6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
35 #include <asm/mmu_context.h>
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags) (0)
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len) (addr)
47 static void unmap_region(struct mm_struct
*mm
,
48 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
49 unsigned long start
, unsigned long end
);
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
57 /* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware. The expected
59 * behavior is in parens:
62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
64 * w: (no) no w: (no) no w: (yes) yes w: (no) no
65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
68 * w: (no) no w: (no) no w: (copy) copy w: (no) no
69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 pgprot_t protection_map
[16] = {
73 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
74 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
77 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
79 return __pgprot(pgprot_val(protection_map
[vm_flags
&
80 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
81 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
83 EXPORT_SYMBOL(vm_get_page_prot
);
85 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
86 int sysctl_overcommit_ratio
= 50; /* default is 50% */
87 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
88 struct percpu_counter vm_committed_as
;
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
106 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
108 unsigned long free
, allowed
;
110 vm_acct_memory(pages
);
113 * Sometimes we want to use more memory than we have
115 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
118 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
121 free
= global_page_state(NR_FILE_PAGES
);
122 free
+= nr_swap_pages
;
125 * Any slabs which are created with the
126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 * which are reclaimable, under pressure. The dentry
128 * cache and most inode caches should fall into this
130 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
133 * Leave the last 3% for root
142 * nr_free_pages() is very expensive on large systems,
143 * only call if we're about to fail.
148 * Leave reserved pages. The pages are not for anonymous pages.
150 if (n
<= totalreserve_pages
)
153 n
-= totalreserve_pages
;
156 * Leave the last 3% for root
168 allowed
= (totalram_pages
- hugetlb_total_pages())
169 * sysctl_overcommit_ratio
/ 100;
171 * Leave the last 3% for root
174 allowed
-= allowed
/ 32;
175 allowed
+= total_swap_pages
;
177 /* Don't let a single process grow too big:
178 leave 3% of the size of this process for other processes */
180 allowed
-= mm
->total_vm
/ 32;
182 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
185 vm_unacct_memory(pages
);
191 * Requires inode->i_mapping->i_mmap_lock
193 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
194 struct file
*file
, struct address_space
*mapping
)
196 if (vma
->vm_flags
& VM_DENYWRITE
)
197 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
198 if (vma
->vm_flags
& VM_SHARED
)
199 mapping
->i_mmap_writable
--;
201 flush_dcache_mmap_lock(mapping
);
202 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
203 list_del_init(&vma
->shared
.vm_set
.list
);
205 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
206 flush_dcache_mmap_unlock(mapping
);
210 * Unlink a file-based vm structure from its prio_tree, to hide
211 * vma from rmap and vmtruncate before freeing its page tables.
213 void unlink_file_vma(struct vm_area_struct
*vma
)
215 struct file
*file
= vma
->vm_file
;
218 struct address_space
*mapping
= file
->f_mapping
;
219 spin_lock(&mapping
->i_mmap_lock
);
220 __remove_shared_vm_struct(vma
, file
, mapping
);
221 spin_unlock(&mapping
->i_mmap_lock
);
226 * Close a vm structure and free it, returning the next.
228 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
230 struct vm_area_struct
*next
= vma
->vm_next
;
233 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
234 vma
->vm_ops
->close(vma
);
237 if (vma
->vm_flags
& VM_EXECUTABLE
)
238 removed_exe_file_vma(vma
->vm_mm
);
240 mpol_put(vma_policy(vma
));
241 kmem_cache_free(vm_area_cachep
, vma
);
245 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
247 unsigned long rlim
, retval
;
248 unsigned long newbrk
, oldbrk
;
249 struct mm_struct
*mm
= current
->mm
;
250 unsigned long min_brk
;
252 down_write(&mm
->mmap_sem
);
254 #ifdef CONFIG_COMPAT_BRK
255 min_brk
= mm
->end_code
;
257 min_brk
= mm
->start_brk
;
263 * Check against rlimit here. If this check is done later after the test
264 * of oldbrk with newbrk then it can escape the test and let the data
265 * segment grow beyond its set limit the in case where the limit is
266 * not page aligned -Ram Gupta
268 rlim
= rlimit(RLIMIT_DATA
);
269 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
270 (mm
->end_data
- mm
->start_data
) > rlim
)
273 newbrk
= PAGE_ALIGN(brk
);
274 oldbrk
= PAGE_ALIGN(mm
->brk
);
275 if (oldbrk
== newbrk
)
278 /* Always allow shrinking brk. */
279 if (brk
<= mm
->brk
) {
280 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
285 /* Check against existing mmap mappings. */
286 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
289 /* Ok, looks good - let it rip. */
290 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
296 up_write(&mm
->mmap_sem
);
301 static int browse_rb(struct rb_root
*root
)
304 struct rb_node
*nd
, *pn
= NULL
;
305 unsigned long prev
= 0, pend
= 0;
307 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
308 struct vm_area_struct
*vma
;
309 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
310 if (vma
->vm_start
< prev
)
311 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
312 if (vma
->vm_start
< pend
)
313 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
314 if (vma
->vm_start
> vma
->vm_end
)
315 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
318 prev
= vma
->vm_start
;
322 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
326 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
330 void validate_mm(struct mm_struct
*mm
)
334 struct vm_area_struct
*tmp
= mm
->mmap
;
339 if (i
!= mm
->map_count
)
340 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
341 i
= browse_rb(&mm
->mm_rb
);
342 if (i
!= mm
->map_count
)
343 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
347 #define validate_mm(mm) do { } while (0)
350 static struct vm_area_struct
*
351 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
352 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
353 struct rb_node
** rb_parent
)
355 struct vm_area_struct
* vma
;
356 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
358 __rb_link
= &mm
->mm_rb
.rb_node
;
359 rb_prev
= __rb_parent
= NULL
;
363 struct vm_area_struct
*vma_tmp
;
365 __rb_parent
= *__rb_link
;
366 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
368 if (vma_tmp
->vm_end
> addr
) {
370 if (vma_tmp
->vm_start
<= addr
)
372 __rb_link
= &__rb_parent
->rb_left
;
374 rb_prev
= __rb_parent
;
375 __rb_link
= &__rb_parent
->rb_right
;
381 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
382 *rb_link
= __rb_link
;
383 *rb_parent
= __rb_parent
;
388 __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
389 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
391 struct vm_area_struct
*next
;
395 next
= prev
->vm_next
;
400 next
= rb_entry(rb_parent
,
401 struct vm_area_struct
, vm_rb
);
410 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
411 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
413 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
414 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
417 static void __vma_link_file(struct vm_area_struct
*vma
)
423 struct address_space
*mapping
= file
->f_mapping
;
425 if (vma
->vm_flags
& VM_DENYWRITE
)
426 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
427 if (vma
->vm_flags
& VM_SHARED
)
428 mapping
->i_mmap_writable
++;
430 flush_dcache_mmap_lock(mapping
);
431 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
432 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
434 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
435 flush_dcache_mmap_unlock(mapping
);
440 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
441 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
442 struct rb_node
*rb_parent
)
444 __vma_link_list(mm
, vma
, prev
, rb_parent
);
445 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
448 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
449 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
450 struct rb_node
*rb_parent
)
452 struct address_space
*mapping
= NULL
;
455 mapping
= vma
->vm_file
->f_mapping
;
458 spin_lock(&mapping
->i_mmap_lock
);
459 vma
->vm_truncate_count
= mapping
->truncate_count
;
462 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
463 __vma_link_file(vma
);
466 spin_unlock(&mapping
->i_mmap_lock
);
473 * Helper for vma_adjust in the split_vma insert case:
474 * insert vm structure into list and rbtree and anon_vma,
475 * but it has already been inserted into prio_tree earlier.
