drivers/staging/usbip/userspace/libsrc/vhci_driver.c: test the just-initialized value
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / md.c
blob8e221a20f5d98b362e8f49660454add87a5e3b38
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
67 static void md_print_devices(void);
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 * Default number of read corrections we'll attempt on an rdev
77 * before ejecting it from the array. We divide the read error
78 * count by 2 for every hour elapsed between read errors.
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
102 static inline int speed_max(mddev_t *mddev)
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
108 static struct ctl_table_header *raid_table_header;
110 static ctl_table raid_table[] = {
112 .procname = "speed_limit_min",
113 .data = &sysctl_speed_limit_min,
114 .maxlen = sizeof(int),
115 .mode = S_IRUGO|S_IWUSR,
116 .proc_handler = proc_dointvec,
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = proc_dointvec,
128 static ctl_table raid_dir_table[] = {
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
138 static ctl_table raid_root_table[] = {
140 .procname = "dev",
141 .maxlen = 0,
142 .mode = 0555,
143 .child = raid_dir_table,
148 static const struct block_device_operations md_fops;
150 static int start_readonly;
152 /* bio_clone_mddev
153 * like bio_clone, but with a local bio set
156 static void mddev_bio_destructor(struct bio *bio)
158 mddev_t *mddev, **mddevp;
160 mddevp = (void*)bio;
161 mddev = mddevp[-1];
163 bio_free(bio, mddev->bio_set);
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167 mddev_t *mddev)
169 struct bio *b;
170 mddev_t **mddevp;
172 if (!mddev || !mddev->bio_set)
173 return bio_alloc(gfp_mask, nr_iovecs);
175 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176 mddev->bio_set);
177 if (!b)
178 return NULL;
179 mddevp = (void*)b;
180 mddevp[-1] = mddev;
181 b->bi_destructor = mddev_bio_destructor;
182 return b;
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187 mddev_t *mddev)
189 struct bio *b;
190 mddev_t **mddevp;
192 if (!mddev || !mddev->bio_set)
193 return bio_clone(bio, gfp_mask);
195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196 mddev->bio_set);
197 if (!b)
198 return NULL;
199 mddevp = (void*)b;
200 mddevp[-1] = mddev;
201 b->bi_destructor = mddev_bio_destructor;
202 __bio_clone(b, bio);
203 if (bio_integrity(bio)) {
204 int ret;
206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
208 if (ret < 0) {
209 bio_put(b);
210 return NULL;
214 return b;
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
218 void md_trim_bio(struct bio *bio, int offset, int size)
220 /* 'bio' is a cloned bio which we need to trim to match
221 * the given offset and size.
222 * This requires adjusting bi_sector, bi_size, and bi_io_vec
224 int i;
225 struct bio_vec *bvec;
226 int sofar = 0;
228 size <<= 9;
229 if (offset == 0 && size == bio->bi_size)
230 return;
232 bio->bi_sector += offset;
233 bio->bi_size = size;
234 offset <<= 9;
235 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
237 while (bio->bi_idx < bio->bi_vcnt &&
238 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
239 /* remove this whole bio_vec */
240 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
241 bio->bi_idx++;
243 if (bio->bi_idx < bio->bi_vcnt) {
244 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
245 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
247 /* avoid any complications with bi_idx being non-zero*/
248 if (bio->bi_idx) {
249 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
250 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
251 bio->bi_vcnt -= bio->bi_idx;
252 bio->bi_idx = 0;
254 /* Make sure vcnt and last bv are not too big */
255 bio_for_each_segment(bvec, bio, i) {
256 if (sofar + bvec->bv_len > size)
257 bvec->bv_len = size - sofar;
258 if (bvec->bv_len == 0) {
259 bio->bi_vcnt = i;
260 break;
262 sofar += bvec->bv_len;
265 EXPORT_SYMBOL_GPL(md_trim_bio);
268 * We have a system wide 'event count' that is incremented
269 * on any 'interesting' event, and readers of /proc/mdstat
270 * can use 'poll' or 'select' to find out when the event
271 * count increases.
273 * Events are:
274 * start array, stop array, error, add device, remove device,
275 * start build, activate spare
277 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
278 static atomic_t md_event_count;
279 void md_new_event(mddev_t *mddev)
281 atomic_inc(&md_event_count);
282 wake_up(&md_event_waiters);
284 EXPORT_SYMBOL_GPL(md_new_event);
286 /* Alternate version that can be called from interrupts
287 * when calling sysfs_notify isn't needed.
289 static void md_new_event_inintr(mddev_t *mddev)
291 atomic_inc(&md_event_count);
292 wake_up(&md_event_waiters);
296 * Enables to iterate over all existing md arrays
297 * all_mddevs_lock protects this list.
299 static LIST_HEAD(all_mddevs);
300 static DEFINE_SPINLOCK(all_mddevs_lock);
304 * iterates through all used mddevs in the system.
305 * We take care to grab the all_mddevs_lock whenever navigating
306 * the list, and to always hold a refcount when unlocked.
307 * Any code which breaks out of this loop while own
308 * a reference to the current mddev and must mddev_put it.
310 #define for_each_mddev(mddev,tmp) \
312 for (({ spin_lock(&all_mddevs_lock); \
313 tmp = all_mddevs.next; \
314 mddev = NULL;}); \
315 ({ if (tmp != &all_mddevs) \
316 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
317 spin_unlock(&all_mddevs_lock); \
318 if (mddev) mddev_put(mddev); \
319 mddev = list_entry(tmp, mddev_t, all_mddevs); \
320 tmp != &all_mddevs;}); \
321 ({ spin_lock(&all_mddevs_lock); \
322 tmp = tmp->next;}) \
326 /* Rather than calling directly into the personality make_request function,
327 * IO requests come here first so that we can check if the device is
328 * being suspended pending a reconfiguration.
329 * We hold a refcount over the call to ->make_request. By the time that
330 * call has finished, the bio has been linked into some internal structure
331 * and so is visible to ->quiesce(), so we don't need the refcount any more.
333 static int md_make_request(struct request_queue *q, struct bio *bio)
335 const int rw = bio_data_dir(bio);
336 mddev_t *mddev = q->queuedata;
337 int rv;
338 int cpu;
339 unsigned int sectors;
341 if (mddev == NULL || mddev->pers == NULL
342 || !mddev->ready) {
343 bio_io_error(bio);
344 return 0;
346 smp_rmb(); /* Ensure implications of 'active' are visible */
347 rcu_read_lock();
348 if (mddev->suspended) {
349 DEFINE_WAIT(__wait);
350 for (;;) {
351 prepare_to_wait(&mddev->sb_wait, &__wait,
352 TASK_UNINTERRUPTIBLE);
353 if (!mddev->suspended)
354 break;
355 rcu_read_unlock();
356 schedule();
357 rcu_read_lock();
359 finish_wait(&mddev->sb_wait, &__wait);
361 atomic_inc(&mddev->active_io);
362 rcu_read_unlock();
365 * save the sectors now since our bio can
366 * go away inside make_request
368 sectors = bio_sectors(bio);
369 rv = mddev->pers->make_request(mddev, bio);
371 cpu = part_stat_lock();
372 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
373 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
374 part_stat_unlock();
376 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
377 wake_up(&mddev->sb_wait);
379 return rv;
382 /* mddev_suspend makes sure no new requests are submitted
383 * to the device, and that any requests that have been submitted
384 * are completely handled.
385 * Once ->stop is called and completes, the module will be completely
386 * unused.
388 void mddev_suspend(mddev_t *mddev)
390 BUG_ON(mddev->suspended);
391 mddev->suspended = 1;
392 synchronize_rcu();
393 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394 mddev->pers->quiesce(mddev, 1);
396 EXPORT_SYMBOL_GPL(mddev_suspend);
398 void mddev_resume(mddev_t *mddev)
400 mddev->suspended = 0;
401 wake_up(&mddev->sb_wait);
402 mddev->pers->quiesce(mddev, 0);
404 md_wakeup_thread(mddev->thread);
405 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
407 EXPORT_SYMBOL_GPL(mddev_resume);
409 int mddev_congested(mddev_t *mddev, int bits)
411 return mddev->suspended;
413 EXPORT_SYMBOL(mddev_congested);
416 * Generic flush handling for md
419 static void md_end_flush(struct bio *bio, int err)
421 mdk_rdev_t *rdev = bio->bi_private;
422 mddev_t *mddev = rdev->mddev;
424 rdev_dec_pending(rdev, mddev);
426 if (atomic_dec_and_test(&mddev->flush_pending)) {
427 /* The pre-request flush has finished */
428 queue_work(md_wq, &mddev->flush_work);
430 bio_put(bio);
433 static void md_submit_flush_data(struct work_struct *ws);
435 static void submit_flushes(struct work_struct *ws)
437 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
438 mdk_rdev_t *rdev;
440 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441 atomic_set(&mddev->flush_pending, 1);
442 rcu_read_lock();
443 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444 if (rdev->raid_disk >= 0 &&
445 !test_bit(Faulty, &rdev->flags)) {
446 /* Take two references, one is dropped
447 * when request finishes, one after
448 * we reclaim rcu_read_lock
450 struct bio *bi;
451 atomic_inc(&rdev->nr_pending);
452 atomic_inc(&rdev->nr_pending);
453 rcu_read_unlock();
454 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455 bi->bi_end_io = md_end_flush;
456 bi->bi_private = rdev;
457 bi->bi_bdev = rdev->bdev;
458 atomic_inc(&mddev->flush_pending);
459 submit_bio(WRITE_FLUSH, bi);
460 rcu_read_lock();
461 rdev_dec_pending(rdev, mddev);
463 rcu_read_unlock();
464 if (atomic_dec_and_test(&mddev->flush_pending))
465 queue_work(md_wq, &mddev->flush_work);
468 static void md_submit_flush_data(struct work_struct *ws)
470 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
471 struct bio *bio = mddev->flush_bio;
473 if (bio->bi_size == 0)
474 /* an empty barrier - all done */
475 bio_endio(bio, 0);
476 else {
477 bio->bi_rw &= ~REQ_FLUSH;
478 if (mddev->pers->make_request(mddev, bio))
479 generic_make_request(bio);
482 mddev->flush_bio = NULL;
483 wake_up(&mddev->sb_wait);
486 void md_flush_request(mddev_t *mddev, struct bio *bio)
488 spin_lock_irq(&mddev->write_lock);
489 wait_event_lock_irq(mddev->sb_wait,
490 !mddev->flush_bio,
491 mddev->write_lock, /*nothing*/);
492 mddev->flush_bio = bio;
493 spin_unlock_irq(&mddev->write_lock);
495 INIT_WORK(&mddev->flush_work, submit_flushes);
496 queue_work(md_wq, &mddev->flush_work);
498 EXPORT_SYMBOL(md_flush_request);
500 /* Support for plugging.
501 * This mirrors the plugging support in request_queue, but does not
502 * require having a whole queue or request structures.
503 * We allocate an md_plug_cb for each md device and each thread it gets
504 * plugged on. This links tot the private plug_handle structure in the
505 * personality data where we keep a count of the number of outstanding
506 * plugs so other code can see if a plug is active.
508 struct md_plug_cb {
509 struct blk_plug_cb cb;
510 mddev_t *mddev;
513 static void plugger_unplug(struct blk_plug_cb *cb)
515 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
516 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
517 md_wakeup_thread(mdcb->mddev->thread);
518 kfree(mdcb);
521 /* Check that an unplug wakeup will come shortly.
522 * If not, wakeup the md thread immediately
524 int mddev_check_plugged(mddev_t *mddev)
526 struct blk_plug *plug = current->plug;
527 struct md_plug_cb *mdcb;
529 if (!plug)
530 return 0;
532 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
533 if (mdcb->cb.callback == plugger_unplug &&
534 mdcb->mddev == mddev) {
535 /* Already on the list, move to top */
536 if (mdcb != list_first_entry(&plug->cb_list,
537 struct md_plug_cb,
538 cb.list))
539 list_move(&mdcb->cb.list, &plug->cb_list);
540 return 1;
543 /* Not currently on the callback list */
544 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
545 if (!mdcb)
546 return 0;
548 mdcb->mddev = mddev;
549 mdcb->cb.callback = plugger_unplug;
550 atomic_inc(&mddev->plug_cnt);
551 list_add(&mdcb->cb.list, &plug->cb_list);
552 return 1;
554 EXPORT_SYMBOL_GPL(mddev_check_plugged);
556 static inline mddev_t *mddev_get(mddev_t *mddev)
558 atomic_inc(&mddev->active);
559 return mddev;
562 static void mddev_delayed_delete(struct work_struct *ws);
564 static void mddev_put(mddev_t *mddev)
566 struct bio_set *bs = NULL;
568 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
569 return;
570 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
571 mddev->ctime == 0 && !mddev->hold_active) {
572 /* Array is not configured at all, and not held active,
573 * so destroy it */
574 list_del(&mddev->all_mddevs);
575 bs = mddev->bio_set;
576 mddev->bio_set = NULL;
577 if (mddev->gendisk) {
578 /* We did a probe so need to clean up. Call
579 * queue_work inside the spinlock so that
580 * flush_workqueue() after mddev_find will
581 * succeed in waiting for the work to be done.
583 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
584 queue_work(md_misc_wq, &mddev->del_work);
585 } else
586 kfree(mddev);
588 spin_unlock(&all_mddevs_lock);
589 if (bs)
590 bioset_free(bs);
593 void mddev_init(mddev_t *mddev)
595 mutex_init(&mddev->open_mutex);
596 mutex_init(&mddev->reconfig_mutex);
597 mutex_init(&mddev->bitmap_info.mutex);
598 INIT_LIST_HEAD(&mddev->disks);
599 INIT_LIST_HEAD(&mddev->all_mddevs);
600 init_timer(&mddev->safemode_timer);
601 atomic_set(&mddev->active, 1);
602 atomic_set(&mddev->openers, 0);
603 atomic_set(&mddev->active_io, 0);
604 atomic_set(&mddev->plug_cnt, 0);
605 spin_lock_init(&mddev->write_lock);
606 atomic_set(&mddev->flush_pending, 0);
607 init_waitqueue_head(&mddev->sb_wait);
608 init_waitqueue_head(&mddev->recovery_wait);
609 mddev->reshape_position = MaxSector;
610 mddev->resync_min = 0;
611 mddev->resync_max = MaxSector;
612 mddev->level = LEVEL_NONE;
614 EXPORT_SYMBOL_GPL(mddev_init);
616 static mddev_t * mddev_find(dev_t unit)
618 mddev_t *mddev, *new = NULL;
620 if (unit && MAJOR(unit) != MD_MAJOR)
621 unit &= ~((1<<MdpMinorShift)-1);
623 retry:
624 spin_lock(&all_mddevs_lock);
626 if (unit) {
627 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
628 if (mddev->unit == unit) {
629 mddev_get(mddev);
630 spin_unlock(&all_mddevs_lock);
631 kfree(new);
632 return mddev;
635 if (new) {
636 list_add(&new->all_mddevs, &all_mddevs);
637 spin_unlock(&all_mddevs_lock);
638 new->hold_active = UNTIL_IOCTL;
639 return new;
641 } else if (new) {
642 /* find an unused unit number */
643 static int next_minor = 512;
644 int start = next_minor;
645 int is_free = 0;
646 int dev = 0;
647 while (!is_free) {
648 dev = MKDEV(MD_MAJOR, next_minor);
649 next_minor++;
650 if (next_minor > MINORMASK)
651 next_minor = 0;
652 if (next_minor == start) {
653 /* Oh dear, all in use. */
654 spin_unlock(&all_mddevs_lock);
655 kfree(new);
656 return NULL;
659 is_free = 1;
660 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
661 if (mddev->unit == dev) {
662 is_free = 0;
663 break;
666 new->unit = dev;
667 new->md_minor = MINOR(dev);
668 new->hold_active = UNTIL_STOP;
669 list_add(&new->all_mddevs, &all_mddevs);
670 spin_unlock(&all_mddevs_lock);
671 return new;
673 spin_unlock(&all_mddevs_lock);
675 new = kzalloc(sizeof(*new), GFP_KERNEL);
676 if (!new)
677 return NULL;
679 new->unit = unit;
680 if (MAJOR(unit) == MD_MAJOR)
681 new->md_minor = MINOR(unit);
682 else
683 new->md_minor = MINOR(unit) >> MdpMinorShift;
685 mddev_init(new);
687 goto retry;
690 static inline int mddev_lock(mddev_t * mddev)
692 return mutex_lock_interruptible(&mddev->reconfig_mutex);
695 static inline int mddev_is_locked(mddev_t *mddev)
697 return mutex_is_locked(&mddev->reconfig_mutex);
700 static inline int mddev_trylock(mddev_t * mddev)
702 return mutex_trylock(&mddev->reconfig_mutex);
705 static struct attribute_group md_redundancy_group;
707 static void mddev_unlock(mddev_t * mddev)
709 if (mddev->to_remove) {
710 /* These cannot be removed under reconfig_mutex as
711 * an access to the files will try to take reconfig_mutex
712 * while holding the file unremovable, which leads to
713 * a deadlock.
714 * So hold set sysfs_active while the remove in happeing,
715 * and anything else which might set ->to_remove or my
716 * otherwise change the sysfs namespace will fail with
717 * -EBUSY if sysfs_active is still set.
718 * We set sysfs_active under reconfig_mutex and elsewhere
719 * test it under the same mutex to ensure its correct value
720 * is seen.
722 struct attribute_group *to_remove = mddev->to_remove;
723 mddev->to_remove = NULL;
724 mddev->sysfs_active = 1;
725 mutex_unlock(&mddev->reconfig_mutex);
727 if (mddev->kobj.sd) {
728 if (to_remove != &md_redundancy_group)
729 sysfs_remove_group(&mddev->kobj, to_remove);
730 if (mddev->pers == NULL ||
731 mddev->pers->sync_request == NULL) {
732 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
733 if (mddev->sysfs_action)
734 sysfs_put(mddev->sysfs_action);
735 mddev->sysfs_action = NULL;
738 mddev->sysfs_active = 0;
739 } else
740 mutex_unlock(&mddev->reconfig_mutex);
742 md_wakeup_thread(mddev->thread);
745 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
747 mdk_rdev_t *rdev;
749 list_for_each_entry(rdev, &mddev->disks, same_set)
750 if (rdev->desc_nr == nr)
751 return rdev;
753 return NULL;
756 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
758 mdk_rdev_t *rdev;
760 list_for_each_entry(rdev, &mddev->disks, same_set)
761 if (rdev->bdev->bd_dev == dev)
762 return rdev;
764 return NULL;
767 static struct mdk_personality *find_pers(int level, char *clevel)
769 struct mdk_personality *pers;
770 list_for_each_entry(pers, &pers_list, list) {
771 if (level != LEVEL_NONE && pers->level == level)
772 return pers;
773 if (strcmp(pers->name, clevel)==0)
774 return pers;
776 return NULL;
779 /* return the offset of the super block in 512byte sectors */
780 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
782 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
783 return MD_NEW_SIZE_SECTORS(num_sectors);
786 static int alloc_disk_sb(mdk_rdev_t * rdev)
788 if (rdev->sb_page)
789 MD_BUG();
791 rdev->sb_page = alloc_page(GFP_KERNEL);
792 if (!rdev->sb_page) {
793 printk(KERN_ALERT "md: out of memory.\n");
794 return -ENOMEM;
797 return 0;
800 static void free_disk_sb(mdk_rdev_t * rdev)
802 if (rdev->sb_page) {
803 put_page(rdev->sb_page);
804 rdev->sb_loaded = 0;
805 rdev->sb_page = NULL;
806 rdev->sb_start = 0;
807 rdev->sectors = 0;
809 if (rdev->bb_page) {
810 put_page(rdev->bb_page);
811 rdev->bb_page = NULL;
816 static void super_written(struct bio *bio, int error)
818 mdk_rdev_t *rdev = bio->bi_private;
819 mddev_t *mddev = rdev->mddev;
821 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
822 printk("md: super_written gets error=%d, uptodate=%d\n",
823 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
824 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
825 md_error(mddev, rdev);
828 if (atomic_dec_and_test(&mddev->pending_writes))
829 wake_up(&mddev->sb_wait);
830 bio_put(bio);
833 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
834 sector_t sector, int size, struct page *page)
836 /* write first size bytes of page to sector of rdev
837 * Increment mddev->pending_writes before returning
838 * and decrement it on completion, waking up sb_wait
839 * if zero is reached.
840 * If an error occurred, call md_error
842 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
844 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
845 bio->bi_sector = sector;
846 bio_add_page(bio, page, size, 0);
847 bio->bi_private = rdev;
848 bio->bi_end_io = super_written;
850 atomic_inc(&mddev->pending_writes);
851 submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio);
854 void md_super_wait(mddev_t *mddev)
856 /* wait for all superblock writes that were scheduled to complete */
857 DEFINE_WAIT(wq);
858 for(;;) {
859 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
860 if (atomic_read(&mddev->pending_writes)==0)
861 break;
862 schedule();
864 finish_wait(&mddev->sb_wait, &wq);
867 static void bi_complete(struct bio *bio, int error)
869 complete((struct completion*)bio->bi_private);
872 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
873 struct page *page, int rw, bool metadata_op)
875 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
876 struct completion event;
877 int ret;
879 rw |= REQ_SYNC;
881 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
882 rdev->meta_bdev : rdev->bdev;
883 if (metadata_op)
884 bio->bi_sector = sector + rdev->sb_start;
885 else
886 bio->bi_sector = sector + rdev->data_offset;
887 bio_add_page(bio, page, size, 0);
888 init_completion(&event);
889 bio->bi_private = &event;
890 bio->bi_end_io = bi_complete;
891 submit_bio(rw, bio);
892 wait_for_completion(&event);
894 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
895 bio_put(bio);
896 return ret;
898 EXPORT_SYMBOL_GPL(sync_page_io);
900 static int read_disk_sb(mdk_rdev_t * rdev, int size)
902 char b[BDEVNAME_SIZE];
903 if (!rdev->sb_page) {
904 MD_BUG();
905 return -EINVAL;
907 if (rdev->sb_loaded)
908 return 0;
911 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
912 goto fail;
913 rdev->sb_loaded = 1;
914 return 0;
916 fail:
917 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
918 bdevname(rdev->bdev,b));
919 return -EINVAL;
922 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
924 return sb1->set_uuid0 == sb2->set_uuid0 &&
925 sb1->set_uuid1 == sb2->set_uuid1 &&
926 sb1->set_uuid2 == sb2->set_uuid2 &&
927 sb1->set_uuid3 == sb2->set_uuid3;
930 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
932 int ret;
933 mdp_super_t *tmp1, *tmp2;
935 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
936 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
938 if (!tmp1 || !tmp2) {
939 ret = 0;
940 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
941 goto abort;
944 *tmp1 = *sb1;
945 *tmp2 = *sb2;
948 * nr_disks is not constant
950 tmp1->nr_disks = 0;
951 tmp2->nr_disks = 0;
953 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
954 abort:
955 kfree(tmp1);
956 kfree(tmp2);
957 return ret;
961 static u32 md_csum_fold(u32 csum)
963 csum = (csum & 0xffff) + (csum >> 16);
964 return (csum & 0xffff) + (csum >> 16);
967 static unsigned int calc_sb_csum(mdp_super_t * sb)
969 u64 newcsum = 0;
970 u32 *sb32 = (u32*)sb;
971 int i;
972 unsigned int disk_csum, csum;
974 disk_csum = sb->sb_csum;
975 sb->sb_csum = 0;
977 for (i = 0; i < MD_SB_BYTES/4 ; i++)
978 newcsum += sb32[i];
979 csum = (newcsum & 0xffffffff) + (newcsum>>32);
982 #ifdef CONFIG_ALPHA
983 /* This used to use csum_partial, which was wrong for several
984 * reasons including that different results are returned on
985 * different architectures. It isn't critical that we get exactly
986 * the same return value as before (we always csum_fold before
987 * testing, and that removes any differences). However as we
988 * know that csum_partial always returned a 16bit value on
989 * alphas, do a fold to maximise conformity to previous behaviour.
991 sb->sb_csum = md_csum_fold(disk_csum);
992 #else
993 sb->sb_csum = disk_csum;
994 #endif
995 return csum;
1000 * Handle superblock details.
1001 * We want to be able to handle multiple superblock formats
1002 * so we have a common interface to them all, and an array of
1003 * different handlers.
1004 * We rely on user-space to write the initial superblock, and support
1005 * reading and updating of superblocks.
1006 * Interface methods are:
1007 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
1008 * loads and validates a superblock on dev.
1009 * if refdev != NULL, compare superblocks on both devices
1010 * Return:
1011 * 0 - dev has a superblock that is compatible with refdev
1012 * 1 - dev has a superblock that is compatible and newer than refdev
1013 * so dev should be used as the refdev in future
1014 * -EINVAL superblock incompatible or invalid
1015 * -othererror e.g. -EIO
1017 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
1018 * Verify that dev is acceptable into mddev.
1019 * The first time, mddev->raid_disks will be 0, and data from
1020 * dev should be merged in. Subsequent calls check that dev
1021 * is new enough. Return 0 or -EINVAL
1023 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
1024 * Update the superblock for rdev with data in mddev
1025 * This does not write to disc.
1029 struct super_type {
1030 char *name;
1031 struct module *owner;
1032 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
1033 int minor_version);
1034 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1035 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1036 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
1037 sector_t num_sectors);
1041 * Check that the given mddev has no bitmap.
1043 * This function is called from the run method of all personalities that do not
1044 * support bitmaps. It prints an error message and returns non-zero if mddev
1045 * has a bitmap. Otherwise, it returns 0.
1048 int md_check_no_bitmap(mddev_t *mddev)
1050 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1051 return 0;
1052 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1053 mdname(mddev), mddev->pers->name);
1054 return 1;
1056 EXPORT_SYMBOL(md_check_no_bitmap);
1059 * load_super for 0.90.0
1061 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1063 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1064 mdp_super_t *sb;
1065 int ret;
1068 * Calculate the position of the superblock (512byte sectors),
1069 * it's at the end of the disk.
1071 * It also happens to be a multiple of 4Kb.
1073 rdev->sb_start = calc_dev_sboffset(rdev);
1075 ret = read_disk_sb(rdev, MD_SB_BYTES);
1076 if (ret) return ret;
1078 ret = -EINVAL;
1080 bdevname(rdev->bdev, b);
1081 sb = page_address(rdev->sb_page);
1083 if (sb->md_magic != MD_SB_MAGIC) {
1084 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1086 goto abort;
1089 if (sb->major_version != 0 ||
1090 sb->minor_version < 90 ||
1091 sb->minor_version > 91) {
1092 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1093 sb->major_version, sb->minor_version,
1095 goto abort;
1098 if (sb->raid_disks <= 0)
1099 goto abort;
1101 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1102 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1104 goto abort;
1107 rdev->preferred_minor = sb->md_minor;
1108 rdev->data_offset = 0;
1109 rdev->sb_size = MD_SB_BYTES;
1110 rdev->badblocks.shift = -1;
1112 if (sb->level == LEVEL_MULTIPATH)
1113 rdev->desc_nr = -1;
1114 else
1115 rdev->desc_nr = sb->this_disk.number;
1117 if (!refdev) {
1118 ret = 1;
1119 } else {
1120 __u64 ev1, ev2;
1121 mdp_super_t *refsb = page_address(refdev->sb_page);
1122 if (!uuid_equal(refsb, sb)) {
1123 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1124 b, bdevname(refdev->bdev,b2));
1125 goto abort;
1127 if (!sb_equal(refsb, sb)) {
1128 printk(KERN_WARNING "md: %s has same UUID"
1129 " but different superblock to %s\n",
1130 b, bdevname(refdev->bdev, b2));
1131 goto abort;
1133 ev1 = md_event(sb);
1134 ev2 = md_event(refsb);
1135 if (ev1 > ev2)
1136 ret = 1;
1137 else
1138 ret = 0;
1140 rdev->sectors = rdev->sb_start;
1142 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1143 /* "this cannot possibly happen" ... */
1144 ret = -EINVAL;
1146 abort:
1147 return ret;
1151 * validate_super for 0.90.0
1153 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1155 mdp_disk_t *desc;
1156 mdp_super_t *sb = page_address(rdev->sb_page);
1157 __u64 ev1 = md_event(sb);
1159 rdev->raid_disk = -1;
1160 clear_bit(Faulty, &rdev->flags);
1161 clear_bit(In_sync, &rdev->flags);
1162 clear_bit(WriteMostly, &rdev->flags);
1164 if (mddev->raid_disks == 0) {
1165 mddev->major_version = 0;
1166 mddev->minor_version = sb->minor_version;
1167 mddev->patch_version = sb->patch_version;
1168 mddev->external = 0;
1169 mddev->chunk_sectors = sb->chunk_size >> 9;
1170 mddev->ctime = sb->ctime;
1171 mddev->utime = sb->utime;
1172 mddev->level = sb->level;
1173 mddev->clevel[0] = 0;
1174 mddev->layout = sb->layout;
1175 mddev->raid_disks = sb->raid_disks;
1176 mddev->dev_sectors = sb->size * 2;
1177 mddev->events = ev1;
1178 mddev->bitmap_info.offset = 0;
1179 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1181 if (mddev->minor_version >= 91) {
1182 mddev->reshape_position = sb->reshape_position;
1183 mddev->delta_disks = sb->delta_disks;
1184 mddev->new_level = sb->new_level;
1185 mddev->new_layout = sb->new_layout;
1186 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1187 } else {
1188 mddev->reshape_position = MaxSector;
1189 mddev->delta_disks = 0;
1190 mddev->new_level = mddev->level;
1191 mddev->new_layout = mddev->layout;
1192 mddev->new_chunk_sectors = mddev->chunk_sectors;
1195 if (sb->state & (1<<MD_SB_CLEAN))
1196 mddev->recovery_cp = MaxSector;
1197 else {
1198 if (sb->events_hi == sb->cp_events_hi &&
1199 sb->events_lo == sb->cp_events_lo) {
1200 mddev->recovery_cp = sb->recovery_cp;
1201 } else
1202 mddev->recovery_cp = 0;
1205 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1206 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1207 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1208 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1210 mddev->max_disks = MD_SB_DISKS;
1212 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1213 mddev->bitmap_info.file == NULL)
1214 mddev->bitmap_info.offset =
1215 mddev->bitmap_info.default_offset;
1217 } else if (mddev->pers == NULL) {
1218 /* Insist on good event counter while assembling, except
1219 * for spares (which don't need an event count) */
1220 ++ev1;
1221 if (sb->disks[rdev->desc_nr].state & (
1222 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1223 if (ev1 < mddev->events)
1224 return -EINVAL;
1225 } else if (mddev->bitmap) {
1226 /* if adding to array with a bitmap, then we can accept an
1227 * older device ... but not too old.
