(rq, yld_both_empty);
4061 } else if (!rq->expired->nr_active)
4062 schedstat_inc(rq, yld_exp_empty);
4064 if (array != target) {
4065 dequeue_task(current, array);
4066 enqueue_task(current, target);
4067 } else
4069 * requeue_task is cheaper so perform that if possible.
4071 requeue_task(current, array);
4074 * Since we are going to call schedule() anyway, there's
4075 * no need to preempt or enable interrupts:
4077 __release(rq->lock);
4078 _raw_spin_unlock(&rq->lock);
4079 preempt_enable_no_resched();
4081 schedule();
4083 return 0;
4086 static inline void __cond_resched(void)
4089 * The BKS might be reacquired before we have dropped
4090 * PREEMPT_ACTIVE, which could trigger a second
4091 * cond_resched() call.
4093 if (unlikely(preempt_count()))
4094 return;
4095 do {
4096 add_preempt_count(PREEMPT_ACTIVE);
4097 schedule();
4098 sub_preempt_count(PREEMPT_ACTIVE);
4099 } while (need_resched());
4102 int __sched cond_resched(void)
4104 if (need_resched()) {
4105 __cond_resched();
4106 return 1;
4108 return 0;
4111 EXPORT_SYMBOL(cond_resched);
4114 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4115 * call schedule, and on return reacquire the lock.
4117 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4118 * operations here to prevent schedule() from being called twice (once via
4119 * spin_unlock(), once by hand).
4121 int cond_resched_lock(spinlock_t *lock)
4123 int ret = 0;
4125 if (need_lockbreak(lock)) {
4126 spin_unlock(lock);
4127 cpu_relax();
4128 ret = 1;
4129 spin_lock(lock);
4131 if (need_resched()) {
4132 _raw_spin_unlock(lock);
4133 preempt_enable_no_resched();
4134 __cond_resched();
4135 ret = 1;
4136 spin_lock(lock);
4138 return ret;
4141 EXPORT_SYMBOL(cond_resched_lock);
4143 int __sched cond_resched_softirq(void)
4145 BUG_ON(!in_softirq());
4147 if (need_resched()) {
4148 __local_bh_enable();
4149 __cond_resched();
4150 local_bh_disable();
4151 return 1;
4153 return 0;
4156 EXPORT_SYMBOL(cond_resched_softirq);
4160 * yield - yield the current processor to other threads.
4162 * this is a shortcut for kernel-space yielding - it marks the
4163 * thread runnable and calls sys_sched_yield().
4165 void __sched yield(void)
4167 set_current_state(TASK_RUNNING);
4168 sys_sched_yield();
4171 EXPORT_SYMBOL(yield);
4174 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4175 * that process accounting knows that this is a task in IO wait state.
4177 * But don't do that if it is a deliberate, throttling IO wait (this task
4178 * has set its backing_dev_info: the queue against which it should throttle)
4180 void __sched io_schedule(void)
4182 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4184 atomic_inc(&rq->nr_iowait);
4185 schedule();
4186 atomic_dec(&rq->nr_iowait);
4189 EXPORT_SYMBOL(io_schedule);
4191 long __sched io_schedule_timeout(long timeout)
4193 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4194 long ret;
4196 atomic_inc(&rq->nr_iowait);
4197 ret = schedule_timeout(timeout);
4198 atomic_dec(&rq->nr_iowait);
4199 return ret;
4203 * sys_sched_get_priority_max - return maximum RT priority.
4204 * @policy: scheduling class.
4206 * this syscall returns the maximum rt_priority that can be used
4207 * by a given scheduling class.
4209 asmlinkage long sys_sched_get_priority_max(int policy)
4211 int ret = -EINVAL;
4213 switch (policy) {
4214 case SCHED_FIFO:
4215 case SCHED_RR:
4216 ret = MAX_USER_RT_PRIO-1;
4217 break;
4218 case SCHED_NORMAL:
4219 ret = 0;
4220 break;
4222 return ret;
4226 * sys_sched_get_priority_min - return minimum RT priority.
4227 * @policy: scheduling class.
4229 * this syscall returns the minimum rt_priority that can be used
4230 * by a given scheduling class.
4232 asmlinkage long sys_sched_get_priority_min(int policy)
4234 int ret = -EINVAL;
4236 switch (policy) {
4237 case SCHED_FIFO:
4238 case SCHED_RR:
4239 ret = 1;
4240 break;
4241 case SCHED_NORMAL:
4242 ret = 0;
4244 return ret;
4248 * sys_sched_rr_get_interval - return the default timeslice of a process.
4249 * @pid: pid of the process.
4250 * @interval: userspace pointer to the timeslice value.
4252 * this syscall writes the default timeslice value of a given process
4253 * into the user-space timespec buffer. A value of '0' means infinity.