477 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
479 struct vm_area_struct
*__vma
, *prev
;
480 struct rb_node
**rb_link
, *rb_parent
;
482 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
483 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
484 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
489 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
490 struct vm_area_struct
*prev
)
492 struct vm_area_struct
*next
= vma
->vm_next
;
494 prev
->vm_next
= next
;
496 next
->vm_prev
= prev
;
497 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
498 if (mm
->mmap_cache
== vma
)
499 mm
->mmap_cache
= prev
;
503 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
504 * is already present in an i_mmap tree without adjusting the tree.
505 * The following helper function should be used when such adjustments
506 * are necessary. The "insert" vma (if any) is to be inserted
507 * before we drop the necessary locks.
509 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
510 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
512 struct mm_struct
*mm
= vma
->vm_mm
;
513 struct vm_area_struct
*next
= vma
->vm_next
;
514 struct vm_area_struct
*importer
= NULL
;
515 struct address_space
*mapping
= NULL
;
516 struct prio_tree_root
*root
= NULL
;
517 struct anon_vma
*anon_vma
= NULL
;
518 struct file
*file
= vma
->vm_file
;
519 long adjust_next
= 0;
522 if (next
&& !insert
) {
523 struct vm_area_struct
*exporter
= NULL
;
525 if (end
>= next
->vm_end
) {
527 * vma expands, overlapping all the next, and
528 * perhaps the one after too (mprotect case 6).
530 again
: remove_next
= 1 + (end
> next
->vm_end
);
534 } else if (end
> next
->vm_start
) {
536 * vma expands, overlapping part of the next:
537 * mprotect case 5 shifting the boundary up.
539 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
542 } else if (end
< vma
->vm_end
) {
544 * vma shrinks, and !insert tells it's not
545 * split_vma inserting another: so it must be
546 * mprotect case 4 shifting the boundary down.
548 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
554 * Easily overlooked: when mprotect shifts the boundary,
555 * make sure the expanding vma has anon_vma set if the
556 * shrinking vma had, to cover any anon pages imported.
558 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
559 if (anon_vma_clone(importer
, exporter
))
561 importer
->anon_vma
= exporter
->anon_vma
;
566 mapping
= file
->f_mapping
;
567 if (!(vma
->vm_flags
& VM_NONLINEAR
))
568 root
= &mapping
->i_mmap
;
569 spin_lock(&mapping
->i_mmap_lock
);
571 vma
->vm_truncate_count
!= next
->vm_truncate_count
) {
573 * unmap_mapping_range might be in progress:
574 * ensure that the expanding vma is rescanned.
576 importer
->vm_truncate_count
= 0;
579 insert
->vm_truncate_count
= vma
->vm_truncate_count
;
581 * Put into prio_tree now, so instantiated pages
582 * are visible to arm/parisc __flush_dcache_page
583 * throughout; but we cannot insert into address
584 * space until vma start or end is updated.
586 __vma_link_file(insert
);
591 * When changing only vma->vm_end, we don't really need anon_vma
592 * lock. This is a fairly rare case by itself, but the anon_vma
593 * lock may be shared between many sibling processes. Skipping
594 * the lock for brk adjustments makes a difference sometimes.
596 if (vma
->anon_vma
&& (insert
|| importer
|| start
!= vma
->vm_start
)) {
597 anon_vma
= vma
->anon_vma
;
598 anon_vma_lock(anon_vma
);
602 flush_dcache_mmap_lock(mapping
);
603 vma_prio_tree_remove(vma
, root
);
605 vma_prio_tree_remove(next
, root
);
608 vma
->vm_start
= start
;
610 vma
->vm_pgoff
= pgoff
;
612 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
613 next
->vm_pgoff
+= adjust_next
;
618 vma_prio_tree_insert(next
, root
);
619 vma_prio_tree_insert(vma
, root
);
620 flush_dcache_mmap_unlock(mapping
);
625 * vma_merge has merged next into vma, and needs
626 * us to remove next before dropping the locks.
628 __vma_unlink(mm
, next
, vma
);
630 __remove_shared_vm_struct(next
, file
, mapping
);
633 * split_vma has split insert from vma, and needs
634 * us to insert it before dropping the locks
635 * (it may either follow vma or precede it).
637 __insert_vm_struct(mm
, insert
);
641 anon_vma_unlock(anon_vma
);
643 spin_unlock(&mapping
->i_mmap_lock
);
648 if (next
->vm_flags
& VM_EXECUTABLE
)
649 removed_exe_file_vma(mm
);
652 anon_vma_merge(vma
, next
);
654 mpol_put(vma_policy(next
));
655 kmem_cache_free(vm_area_cachep
, next
);
657 * In mprotect's case 6 (see comments on vma_merge),
658 * we must remove another next too. It would clutter
659 * up the code too much to do both in one go.
661 if (remove_next
== 2) {
673 * If the vma has a ->close operation then the driver probably needs to release
674 * per-vma resources, so we don't attempt to merge those.
676 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
677 struct file
*file
, unsigned long vm_flags
)
679 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
680 if ((vma
->vm_flags
^ vm_flags
) & ~VM_CAN_NONLINEAR
)
682 if (vma
->vm_file
!= file
)
684 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
689 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
690 struct anon_vma
*anon_vma2
)
692 return !anon_vma1
|| !anon_vma2
|| (anon_vma1
== anon_vma2
);
696 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
697 * in front of (at a lower virtual address and file offset than) the vma.
699 * We cannot merge two vmas if they have differently assigned (non-NULL)
700 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702 * We don't check here for the merged mmap wrapping around the end of pagecache
703 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
704 * wrap, nor mmaps which cover the final page at index -1UL.
707 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
708 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
710 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
711 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
712 if (vma
->vm_pgoff
== vm_pgoff
)
719 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
720 * beyond (at a higher virtual address and file offset than) the vma.
722 * We cannot merge two vmas if they have differently assigned (non-NULL)
723 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
726 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
727 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
729 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
730 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
732 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
733 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
740 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
741 * whether that can be merged with its predecessor or its successor.
742 * Or both (it neatly fills a hole).
744 * In most cases - when called for mmap, brk or mremap - [addr,end) is
745 * certain not to be mapped by the time vma_merge is called; but when
746 * called for mprotect, it is certain to be already mapped (either at
747 * an offset within prev, or at the start of next), and the flags of
748 * this area are about to be changed to vm_flags - and the no-change
749 * case has already been eliminated.
751 * The following mprotect cases have to be considered, where AAAA is
752 * the area passed down from mprotect_fixup, never extending beyond one
753 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
755 * AAAA AAAA AAAA AAAA
756 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
757 * cannot merge might become might become might become
758 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
759 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
760 * mremap move: PPPPNNNNNNNN 8
762 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
763 * might become case 1 below case 2 below case 3 below
765 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
766 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
768 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
769 struct vm_area_struct
*prev
, unsigned long addr
,
770 unsigned long end
, unsigned long vm_flags
,
771 struct anon_vma
*anon_vma
, struct file
*file
,
772 pgoff_t pgoff
, struct mempolicy
*policy
)
774 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
775 struct vm_area_struct
*area
, *next
;
779 * We later require that vma->vm_flags == vm_flags,
780 * so this tests vma->vm_flags & VM_SPECIAL, too.
