cifs: fix oops while traversing open file list (try #4)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid1.c
blob36f1ed313ae398af80950b86a86ed4e86700f418
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
50 * Number of guaranteed r1bios in case of extreme VM load:
52 #define NR_RAID1_BIOS 256
55 static void allow_barrier(conf_t *conf);
56 static void lower_barrier(conf_t *conf);
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 struct pool_info *pi = data;
61 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size, gfp_flags);
67 static void r1bio_pool_free(void *r1_bio, void *data)
69 kfree(r1_bio);
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
80 struct pool_info *pi = data;
81 struct page *page;
82 r1bio_t *r1_bio;
83 struct bio *bio;
84 int i, j;
86 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 if (!r1_bio)
88 return NULL;
91 * Allocate bios : 1 for reading, n-1 for writing
93 for (j = pi->raid_disks ; j-- ; ) {
94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 if (!bio)
96 goto out_free_bio;
97 r1_bio->bios[j] = bio;
100 * Allocate RESYNC_PAGES data pages and attach them to
101 * the first bio.
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 j = pi->raid_disks;
107 else
108 j = 1;
109 while(j--) {
110 bio = r1_bio->bios[j];
111 for (i = 0; i < RESYNC_PAGES; i++) {
112 page = alloc_page(gfp_flags);
113 if (unlikely(!page))
114 goto out_free_pages;
116 bio->bi_io_vec[i].bv_page = page;
117 bio->bi_vcnt = i+1;
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 for (i=0; i<RESYNC_PAGES ; i++)
123 for (j=1; j<pi->raid_disks; j++)
124 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 r1_bio->bios[0]->bi_io_vec[i].bv_page;
128 r1_bio->master_bio = NULL;
130 return r1_bio;
132 out_free_pages:
133 for (j=0 ; j < pi->raid_disks; j++)
134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 j = -1;
137 out_free_bio:
138 while ( ++j < pi->raid_disks )
139 bio_put(r1_bio->bios[j]);
140 r1bio_pool_free(r1_bio, data);
141 return NULL;
144 static void r1buf_pool_free(void *__r1_bio, void *data)
146 struct pool_info *pi = data;
147 int i,j;
148 r1bio_t *r1bio = __r1_bio;
150 for (i = 0; i < RESYNC_PAGES; i++)
151 for (j = pi->raid_disks; j-- ;) {
152 if (j == 0 ||
153 r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 r1bio->bios[0]->bi_io_vec[i].bv_page)
155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
157 for (i=0 ; i < pi->raid_disks; i++)
158 bio_put(r1bio->bios[i]);
160 r1bio_pool_free(r1bio, data);
163 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
165 int i;
167 for (i = 0; i < conf->raid_disks; i++) {
168 struct bio **bio = r1_bio->bios + i;
169 if (*bio && *bio != IO_BLOCKED)
170 bio_put(*bio);
171 *bio = NULL;
175 static void free_r1bio(r1bio_t *r1_bio)
177 conf_t *conf = r1_bio->mddev->private;
180 * Wake up any possible resync thread that waits for the device
181 * to go idle.
183 allow_barrier(conf);
185 put_all_bios(conf, r1_bio);
186 mempool_free(r1_bio, conf->r1bio_pool);
189 static void put_buf(r1bio_t *r1_bio)
191 conf_t *conf = r1_bio->mddev->private;
192 int i;
194 for (i=0; i<conf->raid_disks; i++) {
195 struct bio *bio = r1_bio->bios[i];
196 if (bio->bi_end_io)
197 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
200 mempool_free(r1_bio, conf->r1buf_pool);
202 lower_barrier(conf);
205 static void reschedule_retry(r1bio_t *r1_bio)
207 unsigned long flags;
208 mddev_t *mddev = r1_bio->mddev;
209 conf_t *conf = mddev->private;
211 spin_lock_irqsave(&conf->device_lock, flags);
212 list_add(&r1_bio->retry_list, &conf->retry_list);
213 conf->nr_queued ++;
214 spin_unlock_irqrestore(&conf->device_lock, flags);
216 wake_up(&conf->wait_barrier);
217 md_wakeup_thread(mddev->thread);
221 * raid_end_bio_io() is called when we have finished servicing a mirrored
222 * operation and are ready to return a success/failure code to the buffer
223 * cache layer.
225 static void raid_end_bio_io(r1bio_t *r1_bio)
227 struct bio *bio = r1_bio->master_bio;
229 /* if nobody has done the final endio yet, do it now */
230 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
231 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
232 (bio_data_dir(bio) == WRITE) ? "write" : "read",
233 (unsigned long long) bio->bi_sector,
234 (unsigned long long) bio->bi_sector +
235 (bio->bi_size >> 9) - 1);
237 bio_endio(bio,
238 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
240 free_r1bio(r1_bio);
244 * Update disk head position estimator based on IRQ completion info.
246 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
248 conf_t *conf = r1_bio->mddev->private;
250 conf->mirrors[disk].head_position =
251 r1_bio->sector + (r1_bio->sectors);
254 static void raid1_end_read_request(struct bio *bio, int error)
256 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257 r1bio_t *r1_bio = bio->bi_private;
258 int mirror;
259 conf_t *conf = r1_bio->mddev->private;
261 mirror = r1_bio->read_disk;
263 * this branch is our 'one mirror IO has finished' event handler:
265 update_head_pos(mirror, r1_bio);
267 if (uptodate)
268 set_bit(R1BIO_Uptodate, &r1_bio->state);
269 else {
270 /* If all other devices have failed, we want to return
271 * the error upwards rather than fail the last device.
272 * Here we redefine "uptodate" to mean "Don't want to retry"
274 unsigned long flags;
275 spin_lock_irqsave(&conf->device_lock, flags);
276 if (r1_bio->mddev->degraded == conf->raid_disks ||
277 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
278 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
279 uptodate = 1;
280 spin_unlock_irqrestore(&conf->device_lock, flags);
283 if (uptodate)
284 raid_end_bio_io(r1_bio);
285 else {
287 * oops, read error:
289 char b[BDEVNAME_SIZE];
290 if (printk_ratelimit())
291 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
292 mdname(conf->mddev),
293 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
294 reschedule_retry(r1_bio);
297 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
300 static void r1_bio_write_done(r1bio_t *r1_bio)
302 if (atomic_dec_and_test(&r1_bio->remaining))
304 /* it really is the end of this request */
305 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
306 /* free extra copy of the data pages */
307 int i = r1_bio->behind_page_count;
308 while (i--)
309 safe_put_page(r1_bio->behind_pages[i]);
310 kfree(r1_bio->behind_pages);
311 r1_bio->behind_pages = NULL;
313 /* clear the bitmap if all writes complete successfully */
314 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
315 r1_bio->sectors,
316 !test_bit(R1BIO_Degraded, &r1_bio->state),
317 test_bit(R1BIO_BehindIO, &r1_bio->state));
318 md_write_end(r1_bio->mddev);
319 raid_end_bio_io(r1_bio);
323 static void raid1_end_write_request(struct bio *bio, int error)
325 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326 r1bio_t *r1_bio = bio->bi_private;
327 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
328 conf_t *conf = r1_bio->mddev->private;
329 struct bio *to_put = NULL;
332 for (mirror = 0; mirror < conf->raid_disks; mirror++)
333 if (r1_bio->bios[mirror] == bio)
334 break;
337 * 'one mirror IO has finished' event handler:
339 r1_bio->bios[mirror] = NULL;
340 to_put = bio;
341 if (!uptodate) {
342 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
343 /* an I/O failed, we can't clear the bitmap */
344 set_bit(R1BIO_Degraded, &r1_bio->state);
345 } else
347 * Set R1BIO_Uptodate in our master bio, so that we
348 * will return a good error code for to the higher
349 * levels even if IO on some other mirrored buffer
350 * fails.
352 * The 'master' represents the composite IO operation
353 * to user-side. So if something waits for IO, then it
354 * will wait for the 'master' bio.
