1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
42 #include <asm/uaccess.h>
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
45 #define MEM_CGROUP_RECLAIM_RETRIES 5
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly
;
50 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
52 #define do_swap_account (0)
55 static DEFINE_MUTEX(memcg_tasklist
); /* can be hold under cgroup_mutex */
58 * Statistics for memory cgroup.
60 enum mem_cgroup_stat_index
{
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
64 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
66 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
67 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
69 MEM_CGROUP_STAT_NSTATS
,
72 struct mem_cgroup_stat_cpu
{
73 s64 count
[MEM_CGROUP_STAT_NSTATS
];
74 } ____cacheline_aligned_in_smp
;
76 struct mem_cgroup_stat
{
77 struct mem_cgroup_stat_cpu cpustat
[0];
81 * For accounting under irq disable, no need for increment preempt count.
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
84 enum mem_cgroup_stat_index idx
, int val
)
86 stat
->count
[idx
] += val
;
89 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
90 enum mem_cgroup_stat_index idx
)
94 for_each_possible_cpu(cpu
)
95 ret
+= stat
->cpustat
[cpu
].count
[idx
];
99 static s64
mem_cgroup_local_usage(struct mem_cgroup_stat
*stat
)
103 ret
= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_CACHE
);
104 ret
+= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_RSS
);
109 * per-zone information in memory controller.
111 struct mem_cgroup_per_zone
{
113 * spin_lock to protect the per cgroup LRU
115 struct list_head lists
[NR_LRU_LISTS
];
116 unsigned long count
[NR_LRU_LISTS
];
118 struct zone_reclaim_stat reclaim_stat
;
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
123 struct mem_cgroup_per_node
{
124 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
127 struct mem_cgroup_lru_info
{
128 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
132 * The memory controller data structure. The memory controller controls both
133 * page cache and RSS per cgroup. We would eventually like to provide
134 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135 * to help the administrator determine what knobs to tune.
137 * TODO: Add a water mark for the memory controller. Reclaim will begin when
138 * we hit the water mark. May be even add a low water mark, such that
139 * no reclaim occurs from a cgroup at it's low water mark, this is
140 * a feature that will be implemented much later in the future.
143 struct cgroup_subsys_state css
;
145 * the counter to account for memory usage
147 struct res_counter res
;
149 * the counter to account for mem+swap usage.
151 struct res_counter memsw
;
153 * Per cgroup active and inactive list, similar to the
154 * per zone LRU lists.
156 struct mem_cgroup_lru_info info
;
159 protect against reclaim related member.
161 spinlock_t reclaim_param_lock
;
163 int prev_priority
; /* for recording reclaim priority */
166 * While reclaiming in a hiearchy, we cache the last child we
169 int last_scanned_child
;
171 * Should the accounting and control be hierarchical, per subtree?
174 unsigned long last_oom_jiffies
;
177 unsigned int swappiness
;
180 * statistics. This must be placed at the end of memcg.
182 struct mem_cgroup_stat stat
;
186 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
188 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
189 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE (1UL << PCG_CACHE)
196 #define PCGF_USED (1UL << PCG_USED)
197 #define PCGF_LOCK (1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags
[NR_CHARGE_TYPE
] = {
200 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* File Cache */
201 PCGF_USED
| PCGF_LOCK
, /* Anon */
202 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* Shmem */
206 /* for encoding cft->private value on file */
209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val) ((val) & 0xffff)
213 static void mem_cgroup_get(struct mem_cgroup
*mem
);
214 static void mem_cgroup_put(struct mem_cgroup
*mem
);
215 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
217 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
218 struct page_cgroup
*pc
,
221 int val
= (charge
)? 1 : -1;
222 struct mem_cgroup_stat
*stat
= &mem
->stat
;
223 struct mem_cgroup_stat_cpu
*cpustat
;
226 cpustat
= &stat
->cpustat
[cpu
];
227 if (PageCgroupCache(pc
))
228 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
230 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
233 __mem_cgroup_stat_add_safe(cpustat
,
234 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
236 __mem_cgroup_stat_add_safe(cpustat
,
237 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
241 static struct mem_cgroup_per_zone
*
242 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
244 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
247 static struct mem_cgroup_per_zone
*
248 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
250 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
251 int nid
= page_cgroup_nid(pc
);
252 int zid
= page_cgroup_zid(pc
);
257 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
264 struct mem_cgroup_per_zone
*mz
;
267 for_each_online_node(nid
)
268 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
269 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
270 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
275 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
277 return container_of(cgroup_subsys_state(cont
,
278 mem_cgroup_subsys_id
), struct mem_cgroup
,
282 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
285 * mm_update_next_owner() may clear mm->owner to NULL
286 * if it races with swapoff, page migration, etc.