782 if (vm_flags
& VM_SPECIAL
)
786 next
= prev
->vm_next
;
790 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
791 next
= next
->vm_next
;
794 * Can it merge with the predecessor?
796 if (prev
&& prev
->vm_end
== addr
&&
797 mpol_equal(vma_policy(prev
), policy
) &&
798 can_vma_merge_after(prev
, vm_flags
,
799 anon_vma
, file
, pgoff
)) {
801 * OK, it can. Can we now merge in the successor as well?
803 if (next
&& end
== next
->vm_start
&&
804 mpol_equal(policy
, vma_policy(next
)) &&
805 can_vma_merge_before(next
, vm_flags
,
806 anon_vma
, file
, pgoff
+pglen
) &&
807 is_mergeable_anon_vma(prev
->anon_vma
,
810 err
= vma_adjust(prev
, prev
->vm_start
,
811 next
->vm_end
, prev
->vm_pgoff
, NULL
);
812 } else /* cases 2, 5, 7 */
813 err
= vma_adjust(prev
, prev
->vm_start
,
814 end
, prev
->vm_pgoff
, NULL
);
821 * Can this new request be merged in front of next?
823 if (next
&& end
== next
->vm_start
&&
824 mpol_equal(policy
, vma_policy(next
)) &&
825 can_vma_merge_before(next
, vm_flags
,
826 anon_vma
, file
, pgoff
+pglen
)) {
827 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
828 err
= vma_adjust(prev
, prev
->vm_start
,
829 addr
, prev
->vm_pgoff
, NULL
);
830 else /* cases 3, 8 */
831 err
= vma_adjust(area
, addr
, next
->vm_end
,
832 next
->vm_pgoff
- pglen
, NULL
);
842 * Rough compatbility check to quickly see if it's even worth looking
843 * at sharing an anon_vma.
845 * They need to have the same vm_file, and the flags can only differ
846 * in things that mprotect may change.
848 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
849 * we can merge the two vma's. For example, we refuse to merge a vma if
850 * there is a vm_ops->close() function, because that indicates that the
851 * driver is doing some kind of reference counting. But that doesn't
852 * really matter for the anon_vma sharing case.
854 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
856 return a
->vm_end
== b
->vm_start
&&
857 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
858 a
->vm_file
== b
->vm_file
&&
859 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
)) &&
860 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
864 * Do some basic sanity checking to see if we can re-use the anon_vma
865 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
866 * the same as 'old', the other will be the new one that is trying
867 * to share the anon_vma.
869 * NOTE! This runs with mm_sem held for reading, so it is possible that
870 * the anon_vma of 'old' is concurrently in the process of being set up
871 * by another page fault trying to merge _that_. But that's ok: if it
872 * is being set up, that automatically means that it will be a singleton
873 * acceptable for merging, so we can do all of this optimistically. But
874 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
876 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
877 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
878 * is to return an anon_vma that is "complex" due to having gone through
881 * We also make sure that the two vma's are compatible (adjacent,
882 * and with the same memory policies). That's all stable, even with just
883 * a read lock on the mm_sem.
885 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
887 if (anon_vma_compatible(a
, b
)) {
888 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
890 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
897 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
898 * neighbouring vmas for a suitable anon_vma, before it goes off
899 * to allocate a new anon_vma. It checks because a repetitive
900 * sequence of mprotects and faults may otherwise lead to distinct
901 * anon_vmas being allocated, preventing vma merge in subsequent
904 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
906 struct anon_vma
*anon_vma
;
907 struct vm_area_struct
*near
;
913 anon_vma
= reusable_anon_vma(near
, vma
, near
);
918 * It is potentially slow to have to call find_vma_prev here.
919 * But it's only on the first write fault on the vma, not
920 * every time, and we could devise a way to avoid it later
921 * (e.g. stash info in next's anon_vma_node when assigning
922 * an anon_vma, or when trying vma_merge). Another time.
924 BUG_ON(find_vma_prev(vma
->vm_mm
, vma
->vm_start
, &near
) != vma
);
928 anon_vma
= reusable_anon_vma(near
, near
, vma
);
933 * There's no absolute need to look only at touching neighbours:
934 * we could search further afield for "compatible" anon_vmas.
935 * But it would probably just be a waste of time searching,
936 * or lead to too many vmas hanging off the same anon_vma.
937 * We're trying to allow mprotect remerging later on,
938 * not trying to minimize memory used for anon_vmas.
943 #ifdef CONFIG_PROC_FS
944 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
945 struct file
*file
, long pages
)
947 const unsigned long stack_flags
948 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
951 mm
->shared_vm
+= pages
;
952 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
953 mm
->exec_vm
+= pages
;
954 } else if (flags
& stack_flags
)
955 mm
->stack_vm
+= pages
;
956 if (flags
& (VM_RESERVED
|VM_IO
))
957 mm
->reserved_vm
+= pages
;
959 #endif /* CONFIG_PROC_FS */
962 * The caller must hold down_write(¤t->mm->mmap_sem).
965 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
966 unsigned long len
, unsigned long prot
,
967 unsigned long flags
, unsigned long pgoff
)
969 struct mm_struct
* mm
= current
->mm
;
971 unsigned int vm_flags
;
973 unsigned long reqprot
= prot
;
976 * Does the application expect PROT_READ to imply PROT_EXEC?
978 * (the exception is when the underlying filesystem is noexec
979 * mounted, in which case we dont add PROT_EXEC.)
981 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
982 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
988 if (!(flags
& MAP_FIXED
))
989 addr
= round_hint_to_min(addr
);
991 /* Careful about overflows.. */
992 len
= PAGE_ALIGN(len
);
996 /* offset overflow? */
997 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1000 /* Too many mappings? */
1001 if (mm
->map_count
> sysctl_max_map_count
)
1004 /* Obtain the address to map to. we verify (or select) it and ensure
1005 * that it represents a valid section of the address space.
1007 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1008 if (addr
& ~PAGE_MASK
)
1011 /* Do simple checking here so the lower-level routines won't have
1012 * to. we assume access permissions have been handled by the open
1013 * of the memory object, so we don't do any here.
1015 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1016 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1018 if (flags
& MAP_LOCKED
)
1019 if (!can_do_mlock())
1022 /* mlock MCL_FUTURE? */
1023 if (vm_flags
& VM_LOCKED
) {
1024 unsigned long locked
, lock_limit
;
1025 locked
= len
>> PAGE_SHIFT
;
1026 locked
+= mm
->locked_vm
;
1027 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1028 lock_limit
>>= PAGE_SHIFT
;
1029 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1033 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1036 switch (flags
& MAP_TYPE
) {
1038 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1042 * Make sure we don't allow writing to an append-only
1045 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1049 * Make sure there are no mandatory locks on the file.