4255 asmlinkage
4256 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4258 int retval = -EINVAL;
4259 struct timespec t;
4260 task_t *p;
4262 if (pid < 0)
4263 goto out_nounlock;
4265 retval = -ESRCH;
4266 read_lock(&tasklist_lock);
4267 p = find_process_by_pid(pid);
4268 if (!p)
4269 goto out_unlock;
4271 retval = security_task_getscheduler(p);
4272 if (retval)
4273 goto out_unlock;
4275 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4276 0 : task_timeslice(p), &t);
4277 read_unlock(&tasklist_lock);
4278 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4279 out_nounlock:
4280 return retval;
4281 out_unlock:
4282 read_unlock(&tasklist_lock);
4283 return retval;
4286 static inline struct task_struct *eldest_child(struct task_struct *p)
4288 if (list_empty(&p->children)) return NULL;
4289 return list_entry(p->children.next,struct task_struct,sibling);
4292 static inline struct task_struct *older_sibling(struct task_struct *p)
4294 if (p->sibling.prev==&p->parent->children) return NULL;
4295 return list_entry(p->sibling.prev,struct task_struct,sibling);
4298 static inline struct task_struct *younger_sibling(struct task_struct *p)
4300 if (p->sibling.next==&p->parent->children) return NULL;
4301 return list_entry(p->sibling.next,struct task_struct,sibling);
4304 static void show_task(task_t *p)
4306 task_t *relative;
4307 unsigned state;
4308 unsigned long free = 0;
4309 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4311 printk("%-13.13s ", p->comm);
4312 state = p->state ? __ffs(p->state) + 1 : 0;
4313 if (state < ARRAY_SIZE(stat_nam))
4314 printk(stat_nam[state]);
4315 else
4316 printk("?");
4317 #if (BITS_PER_LONG == 32)
4318 if (state == TASK_RUNNING)
4319 printk(" running ");
4320 else
4321 printk(" %08lX ", thread_saved_pc(p));
4322 #else
4323 if (state == TASK_RUNNING)
4324 printk(" running task ");
4325 else
4326 printk(" %016lx ", thread_saved_pc(p));
4327 #endif
4328 #ifdef CONFIG_DEBUG_STACK_USAGE
4330 unsigned long *n = (unsigned long *) (p->thread_info+1);
4331 while (!*n)
4332 n++;
4333 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4335 #endif
4336 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4337 if ((relative = eldest_child(p)))
4338 printk("%5d ", relative->pid);
4339 else
4340 printk(" ");
4341 if ((relative = younger_sibling(p)))
4342 printk("%7d", relative->pid);
4343 else
4344 printk(" ");
4345 if ((relative = older_sibling(p)))
4346 printk(" %5d", relative->pid);
4347 else
4348 printk(" ");
4349 if (!p->mm)
4350 printk(" (L-TLB)\n");
4351 else
4352 printk(" (NOTLB)\n");
4354 if (state != TASK_RUNNING)
4355 show_stack(p, NULL);
4358 void show_state(void)
4360 task_t *g, *p;
4362 #if (BITS_PER_LONG == 32)
4363 printk("\n"
4364 " sibling\n");
4365 printk(" task PC pid father child younger older\n");
4366 #else
4367 printk("\n"
4368 " sibling\n");
4369 printk(" task PC pid father child younger older\n");
4370 #endif
4371 read_lock(&tasklist_lock);
4372 do_each_thread(g, p) {
4374 * reset the NMI-timeout, listing all files on a slow
4375 * console might take alot of time:
4377 touch_nmi_watchdog();
4378 show_task(p);
4379 } while_each_thread(g, p);
4381 read_unlock(&tasklist_lock);
4385 * init_idle - set up an idle thread for a given CPU
4386 * @idle: task in question
4387 * @cpu: cpu the idle task belongs to
4389 * NOTE: this function does not set the idle thread's NEED_RESCHED
4390 * flag, to make booting more robust.
4392 void __devinit init_idle(task_t *idle, int cpu)
4394 runqueue_t *rq = cpu_rq(cpu);
4395 unsigned long flags;
4397 idle->sleep_avg = 0;
4398 idle->array = NULL;
4399 idle->prio = MAX_PRIO;
4400 idle->state = TASK_RUNNING;
4401 idle->cpus_allowed = cpumask_of_cpu(cpu);
4402 set_task_cpu(idle, cpu);
4404 spin_lock_irqsave(&rq->lock, flags);
4405 rq->curr = rq->idle = idle;
4406 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4407 idle->oncpu = 1;
4408 #endif
4409 spin_unlock_irqrestore(&rq->lock, flags);
4411 /* Set the preempt count _outside_ the spinlocks! */
4412 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4413 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4414 #else
4415 idle->thread_info->preempt_count = 0;
4416 #endif
4420 * In a system that switches off the HZ timer nohz_cpu_mask
4421 * indicates which cpus entered this state. This is used
4422 * in the rcu update to wait only for active cpus. For system
4423 * which do not switch off the HZ timer nohz_cpu_mask should
4424 * always be CPU_MASK_NONE.
4426 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4428 #ifdef CONFIG_SMP
4430 * This is how migration works:
4432 * 1) we queue a migration_req_t structure in the source CPU's
4433 * runqueue and wake up that CPU's migration thread.
4434 * 2) we down() the locked semaphore => thread blocks.
4435 * 3) migration thread wakes up (implicitly it forces the migrated
4436 * thread off the CPU)
4437 * 4) it gets the migration request and checks whether the migrated
4438 * task is still in the wrong runqueue.
4439 * 5) if it's in the wrong runqueue then the migration thread removes
4440 * it and puts it into the right queue.
4441 * 6) migration thread up()s the semaphore.
4442 * 7) we wake up and the migration is done.
4446 * Change a given task's CPU affinity. Migrate the thread to a
4447 * proper CPU and schedule it away if the CPU it's executing on
4448 * is removed from the allowed bitmask.
4450 * NOTE: the caller must have a valid reference to the task, the
4451 * task must not exit() & deallocate itself prematurely. The
4452 * call is not atomic; no spinlocks may be held.
4454 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4456 unsigned long flags;
4457 int ret = 0;
4458 migration_req_t req;
4459 runqueue_t *rq;
4461 rq = task_rq_lock(p, &flags);
4462 if (!cpus_intersects(new_mask, cpu_online_map)) {
4463 ret = -EINVAL;
4464 goto out;
4467 p->cpus_allowed = new_mask;
4468 /* Can the task run on the task's current CPU? If so, we're done */
4469 if (cpu_isset(task_cpu(p), new_mask))
4470 goto out;
4472 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4473 /* Need help from migration thread: drop lock and wait. */
4474 task_rq_unlock(rq, &flags);
4475 wake_up_process(rq->migration_thread);
4476 wait_for_completion(&req.done);
4477 tlb_migrate_finish(p->mm);
4478 return 0;
4480 out:
4481 task_rq_unlock(rq, &flags);
4482 return ret;
4485 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4488 * Move (not current) task off this cpu, onto dest cpu. We're doing
4489 * this because either it can't run here any more (set_cpus_allowed()
4490 * away from this CPU, or CPU going down), or because we're
4491 * attempting to rebalance this task on exec (sched_exec).
4493 * So we race with normal scheduler movements, but that's OK, as long
4494 * as the task is no longer on this CPU.
4496 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4498 runqueue_t *rq_dest, *rq_src;
4500 if (unlikely(cpu_is_offline(dest_cpu)))
4501 return;
4503 rq_src = cpu_rq(src_cpu);
4504 rq_dest = cpu_rq(dest_cpu);
4506 double_rq_lock(rq_src, rq_dest);
4507 /* Already moved. */
4508 if (task_cpu(p) != src_cpu)
4509 goto out;
4510 /* Affinity changed (again). */
4511 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4512 goto out;
4514 set_task_cpu(p, dest_cpu);
4515 if (p->array) {
4517 * Sync timestamp with rq_dest's before activating.