287 * So this can be called with p == NULL.
292 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
293 struct mem_cgroup
, css
);
296 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
298 struct mem_cgroup
*mem
= NULL
;
303 * Because we have no locks, mm->owner's may be being moved to other
304 * cgroup. We use css_tryget() here even if this looks
305 * pessimistic (rather than adding locks here).
309 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
312 } while (!css_tryget(&mem
->css
));
318 * Call callback function against all cgroup under hierarchy tree.
320 static int mem_cgroup_walk_tree(struct mem_cgroup
*root
, void *data
,
321 int (*func
)(struct mem_cgroup
*, void *))
323 int found
, ret
, nextid
;
324 struct cgroup_subsys_state
*css
;
325 struct mem_cgroup
*mem
;
327 if (!root
->use_hierarchy
)
328 return (*func
)(root
, data
);
336 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root
->css
,
338 if (css
&& css_tryget(css
))
339 mem
= container_of(css
, struct mem_cgroup
, css
);
343 ret
= (*func
)(mem
, data
);
347 } while (!ret
&& css
);
353 * Following LRU functions are allowed to be used without PCG_LOCK.
354 * Operations are called by routine of global LRU independently from memcg.
355 * What we have to take care of here is validness of pc->mem_cgroup.
357 * Changes to pc->mem_cgroup happens when
360 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
361 * It is added to LRU before charge.
362 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
363 * When moving account, the page is not on LRU. It's isolated.
366 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
368 struct page_cgroup
*pc
;
369 struct mem_cgroup
*mem
;
370 struct mem_cgroup_per_zone
*mz
;
372 if (mem_cgroup_disabled())
374 pc
= lookup_page_cgroup(page
);
375 /* can happen while we handle swapcache. */
376 if (list_empty(&pc
->lru
) || !pc
->mem_cgroup
)
379 * We don't check PCG_USED bit. It's cleared when the "page" is finally
380 * removed from global LRU.
382 mz
= page_cgroup_zoneinfo(pc
);
383 mem
= pc
->mem_cgroup
;
384 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
385 list_del_init(&pc
->lru
);
389 void mem_cgroup_del_lru(struct page
*page
)
391 mem_cgroup_del_lru_list(page
, page_lru(page
));
394 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
396 struct mem_cgroup_per_zone
*mz
;
397 struct page_cgroup
*pc
;
399 if (mem_cgroup_disabled())
402 pc
= lookup_page_cgroup(page
);
404 * Used bit is set without atomic ops but after smp_wmb().
405 * For making pc->mem_cgroup visible, insert smp_rmb() here.
408 /* unused page is not rotated. */
409 if (!PageCgroupUsed(pc
))
411 mz
= page_cgroup_zoneinfo(pc
);
412 list_move(&pc
->lru
, &mz
->lists
[lru
]);
415 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
417 struct page_cgroup
*pc
;
418 struct mem_cgroup_per_zone
*mz
;
420 if (mem_cgroup_disabled())
422 pc
= lookup_page_cgroup(page
);
424 * Used bit is set without atomic ops but after smp_wmb().
425 * For making pc->mem_cgroup visible, insert smp_rmb() here.
428 if (!PageCgroupUsed(pc
))
431 mz
= page_cgroup_zoneinfo(pc
);
432 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
433 list_add(&pc
->lru
, &mz
->lists
[lru
]);
437 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
438 * lru because the page may.be reused after it's fully uncharged (because of
439 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
440 * it again. This function is only used to charge SwapCache. It's done under
441 * lock_page and expected that zone->lru_lock is never held.