1229 if (ev1 < mddev->bitmap->events_cleared)
1230 return 0;
1231 } else {
1232 if (ev1 < mddev->events)
1233 /* just a hot-add of a new device, leave raid_disk at -1 */
1234 return 0;
1237 if (mddev->level != LEVEL_MULTIPATH) {
1238 desc = sb->disks + rdev->desc_nr;
1240 if (desc->state & (1<<MD_DISK_FAULTY))
1241 set_bit(Faulty, &rdev->flags);
1242 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1243 desc->raid_disk < mddev->raid_disks */) {
1244 set_bit(In_sync, &rdev->flags);
1245 rdev->raid_disk = desc->raid_disk;
1246 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1247 /* active but not in sync implies recovery up to
1248 * reshape position. We don't know exactly where
1249 * that is, so set to zero for now */
1250 if (mddev->minor_version >= 91) {
1251 rdev->recovery_offset = 0;
1252 rdev->raid_disk = desc->raid_disk;
1255 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1256 set_bit(WriteMostly, &rdev->flags);
1257 } else /* MULTIPATH are always insync */
1258 set_bit(In_sync, &rdev->flags);
1259 return 0;
1263 * sync_super for 0.90.0
1265 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1267 mdp_super_t *sb;
1268 mdk_rdev_t *rdev2;
1269 int next_spare = mddev->raid_disks;
1272 /* make rdev->sb match mddev data..
1274 * 1/ zero out disks
1275 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1276 * 3/ any empty disks < next_spare become removed
1278 * disks[0] gets initialised to REMOVED because
1279 * we cannot be sure from other fields if it has
1280 * been initialised or not.
1282 int i;
1283 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1285 rdev->sb_size = MD_SB_BYTES;
1287 sb = page_address(rdev->sb_page);
1289 memset(sb, 0, sizeof(*sb));
1291 sb->md_magic = MD_SB_MAGIC;
1292 sb->major_version = mddev->major_version;
1293 sb->patch_version = mddev->patch_version;
1294 sb->gvalid_words = 0; /* ignored */
1295 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1296 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1297 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1298 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1300 sb->ctime = mddev->ctime;
1301 sb->level = mddev->level;
1302 sb->size = mddev->dev_sectors / 2;
1303 sb->raid_disks = mddev->raid_disks;
1304 sb->md_minor = mddev->md_minor;
1305 sb->not_persistent = 0;
1306 sb->utime = mddev->utime;
1307 sb->state = 0;
1308 sb->events_hi = (mddev->events>>32);
1309 sb->events_lo = (u32)mddev->events;
1311 if (mddev->reshape_position == MaxSector)
1312 sb->minor_version = 90;
1313 else {
1314 sb->minor_version = 91;
1315 sb->reshape_position = mddev->reshape_position;
1316 sb->new_level = mddev->new_level;
1317 sb->delta_disks = mddev->delta_disks;
1318 sb->new_layout = mddev->new_layout;
1319 sb->new_chunk = mddev->new_chunk_sectors << 9;
1321 mddev->minor_version = sb->minor_version;
1322 if (mddev->in_sync)
1324 sb->recovery_cp = mddev->recovery_cp;
1325 sb->cp_events_hi = (mddev->events>>32);
1326 sb->cp_events_lo = (u32)mddev->events;
1327 if (mddev->recovery_cp == MaxSector)
1328 sb->state = (1<< MD_SB_CLEAN);
1329 } else
1330 sb->recovery_cp = 0;
1332 sb->layout = mddev->layout;
1333 sb->chunk_size = mddev->chunk_sectors << 9;
1335 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1336 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1338 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1339 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1340 mdp_disk_t *d;
1341 int desc_nr;
1342 int is_active = test_bit(In_sync, &rdev2->flags);
1344 if (rdev2->raid_disk >= 0 &&
1345 sb->minor_version >= 91)
1346 /* we have nowhere to store the recovery_offset,
1347 * but if it is not below the reshape_position,
1348 * we can piggy-back on that.
1350 is_active = 1;
1351 if (rdev2->raid_disk < 0 ||
1352 test_bit(Faulty, &rdev2->flags))
1353 is_active = 0;
1354 if (is_active)
1355 desc_nr = rdev2->raid_disk;
1356 else
1357 desc_nr = next_spare++;
1358 rdev2->desc_nr = desc_nr;
1359 d = &sb->disks[rdev2->desc_nr];
1360 nr_disks++;
1361 d->number = rdev2->desc_nr;
1362 d->major = MAJOR(rdev2->bdev->bd_dev);
1363 d->minor = MINOR(rdev2->bdev->bd_dev);
1364 if (is_active)
1365 d->raid_disk = rdev2->raid_disk;
1366 else
1367 d->raid_disk = rdev2->desc_nr; /* compatibility */
1368 if (test_bit(Faulty, &rdev2->flags))
1369 d->state = (1<<MD_DISK_FAULTY);
1370 else if (is_active) {
1371 d->state = (1<<MD_DISK_ACTIVE);
1372 if (test_bit(In_sync, &rdev2->flags))
1373 d->state |= (1<<MD_DISK_SYNC);
1374 active++;
1375 working++;
1376 } else {
1377 d->state = 0;
1378 spare++;
1379 working++;
1381 if (test_bit(WriteMostly, &rdev2->flags))
1382 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1384 /* now set the "removed" and "faulty" bits on any missing devices */
1385 for (i=0 ; i < mddev->raid_disks ; i++) {
1386 mdp_disk_t *d = &sb->disks[i];
1387 if (d->state == 0 && d->number == 0) {
1388 d->number = i;
1389 d->raid_disk = i;
1390 d->state = (1<<MD_DISK_REMOVED);
1391 d->state |= (1<<MD_DISK_FAULTY);
1392 failed++;
1395 sb->nr_disks = nr_disks;
1396 sb->active_disks = active;
1397 sb->working_disks = working;
1398 sb->failed_disks = failed;
1399 sb->spare_disks = spare;
1401 sb->this_disk = sb->disks[rdev->desc_nr];
1402 sb->sb_csum = calc_sb_csum(sb);
1406 * rdev_size_change for 0.90.0
1408 static unsigned long long
1409 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1411 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1412 return 0; /* component must fit device */
1413 if (rdev->mddev->bitmap_info.offset)
1414 return 0; /* can't move bitmap */
1415 rdev->sb_start = calc_dev_sboffset(rdev);
1416 if (!num_sectors || num_sectors > rdev->sb_start)
1417 num_sectors = rdev->sb_start;
1418 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1419 rdev->sb_page);
1420 md_super_wait(rdev->mddev);
1421 return num_sectors;
1426 * version 1 superblock
1429 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1431 __le32 disk_csum;
1432 u32 csum;
1433 unsigned long long newcsum;
1434 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1435 __le32 *isuper = (__le32*)sb;
1436 int i;
1438 disk_csum = sb->sb_csum;
1439 sb->sb_csum = 0;
1440 newcsum = 0;
1441 for (i=0; size>=4; size -= 4 )
1442 newcsum += le32_to_cpu(*isuper++);
1444 if (size == 2)
1445 newcsum += le16_to_cpu(*(__le16*) isuper);
1447 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1448 sb->sb_csum = disk_csum;
1449 return cpu_to_le32(csum);
1452 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1453 int acknowledged);
1454 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1456 struct mdp_superblock_1 *sb;
1457 int ret;
1458 sector_t sb_start;
1459 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1460 int bmask;
1463 * Calculate the position of the superblock in 512byte sectors.
1464 * It is always aligned to a 4K boundary and
1465 * depeding on minor_version, it can be:
1466 * 0: At least 8K, but less than 12K, from end of device
1467 * 1: At start of device
1468 * 2: 4K from start of device.
1470 switch(minor_version) {
1471 case 0:
1472 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1473 sb_start -= 8*2;
1474 sb_start &= ~(sector_t)(4*2-1);
1475 break;
1476 case 1:
1477 sb_start = 0;
1478 break;
1479 case 2:
1480 sb_start = 8;
1481 break;
1482 default:
1483 return -EINVAL;
1485 rdev->sb_start = sb_start;
1487 /* superblock is rarely larger than 1K, but it can be larger,
1488 * and it is safe to read 4k, so we do that
1490 ret = read_disk_sb(rdev, 4096);
1491 if (ret) return ret;
1494 sb = page_address(rdev->sb_page);
1496 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1497 sb->major_version != cpu_to_le32(1) ||
1498 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1499 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1500 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1501 return -EINVAL;
1503 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1504 printk("md: invalid superblock checksum on %s\n",
1505 bdevname(rdev->bdev,b));
1506 return -EINVAL;
1508 if (le64_to_cpu(sb->data_size) < 10) {
1509 printk("md: data_size too small on %s\n",
1510 bdevname(rdev->bdev,b));
1511 return -EINVAL;
1514 rdev->preferred_minor = 0xffff;
1515 rdev->data_offset = le64_to_cpu(sb->data_offset);
1516 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1518 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1519 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1520 if (rdev->sb_size & bmask)
1521 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1523 if (minor_version
1524 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1525 return -EINVAL;
1527 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1528 rdev->desc_nr = -1;
1529 else
1530 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1532 if (!rdev->bb_page) {
1533 rdev->bb_page = alloc_page(GFP_KERNEL);
1534 if (!rdev->bb_page)
1535 return -ENOMEM;
1537 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1538 rdev->badblocks.count == 0) {
1539 /* need to load the bad block list.
1540 * Currently we limit it to one page.
1542 s32 offset;
1543 sector_t bb_sector;
1544 u64 *bbp;
1545 int i;
1546 int sectors = le16_to_cpu(sb->bblog_size);
1547 if (sectors > (PAGE_SIZE / 512))
1548 return -EINVAL;
1549 offset = le32_to_cpu(sb->bblog_offset);
1550 if (offset == 0)
1551 return -EINVAL;
1552 bb_sector = (long long)offset;
1553 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1554 rdev->bb_page, READ, true))
1555 return -EIO;
1556 bbp = (u64 *)page_address(rdev->bb_page);
1557 rdev->badblocks.shift = sb->bblog_shift;
1558 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1559 u64 bb = le64_to_cpu(*bbp);
1560 int count = bb & (0x3ff);
1561 u64 sector = bb >> 10;
1562 sector <<= sb->bblog_shift;
1563 count <<= sb->bblog_shift;
1564 if (bb + 1 == 0)
1565 break;
1566 if (md_set_badblocks(&rdev->badblocks,
1567 sector, count, 1) == 0)
1568 return -EINVAL;
1570 } else if (sb->bblog_offset == 0)
1571 rdev->badblocks.shift = -1;
1573 if (!refdev) {
1574 ret = 1;
1575 } else {
1576 __u64 ev1, ev2;
1577 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1579 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1580 sb->level != refsb->level ||
1581 sb->layout != refsb->layout ||
1582 sb->chunksize != refsb->chunksize) {
1583 printk(KERN_WARNING "md: %s has strangely different"
1584 " superblock to %s\n",
1585 bdevname(rdev->bdev,b),
1586 bdevname(refdev->bdev,b2));
1587 return -EINVAL;
1589 ev1 = le64_to_cpu(sb->events);
1590 ev2 = le64_to_cpu(refsb->events);
1592 if (ev1 > ev2)
1593 ret = 1;
1594 else
1595 ret = 0;
1597 if (minor_version)
1598 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1599 le64_to_cpu(sb->data_offset);
1600 else
1601 rdev->sectors = rdev->sb_start;
1602 if (rdev->sectors < le64_to_cpu(sb->data_size))
1603 return -EINVAL;
1604 rdev->sectors = le64_to_cpu(sb->data_size);
1605 if (le64_to_cpu(sb->size) > rdev->sectors)
1606 return -EINVAL;
1607 return ret;
1610 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1612 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1613 __u64 ev1 = le64_to_cpu(sb->events);
1615 rdev->raid_disk = -1;
1616 clear_bit(Faulty, &rdev->flags);
1617 clear_bit(In_sync, &rdev->flags);
1618 clear_bit(WriteMostly, &rdev->flags);
1620 if (mddev->raid_disks == 0) {
1621 mddev->major_version = 1;
1622 mddev->patch_version = 0;
1623 mddev->external = 0;
1624 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1625 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1626 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1627 mddev->level = le32_to_cpu(sb->level);
1628 mddev->clevel[0] = 0;
1629 mddev->layout = le32_to_cpu(sb->layout);
1630 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1631 mddev->dev_sectors = le64_to_cpu(sb->size);
1632 mddev->events = ev1;
1633 mddev->bitmap_info.offset = 0;
1634 mddev->bitmap_info.default_offset = 1024 >> 9;
1636 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1637 memcpy(mddev->uuid, sb->set_uuid, 16);
1639 mddev->max_disks = (4096-256)/2;
1641 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1642 mddev->bitmap_info.file == NULL )
1643 mddev->bitmap_info.offset =
1644 (__s32)le32_to_cpu(sb->bitmap_offset);
1646 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1647 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1648 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1649 mddev->new_level = le32_to_cpu(sb->new_level);
1650 mddev->new_layout = le32_to_cpu(sb->new_layout);
1651 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1652 } else {
1653 mddev->reshape_position = MaxSector;
1654 mddev->delta_disks = 0;
1655 mddev->new_level = mddev->level;
1656 mddev->new_layout = mddev->layout;
1657 mddev->new_chunk_sectors = mddev->chunk_sectors;
1660 } else if (mddev->pers == NULL) {
1661 /* Insist of good event counter while assembling, except for
1662 * spares (which don't need an event count) */
1663 ++ev1;
1664 if (rdev->desc_nr >= 0 &&
1665 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1666 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1667 if (ev1 < mddev->events)
1668 return -EINVAL;
1669 } else if (mddev->bitmap) {
1670 /* If adding to array with a bitmap, then we can accept an
1671 * older device, but not too old.
1673 if (ev1 < mddev->bitmap->events_cleared)
1674 return 0;
1675 } else {
1676 if (ev1 < mddev->events)
1677 /* just a hot-add of a new device, leave raid_disk at -1 */
1678 return 0;
1680 if (mddev->level != LEVEL_MULTIPATH) {
1681 int role;
1682 if (rdev->desc_nr < 0 ||
1683 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1684 role = 0xffff;
1685 rdev->desc_nr = -1;
1686 } else
1687 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1688 switch(role) {
1689 case 0xffff: /* spare */
1690 break;
1691 case 0xfffe: /* faulty */
1692 set_bit(Faulty, &rdev->flags);
1693 break;
1694 default:
1695 if ((le32_to_cpu(sb->feature_map) &
1696 MD_FEATURE_RECOVERY_OFFSET))
1697 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1698 else
1699 set_bit(In_sync, &rdev->flags);
1700 rdev->raid_disk = role;
1701 break;
1703 if (sb->devflags & WriteMostly1)
1704 set_bit(WriteMostly, &rdev->flags);
1705 } else /* MULTIPATH are always insync */
1706 set_bit(In_sync, &rdev->flags);
1708 return 0;
1711 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1713 struct mdp_superblock_1 *sb;
1714 mdk_rdev_t *rdev2;
1715 int max_dev, i;
1716 /* make rdev->sb match mddev and rdev data. */
1718 sb = page_address(rdev->sb_page);
1720 sb->feature_map = 0;
1721 sb->pad0 = 0;
1722 sb->recovery_offset = cpu_to_le64(0);
1723 memset(sb->pad1, 0, sizeof(sb->pad1));
1724 memset(sb->pad3, 0, sizeof(sb->pad3));
1726 sb->utime = cpu_to_le64((__u64)mddev->utime);
1727 sb->events = cpu_to_le64(mddev->events);
1728 if (mddev->in_sync)
1729 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1730 else
1731 sb->resync_offset = cpu_to_le64(0);
1733 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1735 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1736 sb->size = cpu_to_le64(mddev->dev_sectors);
1737 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1738 sb->level = cpu_to_le32(mddev->level);
1739 sb->layout = cpu_to_le32(mddev->layout);
1741 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1742 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1743 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1746 if (rdev->raid_disk >= 0 &&
1747 !test_bit(In_sync, &rdev->flags)) {
1748 sb->feature_map |=
1749 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1750 sb->recovery_offset =
1751 cpu_to_le64(rdev->recovery_offset);
1754 if (mddev->reshape_position != MaxSector) {
1755 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1756 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1757 sb->new_layout = cpu_to_le32(mddev->new_layout);
1758 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1759 sb->new_level = cpu_to_le32(mddev->new_level);
1760 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1763 if (rdev->badblocks.count == 0)
1764 /* Nothing to do for bad blocks*/ ;
1765 else if (sb->bblog_offset == 0)
1766 /* Cannot record bad blocks on this device */
1767 md_error(mddev, rdev);
1768 else {
1769 struct badblocks *bb = &rdev->badblocks;
1770 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1771 u64 *p = bb->page;
1772 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1773 if (bb->changed) {
1774 unsigned seq;
1776 retry:
1777 seq = read_seqbegin(&bb->lock);
1779 memset(bbp, 0xff, PAGE_SIZE);
1781 for (i = 0 ; i < bb->count ; i++) {
1782 u64 internal_bb = *p++;
1783 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1784 | BB_LEN(internal_bb));
1785 *bbp++ = cpu_to_le64(store_bb);
1787 if (read_seqretry(&bb->lock, seq))
1788 goto retry;
1790 bb->sector = (rdev->sb_start +
1791 (int)le32_to_cpu(sb->bblog_offset));
1792 bb->size = le16_to_cpu(sb->bblog_size);
1793 bb->changed = 0;
1797 max_dev = 0;
1798 list_for_each_entry(rdev2, &mddev->disks, same_set)
1799 if (rdev2->desc_nr+1 > max_dev)
1800 max_dev = rdev2->desc_nr+1;
1802 if (max_dev > le32_to_cpu(sb->max_dev)) {
1803 int bmask;
1804 sb->max_dev = cpu_to_le32(max_dev);
1805 rdev->sb_size = max_dev * 2 + 256;
1806 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1807 if (rdev->sb_size & bmask)
1808 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1809 } else
1810 max_dev = le32_to_cpu(sb->max_dev);
1812 for (i=0; i<max_dev;i++)
1813 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1815 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1816 i = rdev2->desc_nr;
1817 if (test_bit(Faulty, &rdev2->flags))
1818 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1819 else if (test_bit(In_sync, &rdev2->flags))
1820 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1821 else if (rdev2->raid_disk >= 0)
1822 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1823 else
1824 sb->dev_roles[i] = cpu_to_le16(0xffff);
1827 sb->sb_csum = calc_sb_1_csum(sb);
1830 static unsigned long long
1831 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1833 struct mdp_superblock_1 *sb;
1834 sector_t max_sectors;
1835 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1836 return 0; /* component must fit device */
1837 if (rdev->sb_start < rdev->data_offset) {
1838 /* minor versions 1 and 2; superblock before data */
1839 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1840 max_sectors -= rdev->data_offset;
1841 if (!num_sectors || num_sectors > max_sectors)
1842 num_sectors = max_sectors;
1843 } else if (rdev->mddev->bitmap_info.offset) {
1844 /* minor version 0 with bitmap we can't move */
1845 return 0;
1846 } else {
1847 /* minor version 0; superblock after data */
1848 sector_t sb_start;
1849 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1850 sb_start &= ~(sector_t)(4*2 - 1);
1851 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1852 if (!num_sectors || num_sectors > max_sectors)
1853 num_sectors = max_sectors;
1854 rdev->sb_start = sb_start;
1856 sb = page_address(rdev->sb_page);
1857 sb->data_size = cpu_to_le64(num_sectors);
1858 sb->super_offset = rdev->sb_start;
1859 sb->sb_csum = calc_sb_1_csum(sb);
1860 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1861 rdev->sb_page);
1862 md_super_wait(rdev->mddev);
1863 return num_sectors;
1866 static struct super_type super_types[] = {
1867 [0] = {
1868 .name = "0.90.0",
1869 .owner = THIS_MODULE,
1870 .load_super = super_90_load,
1871 .validate_super = super_90_validate,
1872 .sync_super = super_90_sync,
1873 .rdev_size_change = super_90_rdev_size_change,
1875 [1] = {
1876 .name = "md-1",
1877 .owner = THIS_MODULE,
1878 .load_super = super_1_load,
1879 .validate_super = super_1_validate,
1880 .sync_super = super_1_sync,
1881 .rdev_size_change = super_1_rdev_size_change,
1885 static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
1887 if (mddev->sync_super) {
1888 mddev->sync_super(mddev, rdev);
1889 return;
1892 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1894 super_types[mddev->major_version].sync_super(mddev, rdev);
1897 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1899 mdk_rdev_t *rdev, *rdev2;
1901 rcu_read_lock();
1902 rdev_for_each_rcu(rdev, mddev1)
1903 rdev_for_each_rcu(rdev2, mddev2)
1904 if (rdev->bdev->bd_contains ==
1905 rdev2->bdev->bd_contains) {
1906 rcu_read_unlock();
1907 return 1;
1909 rcu_read_unlock();
1910 return 0;
1913 static LIST_HEAD(pending_raid_disks);
1916 * Try to register data integrity profile for an mddev
1918 * This is called when an array is started and after a disk has been kicked
1919 * from the array. It only succeeds if all working and active component devices
1920 * are integrity capable with matching profiles.
1922 int md_integrity_register(mddev_t *mddev)
1924 mdk_rdev_t *rdev, *reference = NULL;
1926 if (list_empty(&mddev->disks))
1927 return 0; /* nothing to do */
1928 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1929 return 0; /* shouldn't register, or already is */
1930 list_for_each_entry(rdev, &mddev->disks, same_set) {
1931 /* skip spares and non-functional disks */
1932 if (test_bit(Faulty, &rdev->flags))
1933 continue;
1934 if (rdev->raid_disk < 0)
1935 continue;
1936 if (!reference) {
1937 /* Use the first rdev as the reference */
1938 reference = rdev;
1939 continue;
1941 /* does this rdev's profile match the reference profile? */
1942 if (blk_integrity_compare(reference->bdev->bd_disk,
1943 rdev->bdev->bd_disk) < 0)
1944 return -EINVAL;
1946 if (!reference || !bdev_get_integrity(reference->bdev))
1947 return 0;
1949 * All component devices are integrity capable and have matching
1950 * profiles, register the common profile for the md device.
1952 if (blk_integrity_register(mddev->gendisk,
1953 bdev_get_integrity(reference->bdev)) != 0) {
1954 printk(KERN_ERR "md: failed to register integrity for %s\n",
1955 mdname(mddev));
1956 return -EINVAL;
1958 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1959 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1960 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1961 mdname(mddev));
1962 return -EINVAL;
1964 return 0;
1966 EXPORT_SYMBOL(md_integrity_register);
1968 /* Disable data integrity if non-capable/non-matching disk is being added */
1969 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1971 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1972 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1974 if (!bi_mddev) /* nothing to do */
1975 return;
1976 if (rdev->raid_disk < 0) /* skip spares */
1977 return;
1978 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1979 rdev->bdev->bd_disk) >= 0)
1980 return;
1981 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1982 blk_integrity_unregister(mddev->gendisk);
1984 EXPORT_SYMBOL(md_integrity_add_rdev);
1986 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1988 char b[BDEVNAME_SIZE];
1989 struct kobject *ko;
1990 char *s;
1991 int err;
1993 if (rdev->mddev) {
1994 MD_BUG();
1995 return -EINVAL;
1998 /* prevent duplicates */
1999 if (find_rdev(mddev, rdev->bdev->bd_dev))
2000 return -EEXIST;
2002 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2003 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2004 rdev->sectors < mddev->dev_sectors)) {
2005 if (mddev->pers) {
2006 /* Cannot change size, so fail
2007 * If mddev->level <= 0, then we don't care
2008 * about aligning sizes (e.g. linear)
2010 if (mddev->level > 0)
2011 return -ENOSPC;
2012 } else
2013 mddev->dev_sectors = rdev->sectors;
2016 /* Verify rdev->desc_nr is unique.
2017 * If it is -1, assign a free number, else
2018 * check number is not in use
2020 if (rdev->desc_nr < 0) {
2021 int choice = 0;
2022 if (mddev->pers) choice = mddev->raid_disks;
2023 while (find_rdev_nr(mddev, choice))
2024 choice++;
2025 rdev->desc_nr = choice;
2026 } else {
2027 if (find_rdev_nr(mddev, rdev->desc_nr))
2028 return -EBUSY;
2030 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2031 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2032 mdname(mddev), mddev->max_disks);
2033 return -EBUSY;
2035 bdevname(rdev->bdev,b);
2036 while ( (s=strchr(b, '/')) != NULL)
2037 *s = '!';
2039 rdev->mddev = mddev;
2040 printk(KERN_INFO "md: bind<%s>\n", b);
2042 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2043 goto fail;
2045 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2046 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2047 /* failure here is OK */;
2048 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2050 list_add_rcu(&rdev->same_set, &mddev->disks);
2051 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2053 /* May as well allow recovery to be retried once */
2054 mddev->recovery_disabled++;
2056 return 0;
2058 fail:
2059 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2060 b, mdname(mddev));
2061 return err;
2064 static void md_delayed_delete(struct work_struct *ws)
2066 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
2067 kobject_del(&rdev->kobj);
2068 kobject_put(&rdev->kobj);
2071 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
2073 char b[BDEVNAME_SIZE];
2074 if (!rdev->mddev) {
2075 MD_BUG();
2076 return;
2078 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2079 list_del_rcu(&rdev->same_set);
2080 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2081 rdev->mddev = NULL;
2082 sysfs_remove_link(&rdev->kobj, "block");
2083 sysfs_put(rdev->sysfs_state);
2084 rdev->sysfs_state = NULL;
2085 kfree(rdev->badblocks.page);
2086 rdev->badblocks.count = 0;
2087 rdev->badblocks.page = NULL;
2088 /* We need to delay this, otherwise we can deadlock when
2089 * writing to 'remove' to "dev/state". We also need
2090 * to delay it due to rcu usage.
2092 synchronize_rcu();
2093 INIT_WORK(&rdev->del_work, md_delayed_delete);
2094 kobject_get(&rdev->kobj);
2095 queue_work(md_misc_wq, &rdev->del_work);
2099 * prevent the device from being mounted, repartitioned or
2100 * otherwise reused by a RAID array (or any other kernel
2101 * subsystem), by bd_claiming the device.