356 set_bit(R1BIO_Uptodate, &r1_bio->state);
358 update_head_pos(mirror, r1_bio);
360 if (behind) {
361 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
362 atomic_dec(&r1_bio->behind_remaining);
365 * In behind mode, we ACK the master bio once the I/O
366 * has safely reached all non-writemostly
367 * disks. Setting the Returned bit ensures that this
368 * gets done only once -- we don't ever want to return
369 * -EIO here, instead we'll wait
371 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
372 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
373 /* Maybe we can return now */
374 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
375 struct bio *mbio = r1_bio->master_bio;
376 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
377 (unsigned long long) mbio->bi_sector,
378 (unsigned long long) mbio->bi_sector +
379 (mbio->bi_size >> 9) - 1);
380 bio_endio(mbio, 0);
384 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
387 * Let's see if all mirrored write operations have finished
388 * already.
390 r1_bio_write_done(r1_bio);
392 if (to_put)
393 bio_put(to_put);
398 * This routine returns the disk from which the requested read should
399 * be done. There is a per-array 'next expected sequential IO' sector
400 * number - if this matches on the next IO then we use the last disk.
401 * There is also a per-disk 'last know head position' sector that is
402 * maintained from IRQ contexts, both the normal and the resync IO
403 * completion handlers update this position correctly. If there is no
404 * perfect sequential match then we pick the disk whose head is closest.
406 * If there are 2 mirrors in the same 2 devices, performance degrades
407 * because position is mirror, not device based.
409 * The rdev for the device selected will have nr_pending incremented.
411 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
413 const sector_t this_sector = r1_bio->sector;
414 const int sectors = r1_bio->sectors;
415 int start_disk;
416 int best_disk;
417 int i;
418 sector_t best_dist;
419 mdk_rdev_t *rdev;
420 int choose_first;
422 rcu_read_lock();
424 * Check if we can balance. We can balance on the whole
425 * device if no resync is going on, or below the resync window.
426 * We take the first readable disk when above the resync window.
428 retry:
429 best_disk = -1;
430 best_dist = MaxSector;
431 if (conf->mddev->recovery_cp < MaxSector &&
432 (this_sector + sectors >= conf->next_resync)) {
433 choose_first = 1;
434 start_disk = 0;
435 } else {
436 choose_first = 0;
437 start_disk = conf->last_used;
440 for (i = 0 ; i < conf->raid_disks ; i++) {
441 sector_t dist;
442 int disk = start_disk + i;
443 if (disk >= conf->raid_disks)
444 disk -= conf->raid_disks;
446 rdev = rcu_dereference(conf->mirrors[disk].rdev);
447 if (r1_bio->bios[disk] == IO_BLOCKED
448 || rdev == NULL
449 || test_bit(Faulty, &rdev->flags))
450 continue;
451 if (!test_bit(In_sync, &rdev->flags) &&
452 rdev->recovery_offset < this_sector + sectors)
453 continue;
454 if (test_bit(WriteMostly, &rdev->flags)) {
455 /* Don't balance among write-mostly, just
456 * use the first as a last resort */
457 if (best_disk < 0)
458 best_disk = disk;
459 continue;
461 /* This is a reasonable device to use. It might
462 * even be best.
464 dist = abs(this_sector - conf->mirrors[disk].head_position);
465 if (choose_first
466 /* Don't change to another disk for sequential reads */
467 || conf->next_seq_sect == this_sector
468 || dist == 0
469 /* If device is idle, use it */
470 || atomic_read(&rdev->nr_pending) == 0) {
471 best_disk = disk;
472 break;
474 if (dist < best_dist) {
475 best_dist = dist;
476 best_disk = disk;
480 if (best_disk >= 0) {
481 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
482 if (!rdev)
483 goto retry;
484 atomic_inc(&rdev->nr_pending);
485 if (test_bit(Faulty, &rdev->flags)) {
486 /* cannot risk returning a device that failed
487 * before we inc'ed nr_pending
489 rdev_dec_pending(rdev, conf->mddev);
490 goto retry;
492 conf->next_seq_sect = this_sector + sectors;
493 conf->last_used = best_disk;
495 rcu_read_unlock();
497 return best_disk;
500 int md_raid1_congested(mddev_t *mddev, int bits)
502 conf_t *conf = mddev->private;
503 int i, ret = 0;
505 rcu_read_lock();
506 for (i = 0; i < mddev->raid_disks; i++) {
507 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
508 if (rdev && !test_bit(Faulty, &rdev->flags)) {
509 struct request_queue *q = bdev_get_queue(rdev->bdev);
511 BUG_ON(!q);
513 /* Note the '|| 1' - when read_balance prefers
514 * non-congested targets, it can be removed
516 if ((bits & (1<<BDI_async_congested)) || 1)
517 ret |= bdi_congested(&q->backing_dev_info, bits);
518 else
519 ret &= bdi_congested(&q->backing_dev_info, bits);
522 rcu_read_unlock();
523 return ret;
525 EXPORT_SYMBOL_GPL(md_raid1_congested);
527 static int raid1_congested(void *data, int bits)
529 mddev_t *mddev = data;
531 return mddev_congested(mddev, bits) ||
532 md_raid1_congested(mddev, bits);
535 static void flush_pending_writes(conf_t *conf)
537 /* Any writes that have been queued but are awaiting
538 * bitmap updates get flushed here.
540 spin_lock_irq(&conf->device_lock);
542 if (conf->pending_bio_list.head) {
543 struct bio *bio;
544 bio = bio_list_get(&conf->pending_bio_list);
545 spin_unlock_irq(&conf->device_lock);
546 /* flush any pending bitmap writes to
547 * disk before proceeding w/ I/O */
548 bitmap_unplug(conf->mddev->bitmap);
550 while (bio) { /* submit pending writes */
551 struct bio *next = bio->bi_next;
552 bio->bi_next = NULL;
553 generic_make_request(bio);
554 bio = next;
556 } else
557 spin_unlock_irq(&conf->device_lock);
560 /* Barriers....
561 * Sometimes we need to suspend IO while we do something else,
562 * either some resync/recovery, or reconfigure the array.
563 * To do this we raise a 'barrier'.
564 * The 'barrier' is a counter that can be raised multiple times
565 * to count how many activities are happening which preclude
566 * normal IO.
567 * We can only raise the barrier if there is no pending IO.
568 * i.e. if nr_pending == 0.
569 * We choose only to raise the barrier if no-one is waiting for the
570 * barrier to go down. This means that as soon as an IO request
571 * is ready, no other operations which require a barrier will start
572 * until the IO request has had a chance.
574 * So: regular IO calls 'wait_barrier'. When that returns there
575 * is no backgroup IO happening, It must arrange to call
576 * allow_barrier when it has finished its IO.
577 * backgroup IO calls must call raise_barrier. Once that returns
578 * there is no normal IO happeing. It must arrange to call
579 * lower_barrier when the particular background IO completes.
581 #define RESYNC_DEPTH 32
583 static void raise_barrier(conf_t *conf)
585 spin_lock_irq(&conf->resync_lock);
587 /* Wait until no block IO is waiting */
588 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
589 conf->resync_lock, );
591 /* block any new IO from starting */
592 conf->barrier++;
594 /* Now wait for all pending IO to complete */
595 wait_event_lock_irq(conf->wait_barrier,
596 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
597 conf->resync_lock, );
599 spin_unlock_irq(&conf->resync_lock);
602 static void lower_barrier(conf_t *conf)
604 unsigned long flags;
605 BUG_ON(conf->barrier <= 0);
606 spin_lock_irqsave(&conf->resync_lock, flags);
607 conf->barrier--;
608 spin_unlock_irqrestore(&conf->resync_lock, flags);
609 wake_up(&conf->wait_barrier);
612 static void wait_barrier(conf_t *conf)
614 spin_lock_irq(&conf->resync_lock);
615 if (conf->barrier) {
616 conf->nr_waiting++;
617 /* Wait for the barrier to drop.
618 * However if there are already pending
619 * requests (preventing the barrier from
620 * rising completely), and the
621 * pre-process bio queue isn't empty,
622 * then don't wait, as we need to empty
623 * that queue to get the nr_pending
624 * count down.
626 wait_event_lock_irq(conf->wait_barrier,
627 !conf->barrier ||
628 (conf->nr_pending &&
629 current->bio_list &&
630 !bio_list_empty(current->bio_list)),
631 conf->resync_lock,
633 conf->nr_waiting--;
635 conf->nr_pending++;
636 spin_unlock_irq(&conf->resync_lock);
639 static void allow_barrier(conf_t *conf)
641 unsigned long flags;
642 spin_lock_irqsave(&conf->resync_lock, flags);
643 conf->nr_pending--;
644 spin_unlock_irqrestore(&conf->resync_lock, flags);
645 wake_up(&conf->wait_barrier);
648 static void freeze_array(conf_t *conf)
650 /* stop syncio and normal IO and wait for everything to
651 * go quite.
