drm/i915: Clear flushing lists on GPU reset
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob4e978e4044a3b81e6ae0f35af8fc171bc2684c41
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
61 static LIST_HEAD(shrink_list);
62 static DEFINE_SPINLOCK(shrink_list_lock);
64 static inline bool
65 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
67 return obj_priv->gtt_space &&
68 !obj_priv->active &&
69 obj_priv->pin_count == 0;
72 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
73 unsigned long end)
75 drm_i915_private_t *dev_priv = dev->dev_private;
77 if (start >= end ||
78 (start & (PAGE_SIZE - 1)) != 0 ||
79 (end & (PAGE_SIZE - 1)) != 0) {
80 return -EINVAL;
83 drm_mm_init(&dev_priv->mm.gtt_space, start,
84 end - start);
86 dev->gtt_total = (uint32_t) (end - start);
88 return 0;
91 int
92 i915_gem_init_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
95 struct drm_i915_gem_init *args = data;
96 int ret;
98 mutex_lock(&dev->struct_mutex);
99 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
100 mutex_unlock(&dev->struct_mutex);
102 return ret;
106 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
107 struct drm_file *file_priv)
109 struct drm_i915_gem_get_aperture *args = data;
111 if (!(dev->driver->driver_features & DRIVER_GEM))
112 return -ENODEV;
114 args->aper_size = dev->gtt_total;
115 args->aper_available_size = (args->aper_size -
116 atomic_read(&dev->pin_memory));
118 return 0;
123 * Creates a new mm object and returns a handle to it.
126 i915_gem_create_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file_priv)
129 struct drm_i915_gem_create *args = data;
130 struct drm_gem_object *obj;
131 int ret;
132 u32 handle;
134 args->size = roundup(args->size, PAGE_SIZE);
136 /* Allocate the new object */
137 obj = i915_gem_alloc_object(dev, args->size);
138 if (obj == NULL)
139 return -ENOMEM;
141 ret = drm_gem_handle_create(file_priv, obj, &handle);
142 if (ret) {
143 drm_gem_object_unreference_unlocked(obj);
144 return ret;
147 /* Sink the floating reference from kref_init(handlecount) */
148 drm_gem_object_handle_unreference_unlocked(obj);
150 args->handle = handle;
151 return 0;
154 static inline int
155 fast_shmem_read(struct page **pages,
156 loff_t page_base, int page_offset,
157 char __user *data,
158 int length)
160 char __iomem *vaddr;
161 int unwritten;
163 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
164 if (vaddr == NULL)
165 return -ENOMEM;
166 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
167 kunmap_atomic(vaddr, KM_USER0);
169 if (unwritten)
170 return -EFAULT;
172 return 0;
175 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
177 drm_i915_private_t *dev_priv = obj->dev->dev_private;
178 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
180 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
181 obj_priv->tiling_mode != I915_TILING_NONE;
184 static inline void
185 slow_shmem_copy(struct page *dst_page,
186 int dst_offset,
187 struct page *src_page,
188 int src_offset,
189 int length)
191 char *dst_vaddr, *src_vaddr;
193 dst_vaddr = kmap(dst_page);
194 src_vaddr = kmap(src_page);
196 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
198 kunmap(src_page);
199 kunmap(dst_page);
202 static inline void
203 slow_shmem_bit17_copy(struct page *gpu_page,
204 int gpu_offset,
205 struct page *cpu_page,
206 int cpu_offset,
207 int length,
208 int is_read)
210 char *gpu_vaddr, *cpu_vaddr;
212 /* Use the unswizzled path if this page isn't affected. */
213 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
214 if (is_read)
215 return slow_shmem_copy(cpu_page, cpu_offset,
216 gpu_page, gpu_offset, length);
217 else
218 return slow_shmem_copy(gpu_page, gpu_offset,
219 cpu_page, cpu_offset, length);
222 gpu_vaddr = kmap(gpu_page);
223 cpu_vaddr = kmap(cpu_page);
225 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226 * XORing with the other bits (A9 for Y, A9 and A10 for X)
228 while (length > 0) {
229 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230 int this_length = min(cacheline_end - gpu_offset, length);
231 int swizzled_gpu_offset = gpu_offset ^ 64;
233 if (is_read) {
234 memcpy(cpu_vaddr + cpu_offset,
235 gpu_vaddr + swizzled_gpu_offset,
236 this_length);
237 } else {
238 memcpy(gpu_vaddr + swizzled_gpu_offset,
239 cpu_vaddr + cpu_offset,
240 this_length);
242 cpu_offset += this_length;
243 gpu_offset += this_length;
244 length -= this_length;
247 kunmap(cpu_page);
248 kunmap(gpu_page);
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
256 static int
257 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
261 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
271 mutex_lock(&dev->struct_mutex);
273 ret = i915_gem_object_get_pages(obj, 0);
274 if (ret != 0)
275 goto fail_unlock;
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
282 obj_priv = to_intel_bo(obj);
283 offset = args->offset;
285 while (remain > 0) {
286 /* Operation in this page
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
309 fail_put_pages:
310 i915_gem_object_put_pages(obj);
311 fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
314 return ret;
317 static int
318 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
320 int ret;
322 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
324 /* If we've insufficient memory to map in the pages, attempt
325 * to make some space by throwing out some old buffers.
327 if (ret == -ENOMEM) {
328 struct drm_device *dev = obj->dev;
330 ret = i915_gem_evict_something(dev, obj->size,
331 i915_gem_get_gtt_alignment(obj));
332 if (ret)
333 return ret;
335 ret = i915_gem_object_get_pages(obj, 0);
338 return ret;
342 * This is the fallback shmem pread path, which allocates temporary storage
343 * in kernel space to copy_to_user into outside of the struct_mutex, so we
344 * can copy out of the object's backing pages while holding the struct mutex
345 * and not take page faults.
347 static int
348 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
349 struct drm_i915_gem_pread *args,
350 struct drm_file *file_priv)
352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
353 struct mm_struct *mm = current->mm;
354 struct page **user_pages;
355 ssize_t remain;
356 loff_t offset, pinned_pages, i;
357 loff_t first_data_page, last_data_page, num_pages;
358 int shmem_page_index, shmem_page_offset;
359 int data_page_index, data_page_offset;
360 int page_length;
361 int ret;
362 uint64_t data_ptr = args->data_ptr;
363 int do_bit17_swizzling;
365 remain = args->size;
367 /* Pin the user pages containing the data. We can't fault while
368 * holding the struct mutex, yet we want to hold it while
369 * dereferencing the user data.
371 first_data_page = data_ptr / PAGE_SIZE;
372 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
373 num_pages = last_data_page - first_data_page + 1;
375 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
376 if (user_pages == NULL)
377 return -ENOMEM;
379 down_read(&mm->mmap_sem);
380 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
381 num_pages, 1, 0, user_pages, NULL);
382 up_read(&mm->mmap_sem);
383 if (pinned_pages < num_pages) {
384 ret = -EFAULT;
385 goto fail_put_user_pages;
388 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
390 mutex_lock(&dev->struct_mutex);
392 ret = i915_gem_object_get_pages_or_evict(obj);
393 if (ret)
394 goto fail_unlock;
396 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
397 args->size);
398 if (ret != 0)
399 goto fail_put_pages;
401 obj_priv = to_intel_bo(obj);
402 offset = args->offset;
404 while (remain > 0) {
405 /* Operation in this page
407 * shmem_page_index = page number within shmem file
408 * shmem_page_offset = offset within page in shmem file
409 * data_page_index = page number in get_user_pages return
410 * data_page_offset = offset with data_page_index page.
411 * page_length = bytes to copy for this page
413 shmem_page_index = offset / PAGE_SIZE;
414 shmem_page_offset = offset & ~PAGE_MASK;
415 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
416 data_page_offset = data_ptr & ~PAGE_MASK;
418 page_length = remain;
419 if ((shmem_page_offset + page_length) > PAGE_SIZE)
420 page_length = PAGE_SIZE - shmem_page_offset;
421 if ((data_page_offset + page_length) > PAGE_SIZE)
422 page_length = PAGE_SIZE - data_page_offset;
424 if (do_bit17_swizzling) {
425 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
426 shmem_page_offset,
427 user_pages[data_page_index],
428 data_page_offset,
429 page_length,
431 } else {
432 slow_shmem_copy(user_pages[data_page_index],
433 data_page_offset,
434 obj_priv->pages[shmem_page_index],
435 shmem_page_offset,
436 page_length);
439 remain -= page_length;
440 data_ptr += page_length;
441 offset += page_length;
444 fail_put_pages:
445 i915_gem_object_put_pages(obj);
446 fail_unlock:
447 mutex_unlock(&dev->struct_mutex);
448 fail_put_user_pages:
449 for (i = 0; i < pinned_pages; i++) {
450 SetPageDirty(user_pages[i]);
451 page_cache_release(user_pages[i]);
453 drm_free_large(user_pages);
455 return ret;
459 * Reads data from the object referenced by handle.
461 * On error, the contents of *data are undefined.
464 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
465 struct drm_file *file_priv)
467 struct drm_i915_gem_pread *args = data;
468 struct drm_gem_object *obj;
469 struct drm_i915_gem_object *obj_priv;
470 int ret;
472 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
473 if (obj == NULL)
474 return -ENOENT;
475 obj_priv = to_intel_bo(obj);
477 /* Bounds check source.
479 * XXX: This could use review for overflow issues...
481 if (args->offset > obj->size || args->size > obj->size ||
482 args->offset + args->size > obj->size) {
483 drm_gem_object_unreference_unlocked(obj);
484 return -EINVAL;
487 if (i915_gem_object_needs_bit17_swizzle(obj)) {
488 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
489 } else {
490 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
491 if (ret != 0)
492 ret = i915_gem_shmem_pread_slow(dev, obj, args,
493 file_priv);
496 drm_gem_object_unreference_unlocked(obj);
498 return ret;
501 /* This is the fast write path which cannot handle
502 * page faults in the source data
505 static inline int
506 fast_user_write(struct io_mapping *mapping,
507 loff_t page_base, int page_offset,
508 char __user *user_data,
509 int length)
511 char *vaddr_atomic;
512 unsigned long unwritten;
514 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
515 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
516 user_data, length);
517 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
518 if (unwritten)
519 return -EFAULT;
520 return 0;
523 /* Here's the write path which can sleep for
524 * page faults
527 static inline void
528 slow_kernel_write(struct io_mapping *mapping,
529 loff_t gtt_base, int gtt_offset,
530 struct page *user_page, int user_offset,
531 int length)
533 char __iomem *dst_vaddr;
534 char *src_vaddr;
536 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
537 src_vaddr = kmap(user_page);
539 memcpy_toio(dst_vaddr + gtt_offset,
540 src_vaddr + user_offset,
541 length);
543 kunmap(user_page);
544 io_mapping_unmap(dst_vaddr);
547 static inline int
548 fast_shmem_write(struct page **pages,
549 loff_t page_base, int page_offset,
550 char __user *data,
551 int length)
553 char __iomem *vaddr;
554 unsigned long unwritten;
556 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
557 if (vaddr == NULL)
558 return -ENOMEM;
559 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
560 kunmap_atomic(vaddr, KM_USER0);
562 if (unwritten)
563 return -EFAULT;
564 return 0;
568 * This is the fast pwrite path, where we copy the data directly from the
569 * user into the GTT, uncached.
571 static int
572 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file_priv)
576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
577 drm_i915_private_t *dev_priv = dev->dev_private;
578 ssize_t remain;
579 loff_t offset, page_base;
580 char __user *user_data;
581 int page_offset, page_length;
582 int ret;
584 user_data = (char __user *) (uintptr_t) args->data_ptr;
585 remain = args->size;
586 if (!access_ok(VERIFY_READ, user_data, remain))
587 return -EFAULT;
590 mutex_lock(&dev->struct_mutex);
591 ret = i915_gem_object_pin(obj, 0);
592 if (ret) {
593 mutex_unlock(&dev->struct_mutex);
594 return ret;
596 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
597 if (ret)
598 goto fail;
600 obj_priv = to_intel_bo(obj);
601 offset = obj_priv->gtt_offset + args->offset;
603 while (remain > 0) {
604 /* Operation in this page
606 * page_base = page offset within aperture
607 * page_offset = offset within page
608 * page_length = bytes to copy for this page
610 page_base = (offset & ~(PAGE_SIZE-1));
611 page_offset = offset & (PAGE_SIZE-1);
612 page_length = remain;
613 if ((page_offset + remain) > PAGE_SIZE)
614 page_length = PAGE_SIZE - page_offset;
616 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
617 page_offset, user_data, page_length);
619 /* If we get a fault while copying data, then (presumably) our
620 * source page isn't available. Return the error and we'll
621 * retry in the slow path.
623 if (ret)
624 goto fail;
626 remain -= page_length;
627 user_data += page_length;
628 offset += page_length;
631 fail:
632 i915_gem_object_unpin(obj);
633 mutex_unlock(&dev->struct_mutex);
635 return ret;
639 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
640 * the memory and maps it using kmap_atomic for copying.
642 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
643 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
645 static int
646 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
647 struct drm_i915_gem_pwrite *args,
648 struct drm_file *file_priv)
650 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
651 drm_i915_private_t *dev_priv = dev->dev_private;
652 ssize_t remain;
653 loff_t gtt_page_base, offset;
654 loff_t first_data_page, last_data_page, num_pages;
655 loff_t pinned_pages, i;
656 struct page **user_pages;
657 struct mm_struct *mm = current->mm;
658 int gtt_page_offset, data_page_offset, data_page_index, page_length;
659 int ret;
660 uint64_t data_ptr = args->data_ptr;
662 remain = args->size;
664 /* Pin the user pages containing the data. We can't fault while
665 * holding the struct mutex, and all of the pwrite implementations
666 * want to hold it while dereferencing the user data.
668 first_data_page = data_ptr / PAGE_SIZE;
669 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
670 num_pages = last_data_page - first_data_page + 1;
672 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
673 if (user_pages == NULL)
674 return -ENOMEM;
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
680 if (pinned_pages < num_pages) {
681 ret = -EFAULT;
682 goto out_unpin_pages;
685 mutex_lock(&dev->struct_mutex);
686 ret = i915_gem_object_pin(obj, 0);
687 if (ret)
688 goto out_unlock;
690 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
691 if (ret)
692 goto out_unpin_object;
694 obj_priv = to_intel_bo(obj);
695 offset = obj_priv->gtt_offset + args->offset;
697 while (remain > 0) {
698 /* Operation in this page
700 * gtt_page_base = page offset within aperture
701 * gtt_page_offset = offset within page in aperture
702 * data_page_index = page number in get_user_pages return
703 * data_page_offset = offset with data_page_index page.
704 * page_length = bytes to copy for this page
706 gtt_page_base = offset & PAGE_MASK;
707 gtt_page_offset = offset & ~PAGE_MASK;
708 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
709 data_page_offset = data_ptr & ~PAGE_MASK;
711 page_length = remain;
712 if ((gtt_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - gtt_page_offset;
714 if ((data_page_offset + page_length) > PAGE_SIZE)
715 page_length = PAGE_SIZE - data_page_offset;
717 slow_kernel_write(dev_priv->mm.gtt_mapping,
718 gtt_page_base, gtt_page_offset,
719 user_pages[data_page_index],
720 data_page_offset,
721 page_length);
723 remain -= page_length;
724 offset += page_length;
725 data_ptr += page_length;
728 out_unpin_object:
729 i915_gem_object_unpin(obj);
730 out_unlock:
731 mutex_unlock(&dev->struct_mutex);
732 out_unpin_pages:
733 for (i = 0; i < pinned_pages; i++)
734 page_cache_release(user_pages[i]);
735 drm_free_large(user_pages);
737 return ret;
741 * This is the fast shmem pwrite path, which attempts to directly
742 * copy_from_user into the kmapped pages backing the object.
744 static int
745 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
746 struct drm_i915_gem_pwrite *args,
747 struct drm_file *file_priv)
749 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
750 ssize_t remain;
751 loff_t offset, page_base;
752 char __user *user_data;
753 int page_offset, page_length;
754 int ret;
756 user_data = (char __user *) (uintptr_t) args->data_ptr;
757 remain = args->size;
759 mutex_lock(&dev->struct_mutex);
761 ret = i915_gem_object_get_pages(obj, 0);
762 if (ret != 0)
763 goto fail_unlock;
765 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
766 if (ret != 0)
767 goto fail_put_pages;
769 obj_priv = to_intel_bo(obj);
770 offset = args->offset;
771 obj_priv->dirty = 1;
773 while (remain > 0) {
774 /* Operation in this page
776 * page_base = page offset within aperture
777 * page_offset = offset within page
778 * page_length = bytes to copy for this page
780 page_base = (offset & ~(PAGE_SIZE-1));
781 page_offset = offset & (PAGE_SIZE-1);
782 page_length = remain;
783 if ((page_offset + remain) > PAGE_SIZE)
784 page_length = PAGE_SIZE - page_offset;
786 ret = fast_shmem_write(obj_priv->pages,
787 page_base, page_offset,
788 user_data, page_length);
789 if (ret)
790 goto fail_put_pages;
792 remain -= page_length;
793 user_data += page_length;
794 offset += page_length;
797 fail_put_pages:
798 i915_gem_object_put_pages(obj);
799 fail_unlock:
800 mutex_unlock(&dev->struct_mutex);
802 return ret;
806 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
807 * the memory and maps it using kmap_atomic for copying.
