gru: check context state on reload
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / wireless / reg.c
blob5e14371cda704c2c103df0449f929069752148f8
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
52 * Central wireless core regulatory domains, we only need two,
53 * the current one and a world regulatory domain in case we have no
54 * information to give us an alpha2
56 const struct ieee80211_regdomain *cfg80211_regdomain;
59 * We use this as a place for the rd structure built from the
60 * last parsed country IE to rest until CRDA gets back to us with
61 * what it thinks should apply for the same country
63 static const struct ieee80211_regdomain *country_ie_regdomain;
65 /* Used to queue up regulatory hints */
66 static LIST_HEAD(reg_requests_list);
67 static spinlock_t reg_requests_lock;
69 /* Used to queue up beacon hints for review */
70 static LIST_HEAD(reg_pending_beacons);
71 static spinlock_t reg_pending_beacons_lock;
73 /* Used to keep track of processed beacon hints */
74 static LIST_HEAD(reg_beacon_list);
76 struct reg_beacon {
77 struct list_head list;
78 struct ieee80211_channel chan;
81 /* We keep a static world regulatory domain in case of the absence of CRDA */
82 static const struct ieee80211_regdomain world_regdom = {
83 .n_reg_rules = 5,
84 .alpha2 = "00",
85 .reg_rules = {
86 /* IEEE 802.11b/g, channels 1..11 */
87 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
88 /* IEEE 802.11b/g, channels 12..13. No HT40
89 * channel fits here. */
90 REG_RULE(2467-10, 2472+10, 20, 6, 20,
91 NL80211_RRF_PASSIVE_SCAN |
92 NL80211_RRF_NO_IBSS),
93 /* IEEE 802.11 channel 14 - Only JP enables
94 * this and for 802.11b only */
95 REG_RULE(2484-10, 2484+10, 20, 6, 20,
96 NL80211_RRF_PASSIVE_SCAN |
97 NL80211_RRF_NO_IBSS |
98 NL80211_RRF_NO_OFDM),
99 /* IEEE 802.11a, channel 36..48 */
100 REG_RULE(5180-10, 5240+10, 40, 6, 20,
101 NL80211_RRF_PASSIVE_SCAN |
102 NL80211_RRF_NO_IBSS),
104 /* NB: 5260 MHz - 5700 MHz requies DFS */
106 /* IEEE 802.11a, channel 149..165 */
107 REG_RULE(5745-10, 5825+10, 40, 6, 20,
108 NL80211_RRF_PASSIVE_SCAN |
109 NL80211_RRF_NO_IBSS),
113 static const struct ieee80211_regdomain *cfg80211_world_regdom =
114 &world_regdom;
116 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
117 static char *ieee80211_regdom = "US";
118 #else
119 static char *ieee80211_regdom = "00";
120 #endif
122 module_param(ieee80211_regdom, charp, 0444);
123 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
125 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
127 * We assume 40 MHz bandwidth for the old regulatory work.
128 * We make emphasis we are using the exact same frequencies
129 * as before
132 static const struct ieee80211_regdomain us_regdom = {
133 .n_reg_rules = 6,
134 .alpha2 = "US",
135 .reg_rules = {
136 /* IEEE 802.11b/g, channels 1..11 */
137 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
138 /* IEEE 802.11a, channel 36 */
139 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
140 /* IEEE 802.11a, channel 40 */
141 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
142 /* IEEE 802.11a, channel 44 */
143 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
144 /* IEEE 802.11a, channels 48..64 */
145 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
146 /* IEEE 802.11a, channels 149..165, outdoor */
147 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
151 static const struct ieee80211_regdomain jp_regdom = {
152 .n_reg_rules = 3,
153 .alpha2 = "JP",
154 .reg_rules = {
155 /* IEEE 802.11b/g, channels 1..14 */
156 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
157 /* IEEE 802.11a, channels 34..48 */
158 REG_RULE(5170-10, 5240+10, 40, 6, 20,
159 NL80211_RRF_PASSIVE_SCAN),
160 /* IEEE 802.11a, channels 52..64 */
161 REG_RULE(5260-10, 5320+10, 40, 6, 20,
162 NL80211_RRF_NO_IBSS |
163 NL80211_RRF_DFS),
167 static const struct ieee80211_regdomain eu_regdom = {
168 .n_reg_rules = 6,
170 * This alpha2 is bogus, we leave it here just for stupid
171 * backward compatibility
173 .alpha2 = "EU",
174 .reg_rules = {
175 /* IEEE 802.11b/g, channels 1..13 */
176 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
177 /* IEEE 802.11a, channel 36 */
178 REG_RULE(5180-10, 5180+10, 40, 6, 23,
179 NL80211_RRF_PASSIVE_SCAN),
180 /* IEEE 802.11a, channel 40 */
181 REG_RULE(5200-10, 5200+10, 40, 6, 23,
182 NL80211_RRF_PASSIVE_SCAN),
183 /* IEEE 802.11a, channel 44 */
184 REG_RULE(5220-10, 5220+10, 40, 6, 23,
185 NL80211_RRF_PASSIVE_SCAN),
186 /* IEEE 802.11a, channels 48..64 */
187 REG_RULE(5240-10, 5320+10, 40, 6, 20,
188 NL80211_RRF_NO_IBSS |
189 NL80211_RRF_DFS),
190 /* IEEE 802.11a, channels 100..140 */
191 REG_RULE(5500-10, 5700+10, 40, 6, 30,
192 NL80211_RRF_NO_IBSS |
193 NL80211_RRF_DFS),
197 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
199 if (alpha2[0] == 'U' && alpha2[1] == 'S')
200 return &us_regdom;
201 if (alpha2[0] == 'J' && alpha2[1] == 'P')
202 return &jp_regdom;
203 if (alpha2[0] == 'E' && alpha2[1] == 'U')
204 return &eu_regdom;
205 /* Default, as per the old rules */
206 return &us_regdom;
209 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
211 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
212 return true;
213 return false;
215 #else
216 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
218 return false;
220 #endif
222 static void reset_regdomains(void)
224 /* avoid freeing static information or freeing something twice */
225 if (cfg80211_regdomain == cfg80211_world_regdom)
226 cfg80211_regdomain = NULL;
227 if (cfg80211_world_regdom == &world_regdom)
228 cfg80211_world_regdom = NULL;
229 if (cfg80211_regdomain == &world_regdom)
230 cfg80211_regdomain = NULL;
231 if (is_old_static_regdom(cfg80211_regdomain))
232 cfg80211_regdomain = NULL;
234 kfree(cfg80211_regdomain);
235 kfree(cfg80211_world_regdom);
237 cfg80211_world_regdom = &world_regdom;
238 cfg80211_regdomain = NULL;
242 * Dynamic world regulatory domain requested by the wireless
243 * core upon initialization
245 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
247 BUG_ON(!last_request);
249 reset_regdomains();
251 cfg80211_world_regdom = rd;
252 cfg80211_regdomain = rd;
255 bool is_world_regdom(const char *alpha2)
257 if (!alpha2)
258 return false;
259 if (alpha2[0] == '0' && alpha2[1] == '0')
260 return true;
261 return false;
264 static bool is_alpha2_set(const char *alpha2)
266 if (!alpha2)
267 return false;
268 if (alpha2[0] != 0 && alpha2[1] != 0)
269 return true;
270 return false;
273 static bool is_alpha_upper(char letter)
275 /* ASCII A - Z */
276 if (letter >= 65 && letter <= 90)
277 return true;
278 return false;
281 static bool is_unknown_alpha2(const char *alpha2)
283 if (!alpha2)
284 return false;
286 * Special case where regulatory domain was built by driver
287 * but a specific alpha2 cannot be determined
289 if (alpha2[0] == '9' && alpha2[1] == '9')
290 return true;
291 return false;
294 static bool is_intersected_alpha2(const char *alpha2)
296 if (!alpha2)
297 return false;
299 * Special case where regulatory domain is the
300 * result of an intersection between two regulatory domain
301 * structures
303 if (alpha2[0] == '9' && alpha2[1] == '8')
304 return true;
305 return false;
308 static bool is_an_alpha2(const char *alpha2)
310 if (!alpha2)
311 return false;
312 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
313 return true;
314 return false;
317 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
319 if (!alpha2_x || !alpha2_y)
320 return false;
321 if (alpha2_x[0] == alpha2_y[0] &&
322 alpha2_x[1] == alpha2_y[1])
323 return true;
324 return false;
327 static bool regdom_changes(const char *alpha2)
329 assert_cfg80211_lock();
331 if (!cfg80211_regdomain)
332 return true;
333 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
334 return false;
335 return true;
339 * country_ie_integrity_changes - tells us if the country IE has changed
340 * @checksum: checksum of country IE of fields we are interested in
342 * If the country IE has not changed you can ignore it safely. This is
343 * useful to determine if two devices are seeing two different country IEs
344 * even on the same alpha2. Note that this will return false if no IE has
345 * been set on the wireless core yet.