4518 * The same thing could be achieved by doing this step
4519 * afterwards, and pretending it was a local activate.
4520 * This way is cleaner and logically correct.
4522 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4523 + rq_dest->timestamp_last_tick;
4524 deactivate_task(p, rq_src);
4525 activate_task(p, rq_dest, 0);
4526 if (TASK_PREEMPTS_CURR(p, rq_dest))
4527 resched_task(rq_dest->curr);
4530 out:
4531 double_rq_unlock(rq_src, rq_dest);
4535 * migration_thread - this is a highprio system thread that performs
4536 * thread migration by bumping thread off CPU then 'pushing' onto
4537 * another runqueue.
4539 static int migration_thread(void *data)
4541 runqueue_t *rq;
4542 int cpu = (long)data;
4544 rq = cpu_rq(cpu);
4545 BUG_ON(rq->migration_thread != current);
4547 set_current_state(TASK_INTERRUPTIBLE);
4548 while (!kthread_should_stop()) {
4549 struct list_head *head;
4550 migration_req_t *req;
4552 try_to_freeze();
4554 spin_lock_irq(&rq->lock);
4556 if (cpu_is_offline(cpu)) {
4557 spin_unlock_irq(&rq->lock);
4558 goto wait_to_die;
4561 if (rq->active_balance) {
4562 active_load_balance(rq, cpu);
4563 rq->active_balance = 0;
4566 head = &rq->migration_queue;
4568 if (list_empty(head)) {
4569 spin_unlock_irq(&rq->lock);
4570 schedule();
4571 set_current_state(TASK_INTERRUPTIBLE);
4572 continue;
4574 req = list_entry(head->next, migration_req_t, list);
4575 list_del_init(head->next);
4577 spin_unlock(&rq->lock);
4578 __migrate_task(req->task, cpu, req->dest_cpu);
4579 local_irq_enable();
4581 complete(&req->done);
4583 __set_current_state(TASK_RUNNING);
4584 return 0;
4586 wait_to_die:
4587 /* Wait for kthread_stop */
4588 set_current_state(TASK_INTERRUPTIBLE);
4589 while (!kthread_should_stop()) {
4590 schedule();
4591 set_current_state(TASK_INTERRUPTIBLE);
4593 __set_current_state(TASK_RUNNING);
4594 return 0;
4597 #ifdef CONFIG_HOTPLUG_CPU
4598 /* Figure out where task on dead CPU should go, use force if neccessary. */
4599 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4601 int dest_cpu;
4602 cpumask_t mask;
4604 /* On same node? */
4605 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4606 cpus_and(mask, mask, tsk->cpus_allowed);
4607 dest_cpu = any_online_cpu(mask);
4609 /* On any allowed CPU? */
4610 if (dest_cpu == NR_CPUS)
4611 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4613 /* No more Mr. Nice Guy. */
4614 if (dest_cpu == NR_CPUS) {
4615 cpus_setall(tsk->cpus_allowed);
4616 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4619 * Don't tell them about moving exiting tasks or
4620 * kernel threads (both mm NULL), since they never
4621 * leave kernel.
4623 if (tsk->mm && printk_ratelimit())
4624 printk(KERN_INFO "process %d (%s) no "
4625 "longer affine to cpu%d\n",
4626 tsk->pid, tsk->comm, dead_cpu);
4628 __migrate_task(tsk, dead_cpu, dest_cpu);
4632 * While a dead CPU has no uninterruptible tasks queued at this point,
4633 * it might still have a nonzero ->nr_uninterruptible counter, because
4634 * for performance reasons the counter is not stricly tracking tasks to
4635 * their home CPUs. So we just add the counter to another CPU's counter,
4636 * to keep the global sum constant after CPU-down:
4638 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4640 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4641 unsigned long flags;
4643 local_irq_save(flags);
4644 double_rq_lock(rq_src, rq_dest);
4645 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4646 rq_src->nr_uninterruptible = 0;
4647 double_rq_unlock(rq_src, rq_dest);
4648 local_irq_restore(flags);
4651 /* Run through task list and migrate tasks from the dead cpu. */
4652 static void migrate_live_tasks(int src_cpu)
4654 struct task_struct *tsk, *t;
4656 write_lock_irq(&tasklist_lock);
4658 do_each_thread(t, tsk) {
4659 if (tsk == current)
4660 continue;
4662 if (task_cpu(tsk) == src_cpu)
4663 move_task_off_dead_cpu(src_cpu, tsk);
4664 } while_each_thread(t, tsk);
4666 write_unlock_irq(&tasklist_lock);
4669 /* Schedules idle task to be the next runnable task on current CPU.
4670 * It does so by boosting its priority to highest possible and adding it to
4671 * the _front_ of runqueue. Used by CPU offline code.
4673 void sched_idle_next(void)
4675 int cpu = smp_processor_id();
4676 runqueue_t *rq = this_rq();
4677 struct task_struct *p = rq->idle;
4678 unsigned long flags;
4680 /* cpu has to be offline */
4681 BUG_ON(cpu_online(cpu));
4683 /* Strictly not necessary since rest of the CPUs are stopped by now
4684 * and interrupts disabled on current cpu.
4686 spin_lock_irqsave(&rq->lock, flags);
4688 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4689 /* Add idle task to _front_ of it's priority queue */
4690 __activate_idle_task(p, rq);
4692 spin_unlock_irqrestore(&rq->lock, flags);
4695 /* Ensures that the idle task is using init_mm right before its cpu goes
4696 * offline.
4698 void idle_task_exit(void)
4700 struct mm_struct *mm = current->active_mm;
4702 BUG_ON(cpu_online(smp_processor_id()));
4704 if (mm != &init_mm)
4705 switch_mm(mm, &init_mm, current);
4706 mmdrop(mm);
4709 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4711 struct runqueue *rq = cpu_rq(dead_cpu);
4713 /* Must be exiting, otherwise would be on tasklist. */
4714 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4716 /* Cannot have done final schedule yet: would have vanished. */
4717 BUG_ON(tsk->flags & PF_DEAD);
4719 get_task_struct(tsk);
4722 * Drop lock around migration; if someone else moves it,
4723 * that's OK. No task can be added to this CPU, so iteration is
4724 * fine.
