2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request
*last_request
;
48 /* To trigger userspace events */
49 static struct platform_device
*reg_pdev
;
52 * Central wireless core regulatory domains, we only need two,
53 * the current one and a world regulatory domain in case we have no
54 * information to give us an alpha2
56 const struct ieee80211_regdomain
*cfg80211_regdomain
;
59 * We use this as a place for the rd structure built from the
60 * last parsed country IE to rest until CRDA gets back to us with
61 * what it thinks should apply for the same country
63 static const struct ieee80211_regdomain
*country_ie_regdomain
;
65 /* Used to queue up regulatory hints */
66 static LIST_HEAD(reg_requests_list
);
67 static spinlock_t reg_requests_lock
;
69 /* Used to queue up beacon hints for review */
70 static LIST_HEAD(reg_pending_beacons
);
71 static spinlock_t reg_pending_beacons_lock
;
73 /* Used to keep track of processed beacon hints */
74 static LIST_HEAD(reg_beacon_list
);
77 struct list_head list
;
78 struct ieee80211_channel chan
;
81 /* We keep a static world regulatory domain in case of the absence of CRDA */
82 static const struct ieee80211_regdomain world_regdom
= {
86 /* IEEE 802.11b/g, channels 1..11 */
87 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
88 /* IEEE 802.11b/g, channels 12..13. No HT40
89 * channel fits here. */
90 REG_RULE(2467-10, 2472+10, 20, 6, 20,
91 NL80211_RRF_PASSIVE_SCAN
|
93 /* IEEE 802.11 channel 14 - Only JP enables
94 * this and for 802.11b only */
95 REG_RULE(2484-10, 2484+10, 20, 6, 20,
96 NL80211_RRF_PASSIVE_SCAN
|
99 /* IEEE 802.11a, channel 36..48 */
100 REG_RULE(5180-10, 5240+10, 40, 6, 20,
101 NL80211_RRF_PASSIVE_SCAN
|
102 NL80211_RRF_NO_IBSS
),
104 /* NB: 5260 MHz - 5700 MHz requies DFS */
106 /* IEEE 802.11a, channel 149..165 */
107 REG_RULE(5745-10, 5825+10, 40, 6, 20,
108 NL80211_RRF_PASSIVE_SCAN
|
109 NL80211_RRF_NO_IBSS
),
113 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
116 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
117 static char *ieee80211_regdom
= "US";
119 static char *ieee80211_regdom
= "00";
122 module_param(ieee80211_regdom
, charp
, 0444);
123 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
125 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
127 * We assume 40 MHz bandwidth for the old regulatory work.
128 * We make emphasis we are using the exact same frequencies
132 static const struct ieee80211_regdomain us_regdom
= {
136 /* IEEE 802.11b/g, channels 1..11 */
137 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
138 /* IEEE 802.11a, channel 36 */
139 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
140 /* IEEE 802.11a, channel 40 */
141 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
142 /* IEEE 802.11a, channel 44 */
143 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
144 /* IEEE 802.11a, channels 48..64 */
145 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
146 /* IEEE 802.11a, channels 149..165, outdoor */
147 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
151 static const struct ieee80211_regdomain jp_regdom
= {
155 /* IEEE 802.11b/g, channels 1..14 */
156 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
157 /* IEEE 802.11a, channels 34..48 */
158 REG_RULE(5170-10, 5240+10, 40, 6, 20,
159 NL80211_RRF_PASSIVE_SCAN
),
160 /* IEEE 802.11a, channels 52..64 */
161 REG_RULE(5260-10, 5320+10, 40, 6, 20,
162 NL80211_RRF_NO_IBSS
|
167 static const struct ieee80211_regdomain eu_regdom
= {
170 * This alpha2 is bogus, we leave it here just for stupid
171 * backward compatibility
175 /* IEEE 802.11b/g, channels 1..13 */
176 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
177 /* IEEE 802.11a, channel 36 */
178 REG_RULE(5180-10, 5180+10, 40, 6, 23,
179 NL80211_RRF_PASSIVE_SCAN
),
180 /* IEEE 802.11a, channel 40 */
181 REG_RULE(5200-10, 5200+10, 40, 6, 23,
182 NL80211_RRF_PASSIVE_SCAN
),
183 /* IEEE 802.11a, channel 44 */
184 REG_RULE(5220-10, 5220+10, 40, 6, 23,
185 NL80211_RRF_PASSIVE_SCAN
),
186 /* IEEE 802.11a, channels 48..64 */
187 REG_RULE(5240-10, 5320+10, 40, 6, 20,
188 NL80211_RRF_NO_IBSS
|
190 /* IEEE 802.11a, channels 100..140 */
191 REG_RULE(5500-10, 5700+10, 40, 6, 30,
192 NL80211_RRF_NO_IBSS
|
197 static const struct ieee80211_regdomain
*static_regdom(char *alpha2
)
199 if (alpha2
[0] == 'U' && alpha2
[1] == 'S')
201 if (alpha2
[0] == 'J' && alpha2
[1] == 'P')
203 if (alpha2
[0] == 'E' && alpha2
[1] == 'U')
205 /* Default, as per the old rules */
209 static bool is_old_static_regdom(const struct ieee80211_regdomain
*rd
)
211 if (rd
== &us_regdom
|| rd
== &jp_regdom
|| rd
== &eu_regdom
)
216 static inline bool is_old_static_regdom(const struct ieee80211_regdomain
*rd
)
222 static void reset_regdomains(void)
224 /* avoid freeing static information or freeing something twice */
225 if (cfg80211_regdomain
== cfg80211_world_regdom
)
226 cfg80211_regdomain
= NULL
;
227 if (cfg80211_world_regdom
== &world_regdom
)
228 cfg80211_world_regdom
= NULL
;
229 if (cfg80211_regdomain
== &world_regdom
)
230 cfg80211_regdomain
= NULL
;
231 if (is_old_static_regdom(cfg80211_regdomain
))
232 cfg80211_regdomain
= NULL
;
234 kfree(cfg80211_regdomain
);
235 kfree(cfg80211_world_regdom
);
237 cfg80211_world_regdom
= &world_regdom
;
238 cfg80211_regdomain
= NULL
;
242 * Dynamic world regulatory domain requested by the wireless
243 * core upon initialization
245 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
247 BUG_ON(!last_request
);
251 cfg80211_world_regdom
= rd
;
252 cfg80211_regdomain
= rd
;
255 bool is_world_regdom(const char *alpha2
)
259 if (alpha2
[0] == '0' && alpha2
[1] == '0')
264 static bool is_alpha2_set(const char *alpha2
)
268 if (alpha2
[0] != 0 && alpha2
[1] != 0)
273 static bool is_alpha_upper(char letter
)
276 if (letter
>= 65 && letter
<= 90)
281 static bool is_unknown_alpha2(const char *alpha2
)
286 * Special case where regulatory domain was built by driver
287 * but a specific alpha2 cannot be determined
289 if (alpha2
[0] == '9' && alpha2
[1] == '9')
294 static bool is_intersected_alpha2(const char *alpha2
)
299 * Special case where regulatory domain is the
300 * result of an intersection between two regulatory domain
303 if (alpha2
[0] == '9' && alpha2
[1] == '8')
308 static bool is_an_alpha2(const char *alpha2
)
312 if (is_alpha_upper(alpha2
[0]) && is_alpha_upper(alpha2
[1]))
317 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
319 if (!alpha2_x
|| !alpha2_y
)
321 if (alpha2_x
[0] == alpha2_y
[0] &&
322 alpha2_x
[1] == alpha2_y
[1])
327 static bool regdom_changes(const char *alpha2
)
329 assert_cfg80211_lock();
331 if (!cfg80211_regdomain
)
333 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
339 * country_ie_integrity_changes - tells us if the country IE has changed
340 * @checksum: checksum of country IE of fields we are interested in
342 * If the country IE has not changed you can ignore it safely. This is
343 * useful to determine if two devices are seeing two different country IEs
344 * even on the same alpha2. Note that this will return false if no IE has
345 * been set on the wireless core yet.