652 * We increment barrier and nr_waiting, and then
653 * wait until nr_pending match nr_queued+1
654 * This is called in the context of one normal IO request
655 * that has failed. Thus any sync request that might be pending
656 * will be blocked by nr_pending, and we need to wait for
657 * pending IO requests to complete or be queued for re-try.
658 * Thus the number queued (nr_queued) plus this request (1)
659 * must match the number of pending IOs (nr_pending) before
660 * we continue.
662 spin_lock_irq(&conf->resync_lock);
663 conf->barrier++;
664 conf->nr_waiting++;
665 wait_event_lock_irq(conf->wait_barrier,
666 conf->nr_pending == conf->nr_queued+1,
667 conf->resync_lock,
668 flush_pending_writes(conf));
669 spin_unlock_irq(&conf->resync_lock);
671 static void unfreeze_array(conf_t *conf)
673 /* reverse the effect of the freeze */
674 spin_lock_irq(&conf->resync_lock);
675 conf->barrier--;
676 conf->nr_waiting--;
677 wake_up(&conf->wait_barrier);
678 spin_unlock_irq(&conf->resync_lock);
682 /* duplicate the data pages for behind I/O
684 static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
686 int i;
687 struct bio_vec *bvec;
688 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page*),
689 GFP_NOIO);
690 if (unlikely(!pages))
691 return;
693 bio_for_each_segment(bvec, bio, i) {
694 pages[i] = alloc_page(GFP_NOIO);
695 if (unlikely(!pages[i]))
696 goto do_sync_io;
697 memcpy(kmap(pages[i]) + bvec->bv_offset,
698 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
699 kunmap(pages[i]);
700 kunmap(bvec->bv_page);
702 r1_bio->behind_pages = pages;
703 r1_bio->behind_page_count = bio->bi_vcnt;
704 set_bit(R1BIO_BehindIO, &r1_bio->state);
705 return;
707 do_sync_io:
708 for (i = 0; i < bio->bi_vcnt; i++)
709 if (pages[i])
710 put_page(pages[i]);
711 kfree(pages);
712 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
715 static int make_request(mddev_t *mddev, struct bio * bio)
717 conf_t *conf = mddev->private;
718 mirror_info_t *mirror;
719 r1bio_t *r1_bio;
720 struct bio *read_bio;
721 int i, targets = 0, disks;
722 struct bitmap *bitmap;
723 unsigned long flags;
724 const int rw = bio_data_dir(bio);
725 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
726 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
727 mdk_rdev_t *blocked_rdev;
728 int plugged;
731 * Register the new request and wait if the reconstruction
732 * thread has put up a bar for new requests.
733 * Continue immediately if no resync is active currently.
736 md_write_start(mddev, bio); /* wait on superblock update early */
738 if (bio_data_dir(bio) == WRITE &&
739 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
740 bio->bi_sector < mddev->suspend_hi) {
741 /* As the suspend_* range is controlled by
742 * userspace, we want an interruptible
743 * wait.
745 DEFINE_WAIT(w);
746 for (;;) {
747 flush_signals(current);
748 prepare_to_wait(&conf->wait_barrier,
749 &w, TASK_INTERRUPTIBLE);
750 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
751 bio->bi_sector >= mddev->suspend_hi)
752 break;
753 schedule();
755 finish_wait(&conf->wait_barrier, &w);
758 wait_barrier(conf);
760 bitmap = mddev->bitmap;
763 * make_request() can abort the operation when READA is being
764 * used and no empty request is available.
767 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
769 r1_bio->master_bio = bio;
770 r1_bio->sectors = bio->bi_size >> 9;
771 r1_bio->state = 0;
772 r1_bio->mddev = mddev;
773 r1_bio->sector = bio->bi_sector;
775 if (rw == READ) {
777 * read balancing logic:
779 int rdisk = read_balance(conf, r1_bio);
781 if (rdisk < 0) {
782 /* couldn't find anywhere to read from */
783 raid_end_bio_io(r1_bio);
784 return 0;
786 mirror = conf->mirrors + rdisk;
788 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
789 bitmap) {
790 /* Reading from a write-mostly device must
791 * take care not to over-take any writes
792 * that are 'behind'
794 wait_event(bitmap->behind_wait,
795 atomic_read(&bitmap->behind_writes) == 0);
797 r1_bio->read_disk = rdisk;
799 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
801 r1_bio->bios[rdisk] = read_bio;
803 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
804 read_bio->bi_bdev = mirror->rdev->bdev;
805 read_bio->bi_end_io = raid1_end_read_request;
806 read_bio->bi_rw = READ | do_sync;
807 read_bio->bi_private = r1_bio;
809 generic_make_request(read_bio);
810 return 0;
814 * WRITE:
816 /* first select target devices under spinlock and
817 * inc refcount on their rdev. Record them by setting
818 * bios[x] to bio
820 plugged = mddev_check_plugged(mddev);
822 disks = conf->raid_disks;
823 retry_write:
824 blocked_rdev = NULL;
825 rcu_read_lock();
826 for (i = 0; i < disks; i++) {
827 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
828 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
829 atomic_inc(&rdev->nr_pending);
830 blocked_rdev = rdev;
831 break;
833 if (rdev && !test_bit(Faulty, &rdev->flags)) {
834 atomic_inc(&rdev->nr_pending);
835 if (test_bit(Faulty, &rdev->flags)) {
836 rdev_dec_pending(rdev, mddev);
837 r1_bio->bios[i] = NULL;
838 } else {
839 r1_bio->bios[i] = bio;
840 targets++;
842 } else
843 r1_bio->bios[i] = NULL;
845 rcu_read_unlock();
847 if (unlikely(blocked_rdev)) {
848 /* Wait for this device to become unblocked */
849 int j;
851 for (j = 0; j < i; j++)
852 if (r1_bio->bios[j])
853 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
855 allow_barrier(conf);
856 md_wait_for_blocked_rdev(blocked_rdev, mddev);
857 wait_barrier(conf);
858 goto retry_write;
861 BUG_ON(targets == 0); /* we never fail the last device */
863 if (targets < conf->raid_disks) {
864 /* array is degraded, we will not clear the bitmap
865 * on I/O completion (see raid1_end_write_request) */
866 set_bit(R1BIO_Degraded, &r1_bio->state);
869 /* do behind I/O ?
870 * Not if there are too many, or cannot allocate memory,
871 * or a reader on WriteMostly is waiting for behind writes
872 * to flush */
873 if (bitmap &&
874 (atomic_read(&bitmap->behind_writes)
875 < mddev->bitmap_info.max_write_behind) &&
876 !waitqueue_active(&bitmap->behind_wait))
877 alloc_behind_pages(bio, r1_bio);
879 atomic_set(&r1_bio->remaining, 1);
880 atomic_set(&r1_bio->behind_remaining, 0);
882 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
883 test_bit(R1BIO_BehindIO, &r1_bio->state));
884 for (i = 0; i < disks; i++) {
885 struct bio *mbio;
886 if (!r1_bio->bios[i])
887 continue;
889 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
890 r1_bio->bios[i] = mbio;
892 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
893 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
894 mbio->bi_end_io = raid1_end_write_request;
895 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
896 mbio->bi_private = r1_bio;
898 if (r1_bio->behind_pages) {
899 struct bio_vec *bvec;
900 int j;
902 /* Yes, I really want the '__' version so that
903 * we clear any unused pointer in the io_vec, rather
904 * than leave them unchanged. This is important
905 * because when we come to free the pages, we won't
906 * know the original bi_idx, so we just free
907 * them all
909 __bio_for_each_segment(bvec, mbio, j, 0)
910 bvec->bv_page = r1_bio->behind_pages[j];
911 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
912 atomic_inc(&r1_bio->behind_remaining);
915 atomic_inc(&r1_bio->remaining);
916 spin_lock_irqsave(&conf->device_lock, flags);
917 bio_list_add(&conf->pending_bio_list, mbio);
918 spin_unlock_irqrestore(&conf->device_lock, flags);
920 r1_bio_write_done(r1_bio);
922 /* In case raid1d snuck in to freeze_array */
923 wake_up(&conf->wait_barrier);
925 if (do_sync || !bitmap || !plugged)
926 md_wakeup_thread(mddev->thread);
928 return 0;
931 static void status(struct seq_file *seq, mddev_t *mddev)
933 conf_t *conf = mddev->private;
934 int i;
936 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
937 conf->raid_disks - mddev->degraded);
938 rcu_read_lock();
939 for (i = 0; i < conf->raid_disks; i++) {
940 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
941 seq_printf(seq, "%s",
942 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
944 rcu_read_unlock();
945 seq_printf(seq, "]");
949 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
951 char b[BDEVNAME_SIZE];
952 conf_t *conf = mddev->private;
955 * If it is not operational, then we have already marked it as dead
956 * else if it is the last working disks, ignore the error, let the
957 * next level up know.