4726 spin_unlock_irq(&rq->lock);
4727 move_task_off_dead_cpu(dead_cpu, tsk);
4728 spin_lock_irq(&rq->lock);
4730 put_task_struct(tsk);
4733 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4734 static void migrate_dead_tasks(unsigned int dead_cpu)
4736 unsigned arr, i;
4737 struct runqueue *rq = cpu_rq(dead_cpu);
4739 for (arr = 0; arr < 2; arr++) {
4740 for (i = 0; i < MAX_PRIO; i++) {
4741 struct list_head *list = &rq->arrays[arr].queue[i];
4742 while (!list_empty(list))
4743 migrate_dead(dead_cpu,
4744 list_entry(list->next, task_t,
4745 run_list));
4749 #endif /* CONFIG_HOTPLUG_CPU */
4752 * migration_call - callback that gets triggered when a CPU is added.
4753 * Here we can start up the necessary migration thread for the new CPU.
4755 static int migration_call(struct notifier_block *nfb, unsigned long action,
4756 void *hcpu)
4758 int cpu = (long)hcpu;
4759 struct task_struct *p;
4760 struct runqueue *rq;
4761 unsigned long flags;
4763 switch (action) {
4764 case CPU_UP_PREPARE:
4765 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4766 if (IS_ERR(p))
4767 return NOTIFY_BAD;
4768 p->flags |= PF_NOFREEZE;
4769 kthread_bind(p, cpu);
4770 /* Must be high prio: stop_machine expects to yield to it. */
4771 rq = task_rq_lock(p, &flags);
4772 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4773 task_rq_unlock(rq, &flags);
4774 cpu_rq(cpu)->migration_thread = p;
4775 break;
4776 case CPU_ONLINE:
4777 /* Strictly unneccessary, as first user will wake it. */
4778 wake_up_process(cpu_rq(cpu)->migration_thread);
4779 break;
4780 #ifdef CONFIG_HOTPLUG_CPU
4781 case CPU_UP_CANCELED:
4782 /* Unbind it from offline cpu so it can run. Fall thru. */
4783 kthread_bind(cpu_rq(cpu)->migration_thread,
4784 any_online_cpu(cpu_online_map));
4785 kthread_stop(cpu_rq(cpu)->migration_thread);
4786 cpu_rq(cpu)->migration_thread = NULL;
4787 break;
4788 case CPU_DEAD:
4789 migrate_live_tasks(cpu);
4790 rq = cpu_rq(cpu);
4791 kthread_stop(rq->migration_thread);
4792 rq->migration_thread = NULL;
4793 /* Idle task back to normal (off runqueue, low prio) */
4794 rq = task_rq_lock(rq->idle, &flags);
4795 deactivate_task(rq->idle, rq);
4796 rq->idle->static_prio = MAX_PRIO;
4797 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4798 migrate_dead_tasks(cpu);
4799 task_rq_unlock(rq, &flags);
4800 migrate_nr_uninterruptible(rq);
4801 BUG_ON(rq->nr_running != 0);
4803 /* No need to migrate the tasks: it was best-effort if
4804 * they didn't do lock_cpu_hotplug(). Just wake up
4805 * the requestors. */
4806 spin_lock_irq(&rq->lock);
4807 while (!list_empty(&rq->migration_queue)) {
4808 migration_req_t *req;
4809 req = list_entry(rq->migration_queue.next,
4810 migration_req_t, list);
4811 list_del_init(&req->list);
4812 complete(&req->done);
4814 spin_unlock_irq(&rq->lock);
4815 break;
4816 #endif
4818 return NOTIFY_OK;
4821 /* Register at highest priority so that task migration (migrate_all_tasks)
4822 * happens before everything else.
4824 static struct notifier_block __devinitdata migration_notifier = {
4825 .notifier_call = migration_call,
4826 .priority = 10
4829 int __init migration_init(void)
4831 void *cpu = (void *)(long)smp_processor_id();
4832 /* Start one for boot CPU. */
4833 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4834 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4835 register_cpu_notifier(&migration_notifier);
4836 return 0;
4838 #endif
4840 #ifdef CONFIG_SMP
4841 #undef SCHED_DOMAIN_DEBUG
4842 #ifdef SCHED_DOMAIN_DEBUG
4843 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4845 int level = 0;
4847 if (!sd) {
4848 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4849 return;
4852 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4854 do {
4855 int i;
4856 char str[NR_CPUS];
4857 struct sched_group *group = sd->groups;
4858 cpumask_t groupmask;
4860 cpumask_scnprintf(str, NR_CPUS, sd->span);
4861 cpus_clear(groupmask);
4863 printk(KERN_DEBUG);
4864 for (i = 0; i < level + 1; i++)
4865 printk(" ");
4866 printk("domain %d: ", level);
4868 if (!(sd->flags & SD_LOAD_BALANCE)) {
4869 printk("does not load-balance\n");
4870 if (sd->parent)
4871 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4872 break;
4875 printk("span %s\n", str);
4877 if (!cpu_isset(cpu, sd->span))
4878 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4879 if (!cpu_isset(cpu, group->cpumask))
4880 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4882 printk(KERN_DEBUG);
4883 for (i = 0; i < level + 2; i++)
4884 printk(" ");
4885 printk("groups:");
4886 do {
4887 if (!group) {
4888 printk("\n");
4889 printk(KERN_ERR "ERROR: group is NULL\n");
4890 break;
4893 if (!group->cpu_power) {
4894 printk("\n");
4895 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4898 if (!cpus_weight(group->cpumask)) {
4899 printk("\n");
4900 printk(KERN_ERR "ERROR: empty group\n");
4903 if (cpus_intersects(groupmask, group->cpumask)) {
4904 printk("\n");
4905 printk(KERN_ERR "ERROR: repeated CPUs\n");
4908 cpus_or(groupmask, groupmask, group->cpumask);
4910 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4911 printk(" %s", str);
4913 group = group->next;
4914 } while (group != sd->groups);
4915 printk("\n");
