4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
30 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
33 * We don't actually have pdflush, but this one is exported though /proc...
35 int nr_pdflush_threads
;
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_args
{
42 struct super_block
*sb
;
43 enum writeback_sync_modes sync_mode
;
50 * Work items for the bdi_writeback threads
53 struct list_head list
; /* pending work list */
54 struct rcu_head rcu_head
; /* for RCU free/clear of work */
56 unsigned long seen
; /* threads that have seen this work */
57 atomic_t pending
; /* number of threads still to do work */
59 struct wb_writeback_args args
; /* writeback arguments */
61 unsigned long state
; /* flag bits, see WS_* */
69 #define WS_USED (1 << WS_USED_B)
70 #define WS_ONSTACK (1 << WS_ONSTACK_B)
72 static inline bool bdi_work_on_stack(struct bdi_work
*work
)
74 return test_bit(WS_ONSTACK_B
, &work
->state
);
77 static inline void bdi_work_init(struct bdi_work
*work
,
78 struct wb_writeback_args
*args
)
80 INIT_RCU_HEAD(&work
->rcu_head
);
82 work
->state
= WS_USED
;
86 * writeback_in_progress - determine whether there is writeback in progress
87 * @bdi: the device's backing_dev_info structure.
89 * Determine whether there is writeback waiting to be handled against a
92 int writeback_in_progress(struct backing_dev_info
*bdi
)
94 return !list_empty(&bdi
->work_list
);
97 static void bdi_work_clear(struct bdi_work
*work
)
99 clear_bit(WS_USED_B
, &work
->state
);
100 smp_mb__after_clear_bit();
102 * work can have disappeared at this point. bit waitq functions
103 * should be able to tolerate this, provided bdi_sched_wait does
104 * not dereference it's pointer argument.
106 wake_up_bit(&work
->state
, WS_USED_B
);
109 static void bdi_work_free(struct rcu_head
*head
)
111 struct bdi_work
*work
= container_of(head
, struct bdi_work
, rcu_head
);
113 if (!bdi_work_on_stack(work
))
116 bdi_work_clear(work
);
119 static void wb_work_complete(struct bdi_work
*work
)
121 const enum writeback_sync_modes sync_mode
= work
->args
.sync_mode
;
122 int onstack
= bdi_work_on_stack(work
);
125 * For allocated work, we can clear the done/seen bit right here.
126 * For on-stack work, we need to postpone both the clear and free
127 * to after the RCU grace period, since the stack could be invalidated
128 * as soon as bdi_work_clear() has done the wakeup.
131 bdi_work_clear(work
);
132 if (sync_mode
== WB_SYNC_NONE
|| onstack
)
133 call_rcu(&work
->rcu_head
, bdi_work_free
);
136 static void wb_clear_pending(struct bdi_writeback
*wb
, struct bdi_work
*work
)
139 * The caller has retrieved the work arguments from this work,
140 * drop our reference. If this is the last ref, delete and free it
142 if (atomic_dec_and_test(&work
->pending
)) {
143 struct backing_dev_info
*bdi
= wb
->bdi
;
145 spin_lock(&bdi
->wb_lock
);
146 list_del_rcu(&work
->list
);
147 spin_unlock(&bdi
->wb_lock
);
149 wb_work_complete(work
);
153 static void bdi_queue_work(struct backing_dev_info
*bdi
, struct bdi_work
*work
)
155 work
->seen
= bdi
->wb_mask
;
157 atomic_set(&work
->pending
, bdi
->wb_cnt
);
158 BUG_ON(!bdi
->wb_cnt
);
161 * list_add_tail_rcu() contains the necessary barriers to
162 * make sure the above stores are seen before the item is
163 * noticed on the list
165 spin_lock(&bdi
->wb_lock
);
166 list_add_tail_rcu(&work
->list
, &bdi
->work_list
);
167 spin_unlock(&bdi
->wb_lock
);
170 * If the default thread isn't there, make sure we add it. When
171 * it gets created and wakes up, we'll run this work.