958 * else mark the drive as failed
960 if (test_bit(In_sync, &rdev->flags)
961 && (conf->raid_disks - mddev->degraded) == 1) {
963 * Don't fail the drive, act as though we were just a
964 * normal single drive.
965 * However don't try a recovery from this drive as
966 * it is very likely to fail.
968 mddev->recovery_disabled = 1;
969 return;
971 if (test_and_clear_bit(In_sync, &rdev->flags)) {
972 unsigned long flags;
973 spin_lock_irqsave(&conf->device_lock, flags);
974 mddev->degraded++;
975 set_bit(Faulty, &rdev->flags);
976 spin_unlock_irqrestore(&conf->device_lock, flags);
978 * if recovery is running, make sure it aborts.
980 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
981 } else
982 set_bit(Faulty, &rdev->flags);
983 set_bit(MD_CHANGE_DEVS, &mddev->flags);
984 printk(KERN_ALERT
985 "md/raid1:%s: Disk failure on %s, disabling device.\n"
986 "md/raid1:%s: Operation continuing on %d devices.\n",
987 mdname(mddev), bdevname(rdev->bdev, b),
988 mdname(mddev), conf->raid_disks - mddev->degraded);
991 static void print_conf(conf_t *conf)
993 int i;
995 printk(KERN_DEBUG "RAID1 conf printout:\n");
996 if (!conf) {
997 printk(KERN_DEBUG "(!conf)\n");
998 return;
1000 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1001 conf->raid_disks);
1003 rcu_read_lock();
1004 for (i = 0; i < conf->raid_disks; i++) {
1005 char b[BDEVNAME_SIZE];
1006 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1007 if (rdev)
1008 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1009 i, !test_bit(In_sync, &rdev->flags),
1010 !test_bit(Faulty, &rdev->flags),
1011 bdevname(rdev->bdev,b));
1013 rcu_read_unlock();
1016 static void close_sync(conf_t *conf)
1018 wait_barrier(conf);
1019 allow_barrier(conf);
1021 mempool_destroy(conf->r1buf_pool);
1022 conf->r1buf_pool = NULL;
1025 static int raid1_spare_active(mddev_t *mddev)
1027 int i;
1028 conf_t *conf = mddev->private;
1029 int count = 0;
1030 unsigned long flags;
1033 * Find all failed disks within the RAID1 configuration
1034 * and mark them readable.
1035 * Called under mddev lock, so rcu protection not needed.
1037 for (i = 0; i < conf->raid_disks; i++) {
1038 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1039 if (rdev
1040 && !test_bit(Faulty, &rdev->flags)
1041 && !test_and_set_bit(In_sync, &rdev->flags)) {
1042 count++;
1043 sysfs_notify_dirent(rdev->sysfs_state);
1046 spin_lock_irqsave(&conf->device_lock, flags);
1047 mddev->degraded -= count;
1048 spin_unlock_irqrestore(&conf->device_lock, flags);
1050 print_conf(conf);
1051 return count;
1055 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1057 conf_t *conf = mddev->private;
1058 int err = -EEXIST;
1059 int mirror = 0;
1060 mirror_info_t *p;
1061 int first = 0;
1062 int last = mddev->raid_disks - 1;
1064 if (rdev->raid_disk >= 0)
1065 first = last = rdev->raid_disk;
1067 for (mirror = first; mirror <= last; mirror++)
1068 if ( !(p=conf->mirrors+mirror)->rdev) {
1070 disk_stack_limits(mddev->gendisk, rdev->bdev,
1071 rdev->data_offset << 9);
1072 /* as we don't honour merge_bvec_fn, we must
1073 * never risk violating it, so limit
1074 * ->max_segments to one lying with a single
1075 * page, as a one page request is never in
1076 * violation.
1078 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1079 blk_queue_max_segments(mddev->queue, 1);
1080 blk_queue_segment_boundary(mddev->queue,
1081 PAGE_CACHE_SIZE - 1);
1084 p->head_position = 0;
1085 rdev->raid_disk = mirror;
1086 err = 0;
1087 /* As all devices are equivalent, we don't need a full recovery
1088 * if this was recently any drive of the array
1090 if (rdev->saved_raid_disk < 0)
1091 conf->fullsync = 1;
1092 rcu_assign_pointer(p->rdev, rdev);
1093 break;
1095 md_integrity_add_rdev(rdev, mddev);
1096 print_conf(conf);
1097 return err;
1100 static int raid1_remove_disk(mddev_t *mddev, int number)
1102 conf_t *conf = mddev->private;
1103 int err = 0;
1104 mdk_rdev_t *rdev;
1105 mirror_info_t *p = conf->mirrors+ number;
1107 print_conf(conf);
1108 rdev = p->rdev;
1109 if (rdev) {
1110 if (test_bit(In_sync, &rdev->flags) ||
1111 atomic_read(&rdev->nr_pending)) {
1112 err = -EBUSY;
1113 goto abort;
1115 /* Only remove non-faulty devices if recovery
1116 * is not possible.
1118 if (!test_bit(Faulty, &rdev->flags) &&
1119 !mddev->recovery_disabled &&
1120 mddev->degraded < conf->raid_disks) {
1121 err = -EBUSY;
1122 goto abort;
1124 p->rdev = NULL;
1125 synchronize_rcu();
1126 if (atomic_read(&rdev->nr_pending)) {
1127 /* lost the race, try later */
1128 err = -EBUSY;
1129 p->rdev = rdev;
1130 goto abort;
1132 err = md_integrity_register(mddev);
1134 abort:
1136 print_conf(conf);
1137 return err;
1141 static void end_sync_read(struct bio *bio, int error)
1143 r1bio_t *r1_bio = bio->bi_private;
1144 int i;
1146 for (i=r1_bio->mddev->raid_disks; i--; )
1147 if (r1_bio->bios[i] == bio)
1148 break;
1149 BUG_ON(i < 0);
1150 update_head_pos(i, r1_bio);
1152 * we have read a block, now it needs to be re-written,
1153 * or re-read if the read failed.
1154 * We don't do much here, just schedule handling by raid1d
1156 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1157 set_bit(R1BIO_Uptodate, &r1_bio->state);
1159 if (atomic_dec_and_test(&r1_bio->remaining))
1160 reschedule_retry(r1_bio);
1163 static void end_sync_write(struct bio *bio, int error)
1165 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1166 r1bio_t *r1_bio = bio->bi_private;
1167 mddev_t *mddev = r1_bio->mddev;
1168 conf_t *conf = mddev->private;
1169 int i;
1170 int mirror=0;
1172 for (i = 0; i < conf->raid_disks; i++)
1173 if (r1_bio->bios[i] == bio) {
1174 mirror = i;
1175 break;
1177 if (!uptodate) {
1178 sector_t sync_blocks = 0;
1179 sector_t s = r1_bio->sector;
1180 long sectors_to_go = r1_bio->sectors;
1181 /* make sure these bits doesn't get cleared. */
1182 do {
1183 bitmap_end_sync(mddev->bitmap, s,
1184 &sync_blocks, 1);
1185 s += sync_blocks;
1186 sectors_to_go -= sync_blocks;
1187 } while (sectors_to_go > 0);
1188 md_error(mddev, conf->mirrors[mirror].rdev);
1191 update_head_pos(mirror, r1_bio);
1193 if (atomic_dec_and_test(&r1_bio->remaining)) {
1194 sector_t s = r1_bio->sectors;
1195 put_buf(r1_bio);
1196 md_done_sync(mddev, s, uptodate);
1200 static int fix_sync_read_error(r1bio_t *r1_bio)
1202 /* Try some synchronous reads of other devices to get
1203 * good data, much like with normal read errors. Only
1204 * read into the pages we already have so we don't
1205 * need to re-issue the read request.