347 static bool country_ie_integrity_changes(u32 checksum
)
349 /* If no IE has been set then the checksum doesn't change */
350 if (unlikely(!last_request
->country_ie_checksum
))
352 if (unlikely(last_request
->country_ie_checksum
!= checksum
))
358 * This lets us keep regulatory code which is updated on a regulatory
359 * basis in userspace.
361 static int call_crda(const char *alpha2
)
363 char country_env
[9 + 2] = "COUNTRY=";
369 if (!is_world_regdom((char *) alpha2
))
370 printk(KERN_INFO
"cfg80211: Calling CRDA for country: %c%c\n",
371 alpha2
[0], alpha2
[1]);
373 printk(KERN_INFO
"cfg80211: Calling CRDA to update world "
374 "regulatory domain\n");
376 country_env
[8] = alpha2
[0];
377 country_env
[9] = alpha2
[1];
379 return kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, envp
);
382 /* Used by nl80211 before kmalloc'ing our regulatory domain */
383 bool reg_is_valid_request(const char *alpha2
)
385 assert_cfg80211_lock();
390 return alpha2_equal(last_request
->alpha2
, alpha2
);
393 /* Sanity check on a regulatory rule */
394 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
396 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
399 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
402 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
405 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
407 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
408 freq_range
->max_bandwidth_khz
> freq_diff
)
414 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
416 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
419 if (!rd
->n_reg_rules
)
422 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
425 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
426 reg_rule
= &rd
->reg_rules
[i
];
427 if (!is_valid_reg_rule(reg_rule
))
434 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
438 u32 start_freq_khz
, end_freq_khz
;
440 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
441 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
443 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
444 end_freq_khz
<= freq_range
->end_freq_khz
)
451 * freq_in_rule_band - tells us if a frequency is in a frequency band
452 * @freq_range: frequency rule we want to query
453 * @freq_khz: frequency we are inquiring about
455 * This lets us know if a specific frequency rule is or is not relevant to
456 * a specific frequency's band. Bands are device specific and artificial
457 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
458 * safe for now to assume that a frequency rule should not be part of a
459 * frequency's band if the start freq or end freq are off by more than 2 GHz.
460 * This resolution can be lowered and should be considered as we add
461 * regulatory rule support for other "bands".
463 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
466 #define ONE_GHZ_IN_KHZ 1000000
467 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
469 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
472 #undef ONE_GHZ_IN_KHZ
476 * Converts a country IE to a regulatory domain. A regulatory domain
477 * structure has a lot of information which the IE doesn't yet have,
478 * so for the other values we use upper max values as we will intersect
479 * with our userspace regulatory agent to get lower bounds.
481 static struct ieee80211_regdomain
*country_ie_2_rd(
486 struct ieee80211_regdomain
*rd
= NULL
;
490 u32 num_rules
= 0, size_of_regd
= 0;
491 u8
*triplets_start
= NULL
;
492 u8 len_at_triplet
= 0;
493 /* the last channel we have registered in a subband (triplet) */
494 int last_sub_max_channel
= 0;
496 *checksum
= 0xDEADBEEF;
498 /* Country IE requirements */
499 BUG_ON(country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
||
500 country_ie_len
& 0x01);
502 alpha2
[0] = country_ie
[0];
503 alpha2
[1] = country_ie
[1];
506 * Third octet can be:
510 * anything else we assume is no restrictions
512 if (country_ie
[2] == 'I')
513 flags
= NL80211_RRF_NO_OUTDOOR
;
514 else if (country_ie
[2] == 'O')
515 flags
= NL80211_RRF_NO_INDOOR
;
520 triplets_start
= country_ie
;
521 len_at_triplet
= country_ie_len
;
523 *checksum
^= ((flags
^ alpha2
[0] ^ alpha2
[1]) << 8);
526 * We need to build a reg rule for each triplet, but first we must
527 * calculate the number of reg rules we will need. We will need one
528 * for each channel subband
530 while (country_ie_len
>= 3) {
532 struct ieee80211_country_ie_triplet
*triplet
=
533 (struct ieee80211_country_ie_triplet
*) country_ie
;
534 int cur_sub_max_channel
= 0, cur_channel
= 0;
536 if (triplet
->ext
.reg_extension_id
>=
537 IEEE80211_COUNTRY_EXTENSION_ID
) {
544 if (triplet
->chans
.first_channel
<= 14)
545 end_channel
= triplet
->chans
.first_channel
+
546 triplet
->chans
.num_channels
;
549 * 5 GHz -- For example in country IEs if the first
550 * channel given is 36 and the number of channels is 4
551 * then the individual channel numbers defined for the
552 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
553 * and not 36, 37, 38, 39.
555 * See: http://tinyurl.com/11d-clarification
557 end_channel
= triplet
->chans
.first_channel
+
558 (4 * (triplet
->chans
.num_channels
- 1));
560 cur_channel
= triplet
->chans
.first_channel
;
561 cur_sub_max_channel
= end_channel
;
563 /* Basic sanity check */
564 if (cur_sub_max_channel
< cur_channel
)
568 * Do not allow overlapping channels. Also channels
569 * passed in each subband must be monotonically
572 if (last_sub_max_channel
) {
573 if (cur_channel
<= last_sub_max_channel
)
575 if (cur_sub_max_channel
<= last_sub_max_channel
)
580 * When dot11RegulatoryClassesRequired is supported
581 * we can throw ext triplets as part of this soup,
582 * for now we don't care when those change as we
585 *checksum
^= ((cur_channel
^ cur_sub_max_channel
) << 8) |
586 ((cur_sub_max_channel
^ cur_sub_max_channel
) << 16) |
587 ((triplet
->chans
.max_power
^ cur_sub_max_channel
) << 24);
589 last_sub_max_channel
= cur_sub_max_channel
;
596 * Note: this is not a IEEE requirement but
597 * simply a memory requirement
599 if (num_rules
> NL80211_MAX_SUPP_REG_RULES
)
603 country_ie
= triplets_start
;
604 country_ie_len
= len_at_triplet
;
606 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
607 (num_rules
* sizeof(struct ieee80211_reg_rule
));
609 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
613 rd
->n_reg_rules
= num_rules
;
614 rd
->alpha2
[0] = alpha2
[0];
615 rd
->alpha2
[1] = alpha2
[1];
617 /* This time around we fill in the rd */
618 while (country_ie_len
>= 3) {
620 struct ieee80211_country_ie_triplet
*triplet
=
621 (struct ieee80211_country_ie_triplet
*) country_ie
;
622 struct ieee80211_reg_rule
*reg_rule
= NULL
;
623 struct ieee80211_freq_range
*freq_range
= NULL
;
624 struct ieee80211_power_rule
*power_rule
= NULL
;
627 * Must parse if dot11RegulatoryClassesRequired is true,
628 * we don't support this yet
630 if (triplet
->ext
.reg_extension_id
>=
631 IEEE80211_COUNTRY_EXTENSION_ID
) {
637 reg_rule
= &rd
->reg_rules
[i
];
638 freq_range
= ®_rule
->freq_range
;
639 power_rule
= ®_rule
->power_rule
;
641 reg_rule
->flags
= flags
;
644 if (triplet
->chans
.first_channel
<= 14)
645 end_channel
= triplet
->chans
.first_channel
+
646 triplet
->chans
.num_channels
;
648 end_channel
= triplet
->chans
.first_channel
+
649 (4 * (triplet
->chans
.num_channels
- 1));
652 * The +10 is since the regulatory domain expects
653 * the actual band edge, not the center of freq for
654 * its start and end freqs, assuming 20 MHz bandwidth on
655 * the channels passed
657 freq_range
->start_freq_khz
=
658 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
659 triplet
->chans
.first_channel
) - 10);
660 freq_range
->end_freq_khz
=
661 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665 * These are large arbitrary values we use to intersect later.