173 if (unlikely(list_empty_careful(&bdi
->wb_list
)))
174 wake_up_process(default_backing_dev_info
.wb
.task
);
176 struct bdi_writeback
*wb
= &bdi
->wb
;
179 wake_up_process(wb
->task
);
184 * Used for on-stack allocated work items. The caller needs to wait until
185 * the wb threads have acked the work before it's safe to continue.
187 static void bdi_wait_on_work_clear(struct bdi_work
*work
)
189 wait_on_bit(&work
->state
, WS_USED_B
, bdi_sched_wait
,
190 TASK_UNINTERRUPTIBLE
);
193 static void bdi_alloc_queue_work(struct backing_dev_info
*bdi
,
194 struct wb_writeback_args
*args
)
196 struct bdi_work
*work
;
199 * This is WB_SYNC_NONE writeback, so if allocation fails just
200 * wakeup the thread for old dirty data writeback
202 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
204 bdi_work_init(work
, args
);
205 bdi_queue_work(bdi
, work
);
207 struct bdi_writeback
*wb
= &bdi
->wb
;
210 wake_up_process(wb
->task
);
215 * bdi_sync_writeback - start and wait for writeback
216 * @bdi: the backing device to write from
217 * @sb: write inodes from this super_block
220 * This does WB_SYNC_ALL data integrity writeback and waits for the
221 * IO to complete. Callers must hold the sb s_umount semaphore for
222 * reading, to avoid having the super disappear before we are done.
224 static void bdi_sync_writeback(struct backing_dev_info
*bdi
,
225 struct super_block
*sb
)
227 struct wb_writeback_args args
= {
229 .sync_mode
= WB_SYNC_ALL
,
230 .nr_pages
= LONG_MAX
,
233 struct bdi_work work
;
235 bdi_work_init(&work
, &args
);
236 work
.state
|= WS_ONSTACK
;
238 bdi_queue_work(bdi
, &work
);
239 bdi_wait_on_work_clear(&work
);
243 * bdi_start_writeback - start writeback
244 * @bdi: the backing device to write from
245 * @nr_pages: the number of pages to write
248 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
249 * started when this function returns, we make no guarentees on
250 * completion. Caller need not hold sb s_umount semaphore.
253 void bdi_start_writeback(struct backing_dev_info
*bdi
, struct super_block
*sb
,
256 struct wb_writeback_args args
= {
258 .sync_mode
= WB_SYNC_NONE
,
259 .nr_pages
= nr_pages
,
264 * We treat @nr_pages=0 as the special case to do background writeback,
265 * ie. to sync pages until the background dirty threshold is reached.
268 args
.nr_pages
= LONG_MAX
;
269 args
.for_background
= 1;
272 bdi_alloc_queue_work(bdi
, &args
);
276 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
277 * furthest end of its superblock's dirty-inode list.
279 * Before stamping the inode's ->dirtied_when, we check to see whether it is
280 * already the most-recently-dirtied inode on the b_dirty list. If that is
281 * the case then the inode must have been redirtied while it was being written
282 * out and we don't reset its dirtied_when.
284 static void redirty_tail(struct inode
*inode
)
286 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
288 if (!list_empty(&wb
->b_dirty
)) {
291 tail
= list_entry(wb
->b_dirty
.next
, struct inode
, i_list
);
292 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
293 inode
->dirtied_when
= jiffies
;
295 list_move(&inode
->i_list
, &wb
->b_dirty
);
299 * requeue inode for re-scanning after bdi->b_io list is exhausted.
301 static void requeue_io(struct inode
*inode
)
303 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
305 list_move(&inode
->i_list
, &wb
->b_more_io
);
308 static void inode_sync_complete(struct inode
*inode
)
311 * Prevent speculative execution through spin_unlock(&inode_lock);
314 wake_up_bit(&inode
->i_state
, __I_SYNC
);
317 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
319 bool ret
= time_after(inode
->dirtied_when
, t
);
322 * For inodes being constantly redirtied, dirtied_when can get stuck.
323 * It _appears_ to be in the future, but is actually in distant past.
324 * This test is necessary to prevent such wrapped-around relative times
325 * from permanently stopping the whole bdi writeback.