1206 * We don't need to freeze the array, because being in an
1207 * active sync request, there is no normal IO, and
1208 * no overlapping syncs.
1210 mddev_t *mddev = r1_bio->mddev;
1211 conf_t *conf = mddev->private;
1212 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1213 sector_t sect = r1_bio->sector;
1214 int sectors = r1_bio->sectors;
1215 int idx = 0;
1217 while(sectors) {
1218 int s = sectors;
1219 int d = r1_bio->read_disk;
1220 int success = 0;
1221 mdk_rdev_t *rdev;
1222 int start;
1224 if (s > (PAGE_SIZE>>9))
1225 s = PAGE_SIZE >> 9;
1226 do {
1227 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1228 /* No rcu protection needed here devices
1229 * can only be removed when no resync is
1230 * active, and resync is currently active
1232 rdev = conf->mirrors[d].rdev;
1233 if (sync_page_io(rdev,
1234 sect,
1235 s<<9,
1236 bio->bi_io_vec[idx].bv_page,
1237 READ, false)) {
1238 success = 1;
1239 break;
1242 d++;
1243 if (d == conf->raid_disks)
1244 d = 0;
1245 } while (!success && d != r1_bio->read_disk);
1247 if (!success) {
1248 char b[BDEVNAME_SIZE];
1249 /* Cannot read from anywhere, array is toast */
1250 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1251 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1252 " for block %llu\n",
1253 mdname(mddev),
1254 bdevname(bio->bi_bdev, b),
1255 (unsigned long long)r1_bio->sector);
1256 md_done_sync(mddev, r1_bio->sectors, 0);
1257 put_buf(r1_bio);
1258 return 0;
1261 start = d;
1262 /* write it back and re-read */
1263 while (d != r1_bio->read_disk) {
1264 if (d == 0)
1265 d = conf->raid_disks;
1266 d--;
1267 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1268 continue;
1269 rdev = conf->mirrors[d].rdev;
1270 if (sync_page_io(rdev,
1271 sect,
1272 s<<9,
1273 bio->bi_io_vec[idx].bv_page,
1274 WRITE, false) == 0) {
1275 r1_bio->bios[d]->bi_end_io = NULL;
1276 rdev_dec_pending(rdev, mddev);
1277 md_error(mddev, rdev);
1278 } else
1279 atomic_add(s, &rdev->corrected_errors);
1281 d = start;
1282 while (d != r1_bio->read_disk) {
1283 if (d == 0)
1284 d = conf->raid_disks;
1285 d--;
1286 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1287 continue;
1288 rdev = conf->mirrors[d].rdev;
1289 if (sync_page_io(rdev,
1290 sect,
1291 s<<9,
1292 bio->bi_io_vec[idx].bv_page,
1293 READ, false) == 0)
1294 md_error(mddev, rdev);
1296 sectors -= s;
1297 sect += s;
1298 idx ++;
1300 set_bit(R1BIO_Uptodate, &r1_bio->state);
1301 set_bit(BIO_UPTODATE, &bio->bi_flags);
1302 return 1;
1305 static int process_checks(r1bio_t *r1_bio)
1307 /* We have read all readable devices. If we haven't
1308 * got the block, then there is no hope left.
1309 * If we have, then we want to do a comparison
1310 * and skip the write if everything is the same.
1311 * If any blocks failed to read, then we need to
1312 * attempt an over-write
1314 mddev_t *mddev = r1_bio->mddev;
1315 conf_t *conf = mddev->private;
1316 int primary;
1317 int i;
1319 for (primary = 0; primary < conf->raid_disks; primary++)
1320 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1321 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1322 r1_bio->bios[primary]->bi_end_io = NULL;
1323 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1324 break;
1326 r1_bio->read_disk = primary;
1327 for (i = 0; i < conf->raid_disks; i++) {
1328 int j;
1329 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1330 struct bio *pbio = r1_bio->bios[primary];
1331 struct bio *sbio = r1_bio->bios[i];
1332 int size;
1334 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1335 continue;
1337 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1338 for (j = vcnt; j-- ; ) {
1339 struct page *p, *s;
1340 p = pbio->bi_io_vec[j].bv_page;
1341 s = sbio->bi_io_vec[j].bv_page;
1342 if (memcmp(page_address(p),
1343 page_address(s),
1344 PAGE_SIZE))
1345 break;
1347 } else
1348 j = 0;
1349 if (j >= 0)
1350 mddev->resync_mismatches += r1_bio->sectors;
1351 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1352 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1353 /* No need to write to this device. */
1354 sbio->bi_end_io = NULL;
1355 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1356 continue;
1358 /* fixup the bio for reuse */
1359 sbio->bi_vcnt = vcnt;
1360 sbio->bi_size = r1_bio->sectors << 9;
1361 sbio->bi_idx = 0;
1362 sbio->bi_phys_segments = 0;
1363 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1364 sbio->bi_flags |= 1 << BIO_UPTODATE;
1365 sbio->bi_next = NULL;
1366 sbio->bi_sector = r1_bio->sector +
1367 conf->mirrors[i].rdev->data_offset;
1368 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1369 size = sbio->bi_size;
1370 for (j = 0; j < vcnt ; j++) {
1371 struct bio_vec *bi;
1372 bi = &sbio->bi_io_vec[j];
1373 bi->bv_offset = 0;
1374 if (size > PAGE_SIZE)
1375 bi->bv_len = PAGE_SIZE;
1376 else
1377 bi->bv_len = size;
1378 size -= PAGE_SIZE;
1379 memcpy(page_address(bi->bv_page),
1380 page_address(pbio->bi_io_vec[j].bv_page),
1381 PAGE_SIZE);
1384 return 0;
1387 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1389 conf_t *conf = mddev->private;
1390 int i;
1391 int disks = conf->raid_disks;
1392 struct bio *bio, *wbio;
1394 bio = r1_bio->bios[r1_bio->read_disk];
1396 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1397 /* ouch - failed to read all of that. */
1398 if (!fix_sync_read_error(r1_bio))
1399 return;
1401 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1402 if (process_checks(r1_bio) < 0)
1403 return;
1405 * schedule writes
1407 atomic_set(&r1_bio->remaining, 1);
1408 for (i = 0; i < disks ; i++) {
1409 wbio = r1_bio->bios[i];
1410 if (wbio->bi_end_io == NULL ||
1411 (wbio->bi_end_io == end_sync_read &&
1412 (i == r1_bio->read_disk ||
1413 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1414 continue;
1416 wbio->bi_rw = WRITE;
1417 wbio->bi_end_io = end_sync_write;
1418 atomic_inc(&r1_bio->remaining);
1419 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1421 generic_make_request(wbio);
1424 if (atomic_dec_and_test(&r1_bio->remaining)) {
1425 /* if we're here, all write(s) have completed, so clean up */
1426 md_done_sync(mddev, r1_bio->sectors, 1);
1427 put_buf(r1_bio);
1432 * This is a kernel thread which:
1434 * 1. Retries failed read operations on working mirrors.
1435 * 2. Updates the raid superblock when problems encounter.
1436 * 3. Performs writes following reads for array syncronising.
1439 static void fix_read_error(conf_t *conf, int read_disk,
1440 sector_t sect, int sectors)
1442 mddev_t *mddev = conf->mddev;
1443 while(sectors) {
1444 int s = sectors;
1445 int d = read_disk;
1446 int success = 0;
1447 int start;
1448 mdk_rdev_t *rdev;
1450 if (s > (PAGE_SIZE>>9))
1451 s = PAGE_SIZE >> 9;
1453 do {
1454 /* Note: no rcu protection needed here
1455 * as this is synchronous in the raid1d thread
1456 * which is the thread that might remove
1457 * a device. If raid1d ever becomes multi-threaded....