347 static bool country_ie_integrity_changes(u32 checksum)
349 /* If no IE has been set then the checksum doesn't change */
350 if (unlikely(!last_request->country_ie_checksum))
351 return false;
352 if (unlikely(last_request->country_ie_checksum != checksum))
353 return true;
354 return false;
358 * This lets us keep regulatory code which is updated on a regulatory
359 * basis in userspace.
361 static int call_crda(const char *alpha2)
363 char country_env[9 + 2] = "COUNTRY=";
364 char *envp[] = {
365 country_env,
366 NULL
369 if (!is_world_regdom((char *) alpha2))
370 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371 alpha2[0], alpha2[1]);
372 else
373 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374 "regulatory domain\n");
376 country_env[8] = alpha2[0];
377 country_env[9] = alpha2[1];
379 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
382 /* Used by nl80211 before kmalloc'ing our regulatory domain */
383 bool reg_is_valid_request(const char *alpha2)
385 assert_cfg80211_lock();
387 if (!last_request)
388 return false;
390 return alpha2_equal(last_request->alpha2, alpha2);
393 /* Sanity check on a regulatory rule */
394 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
396 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
397 u32 freq_diff;
399 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
400 return false;
402 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
403 return false;
405 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
407 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
408 freq_range->max_bandwidth_khz > freq_diff)
409 return false;
411 return true;
414 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
416 const struct ieee80211_reg_rule *reg_rule = NULL;
417 unsigned int i;
419 if (!rd->n_reg_rules)
420 return false;
422 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
423 return false;
425 for (i = 0; i < rd->n_reg_rules; i++) {
426 reg_rule = &rd->reg_rules[i];
427 if (!is_valid_reg_rule(reg_rule))
428 return false;
431 return true;
434 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
435 u32 center_freq_khz,
436 u32 bw_khz)
438 u32 start_freq_khz, end_freq_khz;
440 start_freq_khz = center_freq_khz - (bw_khz/2);
441 end_freq_khz = center_freq_khz + (bw_khz/2);
443 if (start_freq_khz >= freq_range->start_freq_khz &&
444 end_freq_khz <= freq_range->end_freq_khz)
445 return true;
447 return false;
451 * freq_in_rule_band - tells us if a frequency is in a frequency band
452 * @freq_range: frequency rule we want to query
453 * @freq_khz: frequency we are inquiring about
455 * This lets us know if a specific frequency rule is or is not relevant to
456 * a specific frequency's band. Bands are device specific and artificial
457 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
458 * safe for now to assume that a frequency rule should not be part of a
459 * frequency's band if the start freq or end freq are off by more than 2 GHz.
460 * This resolution can be lowered and should be considered as we add
461 * regulatory rule support for other "bands".
463 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
464 u32 freq_khz)
466 #define ONE_GHZ_IN_KHZ 1000000
467 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
468 return true;
469 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
470 return true;
471 return false;
472 #undef ONE_GHZ_IN_KHZ
476 * Converts a country IE to a regulatory domain. A regulatory domain
477 * structure has a lot of information which the IE doesn't yet have,
478 * so for the other values we use upper max values as we will intersect
479 * with our userspace regulatory agent to get lower bounds.
481 static struct ieee80211_regdomain *country_ie_2_rd(
482 u8 *country_ie,
483 u8 country_ie_len,
484 u32 *checksum)
486 struct ieee80211_regdomain *rd = NULL;
487 unsigned int i = 0;
488 char alpha2[2];
489 u32 flags = 0;
490 u32 num_rules = 0, size_of_regd = 0;
491 u8 *triplets_start = NULL;
492 u8 len_at_triplet = 0;
493 /* the last channel we have registered in a subband (triplet) */
494 int last_sub_max_channel = 0;
496 *checksum = 0xDEADBEEF;
498 /* Country IE requirements */
499 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
500 country_ie_len & 0x01);
502 alpha2[0] = country_ie[0];
503 alpha2[1] = country_ie[1];
506 * Third octet can be:
507 * 'I' - Indoor
508 * 'O' - Outdoor
510 * anything else we assume is no restrictions
512 if (country_ie[2] == 'I')
513 flags = NL80211_RRF_NO_OUTDOOR;
514 else if (country_ie[2] == 'O')
515 flags = NL80211_RRF_NO_INDOOR;
517 country_ie += 3;
518 country_ie_len -= 3;
520 triplets_start = country_ie;
521 len_at_triplet = country_ie_len;
523 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
526 * We need to build a reg rule for each triplet, but first we must
527 * calculate the number of reg rules we will need. We will need one
528 * for each channel subband
530 while (country_ie_len >= 3) {
531 int end_channel = 0;
532 struct ieee80211_country_ie_triplet *triplet =
533 (struct ieee80211_country_ie_triplet *) country_ie;
534 int cur_sub_max_channel = 0, cur_channel = 0;
536 if (triplet->ext.reg_extension_id >=
537 IEEE80211_COUNTRY_EXTENSION_ID) {
538 country_ie += 3;
539 country_ie_len -= 3;
540 continue;
543 /* 2 GHz */
544 if (triplet->chans.first_channel <= 14)
545 end_channel = triplet->chans.first_channel +
546 triplet->chans.num_channels;
547 else
549 * 5 GHz -- For example in country IEs if the first
550 * channel given is 36 and the number of channels is 4
551 * then the individual channel numbers defined for the
552 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
553 * and not 36, 37, 38, 39.
555 * See: http://tinyurl.com/11d-clarification
557 end_channel = triplet->chans.first_channel +
558 (4 * (triplet->chans.num_channels - 1));
560 cur_channel = triplet->chans.first_channel;
561 cur_sub_max_channel = end_channel;
563 /* Basic sanity check */
564 if (cur_sub_max_channel < cur_channel)
565 return NULL;
568 * Do not allow overlapping channels. Also channels
569 * passed in each subband must be monotonically
570 * increasing
572 if (last_sub_max_channel) {
573 if (cur_channel <= last_sub_max_channel)
574 return NULL;
575 if (cur_sub_max_channel <= last_sub_max_channel)
576 return NULL;
580 * When dot11RegulatoryClassesRequired is supported
581 * we can throw ext triplets as part of this soup,
582 * for now we don't care when those change as we
583 * don't support them
585 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
586 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
587 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
589 last_sub_max_channel = cur_sub_max_channel;
591 country_ie += 3;
592 country_ie_len -= 3;
593 num_rules++;
596 * Note: this is not a IEEE requirement but
597 * simply a memory requirement
599 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
600 return NULL;
603 country_ie = triplets_start;
604 country_ie_len = len_at_triplet;
606 size_of_regd = sizeof(struct ieee80211_regdomain) +
607 (num_rules * sizeof(struct ieee80211_reg_rule));
609 rd = kzalloc(size_of_regd, GFP_KERNEL);
610 if (!rd)
611 return NULL;
613 rd->n_reg_rules = num_rules;
614 rd->alpha2[0] = alpha2[0];
615 rd->alpha2[1] = alpha2[1];
617 /* This time around we fill in the rd */
618 while (country_ie_len >= 3) {
619 int end_channel = 0;
620 struct ieee80211_country_ie_triplet *triplet =
621 (struct ieee80211_country_ie_triplet *) country_ie;
622 struct ieee80211_reg_rule *reg_rule = NULL;
623 struct ieee80211_freq_range *freq_range = NULL;
624 struct ieee80211_power_rule *power_rule = NULL;
627 * Must parse if dot11RegulatoryClassesRequired is true,
628 * we don't support this yet
630 if (triplet->ext.reg_extension_id >=
631 IEEE80211_COUNTRY_EXTENSION_ID) {
632 country_ie += 3;
633 country_ie_len -= 3;
634 continue;
637 reg_rule = &rd->reg_rules[i];
638 freq_range = &reg_rule->freq_range;
639 power_rule = &reg_rule->power_rule;
641 reg_rule->flags = flags;
643 /* 2 GHz */
644 if (triplet->chans.first_channel <= 14)
645 end_channel = triplet->chans.first_channel +
646 triplet->chans.num_channels;
647 else
648 end_channel = triplet->chans.first_channel +
649 (4 * (triplet->chans.num_channels - 1));
652 * The +10 is since the regulatory domain expects
653 * the actual band edge, not the center of freq for
654 * its start and end freqs, assuming 20 MHz bandwidth on
655 * the channels passed
657 freq_range->start_freq_khz =
658 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
659 triplet->chans.first_channel) - 10);
660 freq_range->end_freq_khz =
661 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
662 end_channel) + 10);
665 * These are large arbitrary values we use to intersect later.