809 * This avoids taking mmap_sem for faulting on the user's address while the
810 * struct_mutex is held.
812 static int
813 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file_priv)
817 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
818 struct mm_struct *mm = current->mm;
819 struct page **user_pages;
820 ssize_t remain;
821 loff_t offset, pinned_pages, i;
822 loff_t first_data_page, last_data_page, num_pages;
823 int shmem_page_index, shmem_page_offset;
824 int data_page_index, data_page_offset;
825 int page_length;
826 int ret;
827 uint64_t data_ptr = args->data_ptr;
828 int do_bit17_swizzling;
830 remain = args->size;
832 /* Pin the user pages containing the data. We can't fault while
833 * holding the struct mutex, and all of the pwrite implementations
834 * want to hold it while dereferencing the user data.
836 first_data_page = data_ptr / PAGE_SIZE;
837 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838 num_pages = last_data_page - first_data_page + 1;
840 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
841 if (user_pages == NULL)
842 return -ENOMEM;
844 down_read(&mm->mmap_sem);
845 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
846 num_pages, 0, 0, user_pages, NULL);
847 up_read(&mm->mmap_sem);
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
850 goto fail_put_user_pages;
853 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
855 mutex_lock(&dev->struct_mutex);
857 ret = i915_gem_object_get_pages_or_evict(obj);
858 if (ret)
859 goto fail_unlock;
861 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
862 if (ret != 0)
863 goto fail_put_pages;
865 obj_priv = to_intel_bo(obj);
866 offset = args->offset;
867 obj_priv->dirty = 1;
869 while (remain > 0) {
870 /* Operation in this page
872 * shmem_page_index = page number within shmem file
873 * shmem_page_offset = offset within page in shmem file
874 * data_page_index = page number in get_user_pages return
875 * data_page_offset = offset with data_page_index page.
876 * page_length = bytes to copy for this page
878 shmem_page_index = offset / PAGE_SIZE;
879 shmem_page_offset = offset & ~PAGE_MASK;
880 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
881 data_page_offset = data_ptr & ~PAGE_MASK;
883 page_length = remain;
884 if ((shmem_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - shmem_page_offset;
886 if ((data_page_offset + page_length) > PAGE_SIZE)
887 page_length = PAGE_SIZE - data_page_offset;
889 if (do_bit17_swizzling) {
890 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
894 page_length,
896 } else {
897 slow_shmem_copy(obj_priv->pages[shmem_page_index],
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
904 remain -= page_length;
905 data_ptr += page_length;
906 offset += page_length;
909 fail_put_pages:
910 i915_gem_object_put_pages(obj);
911 fail_unlock:
912 mutex_unlock(&dev->struct_mutex);
913 fail_put_user_pages:
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
916 drm_free_large(user_pages);
918 return ret;
922 * Writes data to the object referenced by handle.
924 * On error, the contents of the buffer that were to be modified are undefined.
927 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
928 struct drm_file *file_priv)
930 struct drm_i915_gem_pwrite *args = data;
931 struct drm_gem_object *obj;
932 struct drm_i915_gem_object *obj_priv;
933 int ret = 0;
935 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
936 if (obj == NULL)
937 return -ENOENT;
938 obj_priv = to_intel_bo(obj);
940 /* Bounds check destination.
942 * XXX: This could use review for overflow issues...
944 if (args->offset > obj->size || args->size > obj->size ||
945 args->offset + args->size > obj->size) {
946 drm_gem_object_unreference_unlocked(obj);
947 return -EINVAL;
950 /* We can only do the GTT pwrite on untiled buffers, as otherwise
951 * it would end up going through the fenced access, and we'll get
952 * different detiling behavior between reading and writing.
953 * pread/pwrite currently are reading and writing from the CPU
954 * perspective, requiring manual detiling by the client.
956 if (obj_priv->phys_obj)
957 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
958 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
959 dev->gtt_total != 0 &&
960 obj->write_domain != I915_GEM_DOMAIN_CPU) {
961 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
962 if (ret == -EFAULT) {
963 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
964 file_priv);
966 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
967 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
968 } else {
969 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
970 if (ret == -EFAULT) {
971 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
972 file_priv);
976 #if WATCH_PWRITE
977 if (ret)
978 DRM_INFO("pwrite failed %d\n", ret);
979 #endif
981 drm_gem_object_unreference_unlocked(obj);
983 return ret;
987 * Called when user space prepares to use an object with the CPU, either
988 * through the mmap ioctl's mapping or a GTT mapping.
991 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
992 struct drm_file *file_priv)
994 struct drm_i915_private *dev_priv = dev->dev_private;
995 struct drm_i915_gem_set_domain *args = data;
996 struct drm_gem_object *obj;
997 struct drm_i915_gem_object *obj_priv;
998 uint32_t read_domains = args->read_domains;
999 uint32_t write_domain = args->write_domain;
1000 int ret;
1002 if (!(dev->driver->driver_features & DRIVER_GEM))
1003 return -ENODEV;
1005 /* Only handle setting domains to types used by the CPU. */
1006 if (write_domain & I915_GEM_GPU_DOMAINS)
1007 return -EINVAL;
1009 if (read_domains & I915_GEM_GPU_DOMAINS)
1010 return -EINVAL;
1012 /* Having something in the write domain implies it's in the read
1013 * domain, and only that read domain. Enforce that in the request.
1015 if (write_domain != 0 && read_domains != write_domain)
1016 return -EINVAL;
1018 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1019 if (obj == NULL)
1020 return -ENOENT;
1021 obj_priv = to_intel_bo(obj);
1023 mutex_lock(&dev->struct_mutex);
1025 intel_mark_busy(dev, obj);
1027 #if WATCH_BUF
1028 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1029 obj, obj->size, read_domains, write_domain);
1030 #endif
1031 if (read_domains & I915_GEM_DOMAIN_GTT) {
1032 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1034 /* Update the LRU on the fence for the CPU access that's
1035 * about to occur.
1037 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1038 struct drm_i915_fence_reg *reg =
1039 &dev_priv->fence_regs[obj_priv->fence_reg];
1040 list_move_tail(&reg->lru_list,
1041 &dev_priv->mm.fence_list);
1044 /* Silently promote "you're not bound, there was nothing to do"
1045 * to success, since the client was just asking us to
1046 * make sure everything was done.
1048 if (ret == -EINVAL)
1049 ret = 0;
1050 } else {
1051 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1055 /* Maintain LRU order of "inactive" objects */
1056 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1057 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1059 drm_gem_object_unreference(obj);
1060 mutex_unlock(&dev->struct_mutex);
1061 return ret;
1065 * Called when user space has done writes to this buffer
1068 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1069 struct drm_file *file_priv)
1071 struct drm_i915_gem_sw_finish *args = data;
1072 struct drm_gem_object *obj;
1073 struct drm_i915_gem_object *obj_priv;
1074 int ret = 0;
1076 if (!(dev->driver->driver_features & DRIVER_GEM))
1077 return -ENODEV;
1079 mutex_lock(&dev->struct_mutex);
1080 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1081 if (obj == NULL) {
1082 mutex_unlock(&dev->struct_mutex);
1083 return -ENOENT;
1086 #if WATCH_BUF
1087 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1088 __func__, args->handle, obj, obj->size);
1089 #endif
1090 obj_priv = to_intel_bo(obj);
1092 /* Pinned buffers may be scanout, so flush the cache */
1093 if (obj_priv->pin_count)
1094 i915_gem_object_flush_cpu_write_domain(obj);
1096 drm_gem_object_unreference(obj);
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1102 * Maps the contents of an object, returning the address it is mapped
1103 * into.
1105 * While the mapping holds a reference on the contents of the object, it doesn't
1106 * imply a ref on the object itself.
1109 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1110 struct drm_file *file_priv)
1112 struct drm_i915_gem_mmap *args = data;
1113 struct drm_gem_object *obj;
1114 loff_t offset;
1115 unsigned long addr;
1117 if (!(dev->driver->driver_features & DRIVER_GEM))
1118 return -ENODEV;
1120 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1121 if (obj == NULL)
1122 return -ENOENT;
1124 offset = args->offset;
1126 down_write(&current->mm->mmap_sem);
1127 addr = do_mmap(obj->filp, 0, args->size,
1128 PROT_READ | PROT_WRITE, MAP_SHARED,
1129 args->offset);
1130 up_write(&current->mm->mmap_sem);
1131 drm_gem_object_unreference_unlocked(obj);
1132 if (IS_ERR((void *)addr))
1133 return addr;
1135 args->addr_ptr = (uint64_t) addr;
1137 return 0;
1141 * i915_gem_fault - fault a page into the GTT
1142 * vma: VMA in question
1143 * vmf: fault info
1145 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1146 * from userspace. The fault handler takes care of binding the object to
1147 * the GTT (if needed), allocating and programming a fence register (again,
1148 * only if needed based on whether the old reg is still valid or the object
1149 * is tiled) and inserting a new PTE into the faulting process.
1151 * Note that the faulting process may involve evicting existing objects
1152 * from the GTT and/or fence registers to make room. So performance may
1153 * suffer if the GTT working set is large or there are few fence registers
1154 * left.
1156 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1158 struct drm_gem_object *obj = vma->vm_private_data;
1159 struct drm_device *dev = obj->dev;
1160 drm_i915_private_t *dev_priv = dev->dev_private;
1161 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1162 pgoff_t page_offset;
1163 unsigned long pfn;
1164 int ret = 0;
1165 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1167 /* We don't use vmf->pgoff since that has the fake offset */
1168 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1169 PAGE_SHIFT;
1171 /* Now bind it into the GTT if needed */
1172 mutex_lock(&dev->struct_mutex);
1173 if (!obj_priv->gtt_space) {
1174 ret = i915_gem_object_bind_to_gtt(obj, 0);
1175 if (ret)
1176 goto unlock;
1178 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1179 if (ret)
1180 goto unlock;
1183 /* Need a new fence register? */
1184 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1185 ret = i915_gem_object_get_fence_reg(obj, true);
1186 if (ret)
1187 goto unlock;
1190 if (i915_gem_object_is_inactive(obj_priv))
1191 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1193 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1194 page_offset;
1196 /* Finally, remap it using the new GTT offset */
1197 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1198 unlock:
1199 mutex_unlock(&dev->struct_mutex);
1201 switch (ret) {
1202 case 0:
1203 case -ERESTARTSYS:
1204 return VM_FAULT_NOPAGE;
1205 case -ENOMEM:
1206 case -EAGAIN:
1207 return VM_FAULT_OOM;
1208 default:
1209 return VM_FAULT_SIGBUS;
1214 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1215 * @obj: obj in question
1217 * GEM memory mapping works by handing back to userspace a fake mmap offset
1218 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1219 * up the object based on the offset and sets up the various memory mapping
1220 * structures.
1222 * This routine allocates and attaches a fake offset for @obj.
1224 static int
1225 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1227 struct drm_device *dev = obj->dev;
1228 struct drm_gem_mm *mm = dev->mm_private;
1229 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1230 struct drm_map_list *list;
1231 struct drm_local_map *map;
1232 int ret = 0;
1234 /* Set the object up for mmap'ing */
1235 list = &obj->map_list;
1236 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1237 if (!list->map)
1238 return -ENOMEM;
1240 map = list->map;
1241 map->type = _DRM_GEM;
1242 map->size = obj->size;
1243 map->handle = obj;
1245 /* Get a DRM GEM mmap offset allocated... */
1246 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1247 obj->size / PAGE_SIZE, 0, 0);
1248 if (!list->file_offset_node) {
1249 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1250 ret = -ENOMEM;
1251 goto out_free_list;
1254 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1255 obj->size / PAGE_SIZE, 0);
1256 if (!list->file_offset_node) {
1257 ret = -ENOMEM;
1258 goto out_free_list;
1261 list->hash.key = list->file_offset_node->start;
1262 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1263 DRM_ERROR("failed to add to map hash\n");
1264 ret = -ENOMEM;
1265 goto out_free_mm;
1268 /* By now we should be all set, any drm_mmap request on the offset
1269 * below will get to our mmap & fault handler */
1270 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1272 return 0;
1274 out_free_mm:
1275 drm_mm_put_block(list->file_offset_node);
1276 out_free_list:
1277 kfree(list->map);
1279 return ret;
1283 * i915_gem_release_mmap - remove physical page mappings
1284 * @obj: obj in question
1286 * Preserve the reservation of the mmapping with the DRM core code, but
1287 * relinquish ownership of the pages back to the system.
1289 * It is vital that we remove the page mapping if we have mapped a tiled
1290 * object through the GTT and then lose the fence register due to
1291 * resource pressure. Similarly if the object has been moved out of the
1292 * aperture, than pages mapped into userspace must be revoked. Removing the
1293 * mapping will then trigger a page fault on the next user access, allowing
1294 * fixup by i915_gem_fault().
1296 void
1297 i915_gem_release_mmap(struct drm_gem_object *obj)
1299 struct drm_device *dev = obj->dev;
1300 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1302 if (dev->dev_mapping)
1303 unmap_mapping_range(dev->dev_mapping,
1304 obj_priv->mmap_offset, obj->size, 1);
1307 static void
1308 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1310 struct drm_device *dev = obj->dev;
1311 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1312 struct drm_gem_mm *mm = dev->mm_private;
1313 struct drm_map_list *list;
1315 list = &obj->map_list;
1316 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1318 if (list->file_offset_node) {
1319 drm_mm_put_block(list->file_offset_node);
1320 list->file_offset_node = NULL;
1323 if (list->map) {
1324 kfree(list->map);
1325 list->map = NULL;
1328 obj_priv->mmap_offset = 0;
1332 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1333 * @obj: object to check
1335 * Return the required GTT alignment for an object, taking into account
1336 * potential fence register mapping if needed.
1338 static uint32_t
1339 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1341 struct drm_device *dev = obj->dev;
1342 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1343 int start, i;
1346 * Minimum alignment is 4k (GTT page size), but might be greater
1347 * if a fence register is needed for the object.
1349 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1350 return 4096;
1353 * Previous chips need to be aligned to the size of the smallest
1354 * fence register that can contain the object.
1356 if (INTEL_INFO(dev)->gen == 3)
1357 start = 1024*1024;
1358 else
1359 start = 512*1024;
1361 for (i = start; i < obj->size; i <<= 1)
1364 return i;
1368 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1369 * @dev: DRM device
1370 * @data: GTT mapping ioctl data
1371 * @file_priv: GEM object info
1373 * Simply returns the fake offset to userspace so it can mmap it.
1374 * The mmap call will end up in drm_gem_mmap(), which will set things
1375 * up so we can get faults in the handler above.
1377 * The fault handler will take care of binding the object into the GTT
1378 * (since it may have been evicted to make room for something), allocating
1379 * a fence register, and mapping the appropriate aperture address into
1380 * userspace.
1383 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1384 struct drm_file *file_priv)
1386 struct drm_i915_gem_mmap_gtt *args = data;
1387 struct drm_gem_object *obj;
1388 struct drm_i915_gem_object *obj_priv;
1389 int ret;
1391 if (!(dev->driver->driver_features & DRIVER_GEM))
1392 return -ENODEV;
1394 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1395 if (obj == NULL)
1396 return -ENOENT;
1398 mutex_lock(&dev->struct_mutex);
1400 obj_priv = to_intel_bo(obj);
1402 if (obj_priv->madv != I915_MADV_WILLNEED) {
1403 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1404 drm_gem_object_unreference(obj);
1405 mutex_unlock(&dev->struct_mutex);
1406 return -EINVAL;
1410 if (!obj_priv->mmap_offset) {
1411 ret = i915_gem_create_mmap_offset(obj);
1412 if (ret) {
1413 drm_gem_object_unreference(obj);
1414 mutex_unlock(&dev->struct_mutex);
1415 return ret;
1419 args->offset = obj_priv->mmap_offset;
1422 * Pull it into the GTT so that we have a page list (makes the
1423 * initial fault faster and any subsequent flushing possible).