443 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
446 struct zone
*zone
= page_zone(page
);
447 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
449 spin_lock_irqsave(&zone
->lru_lock
, flags
);
451 * Forget old LRU when this page_cgroup is *not* used. This Used bit
452 * is guarded by lock_page() because the page is SwapCache.
454 if (!PageCgroupUsed(pc
))
455 mem_cgroup_del_lru_list(page
, page_lru(page
));
456 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
459 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
462 struct zone
*zone
= page_zone(page
);
463 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
465 spin_lock_irqsave(&zone
->lru_lock
, flags
);
466 /* link when the page is linked to LRU but page_cgroup isn't */
467 if (PageLRU(page
) && list_empty(&pc
->lru
))
468 mem_cgroup_add_lru_list(page
, page_lru(page
));
469 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
473 void mem_cgroup_move_lists(struct page
*page
,
474 enum lru_list from
, enum lru_list to
)
476 if (mem_cgroup_disabled())
478 mem_cgroup_del_lru_list(page
, from
);
479 mem_cgroup_add_lru_list(page
, to
);
482 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
485 struct mem_cgroup
*curr
= NULL
;
489 curr
= try_get_mem_cgroup_from_mm(task
->mm
);
494 if (curr
->use_hierarchy
)
495 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
503 * prev_priority control...this will be used in memory reclaim path.
505 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
509 spin_lock(&mem
->reclaim_param_lock
);
510 prev_priority
= mem
->prev_priority
;
511 spin_unlock(&mem
->reclaim_param_lock
);
513 return prev_priority
;
516 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
518 spin_lock(&mem
->reclaim_param_lock
);
519 if (priority
< mem
->prev_priority
)
520 mem
->prev_priority
= priority
;
521 spin_unlock(&mem
->reclaim_param_lock
);
524 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
526 spin_lock(&mem
->reclaim_param_lock
);
527 mem
->prev_priority
= priority
;
528 spin_unlock(&mem
->reclaim_param_lock
);
531 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
533 unsigned long active
;
534 unsigned long inactive
;
536 unsigned long inactive_ratio
;
538 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
539 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
541 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
543 inactive_ratio
= int_sqrt(10 * gb
);
548 present_pages
[0] = inactive
;
549 present_pages
[1] = active
;
552 return inactive_ratio
;
555 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
557 unsigned long active
;
558 unsigned long inactive
;
559 unsigned long present_pages
[2];
560 unsigned long inactive_ratio
;
562 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
564 inactive
= present_pages
[0];
565 active
= present_pages
[1];
567 if (inactive
* inactive_ratio
< active
)
573 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
577 int nid
= zone
->zone_pgdat
->node_id
;
578 int zid
= zone_idx(zone
);
579 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
581 return MEM_CGROUP_ZSTAT(mz
, lru
);
584 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
587 int nid
= zone
->zone_pgdat
->node_id
;
588 int zid
= zone_idx(zone
);
589 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
591 return &mz
->reclaim_stat
;
594 struct zone_reclaim_stat
*
595 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
597 struct page_cgroup
*pc
;
598 struct mem_cgroup_per_zone
*mz
;
600 if (mem_cgroup_disabled())
603 pc
= lookup_page_cgroup(page
);
605 * Used bit is set without atomic ops but after smp_wmb().
606 * For making pc->mem_cgroup visible, insert smp_rmb() here.