327 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
333 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
335 static void move_expired_inodes(struct list_head
*delaying_queue
,
336 struct list_head
*dispatch_queue
,
337 unsigned long *older_than_this
)
340 struct list_head
*pos
, *node
;
341 struct super_block
*sb
= NULL
;
345 while (!list_empty(delaying_queue
)) {
346 inode
= list_entry(delaying_queue
->prev
, struct inode
, i_list
);
347 if (older_than_this
&&
348 inode_dirtied_after(inode
, *older_than_this
))
350 if (sb
&& sb
!= inode
->i_sb
)
353 list_move(&inode
->i_list
, &tmp
);
356 /* just one sb in list, splice to dispatch_queue and we're done */
358 list_splice(&tmp
, dispatch_queue
);
362 /* Move inodes from one superblock together */
363 while (!list_empty(&tmp
)) {
364 inode
= list_entry(tmp
.prev
, struct inode
, i_list
);
366 list_for_each_prev_safe(pos
, node
, &tmp
) {
367 inode
= list_entry(pos
, struct inode
, i_list
);
368 if (inode
->i_sb
== sb
)
369 list_move(&inode
->i_list
, dispatch_queue
);
375 * Queue all expired dirty inodes for io, eldest first.
377 static void queue_io(struct bdi_writeback
*wb
, unsigned long *older_than_this
)
379 list_splice_init(&wb
->b_more_io
, wb
->b_io
.prev
);
380 move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, older_than_this
);
383 static int write_inode(struct inode
*inode
, int sync
)
385 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
386 return inode
->i_sb
->s_op
->write_inode(inode
, sync
);
391 * Wait for writeback on an inode to complete.
393 static void inode_wait_for_writeback(struct inode
*inode
)
395 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
396 wait_queue_head_t
*wqh
;
398 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
400 spin_unlock(&inode_lock
);
401 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
402 spin_lock(&inode_lock
);
403 } while (inode
->i_state
& I_SYNC
);
407 * Write out an inode's dirty pages. Called under inode_lock. Either the
408 * caller has ref on the inode (either via __iget or via syscall against an fd)
409 * or the inode has I_WILL_FREE set (via generic_forget_inode)
411 * If `wait' is set, wait on the writeout.
413 * The whole writeout design is quite complex and fragile. We want to avoid
414 * starvation of particular inodes when others are being redirtied, prevent
417 * Called under inode_lock.
420 writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
422 struct address_space
*mapping
= inode
->i_mapping
;
423 int wait
= wbc
->sync_mode
== WB_SYNC_ALL
;
427 if (!atomic_read(&inode
->i_count
))
428 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
430 WARN_ON(inode
->i_state
& I_WILL_FREE
);
432 if (inode
->i_state
& I_SYNC
) {
434 * If this inode is locked for writeback and we are not doing
435 * writeback-for-data-integrity, move it to b_more_io so that
436 * writeback can proceed with the other inodes on s_io.
438 * We'll have another go at writing back this inode when we
439 * completed a full scan of b_io.
447 * It's a data-integrity sync. We must wait.
449 inode_wait_for_writeback(inode
);
452 BUG_ON(inode
->i_state
& I_SYNC
);
454 /* Set I_SYNC, reset I_DIRTY */
455 dirty
= inode
->i_state
& I_DIRTY
;
456 inode
->i_state
|= I_SYNC
;
457 inode
->i_state
&= ~I_DIRTY
;
459 spin_unlock(&inode_lock
);
461 ret
= do_writepages(mapping
, wbc
);
463 /* Don't write the inode if only I_DIRTY_PAGES was set */
464 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
465 int err
= write_inode(inode
, wait
);
471 int err
= filemap_fdatawait(mapping
);
476 spin_lock(&inode_lock
);
477 inode
->i_state
&= ~I_SYNC
;
478 if (!(inode
->i_state
& (I_FREEING
| I_CLEAR
))) {
479 if ((inode
->i_state
& I_DIRTY_PAGES
) && wbc
->for_kupdate
) {
481 * More pages get dirtied by a fast dirtier.
484 } else if (inode
->i_state
& I_DIRTY
) {
486 * At least XFS will redirty the inode during the
487 * writeback (delalloc) and on io completion (isize).