2103 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
2105 int err = 0;
2106 struct block_device *bdev;
2107 char b[BDEVNAME_SIZE];
2109 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2110 shared ? (mdk_rdev_t *)lock_rdev : rdev);
2111 if (IS_ERR(bdev)) {
2112 printk(KERN_ERR "md: could not open %s.\n",
2113 __bdevname(dev, b));
2114 return PTR_ERR(bdev);
2116 rdev->bdev = bdev;
2117 return err;
2120 static void unlock_rdev(mdk_rdev_t *rdev)
2122 struct block_device *bdev = rdev->bdev;
2123 rdev->bdev = NULL;
2124 if (!bdev)
2125 MD_BUG();
2126 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2129 void md_autodetect_dev(dev_t dev);
2131 static void export_rdev(mdk_rdev_t * rdev)
2133 char b[BDEVNAME_SIZE];
2134 printk(KERN_INFO "md: export_rdev(%s)\n",
2135 bdevname(rdev->bdev,b));
2136 if (rdev->mddev)
2137 MD_BUG();
2138 free_disk_sb(rdev);
2139 #ifndef MODULE
2140 if (test_bit(AutoDetected, &rdev->flags))
2141 md_autodetect_dev(rdev->bdev->bd_dev);
2142 #endif
2143 unlock_rdev(rdev);
2144 kobject_put(&rdev->kobj);
2147 static void kick_rdev_from_array(mdk_rdev_t * rdev)
2149 unbind_rdev_from_array(rdev);
2150 export_rdev(rdev);
2153 static void export_array(mddev_t *mddev)
2155 mdk_rdev_t *rdev, *tmp;
2157 rdev_for_each(rdev, tmp, mddev) {
2158 if (!rdev->mddev) {
2159 MD_BUG();
2160 continue;
2162 kick_rdev_from_array(rdev);
2164 if (!list_empty(&mddev->disks))
2165 MD_BUG();
2166 mddev->raid_disks = 0;
2167 mddev->major_version = 0;
2170 static void print_desc(mdp_disk_t *desc)
2172 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2173 desc->major,desc->minor,desc->raid_disk,desc->state);
2176 static void print_sb_90(mdp_super_t *sb)
2178 int i;
2180 printk(KERN_INFO
2181 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2182 sb->major_version, sb->minor_version, sb->patch_version,
2183 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2184 sb->ctime);
2185 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2186 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2187 sb->md_minor, sb->layout, sb->chunk_size);
2188 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2189 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2190 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2191 sb->failed_disks, sb->spare_disks,
2192 sb->sb_csum, (unsigned long)sb->events_lo);
2194 printk(KERN_INFO);
2195 for (i = 0; i < MD_SB_DISKS; i++) {
2196 mdp_disk_t *desc;
2198 desc = sb->disks + i;
2199 if (desc->number || desc->major || desc->minor ||
2200 desc->raid_disk || (desc->state && (desc->state != 4))) {
2201 printk(" D %2d: ", i);
2202 print_desc(desc);
2205 printk(KERN_INFO "md: THIS: ");
2206 print_desc(&sb->this_disk);
2209 static void print_sb_1(struct mdp_superblock_1 *sb)
2211 __u8 *uuid;
2213 uuid = sb->set_uuid;
2214 printk(KERN_INFO
2215 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2216 "md: Name: \"%s\" CT:%llu\n",
2217 le32_to_cpu(sb->major_version),
2218 le32_to_cpu(sb->feature_map),
2219 uuid,
2220 sb->set_name,
2221 (unsigned long long)le64_to_cpu(sb->ctime)
2222 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2224 uuid = sb->device_uuid;
2225 printk(KERN_INFO
2226 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2227 " RO:%llu\n"
2228 "md: Dev:%08x UUID: %pU\n"
2229 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2230 "md: (MaxDev:%u) \n",
2231 le32_to_cpu(sb->level),
2232 (unsigned long long)le64_to_cpu(sb->size),
2233 le32_to_cpu(sb->raid_disks),
2234 le32_to_cpu(sb->layout),
2235 le32_to_cpu(sb->chunksize),
2236 (unsigned long long)le64_to_cpu(sb->data_offset),
2237 (unsigned long long)le64_to_cpu(sb->data_size),
2238 (unsigned long long)le64_to_cpu(sb->super_offset),
2239 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2240 le32_to_cpu(sb->dev_number),
2241 uuid,
2242 sb->devflags,
2243 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2244 (unsigned long long)le64_to_cpu(sb->events),
2245 (unsigned long long)le64_to_cpu(sb->resync_offset),
2246 le32_to_cpu(sb->sb_csum),
2247 le32_to_cpu(sb->max_dev)
2251 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2253 char b[BDEVNAME_SIZE];
2254 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2255 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2256 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2257 rdev->desc_nr);
2258 if (rdev->sb_loaded) {
2259 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2260 switch (major_version) {
2261 case 0:
2262 print_sb_90(page_address(rdev->sb_page));
2263 break;
2264 case 1:
2265 print_sb_1(page_address(rdev->sb_page));
2266 break;
2268 } else
2269 printk(KERN_INFO "md: no rdev superblock!\n");
2272 static void md_print_devices(void)
2274 struct list_head *tmp;
2275 mdk_rdev_t *rdev;
2276 mddev_t *mddev;
2277 char b[BDEVNAME_SIZE];
2279 printk("\n");
2280 printk("md: **********************************\n");
2281 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2282 printk("md: **********************************\n");
2283 for_each_mddev(mddev, tmp) {
2285 if (mddev->bitmap)
2286 bitmap_print_sb(mddev->bitmap);
2287 else
2288 printk("%s: ", mdname(mddev));
2289 list_for_each_entry(rdev, &mddev->disks, same_set)
2290 printk("<%s>", bdevname(rdev->bdev,b));
2291 printk("\n");
2293 list_for_each_entry(rdev, &mddev->disks, same_set)
2294 print_rdev(rdev, mddev->major_version);
2296 printk("md: **********************************\n");
2297 printk("\n");
2301 static void sync_sbs(mddev_t * mddev, int nospares)
2303 /* Update each superblock (in-memory image), but
2304 * if we are allowed to, skip spares which already
2305 * have the right event counter, or have one earlier
2306 * (which would mean they aren't being marked as dirty
2307 * with the rest of the array)
2309 mdk_rdev_t *rdev;
2310 list_for_each_entry(rdev, &mddev->disks, same_set) {
2311 if (rdev->sb_events == mddev->events ||
2312 (nospares &&
2313 rdev->raid_disk < 0 &&
2314 rdev->sb_events+1 == mddev->events)) {
2315 /* Don't update this superblock */
2316 rdev->sb_loaded = 2;
2317 } else {
2318 sync_super(mddev, rdev);
2319 rdev->sb_loaded = 1;
2324 static void md_update_sb(mddev_t * mddev, int force_change)
2326 mdk_rdev_t *rdev;
2327 int sync_req;
2328 int nospares = 0;
2329 int any_badblocks_changed = 0;
2331 repeat:
2332 /* First make sure individual recovery_offsets are correct */
2333 list_for_each_entry(rdev, &mddev->disks, same_set) {
2334 if (rdev->raid_disk >= 0 &&
2335 mddev->delta_disks >= 0 &&
2336 !test_bit(In_sync, &rdev->flags) &&
2337 mddev->curr_resync_completed > rdev->recovery_offset)
2338 rdev->recovery_offset = mddev->curr_resync_completed;
2341 if (!mddev->persistent) {
2342 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2343 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2344 if (!mddev->external) {
2345 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2346 list_for_each_entry(rdev, &mddev->disks, same_set) {
2347 if (rdev->badblocks.changed) {
2348 md_ack_all_badblocks(&rdev->badblocks);
2349 md_error(mddev, rdev);
2351 clear_bit(Blocked, &rdev->flags);
2352 clear_bit(BlockedBadBlocks, &rdev->flags);
2353 wake_up(&rdev->blocked_wait);
2356 wake_up(&mddev->sb_wait);
2357 return;
2360 spin_lock_irq(&mddev->write_lock);
2362 mddev->utime = get_seconds();
2364 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2365 force_change = 1;
2366 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2367 /* just a clean<-> dirty transition, possibly leave spares alone,
2368 * though if events isn't the right even/odd, we will have to do
2369 * spares after all
2371 nospares = 1;
2372 if (force_change)
2373 nospares = 0;
2374 if (mddev->degraded)
2375 /* If the array is degraded, then skipping spares is both
2376 * dangerous and fairly pointless.
2377 * Dangerous because a device that was removed from the array
2378 * might have a event_count that still looks up-to-date,
2379 * so it can be re-added without a resync.
2380 * Pointless because if there are any spares to skip,
2381 * then a recovery will happen and soon that array won't
2382 * be degraded any more and the spare can go back to sleep then.
2384 nospares = 0;
2386 sync_req = mddev->in_sync;
2388 /* If this is just a dirty<->clean transition, and the array is clean
2389 * and 'events' is odd, we can roll back to the previous clean state */
2390 if (nospares
2391 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2392 && mddev->can_decrease_events
2393 && mddev->events != 1) {
2394 mddev->events--;
2395 mddev->can_decrease_events = 0;
2396 } else {
2397 /* otherwise we have to go forward and ... */
2398 mddev->events ++;
2399 mddev->can_decrease_events = nospares;
2402 if (!mddev->events) {
2404 * oops, this 64-bit counter should never wrap.
2405 * Either we are in around ~1 trillion A.C., assuming
2406 * 1 reboot per second, or we have a bug:
2408 MD_BUG();
2409 mddev->events --;
2412 list_for_each_entry(rdev, &mddev->disks, same_set) {
2413 if (rdev->badblocks.changed)
2414 any_badblocks_changed++;
2415 if (test_bit(Faulty, &rdev->flags))
2416 set_bit(FaultRecorded, &rdev->flags);
2419 sync_sbs(mddev, nospares);
2420 spin_unlock_irq(&mddev->write_lock);
2422 dprintk(KERN_INFO
2423 "md: updating %s RAID superblock on device (in sync %d)\n",
2424 mdname(mddev),mddev->in_sync);
2426 bitmap_update_sb(mddev->bitmap);
2427 list_for_each_entry(rdev, &mddev->disks, same_set) {
2428 char b[BDEVNAME_SIZE];
2429 dprintk(KERN_INFO "md: ");
2430 if (rdev->sb_loaded != 1)
2431 continue; /* no noise on spare devices */
2432 if (test_bit(Faulty, &rdev->flags))
2433 dprintk("(skipping faulty ");
2435 dprintk("%s ", bdevname(rdev->bdev,b));
2436 if (!test_bit(Faulty, &rdev->flags)) {
2437 md_super_write(mddev,rdev,
2438 rdev->sb_start, rdev->sb_size,
2439 rdev->sb_page);
2440 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2441 bdevname(rdev->bdev,b),
2442 (unsigned long long)rdev->sb_start);
2443 rdev->sb_events = mddev->events;
2444 if (rdev->badblocks.size) {
2445 md_super_write(mddev, rdev,
2446 rdev->badblocks.sector,
2447 rdev->badblocks.size << 9,
2448 rdev->bb_page);
2449 rdev->badblocks.size = 0;
2452 } else
2453 dprintk(")\n");
2454 if (mddev->level == LEVEL_MULTIPATH)
2455 /* only need to write one superblock... */
2456 break;
2458 md_super_wait(mddev);
2459 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2461 spin_lock_irq(&mddev->write_lock);
2462 if (mddev->in_sync != sync_req ||
2463 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2464 /* have to write it out again */
2465 spin_unlock_irq(&mddev->write_lock);
2466 goto repeat;
2468 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2469 spin_unlock_irq(&mddev->write_lock);
2470 wake_up(&mddev->sb_wait);
2471 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2472 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2474 list_for_each_entry(rdev, &mddev->disks, same_set) {
2475 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2476 clear_bit(Blocked, &rdev->flags);
2478 if (any_badblocks_changed)
2479 md_ack_all_badblocks(&rdev->badblocks);
2480 clear_bit(BlockedBadBlocks, &rdev->flags);
2481 wake_up(&rdev->blocked_wait);
2485 /* words written to sysfs files may, or may not, be \n terminated.
2486 * We want to accept with case. For this we use cmd_match.
2488 static int cmd_match(const char *cmd, const char *str)
2490 /* See if cmd, written into a sysfs file, matches
2491 * str. They must either be the same, or cmd can
2492 * have a trailing newline
2494 while (*cmd && *str && *cmd == *str) {
2495 cmd++;
2496 str++;
2498 if (*cmd == '\n')
2499 cmd++;
2500 if (*str || *cmd)
2501 return 0;
2502 return 1;
2505 struct rdev_sysfs_entry {
2506 struct attribute attr;
2507 ssize_t (*show)(mdk_rdev_t *, char *);
2508 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2511 static ssize_t
2512 state_show(mdk_rdev_t *rdev, char *page)
2514 char *sep = "";
2515 size_t len = 0;
2517 if (test_bit(Faulty, &rdev->flags) ||
2518 rdev->badblocks.unacked_exist) {
2519 len+= sprintf(page+len, "%sfaulty",sep);
2520 sep = ",";
2522 if (test_bit(In_sync, &rdev->flags)) {
2523 len += sprintf(page+len, "%sin_sync",sep);
2524 sep = ",";
2526 if (test_bit(WriteMostly, &rdev->flags)) {
2527 len += sprintf(page+len, "%swrite_mostly",sep);
2528 sep = ",";
2530 if (test_bit(Blocked, &rdev->flags) ||
2531 rdev->badblocks.unacked_exist) {
2532 len += sprintf(page+len, "%sblocked", sep);
2533 sep = ",";
2535 if (!test_bit(Faulty, &rdev->flags) &&
2536 !test_bit(In_sync, &rdev->flags)) {
2537 len += sprintf(page+len, "%sspare", sep);
2538 sep = ",";
2540 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2541 len += sprintf(page+len, "%swrite_error", sep);
2542 sep = ",";
2544 return len+sprintf(page+len, "\n");
2547 static ssize_t
2548 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2550 /* can write
2551 * faulty - simulates an error
2552 * remove - disconnects the device
2553 * writemostly - sets write_mostly
2554 * -writemostly - clears write_mostly
2555 * blocked - sets the Blocked flags
2556 * -blocked - clears the Blocked and possibly simulates an error
2557 * insync - sets Insync providing device isn't active
2558 * write_error - sets WriteErrorSeen
2559 * -write_error - clears WriteErrorSeen
2561 int err = -EINVAL;
2562 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2563 md_error(rdev->mddev, rdev);
2564 err = 0;
2565 } else if (cmd_match(buf, "remove")) {
2566 if (rdev->raid_disk >= 0)
2567 err = -EBUSY;
2568 else {
2569 mddev_t *mddev = rdev->mddev;
2570 kick_rdev_from_array(rdev);
2571 if (mddev->pers)
2572 md_update_sb(mddev, 1);
2573 md_new_event(mddev);
2574 err = 0;
2576 } else if (cmd_match(buf, "writemostly")) {
2577 set_bit(WriteMostly, &rdev->flags);
2578 err = 0;
2579 } else if (cmd_match(buf, "-writemostly")) {
2580 clear_bit(WriteMostly, &rdev->flags);
2581 err = 0;
2582 } else if (cmd_match(buf, "blocked")) {
2583 set_bit(Blocked, &rdev->flags);
2584 err = 0;
2585 } else if (cmd_match(buf, "-blocked")) {
2586 if (!test_bit(Faulty, &rdev->flags) &&
2587 test_bit(BlockedBadBlocks, &rdev->flags)) {
2588 /* metadata handler doesn't understand badblocks,
2589 * so we need to fail the device
2591 md_error(rdev->mddev, rdev);
2593 clear_bit(Blocked, &rdev->flags);
2594 clear_bit(BlockedBadBlocks, &rdev->flags);
2595 wake_up(&rdev->blocked_wait);
2596 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2597 md_wakeup_thread(rdev->mddev->thread);
2599 err = 0;
2600 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2601 set_bit(In_sync, &rdev->flags);
2602 err = 0;
2603 } else if (cmd_match(buf, "write_error")) {
2604 set_bit(WriteErrorSeen, &rdev->flags);
2605 err = 0;
2606 } else if (cmd_match(buf, "-write_error")) {
2607 clear_bit(WriteErrorSeen, &rdev->flags);
2608 err = 0;
2610 if (!err)
2611 sysfs_notify_dirent_safe(rdev->sysfs_state);
2612 return err ? err : len;
2614 static struct rdev_sysfs_entry rdev_state =
2615 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2617 static ssize_t
2618 errors_show(mdk_rdev_t *rdev, char *page)
2620 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2623 static ssize_t
2624 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2626 char *e;
2627 unsigned long n = simple_strtoul(buf, &e, 10);
2628 if (*buf && (*e == 0 || *e == '\n')) {
2629 atomic_set(&rdev->corrected_errors, n);
2630 return len;
2632 return -EINVAL;
2634 static struct rdev_sysfs_entry rdev_errors =
2635 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2637 static ssize_t
2638 slot_show(mdk_rdev_t *rdev, char *page)
2640 if (rdev->raid_disk < 0)
2641 return sprintf(page, "none\n");
2642 else
2643 return sprintf(page, "%d\n", rdev->raid_disk);
2646 static ssize_t
2647 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2649 char *e;
2650 int err;
2651 int slot = simple_strtoul(buf, &e, 10);
2652 if (strncmp(buf, "none", 4)==0)
2653 slot = -1;
2654 else if (e==buf || (*e && *e!= '\n'))
2655 return -EINVAL;
2656 if (rdev->mddev->pers && slot == -1) {
2657 /* Setting 'slot' on an active array requires also
2658 * updating the 'rd%d' link, and communicating
2659 * with the personality with ->hot_*_disk.
2660 * For now we only support removing
2661 * failed/spare devices. This normally happens automatically,
2662 * but not when the metadata is externally managed.
2664 if (rdev->raid_disk == -1)
2665 return -EEXIST;
2666 /* personality does all needed checks */
2667 if (rdev->mddev->pers->hot_remove_disk == NULL)
2668 return -EINVAL;
2669 err = rdev->mddev->pers->
2670 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2671 if (err)
2672 return err;
2673 sysfs_unlink_rdev(rdev->mddev, rdev);
2674 rdev->raid_disk = -1;
2675 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2676 md_wakeup_thread(rdev->mddev->thread);
2677 } else if (rdev->mddev->pers) {
2678 mdk_rdev_t *rdev2;
2679 /* Activating a spare .. or possibly reactivating
2680 * if we ever get bitmaps working here.
2683 if (rdev->raid_disk != -1)
2684 return -EBUSY;
2686 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2687 return -EBUSY;
2689 if (rdev->mddev->pers->hot_add_disk == NULL)
2690 return -EINVAL;
2692 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2693 if (rdev2->raid_disk == slot)
2694 return -EEXIST;
2696 if (slot >= rdev->mddev->raid_disks &&
2697 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2698 return -ENOSPC;
2700 rdev->raid_disk = slot;
2701 if (test_bit(In_sync, &rdev->flags))
2702 rdev->saved_raid_disk = slot;
2703 else
2704 rdev->saved_raid_disk = -1;
2705 err = rdev->mddev->pers->
2706 hot_add_disk(rdev->mddev, rdev);
2707 if (err) {
2708 rdev->raid_disk = -1;
2709 return err;
2710 } else
2711 sysfs_notify_dirent_safe(rdev->sysfs_state);
2712 if (sysfs_link_rdev(rdev->mddev, rdev))
2713 /* failure here is OK */;
2714 /* don't wakeup anyone, leave that to userspace. */
2715 } else {
2716 if (slot >= rdev->mddev->raid_disks &&
2717 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2718 return -ENOSPC;
2719 rdev->raid_disk = slot;
2720 /* assume it is working */
2721 clear_bit(Faulty, &rdev->flags);
2722 clear_bit(WriteMostly, &rdev->flags);
2723 set_bit(In_sync, &rdev->flags);
2724 sysfs_notify_dirent_safe(rdev->sysfs_state);
2726 return len;
2730 static struct rdev_sysfs_entry rdev_slot =
2731 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2733 static ssize_t
2734 offset_show(mdk_rdev_t *rdev, char *page)
2736 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2739 static ssize_t
2740 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2742 char *e;
2743 unsigned long long offset = simple_strtoull(buf, &e, 10);
2744 if (e==buf || (*e && *e != '\n'))
2745 return -EINVAL;
2746 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2747 return -EBUSY;
2748 if (rdev->sectors && rdev->mddev->external)
2749 /* Must set offset before size, so overlap checks
2750 * can be sane */
2751 return -EBUSY;
2752 rdev->data_offset = offset;
2753 return len;
2756 static struct rdev_sysfs_entry rdev_offset =
2757 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2759 static ssize_t
2760 rdev_size_show(mdk_rdev_t *rdev, char *page)
2762 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2765 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2767 /* check if two start/length pairs overlap */
2768 if (s1+l1 <= s2)
2769 return 0;
2770 if (s2+l2 <= s1)
2771 return 0;
2772 return 1;
2775 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2777 unsigned long long blocks;
2778 sector_t new;
2780 if (strict_strtoull(buf, 10, &blocks) < 0)
2781 return -EINVAL;
2783 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2784 return -EINVAL; /* sector conversion overflow */
2786 new = blocks * 2;
2787 if (new != blocks * 2)
2788 return -EINVAL; /* unsigned long long to sector_t overflow */
2790 *sectors = new;
2791 return 0;
2794 static ssize_t
2795 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2797 mddev_t *my_mddev = rdev->mddev;
2798 sector_t oldsectors = rdev->sectors;
2799 sector_t sectors;
2801 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2802 return -EINVAL;
2803 if (my_mddev->pers && rdev->raid_disk >= 0) {
2804 if (my_mddev->persistent) {
2805 sectors = super_types[my_mddev->major_version].
2806 rdev_size_change(rdev, sectors);
2807 if (!sectors)
2808 return -EBUSY;
2809 } else if (!sectors)
2810 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2811 rdev->data_offset;
2813 if (sectors < my_mddev->dev_sectors)
2814 return -EINVAL; /* component must fit device */
2816 rdev->sectors = sectors;
2817 if (sectors > oldsectors && my_mddev->external) {
2818 /* need to check that all other rdevs with the same ->bdev
2819 * do not overlap. We need to unlock the mddev to avoid
2820 * a deadlock. We have already changed rdev->sectors, and if
2821 * we have to change it back, we will have the lock again.
2823 mddev_t *mddev;
2824 int overlap = 0;
2825 struct list_head *tmp;
2827 mddev_unlock(my_mddev);
2828 for_each_mddev(mddev, tmp) {
2829 mdk_rdev_t *rdev2;
2831 mddev_lock(mddev);
2832 list_for_each_entry(rdev2, &mddev->disks, same_set)
2833 if (rdev->bdev == rdev2->bdev &&
2834 rdev != rdev2 &&
2835 overlaps(rdev->data_offset, rdev->sectors,
2836 rdev2->data_offset,
2837 rdev2->sectors)) {
2838 overlap = 1;
2839 break;
2841 mddev_unlock(mddev);
2842 if (overlap) {
2843 mddev_put(mddev);
2844 break;
2847 mddev_lock(my_mddev);
2848 if (overlap) {
2849 /* Someone else could have slipped in a size
2850 * change here, but doing so is just silly.
2851 * We put oldsectors back because we *know* it is
2852 * safe, and trust userspace not to race with
2853 * itself
2855 rdev->sectors = oldsectors;
2856 return -EBUSY;
2859 return len;
2862 static struct rdev_sysfs_entry rdev_size =
2863 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2866 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2868 unsigned long long recovery_start = rdev->recovery_offset;
2870 if (test_bit(In_sync, &rdev->flags) ||
2871 recovery_start == MaxSector)
2872 return sprintf(page, "none\n");
2874 return sprintf(page, "%llu\n", recovery_start);
2877 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2879 unsigned long long recovery_start;
2881 if (cmd_match(buf, "none"))
2882 recovery_start = MaxSector;
2883 else if (strict_strtoull(buf, 10, &recovery_start))
2884 return -EINVAL;
2886 if (rdev->mddev->pers &&
2887 rdev->raid_disk >= 0)
2888 return -EBUSY;
2890 rdev->recovery_offset = recovery_start;
2891 if (recovery_start == MaxSector)
2892 set_bit(In_sync, &rdev->flags);
2893 else
2894 clear_bit(In_sync, &rdev->flags);
2895 return len;
2898 static struct rdev_sysfs_entry rdev_recovery_start =
2899 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2902 static ssize_t
2903 badblocks_show(struct badblocks *bb, char *page, int unack);
2904 static ssize_t
2905 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2907 static ssize_t bb_show(mdk_rdev_t *rdev, char *page)
2909 return badblocks_show(&rdev->badblocks, page, 0);
2911 static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2913 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2914 /* Maybe that ack was all we needed */
2915 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2916 wake_up(&rdev->blocked_wait);
2917 return rv;
2919 static struct rdev_sysfs_entry rdev_bad_blocks =
2920 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2923 static ssize_t ubb_show(mdk_rdev_t *rdev, char *page)
2925 return badblocks_show(&rdev->badblocks, page, 1);
2927 static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2929 return badblocks_store(&rdev->badblocks, page, len, 1);
2931 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2932 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2934 static struct attribute *rdev_default_attrs[] = {
2935 &rdev_state.attr,
2936 &rdev_errors.attr,
2937 &rdev_slot.attr,
2938 &rdev_offset.attr,
2939 &rdev_size.attr,
2940 &rdev_recovery_start.attr,
2941 &rdev_bad_blocks.attr,
2942 &rdev_unack_bad_blocks.attr,
2943 NULL,
2945 static ssize_t
2946 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2948 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2949 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2950 mddev_t *mddev = rdev->mddev;
2951 ssize_t rv;
2953 if (!entry->show)
2954 return -EIO;
2956 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2957 if (!rv) {
2958 if (rdev->mddev == NULL)
2959 rv = -EBUSY;
2960 else
2961 rv = entry->show(rdev, page);
2962 mddev_unlock(mddev);
2964 return rv;
2967 static ssize_t
2968 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2969 const char *page, size_t length)
2971 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2972 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2973 ssize_t rv;
2974 mddev_t *mddev = rdev->mddev;
2976 if (!entry->store)
2977 return -EIO;
2978 if (!capable(CAP_SYS_ADMIN))
2979 return -EACCES;
2980 rv = mddev ? mddev_lock(mddev): -EBUSY;
2981 if (!rv) {
2982 if (rdev->mddev == NULL)
2983 rv = -EBUSY;
2984 else
2985 rv = entry->store(rdev, page, length);
2986 mddev_unlock(mddev);
2988 return rv;
2991 static void rdev_free(struct kobject *ko)
2993 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2994 kfree(rdev);
2996 static const struct sysfs_ops rdev_sysfs_ops = {
2997 .show = rdev_attr_show,
2998 .store = rdev_attr_store,
3000 static struct kobj_type rdev_ktype = {
3001 .release = rdev_free,
3002 .sysfs_ops = &rdev_sysfs_ops,
3003 .default_attrs = rdev_default_attrs,
3006 int md_rdev_init(mdk_rdev_t *rdev)
3008 rdev->desc_nr = -1;
3009 rdev->saved_raid_disk = -1;
3010 rdev->raid_disk = -1;
3011 rdev->flags = 0;
3012 rdev->data_offset = 0;
3013 rdev->sb_events = 0;
3014 rdev->last_read_error.tv_sec = 0;
3015 rdev->last_read_error.tv_nsec = 0;
3016 rdev->sb_loaded = 0;
3017 rdev->bb_page = NULL;
3018 atomic_set(&rdev->nr_pending, 0);
3019 atomic_set(&rdev->read_errors, 0);
3020 atomic_set(&rdev->corrected_errors, 0);
3022 INIT_LIST_HEAD(&rdev->same_set);
3023 init_waitqueue_head(&rdev->blocked_wait);
3025 /* Add space to store bad block list.
3026 * This reserves the space even on arrays where it cannot
3027 * be used - I wonder if that matters
3029 rdev->badblocks.count = 0;
3030 rdev->badblocks.shift = 0;
3031 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3032 seqlock_init(&rdev->badblocks.lock);
3033 if (rdev->badblocks.page == NULL)
3034 return -ENOMEM;
3036 return 0;
3038 EXPORT_SYMBOL_GPL(md_rdev_init);
3040 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3042 * mark the device faulty if:
3044 * - the device is nonexistent (zero size)
3045 * - the device has no valid superblock
3047 * a faulty rdev _never_ has rdev->sb set.
3049 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
3051 char b[BDEVNAME_SIZE];
3052 int err;
3053 mdk_rdev_t *rdev;
3054 sector_t size;
3056 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3057 if (!rdev) {
3058 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3059 return ERR_PTR(-ENOMEM);
3062 err = md_rdev_init(rdev);
3063 if (err)
3064 goto abort_free;
3065 err = alloc_disk_sb(rdev);
3066 if (err)
3067 goto abort_free;
3069 err = lock_rdev(rdev, newdev, super_format == -2);
3070 if (err)
3071 goto abort_free;
3073 kobject_init(&rdev->kobj, &rdev_ktype);
3075 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3076 if (!size) {
3077 printk(KERN_WARNING
3078 "md: %s has zero or unknown size, marking faulty!\n",
3079 bdevname(rdev->bdev,b));
3080 err = -EINVAL;
3081 goto abort_free;
3084 if (super_format >= 0) {
3085 err = super_types[super_format].
3086 load_super(rdev, NULL, super_minor);
3087 if (err == -EINVAL) {
3088 printk(KERN_WARNING
3089 "md: %s does not have a valid v%d.%d "
3090 "superblock, not importing!\n",
3091 bdevname(rdev->bdev,b),
3092 super_format, super_minor);
3093 goto abort_free;
3095 if (err < 0) {
3096 printk(KERN_WARNING
3097 "md: could not read %s's sb, not importing!\n",
3098 bdevname(rdev->bdev,b));
3099 goto abort_free;
3102 if (super_format == -1)
3103 /* hot-add for 0.90, or non-persistent: so no badblocks */
3104 rdev->badblocks.shift = -1;
3106 return rdev;
3108 abort_free:
3109 if (rdev->bdev)
3110 unlock_rdev(rdev);
3111 free_disk_sb(rdev);
3112 kfree(rdev->badblocks.page);
3113 kfree(rdev);
3114 return ERR_PTR(err);
3118 * Check a full RAID array for plausibility
3122 static void analyze_sbs(mddev_t * mddev)
3124 int i;
3125 mdk_rdev_t *rdev, *freshest, *tmp;
3126 char b[BDEVNAME_SIZE];
3128 freshest = NULL;
3129 rdev_for_each(rdev, tmp, mddev)
3130 switch (super_types[mddev->major_version].