666 * Increment this if we ever support >= 40 MHz channels
667 * in IEEE 802.11
669 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
670 power_rule->max_antenna_gain = DBI_TO_MBI(100);
671 power_rule->max_eirp = DBM_TO_MBM(100);
673 country_ie += 3;
674 country_ie_len -= 3;
675 i++;
677 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
680 return rd;
685 * Helper for regdom_intersect(), this does the real
686 * mathematical intersection fun
688 static int reg_rules_intersect(
689 const struct ieee80211_reg_rule *rule1,
690 const struct ieee80211_reg_rule *rule2,
691 struct ieee80211_reg_rule *intersected_rule)
693 const struct ieee80211_freq_range *freq_range1, *freq_range2;
694 struct ieee80211_freq_range *freq_range;
695 const struct ieee80211_power_rule *power_rule1, *power_rule2;
696 struct ieee80211_power_rule *power_rule;
697 u32 freq_diff;
699 freq_range1 = &rule1->freq_range;
700 freq_range2 = &rule2->freq_range;
701 freq_range = &intersected_rule->freq_range;
703 power_rule1 = &rule1->power_rule;
704 power_rule2 = &rule2->power_rule;
705 power_rule = &intersected_rule->power_rule;
707 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
708 freq_range2->start_freq_khz);
709 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
710 freq_range2->end_freq_khz);
711 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
712 freq_range2->max_bandwidth_khz);
714 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
715 if (freq_range->max_bandwidth_khz > freq_diff)
716 freq_range->max_bandwidth_khz = freq_diff;
718 power_rule->max_eirp = min(power_rule1->max_eirp,
719 power_rule2->max_eirp);
720 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
721 power_rule2->max_antenna_gain);
723 intersected_rule->flags = (rule1->flags | rule2->flags);
725 if (!is_valid_reg_rule(intersected_rule))
726 return -EINVAL;
728 return 0;
732 * regdom_intersect - do the intersection between two regulatory domains
733 * @rd1: first regulatory domain
734 * @rd2: second regulatory domain
736 * Use this function to get the intersection between two regulatory domains.
737 * Once completed we will mark the alpha2 for the rd as intersected, "98",
738 * as no one single alpha2 can represent this regulatory domain.
740 * Returns a pointer to the regulatory domain structure which will hold the
741 * resulting intersection of rules between rd1 and rd2. We will
742 * kzalloc() this structure for you.
744 static struct ieee80211_regdomain *regdom_intersect(
745 const struct ieee80211_regdomain *rd1,
746 const struct ieee80211_regdomain *rd2)
748 int r, size_of_regd;
749 unsigned int x, y;
750 unsigned int num_rules = 0, rule_idx = 0;
751 const struct ieee80211_reg_rule *rule1, *rule2;
752 struct ieee80211_reg_rule *intersected_rule;
753 struct ieee80211_regdomain *rd;
754 /* This is just a dummy holder to help us count */
755 struct ieee80211_reg_rule irule;
757 /* Uses the stack temporarily for counter arithmetic */
758 intersected_rule = &irule;
760 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
762 if (!rd1 || !rd2)
763 return NULL;
766 * First we get a count of the rules we'll need, then we actually
767 * build them. This is to so we can malloc() and free() a
768 * regdomain once. The reason we use reg_rules_intersect() here
769 * is it will return -EINVAL if the rule computed makes no sense.
770 * All rules that do check out OK are valid.
773 for (x = 0; x < rd1->n_reg_rules; x++) {
774 rule1 = &rd1->reg_rules[x];
775 for (y = 0; y < rd2->n_reg_rules; y++) {
776 rule2 = &rd2->reg_rules[y];
777 if (!reg_rules_intersect(rule1, rule2,
778 intersected_rule))
779 num_rules++;
780 memset(intersected_rule, 0,
781 sizeof(struct ieee80211_reg_rule));
785 if (!num_rules)
786 return NULL;
788 size_of_regd = sizeof(struct ieee80211_regdomain) +
789 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
791 rd = kzalloc(size_of_regd, GFP_KERNEL);
792 if (!rd)
793 return NULL;
795 for (x = 0; x < rd1->n_reg_rules; x++) {
796 rule1 = &rd1->reg_rules[x];
797 for (y = 0; y < rd2->n_reg_rules; y++) {
798 rule2 = &rd2->reg_rules[y];
800 * This time around instead of using the stack lets
801 * write to the target rule directly saving ourselves
802 * a memcpy()
804 intersected_rule = &rd->reg_rules[rule_idx];
805 r = reg_rules_intersect(rule1, rule2,
806 intersected_rule);
808 * No need to memset here the intersected rule here as
809 * we're not using the stack anymore
811 if (r)
812 continue;
813 rule_idx++;
817 if (rule_idx != num_rules) {
818 kfree(rd);
819 return NULL;
822 rd->n_reg_rules = num_rules;
823 rd->alpha2[0] = '9';
824 rd->alpha2[1] = '8';
826 return rd;
830 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
831 * want to just have the channel structure use these
833 static u32 map_regdom_flags(u32 rd_flags)
835 u32 channel_flags = 0;
836 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
837 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
838 if (rd_flags & NL80211_RRF_NO_IBSS)
839 channel_flags |= IEEE80211_CHAN_NO_IBSS;
840 if (rd_flags & NL80211_RRF_DFS)
841 channel_flags |= IEEE80211_CHAN_RADAR;
842 return channel_flags;
845 static int freq_reg_info_regd(struct wiphy *wiphy,
846 u32 center_freq,
847 u32 desired_bw_khz,
848 const struct ieee80211_reg_rule **reg_rule,
849 const struct ieee80211_regdomain *custom_regd)
851 int i;
852 bool band_rule_found = false;
853 const struct ieee80211_regdomain *regd;
854 bool bw_fits = false;
856 if (!desired_bw_khz)
857 desired_bw_khz = MHZ_TO_KHZ(20);
859 regd = custom_regd ? custom_regd : cfg80211_regdomain;
862 * Follow the driver's regulatory domain, if present, unless a country
863 * IE has been processed or a user wants to help complaince further
865 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
867 wiphy->regd)
868 regd = wiphy->regd;
870 if (!regd)
871 return -EINVAL;
873 for (i = 0; i < regd->n_reg_rules; i++) {
874 const struct ieee80211_reg_rule *rr;
875 const struct ieee80211_freq_range *fr = NULL;
876 const struct ieee80211_power_rule *pr = NULL;
878 rr = &regd->reg_rules[i];
879 fr = &rr->freq_range;
880 pr = &rr->power_rule;
883 * We only need to know if one frequency rule was
884 * was in center_freq's band, that's enough, so lets
885 * not overwrite it once found
887 if (!band_rule_found)
888 band_rule_found = freq_in_rule_band(fr, center_freq);
890 bw_fits = reg_does_bw_fit(fr,
891 center_freq,
892 desired_bw_khz);
894 if (band_rule_found && bw_fits) {
895 *reg_rule = rr;
896 return 0;
900 if (!band_rule_found)
901 return -ERANGE;
903 return -EINVAL;
905 EXPORT_SYMBOL(freq_reg_info);
907 int freq_reg_info(struct wiphy *wiphy,
908 u32 center_freq,
909 u32 desired_bw_khz,
910 const struct ieee80211_reg_rule **reg_rule)
912 assert_cfg80211_lock();
913 return freq_reg_info_regd(wiphy,
914 center_freq,
915 desired_bw_khz,
916 reg_rule,
917 NULL);
921 * Note that right now we assume the desired channel bandwidth
922 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
923 * per channel, the primary and the extension channel). To support
924 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
925 * new ieee80211_channel.target_bw and re run the regulatory check
926 * on the wiphy with the target_bw specified. Then we can simply use
927 * that below for the desired_bw_khz below.