490 } else if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
492 * We didn't write back all the pages. nfs_writepages()
493 * sometimes bales out without doing anything. Redirty
494 * the inode; Move it from b_io onto b_more_io/b_dirty.
497 * akpm: if the caller was the kupdate function we put
498 * this inode at the head of b_dirty so it gets first
499 * consideration. Otherwise, move it to the tail, for
500 * the reasons described there. I'm not really sure
501 * how much sense this makes. Presumably I had a good
502 * reasons for doing it this way, and I'd rather not
503 * muck with it at present.
505 if (wbc
->for_kupdate
) {
507 * For the kupdate function we move the inode
508 * to b_more_io so it will get more writeout as
509 * soon as the queue becomes uncongested.
511 inode
->i_state
|= I_DIRTY_PAGES
;
513 if (wbc
->nr_to_write
<= 0) {
515 * slice used up: queue for next turn
520 * somehow blocked: retry later
526 * Otherwise fully redirty the inode so that
527 * other inodes on this superblock will get some
528 * writeout. Otherwise heavy writing to one
529 * file would indefinitely suspend writeout of
530 * all the other files.
532 inode
->i_state
|= I_DIRTY_PAGES
;
535 } else if (atomic_read(&inode
->i_count
)) {
537 * The inode is clean, inuse
539 list_move(&inode
->i_list
, &inode_in_use
);
542 * The inode is clean, unused
544 list_move(&inode
->i_list
, &inode_unused
);
547 inode_sync_complete(inode
);
551 static void unpin_sb_for_writeback(struct super_block
**psb
)
553 struct super_block
*sb
= *psb
;
556 up_read(&sb
->s_umount
);
563 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
564 * before calling writeback. So make sure that we do pin it, so it doesn't
565 * go away while we are writing inodes from it.
567 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
570 static int pin_sb_for_writeback(struct writeback_control
*wbc
,
571 struct inode
*inode
, struct super_block
**psb
)
573 struct super_block
*sb
= inode
->i_sb
;
576 * If this sb is already pinned, nothing more to do. If not and
577 * *psb is non-NULL, unpin the old one first
582 unpin_sb_for_writeback(psb
);
585 * Caller must already hold the ref for this
587 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
588 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
594 if (down_read_trylock(&sb
->s_umount
)) {
596 spin_unlock(&sb_lock
);
600 * umounted, drop rwsem again and fall through to failure
602 up_read(&sb
->s_umount
);
606 spin_unlock(&sb_lock
);
613 static void writeback_inodes_wb(struct bdi_writeback
*wb
,
614 struct writeback_control
*wbc
)
616 struct super_block
*sb
= wbc
->sb
, *pin_sb
= NULL
;
617 const int is_blkdev_sb
= sb_is_blkdev_sb(sb
);
618 const unsigned long start
= jiffies
; /* livelock avoidance */
620 spin_lock(&inode_lock
);
622 if (!wbc
->for_kupdate
|| list_empty(&wb
->b_io
))
623 queue_io(wb
, wbc
->older_than_this
);
625 while (!list_empty(&wb
->b_io
)) {
626 struct inode
*inode
= list_entry(wb
->b_io
.prev
,
627 struct inode
, i_list
);
631 * super block given and doesn't match, skip this inode
633 if (sb
&& sb
!= inode
->i_sb
) {
638 if (!bdi_cap_writeback_dirty(wb
->bdi
)) {
642 * Dirty memory-backed blockdev: the ramdisk
643 * driver does this. Skip just this inode
648 * Dirty memory-backed inode against a filesystem other
649 * than the kernel-internal bdev filesystem. Skip the
655 if (inode
->i_state
& (I_NEW
| I_WILL_FREE
)) {
660 if (wbc
->nonblocking
&& bdi_write_congested(wb
->bdi
)) {
661 wbc
->encountered_congestion
= 1;
663 break; /* Skip a congested fs */
665 continue; /* Skip a congested blockdev */
669 * Was this inode dirtied after sync_sb_inodes was called?
670 * This keeps sync from extra jobs and livelock.