4917 if (!cpus_equal(sd->span, groupmask))
4918 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4920 level++;
4921 sd = sd->parent;
4923 if (sd) {
4924 if (!cpus_subset(groupmask, sd->span))
4925 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4928 } while (sd);
4930 #else
4931 #define sched_domain_debug(sd, cpu) {}
4932 #endif
4934 static int sd_degenerate(struct sched_domain *sd)
4936 if (cpus_weight(sd->span) == 1)
4937 return 1;
4939 /* Following flags need at least 2 groups */
4940 if (sd->flags & (SD_LOAD_BALANCE |
4941 SD_BALANCE_NEWIDLE |
4942 SD_BALANCE_FORK |
4943 SD_BALANCE_EXEC)) {
4944 if (sd->groups != sd->groups->next)
4945 return 0;
4948 /* Following flags don't use groups */
4949 if (sd->flags & (SD_WAKE_IDLE |
4950 SD_WAKE_AFFINE |
4951 SD_WAKE_BALANCE))
4952 return 0;
4954 return 1;
4957 static int sd_parent_degenerate(struct sched_domain *sd,
4958 struct sched_domain *parent)
4960 unsigned long cflags = sd->flags, pflags = parent->flags;
4962 if (sd_degenerate(parent))
4963 return 1;
4965 if (!cpus_equal(sd->span, parent->span))
4966 return 0;
4968 /* Does parent contain flags not in child? */
4969 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4970 if (cflags & SD_WAKE_AFFINE)
4971 pflags &= ~SD_WAKE_BALANCE;
4972 /* Flags needing groups don't count if only 1 group in parent */
4973 if (parent->groups == parent->groups->next) {
4974 pflags &= ~(SD_LOAD_BALANCE |
4975 SD_BALANCE_NEWIDLE |
4976 SD_BALANCE_FORK |
4977 SD_BALANCE_EXEC);
4979 if (~cflags & pflags)
4980 return 0;
4982 return 1;
4986 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4987 * hold the hotplug lock.
4989 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4991 runqueue_t *rq = cpu_rq(cpu);
4992 struct sched_domain *tmp;
4994 /* Remove the sched domains which do not contribute to scheduling. */
4995 for (tmp = sd; tmp; tmp = tmp->parent) {
4996 struct sched_domain *parent = tmp->parent;
4997 if (!parent)
4998 break;
4999 if (sd_parent_degenerate(tmp, parent))
5000 tmp->parent = parent->parent;
5003 if (sd && sd_degenerate(sd))
5004 sd = sd->parent;
5006 sched_domain_debug(sd, cpu);
5008 rcu_assign_pointer(rq->sd, sd);
5011 /* cpus with isolated domains */
5012 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5014 /* Setup the mask of cpus configured for isolated domains */
5015 static int __init isolated_cpu_setup(char *str)
5017 int ints[NR_CPUS], i;
5019 str = get_options(str, ARRAY_SIZE(ints), ints);
5020 cpus_clear(cpu_isolated_map);
5021 for (i = 1; i <= ints[0]; i++)
5022 if (ints[i] < NR_CPUS)
5023 cpu_set(ints[i], cpu_isolated_map);
5024 return 1;
5027 __setup ("isolcpus=", isolated_cpu_setup);
5030 * init_sched_build_groups takes an array of groups, the cpumask we wish
5031 * to span, and a pointer to a function which identifies what group a CPU
5032 * belongs to. The return value of group_fn must be a valid index into the
5033 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5034 * keep track of groups covered with a cpumask_t).
5036 * init_sched_build_groups will build a circular linked list of the groups
5037 * covered by the given span, and will set each group's ->cpumask correctly,
5038 * and ->cpu_power to 0.
5040 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5041 int (*group_fn)(int cpu))
5043 struct sched_group *first = NULL, *last = NULL;
5044 cpumask_t covered = CPU_MASK_NONE;
5045 int i;
5047 for_each_cpu_mask(i, span) {
5048 int group = group_fn(i);
5049 struct sched_group *sg = &groups[group];
5050 int j;
5052 if (cpu_isset(i, covered))
5053 continue;
5055 sg->cpumask = CPU_MASK_NONE;
5056 sg->cpu_power = 0;
5058 for_each_cpu_mask(j, span) {
5059 if (group_fn(j) != group)
5060 continue;
5062 cpu_set(j, covered);
5063 cpu_set(j, sg->cpumask);
5065 if (!first)
5066 first = sg;
5067 if (last)
5068 last->next = sg;
5069 last = sg;
5071 last->next = first;
5074 #define SD_NODES_PER_DOMAIN 16
5076 #ifdef CONFIG_NUMA
5078 * find_next_best_node - find the next node to include in a sched_domain
5079 * @node: node whose sched_domain we're building
5080 * @used_nodes: nodes already in the sched_domain
5082 * Find the next node to include in a given scheduling domain. Simply
5083 * finds the closest node not already in the @used_nodes map.
5085 * Should use nodemask_t.
5087 static int find_next_best_node(int node, unsigned long *used_nodes)
5089 int i, n, val, min_val, best_node = 0;
5091 min_val = INT_MAX;
5093 for (i = 0; i < MAX_NUMNODES; i++) {
5094 /* Start at @node */
5095 n = (node + i) % MAX_NUMNODES;
5097 if (!nr_cpus_node(n))
5098 continue;
5100 /* Skip already used nodes */
5101 if (test_bit(n, used_nodes))
5102 continue;
5104 /* Simple min distance search */
5105 val = node_distance(node, n);
5107 if (val < min_val) {
5108 min_val = val;
5109 best_node = n;
5113 set_bit(best_node, used_nodes);
5114 return best_node;
5118 * sched_domain_node_span - get a cpumask for a node's sched_domain
5119 * @node: node whose cpumask we're constructing
5120 * @size: number of nodes to include in this span
5122 * Given a node, construct a good cpumask for its sched_domain to span. It
5123 * should be one that prevents unnecessary balancing, but also spreads tasks
5124 * out optimally.