1051 if (locks_verify_locked(inode
))
1054 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1055 if (!(file
->f_mode
& FMODE_WRITE
))
1056 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1060 if (!(file
->f_mode
& FMODE_READ
))
1062 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1063 if (vm_flags
& VM_EXEC
)
1065 vm_flags
&= ~VM_MAYEXEC
;
1068 if (!file
->f_op
|| !file
->f_op
->mmap
)
1076 switch (flags
& MAP_TYPE
) {
1082 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1086 * Set pgoff according to addr for anon_vma.
1088 pgoff
= addr
>> PAGE_SHIFT
;
1095 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1099 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1101 EXPORT_SYMBOL(do_mmap_pgoff
);
1103 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1104 unsigned long, prot
, unsigned long, flags
,
1105 unsigned long, fd
, unsigned long, pgoff
)
1107 struct file
*file
= NULL
;
1108 unsigned long retval
= -EBADF
;
1110 if (!(flags
& MAP_ANONYMOUS
)) {
1111 if (unlikely(flags
& MAP_HUGETLB
))
1116 } else if (flags
& MAP_HUGETLB
) {
1117 struct user_struct
*user
= NULL
;
1119 * VM_NORESERVE is used because the reservations will be
1120 * taken when vm_ops->mmap() is called
1121 * A dummy user value is used because we are not locking
1122 * memory so no accounting is necessary
1124 len
= ALIGN(len
, huge_page_size(&default_hstate
));
1125 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
, VM_NORESERVE
,
1126 &user
, HUGETLB_ANONHUGE_INODE
);
1128 return PTR_ERR(file
);
1131 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1133 down_write(¤t
->mm
->mmap_sem
);
1134 retval
= do_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1135 up_write(¤t
->mm
->mmap_sem
);
1143 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1144 struct mmap_arg_struct
{
1148 unsigned long flags
;
1150 unsigned long offset
;
1153 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1155 struct mmap_arg_struct a
;
1157 if (copy_from_user(&a
, arg
, sizeof(a
)))
1159 if (a
.offset
& ~PAGE_MASK
)
1162 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1163 a
.offset
>> PAGE_SHIFT
);
1165 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1168 * Some shared mappigns will want the pages marked read-only
1169 * to track write events. If so, we'll downgrade vm_page_prot
1170 * to the private version (using protection_map[] without the
1173 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1175 unsigned int vm_flags
= vma
->vm_flags
;
1177 /* If it was private or non-writable, the write bit is already clear */
1178 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1181 /* The backer wishes to know when pages are first written to? */
1182 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1185 /* The open routine did something to the protections already? */
1186 if (pgprot_val(vma
->vm_page_prot
) !=
1187 pgprot_val(vm_get_page_prot(vm_flags
)))
1190 /* Specialty mapping? */
1191 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1194 /* Can the mapping track the dirty pages? */
1195 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1196 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1200 * We account for memory if it's a private writeable mapping,
1201 * not hugepages and VM_NORESERVE wasn't set.
1203 static inline int accountable_mapping(struct file
*file
, unsigned int vm_flags
)
1206 * hugetlb has its own accounting separate from the core VM
1207 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1209 if (file
&& is_file_hugepages(file
))
1212 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1215 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1216 unsigned long len
, unsigned long flags
,
1217 unsigned int vm_flags
, unsigned long pgoff
)
1219 struct mm_struct
*mm
= current
->mm
;
1220 struct vm_area_struct
*vma
, *prev
;
1221 int correct_wcount
= 0;
1223 struct rb_node
**rb_link
, *rb_parent
;
1224 unsigned long charged
= 0;
1225 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1227 /* Clear old maps */
1230 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1231 if (vma
&& vma
->vm_start
< addr
+ len
) {
1232 if (do_munmap(mm
, addr
, len
))
1237 /* Check against address space limit. */
1238 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1242 * Set 'VM_NORESERVE' if we should not account for the
1243 * memory use of this mapping.
1245 if ((flags
& MAP_NORESERVE
)) {
1246 /* We honor MAP_NORESERVE if allowed to overcommit */
1247 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1248 vm_flags
|= VM_NORESERVE
;
1250 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1251 if (file
&& is_file_hugepages(file
))
1252 vm_flags
|= VM_NORESERVE
;
1256 * Private writable mapping: check memory availability
1258 if (accountable_mapping(file
, vm_flags
)) {
1259 charged
= len
>> PAGE_SHIFT
;
1260 if (security_vm_enough_memory(charged
))
1262 vm_flags
|= VM_ACCOUNT
;
1266 * Can we just expand an old mapping?
1268 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1273 * Determine the object being mapped and call the appropriate
1274 * specific mapper. the address has already been validated, but
1275 * not unmapped, but the maps are removed from the list.
1277 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1284 vma
->vm_start
= addr
;
1285 vma
->vm_end
= addr
+ len
;
1286 vma
->vm_flags
= vm_flags
;
1287 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1288 vma
->vm_pgoff
= pgoff
;
1289 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1293 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1295 if (vm_flags
& VM_DENYWRITE
) {
1296 error
= deny_write_access(file
);
1301 vma
->vm_file
= file
;
1303 error
= file
->f_op
->mmap(file
, vma
);
1305 goto unmap_and_free_vma
;
1306 if (vm_flags
& VM_EXECUTABLE
)
1307 added_exe_file_vma(mm
);
1309 /* Can addr have changed??
1311 * Answer: Yes, several device drivers can do it in their
1312 * f_op->mmap method. -DaveM
1314 addr
= vma
->vm_start
;
1315 pgoff
= vma
->vm_pgoff
;
1316 vm_flags
= vma
->vm_flags
;
1317 } else if (vm_flags
& VM_SHARED
) {
1318 error
= shmem_zero_setup(vma
);
1323 if (vma_wants_writenotify(vma
)) {
1324 pgprot_t pprot
= vma
->vm_page_prot
;
1326 /* Can vma->vm_page_prot have changed??
1328 * Answer: Yes, drivers may have changed it in their
1329 * f_op->mmap method.
1331 * Ensures that vmas marked as uncached stay that way.
1333 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1334 if (pgprot_val(pprot
) == pgprot_val(pgprot_noncached(pprot
)))
1335 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1338 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1339 file
= vma
->vm_file
;
1341 /* Once vma denies write, undo our temporary denial count */
1343 atomic_inc(&inode
->i_writecount
);
1345 perf_event_mmap(vma
);
1347 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1348 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1349 if (vm_flags
& VM_LOCKED
) {
1350 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
1351 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1352 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1353 make_pages_present(addr
, addr
+ len
);
1358 atomic_inc(&inode
->i_writecount
);
1359 vma
->vm_file
= NULL
;
1362 /* Undo any partial mapping done by a device driver. */
1363 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1366 kmem_cache_free(vm_area_cachep
, vma
);
1369 vm_unacct_memory(charged
);
1373 /* Get an address range which is currently unmapped.
1374 * For shmat() with addr=0.
1376 * Ugly calling convention alert:
1377 * Return value with the low bits set means error value,
1379 * if (ret & ~PAGE_MASK)
1382 * This function "knows" that -ENOMEM has the bits set.