1459 rdev = conf->mirrors[d].rdev;
1460 if (rdev &&
1461 test_bit(In_sync, &rdev->flags) &&
1462 sync_page_io(rdev, sect, s<<9,
1463 conf->tmppage, READ, false))
1464 success = 1;
1465 else {
1466 d++;
1467 if (d == conf->raid_disks)
1468 d = 0;
1470 } while (!success && d != read_disk);
1472 if (!success) {
1473 /* Cannot read from anywhere -- bye bye array */
1474 md_error(mddev, conf->mirrors[read_disk].rdev);
1475 break;
1477 /* write it back and re-read */
1478 start = d;
1479 while (d != read_disk) {
1480 if (d==0)
1481 d = conf->raid_disks;
1482 d--;
1483 rdev = conf->mirrors[d].rdev;
1484 if (rdev &&
1485 test_bit(In_sync, &rdev->flags)) {
1486 if (sync_page_io(rdev, sect, s<<9,
1487 conf->tmppage, WRITE, false)
1488 == 0)
1489 /* Well, this device is dead */
1490 md_error(mddev, rdev);
1493 d = start;
1494 while (d != read_disk) {
1495 char b[BDEVNAME_SIZE];
1496 if (d==0)
1497 d = conf->raid_disks;
1498 d--;
1499 rdev = conf->mirrors[d].rdev;
1500 if (rdev &&
1501 test_bit(In_sync, &rdev->flags)) {
1502 if (sync_page_io(rdev, sect, s<<9,
1503 conf->tmppage, READ, false)
1504 == 0)
1505 /* Well, this device is dead */
1506 md_error(mddev, rdev);
1507 else {
1508 atomic_add(s, &rdev->corrected_errors);
1509 printk(KERN_INFO
1510 "md/raid1:%s: read error corrected "
1511 "(%d sectors at %llu on %s)\n",
1512 mdname(mddev), s,
1513 (unsigned long long)(sect +
1514 rdev->data_offset),
1515 bdevname(rdev->bdev, b));
1519 sectors -= s;
1520 sect += s;
1524 static void raid1d(mddev_t *mddev)
1526 r1bio_t *r1_bio;
1527 struct bio *bio;
1528 unsigned long flags;
1529 conf_t *conf = mddev->private;
1530 struct list_head *head = &conf->retry_list;
1531 mdk_rdev_t *rdev;
1532 struct blk_plug plug;
1534 md_check_recovery(mddev);
1536 blk_start_plug(&plug);
1537 for (;;) {
1538 char b[BDEVNAME_SIZE];
1540 if (atomic_read(&mddev->plug_cnt) == 0)
1541 flush_pending_writes(conf);
1543 spin_lock_irqsave(&conf->device_lock, flags);
1544 if (list_empty(head)) {
1545 spin_unlock_irqrestore(&conf->device_lock, flags);
1546 break;
1548 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1549 list_del(head->prev);
1550 conf->nr_queued--;
1551 spin_unlock_irqrestore(&conf->device_lock, flags);
1553 mddev = r1_bio->mddev;
1554 conf = mddev->private;
1555 if (test_bit(R1BIO_IsSync, &r1_bio->state))
1556 sync_request_write(mddev, r1_bio);
1557 else {
1558 int disk;
1560 /* we got a read error. Maybe the drive is bad. Maybe just
1561 * the block and we can fix it.
1562 * We freeze all other IO, and try reading the block from
1563 * other devices. When we find one, we re-write
1564 * and check it that fixes the read error.
1565 * This is all done synchronously while the array is
1566 * frozen
1568 if (mddev->ro == 0) {
1569 freeze_array(conf);
1570 fix_read_error(conf, r1_bio->read_disk,
1571 r1_bio->sector,
1572 r1_bio->sectors);
1573 unfreeze_array(conf);
1574 } else
1575 md_error(mddev,
1576 conf->mirrors[r1_bio->read_disk].rdev);
1578 bio = r1_bio->bios[r1_bio->read_disk];
1579 if ((disk=read_balance(conf, r1_bio)) == -1) {
1580 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1581 " read error for block %llu\n",
1582 mdname(mddev),
1583 bdevname(bio->bi_bdev,b),
1584 (unsigned long long)r1_bio->sector);
1585 raid_end_bio_io(r1_bio);
1586 } else {
1587 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1588 r1_bio->bios[r1_bio->read_disk] =
1589 mddev->ro ? IO_BLOCKED : NULL;
1590 r1_bio->read_disk = disk;
1591 bio_put(bio);
1592 bio = bio_clone_mddev(r1_bio->master_bio,
1593 GFP_NOIO, mddev);
1594 r1_bio->bios[r1_bio->read_disk] = bio;
1595 rdev = conf->mirrors[disk].rdev;
1596 if (printk_ratelimit())
1597 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1598 " other mirror: %s\n",
1599 mdname(mddev),
1600 (unsigned long long)r1_bio->sector,
1601 bdevname(rdev->bdev,b));
1602 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1603 bio->bi_bdev = rdev->bdev;
1604 bio->bi_end_io = raid1_end_read_request;
1605 bio->bi_rw = READ | do_sync;
1606 bio->bi_private = r1_bio;
1607 generic_make_request(bio);
1610 cond_resched();
1612 blk_finish_plug(&plug);
1616 static int init_resync(conf_t *conf)
1618 int buffs;
1620 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1621 BUG_ON(conf->r1buf_pool);
1622 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1623 conf->poolinfo);
1624 if (!conf->r1buf_pool)
1625 return -ENOMEM;
1626 conf->next_resync = 0;
1627 return 0;
1631 * perform a "sync" on one "block"
1633 * We need to make sure that no normal I/O request - particularly write
1634 * requests - conflict with active sync requests.
1636 * This is achieved by tracking pending requests and a 'barrier' concept
1637 * that can be installed to exclude normal IO requests.
1640 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1642 conf_t *conf = mddev->private;
1643 r1bio_t *r1_bio;
1644 struct bio *bio;
1645 sector_t max_sector, nr_sectors;
1646 int disk = -1;
1647 int i;
1648 int wonly = -1;
1649 int write_targets = 0, read_targets = 0;
1650 sector_t sync_blocks;
1651 int still_degraded = 0;
1653 if (!conf->r1buf_pool)
1654 if (init_resync(conf))
1655 return 0;
1657 max_sector = mddev->dev_sectors;
1658 if (sector_nr >= max_sector) {
1659 /* If we aborted, we need to abort the
1660 * sync on the 'current' bitmap chunk (there will
1661 * only be one in raid1 resync.
1662 * We can find the current addess in mddev->curr_resync
1664 if (mddev->curr_resync < max_sector) /* aborted */
1665 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1666 &sync_blocks, 1);
1667 else /* completed sync */
1668 conf->fullsync = 0;
1670 bitmap_close_sync(mddev->bitmap);
1671 close_sync(conf);
1672 return 0;
1675 if (mddev->bitmap == NULL &&
1676 mddev->recovery_cp == MaxSector &&
1677 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1678 conf->fullsync == 0) {
1679 *skipped = 1;
1680 return max_sector - sector_nr;
1682 /* before building a request, check if we can skip these blocks..
1683 * This call the bitmap_start_sync doesn't actually record anything
1685 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1686 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1687 /* We can skip this block, and probably several more */
1688 *skipped = 1;
1689 return sync_blocks;
1692 * If there is non-resync activity waiting for a turn,
1693 * and resync is going fast enough,
1694 * then let it though before starting on this new sync request.
1696 if (!go_faster && conf->nr_waiting)
1697 msleep_interruptible(1000);
1699 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1700 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1701 raise_barrier(conf);
1703 conf->next_resync = sector_nr;
1705 rcu_read_lock();
1707 * If we get a correctably read error during resync or recovery,
1708 * we might want to read from a different device. So we
1709 * flag all drives that could conceivably be read from for READ,
1710 * and any others (which will be non-In_sync devices) for WRITE.
1711 * If a read fails, we try reading from something else for which READ
1712 * is OK.