666 * Increment this if we ever support >= 40 MHz channels
669 freq_range
->max_bandwidth_khz
= MHZ_TO_KHZ(40);
670 power_rule
->max_antenna_gain
= DBI_TO_MBI(100);
671 power_rule
->max_eirp
= DBM_TO_MBM(100);
677 BUG_ON(i
> NL80211_MAX_SUPP_REG_RULES
);
685 * Helper for regdom_intersect(), this does the real
686 * mathematical intersection fun
688 static int reg_rules_intersect(
689 const struct ieee80211_reg_rule
*rule1
,
690 const struct ieee80211_reg_rule
*rule2
,
691 struct ieee80211_reg_rule
*intersected_rule
)
693 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
694 struct ieee80211_freq_range
*freq_range
;
695 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
696 struct ieee80211_power_rule
*power_rule
;
699 freq_range1
= &rule1
->freq_range
;
700 freq_range2
= &rule2
->freq_range
;
701 freq_range
= &intersected_rule
->freq_range
;
703 power_rule1
= &rule1
->power_rule
;
704 power_rule2
= &rule2
->power_rule
;
705 power_rule
= &intersected_rule
->power_rule
;
707 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
708 freq_range2
->start_freq_khz
);
709 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
710 freq_range2
->end_freq_khz
);
711 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
712 freq_range2
->max_bandwidth_khz
);
714 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
715 if (freq_range
->max_bandwidth_khz
> freq_diff
)
716 freq_range
->max_bandwidth_khz
= freq_diff
;
718 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
719 power_rule2
->max_eirp
);
720 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
721 power_rule2
->max_antenna_gain
);
723 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
725 if (!is_valid_reg_rule(intersected_rule
))
732 * regdom_intersect - do the intersection between two regulatory domains
733 * @rd1: first regulatory domain
734 * @rd2: second regulatory domain
736 * Use this function to get the intersection between two regulatory domains.
737 * Once completed we will mark the alpha2 for the rd as intersected, "98",
738 * as no one single alpha2 can represent this regulatory domain.
740 * Returns a pointer to the regulatory domain structure which will hold the
741 * resulting intersection of rules between rd1 and rd2. We will
742 * kzalloc() this structure for you.
744 static struct ieee80211_regdomain
*regdom_intersect(
745 const struct ieee80211_regdomain
*rd1
,
746 const struct ieee80211_regdomain
*rd2
)
750 unsigned int num_rules
= 0, rule_idx
= 0;
751 const struct ieee80211_reg_rule
*rule1
, *rule2
;
752 struct ieee80211_reg_rule
*intersected_rule
;
753 struct ieee80211_regdomain
*rd
;
754 /* This is just a dummy holder to help us count */
755 struct ieee80211_reg_rule irule
;
757 /* Uses the stack temporarily for counter arithmetic */
758 intersected_rule
= &irule
;
760 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
766 * First we get a count of the rules we'll need, then we actually
767 * build them. This is to so we can malloc() and free() a
768 * regdomain once. The reason we use reg_rules_intersect() here
769 * is it will return -EINVAL if the rule computed makes no sense.
770 * All rules that do check out OK are valid.
773 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
774 rule1
= &rd1
->reg_rules
[x
];
775 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
776 rule2
= &rd2
->reg_rules
[y
];
777 if (!reg_rules_intersect(rule1
, rule2
,
780 memset(intersected_rule
, 0,
781 sizeof(struct ieee80211_reg_rule
));
788 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
789 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
791 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
795 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
796 rule1
= &rd1
->reg_rules
[x
];
797 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
798 rule2
= &rd2
->reg_rules
[y
];
800 * This time around instead of using the stack lets
801 * write to the target rule directly saving ourselves
804 intersected_rule
= &rd
->reg_rules
[rule_idx
];
805 r
= reg_rules_intersect(rule1
, rule2
,
808 * No need to memset here the intersected rule here as
809 * we're not using the stack anymore
817 if (rule_idx
!= num_rules
) {
822 rd
->n_reg_rules
= num_rules
;
830 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
831 * want to just have the channel structure use these
833 static u32
map_regdom_flags(u32 rd_flags
)
835 u32 channel_flags
= 0;
836 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
837 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
838 if (rd_flags
& NL80211_RRF_NO_IBSS
)
839 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
840 if (rd_flags
& NL80211_RRF_DFS
)
841 channel_flags
|= IEEE80211_CHAN_RADAR
;
842 return channel_flags
;
845 static int freq_reg_info_regd(struct wiphy
*wiphy
,
848 const struct ieee80211_reg_rule
**reg_rule
,
849 const struct ieee80211_regdomain
*custom_regd
)
852 bool band_rule_found
= false;
853 const struct ieee80211_regdomain
*regd
;
854 bool bw_fits
= false;
857 desired_bw_khz
= MHZ_TO_KHZ(20);
859 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
862 * Follow the driver's regulatory domain, if present, unless a country
863 * IE has been processed or a user wants to help complaince further
865 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
866 last_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
873 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
874 const struct ieee80211_reg_rule
*rr
;
875 const struct ieee80211_freq_range
*fr
= NULL
;
876 const struct ieee80211_power_rule
*pr
= NULL
;
878 rr
= ®d
->reg_rules
[i
];
879 fr
= &rr
->freq_range
;
880 pr
= &rr
->power_rule
;
883 * We only need to know if one frequency rule was
884 * was in center_freq's band, that's enough, so lets
885 * not overwrite it once found
887 if (!band_rule_found
)
888 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
890 bw_fits
= reg_does_bw_fit(fr
,
894 if (band_rule_found
&& bw_fits
) {
900 if (!band_rule_found
)
905 EXPORT_SYMBOL(freq_reg_info
);
907 int freq_reg_info(struct wiphy
*wiphy
,
910 const struct ieee80211_reg_rule
**reg_rule
)
912 assert_cfg80211_lock();
913 return freq_reg_info_regd(wiphy
,
921 * Note that right now we assume the desired channel bandwidth
922 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
923 * per channel, the primary and the extension channel). To support
924 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
925 * new ieee80211_channel.target_bw and re run the regulatory check
926 * on the wiphy with the target_bw specified. Then we can simply use
927 * that below for the desired_bw_khz below.