1384 #ifndef HAVE_ARCH_UNMAPPED_AREA
1386 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1387 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1389 struct mm_struct
*mm
= current
->mm
;
1390 struct vm_area_struct
*vma
;
1391 unsigned long start_addr
;
1393 if (len
> TASK_SIZE
)
1396 if (flags
& MAP_FIXED
)
1400 addr
= PAGE_ALIGN(addr
);
1401 vma
= find_vma(mm
, addr
);
1402 if (TASK_SIZE
- len
>= addr
&&
1403 (!vma
|| addr
+ len
<= vma
->vm_start
))
1406 if (len
> mm
->cached_hole_size
) {
1407 start_addr
= addr
= mm
->free_area_cache
;
1409 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1410 mm
->cached_hole_size
= 0;
1414 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1415 /* At this point: (!vma || addr < vma->vm_end). */
1416 if (TASK_SIZE
- len
< addr
) {
1418 * Start a new search - just in case we missed
1421 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1422 addr
= TASK_UNMAPPED_BASE
;
1424 mm
->cached_hole_size
= 0;
1429 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1431 * Remember the place where we stopped the search:
1433 mm
->free_area_cache
= addr
+ len
;
1436 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1437 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1443 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1446 * Is this a new hole at the lowest possible address?
1448 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1449 mm
->free_area_cache
= addr
;
1450 mm
->cached_hole_size
= ~0UL;
1455 * This mmap-allocator allocates new areas top-down from below the
1456 * stack's low limit (the base):
1458 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1460 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1461 const unsigned long len
, const unsigned long pgoff
,
1462 const unsigned long flags
)
1464 struct vm_area_struct
*vma
;
1465 struct mm_struct
*mm
= current
->mm
;
1466 unsigned long addr
= addr0
;
1468 /* requested length too big for entire address space */
1469 if (len
> TASK_SIZE
)
1472 if (flags
& MAP_FIXED
)
1475 /* requesting a specific address */
1477 addr
= PAGE_ALIGN(addr
);
1478 vma
= find_vma(mm
, addr
);
1479 if (TASK_SIZE
- len
>= addr
&&
1480 (!vma
|| addr
+ len
<= vma
->vm_start
))
1484 /* check if free_area_cache is useful for us */
1485 if (len
<= mm
->cached_hole_size
) {
1486 mm
->cached_hole_size
= 0;
1487 mm
->free_area_cache
= mm
->mmap_base
;
1490 /* either no address requested or can't fit in requested address hole */
1491 addr
= mm
->free_area_cache
;
1493 /* make sure it can fit in the remaining address space */
1495 vma
= find_vma(mm
, addr
-len
);
1496 if (!vma
|| addr
<= vma
->vm_start
)
1497 /* remember the address as a hint for next time */
1498 return (mm
->free_area_cache
= addr
-len
);
1501 if (mm
->mmap_base
< len
)
1504 addr
= mm
->mmap_base
-len
;
1508 * Lookup failure means no vma is above this address,
1509 * else if new region fits below vma->vm_start,
1510 * return with success:
1512 vma
= find_vma(mm
, addr
);
1513 if (!vma
|| addr
+len
<= vma
->vm_start
)
1514 /* remember the address as a hint for next time */
1515 return (mm
->free_area_cache
= addr
);
1517 /* remember the largest hole we saw so far */
1518 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1519 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1521 /* try just below the current vma->vm_start */
1522 addr
= vma
->vm_start
-len
;
1523 } while (len
< vma
->vm_start
);
1527 * A failed mmap() very likely causes application failure,
1528 * so fall back to the bottom-up function here. This scenario
1529 * can happen with large stack limits and large mmap()
1532 mm
->cached_hole_size
= ~0UL;
1533 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1534 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1536 * Restore the topdown base:
1538 mm
->free_area_cache
= mm
->mmap_base
;
1539 mm
->cached_hole_size
= ~0UL;
1545 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1548 * Is this a new hole at the highest possible address?
1550 if (addr
> mm
->free_area_cache
)
1551 mm
->free_area_cache
= addr
;
1553 /* dont allow allocations above current base */
1554 if (mm
->free_area_cache
> mm
->mmap_base
)
1555 mm
->free_area_cache
= mm
->mmap_base
;
1559 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1560 unsigned long pgoff
, unsigned long flags
)
1562 unsigned long (*get_area
)(struct file
*, unsigned long,
1563 unsigned long, unsigned long, unsigned long);
1565 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1569 /* Careful about overflows.. */
1570 if (len
> TASK_SIZE
)
1573 get_area
= current
->mm
->get_unmapped_area
;
1574 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1575 get_area
= file
->f_op
->get_unmapped_area
;
1576 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1577 if (IS_ERR_VALUE(addr
))
1580 if (addr
> TASK_SIZE
- len
)
1582 if (addr
& ~PAGE_MASK
)
1585 return arch_rebalance_pgtables(addr
, len
);
1588 EXPORT_SYMBOL(get_unmapped_area
);
1590 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1591 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1593 struct vm_area_struct
*vma
= NULL
;
1596 /* Check the cache first. */
1597 /* (Cache hit rate is typically around 35%.) */
1598 vma
= mm
->mmap_cache
;
1599 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1600 struct rb_node
* rb_node
;
1602 rb_node
= mm
->mm_rb
.rb_node
;
1606 struct vm_area_struct
* vma_tmp
;
1608 vma_tmp
= rb_entry(rb_node
,
1609 struct vm_area_struct
, vm_rb
);
1611 if (vma_tmp
->vm_end
> addr
) {
1613 if (vma_tmp
->vm_start
<= addr
)
1615 rb_node
= rb_node
->rb_left
;
1617 rb_node
= rb_node
->rb_right
;
1620 mm
->mmap_cache
= vma
;
1626 EXPORT_SYMBOL(find_vma
);
1628 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1629 struct vm_area_struct
*
1630 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1631 struct vm_area_struct
**pprev
)
1633 struct vm_area_struct
*vma
= NULL
, *prev
= NULL
;
1634 struct rb_node
*rb_node
;
1638 /* Guard against addr being lower than the first VMA */
1641 /* Go through the RB tree quickly. */
1642 rb_node
= mm
->mm_rb
.rb_node
;
1645 struct vm_area_struct
*vma_tmp
;
1646 vma_tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1648 if (addr
< vma_tmp
->vm_end
) {
1649 rb_node
= rb_node
->rb_left
;
1652 if (!prev
->vm_next
|| (addr
< prev
->vm_next
->vm_end
))
1654 rb_node
= rb_node
->rb_right
;
1660 return prev
? prev
->vm_next
: vma
;
1664 * Verify that the stack growth is acceptable and
1665 * update accounting. This is shared with both the
1666 * grow-up and grow-down cases.
1668 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1670 struct mm_struct
*mm
= vma
->vm_mm
;
1671 struct rlimit
*rlim
= current
->signal
->rlim
;
1672 unsigned long new_start
;
1674 /* address space limit tests */
1675 if (!may_expand_vm(mm
, grow
))
1678 /* Stack limit test */
1679 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
1682 /* mlock limit tests */
1683 if (vma
->vm_flags
& VM_LOCKED
) {
1684 unsigned long locked
;
1685 unsigned long limit
;
1686 locked
= mm
->locked_vm
+ grow
;
1687 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
1688 limit
>>= PAGE_SHIFT
;
1689 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1693 /* Check to ensure the stack will not grow into a hugetlb-only region */
1694 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1696 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1700 * Overcommit.. This must be the final test, as it will
1701 * update security statistics.