1715 r1_bio->mddev = mddev;
1716 r1_bio->sector = sector_nr;
1717 r1_bio->state = 0;
1718 set_bit(R1BIO_IsSync, &r1_bio->state);
1720 for (i=0; i < conf->raid_disks; i++) {
1721 mdk_rdev_t *rdev;
1722 bio = r1_bio->bios[i];
1724 /* take from bio_init */
1725 bio->bi_next = NULL;
1726 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1727 bio->bi_flags |= 1 << BIO_UPTODATE;
1728 bio->bi_comp_cpu = -1;
1729 bio->bi_rw = READ;
1730 bio->bi_vcnt = 0;
1731 bio->bi_idx = 0;
1732 bio->bi_phys_segments = 0;
1733 bio->bi_size = 0;
1734 bio->bi_end_io = NULL;
1735 bio->bi_private = NULL;
1737 rdev = rcu_dereference(conf->mirrors[i].rdev);
1738 if (rdev == NULL ||
1739 test_bit(Faulty, &rdev->flags)) {
1740 still_degraded = 1;
1741 continue;
1742 } else if (!test_bit(In_sync, &rdev->flags)) {
1743 bio->bi_rw = WRITE;
1744 bio->bi_end_io = end_sync_write;
1745 write_targets ++;
1746 } else {
1747 /* may need to read from here */
1748 bio->bi_rw = READ;
1749 bio->bi_end_io = end_sync_read;
1750 if (test_bit(WriteMostly, &rdev->flags)) {
1751 if (wonly < 0)
1752 wonly = i;
1753 } else {
1754 if (disk < 0)
1755 disk = i;
1757 read_targets++;
1759 atomic_inc(&rdev->nr_pending);
1760 bio->bi_sector = sector_nr + rdev->data_offset;
1761 bio->bi_bdev = rdev->bdev;
1762 bio->bi_private = r1_bio;
1764 rcu_read_unlock();
1765 if (disk < 0)
1766 disk = wonly;
1767 r1_bio->read_disk = disk;
1769 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1770 /* extra read targets are also write targets */
1771 write_targets += read_targets-1;
1773 if (write_targets == 0 || read_targets == 0) {
1774 /* There is nowhere to write, so all non-sync
1775 * drives must be failed - so we are finished
1777 sector_t rv = max_sector - sector_nr;
1778 *skipped = 1;
1779 put_buf(r1_bio);
1780 return rv;
1783 if (max_sector > mddev->resync_max)
1784 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1785 nr_sectors = 0;
1786 sync_blocks = 0;
1787 do {
1788 struct page *page;
1789 int len = PAGE_SIZE;
1790 if (sector_nr + (len>>9) > max_sector)
1791 len = (max_sector - sector_nr) << 9;
1792 if (len == 0)
1793 break;
1794 if (sync_blocks == 0) {
1795 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1796 &sync_blocks, still_degraded) &&
1797 !conf->fullsync &&
1798 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1799 break;
1800 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1801 if ((len >> 9) > sync_blocks)
1802 len = sync_blocks<<9;
1805 for (i=0 ; i < conf->raid_disks; i++) {
1806 bio = r1_bio->bios[i];
1807 if (bio->bi_end_io) {
1808 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1809 if (bio_add_page(bio, page, len, 0) == 0) {
1810 /* stop here */
1811 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1812 while (i > 0) {
1813 i--;
1814 bio = r1_bio->bios[i];
1815 if (bio->bi_end_io==NULL)
1816 continue;
1817 /* remove last page from this bio */
1818 bio->bi_vcnt--;
1819 bio->bi_size -= len;
1820 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1822 goto bio_full;
1826 nr_sectors += len>>9;
1827 sector_nr += len>>9;
1828 sync_blocks -= (len>>9);
1829 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1830 bio_full:
1831 r1_bio->sectors = nr_sectors;
1833 /* For a user-requested sync, we read all readable devices and do a
1834 * compare
1836 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1837 atomic_set(&r1_bio->remaining, read_targets);
1838 for (i=0; i<conf->raid_disks; i++) {
1839 bio = r1_bio->bios[i];
1840 if (bio->bi_end_io == end_sync_read) {
1841 md_sync_acct(bio->bi_bdev, nr_sectors);
1842 generic_make_request(bio);
1845 } else {
1846 atomic_set(&r1_bio->remaining, 1);
1847 bio = r1_bio->bios[r1_bio->read_disk];
1848 md_sync_acct(bio->bi_bdev, nr_sectors);
1849 generic_make_request(bio);
1852 return nr_sectors;
1855 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1857 if (sectors)
1858 return sectors;
1860 return mddev->dev_sectors;
1863 static conf_t *setup_conf(mddev_t *mddev)
1865 conf_t *conf;
1866 int i;
1867 mirror_info_t *disk;
1868 mdk_rdev_t *rdev;
1869 int err = -ENOMEM;
1871 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1872 if (!conf)
1873 goto abort;
1875 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1876 GFP_KERNEL);
1877 if (!conf->mirrors)
1878 goto abort;
1880 conf->tmppage = alloc_page(GFP_KERNEL);
1881 if (!conf->tmppage)
1882 goto abort;
1884 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1885 if (!conf->poolinfo)
1886 goto abort;
1887 conf->poolinfo->raid_disks = mddev->raid_disks;
1888 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1889 r1bio_pool_free,
1890 conf->poolinfo);
1891 if (!conf->r1bio_pool)
1892 goto abort;
1894 conf->poolinfo->mddev = mddev;
1896 spin_lock_init(&conf->device_lock);
1897 list_for_each_entry(rdev, &mddev->disks, same_set) {
1898 int disk_idx = rdev->raid_disk;
1899 if (disk_idx >= mddev->raid_disks
1900 || disk_idx < 0)
1901 continue;
1902 disk = conf->mirrors + disk_idx;
1904 disk->rdev = rdev;
1906 disk->head_position = 0;
1908 conf->raid_disks = mddev->raid_disks;
1909 conf->mddev = mddev;
1910 INIT_LIST_HEAD(&conf->retry_list);
1912 spin_lock_init(&conf->resync_lock);
1913 init_waitqueue_head(&conf->wait_barrier);
1915 bio_list_init(&conf->pending_bio_list);
1917 conf->last_used = -1;
1918 for (i = 0; i < conf->raid_disks; i++) {
1920 disk = conf->mirrors + i;
1922 if (!disk->rdev ||
1923 !test_bit(In_sync, &disk->rdev->flags)) {
1924 disk->head_position = 0;
1925 if (disk->rdev)
1926 conf->fullsync = 1;
1927 } else if (conf->last_used < 0)
1929 * The first working device is used as a
1930 * starting point to read balancing.
1932 conf->last_used = i;
1935 err = -EIO;
1936 if (conf->last_used < 0) {
1937 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1938 mdname(mddev));
1939 goto abort;
1941 err = -ENOMEM;
1942 conf->thread = md_register_thread(raid1d, mddev, NULL);
1943 if (!conf->thread) {
1944 printk(KERN_ERR
1945 "md/raid1:%s: couldn't allocate thread\n",
1946 mdname(mddev));
1947 goto abort;
1950 return conf;
1952 abort:
1953 if (conf) {
1954 if (conf->r1bio_pool)
1955 mempool_destroy(conf->r1bio_pool);
1956 kfree(conf->mirrors);
1957 safe_put_page(conf->tmppage);
1958 kfree(conf->poolinfo);
1959 kfree(conf);
1961 return ERR_PTR(err);
1964 static int run(mddev_t *mddev)
1966 conf_t *conf;
1967 int i;
1968 mdk_rdev_t *rdev;
1970 if (mddev->level != 1) {
1971 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
1972 mdname(mddev), mddev->level);
1973 return -EIO;
1975 if (mddev->reshape_position != MaxSector) {
1976 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
1977 mdname(mddev));
1978 return -EIO;
1981 * copy the already verified devices into our private RAID1
1982 * bookkeeping area. [whatever we allocate in run(),
1983 * should be freed in stop()]
1985 if (mddev->private == NULL)
1986 conf = setup_conf(mddev);
1987 else
1988 conf = mddev->private;
1990 if (IS_ERR(conf))
1991 return PTR_ERR(conf);
1993 list_for_each_entry(rdev, &mddev->disks, same_set) {
1994 if (!mddev->gendisk)
1995 continue;
1996 disk_stack_limits(mddev->gendisk, rdev->bdev,
1997 rdev->data_offset << 9);
1998 /* as we don't honour merge_bvec_fn, we must never risk
1999 * violating it, so limit ->max_segments to 1 lying within
2000 * a single page, as a one page request is never in violation.