929 static void handle_channel(struct wiphy
*wiphy
, enum ieee80211_band band
,
930 unsigned int chan_idx
)
933 u32 flags
, bw_flags
= 0;
934 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
935 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
936 const struct ieee80211_power_rule
*power_rule
= NULL
;
937 const struct ieee80211_freq_range
*freq_range
= NULL
;
938 struct ieee80211_supported_band
*sband
;
939 struct ieee80211_channel
*chan
;
940 struct wiphy
*request_wiphy
= NULL
;
942 assert_cfg80211_lock();
944 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
946 sband
= wiphy
->bands
[band
];
947 BUG_ON(chan_idx
>= sband
->n_channels
);
948 chan
= &sband
->channels
[chan_idx
];
950 flags
= chan
->orig_flags
;
952 r
= freq_reg_info(wiphy
,
953 MHZ_TO_KHZ(chan
->center_freq
),
959 * This means no regulatory rule was found in the country IE
960 * with a frequency range on the center_freq's band, since
961 * IEEE-802.11 allows for a country IE to have a subset of the
962 * regulatory information provided in a country we ignore
963 * disabling the channel unless at least one reg rule was
964 * found on the center_freq's band. For details see this
967 * http://tinyurl.com/11d-clarification
970 last_request
->initiator
==
971 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
972 #ifdef CONFIG_CFG80211_REG_DEBUG
973 printk(KERN_DEBUG
"cfg80211: Leaving channel %d MHz "
974 "intact on %s - no rule found in band on "
976 chan
->center_freq
, wiphy_name(wiphy
));
980 * In this case we know the country IE has at least one reg rule
981 * for the band so we respect its band definitions
983 #ifdef CONFIG_CFG80211_REG_DEBUG
984 if (last_request
->initiator
==
985 NL80211_REGDOM_SET_BY_COUNTRY_IE
)
986 printk(KERN_DEBUG
"cfg80211: Disabling "
987 "channel %d MHz on %s due to "
989 chan
->center_freq
, wiphy_name(wiphy
));
991 flags
|= IEEE80211_CHAN_DISABLED
;
997 power_rule
= ®_rule
->power_rule
;
998 freq_range
= ®_rule
->freq_range
;
1000 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1001 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1003 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1004 request_wiphy
&& request_wiphy
== wiphy
&&
1005 request_wiphy
->strict_regulatory
) {
1007 * This gaurantees the driver's requested regulatory domain
1008 * will always be used as a base for further regulatory
1011 chan
->flags
= chan
->orig_flags
=
1012 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1013 chan
->max_antenna_gain
= chan
->orig_mag
=
1014 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1015 chan
->max_bandwidth
= KHZ_TO_MHZ(desired_bw_khz
);
1016 chan
->max_power
= chan
->orig_mpwr
=
1017 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1021 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1022 chan
->max_antenna_gain
= min(chan
->orig_mag
,
1023 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
1024 chan
->max_bandwidth
= KHZ_TO_MHZ(desired_bw_khz
);
1025 if (chan
->orig_mpwr
)
1026 chan
->max_power
= min(chan
->orig_mpwr
,
1027 (int) MBM_TO_DBM(power_rule
->max_eirp
));
1029 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1032 static void handle_band(struct wiphy
*wiphy
, enum ieee80211_band band
)
1035 struct ieee80211_supported_band
*sband
;
1037 BUG_ON(!wiphy
->bands
[band
]);
1038 sband
= wiphy
->bands
[band
];
1040 for (i
= 0; i
< sband
->n_channels
; i
++)
1041 handle_channel(wiphy
, band
, i
);
1044 static bool ignore_reg_update(struct wiphy
*wiphy
,
1045 enum nl80211_reg_initiator initiator
)
1049 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1050 wiphy
->custom_regulatory
)
1053 * wiphy->regd will be set once the device has its own
1054 * desired regulatory domain set
1056 if (wiphy
->strict_regulatory
&& !wiphy
->regd
&&
1057 !is_world_regdom(last_request
->alpha2
))
1062 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
1064 struct cfg80211_registered_device
*drv
;
1066 list_for_each_entry(drv
, &cfg80211_drv_list
, list
)
1067 wiphy_update_regulatory(&drv
->wiphy
, initiator
);
1070 static void handle_reg_beacon(struct wiphy
*wiphy
,
1071 unsigned int chan_idx
,
1072 struct reg_beacon
*reg_beacon
)
1074 struct ieee80211_supported_band
*sband
;
1075 struct ieee80211_channel
*chan
;
1076 bool channel_changed
= false;
1077 struct ieee80211_channel chan_before
;
1079 assert_cfg80211_lock();
1081 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1082 chan
= &sband
->channels
[chan_idx
];
1084 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1087 if (chan
->beacon_found
)
1090 chan
->beacon_found
= true;
1092 chan_before
.center_freq
= chan
->center_freq
;
1093 chan_before
.flags
= chan
->flags
;
1095 if ((chan
->flags
& IEEE80211_CHAN_PASSIVE_SCAN
) &&
1096 !(chan
->orig_flags
& IEEE80211_CHAN_PASSIVE_SCAN
)) {
1097 chan
->flags
&= ~IEEE80211_CHAN_PASSIVE_SCAN
;
1098 channel_changed
= true;
1101 if ((chan
->flags
& IEEE80211_CHAN_NO_IBSS
) &&
1102 !(chan
->orig_flags
& IEEE80211_CHAN_NO_IBSS
)) {
1103 chan
->flags
&= ~IEEE80211_CHAN_NO_IBSS
;
1104 channel_changed
= true;
1107 if (channel_changed
)
1108 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1112 * Called when a scan on a wiphy finds a beacon on
1115 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1116 struct reg_beacon
*reg_beacon
)
1119 struct ieee80211_supported_band
*sband
;
1121 assert_cfg80211_lock();
1123 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1126 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1128 for (i
= 0; i
< sband
->n_channels
; i
++)
1129 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1133 * Called upon reg changes or a new wiphy is added
1135 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1138 struct ieee80211_supported_band
*sband
;
1139 struct reg_beacon
*reg_beacon
;
1141 assert_cfg80211_lock();
1143 if (list_empty(®_beacon_list
))
1146 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1147 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1149 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1150 for (i
= 0; i
< sband
->n_channels
; i
++)
1151 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1155 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1157 if (is_world_regdom(cfg80211_regdomain
->alpha2
) ||
1158 (wiphy
->regd
&& is_world_regdom(wiphy
->regd
->alpha2
)))
1161 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1162 wiphy
->custom_regulatory
)
1167 /* Reap the advantages of previously found beacons */
1168 static void reg_process_beacons(struct wiphy
*wiphy
)
1171 * Means we are just firing up cfg80211, so no beacons would
1172 * have been processed yet.
1176 if (!reg_is_world_roaming(wiphy
))
1178 wiphy_update_beacon_reg(wiphy
);
1181 static bool is_ht40_not_allowed(struct ieee80211_channel
*chan
)
1185 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1187 /* This would happen when regulatory rules disallow HT40 completely */
1188 if (IEEE80211_CHAN_NO_HT40
== (chan
->flags
& (IEEE80211_CHAN_NO_HT40
)))
1193 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1194 enum ieee80211_band band
,
1195 unsigned int chan_idx
)
1197 struct ieee80211_supported_band
*sband
;
1198 struct ieee80211_channel
*channel
;
1199 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1202 assert_cfg80211_lock();
1204 sband
= wiphy
->bands
[band
];
1205 BUG_ON(chan_idx
>= sband
->n_channels
);
1206 channel
= &sband
->channels
[chan_idx
];
1208 if (is_ht40_not_allowed(channel
)) {
1209 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1214 * We need to ensure the extension channels exist to
1215 * be able to use HT40- or HT40+, this finds them (or not)
1217 for (i
= 0; i
< sband
->n_channels
; i
++) {
1218 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1219 if (c
->center_freq
== (channel
->center_freq
- 20))
1221 if (c
->center_freq
== (channel
->center_freq
+ 20))
1226 * Please note that this assumes target bandwidth is 20 MHz,
1227 * if that ever changes we also need to change the below logic
1228 * to include that as well.