672 if (inode_dirtied_after(inode
, start
))
675 if (pin_sb_for_writeback(wbc
, inode
, &pin_sb
)) {
680 BUG_ON(inode
->i_state
& (I_FREEING
| I_CLEAR
));
682 pages_skipped
= wbc
->pages_skipped
;
683 writeback_single_inode(inode
, wbc
);
684 if (wbc
->pages_skipped
!= pages_skipped
) {
686 * writeback is not making progress due to locked
687 * buffers. Skip this inode for now.
691 spin_unlock(&inode_lock
);
694 spin_lock(&inode_lock
);
695 if (wbc
->nr_to_write
<= 0) {
699 if (!list_empty(&wb
->b_more_io
))
703 unpin_sb_for_writeback(&pin_sb
);
705 spin_unlock(&inode_lock
);
706 /* Leave any unwritten inodes on b_io */
709 void writeback_inodes_wbc(struct writeback_control
*wbc
)
711 struct backing_dev_info
*bdi
= wbc
->bdi
;
713 writeback_inodes_wb(&bdi
->wb
, wbc
);
717 * The maximum number of pages to writeout in a single bdi flush/kupdate
718 * operation. We do this so we don't hold I_SYNC against an inode for
719 * enormous amounts of time, which would block a userspace task which has
720 * been forced to throttle against that inode. Also, the code reevaluates
721 * the dirty each time it has written this many pages.
723 #define MAX_WRITEBACK_PAGES 1024
725 static inline bool over_bground_thresh(void)
727 unsigned long background_thresh
, dirty_thresh
;
729 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
731 return (global_page_state(NR_FILE_DIRTY
) +
732 global_page_state(NR_UNSTABLE_NFS
) >= background_thresh
);
736 * Explicit flushing or periodic writeback of "old" data.
738 * Define "old": the first time one of an inode's pages is dirtied, we mark the
739 * dirtying-time in the inode's address_space. So this periodic writeback code
740 * just walks the superblock inode list, writing back any inodes which are
741 * older than a specific point in time.
743 * Try to run once per dirty_writeback_interval. But if a writeback event
744 * takes longer than a dirty_writeback_interval interval, then leave a
747 * older_than_this takes precedence over nr_to_write. So we'll only write back
748 * all dirty pages if they are all attached to "old" mappings.
750 static long wb_writeback(struct bdi_writeback
*wb
,
751 struct wb_writeback_args
*args
)
753 struct writeback_control wbc
= {
756 .sync_mode
= args
->sync_mode
,
757 .older_than_this
= NULL
,
758 .for_kupdate
= args
->for_kupdate
,
759 .range_cyclic
= args
->range_cyclic
,
761 unsigned long oldest_jif
;
765 if (wbc
.for_kupdate
) {
766 wbc
.older_than_this
= &oldest_jif
;
767 oldest_jif
= jiffies
-
768 msecs_to_jiffies(dirty_expire_interval
* 10);
770 if (!wbc
.range_cyclic
) {
772 wbc
.range_end
= LLONG_MAX
;
777 * Stop writeback when nr_pages has been consumed
779 if (args
->nr_pages
<= 0)
783 * For background writeout, stop when we are below the
784 * background dirty threshold
786 if (args
->for_background
&& !over_bground_thresh())
790 wbc
.encountered_congestion
= 0;
791 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
792 wbc
.pages_skipped
= 0;
793 writeback_inodes_wb(wb
, &wbc
);
794 args
->nr_pages
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
795 wrote
+= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
798 * If we consumed everything, see if we have more
800 if (wbc
.nr_to_write
<= 0)
803 * Didn't write everything and we don't have more IO, bail
808 * Did we write something? Try for more
810 if (wbc
.nr_to_write
< MAX_WRITEBACK_PAGES
)
813 * Nothing written. Wait for some inode to
814 * become available for writeback. Otherwise
815 * we'll just busyloop.