929 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
930 unsigned int chan_idx)
932 int r;
933 u32 flags, bw_flags = 0;
934 u32 desired_bw_khz = MHZ_TO_KHZ(20);
935 const struct ieee80211_reg_rule *reg_rule = NULL;
936 const struct ieee80211_power_rule *power_rule = NULL;
937 const struct ieee80211_freq_range *freq_range = NULL;
938 struct ieee80211_supported_band *sband;
939 struct ieee80211_channel *chan;
940 struct wiphy *request_wiphy = NULL;
942 assert_cfg80211_lock();
944 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
946 sband = wiphy->bands[band];
947 BUG_ON(chan_idx >= sband->n_channels);
948 chan = &sband->channels[chan_idx];
950 flags = chan->orig_flags;
952 r = freq_reg_info(wiphy,
953 MHZ_TO_KHZ(chan->center_freq),
954 desired_bw_khz,
955 &reg_rule);
957 if (r) {
959 * This means no regulatory rule was found in the country IE
960 * with a frequency range on the center_freq's band, since
961 * IEEE-802.11 allows for a country IE to have a subset of the
962 * regulatory information provided in a country we ignore
963 * disabling the channel unless at least one reg rule was
964 * found on the center_freq's band. For details see this
965 * clarification:
967 * http://tinyurl.com/11d-clarification
969 if (r == -ERANGE &&
970 last_request->initiator ==
971 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
972 #ifdef CONFIG_CFG80211_REG_DEBUG
973 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
974 "intact on %s - no rule found in band on "
975 "Country IE\n",
976 chan->center_freq, wiphy_name(wiphy));
977 #endif
978 } else {
980 * In this case we know the country IE has at least one reg rule
981 * for the band so we respect its band definitions
983 #ifdef CONFIG_CFG80211_REG_DEBUG
984 if (last_request->initiator ==
985 NL80211_REGDOM_SET_BY_COUNTRY_IE)
986 printk(KERN_DEBUG "cfg80211: Disabling "
987 "channel %d MHz on %s due to "
988 "Country IE\n",
989 chan->center_freq, wiphy_name(wiphy));
990 #endif
991 flags |= IEEE80211_CHAN_DISABLED;
992 chan->flags = flags;
994 return;
997 power_rule = &reg_rule->power_rule;
998 freq_range = &reg_rule->freq_range;
1000 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1001 bw_flags = IEEE80211_CHAN_NO_HT40;
1003 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1004 request_wiphy && request_wiphy == wiphy &&
1005 request_wiphy->strict_regulatory) {
1007 * This gaurantees the driver's requested regulatory domain
1008 * will always be used as a base for further regulatory
1009 * settings
1011 chan->flags = chan->orig_flags =
1012 map_regdom_flags(reg_rule->flags) | bw_flags;
1013 chan->max_antenna_gain = chan->orig_mag =
1014 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1015 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1016 chan->max_power = chan->orig_mpwr =
1017 (int) MBM_TO_DBM(power_rule->max_eirp);
1018 return;
1021 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1022 chan->max_antenna_gain = min(chan->orig_mag,
1023 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1024 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1025 if (chan->orig_mpwr)
1026 chan->max_power = min(chan->orig_mpwr,
1027 (int) MBM_TO_DBM(power_rule->max_eirp));
1028 else
1029 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1032 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1034 unsigned int i;
1035 struct ieee80211_supported_band *sband;
1037 BUG_ON(!wiphy->bands[band]);
1038 sband = wiphy->bands[band];
1040 for (i = 0; i < sband->n_channels; i++)
1041 handle_channel(wiphy, band, i);
1044 static bool ignore_reg_update(struct wiphy *wiphy,
1045 enum nl80211_reg_initiator initiator)
1047 if (!last_request)
1048 return true;
1049 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1050 wiphy->custom_regulatory)
1051 return true;
1053 * wiphy->regd will be set once the device has its own
1054 * desired regulatory domain set
1056 if (wiphy->strict_regulatory && !wiphy->regd &&
1057 !is_world_regdom(last_request->alpha2))
1058 return true;
1059 return false;
1062 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1064 struct cfg80211_registered_device *drv;
1066 list_for_each_entry(drv, &cfg80211_drv_list, list)
1067 wiphy_update_regulatory(&drv->wiphy, initiator);
1070 static void handle_reg_beacon(struct wiphy *wiphy,
1071 unsigned int chan_idx,
1072 struct reg_beacon *reg_beacon)
1074 struct ieee80211_supported_band *sband;
1075 struct ieee80211_channel *chan;
1076 bool channel_changed = false;
1077 struct ieee80211_channel chan_before;
1079 assert_cfg80211_lock();
1081 sband = wiphy->bands[reg_beacon->chan.band];
1082 chan = &sband->channels[chan_idx];
1084 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1085 return;
1087 if (chan->beacon_found)
1088 return;
1090 chan->beacon_found = true;
1092 chan_before.center_freq = chan->center_freq;
1093 chan_before.flags = chan->flags;
1095 if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
1096 !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1097 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1098 channel_changed = true;
1101 if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
1102 !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1103 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1104 channel_changed = true;
1107 if (channel_changed)
1108 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1112 * Called when a scan on a wiphy finds a beacon on
1113 * new channel
1115 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1116 struct reg_beacon *reg_beacon)
1118 unsigned int i;
1119 struct ieee80211_supported_band *sband;
1121 assert_cfg80211_lock();
1123 if (!wiphy->bands[reg_beacon->chan.band])
1124 return;
1126 sband = wiphy->bands[reg_beacon->chan.band];
1128 for (i = 0; i < sband->n_channels; i++)
1129 handle_reg_beacon(wiphy, i, reg_beacon);
1133 * Called upon reg changes or a new wiphy is added
1135 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1137 unsigned int i;
1138 struct ieee80211_supported_band *sband;
1139 struct reg_beacon *reg_beacon;
1141 assert_cfg80211_lock();
1143 if (list_empty(&reg_beacon_list))
1144 return;
1146 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1147 if (!wiphy->bands[reg_beacon->chan.band])
1148 continue;
1149 sband = wiphy->bands[reg_beacon->chan.band];
1150 for (i = 0; i < sband->n_channels; i++)
1151 handle_reg_beacon(wiphy, i, reg_beacon);
1155 static bool reg_is_world_roaming(struct wiphy *wiphy)
1157 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1158 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1159 return true;
1160 if (last_request &&
1161 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1162 wiphy->custom_regulatory)
1163 return true;
1164 return false;
1167 /* Reap the advantages of previously found beacons */
1168 static void reg_process_beacons(struct wiphy *wiphy)
1171 * Means we are just firing up cfg80211, so no beacons would
1172 * have been processed yet.