3131 load_super(rdev, freshest, mddev->minor_version)) {
3132 case 1:
3133 freshest = rdev;
3134 break;
3135 case 0:
3136 break;
3137 default:
3138 printk( KERN_ERR \
3139 "md: fatal superblock inconsistency in %s"
3140 " -- removing from array\n",
3141 bdevname(rdev->bdev,b));
3142 kick_rdev_from_array(rdev);
3146 super_types[mddev->major_version].
3147 validate_super(mddev, freshest);
3149 i = 0;
3150 rdev_for_each(rdev, tmp, mddev) {
3151 if (mddev->max_disks &&
3152 (rdev->desc_nr >= mddev->max_disks ||
3153 i > mddev->max_disks)) {
3154 printk(KERN_WARNING
3155 "md: %s: %s: only %d devices permitted\n",
3156 mdname(mddev), bdevname(rdev->bdev, b),
3157 mddev->max_disks);
3158 kick_rdev_from_array(rdev);
3159 continue;
3161 if (rdev != freshest)
3162 if (super_types[mddev->major_version].
3163 validate_super(mddev, rdev)) {
3164 printk(KERN_WARNING "md: kicking non-fresh %s"
3165 " from array!\n",
3166 bdevname(rdev->bdev,b));
3167 kick_rdev_from_array(rdev);
3168 continue;
3170 if (mddev->level == LEVEL_MULTIPATH) {
3171 rdev->desc_nr = i++;
3172 rdev->raid_disk = rdev->desc_nr;
3173 set_bit(In_sync, &rdev->flags);
3174 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3175 rdev->raid_disk = -1;
3176 clear_bit(In_sync, &rdev->flags);
3181 /* Read a fixed-point number.
3182 * Numbers in sysfs attributes should be in "standard" units where
3183 * possible, so time should be in seconds.
3184 * However we internally use a a much smaller unit such as
3185 * milliseconds or jiffies.
3186 * This function takes a decimal number with a possible fractional
3187 * component, and produces an integer which is the result of
3188 * multiplying that number by 10^'scale'.
3189 * all without any floating-point arithmetic.
3191 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3193 unsigned long result = 0;
3194 long decimals = -1;
3195 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3196 if (*cp == '.')
3197 decimals = 0;
3198 else if (decimals < scale) {
3199 unsigned int value;
3200 value = *cp - '0';
3201 result = result * 10 + value;
3202 if (decimals >= 0)
3203 decimals++;
3205 cp++;
3207 if (*cp == '\n')
3208 cp++;
3209 if (*cp)
3210 return -EINVAL;
3211 if (decimals < 0)
3212 decimals = 0;
3213 while (decimals < scale) {
3214 result *= 10;
3215 decimals ++;
3217 *res = result;
3218 return 0;
3222 static void md_safemode_timeout(unsigned long data);
3224 static ssize_t
3225 safe_delay_show(mddev_t *mddev, char *page)
3227 int msec = (mddev->safemode_delay*1000)/HZ;
3228 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3230 static ssize_t
3231 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
3233 unsigned long msec;
3235 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3236 return -EINVAL;
3237 if (msec == 0)
3238 mddev->safemode_delay = 0;
3239 else {
3240 unsigned long old_delay = mddev->safemode_delay;
3241 mddev->safemode_delay = (msec*HZ)/1000;
3242 if (mddev->safemode_delay == 0)
3243 mddev->safemode_delay = 1;
3244 if (mddev->safemode_delay < old_delay)
3245 md_safemode_timeout((unsigned long)mddev);
3247 return len;
3249 static struct md_sysfs_entry md_safe_delay =
3250 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3252 static ssize_t
3253 level_show(mddev_t *mddev, char *page)
3255 struct mdk_personality *p = mddev->pers;
3256 if (p)
3257 return sprintf(page, "%s\n", p->name);
3258 else if (mddev->clevel[0])
3259 return sprintf(page, "%s\n", mddev->clevel);
3260 else if (mddev->level != LEVEL_NONE)
3261 return sprintf(page, "%d\n", mddev->level);
3262 else
3263 return 0;
3266 static ssize_t
3267 level_store(mddev_t *mddev, const char *buf, size_t len)
3269 char clevel[16];
3270 ssize_t rv = len;
3271 struct mdk_personality *pers;
3272 long level;
3273 void *priv;
3274 mdk_rdev_t *rdev;
3276 if (mddev->pers == NULL) {
3277 if (len == 0)
3278 return 0;
3279 if (len >= sizeof(mddev->clevel))
3280 return -ENOSPC;
3281 strncpy(mddev->clevel, buf, len);
3282 if (mddev->clevel[len-1] == '\n')
3283 len--;
3284 mddev->clevel[len] = 0;
3285 mddev->level = LEVEL_NONE;
3286 return rv;
3289 /* request to change the personality. Need to ensure:
3290 * - array is not engaged in resync/recovery/reshape
3291 * - old personality can be suspended
3292 * - new personality will access other array.
3295 if (mddev->sync_thread ||
3296 mddev->reshape_position != MaxSector ||
3297 mddev->sysfs_active)
3298 return -EBUSY;
3300 if (!mddev->pers->quiesce) {
3301 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3302 mdname(mddev), mddev->pers->name);
3303 return -EINVAL;
3306 /* Now find the new personality */
3307 if (len == 0 || len >= sizeof(clevel))
3308 return -EINVAL;
3309 strncpy(clevel, buf, len);
3310 if (clevel[len-1] == '\n')
3311 len--;
3312 clevel[len] = 0;
3313 if (strict_strtol(clevel, 10, &level))
3314 level = LEVEL_NONE;
3316 if (request_module("md-%s", clevel) != 0)
3317 request_module("md-level-%s", clevel);
3318 spin_lock(&pers_lock);
3319 pers = find_pers(level, clevel);
3320 if (!pers || !try_module_get(pers->owner)) {
3321 spin_unlock(&pers_lock);
3322 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3323 return -EINVAL;
3325 spin_unlock(&pers_lock);
3327 if (pers == mddev->pers) {
3328 /* Nothing to do! */
3329 module_put(pers->owner);
3330 return rv;
3332 if (!pers->takeover) {
3333 module_put(pers->owner);
3334 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3335 mdname(mddev), clevel);
3336 return -EINVAL;
3339 list_for_each_entry(rdev, &mddev->disks, same_set)
3340 rdev->new_raid_disk = rdev->raid_disk;
3342 /* ->takeover must set new_* and/or delta_disks
3343 * if it succeeds, and may set them when it fails.
3345 priv = pers->takeover(mddev);
3346 if (IS_ERR(priv)) {
3347 mddev->new_level = mddev->level;
3348 mddev->new_layout = mddev->layout;
3349 mddev->new_chunk_sectors = mddev->chunk_sectors;
3350 mddev->raid_disks -= mddev->delta_disks;
3351 mddev->delta_disks = 0;
3352 module_put(pers->owner);
3353 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3354 mdname(mddev), clevel);
3355 return PTR_ERR(priv);
3358 /* Looks like we have a winner */
3359 mddev_suspend(mddev);
3360 mddev->pers->stop(mddev);
3362 if (mddev->pers->sync_request == NULL &&
3363 pers->sync_request != NULL) {
3364 /* need to add the md_redundancy_group */
3365 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3366 printk(KERN_WARNING
3367 "md: cannot register extra attributes for %s\n",
3368 mdname(mddev));
3369 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3371 if (mddev->pers->sync_request != NULL &&
3372 pers->sync_request == NULL) {
3373 /* need to remove the md_redundancy_group */
3374 if (mddev->to_remove == NULL)
3375 mddev->to_remove = &md_redundancy_group;
3378 if (mddev->pers->sync_request == NULL &&
3379 mddev->external) {
3380 /* We are converting from a no-redundancy array
3381 * to a redundancy array and metadata is managed
3382 * externally so we need to be sure that writes
3383 * won't block due to a need to transition
3384 * clean->dirty
3385 * until external management is started.
3387 mddev->in_sync = 0;
3388 mddev->safemode_delay = 0;
3389 mddev->safemode = 0;
3392 list_for_each_entry(rdev, &mddev->disks, same_set) {
3393 if (rdev->raid_disk < 0)
3394 continue;
3395 if (rdev->new_raid_disk >= mddev->raid_disks)
3396 rdev->new_raid_disk = -1;
3397 if (rdev->new_raid_disk == rdev->raid_disk)
3398 continue;
3399 sysfs_unlink_rdev(mddev, rdev);
3401 list_for_each_entry(rdev, &mddev->disks, same_set) {
3402 if (rdev->raid_disk < 0)
3403 continue;
3404 if (rdev->new_raid_disk == rdev->raid_disk)
3405 continue;
3406 rdev->raid_disk = rdev->new_raid_disk;
3407 if (rdev->raid_disk < 0)
3408 clear_bit(In_sync, &rdev->flags);
3409 else {
3410 if (sysfs_link_rdev(mddev, rdev))
3411 printk(KERN_WARNING "md: cannot register rd%d"
3412 " for %s after level change\n",
3413 rdev->raid_disk, mdname(mddev));
3417 module_put(mddev->pers->owner);
3418 mddev->pers = pers;
3419 mddev->private = priv;
3420 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3421 mddev->level = mddev->new_level;
3422 mddev->layout = mddev->new_layout;
3423 mddev->chunk_sectors = mddev->new_chunk_sectors;
3424 mddev->delta_disks = 0;
3425 mddev->degraded = 0;
3426 if (mddev->pers->sync_request == NULL) {
3427 /* this is now an array without redundancy, so
3428 * it must always be in_sync
3430 mddev->in_sync = 1;
3431 del_timer_sync(&mddev->safemode_timer);
3433 pers->run(mddev);
3434 mddev_resume(mddev);
3435 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3436 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3437 md_wakeup_thread(mddev->thread);
3438 sysfs_notify(&mddev->kobj, NULL, "level");
3439 md_new_event(mddev);
3440 return rv;
3443 static struct md_sysfs_entry md_level =
3444 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3447 static ssize_t
3448 layout_show(mddev_t *mddev, char *page)
3450 /* just a number, not meaningful for all levels */
3451 if (mddev->reshape_position != MaxSector &&
3452 mddev->layout != mddev->new_layout)
3453 return sprintf(page, "%d (%d)\n",
3454 mddev->new_layout, mddev->layout);
3455 return sprintf(page, "%d\n", mddev->layout);
3458 static ssize_t
3459 layout_store(mddev_t *mddev, const char *buf, size_t len)
3461 char *e;
3462 unsigned long n = simple_strtoul(buf, &e, 10);
3464 if (!*buf || (*e && *e != '\n'))
3465 return -EINVAL;
3467 if (mddev->pers) {
3468 int err;
3469 if (mddev->pers->check_reshape == NULL)
3470 return -EBUSY;
3471 mddev->new_layout = n;
3472 err = mddev->pers->check_reshape(mddev);
3473 if (err) {
3474 mddev->new_layout = mddev->layout;
3475 return err;
3477 } else {
3478 mddev->new_layout = n;
3479 if (mddev->reshape_position == MaxSector)
3480 mddev->layout = n;
3482 return len;
3484 static struct md_sysfs_entry md_layout =
3485 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3488 static ssize_t
3489 raid_disks_show(mddev_t *mddev, char *page)
3491 if (mddev->raid_disks == 0)
3492 return 0;
3493 if (mddev->reshape_position != MaxSector &&
3494 mddev->delta_disks != 0)
3495 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3496 mddev->raid_disks - mddev->delta_disks);
3497 return sprintf(page, "%d\n", mddev->raid_disks);
3500 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3502 static ssize_t
3503 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3505 char *e;
3506 int rv = 0;
3507 unsigned long n = simple_strtoul(buf, &e, 10);
3509 if (!*buf || (*e && *e != '\n'))
3510 return -EINVAL;
3512 if (mddev->pers)
3513 rv = update_raid_disks(mddev, n);
3514 else if (mddev->reshape_position != MaxSector) {
3515 int olddisks = mddev->raid_disks - mddev->delta_disks;
3516 mddev->delta_disks = n - olddisks;
3517 mddev->raid_disks = n;
3518 } else
3519 mddev->raid_disks = n;
3520 return rv ? rv : len;
3522 static struct md_sysfs_entry md_raid_disks =
3523 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3525 static ssize_t
3526 chunk_size_show(mddev_t *mddev, char *page)
3528 if (mddev->reshape_position != MaxSector &&
3529 mddev->chunk_sectors != mddev->new_chunk_sectors)
3530 return sprintf(page, "%d (%d)\n",
3531 mddev->new_chunk_sectors << 9,
3532 mddev->chunk_sectors << 9);
3533 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3536 static ssize_t
3537 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3539 char *e;
3540 unsigned long n = simple_strtoul(buf, &e, 10);
3542 if (!*buf || (*e && *e != '\n'))
3543 return -EINVAL;
3545 if (mddev->pers) {
3546 int err;
3547 if (mddev->pers->check_reshape == NULL)
3548 return -EBUSY;
3549 mddev->new_chunk_sectors = n >> 9;
3550 err = mddev->pers->check_reshape(mddev);
3551 if (err) {
3552 mddev->new_chunk_sectors = mddev->chunk_sectors;
3553 return err;
3555 } else {
3556 mddev->new_chunk_sectors = n >> 9;
3557 if (mddev->reshape_position == MaxSector)
3558 mddev->chunk_sectors = n >> 9;
3560 return len;
3562 static struct md_sysfs_entry md_chunk_size =
3563 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3565 static ssize_t
3566 resync_start_show(mddev_t *mddev, char *page)
3568 if (mddev->recovery_cp == MaxSector)
3569 return sprintf(page, "none\n");
3570 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3573 static ssize_t
3574 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3576 char *e;
3577 unsigned long long n = simple_strtoull(buf, &e, 10);
3579 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3580 return -EBUSY;
3581 if (cmd_match(buf, "none"))
3582 n = MaxSector;
3583 else if (!*buf || (*e && *e != '\n'))
3584 return -EINVAL;
3586 mddev->recovery_cp = n;
3587 return len;
3589 static struct md_sysfs_entry md_resync_start =
3590 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3593 * The array state can be:
3595 * clear
3596 * No devices, no size, no level
3597 * Equivalent to STOP_ARRAY ioctl
3598 * inactive
3599 * May have some settings, but array is not active
3600 * all IO results in error
3601 * When written, doesn't tear down array, but just stops it
3602 * suspended (not supported yet)
3603 * All IO requests will block. The array can be reconfigured.
3604 * Writing this, if accepted, will block until array is quiescent
3605 * readonly
3606 * no resync can happen. no superblocks get written.
3607 * write requests fail
3608 * read-auto
3609 * like readonly, but behaves like 'clean' on a write request.
3611 * clean - no pending writes, but otherwise active.
3612 * When written to inactive array, starts without resync
3613 * If a write request arrives then
3614 * if metadata is known, mark 'dirty' and switch to 'active'.
3615 * if not known, block and switch to write-pending
3616 * If written to an active array that has pending writes, then fails.
3617 * active
3618 * fully active: IO and resync can be happening.
3619 * When written to inactive array, starts with resync
3621 * write-pending
3622 * clean, but writes are blocked waiting for 'active' to be written.
3624 * active-idle
3625 * like active, but no writes have been seen for a while (100msec).
3628 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3629 write_pending, active_idle, bad_word};
3630 static char *array_states[] = {
3631 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3632 "write-pending", "active-idle", NULL };
3634 static int match_word(const char *word, char **list)
3636 int n;
3637 for (n=0; list[n]; n++)
3638 if (cmd_match(word, list[n]))
3639 break;
3640 return n;
3643 static ssize_t
3644 array_state_show(mddev_t *mddev, char *page)
3646 enum array_state st = inactive;
3648 if (mddev->pers)
3649 switch(mddev->ro) {
3650 case 1:
3651 st = readonly;
3652 break;
3653 case 2:
3654 st = read_auto;
3655 break;
3656 case 0:
3657 if (mddev->in_sync)
3658 st = clean;
3659 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3660 st = write_pending;
3661 else if (mddev->safemode)
3662 st = active_idle;
3663 else
3664 st = active;
3666 else {
3667 if (list_empty(&mddev->disks) &&
3668 mddev->raid_disks == 0 &&
3669 mddev->dev_sectors == 0)
3670 st = clear;
3671 else
3672 st = inactive;
3674 return sprintf(page, "%s\n", array_states[st]);
3677 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3678 static int md_set_readonly(mddev_t * mddev, int is_open);
3679 static int do_md_run(mddev_t * mddev);
3680 static int restart_array(mddev_t *mddev);
3682 static ssize_t
3683 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3685 int err = -EINVAL;
3686 enum array_state st = match_word(buf, array_states);
3687 switch(st) {
3688 case bad_word:
3689 break;
3690 case clear:
3691 /* stopping an active array */
3692 if (atomic_read(&mddev->openers) > 0)
3693 return -EBUSY;
3694 err = do_md_stop(mddev, 0, 0);
3695 break;
3696 case inactive:
3697 /* stopping an active array */
3698 if (mddev->pers) {
3699 if (atomic_read(&mddev->openers) > 0)
3700 return -EBUSY;
3701 err = do_md_stop(mddev, 2, 0);
3702 } else
3703 err = 0; /* already inactive */
3704 break;
3705 case suspended:
3706 break; /* not supported yet */
3707 case readonly:
3708 if (mddev->pers)
3709 err = md_set_readonly(mddev, 0);
3710 else {
3711 mddev->ro = 1;
3712 set_disk_ro(mddev->gendisk, 1);
3713 err = do_md_run(mddev);
3715 break;
3716 case read_auto:
3717 if (mddev->pers) {
3718 if (mddev->ro == 0)
3719 err = md_set_readonly(mddev, 0);
3720 else if (mddev->ro == 1)
3721 err = restart_array(mddev);
3722 if (err == 0) {
3723 mddev->ro = 2;
3724 set_disk_ro(mddev->gendisk, 0);
3726 } else {
3727 mddev->ro = 2;
3728 err = do_md_run(mddev);
3730 break;
3731 case clean:
3732 if (mddev->pers) {
3733 restart_array(mddev);
3734 spin_lock_irq(&mddev->write_lock);
3735 if (atomic_read(&mddev->writes_pending) == 0) {
3736 if (mddev->in_sync == 0) {
3737 mddev->in_sync = 1;
3738 if (mddev->safemode == 1)
3739 mddev->safemode = 0;
3740 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3742 err = 0;
3743 } else
3744 err = -EBUSY;
3745 spin_unlock_irq(&mddev->write_lock);
3746 } else
3747 err = -EINVAL;
3748 break;
3749 case active:
3750 if (mddev->pers) {
3751 restart_array(mddev);
3752 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3753 wake_up(&mddev->sb_wait);
3754 err = 0;
3755 } else {
3756 mddev->ro = 0;
3757 set_disk_ro(mddev->gendisk, 0);
3758 err = do_md_run(mddev);
3760 break;
3761 case write_pending:
3762 case active_idle:
3763 /* these cannot be set */
3764 break;
3766 if (err)
3767 return err;
3768 else {
3769 sysfs_notify_dirent_safe(mddev->sysfs_state);
3770 return len;
3773 static struct md_sysfs_entry md_array_state =
3774 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3776 static ssize_t
3777 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3778 return sprintf(page, "%d\n",
3779 atomic_read(&mddev->max_corr_read_errors));
3782 static ssize_t
3783 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3785 char *e;
3786 unsigned long n = simple_strtoul(buf, &e, 10);
3788 if (*buf && (*e == 0 || *e == '\n')) {
3789 atomic_set(&mddev->max_corr_read_errors, n);
3790 return len;
3792 return -EINVAL;
3795 static struct md_sysfs_entry max_corr_read_errors =
3796 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3797 max_corrected_read_errors_store);
3799 static ssize_t
3800 null_show(mddev_t *mddev, char *page)
3802 return -EINVAL;
3805 static ssize_t
3806 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3808 /* buf must be %d:%d\n? giving major and minor numbers */
3809 /* The new device is added to the array.
3810 * If the array has a persistent superblock, we read the
3811 * superblock to initialise info and check validity.
3812 * Otherwise, only checking done is that in bind_rdev_to_array,
3813 * which mainly checks size.
3815 char *e;
3816 int major = simple_strtoul(buf, &e, 10);
3817 int minor;
3818 dev_t dev;
3819 mdk_rdev_t *rdev;
3820 int err;
3822 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3823 return -EINVAL;
3824 minor = simple_strtoul(e+1, &e, 10);
3825 if (*e && *e != '\n')
3826 return -EINVAL;
3827 dev = MKDEV(major, minor);
3828 if (major != MAJOR(dev) ||
3829 minor != MINOR(dev))
3830 return -EOVERFLOW;
3833 if (mddev->persistent) {
3834 rdev = md_import_device(dev, mddev->major_version,
3835 mddev->minor_version);
3836 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3837 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3838 mdk_rdev_t, same_set);
3839 err = super_types[mddev->major_version]
3840 .load_super(rdev, rdev0, mddev->minor_version);
3841 if (err < 0)
3842 goto out;
3844 } else if (mddev->external)
3845 rdev = md_import_device(dev, -2, -1);
3846 else
3847 rdev = md_import_device(dev, -1, -1);
3849 if (IS_ERR(rdev))
3850 return PTR_ERR(rdev);
3851 err = bind_rdev_to_array(rdev, mddev);
3852 out:
3853 if (err)
3854 export_rdev(rdev);
3855 return err ? err : len;
3858 static struct md_sysfs_entry md_new_device =
3859 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3861 static ssize_t
3862 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3864 char *end;
3865 unsigned long chunk, end_chunk;
3867 if (!mddev->bitmap)
3868 goto out;
3869 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3870 while (*buf) {
3871 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3872 if (buf == end) break;
3873 if (*end == '-') { /* range */
3874 buf = end + 1;
3875 end_chunk = simple_strtoul(buf, &end, 0);
3876 if (buf == end) break;
3878 if (*end && !isspace(*end)) break;
3879 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3880 buf = skip_spaces(end);
3882 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3883 out:
3884 return len;
3887 static struct md_sysfs_entry md_bitmap =
3888 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3890 static ssize_t
3891 size_show(mddev_t *mddev, char *page)
3893 return sprintf(page, "%llu\n",
3894 (unsigned long long)mddev->dev_sectors / 2);
3897 static int update_size(mddev_t *mddev, sector_t num_sectors);
3899 static ssize_t
3900 size_store(mddev_t *mddev, const char *buf, size_t len)
3902 /* If array is inactive, we can reduce the component size, but
3903 * not increase it (except from 0).
3904 * If array is active, we can try an on-line resize
3906 sector_t sectors;
3907 int err = strict_blocks_to_sectors(buf, &sectors);
3909 if (err < 0)
3910 return err;
3911 if (mddev->pers) {
3912 err = update_size(mddev, sectors);
3913 md_update_sb(mddev, 1);
3914 } else {
3915 if (mddev->dev_sectors == 0 ||
3916 mddev->dev_sectors > sectors)
3917 mddev->dev_sectors = sectors;
3918 else
3919 err = -ENOSPC;
3921 return err ? err : len;
3924 static struct md_sysfs_entry md_size =
3925 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3928 /* Metdata version.
3929 * This is one of
3930 * 'none' for arrays with no metadata (good luck...)
3931 * 'external' for arrays with externally managed metadata,
3932 * or N.M for internally known formats
3934 static ssize_t
3935 metadata_show(mddev_t *mddev, char *page)
3937 if (mddev->persistent)
3938 return sprintf(page, "%d.%d\n",
3939 mddev->major_version, mddev->minor_version);
3940 else if (mddev->external)
3941 return sprintf(page, "external:%s\n", mddev->metadata_type);
3942 else
3943 return sprintf(page, "none\n");
3946 static ssize_t
3947 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3949 int major, minor;
3950 char *e;
3951 /* Changing the details of 'external' metadata is
3952 * always permitted. Otherwise there must be
3953 * no devices attached to the array.
3955 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3957 else if (!list_empty(&mddev->disks))
3958 return -EBUSY;
3960 if (cmd_match(buf, "none")) {
3961 mddev->persistent = 0;
3962 mddev->external = 0;
3963 mddev->major_version = 0;
3964 mddev->minor_version = 90;
3965 return len;
3967 if (strncmp(buf, "external:", 9) == 0) {
3968 size_t namelen = len-9;
3969 if (namelen >= sizeof(mddev->metadata_type))
3970 namelen = sizeof(mddev->metadata_type)-1;
3971 strncpy(mddev->metadata_type, buf+9, namelen);
3972 mddev->metadata_type[namelen] = 0;
3973 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3974 mddev->metadata_type[--namelen] = 0;
3975 mddev->persistent = 0;
3976 mddev->external = 1;
3977 mddev->major_version = 0;
3978 mddev->minor_version = 90;
3979 return len;
3981 major = simple_strtoul(buf, &e, 10);
3982 if (e==buf || *e != '.')