1230 if (is_ht40_not_allowed(channel_before
))
1231 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1233 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1235 if (is_ht40_not_allowed(channel_after
))
1236 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1238 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1241 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1242 enum ieee80211_band band
)
1245 struct ieee80211_supported_band
*sband
;
1247 BUG_ON(!wiphy
->bands
[band
]);
1248 sband
= wiphy
->bands
[band
];
1250 for (i
= 0; i
< sband
->n_channels
; i
++)
1251 reg_process_ht_flags_channel(wiphy
, band
, i
);
1254 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1256 enum ieee80211_band band
;
1261 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1262 if (wiphy
->bands
[band
])
1263 reg_process_ht_flags_band(wiphy
, band
);
1268 void wiphy_update_regulatory(struct wiphy
*wiphy
,
1269 enum nl80211_reg_initiator initiator
)
1271 enum ieee80211_band band
;
1273 if (ignore_reg_update(wiphy
, initiator
))
1275 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1276 if (wiphy
->bands
[band
])
1277 handle_band(wiphy
, band
);
1280 reg_process_beacons(wiphy
);
1281 reg_process_ht_flags(wiphy
);
1282 if (wiphy
->reg_notifier
)
1283 wiphy
->reg_notifier(wiphy
, last_request
);
1286 static void handle_channel_custom(struct wiphy
*wiphy
,
1287 enum ieee80211_band band
,
1288 unsigned int chan_idx
,
1289 const struct ieee80211_regdomain
*regd
)
1292 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
1294 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1295 const struct ieee80211_power_rule
*power_rule
= NULL
;
1296 const struct ieee80211_freq_range
*freq_range
= NULL
;
1297 struct ieee80211_supported_band
*sband
;
1298 struct ieee80211_channel
*chan
;
1300 assert_cfg80211_lock();
1302 sband
= wiphy
->bands
[band
];
1303 BUG_ON(chan_idx
>= sband
->n_channels
);
1304 chan
= &sband
->channels
[chan_idx
];
1306 r
= freq_reg_info_regd(wiphy
,
1307 MHZ_TO_KHZ(chan
->center_freq
),
1313 chan
->flags
= IEEE80211_CHAN_DISABLED
;
1317 power_rule
= ®_rule
->power_rule
;
1318 freq_range
= ®_rule
->freq_range
;
1320 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1321 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1323 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1324 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1325 chan
->max_bandwidth
= KHZ_TO_MHZ(desired_bw_khz
);
1326 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1329 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1330 const struct ieee80211_regdomain
*regd
)
1333 struct ieee80211_supported_band
*sband
;
1335 BUG_ON(!wiphy
->bands
[band
]);
1336 sband
= wiphy
->bands
[band
];
1338 for (i
= 0; i
< sband
->n_channels
; i
++)
1339 handle_channel_custom(wiphy
, band
, i
, regd
);
1342 /* Used by drivers prior to wiphy registration */
1343 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1344 const struct ieee80211_regdomain
*regd
)
1346 enum ieee80211_band band
;
1347 unsigned int bands_set
= 0;
1349 mutex_lock(&cfg80211_mutex
);
1350 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1351 if (!wiphy
->bands
[band
])
1353 handle_band_custom(wiphy
, band
, regd
);
1356 mutex_unlock(&cfg80211_mutex
);
1359 * no point in calling this if it won't have any effect
1360 * on your device's supportd bands.
1362 WARN_ON(!bands_set
);
1364 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1366 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
1367 const struct ieee80211_regdomain
*src_regd
)
1369 struct ieee80211_regdomain
*regd
;
1370 int size_of_regd
= 0;
1373 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
1374 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
1376 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
1380 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
1382 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
1383 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
1384 sizeof(struct ieee80211_reg_rule
));
1391 * Return value which can be used by ignore_request() to indicate
1392 * it has been determined we should intersect two regulatory domains
1394 #define REG_INTERSECT 1
1396 /* This has the logic which determines when a new request
1397 * should be ignored. */
1398 static int ignore_request(struct wiphy
*wiphy
,
1399 struct regulatory_request
*pending_request
)
1401 struct wiphy
*last_wiphy
= NULL
;
1403 assert_cfg80211_lock();
1405 /* All initial requests are respected */
1409 switch (pending_request
->initiator
) {
1410 case NL80211_REGDOM_SET_BY_CORE
:
1412 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1414 last_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1416 if (unlikely(!is_an_alpha2(pending_request
->alpha2
)))
1418 if (last_request
->initiator
==
1419 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1420 if (last_wiphy
!= wiphy
) {
1422 * Two cards with two APs claiming different
1423 * different Country IE alpha2s. We could
1424 * intersect them, but that seems unlikely
1425 * to be correct. Reject second one for now.
1427 if (regdom_changes(pending_request
->alpha2
))
1432 * Two consecutive Country IE hints on the same wiphy.
1433 * This should be picked up early by the driver/stack
1435 if (WARN_ON(regdom_changes(pending_request
->alpha2
)))
1439 return REG_INTERSECT
;
1440 case NL80211_REGDOM_SET_BY_DRIVER
:
1441 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1442 if (is_old_static_regdom(cfg80211_regdomain
))
1444 if (regdom_changes(pending_request
->alpha2
))
1450 * This would happen if you unplug and plug your card
1451 * back in or if you add a new device for which the previously
1452 * loaded card also agrees on the regulatory domain.
1454 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1455 !regdom_changes(pending_request
->alpha2
))
1458 return REG_INTERSECT
;
1459 case NL80211_REGDOM_SET_BY_USER
:
1460 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1461 return REG_INTERSECT
;
1463 * If the user knows better the user should set the regdom
1464 * to their country before the IE is picked up
1466 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1467 last_request
->intersect
)
1470 * Process user requests only after previous user/driver/core
1471 * requests have been processed
1473 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1474 last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1475 last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1476 if (regdom_changes(last_request
->alpha2
))
1480 if (!is_old_static_regdom(cfg80211_regdomain
) &&
1481 !regdom_changes(pending_request
->alpha2
))
1491 * __regulatory_hint - hint to the wireless core a regulatory domain
1492 * @wiphy: if the hint comes from country information from an AP, this
1493 * is required to be set to the wiphy that received the information
1494 * @pending_request: the regulatory request currently being processed
1496 * The Wireless subsystem can use this function to hint to the wireless core
1497 * what it believes should be the current regulatory domain.
1499 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1500 * already been set or other standard error codes.