2002 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2003 blk_queue_max_segments(mddev->queue, 1);
2004 blk_queue_segment_boundary(mddev->queue,
2005 PAGE_CACHE_SIZE - 1);
2009 mddev->degraded = 0;
2010 for (i=0; i < conf->raid_disks; i++)
2011 if (conf->mirrors[i].rdev == NULL ||
2012 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2013 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2014 mddev->degraded++;
2016 if (conf->raid_disks - mddev->degraded == 1)
2017 mddev->recovery_cp = MaxSector;
2019 if (mddev->recovery_cp != MaxSector)
2020 printk(KERN_NOTICE "md/raid1:%s: not clean"
2021 " -- starting background reconstruction\n",
2022 mdname(mddev));
2023 printk(KERN_INFO
2024 "md/raid1:%s: active with %d out of %d mirrors\n",
2025 mdname(mddev), mddev->raid_disks - mddev->degraded,
2026 mddev->raid_disks);
2029 * Ok, everything is just fine now
2031 mddev->thread = conf->thread;
2032 conf->thread = NULL;
2033 mddev->private = conf;
2035 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2037 if (mddev->queue) {
2038 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2039 mddev->queue->backing_dev_info.congested_data = mddev;
2041 return md_integrity_register(mddev);
2044 static int stop(mddev_t *mddev)
2046 conf_t *conf = mddev->private;
2047 struct bitmap *bitmap = mddev->bitmap;
2049 /* wait for behind writes to complete */
2050 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2051 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2052 mdname(mddev));
2053 /* need to kick something here to make sure I/O goes? */
2054 wait_event(bitmap->behind_wait,
2055 atomic_read(&bitmap->behind_writes) == 0);
2058 raise_barrier(conf);
2059 lower_barrier(conf);
2061 md_unregister_thread(&mddev->thread);
2062 if (conf->r1bio_pool)
2063 mempool_destroy(conf->r1bio_pool);
2064 kfree(conf->mirrors);
2065 kfree(conf->poolinfo);
2066 kfree(conf);
2067 mddev->private = NULL;
2068 return 0;
2071 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2073 /* no resync is happening, and there is enough space
2074 * on all devices, so we can resize.
2075 * We need to make sure resync covers any new space.
2076 * If the array is shrinking we should possibly wait until
2077 * any io in the removed space completes, but it hardly seems
2078 * worth it.
2080 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2081 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2082 return -EINVAL;
2083 set_capacity(mddev->gendisk, mddev->array_sectors);
2084 revalidate_disk(mddev->gendisk);
2085 if (sectors > mddev->dev_sectors &&
2086 mddev->recovery_cp > mddev->dev_sectors) {
2087 mddev->recovery_cp = mddev->dev_sectors;
2088 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2090 mddev->dev_sectors = sectors;
2091 mddev->resync_max_sectors = sectors;
2092 return 0;
2095 static int raid1_reshape(mddev_t *mddev)
2097 /* We need to:
2098 * 1/ resize the r1bio_pool
2099 * 2/ resize conf->mirrors
2101 * We allocate a new r1bio_pool if we can.
2102 * Then raise a device barrier and wait until all IO stops.
2103 * Then resize conf->mirrors and swap in the new r1bio pool.
2105 * At the same time, we "pack" the devices so that all the missing
2106 * devices have the higher raid_disk numbers.
2108 mempool_t *newpool, *oldpool;
2109 struct pool_info *newpoolinfo;
2110 mirror_info_t *newmirrors;
2111 conf_t *conf = mddev->private;
2112 int cnt, raid_disks;
2113 unsigned long flags;
2114 int d, d2, err;
2116 /* Cannot change chunk_size, layout, or level */
2117 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2118 mddev->layout != mddev->new_layout ||
2119 mddev->level != mddev->new_level) {
2120 mddev->new_chunk_sectors = mddev->chunk_sectors;
2121 mddev->new_layout = mddev->layout;
2122 mddev->new_level = mddev->level;
2123 return -EINVAL;
2126 err = md_allow_write(mddev);
2127 if (err)
2128 return err;
2130 raid_disks = mddev->raid_disks + mddev->delta_disks;
2132 if (raid_disks < conf->raid_disks) {
2133 cnt=0;
2134 for (d= 0; d < conf->raid_disks; d++)
2135 if (conf->mirrors[d].rdev)
2136 cnt++;
2137 if (cnt > raid_disks)
2138 return -EBUSY;
2141 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2142 if (!newpoolinfo)
2143 return -ENOMEM;
2144 newpoolinfo->mddev = mddev;
2145 newpoolinfo->raid_disks = raid_disks;
2147 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2148 r1bio_pool_free, newpoolinfo);
2149 if (!newpool) {
2150 kfree(newpoolinfo);
2151 return -ENOMEM;
2153 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2154 if (!newmirrors) {
2155 kfree(newpoolinfo);
2156 mempool_destroy(newpool);
2157 return -ENOMEM;
2160 raise_barrier(conf);
2162 /* ok, everything is stopped */
2163 oldpool = conf->r1bio_pool;
2164 conf->r1bio_pool = newpool;
2166 for (d = d2 = 0; d < conf->raid_disks; d++) {
2167 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2168 if (rdev && rdev->raid_disk != d2) {
2169 char nm[20];
2170 sprintf(nm, "rd%d", rdev->raid_disk);
2171 sysfs_remove_link(&mddev->kobj, nm);
2172 rdev->raid_disk = d2;
2173 sprintf(nm, "rd%d", rdev->raid_disk);
2174 sysfs_remove_link(&mddev->kobj, nm);
2175 if (sysfs_create_link(&mddev->kobj,
2176 &rdev->kobj, nm))
2177 printk(KERN_WARNING
2178 "md/raid1:%s: cannot register "
2179 "%s\n",
2180 mdname(mddev), nm);
2182 if (rdev)
2183 newmirrors[d2++].rdev = rdev;
2185 kfree(conf->mirrors);
2186 conf->mirrors = newmirrors;
2187 kfree(conf->poolinfo);
2188 conf->poolinfo = newpoolinfo;
2190 spin_lock_irqsave(&conf->device_lock, flags);
2191 mddev->degraded += (raid_disks - conf->raid_disks);
2192 spin_unlock_irqrestore(&conf->device_lock, flags);
2193 conf->raid_disks = mddev->raid_disks = raid_disks;
2194 mddev->delta_disks = 0;
2196 conf->last_used = 0; /* just make sure it is in-range */
2197 lower_barrier(conf);
2199 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2200 md_wakeup_thread(mddev->thread);
2202 mempool_destroy(oldpool);
2203 return 0;
2206 static void raid1_quiesce(mddev_t *mddev, int state)
2208 conf_t *conf = mddev->private;
2210 switch(state) {
2211 case 2: /* wake for suspend */
2212 wake_up(&conf->wait_barrier);
2213 break;
2214 case 1:
2215 raise_barrier(conf);
2216 break;
2217 case 0:
2218 lower_barrier(conf);
2219 break;
2223 static void *raid1_takeover(mddev_t *mddev)
2225 /* raid1 can take over:
2226 * raid5 with 2 devices, any layout or chunk size
2228 if (mddev->level == 5 && mddev->raid_disks == 2) {
2229 conf_t *conf;
2230 mddev->new_level = 1;
2231 mddev->new_layout = 0;
2232 mddev->new_chunk_sectors = 0;
2233 conf = setup_conf(mddev);
2234 if (!IS_ERR(conf))
2235 conf->barrier = 1;
2236 return conf;
2238 return ERR_PTR(-EINVAL);
2241 static struct mdk_personality raid1_personality =
2243 .name = "raid1",
2244 .level = 1,
2245 .owner = THIS_MODULE,
2246 .make_request = make_request,
2247 .run = run,
2248 .stop = stop,
2249 .status = status,
2250 .error_handler = error,
2251 .hot_add_disk = raid1_add_disk,
2252 .hot_remove_disk= raid1_remove_disk,
2253 .spare_active = raid1_spare_active,
2254 .sync_request = sync_request,
2255 .resize = raid1_resize,
2256 .size = raid1_size,
2257 .check_reshape = raid1_reshape,
2258 .quiesce = raid1_quiesce,
2259 .takeover = raid1_takeover,
2262 static int __init raid_init(void)
2264 return register_md_personality(&raid1_personality);
2267 static void raid_exit(void)
2269 unregister_md_personality(&raid1_personality);
2272 module_init(raid_init);
2273 module_exit(raid_exit);
2274 MODULE_LICENSE("GPL");
2275 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2276 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2277 MODULE_ALIAS("md-raid1");
2278 MODULE_ALIAS("md-level-1");