3983 return -EINVAL;
3984 buf = e+1;
3985 minor = simple_strtoul(buf, &e, 10);
3986 if (e==buf || (*e && *e != '\n') )
3987 return -EINVAL;
3988 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3989 return -ENOENT;
3990 mddev->major_version = major;
3991 mddev->minor_version = minor;
3992 mddev->persistent = 1;
3993 mddev->external = 0;
3994 return len;
3997 static struct md_sysfs_entry md_metadata =
3998 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4000 static ssize_t
4001 action_show(mddev_t *mddev, char *page)
4003 char *type = "idle";
4004 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4005 type = "frozen";
4006 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4007 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4008 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4009 type = "reshape";
4010 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4011 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4012 type = "resync";
4013 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4014 type = "check";
4015 else
4016 type = "repair";
4017 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4018 type = "recover";
4020 return sprintf(page, "%s\n", type);
4023 static void reap_sync_thread(mddev_t *mddev);
4025 static ssize_t
4026 action_store(mddev_t *mddev, const char *page, size_t len)
4028 if (!mddev->pers || !mddev->pers->sync_request)
4029 return -EINVAL;
4031 if (cmd_match(page, "frozen"))
4032 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4033 else
4034 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4036 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4037 if (mddev->sync_thread) {
4038 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4039 reap_sync_thread(mddev);
4041 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4042 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4043 return -EBUSY;
4044 else if (cmd_match(page, "resync"))
4045 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4046 else if (cmd_match(page, "recover")) {
4047 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4048 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4049 } else if (cmd_match(page, "reshape")) {
4050 int err;
4051 if (mddev->pers->start_reshape == NULL)
4052 return -EINVAL;
4053 err = mddev->pers->start_reshape(mddev);
4054 if (err)
4055 return err;
4056 sysfs_notify(&mddev->kobj, NULL, "degraded");
4057 } else {
4058 if (cmd_match(page, "check"))
4059 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4060 else if (!cmd_match(page, "repair"))
4061 return -EINVAL;
4062 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4063 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4065 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4066 md_wakeup_thread(mddev->thread);
4067 sysfs_notify_dirent_safe(mddev->sysfs_action);
4068 return len;
4071 static ssize_t
4072 mismatch_cnt_show(mddev_t *mddev, char *page)
4074 return sprintf(page, "%llu\n",
4075 (unsigned long long) mddev->resync_mismatches);
4078 static struct md_sysfs_entry md_scan_mode =
4079 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4082 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4084 static ssize_t
4085 sync_min_show(mddev_t *mddev, char *page)
4087 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4088 mddev->sync_speed_min ? "local": "system");
4091 static ssize_t
4092 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
4094 int min;
4095 char *e;
4096 if (strncmp(buf, "system", 6)==0) {
4097 mddev->sync_speed_min = 0;
4098 return len;
4100 min = simple_strtoul(buf, &e, 10);
4101 if (buf == e || (*e && *e != '\n') || min <= 0)
4102 return -EINVAL;
4103 mddev->sync_speed_min = min;
4104 return len;
4107 static struct md_sysfs_entry md_sync_min =
4108 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4110 static ssize_t
4111 sync_max_show(mddev_t *mddev, char *page)
4113 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4114 mddev->sync_speed_max ? "local": "system");
4117 static ssize_t
4118 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
4120 int max;
4121 char *e;
4122 if (strncmp(buf, "system", 6)==0) {
4123 mddev->sync_speed_max = 0;
4124 return len;
4126 max = simple_strtoul(buf, &e, 10);
4127 if (buf == e || (*e && *e != '\n') || max <= 0)
4128 return -EINVAL;
4129 mddev->sync_speed_max = max;
4130 return len;
4133 static struct md_sysfs_entry md_sync_max =
4134 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4136 static ssize_t
4137 degraded_show(mddev_t *mddev, char *page)
4139 return sprintf(page, "%d\n", mddev->degraded);
4141 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4143 static ssize_t
4144 sync_force_parallel_show(mddev_t *mddev, char *page)
4146 return sprintf(page, "%d\n", mddev->parallel_resync);
4149 static ssize_t
4150 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
4152 long n;
4154 if (strict_strtol(buf, 10, &n))
4155 return -EINVAL;
4157 if (n != 0 && n != 1)
4158 return -EINVAL;
4160 mddev->parallel_resync = n;
4162 if (mddev->sync_thread)
4163 wake_up(&resync_wait);
4165 return len;
4168 /* force parallel resync, even with shared block devices */
4169 static struct md_sysfs_entry md_sync_force_parallel =
4170 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4171 sync_force_parallel_show, sync_force_parallel_store);
4173 static ssize_t
4174 sync_speed_show(mddev_t *mddev, char *page)
4176 unsigned long resync, dt, db;
4177 if (mddev->curr_resync == 0)
4178 return sprintf(page, "none\n");
4179 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4180 dt = (jiffies - mddev->resync_mark) / HZ;
4181 if (!dt) dt++;
4182 db = resync - mddev->resync_mark_cnt;
4183 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4186 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4188 static ssize_t
4189 sync_completed_show(mddev_t *mddev, char *page)
4191 unsigned long long max_sectors, resync;
4193 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4194 return sprintf(page, "none\n");
4196 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4197 max_sectors = mddev->resync_max_sectors;
4198 else
4199 max_sectors = mddev->dev_sectors;
4201 resync = mddev->curr_resync_completed;
4202 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4205 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4207 static ssize_t
4208 min_sync_show(mddev_t *mddev, char *page)
4210 return sprintf(page, "%llu\n",
4211 (unsigned long long)mddev->resync_min);
4213 static ssize_t
4214 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
4216 unsigned long long min;
4217 if (strict_strtoull(buf, 10, &min))
4218 return -EINVAL;
4219 if (min > mddev->resync_max)
4220 return -EINVAL;
4221 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4222 return -EBUSY;
4224 /* Must be a multiple of chunk_size */
4225 if (mddev->chunk_sectors) {
4226 sector_t temp = min;
4227 if (sector_div(temp, mddev->chunk_sectors))
4228 return -EINVAL;
4230 mddev->resync_min = min;
4232 return len;
4235 static struct md_sysfs_entry md_min_sync =
4236 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4238 static ssize_t
4239 max_sync_show(mddev_t *mddev, char *page)
4241 if (mddev->resync_max == MaxSector)
4242 return sprintf(page, "max\n");
4243 else
4244 return sprintf(page, "%llu\n",
4245 (unsigned long long)mddev->resync_max);
4247 static ssize_t
4248 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
4250 if (strncmp(buf, "max", 3) == 0)
4251 mddev->resync_max = MaxSector;
4252 else {
4253 unsigned long long max;
4254 if (strict_strtoull(buf, 10, &max))
4255 return -EINVAL;
4256 if (max < mddev->resync_min)
4257 return -EINVAL;
4258 if (max < mddev->resync_max &&
4259 mddev->ro == 0 &&
4260 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4261 return -EBUSY;
4263 /* Must be a multiple of chunk_size */
4264 if (mddev->chunk_sectors) {
4265 sector_t temp = max;
4266 if (sector_div(temp, mddev->chunk_sectors))
4267 return -EINVAL;
4269 mddev->resync_max = max;
4271 wake_up(&mddev->recovery_wait);
4272 return len;
4275 static struct md_sysfs_entry md_max_sync =
4276 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4278 static ssize_t
4279 suspend_lo_show(mddev_t *mddev, char *page)
4281 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4284 static ssize_t
4285 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4287 char *e;
4288 unsigned long long new = simple_strtoull(buf, &e, 10);
4289 unsigned long long old = mddev->suspend_lo;
4291 if (mddev->pers == NULL ||
4292 mddev->pers->quiesce == NULL)
4293 return -EINVAL;
4294 if (buf == e || (*e && *e != '\n'))
4295 return -EINVAL;
4297 mddev->suspend_lo = new;
4298 if (new >= old)
4299 /* Shrinking suspended region */
4300 mddev->pers->quiesce(mddev, 2);
4301 else {
4302 /* Expanding suspended region - need to wait */
4303 mddev->pers->quiesce(mddev, 1);
4304 mddev->pers->quiesce(mddev, 0);
4306 return len;
4308 static struct md_sysfs_entry md_suspend_lo =
4309 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4312 static ssize_t
4313 suspend_hi_show(mddev_t *mddev, char *page)
4315 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4318 static ssize_t
4319 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4321 char *e;
4322 unsigned long long new = simple_strtoull(buf, &e, 10);
4323 unsigned long long old = mddev->suspend_hi;
4325 if (mddev->pers == NULL ||
4326 mddev->pers->quiesce == NULL)
4327 return -EINVAL;
4328 if (buf == e || (*e && *e != '\n'))
4329 return -EINVAL;
4331 mddev->suspend_hi = new;
4332 if (new <= old)
4333 /* Shrinking suspended region */
4334 mddev->pers->quiesce(mddev, 2);
4335 else {
4336 /* Expanding suspended region - need to wait */
4337 mddev->pers->quiesce(mddev, 1);
4338 mddev->pers->quiesce(mddev, 0);
4340 return len;
4342 static struct md_sysfs_entry md_suspend_hi =
4343 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4345 static ssize_t
4346 reshape_position_show(mddev_t *mddev, char *page)
4348 if (mddev->reshape_position != MaxSector)
4349 return sprintf(page, "%llu\n",
4350 (unsigned long long)mddev->reshape_position);
4351 strcpy(page, "none\n");
4352 return 5;
4355 static ssize_t
4356 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4358 char *e;
4359 unsigned long long new = simple_strtoull(buf, &e, 10);
4360 if (mddev->pers)
4361 return -EBUSY;
4362 if (buf == e || (*e && *e != '\n'))
4363 return -EINVAL;
4364 mddev->reshape_position = new;
4365 mddev->delta_disks = 0;
4366 mddev->new_level = mddev->level;
4367 mddev->new_layout = mddev->layout;
4368 mddev->new_chunk_sectors = mddev->chunk_sectors;
4369 return len;
4372 static struct md_sysfs_entry md_reshape_position =
4373 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4374 reshape_position_store);
4376 static ssize_t
4377 array_size_show(mddev_t *mddev, char *page)
4379 if (mddev->external_size)
4380 return sprintf(page, "%llu\n",
4381 (unsigned long long)mddev->array_sectors/2);
4382 else
4383 return sprintf(page, "default\n");
4386 static ssize_t
4387 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4389 sector_t sectors;
4391 if (strncmp(buf, "default", 7) == 0) {
4392 if (mddev->pers)
4393 sectors = mddev->pers->size(mddev, 0, 0);
4394 else
4395 sectors = mddev->array_sectors;
4397 mddev->external_size = 0;
4398 } else {
4399 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4400 return -EINVAL;
4401 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4402 return -E2BIG;
4404 mddev->external_size = 1;
4407 mddev->array_sectors = sectors;
4408 if (mddev->pers) {
4409 set_capacity(mddev->gendisk, mddev->array_sectors);
4410 revalidate_disk(mddev->gendisk);
4412 return len;
4415 static struct md_sysfs_entry md_array_size =
4416 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4417 array_size_store);
4419 static struct attribute *md_default_attrs[] = {
4420 &md_level.attr,
4421 &md_layout.attr,
4422 &md_raid_disks.attr,
4423 &md_chunk_size.attr,
4424 &md_size.attr,
4425 &md_resync_start.attr,
4426 &md_metadata.attr,
4427 &md_new_device.attr,
4428 &md_safe_delay.attr,
4429 &md_array_state.attr,
4430 &md_reshape_position.attr,
4431 &md_array_size.attr,
4432 &max_corr_read_errors.attr,
4433 NULL,
4436 static struct attribute *md_redundancy_attrs[] = {
4437 &md_scan_mode.attr,
4438 &md_mismatches.attr,
4439 &md_sync_min.attr,
4440 &md_sync_max.attr,
4441 &md_sync_speed.attr,
4442 &md_sync_force_parallel.attr,
4443 &md_sync_completed.attr,
4444 &md_min_sync.attr,
4445 &md_max_sync.attr,
4446 &md_suspend_lo.attr,
4447 &md_suspend_hi.attr,
4448 &md_bitmap.attr,
4449 &md_degraded.attr,
4450 NULL,
4452 static struct attribute_group md_redundancy_group = {
4453 .name = NULL,
4454 .attrs = md_redundancy_attrs,
4458 static ssize_t
4459 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4461 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4462 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4463 ssize_t rv;
4465 if (!entry->show)
4466 return -EIO;
4467 rv = mddev_lock(mddev);
4468 if (!rv) {
4469 rv = entry->show(mddev, page);
4470 mddev_unlock(mddev);
4472 return rv;
4475 static ssize_t
4476 md_attr_store(struct kobject *kobj, struct attribute *attr,
4477 const char *page, size_t length)
4479 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4480 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4481 ssize_t rv;
4483 if (!entry->store)
4484 return -EIO;
4485 if (!capable(CAP_SYS_ADMIN))
4486 return -EACCES;
4487 rv = mddev_lock(mddev);
4488 if (mddev->hold_active == UNTIL_IOCTL)
4489 mddev->hold_active = 0;
4490 if (!rv) {
4491 rv = entry->store(mddev, page, length);
4492 mddev_unlock(mddev);
4494 return rv;
4497 static void md_free(struct kobject *ko)
4499 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4501 if (mddev->sysfs_state)
4502 sysfs_put(mddev->sysfs_state);
4504 if (mddev->gendisk) {
4505 del_gendisk(mddev->gendisk);
4506 put_disk(mddev->gendisk);
4508 if (mddev->queue)
4509 blk_cleanup_queue(mddev->queue);
4511 kfree(mddev);
4514 static const struct sysfs_ops md_sysfs_ops = {
4515 .show = md_attr_show,
4516 .store = md_attr_store,
4518 static struct kobj_type md_ktype = {
4519 .release = md_free,
4520 .sysfs_ops = &md_sysfs_ops,
4521 .default_attrs = md_default_attrs,
4524 int mdp_major = 0;
4526 static void mddev_delayed_delete(struct work_struct *ws)
4528 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4530 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4531 kobject_del(&mddev->kobj);
4532 kobject_put(&mddev->kobj);
4535 static int md_alloc(dev_t dev, char *name)
4537 static DEFINE_MUTEX(disks_mutex);
4538 mddev_t *mddev = mddev_find(dev);
4539 struct gendisk *disk;
4540 int partitioned;
4541 int shift;
4542 int unit;
4543 int error;
4545 if (!mddev)
4546 return -ENODEV;
4548 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4549 shift = partitioned ? MdpMinorShift : 0;
4550 unit = MINOR(mddev->unit) >> shift;
4552 /* wait for any previous instance of this device to be
4553 * completely removed (mddev_delayed_delete).
4555 flush_workqueue(md_misc_wq);
4557 mutex_lock(&disks_mutex);
4558 error = -EEXIST;
4559 if (mddev->gendisk)
4560 goto abort;
4562 if (name) {
4563 /* Need to ensure that 'name' is not a duplicate.
4565 mddev_t *mddev2;
4566 spin_lock(&all_mddevs_lock);
4568 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4569 if (mddev2->gendisk &&
4570 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4571 spin_unlock(&all_mddevs_lock);
4572 goto abort;
4574 spin_unlock(&all_mddevs_lock);
4577 error = -ENOMEM;
4578 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4579 if (!mddev->queue)
4580 goto abort;
4581 mddev->queue->queuedata = mddev;
4583 blk_queue_make_request(mddev->queue, md_make_request);
4585 disk = alloc_disk(1 << shift);
4586 if (!disk) {
4587 blk_cleanup_queue(mddev->queue);
4588 mddev->queue = NULL;
4589 goto abort;
4591 disk->major = MAJOR(mddev->unit);
4592 disk->first_minor = unit << shift;
4593 if (name)
4594 strcpy(disk->disk_name, name);
4595 else if (partitioned)
4596 sprintf(disk->disk_name, "md_d%d", unit);
4597 else
4598 sprintf(disk->disk_name, "md%d", unit);
4599 disk->fops = &md_fops;
4600 disk->private_data = mddev;
4601 disk->queue = mddev->queue;
4602 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4603 /* Allow extended partitions. This makes the
4604 * 'mdp' device redundant, but we can't really
4605 * remove it now.
4607 disk->flags |= GENHD_FL_EXT_DEVT;
4608 mddev->gendisk = disk;
4609 /* As soon as we call add_disk(), another thread could get
4610 * through to md_open, so make sure it doesn't get too far
4612 mutex_lock(&mddev->open_mutex);
4613 add_disk(disk);
4615 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4616 &disk_to_dev(disk)->kobj, "%s", "md");
4617 if (error) {
4618 /* This isn't possible, but as kobject_init_and_add is marked
4619 * __must_check, we must do something with the result
4621 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4622 disk->disk_name);
4623 error = 0;
4625 if (mddev->kobj.sd &&
4626 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4627 printk(KERN_DEBUG "pointless warning\n");
4628 mutex_unlock(&mddev->open_mutex);
4629 abort:
4630 mutex_unlock(&disks_mutex);
4631 if (!error && mddev->kobj.sd) {
4632 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4633 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4635 mddev_put(mddev);
4636 return error;
4639 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4641 md_alloc(dev, NULL);
4642 return NULL;
4645 static int add_named_array(const char *val, struct kernel_param *kp)
4647 /* val must be "md_*" where * is not all digits.
4648 * We allocate an array with a large free minor number, and
4649 * set the name to val. val must not already be an active name.
4651 int len = strlen(val);
4652 char buf[DISK_NAME_LEN];
4654 while (len && val[len-1] == '\n')
4655 len--;
4656 if (len >= DISK_NAME_LEN)
4657 return -E2BIG;
4658 strlcpy(buf, val, len+1);
4659 if (strncmp(buf, "md_", 3) != 0)
4660 return -EINVAL;
4661 return md_alloc(0, buf);
4664 static void md_safemode_timeout(unsigned long data)
4666 mddev_t *mddev = (mddev_t *) data;
4668 if (!atomic_read(&mddev->writes_pending)) {
4669 mddev->safemode = 1;
4670 if (mddev->external)
4671 sysfs_notify_dirent_safe(mddev->sysfs_state);
4673 md_wakeup_thread(mddev->thread);
4676 static int start_dirty_degraded;
4678 int md_run(mddev_t *mddev)
4680 int err;
4681 mdk_rdev_t *rdev;
4682 struct mdk_personality *pers;
4684 if (list_empty(&mddev->disks))
4685 /* cannot run an array with no devices.. */
4686 return -EINVAL;
4688 if (mddev->pers)
4689 return -EBUSY;
4690 /* Cannot run until previous stop completes properly */
4691 if (mddev->sysfs_active)
4692 return -EBUSY;
4695 * Analyze all RAID superblock(s)
4697 if (!mddev->raid_disks) {
4698 if (!mddev->persistent)
4699 return -EINVAL;
4700 analyze_sbs(mddev);
4703 if (mddev->level != LEVEL_NONE)
4704 request_module("md-level-%d", mddev->level);
4705 else if (mddev->clevel[0])
4706 request_module("md-%s", mddev->clevel);
4709 * Drop all container device buffers, from now on
4710 * the only valid external interface is through the md
4711 * device.
4713 list_for_each_entry(rdev, &mddev->disks, same_set) {
4714 if (test_bit(Faulty, &rdev->flags))
4715 continue;
4716 sync_blockdev(rdev->bdev);
4717 invalidate_bdev(rdev->bdev);
4719 /* perform some consistency tests on the device.
4720 * We don't want the data to overlap the metadata,
4721 * Internal Bitmap issues have been handled elsewhere.
4723 if (rdev->meta_bdev) {
4724 /* Nothing to check */;
4725 } else if (rdev->data_offset < rdev->sb_start) {
4726 if (mddev->dev_sectors &&
4727 rdev->data_offset + mddev->dev_sectors
4728 > rdev->sb_start) {
4729 printk("md: %s: data overlaps metadata\n",
4730 mdname(mddev));
4731 return -EINVAL;
4733 } else {
4734 if (rdev->sb_start + rdev->sb_size/512
4735 > rdev->data_offset) {
4736 printk("md: %s: metadata overlaps data\n",
4737 mdname(mddev));
4738 return -EINVAL;
4741 sysfs_notify_dirent_safe(rdev->sysfs_state);
4744 if (mddev->bio_set == NULL)
4745 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4746 sizeof(mddev_t *));
4748 spin_lock(&pers_lock);
4749 pers = find_pers(mddev->level, mddev->clevel);
4750 if (!pers || !try_module_get(pers->owner)) {
4751 spin_unlock(&pers_lock);
4752 if (mddev->level != LEVEL_NONE)
4753 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4754 mddev->level);
4755 else
4756 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4757 mddev->clevel);
4758 return -EINVAL;
4760 mddev->pers = pers;
4761 spin_unlock(&pers_lock);
4762 if (mddev->level != pers->level) {
4763 mddev->level = pers->level;
4764 mddev->new_level = pers->level;
4766 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4768 if (mddev->reshape_position != MaxSector &&
4769 pers->start_reshape == NULL) {
4770 /* This personality cannot handle reshaping... */
4771 mddev->pers = NULL;
4772 module_put(pers->owner);
4773 return -EINVAL;
4776 if (pers->sync_request) {
4777 /* Warn if this is a potentially silly
4778 * configuration.
4780 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4781 mdk_rdev_t *rdev2;
4782 int warned = 0;
4784 list_for_each_entry(rdev, &mddev->disks, same_set)
4785 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4786 if (rdev < rdev2 &&
4787 rdev->bdev->bd_contains ==
4788 rdev2->bdev->bd_contains) {
4789 printk(KERN_WARNING
4790 "%s: WARNING: %s appears to be"
4791 " on the same physical disk as"
4792 " %s.\n",
4793 mdname(mddev),
4794 bdevname(rdev->bdev,b),
4795 bdevname(rdev2->bdev,b2));
4796 warned = 1;
4800 if (warned)
4801 printk(KERN_WARNING
4802 "True protection against single-disk"
4803 " failure might be compromised.\n");
4806 mddev->recovery = 0;
4807 /* may be over-ridden by personality */
4808 mddev->resync_max_sectors = mddev->dev_sectors;
4810 mddev->ok_start_degraded = start_dirty_degraded;
4812 if (start_readonly && mddev->ro == 0)
4813 mddev->ro = 2; /* read-only, but switch on first write */
4815 err = mddev->pers->run(mddev);
4816 if (err)
4817 printk(KERN_ERR "md: pers->run() failed ...\n");
4818 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4819 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4820 " but 'external_size' not in effect?\n", __func__);
4821 printk(KERN_ERR
4822 "md: invalid array_size %llu > default size %llu\n",
4823 (unsigned long long)mddev->array_sectors / 2,
4824 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4825 err = -EINVAL;
4826 mddev->pers->stop(mddev);
4828 if (err == 0 && mddev->pers->sync_request) {
4829 err = bitmap_create(mddev);
4830 if (err) {
4831 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4832 mdname(mddev), err);
4833 mddev->pers->stop(mddev);
4836 if (err) {
4837 module_put(mddev->pers->owner);
4838 mddev->pers = NULL;
4839 bitmap_destroy(mddev);
4840 return err;
4842 if (mddev->pers->sync_request) {
4843 if (mddev->kobj.sd &&
4844 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4845 printk(KERN_WARNING
4846 "md: cannot register extra attributes for %s\n",
4847 mdname(mddev));
4848 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4849 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4850 mddev->ro = 0;
4852 atomic_set(&mddev->writes_pending,0);
4853 atomic_set(&mddev->max_corr_read_errors,
4854 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4855 mddev->safemode = 0;
4856 mddev->safemode_timer.function = md_safemode_timeout;
4857 mddev->safemode_timer.data = (unsigned long) mddev;
4858 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4859 mddev->in_sync = 1;
4860 smp_wmb();
4861 mddev->ready = 1;
4862 list_for_each_entry(rdev, &mddev->disks, same_set)
4863 if (rdev->raid_disk >= 0)
4864 if (sysfs_link_rdev(mddev, rdev))
4865 /* failure here is OK */;
4867 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4869 if (mddev->flags)
4870 md_update_sb(mddev, 0);
4872 md_new_event(mddev);
4873 sysfs_notify_dirent_safe(mddev->sysfs_state);
4874 sysfs_notify_dirent_safe(mddev->sysfs_action);
4875 sysfs_notify(&mddev->kobj, NULL, "degraded");
4876 return 0;
4878 EXPORT_SYMBOL_GPL(md_run);
4880 static int do_md_run(mddev_t *mddev)
4882 int err;
4884 err = md_run(mddev);
4885 if (err)
4886 goto out;
4887 err = bitmap_load(mddev);
4888 if (err) {
4889 bitmap_destroy(mddev);
4890 goto out;
4893 md_wakeup_thread(mddev->thread);
4894 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4896 set_capacity(mddev->gendisk, mddev->array_sectors);
4897 revalidate_disk(mddev->gendisk);
4898 mddev->changed = 1;
4899 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4900 out:
4901 return err;
4904 static int restart_array(mddev_t *mddev)
4906 struct gendisk *disk = mddev->gendisk;
4908 /* Complain if it has no devices */
4909 if (list_empty(&mddev->disks))
4910 return -ENXIO;
4911 if (!mddev->pers)
4912 return -EINVAL;
4913 if (!mddev->ro)
4914 return -EBUSY;
4915 mddev->safemode = 0;
4916 mddev->ro = 0;
4917 set_disk_ro(disk, 0);
4918 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4919 mdname(mddev));
4920 /* Kick recovery or resync if necessary */
4921 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4922 md_wakeup_thread(mddev->thread);
4923 md_wakeup_thread(mddev->sync_thread);
4924 sysfs_notify_dirent_safe(mddev->sysfs_state);
4925 return 0;
4928 /* similar to deny_write_access, but accounts for our holding a reference
4929 * to the file ourselves */
4930 static int deny_bitmap_write_access(struct file * file)
4932 struct inode *inode = file->f_mapping->host;
4934 spin_lock(&inode->i_lock);
4935 if (atomic_read(&inode->i_writecount) > 1) {
4936 spin_unlock(&inode->i_lock);
4937 return -ETXTBSY;
4939 atomic_set(&inode->i_writecount, -1);
4940 spin_unlock(&inode->i_lock);
4942 return 0;
4945 void restore_bitmap_write_access(struct file *file)
4947 struct inode *inode = file->f_mapping->host;
4949 spin_lock(&inode->i_lock);
4950 atomic_set(&inode->i_writecount, 1);
4951 spin_unlock(&inode->i_lock);
4954 static void md_clean(mddev_t *mddev)
4956 mddev->array_sectors = 0;
4957 mddev->external_size = 0;
4958 mddev->dev_sectors = 0;
4959 mddev->raid_disks = 0;
4960 mddev->recovery_cp = 0;
4961 mddev->resync_min = 0;
4962 mddev->resync_max = MaxSector;
4963 mddev->reshape_position = MaxSector;
4964 mddev->external = 0;
4965 mddev->persistent = 0;
4966 mddev->level = LEVEL_NONE;
4967 mddev->clevel[0] = 0;
4968 mddev->flags = 0;
4969 mddev->ro = 0;
4970 mddev->metadata_type[0] = 0;
4971 mddev->chunk_sectors = 0;
4972 mddev->ctime = mddev->utime = 0;
4973 mddev->layout = 0;
4974 mddev->max_disks = 0;
4975 mddev->events = 0;
4976 mddev->can_decrease_events = 0;
4977 mddev->delta_disks = 0;
4978 mddev->new_level = LEVEL_NONE;
4979 mddev->new_layout = 0;
4980 mddev->new_chunk_sectors = 0;
4981 mddev->curr_resync = 0;
4982 mddev->resync_mismatches = 0;
4983 mddev->suspend_lo = mddev->suspend_hi = 0;
4984 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4985 mddev->recovery = 0;
4986 mddev->in_sync = 0;
4987 mddev->changed = 0;
4988 mddev->degraded = 0;
4989 mddev->safemode = 0;
4990 mddev->bitmap_info.offset = 0;
4991 mddev->bitmap_info.default_offset = 0;
4992 mddev->bitmap_info.chunksize = 0;
4993 mddev->bitmap_info.daemon_sleep = 0;
4994 mddev->bitmap_info.max_write_behind = 0;
4997 static void __md_stop_writes(mddev_t *mddev)
4999 if (mddev->sync_thread) {
5000 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5001 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5002 reap_sync_thread(mddev);
5005 del_timer_sync(&mddev->safemode_timer);
5007 bitmap_flush(mddev);
5008 md_super_wait(mddev);
5010 if (!mddev->in_sync || mddev->flags) {
5011 /* mark array as shutdown cleanly */
5012 mddev->in_sync = 1;
5013 md_update_sb(mddev, 1);
5017 void md_stop_writes(mddev_t *mddev)
5019 mddev_lock(mddev);
5020 __md_stop_writes(mddev);
5021 mddev_unlock(mddev);
5023 EXPORT_SYMBOL_GPL(md_stop_writes);
5025 void md_stop(mddev_t *mddev)
5027 mddev->ready = 0;
5028 mddev->pers->stop(mddev);
5029 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5030 mddev->to_remove = &md_redundancy_group;
5031 module_put(mddev->pers->owner);
5032 mddev->pers = NULL;
5033 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5035 EXPORT_SYMBOL_GPL(md_stop);
5037 static int md_set_readonly(mddev_t *mddev, int is_open)
5039 int err = 0;
5040 mutex_lock(&mddev->open_mutex);
5041 if (atomic_read(&mddev->openers) > is_open) {
5042 printk("md: %s still in use.\n",mdname(mddev));
5043 err = -EBUSY;
5044 goto out;
5046 if (mddev->pers) {
5047 __md_stop_writes(mddev);
5049 err = -ENXIO;
5050 if (mddev->ro==1)
5051 goto out;
5052 mddev->ro = 1;
5053 set_disk_ro(mddev->gendisk, 1);
5054 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5055 sysfs_notify_dirent_safe(mddev->sysfs_state);
5056 err = 0;
5058 out:
5059 mutex_unlock(&mddev->open_mutex);
5060 return err;
5063 /* mode:
5064 * 0 - completely stop and dis-assemble array
5065 * 2 - stop but do not disassemble array
5067 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
5069 struct gendisk *disk = mddev->gendisk;
5070 mdk_rdev_t *rdev;
5072 mutex_lock(&mddev->open_mutex);
5073 if (atomic_read(&mddev->openers) > is_open ||
5074 mddev->sysfs_active) {
5075 printk("md: %s still in use.\n",mdname(mddev));
5076 mutex_unlock(&mddev->open_mutex);
5077 return -EBUSY;
5080 if (mddev->pers) {
5081 if (mddev->ro)
5082 set_disk_ro(disk, 0);
5084 __md_stop_writes(mddev);
5085 md_stop(mddev);
5086 mddev->queue->merge_bvec_fn = NULL;
5087 mddev->queue->backing_dev_info.congested_fn = NULL;
5089 /* tell userspace to handle 'inactive' */
5090 sysfs_notify_dirent_safe(mddev->sysfs_state);
5092 list_for_each_entry(rdev, &mddev->disks, same_set)
5093 if (rdev->raid_disk >= 0)
5094 sysfs_unlink_rdev(mddev, rdev);
5096 set_capacity(disk, 0);
5097 mutex_unlock(&mddev->open_mutex);
5098 mddev->changed = 1;
5099 revalidate_disk(disk);
5101 if (mddev->ro)
5102 mddev->ro = 0;
5103 } else
5104 mutex_unlock(&mddev->open_mutex);
5106 * Free resources if final stop
5108 if (mode == 0) {
5109 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5111 bitmap_destroy(mddev);
5112 if (mddev->bitmap_info.file) {
5113 restore_bitmap_write_access(mddev->bitmap_info.file);
5114 fput(mddev->bitmap_info.file);
5115 mddev->bitmap_info.file = NULL;
5117 mddev->bitmap_info.offset = 0;
5119 export_array(mddev);
5121 md_clean(mddev);
5122 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5123 if (mddev->hold_active == UNTIL_STOP)
5124 mddev->hold_active = 0;
5126 blk_integrity_unregister(disk);
5127 md_new_event(mddev);
5128 sysfs_notify_dirent_safe(mddev->sysfs_state);
5129 return 0;
5132 #ifndef MODULE
5133 static void autorun_array(mddev_t *mddev)
5135 mdk_rdev_t *rdev;
5136 int err;
5138 if (list_empty(&mddev->disks))
5139 return;
5141 printk(KERN_INFO "md: running: ");
5143 list_for_each_entry(rdev, &mddev->disks, same_set) {
5144 char b[BDEVNAME_SIZE];
5145 printk("<%s>", bdevname(rdev->bdev,b));
5147 printk("\n");
5149 err = do_md_run(mddev);
5150 if (err) {
5151 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5152 do_md_stop(mddev, 0, 0);
5157 * lets try to run arrays based on all disks that have arrived
5158 * until now. (those are in pending_raid_disks)
5160 * the method: pick the first pending disk, collect all disks with
5161 * the same UUID, remove all from the pending list and put them into
5162 * the 'same_array' list. Then order this list based on superblock
5163 * update time (freshest comes first), kick out 'old' disks and
5164 * compare superblocks. If everything's fine then run it.