817 spin_lock(&inode_lock
);
818 if (!list_empty(&wb
->b_more_io
)) {
819 inode
= list_entry(wb
->b_more_io
.prev
,
820 struct inode
, i_list
);
821 inode_wait_for_writeback(inode
);
823 spin_unlock(&inode_lock
);
830 * Return the next bdi_work struct that hasn't been processed by this
831 * wb thread yet. ->seen is initially set for each thread that exists
832 * for this device, when a thread first notices a piece of work it
833 * clears its bit. Depending on writeback type, the thread will notify
834 * completion on either receiving the work (WB_SYNC_NONE) or after
835 * it is done (WB_SYNC_ALL).
837 static struct bdi_work
*get_next_work_item(struct backing_dev_info
*bdi
,
838 struct bdi_writeback
*wb
)
840 struct bdi_work
*work
, *ret
= NULL
;
844 list_for_each_entry_rcu(work
, &bdi
->work_list
, list
) {
845 if (!test_bit(wb
->nr
, &work
->seen
))
847 clear_bit(wb
->nr
, &work
->seen
);
857 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
859 unsigned long expired
;
863 * When set to zero, disable periodic writeback
865 if (!dirty_writeback_interval
)
868 expired
= wb
->last_old_flush
+
869 msecs_to_jiffies(dirty_writeback_interval
* 10);
870 if (time_before(jiffies
, expired
))
873 wb
->last_old_flush
= jiffies
;
874 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
875 global_page_state(NR_UNSTABLE_NFS
) +
876 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
879 struct wb_writeback_args args
= {
880 .nr_pages
= nr_pages
,
881 .sync_mode
= WB_SYNC_NONE
,
886 return wb_writeback(wb
, &args
);
893 * Retrieve work items and do the writeback they describe
895 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
897 struct backing_dev_info
*bdi
= wb
->bdi
;
898 struct bdi_work
*work
;
901 while ((work
= get_next_work_item(bdi
, wb
)) != NULL
) {
902 struct wb_writeback_args args
= work
->args
;
905 * Override sync mode, in case we must wait for completion
908 work
->args
.sync_mode
= args
.sync_mode
= WB_SYNC_ALL
;
911 * If this isn't a data integrity operation, just notify
912 * that we have seen this work and we are now starting it.
914 if (args
.sync_mode
== WB_SYNC_NONE
)
915 wb_clear_pending(wb
, work
);
917 wrote
+= wb_writeback(wb
, &args
);
920 * This is a data integrity writeback, so only do the
921 * notification when we have completed the work.
923 if (args
.sync_mode
== WB_SYNC_ALL
)
924 wb_clear_pending(wb
, work
);
928 * Check for periodic writeback, kupdated() style
930 wrote
+= wb_check_old_data_flush(wb
);
936 * Handle writeback of dirty data for the device backed by this bdi. Also
937 * wakes up periodically and does kupdated style flushing.
939 int bdi_writeback_task(struct bdi_writeback
*wb
)
941 unsigned long last_active
= jiffies
;
942 unsigned long wait_jiffies
= -1UL;
945 while (!kthread_should_stop()) {
946 pages_written
= wb_do_writeback(wb
, 0);
949 last_active
= jiffies
;
950 else if (wait_jiffies
!= -1UL) {
951 unsigned long max_idle
;
954 * Longest period of inactivity that we tolerate. If we
955 * see dirty data again later, the task will get
956 * recreated automatically.
958 max_idle
= max(5UL * 60 * HZ
, wait_jiffies
);
959 if (time_after(jiffies
, max_idle
+ last_active
))
963 if (dirty_writeback_interval
) {
964 wait_jiffies
= msecs_to_jiffies(dirty_writeback_interval
* 10);
965 schedule_timeout_interruptible(wait_jiffies
);
976 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
977 * writeback, for integrity writeback see bdi_sync_writeback().