1502 * Caller must hold &cfg80211_mutex
1504 static int __regulatory_hint(struct wiphy
*wiphy
,
1505 struct regulatory_request
*pending_request
)
1507 bool intersect
= false;
1510 assert_cfg80211_lock();
1512 r
= ignore_request(wiphy
, pending_request
);
1514 if (r
== REG_INTERSECT
) {
1515 if (pending_request
->initiator
==
1516 NL80211_REGDOM_SET_BY_DRIVER
) {
1517 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1519 kfree(pending_request
);
1526 * If the regulatory domain being requested by the
1527 * driver has already been set just copy it to the
1530 if (r
== -EALREADY
&&
1531 pending_request
->initiator
==
1532 NL80211_REGDOM_SET_BY_DRIVER
) {
1533 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1535 kfree(pending_request
);
1541 kfree(pending_request
);
1546 kfree(last_request
);
1548 last_request
= pending_request
;
1549 last_request
->intersect
= intersect
;
1551 pending_request
= NULL
;
1553 /* When r == REG_INTERSECT we do need to call CRDA */
1556 * Since CRDA will not be called in this case as we already
1557 * have applied the requested regulatory domain before we just
1558 * inform userspace we have processed the request
1561 nl80211_send_reg_change_event(last_request
);
1565 return call_crda(last_request
->alpha2
);
1568 /* This processes *all* regulatory hints */
1569 static void reg_process_hint(struct regulatory_request
*reg_request
)
1572 struct wiphy
*wiphy
= NULL
;
1574 BUG_ON(!reg_request
->alpha2
);
1576 mutex_lock(&cfg80211_mutex
);
1578 if (wiphy_idx_valid(reg_request
->wiphy_idx
))
1579 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1581 if (reg_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1587 r
= __regulatory_hint(wiphy
, reg_request
);
1588 /* This is required so that the orig_* parameters are saved */
1589 if (r
== -EALREADY
&& wiphy
&& wiphy
->strict_regulatory
)
1590 wiphy_update_regulatory(wiphy
, reg_request
->initiator
);
1592 mutex_unlock(&cfg80211_mutex
);
1595 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1596 static void reg_process_pending_hints(void)
1598 struct regulatory_request
*reg_request
;
1600 spin_lock(®_requests_lock
);
1601 while (!list_empty(®_requests_list
)) {
1602 reg_request
= list_first_entry(®_requests_list
,
1603 struct regulatory_request
,
1605 list_del_init(®_request
->list
);
1607 spin_unlock(®_requests_lock
);
1608 reg_process_hint(reg_request
);
1609 spin_lock(®_requests_lock
);
1611 spin_unlock(®_requests_lock
);
1614 /* Processes beacon hints -- this has nothing to do with country IEs */
1615 static void reg_process_pending_beacon_hints(void)
1617 struct cfg80211_registered_device
*drv
;
1618 struct reg_beacon
*pending_beacon
, *tmp
;
1620 mutex_lock(&cfg80211_mutex
);
1622 /* This goes through the _pending_ beacon list */
1623 spin_lock_bh(®_pending_beacons_lock
);
1625 if (list_empty(®_pending_beacons
)) {
1626 spin_unlock_bh(®_pending_beacons_lock
);
1630 list_for_each_entry_safe(pending_beacon
, tmp
,
1631 ®_pending_beacons
, list
) {
1633 list_del_init(&pending_beacon
->list
);
1635 /* Applies the beacon hint to current wiphys */
1636 list_for_each_entry(drv
, &cfg80211_drv_list
, list
)
1637 wiphy_update_new_beacon(&drv
->wiphy
, pending_beacon
);
1639 /* Remembers the beacon hint for new wiphys or reg changes */
1640 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1643 spin_unlock_bh(®_pending_beacons_lock
);
1645 mutex_unlock(&cfg80211_mutex
);
1648 static void reg_todo(struct work_struct
*work
)
1650 reg_process_pending_hints();
1651 reg_process_pending_beacon_hints();
1654 static DECLARE_WORK(reg_work
, reg_todo
);
1656 static void queue_regulatory_request(struct regulatory_request
*request
)
1658 spin_lock(®_requests_lock
);
1659 list_add_tail(&request
->list
, ®_requests_list
);
1660 spin_unlock(®_requests_lock
);
1662 schedule_work(®_work
);
1665 /* Core regulatory hint -- happens once during cfg80211_init() */
1666 static int regulatory_hint_core(const char *alpha2
)
1668 struct regulatory_request
*request
;
1670 BUG_ON(last_request
);
1672 request
= kzalloc(sizeof(struct regulatory_request
),
1677 request
->alpha2
[0] = alpha2
[0];
1678 request
->alpha2
[1] = alpha2
[1];
1679 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1681 queue_regulatory_request(request
);
1684 * This ensures last_request is populated once modules
1685 * come swinging in and calling regulatory hints and
1686 * wiphy_apply_custom_regulatory().
1688 flush_scheduled_work();
1694 int regulatory_hint_user(const char *alpha2
)
1696 struct regulatory_request
*request
;
1700 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1704 request
->wiphy_idx
= WIPHY_IDX_STALE
;
1705 request
->alpha2
[0] = alpha2
[0];
1706 request
->alpha2
[1] = alpha2
[1];
1707 request
->initiator
= NL80211_REGDOM_SET_BY_USER
,
1709 queue_regulatory_request(request
);
1715 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1717 struct regulatory_request
*request
;
1722 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1726 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1728 /* Must have registered wiphy first */
1729 BUG_ON(!wiphy_idx_valid(request
->wiphy_idx
));
1731 request
->alpha2
[0] = alpha2
[0];
1732 request
->alpha2
[1] = alpha2
[1];
1733 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
1735 queue_regulatory_request(request
);
1739 EXPORT_SYMBOL(regulatory_hint
);
1741 static bool reg_same_country_ie_hint(struct wiphy
*wiphy
,
1742 u32 country_ie_checksum
)
1744 struct wiphy
*request_wiphy
;
1746 assert_cfg80211_lock();
1748 if (unlikely(last_request
->initiator
!=
1749 NL80211_REGDOM_SET_BY_COUNTRY_IE
))
1752 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1757 if (likely(request_wiphy
!= wiphy
))
1758 return !country_ie_integrity_changes(country_ie_checksum
);
1760 * We should not have let these through at this point, they
1761 * should have been picked up earlier by the first alpha2 check
1764 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum
)))
1769 void regulatory_hint_11d(struct wiphy
*wiphy
,
1773 struct ieee80211_regdomain
*rd
= NULL
;
1776 enum environment_cap env
= ENVIRON_ANY
;
1777 struct regulatory_request
*request
;
1779 mutex_lock(&cfg80211_mutex
);
1781 if (unlikely(!last_request
)) {
1782 mutex_unlock(&cfg80211_mutex
);
1786 /* IE len must be evenly divisible by 2 */
1787 if (country_ie_len
& 0x01)
1790 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
1794 * Pending country IE processing, this can happen after we
1795 * call CRDA and wait for a response if a beacon was received before
1796 * we were able to process the last regulatory_hint_11d() call
1798 if (country_ie_regdomain
)
1801 alpha2
[0] = country_ie
[0];
1802 alpha2
[1] = country_ie
[1];
1804 if (country_ie
[2] == 'I')
1805 env
= ENVIRON_INDOOR
;
1806 else if (country_ie
[2] == 'O')
1807 env
= ENVIRON_OUTDOOR
;
1810 * We will run this for *every* beacon processed for the BSSID, so
1811 * we optimize an early check to exit out early if we don't have to
1814 if (likely(last_request
->initiator
==
1815 NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1816 wiphy_idx_valid(last_request
->wiphy_idx
))) {
1817 struct cfg80211_registered_device
*drv_last_ie
;
1820 cfg80211_drv_by_wiphy_idx(last_request
->wiphy_idx
);
1823 * Lets keep this simple -- we trust the first AP
1824 * after we intersect with CRDA
1826 if (likely(&drv_last_ie
->wiphy
== wiphy
)) {
1828 * Ignore IEs coming in on this wiphy with
1829 * the same alpha2 and environment cap
1831 if (likely(alpha2_equal(drv_last_ie
->country_ie_alpha2
,
1833 env
== drv_last_ie
->env
)) {
1837 * the wiphy moved on to another BSSID or the AP
1838 * was reconfigured. XXX: We need to deal with the
1839 * case where the user suspends and goes to goes
1840 * to another country, and then gets IEs from an
1841 * AP with different settings
1846 * Ignore IEs coming in on two separate wiphys with
1847 * the same alpha2 and environment cap
1849 if (likely(alpha2_equal(drv_last_ie
->country_ie_alpha2
,
1851 env
== drv_last_ie
->env
)) {
1854 /* We could potentially intersect though */
1859 rd
= country_ie_2_rd(country_ie
, country_ie_len
, &checksum
);
1864 * This will not happen right now but we leave it here for the
1865 * the future when we want to add suspend/resume support and having
1866 * the user move to another country after doing so, or having the user
1867 * move to another AP. Right now we just trust the first AP.