5166 * If "unit" is allocated, then bump its reference count
5168 static void autorun_devices(int part)
5170 mdk_rdev_t *rdev0, *rdev, *tmp;
5171 mddev_t *mddev;
5172 char b[BDEVNAME_SIZE];
5174 printk(KERN_INFO "md: autorun ...\n");
5175 while (!list_empty(&pending_raid_disks)) {
5176 int unit;
5177 dev_t dev;
5178 LIST_HEAD(candidates);
5179 rdev0 = list_entry(pending_raid_disks.next,
5180 mdk_rdev_t, same_set);
5182 printk(KERN_INFO "md: considering %s ...\n",
5183 bdevname(rdev0->bdev,b));
5184 INIT_LIST_HEAD(&candidates);
5185 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5186 if (super_90_load(rdev, rdev0, 0) >= 0) {
5187 printk(KERN_INFO "md: adding %s ...\n",
5188 bdevname(rdev->bdev,b));
5189 list_move(&rdev->same_set, &candidates);
5192 * now we have a set of devices, with all of them having
5193 * mostly sane superblocks. It's time to allocate the
5194 * mddev.
5196 if (part) {
5197 dev = MKDEV(mdp_major,
5198 rdev0->preferred_minor << MdpMinorShift);
5199 unit = MINOR(dev) >> MdpMinorShift;
5200 } else {
5201 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5202 unit = MINOR(dev);
5204 if (rdev0->preferred_minor != unit) {
5205 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5206 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5207 break;
5210 md_probe(dev, NULL, NULL);
5211 mddev = mddev_find(dev);
5212 if (!mddev || !mddev->gendisk) {
5213 if (mddev)
5214 mddev_put(mddev);
5215 printk(KERN_ERR
5216 "md: cannot allocate memory for md drive.\n");
5217 break;
5219 if (mddev_lock(mddev))
5220 printk(KERN_WARNING "md: %s locked, cannot run\n",
5221 mdname(mddev));
5222 else if (mddev->raid_disks || mddev->major_version
5223 || !list_empty(&mddev->disks)) {
5224 printk(KERN_WARNING
5225 "md: %s already running, cannot run %s\n",
5226 mdname(mddev), bdevname(rdev0->bdev,b));
5227 mddev_unlock(mddev);
5228 } else {
5229 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5230 mddev->persistent = 1;
5231 rdev_for_each_list(rdev, tmp, &candidates) {
5232 list_del_init(&rdev->same_set);
5233 if (bind_rdev_to_array(rdev, mddev))
5234 export_rdev(rdev);
5236 autorun_array(mddev);
5237 mddev_unlock(mddev);
5239 /* on success, candidates will be empty, on error
5240 * it won't...
5242 rdev_for_each_list(rdev, tmp, &candidates) {
5243 list_del_init(&rdev->same_set);
5244 export_rdev(rdev);
5246 mddev_put(mddev);
5248 printk(KERN_INFO "md: ... autorun DONE.\n");
5250 #endif /* !MODULE */
5252 static int get_version(void __user * arg)
5254 mdu_version_t ver;
5256 ver.major = MD_MAJOR_VERSION;
5257 ver.minor = MD_MINOR_VERSION;
5258 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5260 if (copy_to_user(arg, &ver, sizeof(ver)))
5261 return -EFAULT;
5263 return 0;
5266 static int get_array_info(mddev_t * mddev, void __user * arg)
5268 mdu_array_info_t info;
5269 int nr,working,insync,failed,spare;
5270 mdk_rdev_t *rdev;
5272 nr=working=insync=failed=spare=0;
5273 list_for_each_entry(rdev, &mddev->disks, same_set) {
5274 nr++;
5275 if (test_bit(Faulty, &rdev->flags))
5276 failed++;
5277 else {
5278 working++;
5279 if (test_bit(In_sync, &rdev->flags))
5280 insync++;
5281 else
5282 spare++;
5286 info.major_version = mddev->major_version;
5287 info.minor_version = mddev->minor_version;
5288 info.patch_version = MD_PATCHLEVEL_VERSION;
5289 info.ctime = mddev->ctime;
5290 info.level = mddev->level;
5291 info.size = mddev->dev_sectors / 2;
5292 if (info.size != mddev->dev_sectors / 2) /* overflow */
5293 info.size = -1;
5294 info.nr_disks = nr;
5295 info.raid_disks = mddev->raid_disks;
5296 info.md_minor = mddev->md_minor;
5297 info.not_persistent= !mddev->persistent;
5299 info.utime = mddev->utime;
5300 info.state = 0;
5301 if (mddev->in_sync)
5302 info.state = (1<<MD_SB_CLEAN);
5303 if (mddev->bitmap && mddev->bitmap_info.offset)
5304 info.state = (1<<MD_SB_BITMAP_PRESENT);
5305 info.active_disks = insync;
5306 info.working_disks = working;
5307 info.failed_disks = failed;
5308 info.spare_disks = spare;
5310 info.layout = mddev->layout;
5311 info.chunk_size = mddev->chunk_sectors << 9;
5313 if (copy_to_user(arg, &info, sizeof(info)))
5314 return -EFAULT;
5316 return 0;
5319 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5321 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5322 char *ptr, *buf = NULL;
5323 int err = -ENOMEM;
5325 if (md_allow_write(mddev))
5326 file = kmalloc(sizeof(*file), GFP_NOIO);
5327 else
5328 file = kmalloc(sizeof(*file), GFP_KERNEL);
5330 if (!file)
5331 goto out;
5333 /* bitmap disabled, zero the first byte and copy out */
5334 if (!mddev->bitmap || !mddev->bitmap->file) {
5335 file->pathname[0] = '\0';
5336 goto copy_out;
5339 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5340 if (!buf)
5341 goto out;
5343 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5344 if (IS_ERR(ptr))
5345 goto out;
5347 strcpy(file->pathname, ptr);
5349 copy_out:
5350 err = 0;
5351 if (copy_to_user(arg, file, sizeof(*file)))
5352 err = -EFAULT;
5353 out:
5354 kfree(buf);
5355 kfree(file);
5356 return err;
5359 static int get_disk_info(mddev_t * mddev, void __user * arg)
5361 mdu_disk_info_t info;
5362 mdk_rdev_t *rdev;
5364 if (copy_from_user(&info, arg, sizeof(info)))
5365 return -EFAULT;
5367 rdev = find_rdev_nr(mddev, info.number);
5368 if (rdev) {
5369 info.major = MAJOR(rdev->bdev->bd_dev);
5370 info.minor = MINOR(rdev->bdev->bd_dev);
5371 info.raid_disk = rdev->raid_disk;
5372 info.state = 0;
5373 if (test_bit(Faulty, &rdev->flags))
5374 info.state |= (1<<MD_DISK_FAULTY);
5375 else if (test_bit(In_sync, &rdev->flags)) {
5376 info.state |= (1<<MD_DISK_ACTIVE);
5377 info.state |= (1<<MD_DISK_SYNC);
5379 if (test_bit(WriteMostly, &rdev->flags))
5380 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5381 } else {
5382 info.major = info.minor = 0;
5383 info.raid_disk = -1;
5384 info.state = (1<<MD_DISK_REMOVED);
5387 if (copy_to_user(arg, &info, sizeof(info)))
5388 return -EFAULT;
5390 return 0;
5393 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5395 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5396 mdk_rdev_t *rdev;
5397 dev_t dev = MKDEV(info->major,info->minor);
5399 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5400 return -EOVERFLOW;
5402 if (!mddev->raid_disks) {
5403 int err;
5404 /* expecting a device which has a superblock */
5405 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5406 if (IS_ERR(rdev)) {
5407 printk(KERN_WARNING
5408 "md: md_import_device returned %ld\n",
5409 PTR_ERR(rdev));
5410 return PTR_ERR(rdev);
5412 if (!list_empty(&mddev->disks)) {
5413 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5414 mdk_rdev_t, same_set);
5415 err = super_types[mddev->major_version]
5416 .load_super(rdev, rdev0, mddev->minor_version);
5417 if (err < 0) {
5418 printk(KERN_WARNING
5419 "md: %s has different UUID to %s\n",
5420 bdevname(rdev->bdev,b),
5421 bdevname(rdev0->bdev,b2));
5422 export_rdev(rdev);
5423 return -EINVAL;
5426 err = bind_rdev_to_array(rdev, mddev);
5427 if (err)
5428 export_rdev(rdev);
5429 return err;
5433 * add_new_disk can be used once the array is assembled
5434 * to add "hot spares". They must already have a superblock
5435 * written
5437 if (mddev->pers) {
5438 int err;
5439 if (!mddev->pers->hot_add_disk) {
5440 printk(KERN_WARNING
5441 "%s: personality does not support diskops!\n",
5442 mdname(mddev));
5443 return -EINVAL;
5445 if (mddev->persistent)
5446 rdev = md_import_device(dev, mddev->major_version,
5447 mddev->minor_version);
5448 else
5449 rdev = md_import_device(dev, -1, -1);
5450 if (IS_ERR(rdev)) {
5451 printk(KERN_WARNING
5452 "md: md_import_device returned %ld\n",
5453 PTR_ERR(rdev));
5454 return PTR_ERR(rdev);
5456 /* set saved_raid_disk if appropriate */
5457 if (!mddev->persistent) {
5458 if (info->state & (1<<MD_DISK_SYNC) &&
5459 info->raid_disk < mddev->raid_disks) {
5460 rdev->raid_disk = info->raid_disk;
5461 set_bit(In_sync, &rdev->flags);
5462 } else
5463 rdev->raid_disk = -1;
5464 } else
5465 super_types[mddev->major_version].
5466 validate_super(mddev, rdev);
5467 if ((info->state & (1<<MD_DISK_SYNC)) &&
5468 (!test_bit(In_sync, &rdev->flags) ||
5469 rdev->raid_disk != info->raid_disk)) {
5470 /* This was a hot-add request, but events doesn't
5471 * match, so reject it.
5473 export_rdev(rdev);
5474 return -EINVAL;
5477 if (test_bit(In_sync, &rdev->flags))
5478 rdev->saved_raid_disk = rdev->raid_disk;
5479 else
5480 rdev->saved_raid_disk = -1;
5482 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5483 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5484 set_bit(WriteMostly, &rdev->flags);
5485 else
5486 clear_bit(WriteMostly, &rdev->flags);
5488 rdev->raid_disk = -1;
5489 err = bind_rdev_to_array(rdev, mddev);
5490 if (!err && !mddev->pers->hot_remove_disk) {
5491 /* If there is hot_add_disk but no hot_remove_disk
5492 * then added disks for geometry changes,
5493 * and should be added immediately.
5495 super_types[mddev->major_version].
5496 validate_super(mddev, rdev);
5497 err = mddev->pers->hot_add_disk(mddev, rdev);
5498 if (err)
5499 unbind_rdev_from_array(rdev);
5501 if (err)
5502 export_rdev(rdev);
5503 else
5504 sysfs_notify_dirent_safe(rdev->sysfs_state);
5506 md_update_sb(mddev, 1);
5507 if (mddev->degraded)
5508 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5509 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5510 if (!err)
5511 md_new_event(mddev);
5512 md_wakeup_thread(mddev->thread);
5513 return err;
5516 /* otherwise, add_new_disk is only allowed
5517 * for major_version==0 superblocks
5519 if (mddev->major_version != 0) {
5520 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5521 mdname(mddev));
5522 return -EINVAL;
5525 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5526 int err;
5527 rdev = md_import_device(dev, -1, 0);
5528 if (IS_ERR(rdev)) {
5529 printk(KERN_WARNING
5530 "md: error, md_import_device() returned %ld\n",
5531 PTR_ERR(rdev));
5532 return PTR_ERR(rdev);
5534 rdev->desc_nr = info->number;
5535 if (info->raid_disk < mddev->raid_disks)
5536 rdev->raid_disk = info->raid_disk;
5537 else
5538 rdev->raid_disk = -1;
5540 if (rdev->raid_disk < mddev->raid_disks)
5541 if (info->state & (1<<MD_DISK_SYNC))
5542 set_bit(In_sync, &rdev->flags);
5544 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5545 set_bit(WriteMostly, &rdev->flags);
5547 if (!mddev->persistent) {
5548 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5549 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5550 } else
5551 rdev->sb_start = calc_dev_sboffset(rdev);
5552 rdev->sectors = rdev->sb_start;
5554 err = bind_rdev_to_array(rdev, mddev);
5555 if (err) {
5556 export_rdev(rdev);
5557 return err;
5561 return 0;
5564 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5566 char b[BDEVNAME_SIZE];
5567 mdk_rdev_t *rdev;
5569 rdev = find_rdev(mddev, dev);
5570 if (!rdev)
5571 return -ENXIO;
5573 if (rdev->raid_disk >= 0)
5574 goto busy;
5576 kick_rdev_from_array(rdev);
5577 md_update_sb(mddev, 1);
5578 md_new_event(mddev);
5580 return 0;
5581 busy:
5582 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5583 bdevname(rdev->bdev,b), mdname(mddev));
5584 return -EBUSY;
5587 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5589 char b[BDEVNAME_SIZE];
5590 int err;
5591 mdk_rdev_t *rdev;
5593 if (!mddev->pers)
5594 return -ENODEV;
5596 if (mddev->major_version != 0) {
5597 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5598 " version-0 superblocks.\n",
5599 mdname(mddev));
5600 return -EINVAL;
5602 if (!mddev->pers->hot_add_disk) {
5603 printk(KERN_WARNING
5604 "%s: personality does not support diskops!\n",
5605 mdname(mddev));
5606 return -EINVAL;
5609 rdev = md_import_device(dev, -1, 0);
5610 if (IS_ERR(rdev)) {
5611 printk(KERN_WARNING
5612 "md: error, md_import_device() returned %ld\n",
5613 PTR_ERR(rdev));
5614 return -EINVAL;
5617 if (mddev->persistent)
5618 rdev->sb_start = calc_dev_sboffset(rdev);
5619 else
5620 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5622 rdev->sectors = rdev->sb_start;
5624 if (test_bit(Faulty, &rdev->flags)) {
5625 printk(KERN_WARNING
5626 "md: can not hot-add faulty %s disk to %s!\n",
5627 bdevname(rdev->bdev,b), mdname(mddev));
5628 err = -EINVAL;
5629 goto abort_export;
5631 clear_bit(In_sync, &rdev->flags);
5632 rdev->desc_nr = -1;
5633 rdev->saved_raid_disk = -1;
5634 err = bind_rdev_to_array(rdev, mddev);
5635 if (err)
5636 goto abort_export;
5639 * The rest should better be atomic, we can have disk failures
5640 * noticed in interrupt contexts ...
5643 rdev->raid_disk = -1;
5645 md_update_sb(mddev, 1);
5648 * Kick recovery, maybe this spare has to be added to the
5649 * array immediately.
5651 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5652 md_wakeup_thread(mddev->thread);
5653 md_new_event(mddev);
5654 return 0;
5656 abort_export:
5657 export_rdev(rdev);
5658 return err;
5661 static int set_bitmap_file(mddev_t *mddev, int fd)
5663 int err;
5665 if (mddev->pers) {
5666 if (!mddev->pers->quiesce)
5667 return -EBUSY;
5668 if (mddev->recovery || mddev->sync_thread)
5669 return -EBUSY;
5670 /* we should be able to change the bitmap.. */
5674 if (fd >= 0) {
5675 if (mddev->bitmap)
5676 return -EEXIST; /* cannot add when bitmap is present */
5677 mddev->bitmap_info.file = fget(fd);
5679 if (mddev->bitmap_info.file == NULL) {
5680 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5681 mdname(mddev));
5682 return -EBADF;
5685 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5686 if (err) {
5687 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5688 mdname(mddev));
5689 fput(mddev->bitmap_info.file);
5690 mddev->bitmap_info.file = NULL;
5691 return err;
5693 mddev->bitmap_info.offset = 0; /* file overrides offset */
5694 } else if (mddev->bitmap == NULL)
5695 return -ENOENT; /* cannot remove what isn't there */
5696 err = 0;
5697 if (mddev->pers) {
5698 mddev->pers->quiesce(mddev, 1);
5699 if (fd >= 0) {
5700 err = bitmap_create(mddev);
5701 if (!err)
5702 err = bitmap_load(mddev);
5704 if (fd < 0 || err) {
5705 bitmap_destroy(mddev);
5706 fd = -1; /* make sure to put the file */
5708 mddev->pers->quiesce(mddev, 0);
5710 if (fd < 0) {
5711 if (mddev->bitmap_info.file) {
5712 restore_bitmap_write_access(mddev->bitmap_info.file);
5713 fput(mddev->bitmap_info.file);
5715 mddev->bitmap_info.file = NULL;
5718 return err;
5722 * set_array_info is used two different ways
5723 * The original usage is when creating a new array.
5724 * In this usage, raid_disks is > 0 and it together with
5725 * level, size, not_persistent,layout,chunksize determine the
5726 * shape of the array.
5727 * This will always create an array with a type-0.90.0 superblock.
5728 * The newer usage is when assembling an array.
5729 * In this case raid_disks will be 0, and the major_version field is
5730 * use to determine which style super-blocks are to be found on the devices.
5731 * The minor and patch _version numbers are also kept incase the
5732 * super_block handler wishes to interpret them.
5734 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5737 if (info->raid_disks == 0) {
5738 /* just setting version number for superblock loading */
5739 if (info->major_version < 0 ||
5740 info->major_version >= ARRAY_SIZE(super_types) ||
5741 super_types[info->major_version].name == NULL) {
5742 /* maybe try to auto-load a module? */
5743 printk(KERN_INFO
5744 "md: superblock version %d not known\n",
5745 info->major_version);
5746 return -EINVAL;
5748 mddev->major_version = info->major_version;
5749 mddev->minor_version = info->minor_version;
5750 mddev->patch_version = info->patch_version;
5751 mddev->persistent = !info->not_persistent;
5752 /* ensure mddev_put doesn't delete this now that there
5753 * is some minimal configuration.
5755 mddev->ctime = get_seconds();
5756 return 0;
5758 mddev->major_version = MD_MAJOR_VERSION;
5759 mddev->minor_version = MD_MINOR_VERSION;
5760 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5761 mddev->ctime = get_seconds();
5763 mddev->level = info->level;
5764 mddev->clevel[0] = 0;
5765 mddev->dev_sectors = 2 * (sector_t)info->size;
5766 mddev->raid_disks = info->raid_disks;
5767 /* don't set md_minor, it is determined by which /dev/md* was
5768 * openned
5770 if (info->state & (1<<MD_SB_CLEAN))
5771 mddev->recovery_cp = MaxSector;
5772 else
5773 mddev->recovery_cp = 0;
5774 mddev->persistent = ! info->not_persistent;
5775 mddev->external = 0;
5777 mddev->layout = info->layout;
5778 mddev->chunk_sectors = info->chunk_size >> 9;
5780 mddev->max_disks = MD_SB_DISKS;
5782 if (mddev->persistent)
5783 mddev->flags = 0;
5784 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5786 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5787 mddev->bitmap_info.offset = 0;
5789 mddev->reshape_position = MaxSector;
5792 * Generate a 128 bit UUID
5794 get_random_bytes(mddev->uuid, 16);
5796 mddev->new_level = mddev->level;
5797 mddev->new_chunk_sectors = mddev->chunk_sectors;
5798 mddev->new_layout = mddev->layout;
5799 mddev->delta_disks = 0;
5801 return 0;
5804 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5806 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5808 if (mddev->external_size)
5809 return;
5811 mddev->array_sectors = array_sectors;
5813 EXPORT_SYMBOL(md_set_array_sectors);
5815 static int update_size(mddev_t *mddev, sector_t num_sectors)
5817 mdk_rdev_t *rdev;
5818 int rv;
5819 int fit = (num_sectors == 0);
5821 if (mddev->pers->resize == NULL)
5822 return -EINVAL;
5823 /* The "num_sectors" is the number of sectors of each device that
5824 * is used. This can only make sense for arrays with redundancy.
5825 * linear and raid0 always use whatever space is available. We can only
5826 * consider changing this number if no resync or reconstruction is
5827 * happening, and if the new size is acceptable. It must fit before the
5828 * sb_start or, if that is <data_offset, it must fit before the size
5829 * of each device. If num_sectors is zero, we find the largest size
5830 * that fits.
5832 if (mddev->sync_thread)
5833 return -EBUSY;
5834 if (mddev->bitmap)
5835 /* Sorry, cannot grow a bitmap yet, just remove it,
5836 * grow, and re-add.
5838 return -EBUSY;
5839 list_for_each_entry(rdev, &mddev->disks, same_set) {
5840 sector_t avail = rdev->sectors;
5842 if (fit && (num_sectors == 0 || num_sectors > avail))
5843 num_sectors = avail;
5844 if (avail < num_sectors)
5845 return -ENOSPC;
5847 rv = mddev->pers->resize(mddev, num_sectors);
5848 if (!rv)
5849 revalidate_disk(mddev->gendisk);
5850 return rv;
5853 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5855 int rv;
5856 /* change the number of raid disks */
5857 if (mddev->pers->check_reshape == NULL)
5858 return -EINVAL;
5859 if (raid_disks <= 0 ||
5860 (mddev->max_disks && raid_disks >= mddev->max_disks))
5861 return -EINVAL;
5862 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5863 return -EBUSY;
5864 mddev->delta_disks = raid_disks - mddev->raid_disks;
5866 rv = mddev->pers->check_reshape(mddev);
5867 if (rv < 0)
5868 mddev->delta_disks = 0;
5869 return rv;
5874 * update_array_info is used to change the configuration of an
5875 * on-line array.
5876 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5877 * fields in the info are checked against the array.
5878 * Any differences that cannot be handled will cause an error.
5879 * Normally, only one change can be managed at a time.
5881 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5883 int rv = 0;
5884 int cnt = 0;
5885 int state = 0;
5887 /* calculate expected state,ignoring low bits */
5888 if (mddev->bitmap && mddev->bitmap_info.offset)
5889 state |= (1 << MD_SB_BITMAP_PRESENT);
5891 if (mddev->major_version != info->major_version ||
5892 mddev->minor_version != info->minor_version ||
5893 /* mddev->patch_version != info->patch_version || */
5894 mddev->ctime != info->ctime ||
5895 mddev->level != info->level ||
5896 /* mddev->layout != info->layout || */
5897 !mddev->persistent != info->not_persistent||
5898 mddev->chunk_sectors != info->chunk_size >> 9 ||
5899 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5900 ((state^info->state) & 0xfffffe00)
5902 return -EINVAL;
5903 /* Check there is only one change */
5904 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5905 cnt++;
5906 if (mddev->raid_disks != info->raid_disks)
5907 cnt++;
5908 if (mddev->layout != info->layout)
5909 cnt++;
5910 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5911 cnt++;
5912 if (cnt == 0)
5913 return 0;
5914 if (cnt > 1)
5915 return -EINVAL;
5917 if (mddev->layout != info->layout) {
5918 /* Change layout
5919 * we don't need to do anything at the md level, the
5920 * personality will take care of it all.
5922 if (mddev->pers->check_reshape == NULL)
5923 return -EINVAL;
5924 else {
5925 mddev->new_layout = info->layout;
5926 rv = mddev->pers->check_reshape(mddev);
5927 if (rv)
5928 mddev->new_layout = mddev->layout;
5929 return rv;
5932 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5933 rv = update_size(mddev, (sector_t)info->size * 2);
5935 if (mddev->raid_disks != info->raid_disks)
5936 rv = update_raid_disks(mddev, info->raid_disks);
5938 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5939 if (mddev->pers->quiesce == NULL)
5940 return -EINVAL;
5941 if (mddev->recovery || mddev->sync_thread)
5942 return -EBUSY;
5943 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5944 /* add the bitmap */
5945 if (mddev->bitmap)
5946 return -EEXIST;
5947 if (mddev->bitmap_info.default_offset == 0)
5948 return -EINVAL;
5949 mddev->bitmap_info.offset =
5950 mddev->bitmap_info.default_offset;
5951 mddev->pers->quiesce(mddev, 1);
5952 rv = bitmap_create(mddev);
5953 if (!rv)
5954 rv = bitmap_load(mddev);
5955 if (rv)
5956 bitmap_destroy(mddev);
5957 mddev->pers->quiesce(mddev, 0);
5958 } else {
5959 /* remove the bitmap */
5960 if (!mddev->bitmap)
5961 return -ENOENT;
5962 if (mddev->bitmap->file)
5963 return -EINVAL;
5964 mddev->pers->quiesce(mddev, 1);
5965 bitmap_destroy(mddev);
5966 mddev->pers->quiesce(mddev, 0);
5967 mddev->bitmap_info.offset = 0;
5970 md_update_sb(mddev, 1);
5971 return rv;
5974 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5976 mdk_rdev_t *rdev;
5978 if (mddev->pers == NULL)
5979 return -ENODEV;
5981 rdev = find_rdev(mddev, dev);
5982 if (!rdev)
5983 return -ENODEV;
5985 md_error(mddev, rdev);
5986 return 0;
5990 * We have a problem here : there is no easy way to give a CHS
5991 * virtual geometry. We currently pretend that we have a 2 heads
5992 * 4 sectors (with a BIG number of cylinders...). This drives
5993 * dosfs just mad... ;-)
5995 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5997 mddev_t *mddev = bdev->bd_disk->private_data;
5999 geo->heads = 2;
6000 geo->sectors = 4;
6001 geo->cylinders = mddev->array_sectors / 8;
6002 return 0;
6005 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6006 unsigned int cmd, unsigned long arg)
6008 int err = 0;
6009 void __user *argp = (void __user *)arg;
6010 mddev_t *mddev = NULL;
6011 int ro;
6013 if (!capable(CAP_SYS_ADMIN))
6014 return -EACCES;
6017 * Commands dealing with the RAID driver but not any
6018 * particular array:
6020 switch (cmd)
6022 case RAID_VERSION:
6023 err = get_version(argp);
6024 goto done;
6026 case PRINT_RAID_DEBUG:
6027 err = 0;
6028 md_print_devices();
6029 goto done;
6031 #ifndef MODULE
6032 case RAID_AUTORUN:
6033 err = 0;
6034 autostart_arrays(arg);
6035 goto done;
6036 #endif
6037 default:;
6041 * Commands creating/starting a new array:
6044 mddev = bdev->bd_disk->private_data;
6046 if (!mddev) {
6047 BUG();
6048 goto abort;
6051 err = mddev_lock(mddev);
6052 if (err) {
6053 printk(KERN_INFO
6054 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6055 err, cmd);
6056 goto abort;
6059 switch (cmd)
6061 case SET_ARRAY_INFO:
6063 mdu_array_info_t info;
6064 if (!arg)
6065 memset(&info, 0, sizeof(info));
6066 else if (copy_from_user(&info, argp, sizeof(info))) {
6067 err = -EFAULT;
6068 goto abort_unlock;
6070 if (mddev->pers) {
6071 err = update_array_info(mddev, &info);
6072 if (err) {
6073 printk(KERN_WARNING "md: couldn't update"
6074 " array info. %d\n", err);
6075 goto abort_unlock;
6077 goto done_unlock;
6079 if (!list_empty(&mddev->disks)) {
6080 printk(KERN_WARNING
6081 "md: array %s already has disks!\n",
6082 mdname(mddev));
6083 err = -EBUSY;
6084 goto abort_unlock;
6086 if (mddev->raid_disks) {
6087 printk(KERN_WARNING
6088 "md: array %s already initialised!\n",
6089 mdname(mddev));
6090 err = -EBUSY;
6091 goto abort_unlock;
6093 err = set_array_info(mddev, &info);
6094 if (err) {
6095 printk(KERN_WARNING "md: couldn't set"
6096 " array info. %d\n", err);
6097 goto abort_unlock;
6100 goto done_unlock;
6102 default:;
6106 * Commands querying/configuring an existing array:
6108 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6109 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6110 if ((!mddev->raid_disks && !mddev->external)
6111 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6112 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6113 && cmd != GET_BITMAP_FILE) {
6114 err = -ENODEV;
6115 goto abort_unlock;
6119 * Commands even a read-only array can execute:
6121 switch (cmd)
6123 case GET_ARRAY_INFO:
6124 err = get_array_info(mddev, argp);
6125 goto done_unlock;
6127 case GET_BITMAP_FILE:
6128 err = get_bitmap_file(mddev, argp);
6129 goto done_unlock;
6131 case GET_DISK_INFO:
6132 err = get_disk_info(mddev, argp);
6133 goto done_unlock;
6135 case RESTART_ARRAY_RW:
6136 err = restart_array(mddev);
6137 goto done_unlock;
6139 case STOP_ARRAY:
6140 err = do_md_stop(mddev, 0, 1);
6141 goto done_unlock;
6143 case STOP_ARRAY_RO:
6144 err = md_set_readonly(mddev, 1);
6145 goto done_unlock;
6147 case BLKROSET:
6148 if (get_user(ro, (int __user *)(arg))) {
6149 err = -EFAULT;
6150 goto done_unlock;
6152 err = -EINVAL;
6154 /* if the bdev is going readonly the value of mddev->ro
6155 * does not matter, no writes are coming
6157 if (ro)
6158 goto done_unlock;
6160 /* are we are already prepared for writes? */
6161 if (mddev->ro != 1)
6162 goto done_unlock;
6164 /* transitioning to readauto need only happen for
6165 * arrays that call md_write_start
6167 if (mddev->pers) {
6168 err = restart_array(mddev);
6169 if (err == 0) {
6170 mddev->ro = 2;
6171 set_disk_ro(mddev->gendisk, 0);
6174 goto done_unlock;
6178 * The remaining ioctls are changing the state of the
6179 * superblock, so we do not allow them on read-only arrays.