1174 if (!last_request)
1175 return;
1176 if (!reg_is_world_roaming(wiphy))
1177 return;
1178 wiphy_update_beacon_reg(wiphy);
1181 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1183 if (!chan)
1184 return true;
1185 if (chan->flags & IEEE80211_CHAN_DISABLED)
1186 return true;
1187 /* This would happen when regulatory rules disallow HT40 completely */
1188 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1189 return true;
1190 return false;
1193 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1194 enum ieee80211_band band,
1195 unsigned int chan_idx)
1197 struct ieee80211_supported_band *sband;
1198 struct ieee80211_channel *channel;
1199 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1200 unsigned int i;
1202 assert_cfg80211_lock();
1204 sband = wiphy->bands[band];
1205 BUG_ON(chan_idx >= sband->n_channels);
1206 channel = &sband->channels[chan_idx];
1208 if (is_ht40_not_allowed(channel)) {
1209 channel->flags |= IEEE80211_CHAN_NO_HT40;
1210 return;
1214 * We need to ensure the extension channels exist to
1215 * be able to use HT40- or HT40+, this finds them (or not)
1217 for (i = 0; i < sband->n_channels; i++) {
1218 struct ieee80211_channel *c = &sband->channels[i];
1219 if (c->center_freq == (channel->center_freq - 20))
1220 channel_before = c;
1221 if (c->center_freq == (channel->center_freq + 20))
1222 channel_after = c;
1226 * Please note that this assumes target bandwidth is 20 MHz,
1227 * if that ever changes we also need to change the below logic
1228 * to include that as well.
1230 if (is_ht40_not_allowed(channel_before))
1231 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1232 else
1233 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1235 if (is_ht40_not_allowed(channel_after))
1236 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1237 else
1238 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1241 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1242 enum ieee80211_band band)
1244 unsigned int i;
1245 struct ieee80211_supported_band *sband;
1247 BUG_ON(!wiphy->bands[band]);
1248 sband = wiphy->bands[band];
1250 for (i = 0; i < sband->n_channels; i++)
1251 reg_process_ht_flags_channel(wiphy, band, i);
1254 static void reg_process_ht_flags(struct wiphy *wiphy)
1256 enum ieee80211_band band;
1258 if (!wiphy)
1259 return;
1261 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1262 if (wiphy->bands[band])
1263 reg_process_ht_flags_band(wiphy, band);
1268 void wiphy_update_regulatory(struct wiphy *wiphy,
1269 enum nl80211_reg_initiator initiator)
1271 enum ieee80211_band band;
1273 if (ignore_reg_update(wiphy, initiator))
1274 goto out;
1275 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1276 if (wiphy->bands[band])
1277 handle_band(wiphy, band);
1279 out:
1280 reg_process_beacons(wiphy);
1281 reg_process_ht_flags(wiphy);
1282 if (wiphy->reg_notifier)
1283 wiphy->reg_notifier(wiphy, last_request);
1286 static void handle_channel_custom(struct wiphy *wiphy,
1287 enum ieee80211_band band,
1288 unsigned int chan_idx,
1289 const struct ieee80211_regdomain *regd)
1291 int r;
1292 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1293 u32 bw_flags = 0;
1294 const struct ieee80211_reg_rule *reg_rule = NULL;
1295 const struct ieee80211_power_rule *power_rule = NULL;
1296 const struct ieee80211_freq_range *freq_range = NULL;
1297 struct ieee80211_supported_band *sband;
1298 struct ieee80211_channel *chan;
1300 assert_cfg80211_lock();
1302 sband = wiphy->bands[band];
1303 BUG_ON(chan_idx >= sband->n_channels);
1304 chan = &sband->channels[chan_idx];
1306 r = freq_reg_info_regd(wiphy,
1307 MHZ_TO_KHZ(chan->center_freq),
1308 desired_bw_khz,
1309 &reg_rule,
1310 regd);
1312 if (r) {
1313 chan->flags = IEEE80211_CHAN_DISABLED;
1314 return;
1317 power_rule = &reg_rule->power_rule;
1318 freq_range = &reg_rule->freq_range;
1320 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1321 bw_flags = IEEE80211_CHAN_NO_HT40;
1323 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1324 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1325 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1326 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1329 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1330 const struct ieee80211_regdomain *regd)
1332 unsigned int i;
1333 struct ieee80211_supported_band *sband;
1335 BUG_ON(!wiphy->bands[band]);
1336 sband = wiphy->bands[band];
1338 for (i = 0; i < sband->n_channels; i++)
1339 handle_channel_custom(wiphy, band, i, regd);
1342 /* Used by drivers prior to wiphy registration */
1343 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1344 const struct ieee80211_regdomain *regd)
1346 enum ieee80211_band band;
1347 unsigned int bands_set = 0;
1349 mutex_lock(&cfg80211_mutex);
1350 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1351 if (!wiphy->bands[band])
1352 continue;
1353 handle_band_custom(wiphy, band, regd);
1354 bands_set++;
1356 mutex_unlock(&cfg80211_mutex);
1359 * no point in calling this if it won't have any effect
1360 * on your device's supportd bands.
1362 WARN_ON(!bands_set);
1364 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1366 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1367 const struct ieee80211_regdomain *src_regd)
1369 struct ieee80211_regdomain *regd;
1370 int size_of_regd = 0;
1371 unsigned int i;
1373 size_of_regd = sizeof(struct ieee80211_regdomain) +
1374 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1376 regd = kzalloc(size_of_regd, GFP_KERNEL);
1377 if (!regd)
1378 return -ENOMEM;
1380 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1382 for (i = 0; i < src_regd->n_reg_rules; i++)
1383 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1384 sizeof(struct ieee80211_reg_rule));
1386 *dst_regd = regd;
1387 return 0;
1391 * Return value which can be used by ignore_request() to indicate
1392 * it has been determined we should intersect two regulatory domains
1394 #define REG_INTERSECT 1
1396 /* This has the logic which determines when a new request
1397 * should be ignored. */
1398 static int ignore_request(struct wiphy *wiphy,
1399 struct regulatory_request *pending_request)
1401 struct wiphy *last_wiphy = NULL;
1403 assert_cfg80211_lock();
1405 /* All initial requests are respected */
1406 if (!last_request)
1407 return 0;
1409 switch (pending_request->initiator) {
1410 case NL80211_REGDOM_SET_BY_CORE:
1411 return -EINVAL;
1412 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1414 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1416 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1417 return -EINVAL;
1418 if (last_request->initiator ==
1419 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1420 if (last_wiphy != wiphy) {
1422 * Two cards with two APs claiming different
1423 * different Country IE alpha2s. We could
1424 * intersect them, but that seems unlikely
1425 * to be correct. Reject second one for now.
1427 if (regdom_changes(pending_request->alpha2))
1428 return -EOPNOTSUPP;
1429 return -EALREADY;
1432 * Two consecutive Country IE hints on the same wiphy.
1433 * This should be picked up early by the driver/stack
1435 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1436 return 0;
1437 return -EALREADY;
1439 return REG_INTERSECT;
1440 case NL80211_REGDOM_SET_BY_DRIVER:
1441 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1442 if (is_old_static_regdom(cfg80211_regdomain))
1443 return 0;
1444 if (regdom_changes(pending_request->alpha2))
1445 return 0;
1446 return -EALREADY;
1450 * This would happen if you unplug and plug your card
1451 * back in or if you add a new device for which the previously
1452 * loaded card also agrees on the regulatory domain.
1454 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1455 !regdom_changes(pending_request->alpha2))
1456 return -EALREADY;
1458 return REG_INTERSECT;
1459 case NL80211_REGDOM_SET_BY_USER:
1460 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1461 return REG_INTERSECT;
1463 * If the user knows better the user should set the regdom
1464 * to their country before the IE is picked up
1466 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1467 last_request->intersect)
1468 return -EOPNOTSUPP;
1470 * Process user requests only after previous user/driver/core
1471 * requests have been processed
1473 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1474 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1475 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1476 if (regdom_changes(last_request->alpha2))
1477 return -EAGAIN;
1480 if (!is_old_static_regdom(cfg80211_regdomain) &&
1481 !regdom_changes(pending_request->alpha2))
1482 return -EALREADY;
1484 return 0;
1487 return -EINVAL;
1491 * __regulatory_hint - hint to the wireless core a regulatory domain
1492 * @wiphy: if the hint comes from country information from an AP, this
1493 * is required to be set to the wiphy that received the information
1494 * @pending_request: the regulatory request currently being processed
1496 * The Wireless subsystem can use this function to hint to the wireless core
1497 * what it believes should be the current regulatory domain.