609 if (!PageCgroupUsed(pc
))
612 mz
= page_cgroup_zoneinfo(pc
);
616 return &mz
->reclaim_stat
;
619 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
620 struct list_head
*dst
,
621 unsigned long *scanned
, int order
,
622 int mode
, struct zone
*z
,
623 struct mem_cgroup
*mem_cont
,
624 int active
, int file
)
626 unsigned long nr_taken
= 0;
630 struct list_head
*src
;
631 struct page_cgroup
*pc
, *tmp
;
632 int nid
= z
->zone_pgdat
->node_id
;
633 int zid
= zone_idx(z
);
634 struct mem_cgroup_per_zone
*mz
;
635 int lru
= LRU_FILE
* !!file
+ !!active
;
638 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
639 src
= &mz
->lists
[lru
];
642 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
643 if (scan
>= nr_to_scan
)
647 if (unlikely(!PageCgroupUsed(pc
)))
649 if (unlikely(!PageLRU(page
)))
653 if (__isolate_lru_page(page
, mode
, file
) == 0) {
654 list_move(&page
->lru
, dst
);
663 #define mem_cgroup_from_res_counter(counter, member) \
664 container_of(counter, struct mem_cgroup, member)
666 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
668 if (do_swap_account
) {
669 if (res_counter_check_under_limit(&mem
->res
) &&
670 res_counter_check_under_limit(&mem
->memsw
))
673 if (res_counter_check_under_limit(&mem
->res
))
678 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
680 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
681 unsigned int swappiness
;
684 if (cgrp
->parent
== NULL
)
685 return vm_swappiness
;
687 spin_lock(&memcg
->reclaim_param_lock
);
688 swappiness
= memcg
->swappiness
;
689 spin_unlock(&memcg
->reclaim_param_lock
);
694 static int mem_cgroup_count_children_cb(struct mem_cgroup
*mem
, void *data
)
702 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
703 * @memcg: The memory cgroup that went over limit
704 * @p: Task that is going to be killed
706 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
709 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
711 struct cgroup
*task_cgrp
;
712 struct cgroup
*mem_cgrp
;
714 * Need a buffer in BSS, can't rely on allocations. The code relies
715 * on the assumption that OOM is serialized for memory controller.
716 * If this assumption is broken, revisit this code.
718 static char memcg_name
[PATH_MAX
];
727 mem_cgrp
= memcg
->css
.cgroup
;
728 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
730 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
733 * Unfortunately, we are unable to convert to a useful name
734 * But we'll still print out the usage information
741 printk(KERN_INFO
"Task in %s killed", memcg_name
);
744 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
752 * Continues from above, so we don't need an KERN_ level
754 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
757 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
758 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
759 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
760 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
761 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
763 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
764 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
765 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
769 * This function returns the number of memcg under hierarchy tree. Returns
770 * 1(self count) if no children.
772 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
775 mem_cgroup_walk_tree(mem
, &num
, mem_cgroup_count_children_cb
);
780 * Visit the first child (need not be the first child as per the ordering
781 * of the cgroup list, since we track last_scanned_child) of @mem and use
782 * that to reclaim free pages from.
784 static struct mem_cgroup
*
785 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
787 struct mem_cgroup
*ret
= NULL
;
788 struct cgroup_subsys_state
*css
;
791 if (!root_mem
->use_hierarchy
) {
792 css_get(&root_mem
->css
);
798 nextid
= root_mem
->last_scanned_child
+ 1;
799 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
801 if (css
&& css_tryget(css
))
802 ret
= container_of(css
, struct mem_cgroup
, css
);
805 /* Updates scanning parameter */
806 spin_lock(&root_mem
->reclaim_param_lock
);
808 /* this means start scan from ID:1 */
809 root_mem
->last_scanned_child
= 0;
811 root_mem
->last_scanned_child
= found
;
812 spin_unlock(&root_mem
->reclaim_param_lock
);
819 * Scan the hierarchy if needed to reclaim memory. We remember the last child
820 * we reclaimed from, so that we don't end up penalizing one child extensively
821 * based on its position in the children list.
823 * root_mem is the original ancestor that we've been reclaim from.
825 * We give up and return to the caller when we visit root_mem twice.
826 * (other groups can be removed while we're walking....)
828 * If shrink==true, for avoiding to free too much, this returns immedieately.
830 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
831 gfp_t gfp_mask
, bool noswap
, bool shrink
)
833 struct mem_cgroup
*victim
;
838 victim
= mem_cgroup_select_victim(root_mem
);
839 if (victim
== root_mem
)
841 if (!mem_cgroup_local_usage(&victim
->stat
)) {
842 /* this cgroup's local usage == 0 */
843 css_put(&victim
->css
);
846 /* we use swappiness of local cgroup */
847 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
, noswap
,
848 get_swappiness(victim
));
849 css_put(&victim
->css
);
851 * At shrinking usage, we can't check we should stop here or
852 * reclaim more. It's depends on callers. last_scanned_child
853 * will work enough for keeping fairness under tree.