1703 if (security_vm_enough_memory_mm(mm
, grow
))
1706 /* Ok, everything looks good - let it rip */
1707 mm
->total_vm
+= grow
;
1708 if (vma
->vm_flags
& VM_LOCKED
)
1709 mm
->locked_vm
+= grow
;
1710 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1714 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1716 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1717 * vma is the last one with address > vma->vm_end. Have to extend vma.
1719 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1723 if (!(vma
->vm_flags
& VM_GROWSUP
))
1727 * We must make sure the anon_vma is allocated
1728 * so that the anon_vma locking is not a noop.
1730 if (unlikely(anon_vma_prepare(vma
)))
1732 vma_lock_anon_vma(vma
);
1735 * vma->vm_start/vm_end cannot change under us because the caller
1736 * is required to hold the mmap_sem in read mode. We need the
1737 * anon_vma lock to serialize against concurrent expand_stacks.
1738 * Also guard against wrapping around to address 0.
1740 if (address
< PAGE_ALIGN(address
+4))
1741 address
= PAGE_ALIGN(address
+4);
1743 vma_unlock_anon_vma(vma
);
1748 /* Somebody else might have raced and expanded it already */
1749 if (address
> vma
->vm_end
) {
1750 unsigned long size
, grow
;
1752 size
= address
- vma
->vm_start
;
1753 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1755 error
= acct_stack_growth(vma
, size
, grow
);
1757 vma
->vm_end
= address
;
1758 perf_event_mmap(vma
);
1761 vma_unlock_anon_vma(vma
);
1764 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1767 * vma is the first one with address < vma->vm_start. Have to extend vma.
1769 static int expand_downwards(struct vm_area_struct
*vma
,
1770 unsigned long address
)
1775 * We must make sure the anon_vma is allocated
1776 * so that the anon_vma locking is not a noop.
1778 if (unlikely(anon_vma_prepare(vma
)))
1781 address
&= PAGE_MASK
;
1782 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1786 vma_lock_anon_vma(vma
);
1789 * vma->vm_start/vm_end cannot change under us because the caller
1790 * is required to hold the mmap_sem in read mode. We need the
1791 * anon_vma lock to serialize against concurrent expand_stacks.
1794 /* Somebody else might have raced and expanded it already */
1795 if (address
< vma
->vm_start
) {
1796 unsigned long size
, grow
;
1798 size
= vma
->vm_end
- address
;
1799 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1801 error
= acct_stack_growth(vma
, size
, grow
);
1803 vma
->vm_start
= address
;
1804 vma
->vm_pgoff
-= grow
;
1805 perf_event_mmap(vma
);
1808 vma_unlock_anon_vma(vma
);
1812 int expand_stack_downwards(struct vm_area_struct
*vma
, unsigned long address
)
1814 return expand_downwards(vma
, address
);
1817 #ifdef CONFIG_STACK_GROWSUP
1818 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1820 return expand_upwards(vma
, address
);
1823 struct vm_area_struct
*
1824 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1826 struct vm_area_struct
*vma
, *prev
;
1829 vma
= find_vma_prev(mm
, addr
, &prev
);
1830 if (vma
&& (vma
->vm_start
<= addr
))
1832 if (!prev
|| expand_stack(prev
, addr
))
1834 if (prev
->vm_flags
& VM_LOCKED
) {
1835 mlock_vma_pages_range(prev
, addr
, prev
->vm_end
);
1840 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1842 return expand_downwards(vma
, address
);
1845 struct vm_area_struct
*
1846 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1848 struct vm_area_struct
* vma
;
1849 unsigned long start
;
1852 vma
= find_vma(mm
,addr
);
1855 if (vma
->vm_start
<= addr
)
1857 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1859 start
= vma
->vm_start
;
1860 if (expand_stack(vma
, addr
))
1862 if (vma
->vm_flags
& VM_LOCKED
) {
1863 mlock_vma_pages_range(vma
, addr
, start
);
1870 * Ok - we have the memory areas we should free on the vma list,
1871 * so release them, and do the vma updates.
1873 * Called with the mm semaphore held.
1875 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1877 /* Update high watermark before we lower total_vm */
1878 update_hiwater_vm(mm
);
1880 long nrpages
= vma_pages(vma
);
1882 mm
->total_vm
-= nrpages
;
1883 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1884 vma
= remove_vma(vma
);
1890 * Get rid of page table information in the indicated region.
1892 * Called with the mm semaphore held.
1894 static void unmap_region(struct mm_struct
*mm
,
1895 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1896 unsigned long start
, unsigned long end
)
1898 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1899 struct mmu_gather
*tlb
;
1900 unsigned long nr_accounted
= 0;
1903 tlb
= tlb_gather_mmu(mm
, 0);
1904 update_hiwater_rss(mm
);
1905 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1906 vm_unacct_memory(nr_accounted
);
1907 free_pgtables(tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1908 next
? next
->vm_start
: 0);
1909 tlb_finish_mmu(tlb
, start
, end
);
1913 * Create a list of vma's touched by the unmap, removing them from the mm's
1914 * vma list as we go..
1917 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1918 struct vm_area_struct
*prev
, unsigned long end
)
1920 struct vm_area_struct
**insertion_point
;
1921 struct vm_area_struct
*tail_vma
= NULL
;
1924 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1925 vma
->vm_prev
= NULL
;
1927 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1931 } while (vma
&& vma
->vm_start
< end
);
1932 *insertion_point
= vma
;
1934 vma
->vm_prev
= prev
;
1935 tail_vma
->vm_next
= NULL
;
1936 if (mm
->unmap_area
== arch_unmap_area
)
1937 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1939 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1940 mm
->unmap_area(mm
, addr
);
1941 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1945 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1946 * munmap path where it doesn't make sense to fail.
1948 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1949 unsigned long addr
, int new_below
)
1951 struct mempolicy
*pol
;
1952 struct vm_area_struct
*new;
1955 if (is_vm_hugetlb_page(vma
) && (addr
&
1956 ~(huge_page_mask(hstate_vma(vma
)))))
1959 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1963 /* most fields are the same, copy all, and then fixup */
1966 INIT_LIST_HEAD(&new->anon_vma_chain
);
1971 new->vm_start
= addr
;
1972 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1975 pol
= mpol_dup(vma_policy(vma
));
1980 vma_set_policy(new, pol
);
1982 if (anon_vma_clone(new, vma
))
1986 get_file(new->vm_file
);
1987 if (vma
->vm_flags
& VM_EXECUTABLE
)
1988 added_exe_file_vma(mm
);
1991 if (new->vm_ops
&& new->vm_ops
->open
)
1992 new->vm_ops
->open(new);
1995 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1996 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1998 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2004 /* Clean everything up if vma_adjust failed. */
2005 if (new->vm_ops
&& new->vm_ops
->close
)
2006 new->vm_ops
->close(new);
2008 if (vma
->vm_flags
& VM_EXECUTABLE
)
2009 removed_exe_file_vma(mm
);
2012 unlink_anon_vmas(new);
2016 kmem_cache_free(vm_area_cachep
, new);
2022 * Split a vma into two pieces at address 'addr', a new vma is allocated
2023 * either for the first part or the tail.
2025 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2026 unsigned long addr
, int new_below
)
2028 if (mm
->map_count
>= sysctl_max_map_count
)
2031 return __split_vma(mm
, vma
, addr
, new_below
);
2034 /* Munmap is split into 2 main parts -- this part which finds
2035 * what needs doing, and the areas themselves, which do the
2036 * work. This now handles partial unmappings.