979 static void bdi_writeback_all(struct super_block
*sb
, long nr_pages
)
981 struct wb_writeback_args args
= {
983 .nr_pages
= nr_pages
,
984 .sync_mode
= WB_SYNC_NONE
,
986 struct backing_dev_info
*bdi
;
990 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
991 if (!bdi_has_dirty_io(bdi
))
994 bdi_alloc_queue_work(bdi
, &args
);
1001 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1004 void wakeup_flusher_threads(long nr_pages
)
1007 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1008 global_page_state(NR_UNSTABLE_NFS
);
1009 bdi_writeback_all(NULL
, nr_pages
);
1012 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
1014 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
1015 struct dentry
*dentry
;
1016 const char *name
= "?";
1018 dentry
= d_find_alias(inode
);
1020 spin_lock(&dentry
->d_lock
);
1021 name
= (const char *) dentry
->d_name
.name
;
1024 "%s(%d): dirtied inode %lu (%s) on %s\n",
1025 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1026 name
, inode
->i_sb
->s_id
);
1028 spin_unlock(&dentry
->d_lock
);
1035 * __mark_inode_dirty - internal function
1036 * @inode: inode to mark
1037 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1038 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1039 * mark_inode_dirty_sync.
1041 * Put the inode on the super block's dirty list.
1043 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1044 * dirty list only if it is hashed or if it refers to a blockdev.
1045 * If it was not hashed, it will never be added to the dirty list
1046 * even if it is later hashed, as it will have been marked dirty already.
1048 * In short, make sure you hash any inodes _before_ you start marking
1051 * This function *must* be atomic for the I_DIRTY_PAGES case -
1052 * set_page_dirty() is called under spinlock in several places.
1054 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1055 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1056 * the kernel-internal blockdev inode represents the dirtying time of the
1057 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1058 * page->mapping->host, so the page-dirtying time is recorded in the internal
1061 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1063 struct super_block
*sb
= inode
->i_sb
;
1066 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1067 * dirty the inode itself
1069 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1070 if (sb
->s_op
->dirty_inode
)
1071 sb
->s_op
->dirty_inode(inode
);
1075 * make sure that changes are seen by all cpus before we test i_state
1080 /* avoid the locking if we can */
1081 if ((inode
->i_state
& flags
) == flags
)
1084 if (unlikely(block_dump
))
1085 block_dump___mark_inode_dirty(inode
);
1087 spin_lock(&inode_lock
);
1088 if ((inode
->i_state
& flags
) != flags
) {
1089 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1091 inode
->i_state
|= flags
;
1094 * If the inode is being synced, just update its dirty state.
1095 * The unlocker will place the inode on the appropriate
1096 * superblock list, based upon its state.
1098 if (inode
->i_state
& I_SYNC
)
1102 * Only add valid (hashed) inodes to the superblock's
1103 * dirty list. Add blockdev inodes as well.
1105 if (!S_ISBLK(inode
->i_mode
)) {
1106 if (hlist_unhashed(&inode
->i_hash
))
1109 if (inode
->i_state
& (I_FREEING
|I_CLEAR
))
1113 * If the inode was already on b_dirty/b_io/b_more_io, don't
1114 * reposition it (that would break b_dirty time-ordering).
1117 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1118 struct backing_dev_info
*bdi
= wb
->bdi
;
1120 if (bdi_cap_writeback_dirty(bdi
) &&
1121 !test_bit(BDI_registered
, &bdi
->state
)) {
1123 printk(KERN_ERR
"bdi-%s not registered\n",
1127 inode
->dirtied_when
= jiffies
;
1128 list_move(&inode
->i_list
, &wb
->b_dirty
);
1132 spin_unlock(&inode_lock
);
1134 EXPORT_SYMBOL(__mark_inode_dirty
);
1137 * Write out a superblock's list of dirty inodes. A wait will be performed
1138 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1140 * If older_than_this is non-NULL, then only write out inodes which
1141 * had their first dirtying at a time earlier than *older_than_this.
1143 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1144 * This function assumes that the blockdev superblock's inodes are backed by
1145 * a variety of queues, so all inodes are searched. For other superblocks,
1146 * assume that all inodes are backed by the same queue.
1148 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1149 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1150 * on the writer throttling path, and we get decent balancing between many
1151 * throttled threads: we don't want them all piling up on inode_sync_wait.
1153 static void wait_sb_inodes(struct super_block
*sb
)
1155 struct inode
*inode
, *old_inode
= NULL
;
1158 * We need to be protected against the filesystem going from
1159 * r/o to r/w or vice versa.