858 if (mem_cgroup_check_under_limit(root_mem
))
864 bool mem_cgroup_oom_called(struct task_struct
*task
)
867 struct mem_cgroup
*mem
;
868 struct mm_struct
*mm
;
874 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
875 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
881 static int record_last_oom_cb(struct mem_cgroup
*mem
, void *data
)
883 mem
->last_oom_jiffies
= jiffies
;
887 static void record_last_oom(struct mem_cgroup
*mem
)
889 mem_cgroup_walk_tree(mem
, NULL
, record_last_oom_cb
);
894 * Unlike exported interface, "oom" parameter is added. if oom==true,
895 * oom-killer can be invoked.
897 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
898 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
901 struct mem_cgroup
*mem
, *mem_over_limit
;
902 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
903 struct res_counter
*fail_res
;
905 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
906 /* Don't account this! */
912 * We always charge the cgroup the mm_struct belongs to.
913 * The mm_struct's mem_cgroup changes on task migration if the
914 * thread group leader migrates. It's possible that mm is not
915 * set, if so charge the init_mm (happens for pagecache usage).
919 mem
= try_get_mem_cgroup_from_mm(mm
);
927 VM_BUG_ON(css_is_removed(&mem
->css
));
933 ret
= res_counter_charge(&mem
->res
, PAGE_SIZE
, &fail_res
);
935 if (!do_swap_account
)
937 ret
= res_counter_charge(&mem
->memsw
, PAGE_SIZE
,
941 /* mem+swap counter fails */
942 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
944 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
947 /* mem counter fails */
948 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
951 if (!(gfp_mask
& __GFP_WAIT
))
954 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, gfp_mask
,
960 * try_to_free_mem_cgroup_pages() might not give us a full
961 * picture of reclaim. Some pages are reclaimed and might be
962 * moved to swap cache or just unmapped from the cgroup.
963 * Check the limit again to see if the reclaim reduced the
964 * current usage of the cgroup before giving up
967 if (mem_cgroup_check_under_limit(mem_over_limit
))
972 mutex_lock(&memcg_tasklist
);
973 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
974 mutex_unlock(&memcg_tasklist
);
975 record_last_oom(mem_over_limit
);
988 * A helper function to get mem_cgroup from ID. must be called under
989 * rcu_read_lock(). The caller must check css_is_removed() or some if
990 * it's concern. (dropping refcnt from swap can be called against removed
993 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
995 struct cgroup_subsys_state
*css
;
997 /* ID 0 is unused ID */
1000 css
= css_lookup(&mem_cgroup_subsys
, id
);
1003 return container_of(css
, struct mem_cgroup
, css
);
1006 static struct mem_cgroup
*try_get_mem_cgroup_from_swapcache(struct page
*page
)
1008 struct mem_cgroup
*mem
;
1009 struct page_cgroup
*pc
;
1013 VM_BUG_ON(!PageLocked(page
));
1015 if (!PageSwapCache(page
))
1018 pc
= lookup_page_cgroup(page
);
1019 lock_page_cgroup(pc
);
1020 if (PageCgroupUsed(pc
)) {
1021 mem
= pc
->mem_cgroup
;
1022 if (mem
&& !css_tryget(&mem
->css
))
1025 ent
.val
= page_private(page
);
1026 id
= lookup_swap_cgroup(ent
);
1028 mem
= mem_cgroup_lookup(id
);
1029 if (mem
&& !css_tryget(&mem
->css
))
1033 unlock_page_cgroup(pc
);
1038 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1039 * USED state. If already USED, uncharge and return.
1042 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
1043 struct page_cgroup
*pc
,
1044 enum charge_type ctype
)
1046 /* try_charge() can return NULL to *memcg, taking care of it. */
1050 lock_page_cgroup(pc
);
1051 if (unlikely(PageCgroupUsed(pc
))) {
1052 unlock_page_cgroup(pc
);
1053 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1054 if (do_swap_account
)
1055 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1059 pc
->mem_cgroup
= mem
;
1061 pc
->flags
= pcg_default_flags
[ctype
];
1063 mem_cgroup_charge_statistics(mem
, pc
, true);
1065 unlock_page_cgroup(pc
);
1069 * mem_cgroup_move_account - move account of the page
1070 * @pc: page_cgroup of the page.