1425 if (!obj_priv->agp_mem) {
1426 ret = i915_gem_object_bind_to_gtt(obj, 0);
1427 if (ret) {
1428 drm_gem_object_unreference(obj);
1429 mutex_unlock(&dev->struct_mutex);
1430 return ret;
1434 drm_gem_object_unreference(obj);
1435 mutex_unlock(&dev->struct_mutex);
1437 return 0;
1440 void
1441 i915_gem_object_put_pages(struct drm_gem_object *obj)
1443 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1444 int page_count = obj->size / PAGE_SIZE;
1445 int i;
1447 BUG_ON(obj_priv->pages_refcount == 0);
1448 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1450 if (--obj_priv->pages_refcount != 0)
1451 return;
1453 if (obj_priv->tiling_mode != I915_TILING_NONE)
1454 i915_gem_object_save_bit_17_swizzle(obj);
1456 if (obj_priv->madv == I915_MADV_DONTNEED)
1457 obj_priv->dirty = 0;
1459 for (i = 0; i < page_count; i++) {
1460 if (obj_priv->dirty)
1461 set_page_dirty(obj_priv->pages[i]);
1463 if (obj_priv->madv == I915_MADV_WILLNEED)
1464 mark_page_accessed(obj_priv->pages[i]);
1466 page_cache_release(obj_priv->pages[i]);
1468 obj_priv->dirty = 0;
1470 drm_free_large(obj_priv->pages);
1471 obj_priv->pages = NULL;
1474 static uint32_t
1475 i915_gem_next_request_seqno(struct drm_device *dev,
1476 struct intel_ring_buffer *ring)
1478 drm_i915_private_t *dev_priv = dev->dev_private;
1480 ring->outstanding_lazy_request = true;
1482 return dev_priv->next_seqno;
1485 static void
1486 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1487 struct intel_ring_buffer *ring)
1489 struct drm_device *dev = obj->dev;
1490 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1491 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1493 BUG_ON(ring == NULL);
1494 obj_priv->ring = ring;
1496 /* Add a reference if we're newly entering the active list. */
1497 if (!obj_priv->active) {
1498 drm_gem_object_reference(obj);
1499 obj_priv->active = 1;
1502 /* Move from whatever list we were on to the tail of execution. */
1503 list_move_tail(&obj_priv->list, &ring->active_list);
1504 obj_priv->last_rendering_seqno = seqno;
1507 static void
1508 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1510 struct drm_device *dev = obj->dev;
1511 drm_i915_private_t *dev_priv = dev->dev_private;
1512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1514 BUG_ON(!obj_priv->active);
1515 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1516 obj_priv->last_rendering_seqno = 0;
1519 /* Immediately discard the backing storage */
1520 static void
1521 i915_gem_object_truncate(struct drm_gem_object *obj)
1523 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1524 struct inode *inode;
1526 /* Our goal here is to return as much of the memory as
1527 * is possible back to the system as we are called from OOM.
1528 * To do this we must instruct the shmfs to drop all of its
1529 * backing pages, *now*. Here we mirror the actions taken
1530 * when by shmem_delete_inode() to release the backing store.
1532 inode = obj->filp->f_path.dentry->d_inode;
1533 truncate_inode_pages(inode->i_mapping, 0);
1534 if (inode->i_op->truncate_range)
1535 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1537 obj_priv->madv = __I915_MADV_PURGED;
1540 static inline int
1541 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1543 return obj_priv->madv == I915_MADV_DONTNEED;
1546 static void
1547 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1549 struct drm_device *dev = obj->dev;
1550 drm_i915_private_t *dev_priv = dev->dev_private;
1551 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1553 i915_verify_inactive(dev, __FILE__, __LINE__);
1554 if (obj_priv->pin_count != 0)
1555 list_del_init(&obj_priv->list);
1556 else
1557 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1559 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1561 obj_priv->last_rendering_seqno = 0;
1562 obj_priv->ring = NULL;
1563 if (obj_priv->active) {
1564 obj_priv->active = 0;
1565 drm_gem_object_unreference(obj);
1567 i915_verify_inactive(dev, __FILE__, __LINE__);
1570 static void
1571 i915_gem_process_flushing_list(struct drm_device *dev,
1572 uint32_t flush_domains,
1573 struct intel_ring_buffer *ring)
1575 drm_i915_private_t *dev_priv = dev->dev_private;
1576 struct drm_i915_gem_object *obj_priv, *next;
1578 list_for_each_entry_safe(obj_priv, next,
1579 &dev_priv->mm.gpu_write_list,
1580 gpu_write_list) {
1581 struct drm_gem_object *obj = &obj_priv->base;
1583 if (obj->write_domain & flush_domains &&
1584 obj_priv->ring == ring) {
1585 uint32_t old_write_domain = obj->write_domain;
1587 obj->write_domain = 0;
1588 list_del_init(&obj_priv->gpu_write_list);
1589 i915_gem_object_move_to_active(obj, ring);
1591 /* update the fence lru list */
1592 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1593 struct drm_i915_fence_reg *reg =
1594 &dev_priv->fence_regs[obj_priv->fence_reg];
1595 list_move_tail(&reg->lru_list,
1596 &dev_priv->mm.fence_list);
1599 trace_i915_gem_object_change_domain(obj,
1600 obj->read_domains,
1601 old_write_domain);
1606 uint32_t
1607 i915_add_request(struct drm_device *dev,
1608 struct drm_file *file_priv,
1609 struct drm_i915_gem_request *request,
1610 struct intel_ring_buffer *ring)
1612 drm_i915_private_t *dev_priv = dev->dev_private;
1613 struct drm_i915_file_private *i915_file_priv = NULL;
1614 uint32_t seqno;
1615 int was_empty;
1617 if (file_priv != NULL)
1618 i915_file_priv = file_priv->driver_priv;
1620 if (request == NULL) {
1621 request = kzalloc(sizeof(*request), GFP_KERNEL);
1622 if (request == NULL)
1623 return 0;
1626 seqno = ring->add_request(dev, ring, file_priv, 0);
1628 request->seqno = seqno;
1629 request->ring = ring;
1630 request->emitted_jiffies = jiffies;
1631 was_empty = list_empty(&ring->request_list);
1632 list_add_tail(&request->list, &ring->request_list);
1634 if (i915_file_priv) {
1635 list_add_tail(&request->client_list,
1636 &i915_file_priv->mm.request_list);
1637 } else {
1638 INIT_LIST_HEAD(&request->client_list);
1641 if (!dev_priv->mm.suspended) {
1642 mod_timer(&dev_priv->hangcheck_timer,
1643 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1644 if (was_empty)
1645 queue_delayed_work(dev_priv->wq,
1646 &dev_priv->mm.retire_work, HZ);
1648 return seqno;
1652 * Command execution barrier
1654 * Ensures that all commands in the ring are finished
1655 * before signalling the CPU
1657 static void
1658 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1660 uint32_t flush_domains = 0;
1662 /* The sampler always gets flushed on i965 (sigh) */
1663 if (INTEL_INFO(dev)->gen >= 4)
1664 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1666 ring->flush(dev, ring,
1667 I915_GEM_DOMAIN_COMMAND, flush_domains);
1671 * Returns true if seq1 is later than seq2.
1673 bool
1674 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1676 return (int32_t)(seq1 - seq2) >= 0;
1679 uint32_t
1680 i915_get_gem_seqno(struct drm_device *dev,
1681 struct intel_ring_buffer *ring)
1683 return ring->get_gem_seqno(dev, ring);
1686 void i915_gem_reset_flushing_list(struct drm_device *dev)
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1690 while (!list_empty(&dev_priv->mm.flushing_list)) {
1691 struct drm_i915_gem_object *obj_priv;
1693 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1694 struct drm_i915_gem_object,
1695 list);
1697 obj_priv->base.write_domain = 0;
1698 i915_gem_object_move_to_inactive(&obj_priv->base);
1703 * This function clears the request list as sequence numbers are passed.
1705 static void
1706 i915_gem_retire_requests_ring(struct drm_device *dev,
1707 struct intel_ring_buffer *ring)
1709 drm_i915_private_t *dev_priv = dev->dev_private;
1710 uint32_t seqno;
1711 bool wedged;
1713 if (!ring->status_page.page_addr ||
1714 list_empty(&ring->request_list))
1715 return;
1717 seqno = i915_get_gem_seqno(dev, ring);
1718 wedged = atomic_read(&dev_priv->mm.wedged);
1720 while (!list_empty(&ring->request_list)) {
1721 struct drm_i915_gem_request *request;
1723 request = list_first_entry(&ring->request_list,
1724 struct drm_i915_gem_request,
1725 list);
1727 if (!wedged && !i915_seqno_passed(seqno, request->seqno))
1728 break;
1730 trace_i915_gem_request_retire(dev, request->seqno);
1732 list_del(&request->list);
1733 list_del(&request->client_list);
1734 kfree(request);
1737 /* Move any buffers on the active list that are no longer referenced
1738 * by the ringbuffer to the flushing/inactive lists as appropriate.
1740 while (!list_empty(&ring->active_list)) {
1741 struct drm_gem_object *obj;
1742 struct drm_i915_gem_object *obj_priv;
1744 obj_priv = list_first_entry(&ring->active_list,
1745 struct drm_i915_gem_object,
1746 list);
1748 if (!wedged &&
1749 !i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1750 break;
1752 obj = &obj_priv->base;
1754 #if WATCH_LRU
1755 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1756 __func__, request->seqno, obj);
1757 #endif
1759 if (obj->write_domain != 0)
1760 i915_gem_object_move_to_flushing(obj);
1761 else
1762 i915_gem_object_move_to_inactive(obj);
1765 if (unlikely (dev_priv->trace_irq_seqno &&
1766 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1767 ring->user_irq_put(dev, ring);
1768 dev_priv->trace_irq_seqno = 0;
1772 void
1773 i915_gem_retire_requests(struct drm_device *dev)
1775 drm_i915_private_t *dev_priv = dev->dev_private;
1777 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1778 struct drm_i915_gem_object *obj_priv, *tmp;
1780 /* We must be careful that during unbind() we do not
1781 * accidentally infinitely recurse into retire requests.
1782 * Currently:
1783 * retire -> free -> unbind -> wait -> retire_ring
1785 list_for_each_entry_safe(obj_priv, tmp,
1786 &dev_priv->mm.deferred_free_list,
1787 list)
1788 i915_gem_free_object_tail(&obj_priv->base);
1791 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1792 if (HAS_BSD(dev))
1793 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1796 static void
1797 i915_gem_retire_work_handler(struct work_struct *work)
1799 drm_i915_private_t *dev_priv;
1800 struct drm_device *dev;
1802 dev_priv = container_of(work, drm_i915_private_t,
1803 mm.retire_work.work);
1804 dev = dev_priv->dev;
1806 mutex_lock(&dev->struct_mutex);
1807 i915_gem_retire_requests(dev);
1809 if (!dev_priv->mm.suspended &&
1810 (!list_empty(&dev_priv->render_ring.request_list) ||
1811 (HAS_BSD(dev) &&
1812 !list_empty(&dev_priv->bsd_ring.request_list))))
1813 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1814 mutex_unlock(&dev->struct_mutex);
1818 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1819 bool interruptible, struct intel_ring_buffer *ring)
1821 drm_i915_private_t *dev_priv = dev->dev_private;
1822 u32 ier;
1823 int ret = 0;
1825 BUG_ON(seqno == 0);
1827 if (seqno == dev_priv->next_seqno) {
1828 seqno = i915_add_request(dev, NULL, NULL, ring);
1829 if (seqno == 0)
1830 return -ENOMEM;
1833 if (atomic_read(&dev_priv->mm.wedged))
1834 return -EIO;
1836 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1837 if (HAS_PCH_SPLIT(dev))
1838 ier = I915_READ(DEIER) | I915_READ(GTIER);
1839 else
1840 ier = I915_READ(IER);
1841 if (!ier) {
1842 DRM_ERROR("something (likely vbetool) disabled "
1843 "interrupts, re-enabling\n");
1844 i915_driver_irq_preinstall(dev);
1845 i915_driver_irq_postinstall(dev);
1848 trace_i915_gem_request_wait_begin(dev, seqno);
1850 ring->waiting_gem_seqno = seqno;
1851 ring->user_irq_get(dev, ring);
1852 if (interruptible)
1853 ret = wait_event_interruptible(ring->irq_queue,
1854 i915_seqno_passed(
1855 ring->get_gem_seqno(dev, ring), seqno)
1856 || atomic_read(&dev_priv->mm.wedged));
1857 else
1858 wait_event(ring->irq_queue,
1859 i915_seqno_passed(
1860 ring->get_gem_seqno(dev, ring), seqno)
1861 || atomic_read(&dev_priv->mm.wedged));
1863 ring->user_irq_put(dev, ring);
1864 ring->waiting_gem_seqno = 0;
1866 trace_i915_gem_request_wait_end(dev, seqno);
1868 if (atomic_read(&dev_priv->mm.wedged))
1869 ret = -EIO;
1871 if (ret && ret != -ERESTARTSYS)
1872 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1873 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1874 dev_priv->next_seqno);
1876 /* Directly dispatch request retiring. While we have the work queue
1877 * to handle this, the waiter on a request often wants an associated
1878 * buffer to have made it to the inactive list, and we would need
1879 * a separate wait queue to handle that.
1881 if (ret == 0)
1882 i915_gem_retire_requests_ring(dev, ring);
1884 return ret;
1888 * Waits for a sequence number to be signaled, and cleans up the
1889 * request and object lists appropriately for that event.
1891 static int
1892 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1893 struct intel_ring_buffer *ring)
1895 return i915_do_wait_request(dev, seqno, 1, ring);
1898 static void
1899 i915_gem_flush_ring(struct drm_device *dev,
1900 struct intel_ring_buffer *ring,
1901 uint32_t invalidate_domains,
1902 uint32_t flush_domains)
1904 ring->flush(dev, ring, invalidate_domains, flush_domains);
1905 i915_gem_process_flushing_list(dev, flush_domains, ring);
1908 static void
1909 i915_gem_flush(struct drm_device *dev,
1910 uint32_t invalidate_domains,
1911 uint32_t flush_domains,
1912 uint32_t flush_rings)
1914 drm_i915_private_t *dev_priv = dev->dev_private;
1916 if (flush_domains & I915_GEM_DOMAIN_CPU)
1917 drm_agp_chipset_flush(dev);
1919 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
1920 if (flush_rings & RING_RENDER)
1921 i915_gem_flush_ring(dev,
1922 &dev_priv->render_ring,
1923 invalidate_domains, flush_domains);
1924 if (flush_rings & RING_BSD)
1925 i915_gem_flush_ring(dev,
1926 &dev_priv->bsd_ring,
1927 invalidate_domains, flush_domains);
1932 * Ensures that all rendering to the object has completed and the object is
1933 * safe to unbind from the GTT or access from the CPU.
1935 static int
1936 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
1937 bool interruptible)
1939 struct drm_device *dev = obj->dev;
1940 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1941 int ret;
1943 /* This function only exists to support waiting for existing rendering,
1944 * not for emitting required flushes.
1946 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1948 /* If there is rendering queued on the buffer being evicted, wait for
1949 * it.
1951 if (obj_priv->active) {
1952 #if WATCH_BUF
1953 DRM_INFO("%s: object %p wait for seqno %08x\n",
1954 __func__, obj, obj_priv->last_rendering_seqno);
1955 #endif
1956 ret = i915_do_wait_request(dev,
1957 obj_priv->last_rendering_seqno,
1958 interruptible,
1959 obj_priv->ring);
1960 if (ret)
1961 return ret;
1964 return 0;
1968 * Unbinds an object from the GTT aperture.
1971 i915_gem_object_unbind(struct drm_gem_object *obj)
1973 struct drm_device *dev = obj->dev;
1974 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1975 int ret = 0;
1977 #if WATCH_BUF
1978 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1979 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1980 #endif
1981 if (obj_priv->gtt_space == NULL)
1982 return 0;
1984 if (obj_priv->pin_count != 0) {
1985 DRM_ERROR("Attempting to unbind pinned buffer\n");
1986 return -EINVAL;
1989 /* blow away mappings if mapped through GTT */
1990 i915_gem_release_mmap(obj);
1992 /* Move the object to the CPU domain to ensure that
1993 * any possible CPU writes while it's not in the GTT
1994 * are flushed when we go to remap it. This will
1995 * also ensure that all pending GPU writes are finished
1996 * before we unbind.
1998 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1999 if (ret == -ERESTARTSYS)
2000 return ret;
2001 /* Continue on if we fail due to EIO, the GPU is hung so we
2002 * should be safe and we need to cleanup or else we might
2003 * cause memory corruption through use-after-free.