5126 static cpumask_t sched_domain_node_span(int node)
5128 int i;
5129 cpumask_t span, nodemask;
5130 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5132 cpus_clear(span);
5133 bitmap_zero(used_nodes, MAX_NUMNODES);
5135 nodemask = node_to_cpumask(node);
5136 cpus_or(span, span, nodemask);
5137 set_bit(node, used_nodes);
5139 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5140 int next_node = find_next_best_node(node, used_nodes);
5141 nodemask = node_to_cpumask(next_node);
5142 cpus_or(span, span, nodemask);
5145 return span;
5147 #endif
5150 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5151 * can switch it on easily if needed.
5153 #ifdef CONFIG_SCHED_SMT
5154 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5155 static struct sched_group sched_group_cpus[NR_CPUS];
5156 static int cpu_to_cpu_group(int cpu)
5158 return cpu;
5160 #endif
5162 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5163 static struct sched_group sched_group_phys[NR_CPUS];
5164 static int cpu_to_phys_group(int cpu)
5166 #ifdef CONFIG_SCHED_SMT
5167 return first_cpu(cpu_sibling_map[cpu]);
5168 #else
5169 return cpu;
5170 #endif
5173 #ifdef CONFIG_NUMA
5175 * The init_sched_build_groups can't handle what we want to do with node
5176 * groups, so roll our own. Now each node has its own list of groups which
5177 * gets dynamically allocated.
5179 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5180 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5182 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5183 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5185 static int cpu_to_allnodes_group(int cpu)
5187 return cpu_to_node(cpu);
5189 #endif
5192 * Build sched domains for a given set of cpus and attach the sched domains
5193 * to the individual cpus
5195 void build_sched_domains(const cpumask_t *cpu_map)
5197 int i;
5198 #ifdef CONFIG_NUMA
5199 struct sched_group **sched_group_nodes = NULL;
5200 struct sched_group *sched_group_allnodes = NULL;
5203 * Allocate the per-node list of sched groups
5205 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5206 GFP_ATOMIC);
5207 if (!sched_group_nodes) {
5208 printk(KERN_WARNING "Can not alloc sched group node list\n");
5209 return;
5211 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5212 #endif
5215 * Set up domains for cpus specified by the cpu_map.
5217 for_each_cpu_mask(i, *cpu_map) {
5218 int group;
5219 struct sched_domain *sd = NULL, *p;
5220 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5222 cpus_and(nodemask, nodemask, *cpu_map);
5224 #ifdef CONFIG_NUMA
5225 if (cpus_weight(*cpu_map)
5226 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5227 if (!sched_group_allnodes) {
5228 sched_group_allnodes
5229 = kmalloc(sizeof(struct sched_group)
5230 * MAX_NUMNODES,
5231 GFP_KERNEL);
5232 if (!sched_group_allnodes) {
5233 printk(KERN_WARNING
5234 "Can not alloc allnodes sched group\n");
5235 break;
5237 sched_group_allnodes_bycpu[i]
5238 = sched_group_allnodes;
5240 sd = &per_cpu(allnodes_domains, i);
5241 *sd = SD_ALLNODES_INIT;
5242 sd->span = *cpu_map;
5243 group = cpu_to_allnodes_group(i);
5244 sd->groups = &sched_group_allnodes[group];
5245 p = sd;
5246 } else
5247 p = NULL;
5249 sd = &per_cpu(node_domains, i);
5250 *sd = SD_NODE_INIT;
5251 sd->span = sched_domain_node_span(cpu_to_node(i));
5252 sd->parent = p;
5253 cpus_and(sd->span, sd->span, *cpu_map);
5254 #endif
5256 p = sd;
5257 sd = &per_cpu(phys_domains, i);
5258 group = cpu_to_phys_group(i);
5259 *sd = SD_CPU_INIT;
5260 sd->span = nodemask;
5261 sd->parent = p;
5262 sd->groups = &sched_group_phys[group];
5264 #ifdef CONFIG_SCHED_SMT
5265 p = sd;
5266 sd = &per_cpu(cpu_domains, i);
5267 group = cpu_to_cpu_group(i);
5268 *sd = SD_SIBLING_INIT;
5269 sd->span = cpu_sibling_map[i];
5270 cpus_and(sd->span, sd->span, *cpu_map);
5271 sd->parent = p;
5272 sd->groups = &sched_group_cpus[group];
5273 #endif
5276 #ifdef CONFIG_SCHED_SMT
5277 /* Set up CPU (sibling) groups */
5278 for_each_cpu_mask(i, *cpu_map) {
5279 cpumask_t this_sibling_map = cpu_sibling_map[i];
5280 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5281 if (i != first_cpu(this_sibling_map))
5282 continue;
5284 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5285 &cpu_to_cpu_group);
5287 #endif
5289 /* Set up physical groups */
5290 for (i = 0; i < MAX_NUMNODES; i++) {
5291 cpumask_t nodemask = node_to_cpumask(i);
5293 cpus_and(nodemask, nodemask, *cpu_map);
5294 if (cpus_empty(nodemask))
5295 continue;
5297 init_sched_build_groups(sched_group_phys, nodemask,
5298 &cpu_to_phys_group);
5301 #ifdef CONFIG_NUMA
5302 /* Set up node groups */
5303 if (sched_group_allnodes)
5304 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5305 &cpu_to_allnodes_group);
5307 for (i = 0; i < MAX_NUMNODES; i++) {
5308 /* Set up node groups */
5309 struct sched_group *sg, *prev;
5310 cpumask_t nodemask = node_to_cpumask(i);
5311 cpumask_t domainspan;
5312 cpumask_t covered = CPU_MASK_NONE;
5313 int j;
5315 cpus_and(nodemask, nodemask, *cpu_map);
5316 if (cpus_empty(nodemask)) {
5317 sched_group_nodes[i] = NULL;
5318 continue;
5321 domainspan = sched_domain_node_span(i);
5322 cpus_and(domainspan, domainspan, *cpu_map);
5324 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5325 sched_group_nodes[i] = sg;
5326 for_each_cpu_mask(j, nodemask) {
5327 struct sched_domain *sd;
5328 sd = &per_cpu(node_domains, j);
5329 sd->groups = sg;
5330 if (sd->groups == NULL) {
5331 /* Turn off balancing if we have no groups */