6180 * However non-MD ioctls (e.g. get-size) will still come through
6181 * here and hit the 'default' below, so only disallow
6182 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6184 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6185 if (mddev->ro == 2) {
6186 mddev->ro = 0;
6187 sysfs_notify_dirent_safe(mddev->sysfs_state);
6188 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6189 md_wakeup_thread(mddev->thread);
6190 } else {
6191 err = -EROFS;
6192 goto abort_unlock;
6196 switch (cmd)
6198 case ADD_NEW_DISK:
6200 mdu_disk_info_t info;
6201 if (copy_from_user(&info, argp, sizeof(info)))
6202 err = -EFAULT;
6203 else
6204 err = add_new_disk(mddev, &info);
6205 goto done_unlock;
6208 case HOT_REMOVE_DISK:
6209 err = hot_remove_disk(mddev, new_decode_dev(arg));
6210 goto done_unlock;
6212 case HOT_ADD_DISK:
6213 err = hot_add_disk(mddev, new_decode_dev(arg));
6214 goto done_unlock;
6216 case SET_DISK_FAULTY:
6217 err = set_disk_faulty(mddev, new_decode_dev(arg));
6218 goto done_unlock;
6220 case RUN_ARRAY:
6221 err = do_md_run(mddev);
6222 goto done_unlock;
6224 case SET_BITMAP_FILE:
6225 err = set_bitmap_file(mddev, (int)arg);
6226 goto done_unlock;
6228 default:
6229 err = -EINVAL;
6230 goto abort_unlock;
6233 done_unlock:
6234 abort_unlock:
6235 if (mddev->hold_active == UNTIL_IOCTL &&
6236 err != -EINVAL)
6237 mddev->hold_active = 0;
6238 mddev_unlock(mddev);
6240 return err;
6241 done:
6242 if (err)
6243 MD_BUG();
6244 abort:
6245 return err;
6247 #ifdef CONFIG_COMPAT
6248 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6249 unsigned int cmd, unsigned long arg)
6251 switch (cmd) {
6252 case HOT_REMOVE_DISK:
6253 case HOT_ADD_DISK:
6254 case SET_DISK_FAULTY:
6255 case SET_BITMAP_FILE:
6256 /* These take in integer arg, do not convert */
6257 break;
6258 default:
6259 arg = (unsigned long)compat_ptr(arg);
6260 break;
6263 return md_ioctl(bdev, mode, cmd, arg);
6265 #endif /* CONFIG_COMPAT */
6267 static int md_open(struct block_device *bdev, fmode_t mode)
6270 * Succeed if we can lock the mddev, which confirms that
6271 * it isn't being stopped right now.
6273 mddev_t *mddev = mddev_find(bdev->bd_dev);
6274 int err;
6276 if (mddev->gendisk != bdev->bd_disk) {
6277 /* we are racing with mddev_put which is discarding this
6278 * bd_disk.
6280 mddev_put(mddev);
6281 /* Wait until bdev->bd_disk is definitely gone */
6282 flush_workqueue(md_misc_wq);
6283 /* Then retry the open from the top */
6284 return -ERESTARTSYS;
6286 BUG_ON(mddev != bdev->bd_disk->private_data);
6288 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6289 goto out;
6291 err = 0;
6292 atomic_inc(&mddev->openers);
6293 mutex_unlock(&mddev->open_mutex);
6295 check_disk_change(bdev);
6296 out:
6297 return err;
6300 static int md_release(struct gendisk *disk, fmode_t mode)
6302 mddev_t *mddev = disk->private_data;
6304 BUG_ON(!mddev);
6305 atomic_dec(&mddev->openers);
6306 mddev_put(mddev);
6308 return 0;
6311 static int md_media_changed(struct gendisk *disk)
6313 mddev_t *mddev = disk->private_data;
6315 return mddev->changed;
6318 static int md_revalidate(struct gendisk *disk)
6320 mddev_t *mddev = disk->private_data;
6322 mddev->changed = 0;
6323 return 0;
6325 static const struct block_device_operations md_fops =
6327 .owner = THIS_MODULE,
6328 .open = md_open,
6329 .release = md_release,
6330 .ioctl = md_ioctl,
6331 #ifdef CONFIG_COMPAT
6332 .compat_ioctl = md_compat_ioctl,
6333 #endif
6334 .getgeo = md_getgeo,
6335 .media_changed = md_media_changed,
6336 .revalidate_disk= md_revalidate,
6339 static int md_thread(void * arg)
6341 mdk_thread_t *thread = arg;
6344 * md_thread is a 'system-thread', it's priority should be very
6345 * high. We avoid resource deadlocks individually in each
6346 * raid personality. (RAID5 does preallocation) We also use RR and
6347 * the very same RT priority as kswapd, thus we will never get
6348 * into a priority inversion deadlock.
6350 * we definitely have to have equal or higher priority than
6351 * bdflush, otherwise bdflush will deadlock if there are too
6352 * many dirty RAID5 blocks.
6355 allow_signal(SIGKILL);
6356 while (!kthread_should_stop()) {
6358 /* We need to wait INTERRUPTIBLE so that
6359 * we don't add to the load-average.
6360 * That means we need to be sure no signals are
6361 * pending
6363 if (signal_pending(current))
6364 flush_signals(current);
6366 wait_event_interruptible_timeout
6367 (thread->wqueue,
6368 test_bit(THREAD_WAKEUP, &thread->flags)
6369 || kthread_should_stop(),
6370 thread->timeout);
6372 clear_bit(THREAD_WAKEUP, &thread->flags);
6373 if (!kthread_should_stop())
6374 thread->run(thread->mddev);
6377 return 0;
6380 void md_wakeup_thread(mdk_thread_t *thread)
6382 if (thread) {
6383 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6384 set_bit(THREAD_WAKEUP, &thread->flags);
6385 wake_up(&thread->wqueue);
6389 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6390 const char *name)
6392 mdk_thread_t *thread;
6394 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6395 if (!thread)
6396 return NULL;
6398 init_waitqueue_head(&thread->wqueue);
6400 thread->run = run;
6401 thread->mddev = mddev;
6402 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6403 thread->tsk = kthread_run(md_thread, thread,
6404 "%s_%s",
6405 mdname(thread->mddev),
6406 name ?: mddev->pers->name);
6407 if (IS_ERR(thread->tsk)) {
6408 kfree(thread);
6409 return NULL;
6411 return thread;
6414 void md_unregister_thread(mdk_thread_t *thread)
6416 if (!thread)
6417 return;
6418 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6420 kthread_stop(thread->tsk);
6421 kfree(thread);
6424 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6426 if (!mddev) {
6427 MD_BUG();
6428 return;
6431 if (!rdev || test_bit(Faulty, &rdev->flags))
6432 return;
6434 if (!mddev->pers || !mddev->pers->error_handler)
6435 return;
6436 mddev->pers->error_handler(mddev,rdev);
6437 if (mddev->degraded)
6438 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6439 sysfs_notify_dirent_safe(rdev->sysfs_state);
6440 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6441 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6442 md_wakeup_thread(mddev->thread);
6443 if (mddev->event_work.func)
6444 queue_work(md_misc_wq, &mddev->event_work);
6445 md_new_event_inintr(mddev);
6448 /* seq_file implementation /proc/mdstat */
6450 static void status_unused(struct seq_file *seq)
6452 int i = 0;
6453 mdk_rdev_t *rdev;
6455 seq_printf(seq, "unused devices: ");
6457 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6458 char b[BDEVNAME_SIZE];
6459 i++;
6460 seq_printf(seq, "%s ",
6461 bdevname(rdev->bdev,b));
6463 if (!i)
6464 seq_printf(seq, "<none>");
6466 seq_printf(seq, "\n");
6470 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6472 sector_t max_sectors, resync, res;
6473 unsigned long dt, db;
6474 sector_t rt;
6475 int scale;
6476 unsigned int per_milli;
6478 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6480 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6481 max_sectors = mddev->resync_max_sectors;
6482 else
6483 max_sectors = mddev->dev_sectors;
6486 * Should not happen.
6488 if (!max_sectors) {
6489 MD_BUG();
6490 return;
6492 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6493 * in a sector_t, and (max_sectors>>scale) will fit in a
6494 * u32, as those are the requirements for sector_div.
6495 * Thus 'scale' must be at least 10
6497 scale = 10;
6498 if (sizeof(sector_t) > sizeof(unsigned long)) {
6499 while ( max_sectors/2 > (1ULL<<(scale+32)))
6500 scale++;
6502 res = (resync>>scale)*1000;
6503 sector_div(res, (u32)((max_sectors>>scale)+1));
6505 per_milli = res;
6507 int i, x = per_milli/50, y = 20-x;
6508 seq_printf(seq, "[");
6509 for (i = 0; i < x; i++)
6510 seq_printf(seq, "=");
6511 seq_printf(seq, ">");
6512 for (i = 0; i < y; i++)
6513 seq_printf(seq, ".");
6514 seq_printf(seq, "] ");
6516 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6517 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6518 "reshape" :
6519 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6520 "check" :
6521 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6522 "resync" : "recovery"))),
6523 per_milli/10, per_milli % 10,
6524 (unsigned long long) resync/2,
6525 (unsigned long long) max_sectors/2);
6528 * dt: time from mark until now
6529 * db: blocks written from mark until now
6530 * rt: remaining time
6532 * rt is a sector_t, so could be 32bit or 64bit.
6533 * So we divide before multiply in case it is 32bit and close
6534 * to the limit.
6535 * We scale the divisor (db) by 32 to avoid losing precision
6536 * near the end of resync when the number of remaining sectors
6537 * is close to 'db'.
6538 * We then divide rt by 32 after multiplying by db to compensate.
6539 * The '+1' avoids division by zero if db is very small.
6541 dt = ((jiffies - mddev->resync_mark) / HZ);
6542 if (!dt) dt++;
6543 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6544 - mddev->resync_mark_cnt;
6546 rt = max_sectors - resync; /* number of remaining sectors */
6547 sector_div(rt, db/32+1);
6548 rt *= dt;
6549 rt >>= 5;
6551 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6552 ((unsigned long)rt % 60)/6);
6554 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6557 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6559 struct list_head *tmp;
6560 loff_t l = *pos;
6561 mddev_t *mddev;
6563 if (l >= 0x10000)
6564 return NULL;
6565 if (!l--)
6566 /* header */
6567 return (void*)1;
6569 spin_lock(&all_mddevs_lock);
6570 list_for_each(tmp,&all_mddevs)
6571 if (!l--) {
6572 mddev = list_entry(tmp, mddev_t, all_mddevs);
6573 mddev_get(mddev);
6574 spin_unlock(&all_mddevs_lock);
6575 return mddev;
6577 spin_unlock(&all_mddevs_lock);
6578 if (!l--)
6579 return (void*)2;/* tail */
6580 return NULL;
6583 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6585 struct list_head *tmp;
6586 mddev_t *next_mddev, *mddev = v;
6588 ++*pos;
6589 if (v == (void*)2)
6590 return NULL;
6592 spin_lock(&all_mddevs_lock);
6593 if (v == (void*)1)
6594 tmp = all_mddevs.next;
6595 else
6596 tmp = mddev->all_mddevs.next;
6597 if (tmp != &all_mddevs)
6598 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6599 else {
6600 next_mddev = (void*)2;
6601 *pos = 0x10000;
6603 spin_unlock(&all_mddevs_lock);
6605 if (v != (void*)1)
6606 mddev_put(mddev);
6607 return next_mddev;
6611 static void md_seq_stop(struct seq_file *seq, void *v)
6613 mddev_t *mddev = v;
6615 if (mddev && v != (void*)1 && v != (void*)2)
6616 mddev_put(mddev);
6619 static int md_seq_show(struct seq_file *seq, void *v)
6621 mddev_t *mddev = v;
6622 sector_t sectors;
6623 mdk_rdev_t *rdev;
6624 struct bitmap *bitmap;
6626 if (v == (void*)1) {
6627 struct mdk_personality *pers;
6628 seq_printf(seq, "Personalities : ");
6629 spin_lock(&pers_lock);
6630 list_for_each_entry(pers, &pers_list, list)
6631 seq_printf(seq, "[%s] ", pers->name);
6633 spin_unlock(&pers_lock);
6634 seq_printf(seq, "\n");
6635 seq->poll_event = atomic_read(&md_event_count);
6636 return 0;
6638 if (v == (void*)2) {
6639 status_unused(seq);
6640 return 0;
6643 if (mddev_lock(mddev) < 0)
6644 return -EINTR;
6646 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6647 seq_printf(seq, "%s : %sactive", mdname(mddev),
6648 mddev->pers ? "" : "in");
6649 if (mddev->pers) {
6650 if (mddev->ro==1)
6651 seq_printf(seq, " (read-only)");
6652 if (mddev->ro==2)
6653 seq_printf(seq, " (auto-read-only)");
6654 seq_printf(seq, " %s", mddev->pers->name);
6657 sectors = 0;
6658 list_for_each_entry(rdev, &mddev->disks, same_set) {
6659 char b[BDEVNAME_SIZE];
6660 seq_printf(seq, " %s[%d]",
6661 bdevname(rdev->bdev,b), rdev->desc_nr);
6662 if (test_bit(WriteMostly, &rdev->flags))
6663 seq_printf(seq, "(W)");
6664 if (test_bit(Faulty, &rdev->flags)) {
6665 seq_printf(seq, "(F)");
6666 continue;
6667 } else if (rdev->raid_disk < 0)
6668 seq_printf(seq, "(S)"); /* spare */
6669 sectors += rdev->sectors;
6672 if (!list_empty(&mddev->disks)) {
6673 if (mddev->pers)
6674 seq_printf(seq, "\n %llu blocks",
6675 (unsigned long long)
6676 mddev->array_sectors / 2);
6677 else
6678 seq_printf(seq, "\n %llu blocks",
6679 (unsigned long long)sectors / 2);
6681 if (mddev->persistent) {
6682 if (mddev->major_version != 0 ||
6683 mddev->minor_version != 90) {
6684 seq_printf(seq," super %d.%d",
6685 mddev->major_version,
6686 mddev->minor_version);
6688 } else if (mddev->external)
6689 seq_printf(seq, " super external:%s",
6690 mddev->metadata_type);
6691 else
6692 seq_printf(seq, " super non-persistent");
6694 if (mddev->pers) {
6695 mddev->pers->status(seq, mddev);
6696 seq_printf(seq, "\n ");
6697 if (mddev->pers->sync_request) {
6698 if (mddev->curr_resync > 2) {
6699 status_resync(seq, mddev);
6700 seq_printf(seq, "\n ");
6701 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6702 seq_printf(seq, "\tresync=DELAYED\n ");
6703 else if (mddev->recovery_cp < MaxSector)
6704 seq_printf(seq, "\tresync=PENDING\n ");
6706 } else
6707 seq_printf(seq, "\n ");
6709 if ((bitmap = mddev->bitmap)) {
6710 unsigned long chunk_kb;
6711 unsigned long flags;
6712 spin_lock_irqsave(&bitmap->lock, flags);
6713 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6714 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6715 "%lu%s chunk",
6716 bitmap->pages - bitmap->missing_pages,
6717 bitmap->pages,
6718 (bitmap->pages - bitmap->missing_pages)
6719 << (PAGE_SHIFT - 10),
6720 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6721 chunk_kb ? "KB" : "B");
6722 if (bitmap->file) {
6723 seq_printf(seq, ", file: ");
6724 seq_path(seq, &bitmap->file->f_path, " \t\n");
6727 seq_printf(seq, "\n");
6728 spin_unlock_irqrestore(&bitmap->lock, flags);
6731 seq_printf(seq, "\n");
6733 mddev_unlock(mddev);
6735 return 0;
6738 static const struct seq_operations md_seq_ops = {
6739 .start = md_seq_start,
6740 .next = md_seq_next,
6741 .stop = md_seq_stop,
6742 .show = md_seq_show,
6745 static int md_seq_open(struct inode *inode, struct file *file)
6747 struct seq_file *seq;
6748 int error;
6750 error = seq_open(file, &md_seq_ops);
6751 if (error)
6752 return error;
6754 seq = file->private_data;
6755 seq->poll_event = atomic_read(&md_event_count);
6756 return error;
6759 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6761 struct seq_file *seq = filp->private_data;
6762 int mask;
6764 poll_wait(filp, &md_event_waiters, wait);
6766 /* always allow read */
6767 mask = POLLIN | POLLRDNORM;
6769 if (seq->poll_event != atomic_read(&md_event_count))
6770 mask |= POLLERR | POLLPRI;
6771 return mask;
6774 static const struct file_operations md_seq_fops = {
6775 .owner = THIS_MODULE,
6776 .open = md_seq_open,
6777 .read = seq_read,
6778 .llseek = seq_lseek,
6779 .release = seq_release_private,
6780 .poll = mdstat_poll,
6783 int register_md_personality(struct mdk_personality *p)
6785 spin_lock(&pers_lock);
6786 list_add_tail(&p->list, &pers_list);
6787 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6788 spin_unlock(&pers_lock);
6789 return 0;
6792 int unregister_md_personality(struct mdk_personality *p)
6794 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6795 spin_lock(&pers_lock);
6796 list_del_init(&p->list);
6797 spin_unlock(&pers_lock);
6798 return 0;
6801 static int is_mddev_idle(mddev_t *mddev, int init)
6803 mdk_rdev_t * rdev;
6804 int idle;
6805 int curr_events;
6807 idle = 1;
6808 rcu_read_lock();
6809 rdev_for_each_rcu(rdev, mddev) {
6810 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6811 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6812 (int)part_stat_read(&disk->part0, sectors[1]) -
6813 atomic_read(&disk->sync_io);
6814 /* sync IO will cause sync_io to increase before the disk_stats
6815 * as sync_io is counted when a request starts, and
6816 * disk_stats is counted when it completes.
6817 * So resync activity will cause curr_events to be smaller than
6818 * when there was no such activity.
6819 * non-sync IO will cause disk_stat to increase without
6820 * increasing sync_io so curr_events will (eventually)
6821 * be larger than it was before. Once it becomes
6822 * substantially larger, the test below will cause
6823 * the array to appear non-idle, and resync will slow
6824 * down.
6825 * If there is a lot of outstanding resync activity when
6826 * we set last_event to curr_events, then all that activity
6827 * completing might cause the array to appear non-idle
6828 * and resync will be slowed down even though there might
6829 * not have been non-resync activity. This will only
6830 * happen once though. 'last_events' will soon reflect
6831 * the state where there is little or no outstanding
6832 * resync requests, and further resync activity will
6833 * always make curr_events less than last_events.
6836 if (init || curr_events - rdev->last_events > 64) {
6837 rdev->last_events = curr_events;
6838 idle = 0;
6841 rcu_read_unlock();
6842 return idle;
6845 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6847 /* another "blocks" (512byte) blocks have been synced */
6848 atomic_sub(blocks, &mddev->recovery_active);
6849 wake_up(&mddev->recovery_wait);
6850 if (!ok) {
6851 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6852 md_wakeup_thread(mddev->thread);
6853 // stop recovery, signal do_sync ....
6858 /* md_write_start(mddev, bi)
6859 * If we need to update some array metadata (e.g. 'active' flag
6860 * in superblock) before writing, schedule a superblock update
6861 * and wait for it to complete.
6863 void md_write_start(mddev_t *mddev, struct bio *bi)
6865 int did_change = 0;
6866 if (bio_data_dir(bi) != WRITE)
6867 return;
6869 BUG_ON(mddev->ro == 1);
6870 if (mddev->ro == 2) {
6871 /* need to switch to read/write */
6872 mddev->ro = 0;
6873 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6874 md_wakeup_thread(mddev->thread);
6875 md_wakeup_thread(mddev->sync_thread);
6876 did_change = 1;
6878 atomic_inc(&mddev->writes_pending);
6879 if (mddev->safemode == 1)
6880 mddev->safemode = 0;
6881 if (mddev->in_sync) {
6882 spin_lock_irq(&mddev->write_lock);
6883 if (mddev->in_sync) {
6884 mddev->in_sync = 0;
6885 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6886 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6887 md_wakeup_thread(mddev->thread);
6888 did_change = 1;
6890 spin_unlock_irq(&mddev->write_lock);
6892 if (did_change)
6893 sysfs_notify_dirent_safe(mddev->sysfs_state);
6894 wait_event(mddev->sb_wait,
6895 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6898 void md_write_end(mddev_t *mddev)
6900 if (atomic_dec_and_test(&mddev->writes_pending)) {
6901 if (mddev->safemode == 2)
6902 md_wakeup_thread(mddev->thread);
6903 else if (mddev->safemode_delay)
6904 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6908 /* md_allow_write(mddev)
6909 * Calling this ensures that the array is marked 'active' so that writes
6910 * may proceed without blocking. It is important to call this before
6911 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6912 * Must be called with mddev_lock held.
6914 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6915 * is dropped, so return -EAGAIN after notifying userspace.
6917 int md_allow_write(mddev_t *mddev)
6919 if (!mddev->pers)
6920 return 0;
6921 if (mddev->ro)
6922 return 0;
6923 if (!mddev->pers->sync_request)
6924 return 0;
6926 spin_lock_irq(&mddev->write_lock);
6927 if (mddev->in_sync) {
6928 mddev->in_sync = 0;
6929 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6930 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6931 if (mddev->safemode_delay &&
6932 mddev->safemode == 0)
6933 mddev->safemode = 1;
6934 spin_unlock_irq(&mddev->write_lock);
6935 md_update_sb(mddev, 0);
6936 sysfs_notify_dirent_safe(mddev->sysfs_state);
6937 } else
6938 spin_unlock_irq(&mddev->write_lock);
6940 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6941 return -EAGAIN;
6942 else
6943 return 0;
6945 EXPORT_SYMBOL_GPL(md_allow_write);
6947 #define SYNC_MARKS 10
6948 #define SYNC_MARK_STEP (3*HZ)
6949 void md_do_sync(mddev_t *mddev)
6951 mddev_t *mddev2;
6952 unsigned int currspeed = 0,
6953 window;
6954 sector_t max_sectors,j, io_sectors;
6955 unsigned long mark[SYNC_MARKS];
6956 sector_t mark_cnt[SYNC_MARKS];
6957 int last_mark,m;
6958 struct list_head *tmp;
6959 sector_t last_check;
6960 int skipped = 0;
6961 mdk_rdev_t *rdev;
6962 char *desc;
6964 /* just incase thread restarts... */
6965 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6966 return;
6967 if (mddev->ro) /* never try to sync a read-only array */
6968 return;
6970 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6971 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6972 desc = "data-check";
6973 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6974 desc = "requested-resync";
6975 else
6976 desc = "resync";
6977 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6978 desc = "reshape";
6979 else
6980 desc = "recovery";
6982 /* we overload curr_resync somewhat here.
6983 * 0 == not engaged in resync at all
6984 * 2 == checking that there is no conflict with another sync
6985 * 1 == like 2, but have yielded to allow conflicting resync to
6986 * commense
6987 * other == active in resync - this many blocks
6989 * Before starting a resync we must have set curr_resync to
6990 * 2, and then checked that every "conflicting" array has curr_resync
6991 * less than ours. When we find one that is the same or higher
6992 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6993 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6994 * This will mean we have to start checking from the beginning again.
6998 do {
6999 mddev->curr_resync = 2;
7001 try_again:
7002 if (kthread_should_stop())
7003 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7005 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7006 goto skip;
7007 for_each_mddev(mddev2, tmp) {
7008 if (mddev2 == mddev)
7009 continue;
7010 if (!mddev->parallel_resync
7011 && mddev2->curr_resync
7012 && match_mddev_units(mddev, mddev2)) {
7013 DEFINE_WAIT(wq);
7014 if (mddev < mddev2 && mddev->curr_resync == 2) {
7015 /* arbitrarily yield */
7016 mddev->curr_resync = 1;
7017 wake_up(&resync_wait);
7019 if (mddev > mddev2 && mddev->curr_resync == 1)
7020 /* no need to wait here, we can wait the next
7021 * time 'round when curr_resync == 2
7023 continue;
7024 /* We need to wait 'interruptible' so as not to
7025 * contribute to the load average, and not to
7026 * be caught by 'softlockup'
7028 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7029 if (!kthread_should_stop() &&
7030 mddev2->curr_resync >= mddev->curr_resync) {
7031 printk(KERN_INFO "md: delaying %s of %s"
7032 " until %s has finished (they"
7033 " share one or more physical units)\n",
7034 desc, mdname(mddev), mdname(mddev2));
7035 mddev_put(mddev2);
7036 if (signal_pending(current))
7037 flush_signals(current);
7038 schedule();
7039 finish_wait(&resync_wait, &wq);
7040 goto try_again;
7042 finish_wait(&resync_wait, &wq);
7045 } while (mddev->curr_resync < 2);
7047 j = 0;
7048 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7049 /* resync follows the size requested by the personality,
7050 * which defaults to physical size, but can be virtual size
7052 max_sectors = mddev->resync_max_sectors;
7053 mddev->resync_mismatches = 0;
7054 /* we don't use the checkpoint if there's a bitmap */
7055 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7056 j = mddev->resync_min;
7057 else if (!mddev->bitmap)
7058 j = mddev->recovery_cp;
7060 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7061 max_sectors = mddev->dev_sectors;
7062 else {
7063 /* recovery follows the physical size of devices */
7064 max_sectors = mddev->dev_sectors;
7065 j = MaxSector;
7066 rcu_read_lock();
7067 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7068 if (rdev->raid_disk >= 0 &&
7069 !test_bit(Faulty, &rdev->flags) &&
7070 !test_bit(In_sync, &rdev->flags) &&
7071 rdev->recovery_offset < j)
7072 j = rdev->recovery_offset;
7073 rcu_read_unlock();
7076 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7077 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7078 " %d KB/sec/disk.\n", speed_min(mddev));
7079 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7080 "(but not more than %d KB/sec) for %s.\n",
7081 speed_max(mddev), desc);
7083 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7085 io_sectors = 0;
7086 for (m = 0; m < SYNC_MARKS; m++) {
7087 mark[m] = jiffies;
7088 mark_cnt[m] = io_sectors;
7090 last_mark = 0;
7091 mddev->resync_mark = mark[last_mark];
7092 mddev->resync_mark_cnt = mark_cnt[last_mark];
7095 * Tune reconstruction:
7097 window = 32*(PAGE_SIZE/512);
7098 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7099 window/2, (unsigned long long)max_sectors/2);
7101 atomic_set(&mddev->recovery_active, 0);
7102 last_check = 0;
7104 if (j>2) {
7105 printk(KERN_INFO
7106 "md: resuming %s of %s from checkpoint.\n",
7107 desc, mdname(mddev));
7108 mddev->curr_resync = j;
7110 mddev->curr_resync_completed = j;
7112 while (j < max_sectors) {
7113 sector_t sectors;
7115 skipped = 0;
7117 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7118 ((mddev->curr_resync > mddev->curr_resync_completed &&
7119 (mddev->curr_resync - mddev->curr_resync_completed)
7120 > (max_sectors >> 4)) ||
7121 (j - mddev->curr_resync_completed)*2
7122 >= mddev->resync_max - mddev->curr_resync_completed
7123 )) {
7124 /* time to update curr_resync_completed */
7125 wait_event(mddev->recovery_wait,
7126 atomic_read(&mddev->recovery_active) == 0);
7127 mddev->curr_resync_completed = j;
7128 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7129 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7132 while (j >= mddev->resync_max && !kthread_should_stop()) {
7133 /* As this condition is controlled by user-space,
7134 * we can block indefinitely, so use '_interruptible'
7135 * to avoid triggering warnings.
7137 flush_signals(current); /* just in case */
7138 wait_event_interruptible(mddev->recovery_wait,
7139 mddev->resync_max > j
7140 || kthread_should_stop());
7143 if (kthread_should_stop())
7144 goto interrupted;
7146 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7147 currspeed < speed_min(mddev));
7148 if (sectors == 0) {
7149 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7150 goto out;
7153 if (!skipped) { /* actual IO requested */
7154 io_sectors += sectors;
7155 atomic_add(sectors, &mddev->recovery_active);
7158 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7159 break;
7161 j += sectors;
7162 if (j>1) mddev->curr_resync = j;
7163 mddev->curr_mark_cnt = io_sectors;
7164 if (last_check == 0)
7165 /* this is the earliest that rebuild will be
7166 * visible in /proc/mdstat
7168 md_new_event(mddev);
7170 if (last_check + window > io_sectors || j == max_sectors)
7171 continue;
7173 last_check = io_sectors;
7174 repeat:
7175 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7176 /* step marks */
7177 int next = (last_mark+1) % SYNC_MARKS;
7179 mddev->resync_mark = mark[next];
7180 mddev->resync_mark_cnt = mark_cnt[next];
7181 mark[next] = jiffies;
7182 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7183 last_mark = next;
7187 if (kthread_should_stop())
7188 goto interrupted;
7192 * this loop exits only if either when we are slower than
7193 * the 'hard' speed limit, or the system was IO-idle for
7194 * a jiffy.