2006 /* release the fence reg _after_ flushing */
2007 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2008 i915_gem_clear_fence_reg(obj);
2010 if (obj_priv->agp_mem != NULL) {
2011 drm_unbind_agp(obj_priv->agp_mem);
2012 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2013 obj_priv->agp_mem = NULL;
2016 i915_gem_object_put_pages(obj);
2017 BUG_ON(obj_priv->pages_refcount);
2019 if (obj_priv->gtt_space) {
2020 atomic_dec(&dev->gtt_count);
2021 atomic_sub(obj->size, &dev->gtt_memory);
2023 drm_mm_put_block(obj_priv->gtt_space);
2024 obj_priv->gtt_space = NULL;
2027 /* Remove ourselves from the LRU list if present. */
2028 if (!list_empty(&obj_priv->list))
2029 list_del_init(&obj_priv->list);
2031 if (i915_gem_object_is_purgeable(obj_priv))
2032 i915_gem_object_truncate(obj);
2034 trace_i915_gem_object_unbind(obj);
2036 return ret;
2040 i915_gpu_idle(struct drm_device *dev)
2042 drm_i915_private_t *dev_priv = dev->dev_private;
2043 bool lists_empty;
2044 int ret;
2046 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2047 list_empty(&dev_priv->render_ring.active_list) &&
2048 (!HAS_BSD(dev) ||
2049 list_empty(&dev_priv->bsd_ring.active_list)));
2050 if (lists_empty)
2051 return 0;
2053 /* Flush everything onto the inactive list. */
2054 i915_gem_flush_ring(dev,
2055 &dev_priv->render_ring,
2056 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2058 ret = i915_wait_request(dev,
2059 i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
2060 &dev_priv->render_ring);
2061 if (ret)
2062 return ret;
2064 if (HAS_BSD(dev)) {
2065 i915_gem_flush_ring(dev,
2066 &dev_priv->bsd_ring,
2067 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2069 ret = i915_wait_request(dev,
2070 i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
2071 &dev_priv->bsd_ring);
2072 if (ret)
2073 return ret;
2076 return 0;
2080 i915_gem_object_get_pages(struct drm_gem_object *obj,
2081 gfp_t gfpmask)
2083 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2084 int page_count, i;
2085 struct address_space *mapping;
2086 struct inode *inode;
2087 struct page *page;
2089 BUG_ON(obj_priv->pages_refcount
2090 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2092 if (obj_priv->pages_refcount++ != 0)
2093 return 0;
2095 /* Get the list of pages out of our struct file. They'll be pinned
2096 * at this point until we release them.
2098 page_count = obj->size / PAGE_SIZE;
2099 BUG_ON(obj_priv->pages != NULL);
2100 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2101 if (obj_priv->pages == NULL) {
2102 obj_priv->pages_refcount--;
2103 return -ENOMEM;
2106 inode = obj->filp->f_path.dentry->d_inode;
2107 mapping = inode->i_mapping;
2108 for (i = 0; i < page_count; i++) {
2109 page = read_cache_page_gfp(mapping, i,
2110 GFP_HIGHUSER |
2111 __GFP_COLD |
2112 __GFP_RECLAIMABLE |
2113 gfpmask);
2114 if (IS_ERR(page))
2115 goto err_pages;
2117 obj_priv->pages[i] = page;
2120 if (obj_priv->tiling_mode != I915_TILING_NONE)
2121 i915_gem_object_do_bit_17_swizzle(obj);
2123 return 0;
2125 err_pages:
2126 while (i--)
2127 page_cache_release(obj_priv->pages[i]);
2129 drm_free_large(obj_priv->pages);
2130 obj_priv->pages = NULL;
2131 obj_priv->pages_refcount--;
2132 return PTR_ERR(page);
2135 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2137 struct drm_gem_object *obj = reg->obj;
2138 struct drm_device *dev = obj->dev;
2139 drm_i915_private_t *dev_priv = dev->dev_private;
2140 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2141 int regnum = obj_priv->fence_reg;
2142 uint64_t val;
2144 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2145 0xfffff000) << 32;
2146 val |= obj_priv->gtt_offset & 0xfffff000;
2147 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2148 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2150 if (obj_priv->tiling_mode == I915_TILING_Y)
2151 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2152 val |= I965_FENCE_REG_VALID;
2154 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2157 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2159 struct drm_gem_object *obj = reg->obj;
2160 struct drm_device *dev = obj->dev;
2161 drm_i915_private_t *dev_priv = dev->dev_private;
2162 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2163 int regnum = obj_priv->fence_reg;
2164 uint64_t val;
2166 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2167 0xfffff000) << 32;
2168 val |= obj_priv->gtt_offset & 0xfffff000;
2169 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2170 if (obj_priv->tiling_mode == I915_TILING_Y)
2171 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2172 val |= I965_FENCE_REG_VALID;
2174 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2177 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2179 struct drm_gem_object *obj = reg->obj;
2180 struct drm_device *dev = obj->dev;
2181 drm_i915_private_t *dev_priv = dev->dev_private;
2182 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2183 int regnum = obj_priv->fence_reg;
2184 int tile_width;
2185 uint32_t fence_reg, val;
2186 uint32_t pitch_val;
2188 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2189 (obj_priv->gtt_offset & (obj->size - 1))) {
2190 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2191 __func__, obj_priv->gtt_offset, obj->size);
2192 return;
2195 if (obj_priv->tiling_mode == I915_TILING_Y &&
2196 HAS_128_BYTE_Y_TILING(dev))
2197 tile_width = 128;
2198 else
2199 tile_width = 512;
2201 /* Note: pitch better be a power of two tile widths */
2202 pitch_val = obj_priv->stride / tile_width;
2203 pitch_val = ffs(pitch_val) - 1;
2205 if (obj_priv->tiling_mode == I915_TILING_Y &&
2206 HAS_128_BYTE_Y_TILING(dev))
2207 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2208 else
2209 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2211 val = obj_priv->gtt_offset;
2212 if (obj_priv->tiling_mode == I915_TILING_Y)
2213 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2214 val |= I915_FENCE_SIZE_BITS(obj->size);
2215 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2216 val |= I830_FENCE_REG_VALID;
2218 if (regnum < 8)
2219 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2220 else
2221 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2222 I915_WRITE(fence_reg, val);
2225 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2227 struct drm_gem_object *obj = reg->obj;
2228 struct drm_device *dev = obj->dev;
2229 drm_i915_private_t *dev_priv = dev->dev_private;
2230 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2231 int regnum = obj_priv->fence_reg;
2232 uint32_t val;
2233 uint32_t pitch_val;
2234 uint32_t fence_size_bits;
2236 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2237 (obj_priv->gtt_offset & (obj->size - 1))) {
2238 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2239 __func__, obj_priv->gtt_offset);
2240 return;
2243 pitch_val = obj_priv->stride / 128;
2244 pitch_val = ffs(pitch_val) - 1;
2245 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2247 val = obj_priv->gtt_offset;
2248 if (obj_priv->tiling_mode == I915_TILING_Y)
2249 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2250 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2251 WARN_ON(fence_size_bits & ~0x00000f00);
2252 val |= fence_size_bits;
2253 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2254 val |= I830_FENCE_REG_VALID;
2256 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2259 static int i915_find_fence_reg(struct drm_device *dev,
2260 bool interruptible)
2262 struct drm_i915_fence_reg *reg = NULL;
2263 struct drm_i915_gem_object *obj_priv = NULL;
2264 struct drm_i915_private *dev_priv = dev->dev_private;
2265 struct drm_gem_object *obj = NULL;
2266 int i, avail, ret;
2268 /* First try to find a free reg */
2269 avail = 0;
2270 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2271 reg = &dev_priv->fence_regs[i];
2272 if (!reg->obj)
2273 return i;
2275 obj_priv = to_intel_bo(reg->obj);
2276 if (!obj_priv->pin_count)
2277 avail++;
2280 if (avail == 0)
2281 return -ENOSPC;
2283 /* None available, try to steal one or wait for a user to finish */
2284 i = I915_FENCE_REG_NONE;
2285 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2286 lru_list) {
2287 obj = reg->obj;
2288 obj_priv = to_intel_bo(obj);
2290 if (obj_priv->pin_count)
2291 continue;
2293 /* found one! */
2294 i = obj_priv->fence_reg;
2295 break;
2298 BUG_ON(i == I915_FENCE_REG_NONE);
2300 /* We only have a reference on obj from the active list. put_fence_reg
2301 * might drop that one, causing a use-after-free in it. So hold a
2302 * private reference to obj like the other callers of put_fence_reg
2303 * (set_tiling ioctl) do. */
2304 drm_gem_object_reference(obj);
2305 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2306 drm_gem_object_unreference(obj);
2307 if (ret != 0)
2308 return ret;
2310 return i;
2314 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2315 * @obj: object to map through a fence reg
2317 * When mapping objects through the GTT, userspace wants to be able to write
2318 * to them without having to worry about swizzling if the object is tiled.
2320 * This function walks the fence regs looking for a free one for @obj,
2321 * stealing one if it can't find any.
2323 * It then sets up the reg based on the object's properties: address, pitch
2324 * and tiling format.
2327 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2328 bool interruptible)
2330 struct drm_device *dev = obj->dev;
2331 struct drm_i915_private *dev_priv = dev->dev_private;
2332 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2333 struct drm_i915_fence_reg *reg = NULL;
2334 int ret;
2336 /* Just update our place in the LRU if our fence is getting used. */
2337 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2338 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2339 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2340 return 0;
2343 switch (obj_priv->tiling_mode) {
2344 case I915_TILING_NONE:
2345 WARN(1, "allocating a fence for non-tiled object?\n");
2346 break;
2347 case I915_TILING_X:
2348 if (!obj_priv->stride)
2349 return -EINVAL;
2350 WARN((obj_priv->stride & (512 - 1)),
2351 "object 0x%08x is X tiled but has non-512B pitch\n",
2352 obj_priv->gtt_offset);
2353 break;
2354 case I915_TILING_Y:
2355 if (!obj_priv->stride)
2356 return -EINVAL;
2357 WARN((obj_priv->stride & (128 - 1)),
2358 "object 0x%08x is Y tiled but has non-128B pitch\n",
2359 obj_priv->gtt_offset);
2360 break;
2363 ret = i915_find_fence_reg(dev, interruptible);
2364 if (ret < 0)
2365 return ret;
2367 obj_priv->fence_reg = ret;
2368 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2369 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2371 reg->obj = obj;
2373 switch (INTEL_INFO(dev)->gen) {
2374 case 6:
2375 sandybridge_write_fence_reg(reg);
2376 break;
2377 case 5:
2378 case 4:
2379 i965_write_fence_reg(reg);
2380 break;
2381 case 3:
2382 i915_write_fence_reg(reg);
2383 break;
2384 case 2:
2385 i830_write_fence_reg(reg);
2386 break;
2389 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2390 obj_priv->tiling_mode);
2392 return 0;
2396 * i915_gem_clear_fence_reg - clear out fence register info
2397 * @obj: object to clear
2399 * Zeroes out the fence register itself and clears out the associated
2400 * data structures in dev_priv and obj_priv.
2402 static void
2403 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2405 struct drm_device *dev = obj->dev;
2406 drm_i915_private_t *dev_priv = dev->dev_private;
2407 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2408 struct drm_i915_fence_reg *reg =
2409 &dev_priv->fence_regs[obj_priv->fence_reg];
2410 uint32_t fence_reg;
2412 switch (INTEL_INFO(dev)->gen) {
2413 case 6:
2414 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2415 (obj_priv->fence_reg * 8), 0);
2416 break;
2417 case 5:
2418 case 4:
2419 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2420 break;
2421 case 3:
2422 if (obj_priv->fence_reg > 8)
2423 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2424 else
2425 case 2:
2426 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2428 I915_WRITE(fence_reg, 0);
2429 break;
2432 reg->obj = NULL;
2433 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2434 list_del_init(&reg->lru_list);
2438 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2439 * to the buffer to finish, and then resets the fence register.
2440 * @obj: tiled object holding a fence register.
2441 * @bool: whether the wait upon the fence is interruptible
2443 * Zeroes out the fence register itself and clears out the associated
2444 * data structures in dev_priv and obj_priv.
2447 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2448 bool interruptible)
2450 struct drm_device *dev = obj->dev;
2451 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2453 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2454 return 0;
2456 /* If we've changed tiling, GTT-mappings of the object
2457 * need to re-fault to ensure that the correct fence register
2458 * setup is in place.
2460 i915_gem_release_mmap(obj);
2462 /* On the i915, GPU access to tiled buffers is via a fence,
2463 * therefore we must wait for any outstanding access to complete
2464 * before clearing the fence.
2466 if (INTEL_INFO(dev)->gen < 4) {
2467 int ret;
2469 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2470 if (ret)
2471 return ret;
2473 ret = i915_gem_object_wait_rendering(obj, interruptible);
2474 if (ret)
2475 return ret;
2478 i915_gem_object_flush_gtt_write_domain(obj);
2479 i915_gem_clear_fence_reg(obj);
2481 return 0;
2485 * Finds free space in the GTT aperture and binds the object there.
2487 static int
2488 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2490 struct drm_device *dev = obj->dev;
2491 drm_i915_private_t *dev_priv = dev->dev_private;
2492 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2493 struct drm_mm_node *free_space;
2494 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2495 int ret;
2497 if (obj_priv->madv != I915_MADV_WILLNEED) {
2498 DRM_ERROR("Attempting to bind a purgeable object\n");
2499 return -EINVAL;
2502 if (alignment == 0)
2503 alignment = i915_gem_get_gtt_alignment(obj);
2504 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2505 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2506 return -EINVAL;
2509 /* If the object is bigger than the entire aperture, reject it early
2510 * before evicting everything in a vain attempt to find space.
2512 if (obj->size > dev->gtt_total) {
2513 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2514 return -E2BIG;
2517 search_free:
2518 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2519 obj->size, alignment, 0);
2520 if (free_space != NULL) {
2521 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2522 alignment);
2523 if (obj_priv->gtt_space != NULL)
2524 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2526 if (obj_priv->gtt_space == NULL) {
2527 /* If the gtt is empty and we're still having trouble
2528 * fitting our object in, we're out of memory.
2530 #if WATCH_LRU
2531 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2532 #endif
2533 ret = i915_gem_evict_something(dev, obj->size, alignment);
2534 if (ret)
2535 return ret;
2537 goto search_free;
2540 #if WATCH_BUF
2541 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2542 obj->size, obj_priv->gtt_offset);
2543 #endif
2544 ret = i915_gem_object_get_pages(obj, gfpmask);
2545 if (ret) {
2546 drm_mm_put_block(obj_priv->gtt_space);
2547 obj_priv->gtt_space = NULL;
2549 if (ret == -ENOMEM) {
2550 /* first try to clear up some space from the GTT */
2551 ret = i915_gem_evict_something(dev, obj->size,
2552 alignment);
2553 if (ret) {
2554 /* now try to shrink everyone else */
2555 if (gfpmask) {
2556 gfpmask = 0;
2557 goto search_free;
2560 return ret;
2563 goto search_free;
2566 return ret;
2569 /* Create an AGP memory structure pointing at our pages, and bind it
2570 * into the GTT.
2572 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2573 obj_priv->pages,
2574 obj->size >> PAGE_SHIFT,
2575 obj_priv->gtt_offset,
2576 obj_priv->agp_type);
2577 if (obj_priv->agp_mem == NULL) {
2578 i915_gem_object_put_pages(obj);
2579 drm_mm_put_block(obj_priv->gtt_space);
2580 obj_priv->gtt_space = NULL;
2582 ret = i915_gem_evict_something(dev, obj->size, alignment);
2583 if (ret)
2584 return ret;
2586 goto search_free;
2588 atomic_inc(&dev->gtt_count);
2589 atomic_add(obj->size, &dev->gtt_memory);
2591 /* keep track of bounds object by adding it to the inactive list */
2592 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2594 /* Assert that the object is not currently in any GPU domain. As it
2595 * wasn't in the GTT, there shouldn't be any way it could have been in
2596 * a GPU cache
2598 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2599 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2601 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2603 return 0;
2606 void
2607 i915_gem_clflush_object(struct drm_gem_object *obj)
2609 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2611 /* If we don't have a page list set up, then we're not pinned
2612 * to GPU, and we can ignore the cache flush because it'll happen
2613 * again at bind time.