5332 sd->flags = 0;
5335 if (!sg) {
5336 printk(KERN_WARNING
5337 "Can not alloc domain group for node %d\n", i);
5338 continue;
5340 sg->cpu_power = 0;
5341 sg->cpumask = nodemask;
5342 cpus_or(covered, covered, nodemask);
5343 prev = sg;
5345 for (j = 0; j < MAX_NUMNODES; j++) {
5346 cpumask_t tmp, notcovered;
5347 int n = (i + j) % MAX_NUMNODES;
5349 cpus_complement(notcovered, covered);
5350 cpus_and(tmp, notcovered, *cpu_map);
5351 cpus_and(tmp, tmp, domainspan);
5352 if (cpus_empty(tmp))
5353 break;
5355 nodemask = node_to_cpumask(n);
5356 cpus_and(tmp, tmp, nodemask);
5357 if (cpus_empty(tmp))
5358 continue;
5360 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5361 if (!sg) {
5362 printk(KERN_WARNING
5363 "Can not alloc domain group for node %d\n", j);
5364 break;
5366 sg->cpu_power = 0;
5367 sg->cpumask = tmp;
5368 cpus_or(covered, covered, tmp);
5369 prev->next = sg;
5370 prev = sg;
5372 prev->next = sched_group_nodes[i];
5374 #endif
5376 /* Calculate CPU power for physical packages and nodes */
5377 for_each_cpu_mask(i, *cpu_map) {
5378 int power;
5379 struct sched_domain *sd;
5380 #ifdef CONFIG_SCHED_SMT
5381 sd = &per_cpu(cpu_domains, i);
5382 power = SCHED_LOAD_SCALE;
5383 sd->groups->cpu_power = power;
5384 #endif
5386 sd = &per_cpu(phys_domains, i);
5387 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5388 (cpus_weight(sd->groups->cpumask)-1) / 10;
5389 sd->groups->cpu_power = power;
5391 #ifdef CONFIG_NUMA
5392 sd = &per_cpu(allnodes_domains, i);
5393 if (sd->groups) {
5394 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5395 (cpus_weight(sd->groups->cpumask)-1) / 10;
5396 sd->groups->cpu_power = power;
5398 #endif
5401 #ifdef CONFIG_NUMA
5402 for (i = 0; i < MAX_NUMNODES; i++) {
5403 struct sched_group *sg = sched_group_nodes[i];
5404 int j;
5406 if (sg == NULL)
5407 continue;
5408 next_sg:
5409 for_each_cpu_mask(j, sg->cpumask) {
5410 struct sched_domain *sd;
5411 int power;
5413 sd = &per_cpu(phys_domains, j);
5414 if (j != first_cpu(sd->groups->cpumask)) {
5416 * Only add "power" once for each
5417 * physical package.
5419 continue;
5421 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5422 (cpus_weight(sd->groups->cpumask)-1) / 10;
5424 sg->cpu_power += power;
5426 sg = sg->next;
5427 if (sg != sched_group_nodes[i])
5428 goto next_sg;
5430 #endif
5432 /* Attach the domains */
5433 for_each_cpu_mask(i, *cpu_map) {
5434 struct sched_domain *sd;
5435 #ifdef CONFIG_SCHED_SMT
5436 sd = &per_cpu(cpu_domains, i);
5437 #else
5438 sd = &per_cpu(phys_domains, i);
5439 #endif
5440 cpu_attach_domain(sd, i);
5444 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5446 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5448 cpumask_t cpu_default_map;
5451 * Setup mask for cpus without special case scheduling requirements.
5452 * For now this just excludes isolated cpus, but could be used to
5453 * exclude other special cases in the future.
5455 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5457 build_sched_domains(&cpu_default_map);
5460 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5462 #ifdef CONFIG_NUMA
5463 int i;
5464 int cpu;
5466 for_each_cpu_mask(cpu, *cpu_map) {
5467 struct sched_group *sched_group_allnodes
5468 = sched_group_allnodes_bycpu[cpu];
5469 struct sched_group **sched_group_nodes
5470 = sched_group_nodes_bycpu[cpu];
5472 if (sched_group_allnodes) {
5473 kfree(sched_group_allnodes);
5474 sched_group_allnodes_bycpu[cpu] = NULL;
5477 if (!sched_group_nodes)
5478 continue;
5480 for (i = 0; i < MAX_NUMNODES; i++) {
5481 cpumask_t nodemask = node_to_cpumask(i);
5482 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5484 cpus_and(nodemask, nodemask, *cpu_map);
5485 if (cpus_empty(nodemask))
5486 continue;
5488 if (sg == NULL)
5489 continue;
5490 sg = sg->next;
5491 next_sg:
5492 oldsg = sg;
5493 sg = sg->next;
5494 kfree(oldsg);
5495 if (oldsg != sched_group_nodes[i])
5496 goto next_sg;
5498 kfree(sched_group_nodes);
5499 sched_group_nodes_bycpu[cpu] = NULL;
5501 #endif
5505 * Detach sched domains from a group of cpus specified in cpu_map
5506 * These cpus will now be attached to the NULL domain
5508 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5510 int i;
5512 for_each_cpu_mask(i, *cpu_map)
5513 cpu_attach_domain(NULL, i);
5514 synchronize_sched();
5515 arch_destroy_sched_domains(cpu_map);
5519 * Partition sched domains as specified by the cpumasks below.
5520 * This attaches all cpus from the cpumasks to the NULL domain,
5521 * waits for a RCU quiescent period, recalculates sched
5522 * domain information and then attaches them back to the
5523 * correct sched domains
5524 * Call with hotplug lock held
5526 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5528 cpumask_t change_map;
5530 cpus_and(*partition1, *partition1, cpu_online_map);
5531 cpus_and(*partition2, *partition2, cpu_online_map);
5532 cpus_or(change_map, *partition1, *partition2);
5534 /* Detach sched domains from all of the affected cpus */
5535 detach_destroy_domains(&change_map);
5536 if (!cpus_empty(*partition1))
5537 build_sched_domains(partition1);
5538 if (!cpus_empty(*partition2))
5539 build_sched_domains(partition2);
5542 #ifdef CONFIG_HOTPLUG_CPU
5544 * Force a reinitialization of the sched domains hierarchy. The domains
5545 * and groups cannot be updated in place without racing with the balancing
5546 * code, so we temporarily attach all running cpus to the NULL domain
5547 * which will prevent rebalancing while the sched domains are recalculated.