1499 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1500 * already been set or other standard error codes.
1502 * Caller must hold &cfg80211_mutex
1504 static int __regulatory_hint(struct wiphy *wiphy,
1505 struct regulatory_request *pending_request)
1507 bool intersect = false;
1508 int r = 0;
1510 assert_cfg80211_lock();
1512 r = ignore_request(wiphy, pending_request);
1514 if (r == REG_INTERSECT) {
1515 if (pending_request->initiator ==
1516 NL80211_REGDOM_SET_BY_DRIVER) {
1517 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1518 if (r) {
1519 kfree(pending_request);
1520 return r;
1523 intersect = true;
1524 } else if (r) {
1526 * If the regulatory domain being requested by the
1527 * driver has already been set just copy it to the
1528 * wiphy
1530 if (r == -EALREADY &&
1531 pending_request->initiator ==
1532 NL80211_REGDOM_SET_BY_DRIVER) {
1533 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1534 if (r) {
1535 kfree(pending_request);
1536 return r;
1538 r = -EALREADY;
1539 goto new_request;
1541 kfree(pending_request);
1542 return r;
1545 new_request:
1546 kfree(last_request);
1548 last_request = pending_request;
1549 last_request->intersect = intersect;
1551 pending_request = NULL;
1553 /* When r == REG_INTERSECT we do need to call CRDA */
1554 if (r < 0) {
1556 * Since CRDA will not be called in this case as we already
1557 * have applied the requested regulatory domain before we just
1558 * inform userspace we have processed the request
1560 if (r == -EALREADY)
1561 nl80211_send_reg_change_event(last_request);
1562 return r;
1565 return call_crda(last_request->alpha2);
1568 /* This processes *all* regulatory hints */
1569 static void reg_process_hint(struct regulatory_request *reg_request)
1571 int r = 0;
1572 struct wiphy *wiphy = NULL;
1574 BUG_ON(!reg_request->alpha2);
1576 mutex_lock(&cfg80211_mutex);
1578 if (wiphy_idx_valid(reg_request->wiphy_idx))
1579 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1581 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1582 !wiphy) {
1583 kfree(reg_request);
1584 goto out;
1587 r = __regulatory_hint(wiphy, reg_request);
1588 /* This is required so that the orig_* parameters are saved */
1589 if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1590 wiphy_update_regulatory(wiphy, reg_request->initiator);
1591 out:
1592 mutex_unlock(&cfg80211_mutex);
1595 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1596 static void reg_process_pending_hints(void)
1598 struct regulatory_request *reg_request;
1600 spin_lock(&reg_requests_lock);
1601 while (!list_empty(&reg_requests_list)) {
1602 reg_request = list_first_entry(&reg_requests_list,
1603 struct regulatory_request,
1604 list);
1605 list_del_init(&reg_request->list);
1607 spin_unlock(&reg_requests_lock);
1608 reg_process_hint(reg_request);
1609 spin_lock(&reg_requests_lock);
1611 spin_unlock(&reg_requests_lock);
1614 /* Processes beacon hints -- this has nothing to do with country IEs */
1615 static void reg_process_pending_beacon_hints(void)
1617 struct cfg80211_registered_device *drv;
1618 struct reg_beacon *pending_beacon, *tmp;
1620 mutex_lock(&cfg80211_mutex);
1622 /* This goes through the _pending_ beacon list */
1623 spin_lock_bh(&reg_pending_beacons_lock);
1625 if (list_empty(&reg_pending_beacons)) {
1626 spin_unlock_bh(&reg_pending_beacons_lock);
1627 goto out;
1630 list_for_each_entry_safe(pending_beacon, tmp,
1631 &reg_pending_beacons, list) {
1633 list_del_init(&pending_beacon->list);
1635 /* Applies the beacon hint to current wiphys */
1636 list_for_each_entry(drv, &cfg80211_drv_list, list)
1637 wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1639 /* Remembers the beacon hint for new wiphys or reg changes */
1640 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1643 spin_unlock_bh(&reg_pending_beacons_lock);
1644 out:
1645 mutex_unlock(&cfg80211_mutex);
1648 static void reg_todo(struct work_struct *work)
1650 reg_process_pending_hints();
1651 reg_process_pending_beacon_hints();
1654 static DECLARE_WORK(reg_work, reg_todo);
1656 static void queue_regulatory_request(struct regulatory_request *request)
1658 spin_lock(&reg_requests_lock);
1659 list_add_tail(&request->list, &reg_requests_list);
1660 spin_unlock(&reg_requests_lock);
1662 schedule_work(&reg_work);
1665 /* Core regulatory hint -- happens once during cfg80211_init() */
1666 static int regulatory_hint_core(const char *alpha2)
1668 struct regulatory_request *request;
1670 BUG_ON(last_request);
1672 request = kzalloc(sizeof(struct regulatory_request),
1673 GFP_KERNEL);
1674 if (!request)
1675 return -ENOMEM;
1677 request->alpha2[0] = alpha2[0];
1678 request->alpha2[1] = alpha2[1];
1679 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1681 queue_regulatory_request(request);
1684 * This ensures last_request is populated once modules
1685 * come swinging in and calling regulatory hints and
1686 * wiphy_apply_custom_regulatory().
1688 flush_scheduled_work();
1690 return 0;
1693 /* User hints */
1694 int regulatory_hint_user(const char *alpha2)
1696 struct regulatory_request *request;
1698 BUG_ON(!alpha2);
1700 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1701 if (!request)
1702 return -ENOMEM;
1704 request->wiphy_idx = WIPHY_IDX_STALE;
1705 request->alpha2[0] = alpha2[0];
1706 request->alpha2[1] = alpha2[1];
1707 request->initiator = NL80211_REGDOM_SET_BY_USER,
1709 queue_regulatory_request(request);
1711 return 0;
1714 /* Driver hints */
1715 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1717 struct regulatory_request *request;
1719 BUG_ON(!alpha2);
1720 BUG_ON(!wiphy);
1722 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1723 if (!request)
1724 return -ENOMEM;
1726 request->wiphy_idx = get_wiphy_idx(wiphy);
1728 /* Must have registered wiphy first */
1729 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1731 request->alpha2[0] = alpha2[0];
1732 request->alpha2[1] = alpha2[1];
1733 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1735 queue_regulatory_request(request);
1737 return 0;
1739 EXPORT_SYMBOL(regulatory_hint);
1741 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1742 u32 country_ie_checksum)
1744 struct wiphy *request_wiphy;
1746 assert_cfg80211_lock();
1748 if (unlikely(last_request->initiator !=
1749 NL80211_REGDOM_SET_BY_COUNTRY_IE))
1750 return false;
1752 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1754 if (!request_wiphy)
1755 return false;
1757 if (likely(request_wiphy != wiphy))
1758 return !country_ie_integrity_changes(country_ie_checksum);
1760 * We should not have let these through at this point, they
1761 * should have been picked up earlier by the first alpha2 check
1762 * on the device
1764 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1765 return true;
1766 return false;
1769 void regulatory_hint_11d(struct wiphy *wiphy,
1770 u8 *country_ie,
1771 u8 country_ie_len)
1773 struct ieee80211_regdomain *rd = NULL;
1774 char alpha2[2];
1775 u32 checksum = 0;
1776 enum environment_cap env = ENVIRON_ANY;
1777 struct regulatory_request *request;
1779 mutex_lock(&cfg80211_mutex);
1781 if (unlikely(!last_request)) {
1782 mutex_unlock(&cfg80211_mutex);
1783 return;
1786 /* IE len must be evenly divisible by 2 */
1787 if (country_ie_len & 0x01)
1788 goto out;
1790 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1791 goto out;
1794 * Pending country IE processing, this can happen after we
1795 * call CRDA and wait for a response if a beacon was received before
1796 * we were able to process the last regulatory_hint_11d() call
1798 if (country_ie_regdomain)
1799 goto out;
1801 alpha2[0] = country_ie[0];
1802 alpha2[1] = country_ie[1];
1804 if (country_ie[2] == 'I')
1805 env = ENVIRON_INDOOR;
1806 else if (country_ie[2] == 'O')
1807 env = ENVIRON_OUTDOOR;
1810 * We will run this for *every* beacon processed for the BSSID, so
1811 * we optimize an early check to exit out early if we don't have to
1812 * do anything
1814 if (likely(last_request->initiator ==
1815 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1816 wiphy_idx_valid(last_request->wiphy_idx))) {
1817 struct cfg80211_registered_device *drv_last_ie;
1819 drv_last_ie =
1820 cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1823 * Lets keep this simple -- we trust the first AP
1824 * after we intersect with CRDA
1826 if (likely(&drv_last_ie->wiphy == wiphy)) {
1828 * Ignore IEs coming in on this wiphy with
1829 * the same alpha2 and environment cap
1831 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1832 alpha2) &&
1833 env == drv_last_ie->env)) {
1834 goto out;
1837 * the wiphy moved on to another BSSID or the AP
1838 * was reconfigured. XXX: We need to deal with the
1839 * case where the user suspends and goes to goes
1840 * to another country, and then gets IEs from an
1841 * AP with different settings
1843 goto out;
1844 } else {
1846 * Ignore IEs coming in on two separate wiphys with
1847 * the same alpha2 and environment cap
1849 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1850 alpha2) &&
1851 env == drv_last_ie->env)) {
1852 goto out;
1854 /* We could potentially intersect though */
1855 goto out;
1859 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1860 if (!rd)
1861 goto out;
1864 * This will not happen right now but we leave it here for the
1865 * the future when we want to add suspend/resume support and having
1866 * the user move to another country after doing so, or having the user
1867 * move to another AP. Right now we just trust the first AP.