1161 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1163 spin_lock(&inode_lock
);
1166 * Data integrity sync. Must wait for all pages under writeback,
1167 * because there may have been pages dirtied before our sync
1168 * call, but which had writeout started before we write it out.
1169 * In which case, the inode may not be on the dirty list, but
1170 * we still have to wait for that writeout.
1172 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1173 struct address_space
*mapping
;
1175 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
|I_NEW
))
1177 mapping
= inode
->i_mapping
;
1178 if (mapping
->nrpages
== 0)
1181 spin_unlock(&inode_lock
);
1183 * We hold a reference to 'inode' so it couldn't have
1184 * been removed from s_inodes list while we dropped the
1185 * inode_lock. We cannot iput the inode now as we can
1186 * be holding the last reference and we cannot iput it
1187 * under inode_lock. So we keep the reference and iput
1193 filemap_fdatawait(mapping
);
1197 spin_lock(&inode_lock
);
1199 spin_unlock(&inode_lock
);
1204 * writeback_inodes_sb - writeback dirty inodes from given super_block
1205 * @sb: the superblock
1207 * Start writeback on some inodes on this super_block. No guarantees are made
1208 * on how many (if any) will be written, and this function does not wait
1209 * for IO completion of submitted IO. The number of pages submitted is
1212 void writeback_inodes_sb(struct super_block
*sb
)
1214 unsigned long nr_dirty
= global_page_state(NR_FILE_DIRTY
);
1215 unsigned long nr_unstable
= global_page_state(NR_UNSTABLE_NFS
);
1218 nr_to_write
= nr_dirty
+ nr_unstable
+
1219 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
1221 bdi_start_writeback(sb
->s_bdi
, sb
, nr_to_write
);
1223 EXPORT_SYMBOL(writeback_inodes_sb
);
1226 * writeback_inodes_sb_if_idle - start writeback if none underway
1227 * @sb: the superblock
1229 * Invoke writeback_inodes_sb if no writeback is currently underway.
1230 * Returns 1 if writeback was started, 0 if not.
1232 int writeback_inodes_sb_if_idle(struct super_block
*sb
)
1234 if (!writeback_in_progress(sb
->s_bdi
)) {
1235 writeback_inodes_sb(sb
);
1240 EXPORT_SYMBOL(writeback_inodes_sb_if_idle
);
1243 * sync_inodes_sb - sync sb inode pages
1244 * @sb: the superblock
1246 * This function writes and waits on any dirty inode belonging to this
1247 * super_block. The number of pages synced is returned.
1249 void sync_inodes_sb(struct super_block
*sb
)
1251 bdi_sync_writeback(sb
->s_bdi
, sb
);
1254 EXPORT_SYMBOL(sync_inodes_sb
);
1257 * write_inode_now - write an inode to disk
1258 * @inode: inode to write to disk
1259 * @sync: whether the write should be synchronous or not
1261 * This function commits an inode to disk immediately if it is dirty. This is
1262 * primarily needed by knfsd.
1264 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1266 int write_inode_now(struct inode
*inode
, int sync
)
1269 struct writeback_control wbc
= {
1270 .nr_to_write
= LONG_MAX
,
1271 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1273 .range_end
= LLONG_MAX
,
1276 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1277 wbc
.nr_to_write
= 0;
1280 spin_lock(&inode_lock
);
1281 ret
= writeback_single_inode(inode
, &wbc
);
1282 spin_unlock(&inode_lock
);
1284 inode_sync_wait(inode
);
1287 EXPORT_SYMBOL(write_inode_now
);
1290 * sync_inode - write an inode and its pages to disk.
1291 * @inode: the inode to sync
1292 * @wbc: controls the writeback mode
1294 * sync_inode() will write an inode and its pages to disk. It will also
1295 * correctly update the inode on its superblock's dirty inode lists and will
1296 * update inode->i_state.
1298 * The caller must have a ref on the inode.
1300 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1304 spin_lock(&inode_lock
);
1305 ret
= writeback_single_inode(inode
, wbc
);
1306 spin_unlock(&inode_lock
);
1309 EXPORT_SYMBOL(sync_inode
);