7195 * the system might be non-idle CPU-wise, but we only care
7196 * about not overloading the IO subsystem. (things like an
7197 * e2fsck being done on the RAID array should execute fast)
7199 cond_resched();
7201 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7202 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7204 if (currspeed > speed_min(mddev)) {
7205 if ((currspeed > speed_max(mddev)) ||
7206 !is_mddev_idle(mddev, 0)) {
7207 msleep(500);
7208 goto repeat;
7212 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7214 * this also signals 'finished resyncing' to md_stop
7216 out:
7217 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7219 /* tell personality that we are finished */
7220 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7222 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7223 mddev->curr_resync > 2) {
7224 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7225 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7226 if (mddev->curr_resync >= mddev->recovery_cp) {
7227 printk(KERN_INFO
7228 "md: checkpointing %s of %s.\n",
7229 desc, mdname(mddev));
7230 mddev->recovery_cp = mddev->curr_resync;
7232 } else
7233 mddev->recovery_cp = MaxSector;
7234 } else {
7235 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7236 mddev->curr_resync = MaxSector;
7237 rcu_read_lock();
7238 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7239 if (rdev->raid_disk >= 0 &&
7240 mddev->delta_disks >= 0 &&
7241 !test_bit(Faulty, &rdev->flags) &&
7242 !test_bit(In_sync, &rdev->flags) &&
7243 rdev->recovery_offset < mddev->curr_resync)
7244 rdev->recovery_offset = mddev->curr_resync;
7245 rcu_read_unlock();
7248 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7250 skip:
7251 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7252 /* We completed so min/max setting can be forgotten if used. */
7253 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7254 mddev->resync_min = 0;
7255 mddev->resync_max = MaxSector;
7256 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7257 mddev->resync_min = mddev->curr_resync_completed;
7258 mddev->curr_resync = 0;
7259 wake_up(&resync_wait);
7260 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7261 md_wakeup_thread(mddev->thread);
7262 return;
7264 interrupted:
7266 * got a signal, exit.
7268 printk(KERN_INFO
7269 "md: md_do_sync() got signal ... exiting\n");
7270 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7271 goto out;
7274 EXPORT_SYMBOL_GPL(md_do_sync);
7276 static int remove_and_add_spares(mddev_t *mddev)
7278 mdk_rdev_t *rdev;
7279 int spares = 0;
7281 mddev->curr_resync_completed = 0;
7283 list_for_each_entry(rdev, &mddev->disks, same_set)
7284 if (rdev->raid_disk >= 0 &&
7285 !test_bit(Blocked, &rdev->flags) &&
7286 (test_bit(Faulty, &rdev->flags) ||
7287 ! test_bit(In_sync, &rdev->flags)) &&
7288 atomic_read(&rdev->nr_pending)==0) {
7289 if (mddev->pers->hot_remove_disk(
7290 mddev, rdev->raid_disk)==0) {
7291 sysfs_unlink_rdev(mddev, rdev);
7292 rdev->raid_disk = -1;
7296 if (mddev->degraded) {
7297 list_for_each_entry(rdev, &mddev->disks, same_set) {
7298 if (rdev->raid_disk >= 0 &&
7299 !test_bit(In_sync, &rdev->flags) &&
7300 !test_bit(Faulty, &rdev->flags))
7301 spares++;
7302 if (rdev->raid_disk < 0
7303 && !test_bit(Faulty, &rdev->flags)) {
7304 rdev->recovery_offset = 0;
7305 if (mddev->pers->
7306 hot_add_disk(mddev, rdev) == 0) {
7307 if (sysfs_link_rdev(mddev, rdev))
7308 /* failure here is OK */;
7309 spares++;
7310 md_new_event(mddev);
7311 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7312 } else
7313 break;
7317 return spares;
7320 static void reap_sync_thread(mddev_t *mddev)
7322 mdk_rdev_t *rdev;
7324 /* resync has finished, collect result */
7325 md_unregister_thread(mddev->sync_thread);
7326 mddev->sync_thread = NULL;
7327 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7328 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7329 /* success...*/
7330 /* activate any spares */
7331 if (mddev->pers->spare_active(mddev))
7332 sysfs_notify(&mddev->kobj, NULL,
7333 "degraded");
7335 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7336 mddev->pers->finish_reshape)
7337 mddev->pers->finish_reshape(mddev);
7338 md_update_sb(mddev, 1);
7340 /* if array is no-longer degraded, then any saved_raid_disk
7341 * information must be scrapped
7343 if (!mddev->degraded)
7344 list_for_each_entry(rdev, &mddev->disks, same_set)
7345 rdev->saved_raid_disk = -1;
7347 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7348 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7349 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7350 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7351 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7352 /* flag recovery needed just to double check */
7353 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7354 sysfs_notify_dirent_safe(mddev->sysfs_action);
7355 md_new_event(mddev);
7356 if (mddev->event_work.func)
7357 queue_work(md_misc_wq, &mddev->event_work);
7361 * This routine is regularly called by all per-raid-array threads to
7362 * deal with generic issues like resync and super-block update.
7363 * Raid personalities that don't have a thread (linear/raid0) do not
7364 * need this as they never do any recovery or update the superblock.
7366 * It does not do any resync itself, but rather "forks" off other threads
7367 * to do that as needed.
7368 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7369 * "->recovery" and create a thread at ->sync_thread.
7370 * When the thread finishes it sets MD_RECOVERY_DONE
7371 * and wakeups up this thread which will reap the thread and finish up.
7372 * This thread also removes any faulty devices (with nr_pending == 0).
7374 * The overall approach is:
7375 * 1/ if the superblock needs updating, update it.
7376 * 2/ If a recovery thread is running, don't do anything else.
7377 * 3/ If recovery has finished, clean up, possibly marking spares active.
7378 * 4/ If there are any faulty devices, remove them.
7379 * 5/ If array is degraded, try to add spares devices
7380 * 6/ If array has spares or is not in-sync, start a resync thread.
7382 void md_check_recovery(mddev_t *mddev)
7384 if (mddev->suspended)
7385 return;
7387 if (mddev->bitmap)
7388 bitmap_daemon_work(mddev);
7390 if (signal_pending(current)) {
7391 if (mddev->pers->sync_request && !mddev->external) {
7392 printk(KERN_INFO "md: %s in immediate safe mode\n",
7393 mdname(mddev));
7394 mddev->safemode = 2;
7396 flush_signals(current);
7399 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7400 return;
7401 if ( ! (
7402 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7403 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7404 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7405 (mddev->external == 0 && mddev->safemode == 1) ||
7406 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7407 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7409 return;
7411 if (mddev_trylock(mddev)) {
7412 int spares = 0;
7414 if (mddev->ro) {
7415 /* Only thing we do on a ro array is remove
7416 * failed devices.
7418 mdk_rdev_t *rdev;
7419 list_for_each_entry(rdev, &mddev->disks, same_set)
7420 if (rdev->raid_disk >= 0 &&
7421 !test_bit(Blocked, &rdev->flags) &&
7422 test_bit(Faulty, &rdev->flags) &&
7423 atomic_read(&rdev->nr_pending)==0) {
7424 if (mddev->pers->hot_remove_disk(
7425 mddev, rdev->raid_disk)==0) {
7426 sysfs_unlink_rdev(mddev, rdev);
7427 rdev->raid_disk = -1;
7430 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7431 goto unlock;
7434 if (!mddev->external) {
7435 int did_change = 0;
7436 spin_lock_irq(&mddev->write_lock);
7437 if (mddev->safemode &&
7438 !atomic_read(&mddev->writes_pending) &&
7439 !mddev->in_sync &&
7440 mddev->recovery_cp == MaxSector) {
7441 mddev->in_sync = 1;
7442 did_change = 1;
7443 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7445 if (mddev->safemode == 1)
7446 mddev->safemode = 0;
7447 spin_unlock_irq(&mddev->write_lock);
7448 if (did_change)
7449 sysfs_notify_dirent_safe(mddev->sysfs_state);
7452 if (mddev->flags)
7453 md_update_sb(mddev, 0);
7455 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7456 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7457 /* resync/recovery still happening */
7458 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7459 goto unlock;
7461 if (mddev->sync_thread) {
7462 reap_sync_thread(mddev);
7463 goto unlock;
7465 /* Set RUNNING before clearing NEEDED to avoid
7466 * any transients in the value of "sync_action".
7468 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7469 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7470 /* Clear some bits that don't mean anything, but
7471 * might be left set
7473 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7474 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7476 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7477 goto unlock;
7478 /* no recovery is running.
7479 * remove any failed drives, then
7480 * add spares if possible.
7481 * Spare are also removed and re-added, to allow
7482 * the personality to fail the re-add.
7485 if (mddev->reshape_position != MaxSector) {
7486 if (mddev->pers->check_reshape == NULL ||
7487 mddev->pers->check_reshape(mddev) != 0)
7488 /* Cannot proceed */
7489 goto unlock;
7490 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7491 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7492 } else if ((spares = remove_and_add_spares(mddev))) {
7493 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7494 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7495 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7496 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7497 } else if (mddev->recovery_cp < MaxSector) {
7498 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7499 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7500 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7501 /* nothing to be done ... */
7502 goto unlock;
7504 if (mddev->pers->sync_request) {
7505 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7506 /* We are adding a device or devices to an array
7507 * which has the bitmap stored on all devices.
7508 * So make sure all bitmap pages get written
7510 bitmap_write_all(mddev->bitmap);
7512 mddev->sync_thread = md_register_thread(md_do_sync,
7513 mddev,
7514 "resync");
7515 if (!mddev->sync_thread) {
7516 printk(KERN_ERR "%s: could not start resync"
7517 " thread...\n",
7518 mdname(mddev));
7519 /* leave the spares where they are, it shouldn't hurt */
7520 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7521 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7522 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7523 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7524 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7525 } else
7526 md_wakeup_thread(mddev->sync_thread);
7527 sysfs_notify_dirent_safe(mddev->sysfs_action);
7528 md_new_event(mddev);
7530 unlock:
7531 if (!mddev->sync_thread) {
7532 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7533 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7534 &mddev->recovery))
7535 if (mddev->sysfs_action)
7536 sysfs_notify_dirent_safe(mddev->sysfs_action);
7538 mddev_unlock(mddev);
7542 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7544 sysfs_notify_dirent_safe(rdev->sysfs_state);
7545 wait_event_timeout(rdev->blocked_wait,
7546 !test_bit(Blocked, &rdev->flags) &&
7547 !test_bit(BlockedBadBlocks, &rdev->flags),
7548 msecs_to_jiffies(5000));
7549 rdev_dec_pending(rdev, mddev);
7551 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7554 /* Bad block management.
7555 * We can record which blocks on each device are 'bad' and so just
7556 * fail those blocks, or that stripe, rather than the whole device.
7557 * Entries in the bad-block table are 64bits wide. This comprises:
7558 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7559 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7560 * A 'shift' can be set so that larger blocks are tracked and
7561 * consequently larger devices can be covered.
7562 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7564 * Locking of the bad-block table uses a seqlock so md_is_badblock
7565 * might need to retry if it is very unlucky.
7566 * We will sometimes want to check for bad blocks in a bi_end_io function,
7567 * so we use the write_seqlock_irq variant.
7569 * When looking for a bad block we specify a range and want to
7570 * know if any block in the range is bad. So we binary-search
7571 * to the last range that starts at-or-before the given endpoint,
7572 * (or "before the sector after the target range")
7573 * then see if it ends after the given start.
7574 * We return
7575 * 0 if there are no known bad blocks in the range
7576 * 1 if there are known bad block which are all acknowledged
7577 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7578 * plus the start/length of the first bad section we overlap.
7580 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7581 sector_t *first_bad, int *bad_sectors)
7583 int hi;
7584 int lo = 0;
7585 u64 *p = bb->page;
7586 int rv = 0;
7587 sector_t target = s + sectors;
7588 unsigned seq;
7590 if (bb->shift > 0) {
7591 /* round the start down, and the end up */
7592 s >>= bb->shift;
7593 target += (1<<bb->shift) - 1;
7594 target >>= bb->shift;
7595 sectors = target - s;
7597 /* 'target' is now the first block after the bad range */
7599 retry:
7600 seq = read_seqbegin(&bb->lock);
7602 hi = bb->count;
7604 /* Binary search between lo and hi for 'target'
7605 * i.e. for the last range that starts before 'target'
7607 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7608 * are known not to be the last range before target.
7609 * VARIANT: hi-lo is the number of possible
7610 * ranges, and decreases until it reaches 1
7612 while (hi - lo > 1) {
7613 int mid = (lo + hi) / 2;
7614 sector_t a = BB_OFFSET(p[mid]);
7615 if (a < target)
7616 /* This could still be the one, earlier ranges
7617 * could not. */
7618 lo = mid;
7619 else
7620 /* This and later ranges are definitely out. */
7621 hi = mid;
7623 /* 'lo' might be the last that started before target, but 'hi' isn't */
7624 if (hi > lo) {
7625 /* need to check all range that end after 's' to see if
7626 * any are unacknowledged.
7628 while (lo >= 0 &&
7629 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7630 if (BB_OFFSET(p[lo]) < target) {
7631 /* starts before the end, and finishes after
7632 * the start, so they must overlap
7634 if (rv != -1 && BB_ACK(p[lo]))
7635 rv = 1;
7636 else
7637 rv = -1;
7638 *first_bad = BB_OFFSET(p[lo]);
7639 *bad_sectors = BB_LEN(p[lo]);
7641 lo--;
7645 if (read_seqretry(&bb->lock, seq))
7646 goto retry;
7648 return rv;
7650 EXPORT_SYMBOL_GPL(md_is_badblock);
7653 * Add a range of bad blocks to the table.
7654 * This might extend the table, or might contract it
7655 * if two adjacent ranges can be merged.
7656 * We binary-search to find the 'insertion' point, then
7657 * decide how best to handle it.
7659 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7660 int acknowledged)
7662 u64 *p;
7663 int lo, hi;
7664 int rv = 1;
7666 if (bb->shift < 0)
7667 /* badblocks are disabled */
7668 return 0;
7670 if (bb->shift) {
7671 /* round the start down, and the end up */
7672 sector_t next = s + sectors;
7673 s >>= bb->shift;
7674 next += (1<<bb->shift) - 1;
7675 next >>= bb->shift;
7676 sectors = next - s;
7679 write_seqlock_irq(&bb->lock);
7681 p = bb->page;
7682 lo = 0;
7683 hi = bb->count;
7684 /* Find the last range that starts at-or-before 's' */
7685 while (hi - lo > 1) {
7686 int mid = (lo + hi) / 2;
7687 sector_t a = BB_OFFSET(p[mid]);
7688 if (a <= s)
7689 lo = mid;
7690 else
7691 hi = mid;
7693 if (hi > lo && BB_OFFSET(p[lo]) > s)
7694 hi = lo;
7696 if (hi > lo) {
7697 /* we found a range that might merge with the start
7698 * of our new range
7700 sector_t a = BB_OFFSET(p[lo]);
7701 sector_t e = a + BB_LEN(p[lo]);
7702 int ack = BB_ACK(p[lo]);
7703 if (e >= s) {
7704 /* Yes, we can merge with a previous range */
7705 if (s == a && s + sectors >= e)
7706 /* new range covers old */
7707 ack = acknowledged;
7708 else
7709 ack = ack && acknowledged;
7711 if (e < s + sectors)
7712 e = s + sectors;
7713 if (e - a <= BB_MAX_LEN) {
7714 p[lo] = BB_MAKE(a, e-a, ack);
7715 s = e;
7716 } else {
7717 /* does not all fit in one range,
7718 * make p[lo] maximal
7720 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7721 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7722 s = a + BB_MAX_LEN;
7724 sectors = e - s;
7727 if (sectors && hi < bb->count) {
7728 /* 'hi' points to the first range that starts after 's'.
7729 * Maybe we can merge with the start of that range */
7730 sector_t a = BB_OFFSET(p[hi]);
7731 sector_t e = a + BB_LEN(p[hi]);
7732 int ack = BB_ACK(p[hi]);
7733 if (a <= s + sectors) {
7734 /* merging is possible */
7735 if (e <= s + sectors) {
7736 /* full overlap */
7737 e = s + sectors;
7738 ack = acknowledged;
7739 } else
7740 ack = ack && acknowledged;
7742 a = s;
7743 if (e - a <= BB_MAX_LEN) {
7744 p[hi] = BB_MAKE(a, e-a, ack);
7745 s = e;
7746 } else {
7747 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7748 s = a + BB_MAX_LEN;
7750 sectors = e - s;
7751 lo = hi;
7752 hi++;
7755 if (sectors == 0 && hi < bb->count) {
7756 /* we might be able to combine lo and hi */
7757 /* Note: 's' is at the end of 'lo' */
7758 sector_t a = BB_OFFSET(p[hi]);
7759 int lolen = BB_LEN(p[lo]);
7760 int hilen = BB_LEN(p[hi]);
7761 int newlen = lolen + hilen - (s - a);
7762 if (s >= a && newlen < BB_MAX_LEN) {
7763 /* yes, we can combine them */
7764 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7765 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7766 memmove(p + hi, p + hi + 1,
7767 (bb->count - hi - 1) * 8);
7768 bb->count--;
7771 while (sectors) {
7772 /* didn't merge (it all).
7773 * Need to add a range just before 'hi' */
7774 if (bb->count >= MD_MAX_BADBLOCKS) {
7775 /* No room for more */
7776 rv = 0;
7777 break;
7778 } else {
7779 int this_sectors = sectors;
7780 memmove(p + hi + 1, p + hi,
7781 (bb->count - hi) * 8);
7782 bb->count++;
7784 if (this_sectors > BB_MAX_LEN)
7785 this_sectors = BB_MAX_LEN;
7786 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7787 sectors -= this_sectors;
7788 s += this_sectors;
7792 bb->changed = 1;
7793 if (!acknowledged)
7794 bb->unacked_exist = 1;
7795 write_sequnlock_irq(&bb->lock);
7797 return rv;
7800 int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
7801 int acknowledged)
7803 int rv = md_set_badblocks(&rdev->badblocks,
7804 s + rdev->data_offset, sectors, acknowledged);
7805 if (rv) {
7806 /* Make sure they get written out promptly */
7807 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7808 md_wakeup_thread(rdev->mddev->thread);
7810 return rv;
7812 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7815 * Remove a range of bad blocks from the table.
7816 * This may involve extending the table if we spilt a region,
7817 * but it must not fail. So if the table becomes full, we just
7818 * drop the remove request.
7820 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7822 u64 *p;
7823 int lo, hi;
7824 sector_t target = s + sectors;
7825 int rv = 0;
7827 if (bb->shift > 0) {
7828 /* When clearing we round the start up and the end down.
7829 * This should not matter as the shift should align with
7830 * the block size and no rounding should ever be needed.
7831 * However it is better the think a block is bad when it
7832 * isn't than to think a block is not bad when it is.
7834 s += (1<<bb->shift) - 1;
7835 s >>= bb->shift;
7836 target >>= bb->shift;
7837 sectors = target - s;
7840 write_seqlock_irq(&bb->lock);
7842 p = bb->page;
7843 lo = 0;
7844 hi = bb->count;
7845 /* Find the last range that starts before 'target' */
7846 while (hi - lo > 1) {
7847 int mid = (lo + hi) / 2;
7848 sector_t a = BB_OFFSET(p[mid]);
7849 if (a < target)
7850 lo = mid;
7851 else
7852 hi = mid;
7854 if (hi > lo) {
7855 /* p[lo] is the last range that could overlap the
7856 * current range. Earlier ranges could also overlap,
7857 * but only this one can overlap the end of the range.
7859 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7860 /* Partial overlap, leave the tail of this range */
7861 int ack = BB_ACK(p[lo]);
7862 sector_t a = BB_OFFSET(p[lo]);
7863 sector_t end = a + BB_LEN(p[lo]);
7865 if (a < s) {
7866 /* we need to split this range */
7867 if (bb->count >= MD_MAX_BADBLOCKS) {
7868 rv = 0;
7869 goto out;
7871 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7872 bb->count++;
7873 p[lo] = BB_MAKE(a, s-a, ack);
7874 lo++;
7876 p[lo] = BB_MAKE(target, end - target, ack);
7877 /* there is no longer an overlap */
7878 hi = lo;
7879 lo--;
7881 while (lo >= 0 &&
7882 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7883 /* This range does overlap */
7884 if (BB_OFFSET(p[lo]) < s) {
7885 /* Keep the early parts of this range. */
7886 int ack = BB_ACK(p[lo]);
7887 sector_t start = BB_OFFSET(p[lo]);
7888 p[lo] = BB_MAKE(start, s - start, ack);
7889 /* now low doesn't overlap, so.. */
7890 break;
7892 lo--;
7894 /* 'lo' is strictly before, 'hi' is strictly after,
7895 * anything between needs to be discarded
7897 if (hi - lo > 1) {
7898 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7899 bb->count -= (hi - lo - 1);
7903 bb->changed = 1;
7904 out:
7905 write_sequnlock_irq(&bb->lock);
7906 return rv;
7909 int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
7911 return md_clear_badblocks(&rdev->badblocks,
7912 s + rdev->data_offset,
7913 sectors);
7915 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7918 * Acknowledge all bad blocks in a list.
7919 * This only succeeds if ->changed is clear. It is used by
7920 * in-kernel metadata updates
7922 void md_ack_all_badblocks(struct badblocks *bb)
7924 if (bb->page == NULL || bb->changed)
7925 /* no point even trying */
7926 return;
7927 write_seqlock_irq(&bb->lock);
7929 if (bb->changed == 0) {
7930 u64 *p = bb->page;
7931 int i;
7932 for (i = 0; i < bb->count ; i++) {
7933 if (!BB_ACK(p[i])) {
7934 sector_t start = BB_OFFSET(p[i]);
7935 int len = BB_LEN(p[i]);
7936 p[i] = BB_MAKE(start, len, 1);
7939 bb->unacked_exist = 0;
7941 write_sequnlock_irq(&bb->lock);
7943 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7945 /* sysfs access to bad-blocks list.
7946 * We present two files.
7947 * 'bad-blocks' lists sector numbers and lengths of ranges that
7948 * are recorded as bad. The list is truncated to fit within
7949 * the one-page limit of sysfs.
7950 * Writing "sector length" to this file adds an acknowledged
7951 * bad block list.
7952 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7953 * been acknowledged. Writing to this file adds bad blocks
7954 * without acknowledging them. This is largely for testing.
7957 static ssize_t
7958 badblocks_show(struct badblocks *bb, char *page, int unack)
7960 size_t len;
7961 int i;
7962 u64 *p = bb->page;
7963 unsigned seq;
7965 if (bb->shift < 0)
7966 return 0;
7968 retry:
7969 seq = read_seqbegin(&bb->lock);
7971 len = 0;
7972 i = 0;
7974 while (len < PAGE_SIZE && i < bb->count) {
7975 sector_t s = BB_OFFSET(p[i]);
7976 unsigned int length = BB_LEN(p[i]);
7977 int ack = BB_ACK(p[i]);
7978 i++;
7980 if (unack && ack)
7981 continue;
7983 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
7984 (unsigned long long)s << bb->shift,
7985 length << bb->shift);
7987 if (unack && len == 0)
7988 bb->unacked_exist = 0;
7990 if (read_seqretry(&bb->lock, seq))
7991 goto retry;
7993 return len;
7996 #define DO_DEBUG 1
7998 static ssize_t
7999 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8001 unsigned long long sector;
8002 int length;
8003 char newline;
8004 #ifdef DO_DEBUG
8005 /* Allow clearing via sysfs *only* for testing/debugging.
8006 * Normally only a successful write may clear a badblock
8008 int clear = 0;
8009 if (page[0] == '-') {
8010 clear = 1;
8011 page++;
8013 #endif /* DO_DEBUG */
8015 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8016 case 3:
8017 if (newline != '\n')
8018 return -EINVAL;
8019 case 2:
8020 if (length <= 0)
8021 return -EINVAL;
8022 break;
8023 default:
8024 return -EINVAL;
8027 #ifdef DO_DEBUG
8028 if (clear) {
8029 md_clear_badblocks(bb, sector, length);
8030 return len;
8032 #endif /* DO_DEBUG */
8033 if (md_set_badblocks(bb, sector, length, !unack))
8034 return len;
8035 else
8036 return -ENOSPC;
8039 static int md_notify_reboot(struct notifier_block *this,
8040 unsigned long code, void *x)
8042 struct list_head *tmp;
8043 mddev_t *mddev;
8045 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8047 printk(KERN_INFO "md: stopping all md devices.\n");
8049 for_each_mddev(mddev, tmp)
8050 if (mddev_trylock(mddev)) {
8051 /* Force a switch to readonly even array
8052 * appears to still be in use. Hence
8053 * the '100'.
8055 md_set_readonly(mddev, 100);
8056 mddev_unlock(mddev);
8059 * certain more exotic SCSI devices are known to be
8060 * volatile wrt too early system reboots. While the
8061 * right place to handle this issue is the given
8062 * driver, we do want to have a safe RAID driver ...
8064 mdelay(1000*1);
8066 return NOTIFY_DONE;
8069 static struct notifier_block md_notifier = {
8070 .notifier_call = md_notify_reboot,
8071 .next = NULL,
8072 .priority = INT_MAX, /* before any real devices */
8075 static void md_geninit(void)
8077 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8079 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8082 static int __init md_init(void)
8084 int ret = -ENOMEM;
8086 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8087 if (!md_wq)
8088 goto err_wq;
8090 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8091 if (!md_misc_wq)
8092 goto err_misc_wq;
8094 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8095 goto err_md;
8097 if ((ret = register_blkdev(0, "mdp")) < 0)
8098 goto err_mdp;
8099 mdp_major = ret;
8101 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8102 md_probe, NULL, NULL);
8103 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8104 md_probe, NULL, NULL);
8106 register_reboot_notifier(&md_notifier);
8107 raid_table_header = register_sysctl_table(raid_root_table);
8109 md_geninit();
8110 return 0;
8112 err_mdp:
8113 unregister_blkdev(MD_MAJOR, "md");
8114 err_md:
8115 destroy_workqueue(md_misc_wq);
8116 err_misc_wq:
8117 destroy_workqueue(md_wq);
8118 err_wq:
8119 return ret;
8122 #ifndef MODULE
8125 * Searches all registered partitions for autorun RAID arrays
8126 * at boot time.
8129 static LIST_HEAD(all_detected_devices);
8130 struct detected_devices_node {
8131 struct list_head list;
8132 dev_t dev;
8135 void md_autodetect_dev(dev_t dev)
8137 struct detected_devices_node *node_detected_dev;
8139 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8140 if (node_detected_dev) {
8141 node_detected_dev->dev = dev;
8142 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8143 } else {
8144 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8145 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8150 static void autostart_arrays(int part)
8152 mdk_rdev_t *rdev;
8153 struct detected_devices_node *node_detected_dev;
8154 dev_t dev;
8155 int i_scanned, i_passed;
8157 i_scanned = 0;
8158 i_passed = 0;
8160 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8162 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8163 i_scanned++;
8164 node_detected_dev = list_entry(all_detected_devices.next,
8165 struct detected_devices_node, list);
8166 list_del(&node_detected_dev->list);
8167 dev = node_detected_dev->dev;
8168 kfree(node_detected_dev);
8169 rdev = md_import_device(dev,0, 90);
8170 if (IS_ERR(rdev))
8171 continue;
8173 if (test_bit(Faulty, &rdev->flags)) {
8174 MD_BUG();
8175 continue;
8177 set_bit(AutoDetected, &rdev->flags);
8178 list_add(&rdev->same_set, &pending_raid_disks);
8179 i_passed++;
8182 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8183 i_scanned, i_passed);
8185 autorun_devices(part);
8188 #endif /* !MODULE */
8190 static __exit void md_exit(void)
8192 mddev_t *mddev;
8193 struct list_head *tmp;
8195 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8196 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8198 unregister_blkdev(MD_MAJOR,"md");
8199 unregister_blkdev(mdp_major, "mdp");
8200 unregister_reboot_notifier(&md_notifier);
8201 unregister_sysctl_table(raid_table_header);
8202 remove_proc_entry("mdstat", NULL);
8203 for_each_mddev(mddev, tmp) {
8204 export_array(mddev);
8205 mddev->hold_active = 0;
8207 destroy_workqueue(md_misc_wq);
8208 destroy_workqueue(md_wq);
8211 subsys_initcall(md_init);
8212 module_exit(md_exit)
8214 static int get_ro(char *buffer, struct kernel_param *kp)
8216 return sprintf(buffer, "%d", start_readonly);
8218 static int set_ro(const char *val, struct kernel_param *kp)
8220 char *e;
8221 int num = simple_strtoul(val, &e, 10);
8222 if (*val && (*e == '\0' || *e == '\n')) {
8223 start_readonly = num;
8224 return 0;
8226 return -EINVAL;
8229 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8230 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8232 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8234 EXPORT_SYMBOL(register_md_personality);
8235 EXPORT_SYMBOL(unregister_md_personality);
8236 EXPORT_SYMBOL(md_error);
8237 EXPORT_SYMBOL(md_done_sync);
8238 EXPORT_SYMBOL(md_write_start);
8239 EXPORT_SYMBOL(md_write_end);
8240 EXPORT_SYMBOL(md_register_thread);
8241 EXPORT_SYMBOL(md_unregister_thread);
8242 EXPORT_SYMBOL(md_wakeup_thread);
8243 EXPORT_SYMBOL(md_check_recovery);
8244 MODULE_LICENSE("GPL");
8245 MODULE_DESCRIPTION("MD RAID framework");
8246 MODULE_ALIAS("md");
8247 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);