2615 if (obj_priv->pages == NULL)
2616 return;
2618 trace_i915_gem_object_clflush(obj);
2620 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2623 /** Flushes any GPU write domain for the object if it's dirty. */
2624 static int
2625 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2626 bool pipelined)
2628 struct drm_device *dev = obj->dev;
2629 uint32_t old_write_domain;
2631 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2632 return 0;
2634 /* Queue the GPU write cache flushing we need. */
2635 old_write_domain = obj->write_domain;
2636 i915_gem_flush_ring(dev,
2637 to_intel_bo(obj)->ring,
2638 0, obj->write_domain);
2639 BUG_ON(obj->write_domain);
2641 trace_i915_gem_object_change_domain(obj,
2642 obj->read_domains,
2643 old_write_domain);
2645 if (pipelined)
2646 return 0;
2648 return i915_gem_object_wait_rendering(obj, true);
2651 /** Flushes the GTT write domain for the object if it's dirty. */
2652 static void
2653 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2655 uint32_t old_write_domain;
2657 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2658 return;
2660 /* No actual flushing is required for the GTT write domain. Writes
2661 * to it immediately go to main memory as far as we know, so there's
2662 * no chipset flush. It also doesn't land in render cache.
2664 old_write_domain = obj->write_domain;
2665 obj->write_domain = 0;
2667 trace_i915_gem_object_change_domain(obj,
2668 obj->read_domains,
2669 old_write_domain);
2672 /** Flushes the CPU write domain for the object if it's dirty. */
2673 static void
2674 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2676 struct drm_device *dev = obj->dev;
2677 uint32_t old_write_domain;
2679 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2680 return;
2682 i915_gem_clflush_object(obj);
2683 drm_agp_chipset_flush(dev);
2684 old_write_domain = obj->write_domain;
2685 obj->write_domain = 0;
2687 trace_i915_gem_object_change_domain(obj,
2688 obj->read_domains,
2689 old_write_domain);
2693 * Moves a single object to the GTT read, and possibly write domain.
2695 * This function returns when the move is complete, including waiting on
2696 * flushes to occur.
2699 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2701 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2702 uint32_t old_write_domain, old_read_domains;
2703 int ret;
2705 /* Not valid to be called on unbound objects. */
2706 if (obj_priv->gtt_space == NULL)
2707 return -EINVAL;
2709 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2710 if (ret != 0)
2711 return ret;
2713 i915_gem_object_flush_cpu_write_domain(obj);
2715 if (write) {
2716 ret = i915_gem_object_wait_rendering(obj, true);
2717 if (ret)
2718 return ret;
2721 old_write_domain = obj->write_domain;
2722 old_read_domains = obj->read_domains;
2724 /* It should now be out of any other write domains, and we can update
2725 * the domain values for our changes.
2727 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2728 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2729 if (write) {
2730 obj->read_domains = I915_GEM_DOMAIN_GTT;
2731 obj->write_domain = I915_GEM_DOMAIN_GTT;
2732 obj_priv->dirty = 1;
2735 trace_i915_gem_object_change_domain(obj,
2736 old_read_domains,
2737 old_write_domain);
2739 return 0;
2743 * Prepare buffer for display plane. Use uninterruptible for possible flush
2744 * wait, as in modesetting process we're not supposed to be interrupted.
2747 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2748 bool pipelined)
2750 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2751 uint32_t old_read_domains;
2752 int ret;
2754 /* Not valid to be called on unbound objects. */
2755 if (obj_priv->gtt_space == NULL)
2756 return -EINVAL;
2758 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2759 if (ret)
2760 return ret;
2762 i915_gem_object_flush_cpu_write_domain(obj);
2764 old_read_domains = obj->read_domains;
2765 obj->read_domains = I915_GEM_DOMAIN_GTT;
2767 trace_i915_gem_object_change_domain(obj,
2768 old_read_domains,
2769 obj->write_domain);
2771 return 0;
2775 * Moves a single object to the CPU read, and possibly write domain.
2777 * This function returns when the move is complete, including waiting on
2778 * flushes to occur.
2780 static int
2781 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2783 uint32_t old_write_domain, old_read_domains;
2784 int ret;
2786 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2787 if (ret != 0)
2788 return ret;
2790 i915_gem_object_flush_gtt_write_domain(obj);
2792 /* If we have a partially-valid cache of the object in the CPU,
2793 * finish invalidating it and free the per-page flags.
2795 i915_gem_object_set_to_full_cpu_read_domain(obj);
2797 if (write) {
2798 ret = i915_gem_object_wait_rendering(obj, true);
2799 if (ret)
2800 return ret;
2803 old_write_domain = obj->write_domain;
2804 old_read_domains = obj->read_domains;
2806 /* Flush the CPU cache if it's still invalid. */
2807 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2808 i915_gem_clflush_object(obj);
2810 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2813 /* It should now be out of any other write domains, and we can update
2814 * the domain values for our changes.
2816 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2818 /* If we're writing through the CPU, then the GPU read domains will
2819 * need to be invalidated at next use.
2821 if (write) {
2822 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2823 obj->write_domain = I915_GEM_DOMAIN_CPU;
2826 trace_i915_gem_object_change_domain(obj,
2827 old_read_domains,
2828 old_write_domain);
2830 return 0;
2834 * Set the next domain for the specified object. This
2835 * may not actually perform the necessary flushing/invaliding though,
2836 * as that may want to be batched with other set_domain operations
2838 * This is (we hope) the only really tricky part of gem. The goal
2839 * is fairly simple -- track which caches hold bits of the object
2840 * and make sure they remain coherent. A few concrete examples may
2841 * help to explain how it works. For shorthand, we use the notation
2842 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2843 * a pair of read and write domain masks.
2845 * Case 1: the batch buffer
2847 * 1. Allocated
2848 * 2. Written by CPU
2849 * 3. Mapped to GTT
2850 * 4. Read by GPU
2851 * 5. Unmapped from GTT
2852 * 6. Freed
2854 * Let's take these a step at a time
2856 * 1. Allocated
2857 * Pages allocated from the kernel may still have
2858 * cache contents, so we set them to (CPU, CPU) always.
2859 * 2. Written by CPU (using pwrite)
2860 * The pwrite function calls set_domain (CPU, CPU) and
2861 * this function does nothing (as nothing changes)
2862 * 3. Mapped by GTT
2863 * This function asserts that the object is not
2864 * currently in any GPU-based read or write domains
2865 * 4. Read by GPU
2866 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2867 * As write_domain is zero, this function adds in the
2868 * current read domains (CPU+COMMAND, 0).
2869 * flush_domains is set to CPU.
2870 * invalidate_domains is set to COMMAND
2871 * clflush is run to get data out of the CPU caches
2872 * then i915_dev_set_domain calls i915_gem_flush to
2873 * emit an MI_FLUSH and drm_agp_chipset_flush
2874 * 5. Unmapped from GTT
2875 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2876 * flush_domains and invalidate_domains end up both zero
2877 * so no flushing/invalidating happens
2878 * 6. Freed
2879 * yay, done
2881 * Case 2: The shared render buffer
2883 * 1. Allocated
2884 * 2. Mapped to GTT
2885 * 3. Read/written by GPU
2886 * 4. set_domain to (CPU,CPU)
2887 * 5. Read/written by CPU
2888 * 6. Read/written by GPU
2890 * 1. Allocated
2891 * Same as last example, (CPU, CPU)
2892 * 2. Mapped to GTT
2893 * Nothing changes (assertions find that it is not in the GPU)
2894 * 3. Read/written by GPU
2895 * execbuffer calls set_domain (RENDER, RENDER)
2896 * flush_domains gets CPU
2897 * invalidate_domains gets GPU
2898 * clflush (obj)
2899 * MI_FLUSH and drm_agp_chipset_flush
2900 * 4. set_domain (CPU, CPU)
2901 * flush_domains gets GPU
2902 * invalidate_domains gets CPU
2903 * wait_rendering (obj) to make sure all drawing is complete.
2904 * This will include an MI_FLUSH to get the data from GPU
2905 * to memory
2906 * clflush (obj) to invalidate the CPU cache
2907 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2908 * 5. Read/written by CPU
2909 * cache lines are loaded and dirtied
2910 * 6. Read written by GPU
2911 * Same as last GPU access
2913 * Case 3: The constant buffer
2915 * 1. Allocated
2916 * 2. Written by CPU
2917 * 3. Read by GPU
2918 * 4. Updated (written) by CPU again
2919 * 5. Read by GPU
2921 * 1. Allocated
2922 * (CPU, CPU)
2923 * 2. Written by CPU
2924 * (CPU, CPU)
2925 * 3. Read by GPU
2926 * (CPU+RENDER, 0)
2927 * flush_domains = CPU
2928 * invalidate_domains = RENDER
2929 * clflush (obj)
2930 * MI_FLUSH
2931 * drm_agp_chipset_flush
2932 * 4. Updated (written) by CPU again
2933 * (CPU, CPU)
2934 * flush_domains = 0 (no previous write domain)
2935 * invalidate_domains = 0 (no new read domains)
2936 * 5. Read by GPU
2937 * (CPU+RENDER, 0)
2938 * flush_domains = CPU
2939 * invalidate_domains = RENDER
2940 * clflush (obj)
2941 * MI_FLUSH
2942 * drm_agp_chipset_flush
2944 static void
2945 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2947 struct drm_device *dev = obj->dev;
2948 struct drm_i915_private *dev_priv = dev->dev_private;
2949 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2950 uint32_t invalidate_domains = 0;
2951 uint32_t flush_domains = 0;
2952 uint32_t old_read_domains;
2954 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2955 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2957 intel_mark_busy(dev, obj);
2959 #if WATCH_BUF
2960 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2961 __func__, obj,
2962 obj->read_domains, obj->pending_read_domains,
2963 obj->write_domain, obj->pending_write_domain);
2964 #endif
2966 * If the object isn't moving to a new write domain,
2967 * let the object stay in multiple read domains
2969 if (obj->pending_write_domain == 0)
2970 obj->pending_read_domains |= obj->read_domains;
2971 else
2972 obj_priv->dirty = 1;
2975 * Flush the current write domain if
2976 * the new read domains don't match. Invalidate
2977 * any read domains which differ from the old
2978 * write domain
2980 if (obj->write_domain &&
2981 obj->write_domain != obj->pending_read_domains) {
2982 flush_domains |= obj->write_domain;
2983 invalidate_domains |=
2984 obj->pending_read_domains & ~obj->write_domain;
2987 * Invalidate any read caches which may have
2988 * stale data. That is, any new read domains.
2990 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2991 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2992 #if WATCH_BUF
2993 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2994 __func__, flush_domains, invalidate_domains);
2995 #endif
2996 i915_gem_clflush_object(obj);
2999 old_read_domains = obj->read_domains;
3001 /* The actual obj->write_domain will be updated with
3002 * pending_write_domain after we emit the accumulated flush for all
3003 * of our domain changes in execbuffers (which clears objects'
3004 * write_domains). So if we have a current write domain that we
3005 * aren't changing, set pending_write_domain to that.
3007 if (flush_domains == 0 && obj->pending_write_domain == 0)
3008 obj->pending_write_domain = obj->write_domain;
3009 obj->read_domains = obj->pending_read_domains;
3011 dev->invalidate_domains |= invalidate_domains;
3012 dev->flush_domains |= flush_domains;
3013 if (obj_priv->ring)
3014 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3015 #if WATCH_BUF
3016 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3017 __func__,
3018 obj->read_domains, obj->write_domain,
3019 dev->invalidate_domains, dev->flush_domains);
3020 #endif
3022 trace_i915_gem_object_change_domain(obj,
3023 old_read_domains,
3024 obj->write_domain);
3028 * Moves the object from a partially CPU read to a full one.
3030 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3031 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3033 static void
3034 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3036 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3038 if (!obj_priv->page_cpu_valid)
3039 return;
3041 /* If we're partially in the CPU read domain, finish moving it in.
3043 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3044 int i;
3046 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3047 if (obj_priv->page_cpu_valid[i])
3048 continue;
3049 drm_clflush_pages(obj_priv->pages + i, 1);
3053 /* Free the page_cpu_valid mappings which are now stale, whether
3054 * or not we've got I915_GEM_DOMAIN_CPU.
3056 kfree(obj_priv->page_cpu_valid);
3057 obj_priv->page_cpu_valid = NULL;
3061 * Set the CPU read domain on a range of the object.
3063 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3064 * not entirely valid. The page_cpu_valid member of the object flags which
3065 * pages have been flushed, and will be respected by
3066 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3067 * of the whole object.
3069 * This function returns when the move is complete, including waiting on
3070 * flushes to occur.
3072 static int
3073 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3074 uint64_t offset, uint64_t size)
3076 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3077 uint32_t old_read_domains;
3078 int i, ret;
3080 if (offset == 0 && size == obj->size)
3081 return i915_gem_object_set_to_cpu_domain(obj, 0);
3083 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3084 if (ret != 0)
3085 return ret;
3086 i915_gem_object_flush_gtt_write_domain(obj);
3088 /* If we're already fully in the CPU read domain, we're done. */
3089 if (obj_priv->page_cpu_valid == NULL &&
3090 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3091 return 0;
3093 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3094 * newly adding I915_GEM_DOMAIN_CPU
3096 if (obj_priv->page_cpu_valid == NULL) {
3097 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3098 GFP_KERNEL);
3099 if (obj_priv->page_cpu_valid == NULL)
3100 return -ENOMEM;
3101 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3102 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3104 /* Flush the cache on any pages that are still invalid from the CPU's
3105 * perspective.
3107 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3108 i++) {
3109 if (obj_priv->page_cpu_valid[i])
3110 continue;
3112 drm_clflush_pages(obj_priv->pages + i, 1);
3114 obj_priv->page_cpu_valid[i] = 1;
3117 /* It should now be out of any other write domains, and we can update
3118 * the domain values for our changes.
3120 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3122 old_read_domains = obj->read_domains;
3123 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3125 trace_i915_gem_object_change_domain(obj,
3126 old_read_domains,
3127 obj->write_domain);
3129 return 0;
3133 * Pin an object to the GTT and evaluate the relocations landing in it.
3135 static int
3136 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3137 struct drm_file *file_priv,
3138 struct drm_i915_gem_exec_object2 *entry,
3139 struct drm_i915_gem_relocation_entry *relocs)
3141 struct drm_device *dev = obj->dev;
3142 drm_i915_private_t *dev_priv = dev->dev_private;
3143 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3144 int i, ret;
3145 void __iomem *reloc_page;
3146 bool need_fence;
3148 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3149 obj_priv->tiling_mode != I915_TILING_NONE;
3151 /* Check fence reg constraints and rebind if necessary */
3152 if (need_fence &&
3153 !i915_gem_object_fence_offset_ok(obj,
3154 obj_priv->tiling_mode)) {
3155 ret = i915_gem_object_unbind(obj);
3156 if (ret)
3157 return ret;
3160 /* Choose the GTT offset for our buffer and put it there. */
3161 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3162 if (ret)
3163 return ret;
3166 * Pre-965 chips need a fence register set up in order to
3167 * properly handle blits to/from tiled surfaces.
3169 if (need_fence) {
3170 ret = i915_gem_object_get_fence_reg(obj, false);
3171 if (ret != 0) {
3172 i915_gem_object_unpin(obj);
3173 return ret;
3177 entry->offset = obj_priv->gtt_offset;
3179 /* Apply the relocations, using the GTT aperture to avoid cache
3180 * flushing requirements.
3182 for (i = 0; i < entry->relocation_count; i++) {
3183 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3184 struct drm_gem_object *target_obj;
3185 struct drm_i915_gem_object *target_obj_priv;
3186 uint32_t reloc_val, reloc_offset;
3187 uint32_t __iomem *reloc_entry;
3189 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3190 reloc->target_handle);
3191 if (target_obj == NULL) {
3192 i915_gem_object_unpin(obj);
3193 return -ENOENT;
3195 target_obj_priv = to_intel_bo(target_obj);
3197 #if WATCH_RELOC
3198 DRM_INFO("%s: obj %p offset %08x target %d "
3199 "read %08x write %08x gtt %08x "
3200 "presumed %08x delta %08x\n",
3201 __func__,
3202 obj,
3203 (int) reloc->offset,
3204 (int) reloc->target_handle,
3205 (int) reloc->read_domains,
3206 (int) reloc->write_domain,
3207 (int) target_obj_priv->gtt_offset,
3208 (int) reloc->presumed_offset,
3209 reloc->delta);
3210 #endif
3212 /* The target buffer should have appeared before us in the
3213 * exec_object list, so it should have a GTT space bound by now.