1869 * If we hit this before we add this support we want to be informed of
1870 * it as it would indicate a mistake in the current design
1872 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1873 goto free_rd_out;
1875 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1876 if (!request)
1877 goto free_rd_out;
1880 * We keep this around for when CRDA comes back with a response so
1881 * we can intersect with that
1883 country_ie_regdomain = rd;
1885 request->wiphy_idx = get_wiphy_idx(wiphy);
1886 request->alpha2[0] = rd->alpha2[0];
1887 request->alpha2[1] = rd->alpha2[1];
1888 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1889 request->country_ie_checksum = checksum;
1890 request->country_ie_env = env;
1892 mutex_unlock(&cfg80211_mutex);
1894 queue_regulatory_request(request);
1896 return;
1898 free_rd_out:
1899 kfree(rd);
1900 out:
1901 mutex_unlock(&cfg80211_mutex);
1903 EXPORT_SYMBOL(regulatory_hint_11d);
1905 static bool freq_is_chan_12_13_14(u16 freq)
1907 if (freq == ieee80211_channel_to_frequency(12) ||
1908 freq == ieee80211_channel_to_frequency(13) ||
1909 freq == ieee80211_channel_to_frequency(14))
1910 return true;
1911 return false;
1914 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1915 struct ieee80211_channel *beacon_chan,
1916 gfp_t gfp)
1918 struct reg_beacon *reg_beacon;
1920 if (likely((beacon_chan->beacon_found ||
1921 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1922 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1923 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1924 return 0;
1926 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1927 if (!reg_beacon)
1928 return -ENOMEM;
1930 #ifdef CONFIG_CFG80211_REG_DEBUG
1931 printk(KERN_DEBUG "cfg80211: Found new beacon on "
1932 "frequency: %d MHz (Ch %d) on %s\n",
1933 beacon_chan->center_freq,
1934 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1935 wiphy_name(wiphy));
1936 #endif
1937 memcpy(&reg_beacon->chan, beacon_chan,
1938 sizeof(struct ieee80211_channel));
1942 * Since we can be called from BH or and non-BH context
1943 * we must use spin_lock_bh()
1945 spin_lock_bh(&reg_pending_beacons_lock);
1946 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1947 spin_unlock_bh(&reg_pending_beacons_lock);
1949 schedule_work(&reg_work);
1951 return 0;
1954 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1956 unsigned int i;
1957 const struct ieee80211_reg_rule *reg_rule = NULL;
1958 const struct ieee80211_freq_range *freq_range = NULL;
1959 const struct ieee80211_power_rule *power_rule = NULL;
1961 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1962 "(max_antenna_gain, max_eirp)\n");
1964 for (i = 0; i < rd->n_reg_rules; i++) {
1965 reg_rule = &rd->reg_rules[i];
1966 freq_range = &reg_rule->freq_range;
1967 power_rule = &reg_rule->power_rule;
1970 * There may not be documentation for max antenna gain
1971 * in certain regions
1973 if (power_rule->max_antenna_gain)
1974 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1975 "(%d mBi, %d mBm)\n",
1976 freq_range->start_freq_khz,
1977 freq_range->end_freq_khz,
1978 freq_range->max_bandwidth_khz,
1979 power_rule->max_antenna_gain,
1980 power_rule->max_eirp);
1981 else
1982 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1983 "(N/A, %d mBm)\n",
1984 freq_range->start_freq_khz,
1985 freq_range->end_freq_khz,
1986 freq_range->max_bandwidth_khz,
1987 power_rule->max_eirp);
1991 static void print_regdomain(const struct ieee80211_regdomain *rd)
1994 if (is_intersected_alpha2(rd->alpha2)) {
1996 if (last_request->initiator ==
1997 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1998 struct cfg80211_registered_device *drv;
1999 drv = cfg80211_drv_by_wiphy_idx(
2000 last_request->wiphy_idx);
2001 if (drv) {
2002 printk(KERN_INFO "cfg80211: Current regulatory "
2003 "domain updated by AP to: %c%c\n",
2004 drv->country_ie_alpha2[0],
2005 drv->country_ie_alpha2[1]);
2006 } else
2007 printk(KERN_INFO "cfg80211: Current regulatory "
2008 "domain intersected: \n");
2009 } else
2010 printk(KERN_INFO "cfg80211: Current regulatory "
2011 "domain intersected: \n");
2012 } else if (is_world_regdom(rd->alpha2))
2013 printk(KERN_INFO "cfg80211: World regulatory "
2014 "domain updated:\n");
2015 else {
2016 if (is_unknown_alpha2(rd->alpha2))
2017 printk(KERN_INFO "cfg80211: Regulatory domain "
2018 "changed to driver built-in settings "
2019 "(unknown country)\n");
2020 else
2021 printk(KERN_INFO "cfg80211: Regulatory domain "
2022 "changed to country: %c%c\n",
2023 rd->alpha2[0], rd->alpha2[1]);
2025 print_rd_rules(rd);
2028 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2030 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2031 rd->alpha2[0], rd->alpha2[1]);
2032 print_rd_rules(rd);
2035 #ifdef CONFIG_CFG80211_REG_DEBUG
2036 static void reg_country_ie_process_debug(
2037 const struct ieee80211_regdomain *rd,
2038 const struct ieee80211_regdomain *country_ie_regdomain,
2039 const struct ieee80211_regdomain *intersected_rd)
2041 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2042 print_regdomain_info(country_ie_regdomain);
2043 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2044 print_regdomain_info(rd);
2045 if (intersected_rd) {
2046 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2047 "and get:\n");
2048 print_regdomain_info(intersected_rd);
2049 return;
2051 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2053 #else
2054 static inline void reg_country_ie_process_debug(
2055 const struct ieee80211_regdomain *rd,
2056 const struct ieee80211_regdomain *country_ie_regdomain,
2057 const struct ieee80211_regdomain *intersected_rd)
2060 #endif
2062 /* Takes ownership of rd only if it doesn't fail */
2063 static int __set_regdom(const struct ieee80211_regdomain *rd)
2065 const struct ieee80211_regdomain *intersected_rd = NULL;
2066 struct cfg80211_registered_device *drv = NULL;
2067 struct wiphy *request_wiphy;
2068 /* Some basic sanity checks first */
2070 if (is_world_regdom(rd->alpha2)) {
2071 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2072 return -EINVAL;
2073 update_world_regdomain(rd);
2074 return 0;
2077 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2078 !is_unknown_alpha2(rd->alpha2))
2079 return -EINVAL;
2081 if (!last_request)
2082 return -EINVAL;
2085 * Lets only bother proceeding on the same alpha2 if the current
2086 * rd is non static (it means CRDA was present and was used last)
2087 * and the pending request came in from a country IE
2089 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2091 * If someone else asked us to change the rd lets only bother
2092 * checking if the alpha2 changes if CRDA was already called
2094 if (!is_old_static_regdom(cfg80211_regdomain) &&
2095 !regdom_changes(rd->alpha2))
2096 return -EINVAL;
2100 * Now lets set the regulatory domain, update all driver channels
2101 * and finally inform them of what we have done, in case they want
2102 * to review or adjust their own settings based on their own
2103 * internal EEPROM data
2106 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2107 return -EINVAL;
2109 if (!is_valid_rd(rd)) {
2110 printk(KERN_ERR "cfg80211: Invalid "
2111 "regulatory domain detected:\n");
2112 print_regdomain_info(rd);
2113 return -EINVAL;
2116 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2118 if (!last_request->intersect) {
2119 int r;
2121 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2122 reset_regdomains();
2123 cfg80211_regdomain = rd;
2124 return 0;
2128 * For a driver hint, lets copy the regulatory domain the
2129 * driver wanted to the wiphy to deal with conflicts
2133 * Userspace could have sent two replies with only
2134 * one kernel request.