5549 static int update_sched_domains(struct notifier_block *nfb,
5550 unsigned long action, void *hcpu)
5552 switch (action) {
5553 case CPU_UP_PREPARE:
5554 case CPU_DOWN_PREPARE:
5555 detach_destroy_domains(&cpu_online_map);
5556 return NOTIFY_OK;
5558 case CPU_UP_CANCELED:
5559 case CPU_DOWN_FAILED:
5560 case CPU_ONLINE:
5561 case CPU_DEAD:
5563 * Fall through and re-initialise the domains.
5565 break;
5566 default:
5567 return NOTIFY_DONE;
5570 /* The hotplug lock is already held by cpu_up/cpu_down */
5571 arch_init_sched_domains(&cpu_online_map);
5573 return NOTIFY_OK;
5575 #endif
5577 void __init sched_init_smp(void)
5579 lock_cpu_hotplug();
5580 arch_init_sched_domains(&cpu_online_map);
5581 unlock_cpu_hotplug();
5582 /* XXX: Theoretical race here - CPU may be hotplugged now */
5583 hotcpu_notifier(update_sched_domains, 0);
5585 #else
5586 void __init sched_init_smp(void)
5589 #endif /* CONFIG_SMP */
5591 int in_sched_functions(unsigned long addr)
5593 /* Linker adds these: start and end of __sched functions */
5594 extern char __sched_text_start[], __sched_text_end[];
5595 return in_lock_functions(addr) ||
5596 (addr >= (unsigned long)__sched_text_start
5597 && addr < (unsigned long)__sched_text_end);
5600 void __init sched_init(void)
5602 runqueue_t *rq;
5603 int i, j, k;
5605 for (i = 0; i < NR_CPUS; i++) {
5606 prio_array_t *array;
5608 rq = cpu_rq(i);
5609 spin_lock_init(&rq->lock);
5610 rq->nr_running = 0;
5611 rq->active = rq->arrays;
5612 rq->expired = rq->arrays + 1;
5613 rq->best_expired_prio = MAX_PRIO;
5615 #ifdef CONFIG_SMP
5616 rq->sd = NULL;
5617 for (j = 1; j < 3; j++)
5618 rq->cpu_load[j] = 0;
5619 rq->active_balance = 0;
5620 rq->push_cpu = 0;
5621 rq->migration_thread = NULL;
5622 INIT_LIST_HEAD(&rq->migration_queue);
5623 #endif
5624 atomic_set(&rq->nr_iowait, 0);
5626 for (j = 0; j < 2; j++) {
5627 array = rq->arrays + j;
5628 for (k = 0; k < MAX_PRIO; k++) {
5629 INIT_LIST_HEAD(array->queue + k);
5630 __clear_bit(k, array->bitmap);
5632 // delimiter for bitsearch
5633 __set_bit(MAX_PRIO, array->bitmap);
5638 * The boot idle thread does lazy MMU switching as well:
5640 atomic_inc(&init_mm.mm_count);
5641 enter_lazy_tlb(&init_mm, current);
5644 * Make us the idle thread. Technically, schedule() should not be
5645 * called from this thread, however somewhere below it might be,
5646 * but because we are the idle thread, we just pick up running again
5647 * when this runqueue becomes "idle".
5649 init_idle(current, smp_processor_id());
5652 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5653 void __might_sleep(char *file, int line)
5655 #if defined(in_atomic)
5656 static unsigned long prev_jiffy; /* ratelimiting */
5658 if ((in_atomic() || irqs_disabled()) &&
5659 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5660 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5661 return;
5662 prev_jiffy = jiffies;
5663 printk(KERN_ERR "Debug: sleeping function called from invalid"
5664 " context at %s:%d\n", file, line);
5665 printk("in_atomic():%d, irqs_disabled():%d\n",
5666 in_atomic(), irqs_disabled());
5667 dump_stack();
5669 #endif
5671 EXPORT_SYMBOL(__might_sleep);
5672 #endif
5674 #ifdef CONFIG_MAGIC_SYSRQ
5675 void normalize_rt_tasks(void)
5677 struct task_struct *p;
5678 prio_array_t *array;
5679 unsigned long flags;
5680 runqueue_t *rq;
5682 read_lock_irq(&tasklist_lock);
5683 for_each_process (p) {
5684 if (!rt_task(p))
5685 continue;
5687 rq = task_rq_lock(p, &flags);
5689 array = p->array;
5690 if (array)
5691 deactivate_task(p, task_rq(p));
5692 __setscheduler(p, SCHED_NORMAL, 0);
5693 if (array) {
5694 __activate_task(p, task_rq(p));
5695 resched_task(rq->curr);
5698 task_rq_unlock(rq, &flags);
5700 read_unlock_irq(&tasklist_lock);
5703 #endif /* CONFIG_MAGIC_SYSRQ */
5705 #ifdef CONFIG_IA64
5707 * These functions are only useful for the IA64 MCA handling.
5709 * They can only be called when the whole system has been
5710 * stopped - every CPU needs to be quiescent, and no scheduling
5711 * activity can take place. Using them for anything else would
5712 * be a serious bug, and as a result, they aren't even visible
5713 * under any other configuration.
5717 * curr_task - return the current task for a given cpu.
5718 * @cpu: the processor in question.
5720 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5722 task_t *curr_task(int cpu)
5724 return cpu_curr(cpu);
5728 * set_curr_task - set the current task for a given cpu.
5729 * @cpu: the processor in question.
5730 * @p: the task pointer to set.
5732 * Description: This function must only be used when non-maskable interrupts
5733 * are serviced on a separate stack. It allows the architecture to switch the
5734 * notion of the current task on a cpu in a non-blocking manner. This function
5735 * must be called with all CPU's synchronized, and interrupts disabled, the
5736 * and caller must save the original value of the current task (see
5737 * curr_task() above) and restore that value before reenabling interrupts and
5738 * re-starting the system.
5740 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5742 void set_curr_task(int cpu, task_t *p)
5744 cpu_curr(cpu) = p;
5747 #endif