3215 if (target_obj_priv->gtt_space == NULL) {
3216 DRM_ERROR("No GTT space found for object %d\n",
3217 reloc->target_handle);
3218 drm_gem_object_unreference(target_obj);
3219 i915_gem_object_unpin(obj);
3220 return -EINVAL;
3223 /* Validate that the target is in a valid r/w GPU domain */
3224 if (reloc->write_domain & (reloc->write_domain - 1)) {
3225 DRM_ERROR("reloc with multiple write domains: "
3226 "obj %p target %d offset %d "
3227 "read %08x write %08x",
3228 obj, reloc->target_handle,
3229 (int) reloc->offset,
3230 reloc->read_domains,
3231 reloc->write_domain);
3232 return -EINVAL;
3234 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3235 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3236 DRM_ERROR("reloc with read/write CPU domains: "
3237 "obj %p target %d offset %d "
3238 "read %08x write %08x",
3239 obj, reloc->target_handle,
3240 (int) reloc->offset,
3241 reloc->read_domains,
3242 reloc->write_domain);
3243 drm_gem_object_unreference(target_obj);
3244 i915_gem_object_unpin(obj);
3245 return -EINVAL;
3247 if (reloc->write_domain && target_obj->pending_write_domain &&
3248 reloc->write_domain != target_obj->pending_write_domain) {
3249 DRM_ERROR("Write domain conflict: "
3250 "obj %p target %d offset %d "
3251 "new %08x old %08x\n",
3252 obj, reloc->target_handle,
3253 (int) reloc->offset,
3254 reloc->write_domain,
3255 target_obj->pending_write_domain);
3256 drm_gem_object_unreference(target_obj);
3257 i915_gem_object_unpin(obj);
3258 return -EINVAL;
3261 target_obj->pending_read_domains |= reloc->read_domains;
3262 target_obj->pending_write_domain |= reloc->write_domain;
3264 /* If the relocation already has the right value in it, no
3265 * more work needs to be done.
3267 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3268 drm_gem_object_unreference(target_obj);
3269 continue;
3272 /* Check that the relocation address is valid... */
3273 if (reloc->offset > obj->size - 4) {
3274 DRM_ERROR("Relocation beyond object bounds: "
3275 "obj %p target %d offset %d size %d.\n",
3276 obj, reloc->target_handle,
3277 (int) reloc->offset, (int) obj->size);
3278 drm_gem_object_unreference(target_obj);
3279 i915_gem_object_unpin(obj);
3280 return -EINVAL;
3282 if (reloc->offset & 3) {
3283 DRM_ERROR("Relocation not 4-byte aligned: "
3284 "obj %p target %d offset %d.\n",
3285 obj, reloc->target_handle,
3286 (int) reloc->offset);
3287 drm_gem_object_unreference(target_obj);
3288 i915_gem_object_unpin(obj);
3289 return -EINVAL;
3292 /* and points to somewhere within the target object. */
3293 if (reloc->delta >= target_obj->size) {
3294 DRM_ERROR("Relocation beyond target object bounds: "
3295 "obj %p target %d delta %d size %d.\n",
3296 obj, reloc->target_handle,
3297 (int) reloc->delta, (int) target_obj->size);
3298 drm_gem_object_unreference(target_obj);
3299 i915_gem_object_unpin(obj);
3300 return -EINVAL;
3303 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3304 if (ret != 0) {
3305 drm_gem_object_unreference(target_obj);
3306 i915_gem_object_unpin(obj);
3307 return -EINVAL;
3310 /* Map the page containing the relocation we're going to
3311 * perform.
3313 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3314 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3315 (reloc_offset &
3316 ~(PAGE_SIZE - 1)),
3317 KM_USER0);
3318 reloc_entry = (uint32_t __iomem *)(reloc_page +
3319 (reloc_offset & (PAGE_SIZE - 1)));
3320 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3322 #if WATCH_BUF
3323 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3324 obj, (unsigned int) reloc->offset,
3325 readl(reloc_entry), reloc_val);
3326 #endif
3327 writel(reloc_val, reloc_entry);
3328 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3330 /* The updated presumed offset for this entry will be
3331 * copied back out to the user.
3333 reloc->presumed_offset = target_obj_priv->gtt_offset;
3335 drm_gem_object_unreference(target_obj);
3338 #if WATCH_BUF
3339 if (0)
3340 i915_gem_dump_object(obj, 128, __func__, ~0);
3341 #endif
3342 return 0;
3345 /* Throttle our rendering by waiting until the ring has completed our requests
3346 * emitted over 20 msec ago.
3348 * Note that if we were to use the current jiffies each time around the loop,
3349 * we wouldn't escape the function with any frames outstanding if the time to
3350 * render a frame was over 20ms.
3352 * This should get us reasonable parallelism between CPU and GPU but also
3353 * relatively low latency when blocking on a particular request to finish.
3355 static int
3356 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3358 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3359 int ret = 0;
3360 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3362 mutex_lock(&dev->struct_mutex);
3363 while (!list_empty(&i915_file_priv->mm.request_list)) {
3364 struct drm_i915_gem_request *request;
3366 request = list_first_entry(&i915_file_priv->mm.request_list,
3367 struct drm_i915_gem_request,
3368 client_list);
3370 if (time_after_eq(request->emitted_jiffies, recent_enough))
3371 break;
3373 ret = i915_wait_request(dev, request->seqno, request->ring);
3374 if (ret != 0)
3375 break;
3377 mutex_unlock(&dev->struct_mutex);
3379 return ret;
3382 static int
3383 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3384 uint32_t buffer_count,
3385 struct drm_i915_gem_relocation_entry **relocs)
3387 uint32_t reloc_count = 0, reloc_index = 0, i;
3388 int ret;
3390 *relocs = NULL;
3391 for (i = 0; i < buffer_count; i++) {
3392 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3393 return -EINVAL;
3394 reloc_count += exec_list[i].relocation_count;
3397 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3398 if (*relocs == NULL) {
3399 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3400 return -ENOMEM;
3403 for (i = 0; i < buffer_count; i++) {
3404 struct drm_i915_gem_relocation_entry __user *user_relocs;
3406 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3408 ret = copy_from_user(&(*relocs)[reloc_index],
3409 user_relocs,
3410 exec_list[i].relocation_count *
3411 sizeof(**relocs));
3412 if (ret != 0) {
3413 drm_free_large(*relocs);
3414 *relocs = NULL;
3415 return -EFAULT;
3418 reloc_index += exec_list[i].relocation_count;
3421 return 0;
3424 static int
3425 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3426 uint32_t buffer_count,
3427 struct drm_i915_gem_relocation_entry *relocs)
3429 uint32_t reloc_count = 0, i;
3430 int ret = 0;
3432 if (relocs == NULL)
3433 return 0;
3435 for (i = 0; i < buffer_count; i++) {
3436 struct drm_i915_gem_relocation_entry __user *user_relocs;
3437 int unwritten;
3439 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3441 unwritten = copy_to_user(user_relocs,
3442 &relocs[reloc_count],
3443 exec_list[i].relocation_count *
3444 sizeof(*relocs));
3446 if (unwritten) {
3447 ret = -EFAULT;
3448 goto err;
3451 reloc_count += exec_list[i].relocation_count;
3454 err:
3455 drm_free_large(relocs);
3457 return ret;
3460 static int
3461 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3462 uint64_t exec_offset)
3464 uint32_t exec_start, exec_len;
3466 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3467 exec_len = (uint32_t) exec->batch_len;
3469 if ((exec_start | exec_len) & 0x7)
3470 return -EINVAL;
3472 if (!exec_start)
3473 return -EINVAL;
3475 return 0;
3478 static int
3479 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3480 struct drm_gem_object **object_list,
3481 int count)
3483 drm_i915_private_t *dev_priv = dev->dev_private;
3484 struct drm_i915_gem_object *obj_priv;
3485 DEFINE_WAIT(wait);
3486 int i, ret = 0;
3488 for (;;) {
3489 prepare_to_wait(&dev_priv->pending_flip_queue,
3490 &wait, TASK_INTERRUPTIBLE);
3491 for (i = 0; i < count; i++) {
3492 obj_priv = to_intel_bo(object_list[i]);
3493 if (atomic_read(&obj_priv->pending_flip) > 0)
3494 break;
3496 if (i == count)
3497 break;
3499 if (!signal_pending(current)) {
3500 mutex_unlock(&dev->struct_mutex);
3501 schedule();
3502 mutex_lock(&dev->struct_mutex);
3503 continue;
3505 ret = -ERESTARTSYS;
3506 break;
3508 finish_wait(&dev_priv->pending_flip_queue, &wait);
3510 return ret;
3513 static int
3514 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3515 struct drm_file *file_priv,
3516 struct drm_i915_gem_execbuffer2 *args,
3517 struct drm_i915_gem_exec_object2 *exec_list)
3519 drm_i915_private_t *dev_priv = dev->dev_private;
3520 struct drm_gem_object **object_list = NULL;
3521 struct drm_gem_object *batch_obj;
3522 struct drm_i915_gem_object *obj_priv;
3523 struct drm_clip_rect *cliprects = NULL;
3524 struct drm_i915_gem_relocation_entry *relocs = NULL;
3525 struct drm_i915_gem_request *request = NULL;
3526 int ret = 0, ret2, i, pinned = 0;
3527 uint64_t exec_offset;
3528 uint32_t seqno, reloc_index;
3529 int pin_tries, flips;
3531 struct intel_ring_buffer *ring = NULL;
3533 #if WATCH_EXEC
3534 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3535 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3536 #endif
3537 if (args->flags & I915_EXEC_BSD) {
3538 if (!HAS_BSD(dev)) {
3539 DRM_ERROR("execbuf with wrong flag\n");
3540 return -EINVAL;
3542 ring = &dev_priv->bsd_ring;
3543 } else {
3544 ring = &dev_priv->render_ring;
3547 if (args->buffer_count < 1) {
3548 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3549 return -EINVAL;
3551 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3552 if (object_list == NULL) {
3553 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3554 args->buffer_count);
3555 ret = -ENOMEM;
3556 goto pre_mutex_err;
3559 if (args->num_cliprects != 0) {
3560 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3561 GFP_KERNEL);
3562 if (cliprects == NULL) {
3563 ret = -ENOMEM;
3564 goto pre_mutex_err;
3567 ret = copy_from_user(cliprects,
3568 (struct drm_clip_rect __user *)
3569 (uintptr_t) args->cliprects_ptr,
3570 sizeof(*cliprects) * args->num_cliprects);
3571 if (ret != 0) {
3572 DRM_ERROR("copy %d cliprects failed: %d\n",
3573 args->num_cliprects, ret);
3574 ret = -EFAULT;
3575 goto pre_mutex_err;
3579 request = kzalloc(sizeof(*request), GFP_KERNEL);
3580 if (request == NULL) {
3581 ret = -ENOMEM;
3582 goto pre_mutex_err;
3585 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3586 &relocs);
3587 if (ret != 0)
3588 goto pre_mutex_err;
3590 mutex_lock(&dev->struct_mutex);
3592 i915_verify_inactive(dev, __FILE__, __LINE__);
3594 if (atomic_read(&dev_priv->mm.wedged)) {
3595 mutex_unlock(&dev->struct_mutex);
3596 ret = -EIO;
3597 goto pre_mutex_err;
3600 if (dev_priv->mm.suspended) {
3601 mutex_unlock(&dev->struct_mutex);
3602 ret = -EBUSY;
3603 goto pre_mutex_err;
3606 /* Look up object handles */
3607 flips = 0;
3608 for (i = 0; i < args->buffer_count; i++) {
3609 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3610 exec_list[i].handle);
3611 if (object_list[i] == NULL) {
3612 DRM_ERROR("Invalid object handle %d at index %d\n",
3613 exec_list[i].handle, i);
3614 /* prevent error path from reading uninitialized data */
3615 args->buffer_count = i + 1;
3616 ret = -ENOENT;
3617 goto err;
3620 obj_priv = to_intel_bo(object_list[i]);
3621 if (obj_priv->in_execbuffer) {
3622 DRM_ERROR("Object %p appears more than once in object list\n",
3623 object_list[i]);
3624 /* prevent error path from reading uninitialized data */
3625 args->buffer_count = i + 1;
3626 ret = -EINVAL;
3627 goto err;
3629 obj_priv->in_execbuffer = true;
3630 flips += atomic_read(&obj_priv->pending_flip);
3633 if (flips > 0) {
3634 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3635 args->buffer_count);
3636 if (ret)
3637 goto err;
3640 /* Pin and relocate */
3641 for (pin_tries = 0; ; pin_tries++) {
3642 ret = 0;
3643 reloc_index = 0;
3645 for (i = 0; i < args->buffer_count; i++) {
3646 object_list[i]->pending_read_domains = 0;
3647 object_list[i]->pending_write_domain = 0;
3648 ret = i915_gem_object_pin_and_relocate(object_list[i],
3649 file_priv,
3650 &exec_list[i],
3651 &relocs[reloc_index]);
3652 if (ret)
3653 break;
3654 pinned = i + 1;
3655 reloc_index += exec_list[i].relocation_count;
3657 /* success */
3658 if (ret == 0)
3659 break;
3661 /* error other than GTT full, or we've already tried again */
3662 if (ret != -ENOSPC || pin_tries >= 1) {
3663 if (ret != -ERESTARTSYS) {
3664 unsigned long long total_size = 0;
3665 int num_fences = 0;
3666 for (i = 0; i < args->buffer_count; i++) {
3667 obj_priv = to_intel_bo(object_list[i]);
3669 total_size += object_list[i]->size;
3670 num_fences +=
3671 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3672 obj_priv->tiling_mode != I915_TILING_NONE;
3674 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3675 pinned+1, args->buffer_count,
3676 total_size, num_fences,
3677 ret);
3678 DRM_ERROR("%d objects [%d pinned], "
3679 "%d object bytes [%d pinned], "
3680 "%d/%d gtt bytes\n",
3681 atomic_read(&dev->object_count),
3682 atomic_read(&dev->pin_count),
3683 atomic_read(&dev->object_memory),
3684 atomic_read(&dev->pin_memory),
3685 atomic_read(&dev->gtt_memory),
3686 dev->gtt_total);
3688 goto err;
3691 /* unpin all of our buffers */
3692 for (i = 0; i < pinned; i++)
3693 i915_gem_object_unpin(object_list[i]);
3694 pinned = 0;
3696 /* evict everyone we can from the aperture */
3697 ret = i915_gem_evict_everything(dev);
3698 if (ret && ret != -ENOSPC)
3699 goto err;
3702 /* Set the pending read domains for the batch buffer to COMMAND */
3703 batch_obj = object_list[args->buffer_count-1];
3704 if (batch_obj->pending_write_domain) {
3705 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3706 ret = -EINVAL;
3707 goto err;
3709 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3711 /* Sanity check the batch buffer, prior to moving objects */
3712 exec_offset = exec_list[args->buffer_count - 1].offset;
3713 ret = i915_gem_check_execbuffer (args, exec_offset);
3714 if (ret != 0) {
3715 DRM_ERROR("execbuf with invalid offset/length\n");
3716 goto err;
3719 i915_verify_inactive(dev, __FILE__, __LINE__);
3721 /* Zero the global flush/invalidate flags. These
3722 * will be modified as new domains are computed
3723 * for each object
3725 dev->invalidate_domains = 0;
3726 dev->flush_domains = 0;
3727 dev_priv->mm.flush_rings = 0;
3729 for (i = 0; i < args->buffer_count; i++) {
3730 struct drm_gem_object *obj = object_list[i];
3732 /* Compute new gpu domains and update invalidate/flush */
3733 i915_gem_object_set_to_gpu_domain(obj);
3736 i915_verify_inactive(dev, __FILE__, __LINE__);
3738 if (dev->invalidate_domains | dev->flush_domains) {
3739 #if WATCH_EXEC
3740 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3741 __func__,
3742 dev->invalidate_domains,
3743 dev->flush_domains);
3744 #endif
3745 i915_gem_flush(dev,
3746 dev->invalidate_domains,
3747 dev->flush_domains,
3748 dev_priv->mm.flush_rings);
3751 if (dev_priv->render_ring.outstanding_lazy_request) {
3752 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
3753 dev_priv->render_ring.outstanding_lazy_request = false;
3755 if (dev_priv->bsd_ring.outstanding_lazy_request) {
3756 (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
3757 dev_priv->bsd_ring.outstanding_lazy_request = false;
3760 for (i = 0; i < args->buffer_count; i++) {
3761 struct drm_gem_object *obj = object_list[i];
3762 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3763 uint32_t old_write_domain = obj->write_domain;
3765 obj->write_domain = obj->pending_write_domain;
3766 if (obj->write_domain)
3767 list_move_tail(&obj_priv->gpu_write_list,
3768 &dev_priv->mm.gpu_write_list);
3769 else
3770 list_del_init(&obj_priv->gpu_write_list);
3772 trace_i915_gem_object_change_domain(obj,
3773 obj->read_domains,
3774 old_write_domain);
3777 i915_verify_inactive(dev, __FILE__, __LINE__);
3779 #if WATCH_COHERENCY
3780 for (i = 0; i < args->buffer_count; i++) {
3781 i915_gem_object_check_coherency(object_list[i],
3782 exec_list[i].handle);
3784 #endif
3786 #if WATCH_EXEC
3787 i915_gem_dump_object(batch_obj,
3788 args->batch_len,
3789 __func__,
3790 ~0);
3791 #endif
3793 /* Exec the batchbuffer */
3794 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3795 cliprects, exec_offset);
3796 if (ret) {
3797 DRM_ERROR("dispatch failed %d\n", ret);
3798 goto err;
3802 * Ensure that the commands in the batch buffer are
3803 * finished before the interrupt fires
3805 i915_retire_commands(dev, ring);
3807 i915_verify_inactive(dev, __FILE__, __LINE__);
3809 for (i = 0; i < args->buffer_count; i++) {
3810 struct drm_gem_object *obj = object_list[i];
3811 obj_priv = to_intel_bo(obj);
3813 i915_gem_object_move_to_active(obj, ring);
3814 #if WATCH_LRU
3815 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3816 #endif
3820 * Get a seqno representing the execution of the current buffer,
3821 * which we can wait on. We would like to mitigate these interrupts,
3822 * likely by only creating seqnos occasionally (so that we have
3823 * *some* interrupts representing completion of buffers that we can
3824 * wait on when trying to clear up gtt space).