2037 * Jeremy Fitzhardinge <jeremy@goop.org>
2039 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2042 struct vm_area_struct
*vma
, *prev
, *last
;
2044 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2047 if ((len
= PAGE_ALIGN(len
)) == 0)
2050 /* Find the first overlapping VMA */
2051 vma
= find_vma_prev(mm
, start
, &prev
);
2054 /* we have start < vma->vm_end */
2056 /* if it doesn't overlap, we have nothing.. */
2058 if (vma
->vm_start
>= end
)
2062 * If we need to split any vma, do it now to save pain later.
2064 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2065 * unmapped vm_area_struct will remain in use: so lower split_vma
2066 * places tmp vma above, and higher split_vma places tmp vma below.
2068 if (start
> vma
->vm_start
) {
2072 * Make sure that map_count on return from munmap() will
2073 * not exceed its limit; but let map_count go just above
2074 * its limit temporarily, to help free resources as expected.
2076 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2079 error
= __split_vma(mm
, vma
, start
, 0);
2085 /* Does it split the last one? */
2086 last
= find_vma(mm
, end
);
2087 if (last
&& end
> last
->vm_start
) {
2088 int error
= __split_vma(mm
, last
, end
, 1);
2092 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2095 * unlock any mlock()ed ranges before detaching vmas
2097 if (mm
->locked_vm
) {
2098 struct vm_area_struct
*tmp
= vma
;
2099 while (tmp
&& tmp
->vm_start
< end
) {
2100 if (tmp
->vm_flags
& VM_LOCKED
) {
2101 mm
->locked_vm
-= vma_pages(tmp
);
2102 munlock_vma_pages_all(tmp
);
2109 * Remove the vma's, and unmap the actual pages
2111 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2112 unmap_region(mm
, vma
, prev
, start
, end
);
2114 /* Fix up all other VM information */
2115 remove_vma_list(mm
, vma
);
2120 EXPORT_SYMBOL(do_munmap
);
2122 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2125 struct mm_struct
*mm
= current
->mm
;
2127 profile_munmap(addr
);
2129 down_write(&mm
->mmap_sem
);
2130 ret
= do_munmap(mm
, addr
, len
);
2131 up_write(&mm
->mmap_sem
);
2135 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2137 #ifdef CONFIG_DEBUG_VM
2138 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2140 up_read(&mm
->mmap_sem
);
2146 * this is really a simplified "do_mmap". it only handles
2147 * anonymous maps. eventually we may be able to do some
2148 * brk-specific accounting here.
2150 unsigned long do_brk(unsigned long addr
, unsigned long len
)
2152 struct mm_struct
* mm
= current
->mm
;
2153 struct vm_area_struct
* vma
, * prev
;
2154 unsigned long flags
;
2155 struct rb_node
** rb_link
, * rb_parent
;
2156 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2159 len
= PAGE_ALIGN(len
);
2163 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
2167 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2169 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2170 if (error
& ~PAGE_MASK
)
2176 if (mm
->def_flags
& VM_LOCKED
) {
2177 unsigned long locked
, lock_limit
;
2178 locked
= len
>> PAGE_SHIFT
;
2179 locked
+= mm
->locked_vm
;
2180 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2181 lock_limit
>>= PAGE_SHIFT
;
2182 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2187 * mm->mmap_sem is required to protect against another thread
2188 * changing the mappings in case we sleep.
2190 verify_mm_writelocked(mm
);
2193 * Clear old maps. this also does some error checking for us
2196 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2197 if (vma
&& vma
->vm_start
< addr
+ len
) {
2198 if (do_munmap(mm
, addr
, len
))
2203 /* Check against address space limits *after* clearing old maps... */
2204 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2207 if (mm
->map_count
> sysctl_max_map_count
)
2210 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
2213 /* Can we just expand an old private anonymous mapping? */
2214 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2215 NULL
, NULL
, pgoff
, NULL
);
2220 * create a vma struct for an anonymous mapping
2222 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2224 vm_unacct_memory(len
>> PAGE_SHIFT
);
2228 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2230 vma
->vm_start
= addr
;
2231 vma
->vm_end
= addr
+ len
;
2232 vma
->vm_pgoff
= pgoff
;
2233 vma
->vm_flags
= flags
;
2234 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2235 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2237 perf_event_mmap(vma
);
2238 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2239 if (flags
& VM_LOCKED
) {
2240 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2241 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2246 EXPORT_SYMBOL(do_brk
);
2248 /* Release all mmaps. */
2249 void exit_mmap(struct mm_struct
*mm
)
2251 struct mmu_gather
*tlb
;
2252 struct vm_area_struct
*vma
;
2253 unsigned long nr_accounted
= 0;
2256 /* mm's last user has gone, and its about to be pulled down */
2257 mmu_notifier_release(mm
);
2259 if (mm
->locked_vm
) {
2262 if (vma
->vm_flags
& VM_LOCKED
)
2263 munlock_vma_pages_all(vma
);
2271 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2276 tlb
= tlb_gather_mmu(mm
, 1);
2277 /* update_hiwater_rss(mm) here? but nobody should be looking */
2278 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2279 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2280 vm_unacct_memory(nr_accounted
);
2282 free_pgtables(tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2283 tlb_finish_mmu(tlb
, 0, end
);
2286 * Walk the list again, actually closing and freeing it,
2287 * with preemption enabled, without holding any MM locks.
2290 vma
= remove_vma(vma
);
2292 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2295 /* Insert vm structure into process list sorted by address
2296 * and into the inode's i_mmap tree. If vm_file is non-NULL
2297 * then i_mmap_lock is taken here.
2299 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2301 struct vm_area_struct
* __vma
, * prev
;
2302 struct rb_node
** rb_link
, * rb_parent
;
2305 * The vm_pgoff of a purely anonymous vma should be irrelevant
2306 * until its first write fault, when page's anon_vma and index
2307 * are set. But now set the vm_pgoff it will almost certainly
2308 * end up with (unless mremap moves it elsewhere before that
2309 * first wfault), so /proc/pid/maps tells a consistent story.
2311 * By setting it to reflect the virtual start address of the
2312 * vma, merges and splits can happen in a seamless way, just
2313 * using the existing file pgoff checks and manipulations.
2314 * Similarly in do_mmap_pgoff and in do_brk.
2316 if (!vma
->vm_file
) {
2317 BUG_ON(vma
->anon_vma
);
2318 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2320 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2321 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2323 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2324 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2326 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2331 * Copy the vma structure to a new location in the same mm,
2332 * prior to moving page table entries, to effect an mremap move.
2334 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2335 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2337 struct vm_area_struct
*vma
= *vmap
;
2338 unsigned long vma_start
= vma
->vm_start
;
2339 struct mm_struct
*mm
= vma
->vm_mm
;
2340 struct vm_area_struct
*new_vma
, *prev
;
2341 struct rb_node
**rb_link
, *rb_parent
;
2342 struct mempolicy
*pol
;
2345 * If anonymous vma has not yet been faulted, update new pgoff
2346 * to match new location, to increase its chance of merging.