2136 if (request_wiphy->regd)
2137 return -EALREADY;
2139 r = reg_copy_regd(&request_wiphy->regd, rd);
2140 if (r)
2141 return r;
2143 reset_regdomains();
2144 cfg80211_regdomain = rd;
2145 return 0;
2148 /* Intersection requires a bit more work */
2150 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2152 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2153 if (!intersected_rd)
2154 return -EINVAL;
2157 * We can trash what CRDA provided now.
2158 * However if a driver requested this specific regulatory
2159 * domain we keep it for its private use
2161 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2162 request_wiphy->regd = rd;
2163 else
2164 kfree(rd);
2166 rd = NULL;
2168 reset_regdomains();
2169 cfg80211_regdomain = intersected_rd;
2171 return 0;
2175 * Country IE requests are handled a bit differently, we intersect
2176 * the country IE rd with what CRDA believes that country should have
2180 * Userspace could have sent two replies with only
2181 * one kernel request. By the second reply we would have
2182 * already processed and consumed the country_ie_regdomain.
2184 if (!country_ie_regdomain)
2185 return -EALREADY;
2186 BUG_ON(rd == country_ie_regdomain);
2189 * Intersect what CRDA returned and our what we
2190 * had built from the Country IE received
2193 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2195 reg_country_ie_process_debug(rd,
2196 country_ie_regdomain,
2197 intersected_rd);
2199 kfree(country_ie_regdomain);
2200 country_ie_regdomain = NULL;
2202 if (!intersected_rd)
2203 return -EINVAL;
2205 drv = wiphy_to_dev(request_wiphy);
2207 drv->country_ie_alpha2[0] = rd->alpha2[0];
2208 drv->country_ie_alpha2[1] = rd->alpha2[1];
2209 drv->env = last_request->country_ie_env;
2211 BUG_ON(intersected_rd == rd);
2213 kfree(rd);
2214 rd = NULL;
2216 reset_regdomains();
2217 cfg80211_regdomain = intersected_rd;
2219 return 0;
2224 * Use this call to set the current regulatory domain. Conflicts with
2225 * multiple drivers can be ironed out later. Caller must've already
2226 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2228 int set_regdom(const struct ieee80211_regdomain *rd)
2230 int r;
2232 assert_cfg80211_lock();
2234 /* Note that this doesn't update the wiphys, this is done below */
2235 r = __set_regdom(rd);
2236 if (r) {
2237 kfree(rd);
2238 return r;
2241 /* This would make this whole thing pointless */
2242 if (!last_request->intersect)
2243 BUG_ON(rd != cfg80211_regdomain);
2245 /* update all wiphys now with the new established regulatory domain */
2246 update_all_wiphy_regulatory(last_request->initiator);
2248 print_regdomain(cfg80211_regdomain);
2250 nl80211_send_reg_change_event(last_request);
2252 return r;
2255 /* Caller must hold cfg80211_mutex */
2256 void reg_device_remove(struct wiphy *wiphy)
2258 struct wiphy *request_wiphy = NULL;
2260 assert_cfg80211_lock();
2262 kfree(wiphy->regd);
2264 if (last_request)
2265 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2267 if (!request_wiphy || request_wiphy != wiphy)
2268 return;
2270 last_request->wiphy_idx = WIPHY_IDX_STALE;
2271 last_request->country_ie_env = ENVIRON_ANY;
2274 int regulatory_init(void)
2276 int err = 0;
2278 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2279 if (IS_ERR(reg_pdev))
2280 return PTR_ERR(reg_pdev);
2282 spin_lock_init(&reg_requests_lock);
2283 spin_lock_init(&reg_pending_beacons_lock);
2285 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2286 cfg80211_regdomain = static_regdom(ieee80211_regdom);
2288 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2289 print_regdomain_info(cfg80211_regdomain);
2291 * The old code still requests for a new regdomain and if
2292 * you have CRDA you get it updated, otherwise you get
2293 * stuck with the static values. Since "EU" is not a valid
2294 * ISO / IEC 3166 alpha2 code we can't expect userpace to
2295 * give us a regulatory domain for it. We need last_request
2296 * iniitalized though so lets just send a request which we
2297 * know will be ignored... this crap will be removed once
2298 * OLD_REG dies.
2300 err = regulatory_hint_core(ieee80211_regdom);
2301 #else
2302 cfg80211_regdomain = cfg80211_world_regdom;
2304 err = regulatory_hint_core(ieee80211_regdom);
2305 #endif
2306 if (err) {
2307 if (err == -ENOMEM)
2308 return err;
2310 * N.B. kobject_uevent_env() can fail mainly for when we're out
2311 * memory which is handled and propagated appropriately above
2312 * but it can also fail during a netlink_broadcast() or during
2313 * early boot for call_usermodehelper(). For now treat these
2314 * errors as non-fatal.
2316 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2317 "to call CRDA during init");
2318 #ifdef CONFIG_CFG80211_REG_DEBUG
2319 /* We want to find out exactly why when debugging */
2320 WARN_ON(err);
2321 #endif
2324 return 0;
2327 void regulatory_exit(void)
2329 struct regulatory_request *reg_request, *tmp;
2330 struct reg_beacon *reg_beacon, *btmp;
2332 cancel_work_sync(&reg_work);
2334 mutex_lock(&cfg80211_mutex);
2336 reset_regdomains();
2338 kfree(country_ie_regdomain);
2339 country_ie_regdomain = NULL;
2341 kfree(last_request);
2343 platform_device_unregister(reg_pdev);
2345 spin_lock_bh(&reg_pending_beacons_lock);
2346 if (!list_empty(&reg_pending_beacons)) {
2347 list_for_each_entry_safe(reg_beacon, btmp,
2348 &reg_pending_beacons, list) {
2349 list_del(&reg_beacon->list);
2350 kfree(reg_beacon);
2353 spin_unlock_bh(&reg_pending_beacons_lock);
2355 if (!list_empty(&reg_beacon_list)) {
2356 list_for_each_entry_safe(reg_beacon, btmp,
2357 &reg_beacon_list, list) {
2358 list_del(&reg_beacon->list);
2359 kfree(reg_beacon);
2363 spin_lock(&reg_requests_lock);
2364 if (!list_empty(&reg_requests_list)) {
2365 list_for_each_entry_safe(reg_request, tmp,
2366 &reg_requests_list, list) {
2367 list_del(&reg_request->list);
2368 kfree(reg_request);
2371 spin_unlock(&reg_requests_lock);
2373 mutex_unlock(&cfg80211_mutex);