3826 seqno = i915_add_request(dev, file_priv, request, ring);
3827 request = NULL;
3829 #if WATCH_LRU
3830 i915_dump_lru(dev, __func__);
3831 #endif
3833 i915_verify_inactive(dev, __FILE__, __LINE__);
3835 err:
3836 for (i = 0; i < pinned; i++)
3837 i915_gem_object_unpin(object_list[i]);
3839 for (i = 0; i < args->buffer_count; i++) {
3840 if (object_list[i]) {
3841 obj_priv = to_intel_bo(object_list[i]);
3842 obj_priv->in_execbuffer = false;
3844 drm_gem_object_unreference(object_list[i]);
3847 mutex_unlock(&dev->struct_mutex);
3849 pre_mutex_err:
3850 /* Copy the updated relocations out regardless of current error
3851 * state. Failure to update the relocs would mean that the next
3852 * time userland calls execbuf, it would do so with presumed offset
3853 * state that didn't match the actual object state.
3855 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3856 relocs);
3857 if (ret2 != 0) {
3858 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3860 if (ret == 0)
3861 ret = ret2;
3864 drm_free_large(object_list);
3865 kfree(cliprects);
3866 kfree(request);
3868 return ret;
3872 * Legacy execbuffer just creates an exec2 list from the original exec object
3873 * list array and passes it to the real function.
3876 i915_gem_execbuffer(struct drm_device *dev, void *data,
3877 struct drm_file *file_priv)
3879 struct drm_i915_gem_execbuffer *args = data;
3880 struct drm_i915_gem_execbuffer2 exec2;
3881 struct drm_i915_gem_exec_object *exec_list = NULL;
3882 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3883 int ret, i;
3885 #if WATCH_EXEC
3886 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3887 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3888 #endif
3890 if (args->buffer_count < 1) {
3891 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3892 return -EINVAL;
3895 /* Copy in the exec list from userland */
3896 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3897 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3898 if (exec_list == NULL || exec2_list == NULL) {
3899 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3900 args->buffer_count);
3901 drm_free_large(exec_list);
3902 drm_free_large(exec2_list);
3903 return -ENOMEM;
3905 ret = copy_from_user(exec_list,
3906 (struct drm_i915_relocation_entry __user *)
3907 (uintptr_t) args->buffers_ptr,
3908 sizeof(*exec_list) * args->buffer_count);
3909 if (ret != 0) {
3910 DRM_ERROR("copy %d exec entries failed %d\n",
3911 args->buffer_count, ret);
3912 drm_free_large(exec_list);
3913 drm_free_large(exec2_list);
3914 return -EFAULT;
3917 for (i = 0; i < args->buffer_count; i++) {
3918 exec2_list[i].handle = exec_list[i].handle;
3919 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3920 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3921 exec2_list[i].alignment = exec_list[i].alignment;
3922 exec2_list[i].offset = exec_list[i].offset;
3923 if (INTEL_INFO(dev)->gen < 4)
3924 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3925 else
3926 exec2_list[i].flags = 0;
3929 exec2.buffers_ptr = args->buffers_ptr;
3930 exec2.buffer_count = args->buffer_count;
3931 exec2.batch_start_offset = args->batch_start_offset;
3932 exec2.batch_len = args->batch_len;
3933 exec2.DR1 = args->DR1;
3934 exec2.DR4 = args->DR4;
3935 exec2.num_cliprects = args->num_cliprects;
3936 exec2.cliprects_ptr = args->cliprects_ptr;
3937 exec2.flags = I915_EXEC_RENDER;
3939 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3940 if (!ret) {
3941 /* Copy the new buffer offsets back to the user's exec list. */
3942 for (i = 0; i < args->buffer_count; i++)
3943 exec_list[i].offset = exec2_list[i].offset;
3944 /* ... and back out to userspace */
3945 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3946 (uintptr_t) args->buffers_ptr,
3947 exec_list,
3948 sizeof(*exec_list) * args->buffer_count);
3949 if (ret) {
3950 ret = -EFAULT;
3951 DRM_ERROR("failed to copy %d exec entries "
3952 "back to user (%d)\n",
3953 args->buffer_count, ret);
3957 drm_free_large(exec_list);
3958 drm_free_large(exec2_list);
3959 return ret;
3963 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3964 struct drm_file *file_priv)
3966 struct drm_i915_gem_execbuffer2 *args = data;
3967 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3968 int ret;
3970 #if WATCH_EXEC
3971 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3972 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3973 #endif
3975 if (args->buffer_count < 1) {
3976 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3977 return -EINVAL;
3980 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3981 if (exec2_list == NULL) {
3982 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3983 args->buffer_count);
3984 return -ENOMEM;
3986 ret = copy_from_user(exec2_list,
3987 (struct drm_i915_relocation_entry __user *)
3988 (uintptr_t) args->buffers_ptr,
3989 sizeof(*exec2_list) * args->buffer_count);
3990 if (ret != 0) {
3991 DRM_ERROR("copy %d exec entries failed %d\n",
3992 args->buffer_count, ret);
3993 drm_free_large(exec2_list);
3994 return -EFAULT;
3997 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3998 if (!ret) {
3999 /* Copy the new buffer offsets back to the user's exec list. */
4000 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4001 (uintptr_t) args->buffers_ptr,
4002 exec2_list,
4003 sizeof(*exec2_list) * args->buffer_count);
4004 if (ret) {
4005 ret = -EFAULT;
4006 DRM_ERROR("failed to copy %d exec entries "
4007 "back to user (%d)\n",
4008 args->buffer_count, ret);
4012 drm_free_large(exec2_list);
4013 return ret;
4017 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4019 struct drm_device *dev = obj->dev;
4020 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4021 int ret;
4023 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4025 i915_verify_inactive(dev, __FILE__, __LINE__);
4027 if (obj_priv->gtt_space != NULL) {
4028 if (alignment == 0)
4029 alignment = i915_gem_get_gtt_alignment(obj);
4030 if (obj_priv->gtt_offset & (alignment - 1)) {
4031 WARN(obj_priv->pin_count,
4032 "bo is already pinned with incorrect alignment:"
4033 " offset=%x, req.alignment=%x\n",
4034 obj_priv->gtt_offset, alignment);
4035 ret = i915_gem_object_unbind(obj);
4036 if (ret)
4037 return ret;
4041 if (obj_priv->gtt_space == NULL) {
4042 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4043 if (ret)
4044 return ret;
4047 obj_priv->pin_count++;
4049 /* If the object is not active and not pending a flush,
4050 * remove it from the inactive list
4052 if (obj_priv->pin_count == 1) {
4053 atomic_inc(&dev->pin_count);
4054 atomic_add(obj->size, &dev->pin_memory);
4055 if (!obj_priv->active &&
4056 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4057 list_del_init(&obj_priv->list);
4059 i915_verify_inactive(dev, __FILE__, __LINE__);
4061 return 0;
4064 void
4065 i915_gem_object_unpin(struct drm_gem_object *obj)
4067 struct drm_device *dev = obj->dev;
4068 drm_i915_private_t *dev_priv = dev->dev_private;
4069 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4071 i915_verify_inactive(dev, __FILE__, __LINE__);
4072 obj_priv->pin_count--;
4073 BUG_ON(obj_priv->pin_count < 0);
4074 BUG_ON(obj_priv->gtt_space == NULL);
4076 /* If the object is no longer pinned, and is
4077 * neither active nor being flushed, then stick it on
4078 * the inactive list
4080 if (obj_priv->pin_count == 0) {
4081 if (!obj_priv->active &&
4082 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4083 list_move_tail(&obj_priv->list,
4084 &dev_priv->mm.inactive_list);
4085 atomic_dec(&dev->pin_count);
4086 atomic_sub(obj->size, &dev->pin_memory);
4088 i915_verify_inactive(dev, __FILE__, __LINE__);
4092 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4093 struct drm_file *file_priv)
4095 struct drm_i915_gem_pin *args = data;
4096 struct drm_gem_object *obj;
4097 struct drm_i915_gem_object *obj_priv;
4098 int ret;
4100 mutex_lock(&dev->struct_mutex);
4102 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4103 if (obj == NULL) {
4104 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4105 args->handle);
4106 mutex_unlock(&dev->struct_mutex);
4107 return -ENOENT;
4109 obj_priv = to_intel_bo(obj);
4111 if (obj_priv->madv != I915_MADV_WILLNEED) {
4112 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4113 drm_gem_object_unreference(obj);
4114 mutex_unlock(&dev->struct_mutex);
4115 return -EINVAL;
4118 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4119 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4120 args->handle);
4121 drm_gem_object_unreference(obj);
4122 mutex_unlock(&dev->struct_mutex);
4123 return -EINVAL;
4126 obj_priv->user_pin_count++;
4127 obj_priv->pin_filp = file_priv;
4128 if (obj_priv->user_pin_count == 1) {
4129 ret = i915_gem_object_pin(obj, args->alignment);
4130 if (ret != 0) {
4131 drm_gem_object_unreference(obj);
4132 mutex_unlock(&dev->struct_mutex);
4133 return ret;
4137 /* XXX - flush the CPU caches for pinned objects
4138 * as the X server doesn't manage domains yet
4140 i915_gem_object_flush_cpu_write_domain(obj);
4141 args->offset = obj_priv->gtt_offset;
4142 drm_gem_object_unreference(obj);
4143 mutex_unlock(&dev->struct_mutex);
4145 return 0;
4149 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4150 struct drm_file *file_priv)
4152 struct drm_i915_gem_pin *args = data;
4153 struct drm_gem_object *obj;
4154 struct drm_i915_gem_object *obj_priv;
4156 mutex_lock(&dev->struct_mutex);
4158 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4159 if (obj == NULL) {
4160 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4161 args->handle);
4162 mutex_unlock(&dev->struct_mutex);
4163 return -ENOENT;
4166 obj_priv = to_intel_bo(obj);
4167 if (obj_priv->pin_filp != file_priv) {
4168 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4169 args->handle);
4170 drm_gem_object_unreference(obj);
4171 mutex_unlock(&dev->struct_mutex);
4172 return -EINVAL;
4174 obj_priv->user_pin_count--;
4175 if (obj_priv->user_pin_count == 0) {
4176 obj_priv->pin_filp = NULL;
4177 i915_gem_object_unpin(obj);
4180 drm_gem_object_unreference(obj);
4181 mutex_unlock(&dev->struct_mutex);
4182 return 0;
4186 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4187 struct drm_file *file_priv)
4189 struct drm_i915_gem_busy *args = data;
4190 struct drm_gem_object *obj;
4191 struct drm_i915_gem_object *obj_priv;
4193 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4194 if (obj == NULL) {
4195 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4196 args->handle);
4197 return -ENOENT;
4200 mutex_lock(&dev->struct_mutex);
4202 /* Count all active objects as busy, even if they are currently not used
4203 * by the gpu. Users of this interface expect objects to eventually
4204 * become non-busy without any further actions, therefore emit any
4205 * necessary flushes here.
4207 obj_priv = to_intel_bo(obj);
4208 args->busy = obj_priv->active;
4209 if (args->busy) {
4210 /* Unconditionally flush objects, even when the gpu still uses this
4211 * object. Userspace calling this function indicates that it wants to
4212 * use this buffer rather sooner than later, so issuing the required
4213 * flush earlier is beneficial.
4215 if (obj->write_domain & I915_GEM_GPU_DOMAINS) {
4216 i915_gem_flush_ring(dev,
4217 obj_priv->ring,
4218 0, obj->write_domain);
4219 (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
4222 /* Update the active list for the hardware's current position.
4223 * Otherwise this only updates on a delayed timer or when irqs
4224 * are actually unmasked, and our working set ends up being
4225 * larger than required.
4227 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4229 args->busy = obj_priv->active;
4232 drm_gem_object_unreference(obj);
4233 mutex_unlock(&dev->struct_mutex);
4234 return 0;
4238 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4239 struct drm_file *file_priv)
4241 return i915_gem_ring_throttle(dev, file_priv);
4245 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4246 struct drm_file *file_priv)
4248 struct drm_i915_gem_madvise *args = data;
4249 struct drm_gem_object *obj;
4250 struct drm_i915_gem_object *obj_priv;
4252 switch (args->madv) {
4253 case I915_MADV_DONTNEED:
4254 case I915_MADV_WILLNEED:
4255 break;
4256 default:
4257 return -EINVAL;
4260 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4261 if (obj == NULL) {
4262 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4263 args->handle);
4264 return -ENOENT;
4267 mutex_lock(&dev->struct_mutex);
4268 obj_priv = to_intel_bo(obj);
4270 if (obj_priv->pin_count) {
4271 drm_gem_object_unreference(obj);
4272 mutex_unlock(&dev->struct_mutex);
4274 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4275 return -EINVAL;
4278 if (obj_priv->madv != __I915_MADV_PURGED)
4279 obj_priv->madv = args->madv;
4281 /* if the object is no longer bound, discard its backing storage */
4282 if (i915_gem_object_is_purgeable(obj_priv) &&
4283 obj_priv->gtt_space == NULL)
4284 i915_gem_object_truncate(obj);
4286 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4288 drm_gem_object_unreference(obj);
4289 mutex_unlock(&dev->struct_mutex);
4291 return 0;
4294 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4295 size_t size)
4297 struct drm_i915_gem_object *obj;
4299 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4300 if (obj == NULL)
4301 return NULL;
4303 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4304 kfree(obj);
4305 return NULL;
4308 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4309 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4311 obj->agp_type = AGP_USER_MEMORY;
4312 obj->base.driver_private = NULL;
4313 obj->fence_reg = I915_FENCE_REG_NONE;
4314 INIT_LIST_HEAD(&obj->list);
4315 INIT_LIST_HEAD(&obj->gpu_write_list);
4316 obj->madv = I915_MADV_WILLNEED;
4318 trace_i915_gem_object_create(&obj->base);
4320 return &obj->base;
4323 int i915_gem_init_object(struct drm_gem_object *obj)
4325 BUG();
4327 return 0;
4330 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4332 struct drm_device *dev = obj->dev;
4333 drm_i915_private_t *dev_priv = dev->dev_private;
4334 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4335 int ret;
4337 ret = i915_gem_object_unbind(obj);
4338 if (ret == -ERESTARTSYS) {
4339 list_move(&obj_priv->list,
4340 &dev_priv->mm.deferred_free_list);
4341 return;
4344 if (obj_priv->mmap_offset)
4345 i915_gem_free_mmap_offset(obj);
4347 drm_gem_object_release(obj);
4349 kfree(obj_priv->page_cpu_valid);
4350 kfree(obj_priv->bit_17);
4351 kfree(obj_priv);
4354 void i915_gem_free_object(struct drm_gem_object *obj)
4356 struct drm_device *dev = obj->dev;
4357 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4359 trace_i915_gem_object_destroy(obj);
4361 while (obj_priv->pin_count > 0)
4362 i915_gem_object_unpin(obj);
4364 if (obj_priv->phys_obj)
4365 i915_gem_detach_phys_object(dev, obj);
4367 i915_gem_free_object_tail(obj);
4371 i915_gem_idle(struct drm_device *dev)
4373 drm_i915_private_t *dev_priv = dev->dev_private;
4374 int ret;
4376 mutex_lock(&dev->struct_mutex);
4378 if (dev_priv->mm.suspended ||
4379 (dev_priv->render_ring.gem_object == NULL) ||
4380 (HAS_BSD(dev) &&
4381 dev_priv->bsd_ring.gem_object == NULL)) {
4382 mutex_unlock(&dev->struct_mutex);
4383 return 0;
4386 ret = i915_gpu_idle(dev);
4387 if (ret) {
4388 mutex_unlock(&dev->struct_mutex);
4389 return ret;
4392 /* Under UMS, be paranoid and evict. */
4393 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4394 ret = i915_gem_evict_inactive(dev);
4395 if (ret) {
4396 mutex_unlock(&dev->struct_mutex);
4397 return ret;
4401 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4402 * We need to replace this with a semaphore, or something.