2348 if (!vma
->vm_file
&& !vma
->anon_vma
)
2349 pgoff
= addr
>> PAGE_SHIFT
;
2351 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2352 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2353 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2356 * Source vma may have been merged into new_vma
2358 if (vma_start
>= new_vma
->vm_start
&&
2359 vma_start
< new_vma
->vm_end
)
2362 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2365 pol
= mpol_dup(vma_policy(vma
));
2368 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2369 if (anon_vma_clone(new_vma
, vma
))
2370 goto out_free_mempol
;
2371 vma_set_policy(new_vma
, pol
);
2372 new_vma
->vm_start
= addr
;
2373 new_vma
->vm_end
= addr
+ len
;
2374 new_vma
->vm_pgoff
= pgoff
;
2375 if (new_vma
->vm_file
) {
2376 get_file(new_vma
->vm_file
);
2377 if (vma
->vm_flags
& VM_EXECUTABLE
)
2378 added_exe_file_vma(mm
);
2380 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2381 new_vma
->vm_ops
->open(new_vma
);
2382 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2390 kmem_cache_free(vm_area_cachep
, new_vma
);
2395 * Return true if the calling process may expand its vm space by the passed
2398 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2400 unsigned long cur
= mm
->total_vm
; /* pages */
2403 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2405 if (cur
+ npages
> lim
)
2411 static int special_mapping_fault(struct vm_area_struct
*vma
,
2412 struct vm_fault
*vmf
)
2415 struct page
**pages
;
2418 * special mappings have no vm_file, and in that case, the mm
2419 * uses vm_pgoff internally. So we have to subtract it from here.
2420 * We are allowed to do this because we are the mm; do not copy
2421 * this code into drivers!
2423 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2425 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2429 struct page
*page
= *pages
;
2435 return VM_FAULT_SIGBUS
;
2439 * Having a close hook prevents vma merging regardless of flags.
2441 static void special_mapping_close(struct vm_area_struct
*vma
)
2445 static const struct vm_operations_struct special_mapping_vmops
= {
2446 .close
= special_mapping_close
,
2447 .fault
= special_mapping_fault
,
2451 * Called with mm->mmap_sem held for writing.
2452 * Insert a new vma covering the given region, with the given flags.
2453 * Its pages are supplied by the given array of struct page *.
2454 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2455 * The region past the last page supplied will always produce SIGBUS.
2456 * The array pointer and the pages it points to are assumed to stay alive
2457 * for as long as this mapping might exist.
2459 int install_special_mapping(struct mm_struct
*mm
,
2460 unsigned long addr
, unsigned long len
,
2461 unsigned long vm_flags
, struct page
**pages
)
2463 struct vm_area_struct
*vma
;
2465 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2466 if (unlikely(vma
== NULL
))
2469 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2471 vma
->vm_start
= addr
;
2472 vma
->vm_end
= addr
+ len
;
2474 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2475 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2477 vma
->vm_ops
= &special_mapping_vmops
;
2478 vma
->vm_private_data
= pages
;
2480 if (unlikely(insert_vm_struct(mm
, vma
))) {
2481 kmem_cache_free(vm_area_cachep
, vma
);
2485 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2487 perf_event_mmap(vma
);
2492 static DEFINE_MUTEX(mm_all_locks_mutex
);
2494 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2496 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2498 * The LSB of head.next can't change from under us
2499 * because we hold the mm_all_locks_mutex.
2501 spin_lock_nest_lock(&anon_vma
->root
->lock
, &mm
->mmap_sem
);
2503 * We can safely modify head.next after taking the
2504 * anon_vma->root->lock. If some other vma in this mm shares
2505 * the same anon_vma we won't take it again.
2507 * No need of atomic instructions here, head.next
2508 * can't change from under us thanks to the
2509 * anon_vma->root->lock.
2511 if (__test_and_set_bit(0, (unsigned long *)
2512 &anon_vma
->root
->head
.next
))
2517 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2519 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2521 * AS_MM_ALL_LOCKS can't change from under us because
2522 * we hold the mm_all_locks_mutex.
2524 * Operations on ->flags have to be atomic because
2525 * even if AS_MM_ALL_LOCKS is stable thanks to the
2526 * mm_all_locks_mutex, there may be other cpus
2527 * changing other bitflags in parallel to us.
2529 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2531 spin_lock_nest_lock(&mapping
->i_mmap_lock
, &mm
->mmap_sem
);
2536 * This operation locks against the VM for all pte/vma/mm related
2537 * operations that could ever happen on a certain mm. This includes
2538 * vmtruncate, try_to_unmap, and all page faults.
2540 * The caller must take the mmap_sem in write mode before calling
2541 * mm_take_all_locks(). The caller isn't allowed to release the
2542 * mmap_sem until mm_drop_all_locks() returns.
2544 * mmap_sem in write mode is required in order to block all operations
2545 * that could modify pagetables and free pages without need of
2546 * altering the vma layout (for example populate_range() with
2547 * nonlinear vmas). It's also needed in write mode to avoid new
2548 * anon_vmas to be associated with existing vmas.
2550 * A single task can't take more than one mm_take_all_locks() in a row
2551 * or it would deadlock.
2553 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2554 * mapping->flags avoid to take the same lock twice, if more than one
2555 * vma in this mm is backed by the same anon_vma or address_space.
2557 * We can take all the locks in random order because the VM code
2558 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2559 * takes more than one of them in a row. Secondly we're protected
2560 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2562 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2563 * that may have to take thousand of locks.
2565 * mm_take_all_locks() can fail if it's interrupted by signals.
2567 int mm_take_all_locks(struct mm_struct
*mm
)
2569 struct vm_area_struct
*vma
;
2570 struct anon_vma_chain
*avc
;
2573 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2575 mutex_lock(&mm_all_locks_mutex
);
2577 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2578 if (signal_pending(current
))
2580 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2581 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2584 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2585 if (signal_pending(current
))
2588 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2589 vm_lock_anon_vma(mm
, avc
->anon_vma
);
2596 mm_drop_all_locks(mm
);
2601 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2603 if (test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2605 * The LSB of head.next can't change to 0 from under
2606 * us because we hold the mm_all_locks_mutex.
2608 * We must however clear the bitflag before unlocking
2609 * the vma so the users using the anon_vma->head will
2610 * never see our bitflag.
2612 * No need of atomic instructions here, head.next
2613 * can't change from under us until we release the
2614 * anon_vma->root->lock.
2616 if (!__test_and_clear_bit(0, (unsigned long *)
2617 &anon_vma
->root
->head
.next
))
2619 anon_vma_unlock(anon_vma
);
2623 static void vm_unlock_mapping(struct address_space
*mapping
)
2625 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2627 * AS_MM_ALL_LOCKS can't change to 0 from under us
2628 * because we hold the mm_all_locks_mutex.
2630 spin_unlock(&mapping
->i_mmap_lock
);
2631 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2638 * The mmap_sem cannot be released by the caller until
2639 * mm_drop_all_locks() returns.
2641 void mm_drop_all_locks(struct mm_struct
*mm
)
2643 struct vm_area_struct
*vma
;
2644 struct anon_vma_chain
*avc
;
2646 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2647 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2649 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2651 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2652 vm_unlock_anon_vma(avc
->anon_vma
);
2653 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2654 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2657 mutex_unlock(&mm_all_locks_mutex
);
2661 * initialise the VMA slab
2663 void __init
mmap_init(void)
2667 ret
= percpu_counter_init(&vm_committed_as
, 0);