1869 * If we hit this before we add this support we want to be informed of
1870 * it as it would indicate a mistake in the current design
1872 if (WARN_ON(reg_same_country_ie_hint(wiphy
, checksum
)))
1875 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1880 * We keep this around for when CRDA comes back with a response so
1881 * we can intersect with that
1883 country_ie_regdomain
= rd
;
1885 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1886 request
->alpha2
[0] = rd
->alpha2
[0];
1887 request
->alpha2
[1] = rd
->alpha2
[1];
1888 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
1889 request
->country_ie_checksum
= checksum
;
1890 request
->country_ie_env
= env
;
1892 mutex_unlock(&cfg80211_mutex
);
1894 queue_regulatory_request(request
);
1901 mutex_unlock(&cfg80211_mutex
);
1903 EXPORT_SYMBOL(regulatory_hint_11d
);
1905 static bool freq_is_chan_12_13_14(u16 freq
)
1907 if (freq
== ieee80211_channel_to_frequency(12) ||
1908 freq
== ieee80211_channel_to_frequency(13) ||
1909 freq
== ieee80211_channel_to_frequency(14))
1914 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
1915 struct ieee80211_channel
*beacon_chan
,
1918 struct reg_beacon
*reg_beacon
;
1920 if (likely((beacon_chan
->beacon_found
||
1921 (beacon_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
1922 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
1923 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))))
1926 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
1930 #ifdef CONFIG_CFG80211_REG_DEBUG
1931 printk(KERN_DEBUG
"cfg80211: Found new beacon on "
1932 "frequency: %d MHz (Ch %d) on %s\n",
1933 beacon_chan
->center_freq
,
1934 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
1937 memcpy(®_beacon
->chan
, beacon_chan
,
1938 sizeof(struct ieee80211_channel
));
1942 * Since we can be called from BH or and non-BH context
1943 * we must use spin_lock_bh()
1945 spin_lock_bh(®_pending_beacons_lock
);
1946 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
1947 spin_unlock_bh(®_pending_beacons_lock
);
1949 schedule_work(®_work
);
1954 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
1957 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1958 const struct ieee80211_freq_range
*freq_range
= NULL
;
1959 const struct ieee80211_power_rule
*power_rule
= NULL
;
1961 printk(KERN_INFO
"\t(start_freq - end_freq @ bandwidth), "
1962 "(max_antenna_gain, max_eirp)\n");
1964 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1965 reg_rule
= &rd
->reg_rules
[i
];
1966 freq_range
= ®_rule
->freq_range
;
1967 power_rule
= ®_rule
->power_rule
;
1970 * There may not be documentation for max antenna gain
1971 * in certain regions
1973 if (power_rule
->max_antenna_gain
)
1974 printk(KERN_INFO
"\t(%d KHz - %d KHz @ %d KHz), "
1975 "(%d mBi, %d mBm)\n",
1976 freq_range
->start_freq_khz
,
1977 freq_range
->end_freq_khz
,
1978 freq_range
->max_bandwidth_khz
,
1979 power_rule
->max_antenna_gain
,
1980 power_rule
->max_eirp
);
1982 printk(KERN_INFO
"\t(%d KHz - %d KHz @ %d KHz), "
1984 freq_range
->start_freq_khz
,
1985 freq_range
->end_freq_khz
,
1986 freq_range
->max_bandwidth_khz
,
1987 power_rule
->max_eirp
);
1991 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
1994 if (is_intersected_alpha2(rd
->alpha2
)) {
1996 if (last_request
->initiator
==
1997 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1998 struct cfg80211_registered_device
*drv
;
1999 drv
= cfg80211_drv_by_wiphy_idx(
2000 last_request
->wiphy_idx
);
2002 printk(KERN_INFO
"cfg80211: Current regulatory "
2003 "domain updated by AP to: %c%c\n",
2004 drv
->country_ie_alpha2
[0],
2005 drv
->country_ie_alpha2
[1]);
2007 printk(KERN_INFO
"cfg80211: Current regulatory "
2008 "domain intersected: \n");
2010 printk(KERN_INFO
"cfg80211: Current regulatory "
2011 "domain intersected: \n");
2012 } else if (is_world_regdom(rd
->alpha2
))
2013 printk(KERN_INFO
"cfg80211: World regulatory "
2014 "domain updated:\n");
2016 if (is_unknown_alpha2(rd
->alpha2
))
2017 printk(KERN_INFO
"cfg80211: Regulatory domain "
2018 "changed to driver built-in settings "
2019 "(unknown country)\n");
2021 printk(KERN_INFO
"cfg80211: Regulatory domain "
2022 "changed to country: %c%c\n",
2023 rd
->alpha2
[0], rd
->alpha2
[1]);
2028 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
2030 printk(KERN_INFO
"cfg80211: Regulatory domain: %c%c\n",
2031 rd
->alpha2
[0], rd
->alpha2
[1]);
2035 #ifdef CONFIG_CFG80211_REG_DEBUG
2036 static void reg_country_ie_process_debug(
2037 const struct ieee80211_regdomain
*rd
,
2038 const struct ieee80211_regdomain
*country_ie_regdomain
,
2039 const struct ieee80211_regdomain
*intersected_rd
)
2041 printk(KERN_DEBUG
"cfg80211: Received country IE:\n");
2042 print_regdomain_info(country_ie_regdomain
);
2043 printk(KERN_DEBUG
"cfg80211: CRDA thinks this should applied:\n");
2044 print_regdomain_info(rd
);
2045 if (intersected_rd
) {
2046 printk(KERN_DEBUG
"cfg80211: We intersect both of these "
2048 print_regdomain_info(intersected_rd
);
2051 printk(KERN_DEBUG
"cfg80211: Intersection between both failed\n");
2054 static inline void reg_country_ie_process_debug(
2055 const struct ieee80211_regdomain
*rd
,
2056 const struct ieee80211_regdomain
*country_ie_regdomain
,
2057 const struct ieee80211_regdomain
*intersected_rd
)
2062 /* Takes ownership of rd only if it doesn't fail */
2063 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
2065 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2066 struct cfg80211_registered_device
*drv
= NULL
;
2067 struct wiphy
*request_wiphy
;
2068 /* Some basic sanity checks first */
2070 if (is_world_regdom(rd
->alpha2
)) {
2071 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2073 update_world_regdomain(rd
);
2077 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
2078 !is_unknown_alpha2(rd
->alpha2
))
2085 * Lets only bother proceeding on the same alpha2 if the current
2086 * rd is non static (it means CRDA was present and was used last)
2087 * and the pending request came in from a country IE
2089 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2091 * If someone else asked us to change the rd lets only bother
2092 * checking if the alpha2 changes if CRDA was already called
2094 if (!is_old_static_regdom(cfg80211_regdomain
) &&
2095 !regdom_changes(rd
->alpha2
))
2100 * Now lets set the regulatory domain, update all driver channels
2101 * and finally inform them of what we have done, in case they want
2102 * to review or adjust their own settings based on their own
2103 * internal EEPROM data
2106 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2109 if (!is_valid_rd(rd
)) {
2110 printk(KERN_ERR
"cfg80211: Invalid "
2111 "regulatory domain detected:\n");
2112 print_regdomain_info(rd
);
2116 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2118 if (!last_request
->intersect
) {
2121 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_DRIVER
) {
2123 cfg80211_regdomain
= rd
;
2128 * For a driver hint, lets copy the regulatory domain the
2129 * driver wanted to the wiphy to deal with conflicts
2133 * Userspace could have sent two replies with only
2134 * one kernel request.