4403 * And not confound mm.suspended!
4405 dev_priv->mm.suspended = 1;
4406 del_timer_sync(&dev_priv->hangcheck_timer);
4408 i915_kernel_lost_context(dev);
4409 i915_gem_cleanup_ringbuffer(dev);
4411 mutex_unlock(&dev->struct_mutex);
4413 /* Cancel the retire work handler, which should be idle now. */
4414 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4416 return 0;
4420 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4421 * over cache flushing.
4423 static int
4424 i915_gem_init_pipe_control(struct drm_device *dev)
4426 drm_i915_private_t *dev_priv = dev->dev_private;
4427 struct drm_gem_object *obj;
4428 struct drm_i915_gem_object *obj_priv;
4429 int ret;
4431 obj = i915_gem_alloc_object(dev, 4096);
4432 if (obj == NULL) {
4433 DRM_ERROR("Failed to allocate seqno page\n");
4434 ret = -ENOMEM;
4435 goto err;
4437 obj_priv = to_intel_bo(obj);
4438 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4440 ret = i915_gem_object_pin(obj, 4096);
4441 if (ret)
4442 goto err_unref;
4444 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4445 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4446 if (dev_priv->seqno_page == NULL)
4447 goto err_unpin;
4449 dev_priv->seqno_obj = obj;
4450 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4452 return 0;
4454 err_unpin:
4455 i915_gem_object_unpin(obj);
4456 err_unref:
4457 drm_gem_object_unreference(obj);
4458 err:
4459 return ret;
4463 static void
4464 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4466 drm_i915_private_t *dev_priv = dev->dev_private;
4467 struct drm_gem_object *obj;
4468 struct drm_i915_gem_object *obj_priv;
4470 obj = dev_priv->seqno_obj;
4471 obj_priv = to_intel_bo(obj);
4472 kunmap(obj_priv->pages[0]);
4473 i915_gem_object_unpin(obj);
4474 drm_gem_object_unreference(obj);
4475 dev_priv->seqno_obj = NULL;
4477 dev_priv->seqno_page = NULL;
4481 i915_gem_init_ringbuffer(struct drm_device *dev)
4483 drm_i915_private_t *dev_priv = dev->dev_private;
4484 int ret;
4486 dev_priv->render_ring = render_ring;
4488 if (!I915_NEED_GFX_HWS(dev)) {
4489 dev_priv->render_ring.status_page.page_addr
4490 = dev_priv->status_page_dmah->vaddr;
4491 memset(dev_priv->render_ring.status_page.page_addr,
4492 0, PAGE_SIZE);
4495 if (HAS_PIPE_CONTROL(dev)) {
4496 ret = i915_gem_init_pipe_control(dev);
4497 if (ret)
4498 return ret;
4501 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4502 if (ret)
4503 goto cleanup_pipe_control;
4505 if (HAS_BSD(dev)) {
4506 dev_priv->bsd_ring = bsd_ring;
4507 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4508 if (ret)
4509 goto cleanup_render_ring;
4512 dev_priv->next_seqno = 1;
4514 return 0;
4516 cleanup_render_ring:
4517 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4518 cleanup_pipe_control:
4519 if (HAS_PIPE_CONTROL(dev))
4520 i915_gem_cleanup_pipe_control(dev);
4521 return ret;
4524 void
4525 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4527 drm_i915_private_t *dev_priv = dev->dev_private;
4529 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4530 if (HAS_BSD(dev))
4531 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4532 if (HAS_PIPE_CONTROL(dev))
4533 i915_gem_cleanup_pipe_control(dev);
4537 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4538 struct drm_file *file_priv)
4540 drm_i915_private_t *dev_priv = dev->dev_private;
4541 int ret;
4543 if (drm_core_check_feature(dev, DRIVER_MODESET))
4544 return 0;
4546 if (atomic_read(&dev_priv->mm.wedged)) {
4547 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4548 atomic_set(&dev_priv->mm.wedged, 0);
4551 mutex_lock(&dev->struct_mutex);
4552 dev_priv->mm.suspended = 0;
4554 ret = i915_gem_init_ringbuffer(dev);
4555 if (ret != 0) {
4556 mutex_unlock(&dev->struct_mutex);
4557 return ret;
4560 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4561 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4562 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4563 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4564 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4565 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4566 mutex_unlock(&dev->struct_mutex);
4568 ret = drm_irq_install(dev);
4569 if (ret)
4570 goto cleanup_ringbuffer;
4572 return 0;
4574 cleanup_ringbuffer:
4575 mutex_lock(&dev->struct_mutex);
4576 i915_gem_cleanup_ringbuffer(dev);
4577 dev_priv->mm.suspended = 1;
4578 mutex_unlock(&dev->struct_mutex);
4580 return ret;
4584 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4585 struct drm_file *file_priv)
4587 if (drm_core_check_feature(dev, DRIVER_MODESET))
4588 return 0;
4590 drm_irq_uninstall(dev);
4591 return i915_gem_idle(dev);
4594 void
4595 i915_gem_lastclose(struct drm_device *dev)
4597 int ret;
4599 if (drm_core_check_feature(dev, DRIVER_MODESET))
4600 return;
4602 ret = i915_gem_idle(dev);
4603 if (ret)
4604 DRM_ERROR("failed to idle hardware: %d\n", ret);
4607 void
4608 i915_gem_load(struct drm_device *dev)
4610 int i;
4611 drm_i915_private_t *dev_priv = dev->dev_private;
4613 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4614 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4615 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4616 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4617 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4618 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4619 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4620 if (HAS_BSD(dev)) {
4621 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4622 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4624 for (i = 0; i < 16; i++)
4625 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4626 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4627 i915_gem_retire_work_handler);
4628 spin_lock(&shrink_list_lock);
4629 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4630 spin_unlock(&shrink_list_lock);
4632 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4633 if (IS_GEN3(dev)) {
4634 u32 tmp = I915_READ(MI_ARB_STATE);
4635 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4636 /* arb state is a masked write, so set bit + bit in mask */
4637 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4638 I915_WRITE(MI_ARB_STATE, tmp);
4642 /* Old X drivers will take 0-2 for front, back, depth buffers */
4643 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4644 dev_priv->fence_reg_start = 3;
4646 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4647 dev_priv->num_fence_regs = 16;
4648 else
4649 dev_priv->num_fence_regs = 8;
4651 /* Initialize fence registers to zero */
4652 switch (INTEL_INFO(dev)->gen) {
4653 case 6:
4654 for (i = 0; i < 16; i++)
4655 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4656 break;
4657 case 5:
4658 case 4:
4659 for (i = 0; i < 16; i++)
4660 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4661 break;
4662 case 3:
4663 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4664 for (i = 0; i < 8; i++)
4665 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4666 case 2:
4667 for (i = 0; i < 8; i++)
4668 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4669 break;
4671 i915_gem_detect_bit_6_swizzle(dev);
4672 init_waitqueue_head(&dev_priv->pending_flip_queue);
4676 * Create a physically contiguous memory object for this object
4677 * e.g. for cursor + overlay regs
4679 static int i915_gem_init_phys_object(struct drm_device *dev,
4680 int id, int size, int align)
4682 drm_i915_private_t *dev_priv = dev->dev_private;
4683 struct drm_i915_gem_phys_object *phys_obj;
4684 int ret;
4686 if (dev_priv->mm.phys_objs[id - 1] || !size)
4687 return 0;
4689 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4690 if (!phys_obj)
4691 return -ENOMEM;
4693 phys_obj->id = id;
4695 phys_obj->handle = drm_pci_alloc(dev, size, align);
4696 if (!phys_obj->handle) {
4697 ret = -ENOMEM;
4698 goto kfree_obj;
4700 #ifdef CONFIG_X86
4701 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4702 #endif
4704 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4706 return 0;
4707 kfree_obj:
4708 kfree(phys_obj);
4709 return ret;
4712 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4714 drm_i915_private_t *dev_priv = dev->dev_private;
4715 struct drm_i915_gem_phys_object *phys_obj;
4717 if (!dev_priv->mm.phys_objs[id - 1])
4718 return;
4720 phys_obj = dev_priv->mm.phys_objs[id - 1];
4721 if (phys_obj->cur_obj) {
4722 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4725 #ifdef CONFIG_X86
4726 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4727 #endif
4728 drm_pci_free(dev, phys_obj->handle);
4729 kfree(phys_obj);
4730 dev_priv->mm.phys_objs[id - 1] = NULL;
4733 void i915_gem_free_all_phys_object(struct drm_device *dev)
4735 int i;
4737 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4738 i915_gem_free_phys_object(dev, i);
4741 void i915_gem_detach_phys_object(struct drm_device *dev,
4742 struct drm_gem_object *obj)
4744 struct drm_i915_gem_object *obj_priv;
4745 int i;
4746 int ret;
4747 int page_count;
4749 obj_priv = to_intel_bo(obj);
4750 if (!obj_priv->phys_obj)
4751 return;
4753 ret = i915_gem_object_get_pages(obj, 0);
4754 if (ret)
4755 goto out;
4757 page_count = obj->size / PAGE_SIZE;
4759 for (i = 0; i < page_count; i++) {
4760 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4761 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4763 memcpy(dst, src, PAGE_SIZE);
4764 kunmap_atomic(dst, KM_USER0);
4766 drm_clflush_pages(obj_priv->pages, page_count);
4767 drm_agp_chipset_flush(dev);
4769 i915_gem_object_put_pages(obj);
4770 out:
4771 obj_priv->phys_obj->cur_obj = NULL;
4772 obj_priv->phys_obj = NULL;
4776 i915_gem_attach_phys_object(struct drm_device *dev,
4777 struct drm_gem_object *obj,
4778 int id,
4779 int align)
4781 drm_i915_private_t *dev_priv = dev->dev_private;
4782 struct drm_i915_gem_object *obj_priv;
4783 int ret = 0;
4784 int page_count;
4785 int i;
4787 if (id > I915_MAX_PHYS_OBJECT)
4788 return -EINVAL;
4790 obj_priv = to_intel_bo(obj);
4792 if (obj_priv->phys_obj) {
4793 if (obj_priv->phys_obj->id == id)
4794 return 0;
4795 i915_gem_detach_phys_object(dev, obj);
4798 /* create a new object */
4799 if (!dev_priv->mm.phys_objs[id - 1]) {
4800 ret = i915_gem_init_phys_object(dev, id,
4801 obj->size, align);
4802 if (ret) {
4803 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4804 goto out;
4808 /* bind to the object */
4809 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4810 obj_priv->phys_obj->cur_obj = obj;
4812 ret = i915_gem_object_get_pages(obj, 0);
4813 if (ret) {
4814 DRM_ERROR("failed to get page list\n");
4815 goto out;
4818 page_count = obj->size / PAGE_SIZE;
4820 for (i = 0; i < page_count; i++) {
4821 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4822 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4824 memcpy(dst, src, PAGE_SIZE);
4825 kunmap_atomic(src, KM_USER0);
4828 i915_gem_object_put_pages(obj);
4830 return 0;
4831 out:
4832 return ret;
4835 static int
4836 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4837 struct drm_i915_gem_pwrite *args,
4838 struct drm_file *file_priv)
4840 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4841 void *obj_addr;
4842 int ret;
4843 char __user *user_data;
4845 user_data = (char __user *) (uintptr_t) args->data_ptr;
4846 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4848 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4849 ret = copy_from_user(obj_addr, user_data, args->size);
4850 if (ret)
4851 return -EFAULT;
4853 drm_agp_chipset_flush(dev);
4854 return 0;
4857 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4859 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4861 /* Clean up our request list when the client is going away, so that
4862 * later retire_requests won't dereference our soon-to-be-gone
4863 * file_priv.
4865 mutex_lock(&dev->struct_mutex);
4866 while (!list_empty(&i915_file_priv->mm.request_list))
4867 list_del_init(i915_file_priv->mm.request_list.next);
4868 mutex_unlock(&dev->struct_mutex);
4871 static int
4872 i915_gpu_is_active(struct drm_device *dev)
4874 drm_i915_private_t *dev_priv = dev->dev_private;
4875 int lists_empty;
4877 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4878 list_empty(&dev_priv->render_ring.active_list);
4879 if (HAS_BSD(dev))
4880 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4882 return !lists_empty;
4885 static int
4886 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4888 drm_i915_private_t *dev_priv, *next_dev;
4889 struct drm_i915_gem_object *obj_priv, *next_obj;
4890 int cnt = 0;
4891 int would_deadlock = 1;
4893 /* "fast-path" to count number of available objects */
4894 if (nr_to_scan == 0) {
4895 spin_lock(&shrink_list_lock);
4896 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4897 struct drm_device *dev = dev_priv->dev;
4899 if (mutex_trylock(&dev->struct_mutex)) {
4900 list_for_each_entry(obj_priv,
4901 &dev_priv->mm.inactive_list,
4902 list)
4903 cnt++;
4904 mutex_unlock(&dev->struct_mutex);
4907 spin_unlock(&shrink_list_lock);
4909 return (cnt / 100) * sysctl_vfs_cache_pressure;
4912 spin_lock(&shrink_list_lock);
4914 rescan:
4915 /* first scan for clean buffers */
4916 list_for_each_entry_safe(dev_priv, next_dev,
4917 &shrink_list, mm.shrink_list) {
4918 struct drm_device *dev = dev_priv->dev;
4920 if (! mutex_trylock(&dev->struct_mutex))
4921 continue;
4923 spin_unlock(&shrink_list_lock);
4924 i915_gem_retire_requests(dev);
4926 list_for_each_entry_safe(obj_priv, next_obj,
4927 &dev_priv->mm.inactive_list,
4928 list) {
4929 if (i915_gem_object_is_purgeable(obj_priv)) {
4930 i915_gem_object_unbind(&obj_priv->base);
4931 if (--nr_to_scan <= 0)
4932 break;
4936 spin_lock(&shrink_list_lock);
4937 mutex_unlock(&dev->struct_mutex);
4939 would_deadlock = 0;
4941 if (nr_to_scan <= 0)
4942 break;
4945 /* second pass, evict/count anything still on the inactive list */
4946 list_for_each_entry_safe(dev_priv, next_dev,
4947 &shrink_list, mm.shrink_list) {
4948 struct drm_device *dev = dev_priv->dev;
4950 if (! mutex_trylock(&dev->struct_mutex))
4951 continue;
4953 spin_unlock(&shrink_list_lock);
4955 list_for_each_entry_safe(obj_priv, next_obj,
4956 &dev_priv->mm.inactive_list,
4957 list) {
4958 if (nr_to_scan > 0) {
4959 i915_gem_object_unbind(&obj_priv->base);
4960 nr_to_scan--;
4961 } else
4962 cnt++;
4965 spin_lock(&shrink_list_lock);
4966 mutex_unlock(&dev->struct_mutex);
4968 would_deadlock = 0;
4971 if (nr_to_scan) {
4972 int active = 0;
4975 * We are desperate for pages, so as a last resort, wait
4976 * for the GPU to finish and discard whatever we can.
4977 * This has a dramatic impact to reduce the number of
4978 * OOM-killer events whilst running the GPU aggressively.
4980 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4981 struct drm_device *dev = dev_priv->dev;
4983 if (!mutex_trylock(&dev->struct_mutex))
4984 continue;
4986 spin_unlock(&shrink_list_lock);
4988 if (i915_gpu_is_active(dev)) {
4989 i915_gpu_idle(dev);
4990 active++;
4993 spin_lock(&shrink_list_lock);
4994 mutex_unlock(&dev->struct_mutex);
4997 if (active)
4998 goto rescan;
5001 spin_unlock(&shrink_list_lock);
5003 if (would_deadlock)
5004 return -1;
5005 else if (cnt > 0)
5006 return (cnt / 100) * sysctl_vfs_cache_pressure;
5007 else
5008 return 0;
5011 static struct shrinker shrinker = {
5012 .shrink = i915_gem_shrink,
5013 .seeks = DEFAULT_SEEKS,
5016 __init void
5017 i915_gem_shrinker_init(void)
5019 register_shrinker(&shrinker);
5022 __exit void
5023 i915_gem_shrinker_exit(void)
5025 unregister_shrinker(&shrinker);