2136 if (request_wiphy
->regd
)
2139 r
= reg_copy_regd(&request_wiphy
->regd
, rd
);
2144 cfg80211_regdomain
= rd
;
2148 /* Intersection requires a bit more work */
2150 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2152 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
2153 if (!intersected_rd
)
2157 * We can trash what CRDA provided now.
2158 * However if a driver requested this specific regulatory
2159 * domain we keep it for its private use
2161 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
)
2162 request_wiphy
->regd
= rd
;
2169 cfg80211_regdomain
= intersected_rd
;
2175 * Country IE requests are handled a bit differently, we intersect
2176 * the country IE rd with what CRDA believes that country should have
2180 * Userspace could have sent two replies with only
2181 * one kernel request. By the second reply we would have
2182 * already processed and consumed the country_ie_regdomain.
2184 if (!country_ie_regdomain
)
2186 BUG_ON(rd
== country_ie_regdomain
);
2189 * Intersect what CRDA returned and our what we
2190 * had built from the Country IE received
2193 intersected_rd
= regdom_intersect(rd
, country_ie_regdomain
);
2195 reg_country_ie_process_debug(rd
,
2196 country_ie_regdomain
,
2199 kfree(country_ie_regdomain
);
2200 country_ie_regdomain
= NULL
;
2202 if (!intersected_rd
)
2205 drv
= wiphy_to_dev(request_wiphy
);
2207 drv
->country_ie_alpha2
[0] = rd
->alpha2
[0];
2208 drv
->country_ie_alpha2
[1] = rd
->alpha2
[1];
2209 drv
->env
= last_request
->country_ie_env
;
2211 BUG_ON(intersected_rd
== rd
);
2217 cfg80211_regdomain
= intersected_rd
;
2224 * Use this call to set the current regulatory domain. Conflicts with
2225 * multiple drivers can be ironed out later. Caller must've already
2226 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2228 int set_regdom(const struct ieee80211_regdomain
*rd
)
2232 assert_cfg80211_lock();
2234 /* Note that this doesn't update the wiphys, this is done below */
2235 r
= __set_regdom(rd
);
2241 /* This would make this whole thing pointless */
2242 if (!last_request
->intersect
)
2243 BUG_ON(rd
!= cfg80211_regdomain
);
2245 /* update all wiphys now with the new established regulatory domain */
2246 update_all_wiphy_regulatory(last_request
->initiator
);
2248 print_regdomain(cfg80211_regdomain
);
2250 nl80211_send_reg_change_event(last_request
);
2255 /* Caller must hold cfg80211_mutex */
2256 void reg_device_remove(struct wiphy
*wiphy
)
2258 struct wiphy
*request_wiphy
= NULL
;
2260 assert_cfg80211_lock();
2265 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2267 if (!request_wiphy
|| request_wiphy
!= wiphy
)
2270 last_request
->wiphy_idx
= WIPHY_IDX_STALE
;
2271 last_request
->country_ie_env
= ENVIRON_ANY
;
2274 int regulatory_init(void)
2278 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
2279 if (IS_ERR(reg_pdev
))
2280 return PTR_ERR(reg_pdev
);
2282 spin_lock_init(®_requests_lock
);
2283 spin_lock_init(®_pending_beacons_lock
);
2285 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2286 cfg80211_regdomain
= static_regdom(ieee80211_regdom
);
2288 printk(KERN_INFO
"cfg80211: Using static regulatory domain info\n");
2289 print_regdomain_info(cfg80211_regdomain
);
2291 * The old code still requests for a new regdomain and if
2292 * you have CRDA you get it updated, otherwise you get
2293 * stuck with the static values. Since "EU" is not a valid
2294 * ISO / IEC 3166 alpha2 code we can't expect userpace to
2295 * give us a regulatory domain for it. We need last_request
2296 * iniitalized though so lets just send a request which we
2297 * know will be ignored... this crap will be removed once
2300 err
= regulatory_hint_core(ieee80211_regdom
);
2302 cfg80211_regdomain
= cfg80211_world_regdom
;
2304 err
= regulatory_hint_core(ieee80211_regdom
);
2310 * N.B. kobject_uevent_env() can fail mainly for when we're out
2311 * memory which is handled and propagated appropriately above
2312 * but it can also fail during a netlink_broadcast() or during
2313 * early boot for call_usermodehelper(). For now treat these
2314 * errors as non-fatal.
2316 printk(KERN_ERR
"cfg80211: kobject_uevent_env() was unable "
2317 "to call CRDA during init");
2318 #ifdef CONFIG_CFG80211_REG_DEBUG
2319 /* We want to find out exactly why when debugging */
2327 void regulatory_exit(void)
2329 struct regulatory_request
*reg_request
, *tmp
;
2330 struct reg_beacon
*reg_beacon
, *btmp
;
2332 cancel_work_sync(®_work
);
2334 mutex_lock(&cfg80211_mutex
);
2338 kfree(country_ie_regdomain
);
2339 country_ie_regdomain
= NULL
;
2341 kfree(last_request
);
2343 platform_device_unregister(reg_pdev
);
2345 spin_lock_bh(®_pending_beacons_lock
);
2346 if (!list_empty(®_pending_beacons
)) {
2347 list_for_each_entry_safe(reg_beacon
, btmp
,
2348 ®_pending_beacons
, list
) {
2349 list_del(®_beacon
->list
);
2353 spin_unlock_bh(®_pending_beacons_lock
);
2355 if (!list_empty(®_beacon_list
)) {
2356 list_for_each_entry_safe(reg_beacon
, btmp
,
2357 ®_beacon_list
, list
) {
2358 list_del(®_beacon
->list
);
2363 spin_lock(®_requests_lock
);
2364 if (!list_empty(®_requests_list
)) {
2365 list_for_each_entry_safe(reg_request
, tmp
,
2366 ®_requests_list
, list
) {
2367 list_del(®_request
->list
);
2371 spin_unlock(®_requests_lock
);
2373 mutex_unlock(&cfg80211_mutex
);