1071 * @from: mem_cgroup which the page is moved from.
1072 * @to: mem_cgroup which the page is moved to. @from != @to.
1074 * The caller must confirm following.
1075 * - page is not on LRU (isolate_page() is useful.)
1077 * returns 0 at success,
1078 * returns -EBUSY when lock is busy or "pc" is unstable.
1080 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1081 * new cgroup. It should be done by a caller.
1084 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
1085 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
1087 struct mem_cgroup_per_zone
*from_mz
, *to_mz
;
1091 VM_BUG_ON(from
== to
);
1092 VM_BUG_ON(PageLRU(pc
->page
));
1094 nid
= page_cgroup_nid(pc
);
1095 zid
= page_cgroup_zid(pc
);
1096 from_mz
= mem_cgroup_zoneinfo(from
, nid
, zid
);
1097 to_mz
= mem_cgroup_zoneinfo(to
, nid
, zid
);
1099 if (!trylock_page_cgroup(pc
))
1102 if (!PageCgroupUsed(pc
))
1105 if (pc
->mem_cgroup
!= from
)
1108 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
1109 mem_cgroup_charge_statistics(from
, pc
, false);
1110 if (do_swap_account
)
1111 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
1112 css_put(&from
->css
);
1115 pc
->mem_cgroup
= to
;
1116 mem_cgroup_charge_statistics(to
, pc
, true);
1119 unlock_page_cgroup(pc
);
1124 * move charges to its parent.
1127 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1128 struct mem_cgroup
*child
,
1131 struct page
*page
= pc
->page
;
1132 struct cgroup
*cg
= child
->css
.cgroup
;
1133 struct cgroup
*pcg
= cg
->parent
;
1134 struct mem_cgroup
*parent
;
1142 parent
= mem_cgroup_from_cont(pcg
);
1145 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1149 if (!get_page_unless_zero(page
)) {
1154 ret
= isolate_lru_page(page
);
1159 ret
= mem_cgroup_move_account(pc
, child
, parent
);
1161 putback_lru_page(page
);
1164 /* drop extra refcnt by try_charge() */
1165 css_put(&parent
->css
);
1172 /* drop extra refcnt by try_charge() */
1173 css_put(&parent
->css
);
1174 /* uncharge if move fails */
1175 res_counter_uncharge(&parent
->res
, PAGE_SIZE
);
1176 if (do_swap_account
)
1177 res_counter_uncharge(&parent
->memsw
, PAGE_SIZE
);
1182 * Charge the memory controller for page usage.
1184 * 0 if the charge was successful
1185 * < 0 if the cgroup is over its limit
1187 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1188 gfp_t gfp_mask
, enum charge_type ctype
,
1189 struct mem_cgroup
*memcg
)
1191 struct mem_cgroup
*mem
;
1192 struct page_cgroup
*pc
;
1195 pc
= lookup_page_cgroup(page
);
1196 /* can happen at boot */
1202 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1206 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1210 int mem_cgroup_newpage_charge(struct page
*page
,
1211 struct mm_struct
*mm
, gfp_t gfp_mask
)
1213 if (mem_cgroup_disabled())
1215 if (PageCompound(page
))
1218 * If already mapped, we don't have to account.
1219 * If page cache, page->mapping has address_space.
1220 * But page->mapping may have out-of-use anon_vma pointer,
1221 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1224 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1228 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1229 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1233 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1234 enum charge_type ctype
);
1236 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1239 struct mem_cgroup
*mem
= NULL
;
1242 if (mem_cgroup_disabled())
1244 if (PageCompound(page
))
1247 * Corner case handling. This is called from add_to_page_cache()
1248 * in usual. But some FS (shmem) precharges this page before calling it
1249 * and call add_to_page_cache() with GFP_NOWAIT.
1251 * For GFP_NOWAIT case, the page may be pre-charged before calling
1252 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1253 * charge twice. (It works but has to pay a bit larger cost.)
1254 * And when the page is SwapCache, it should take swap information
1255 * into account. This is under lock_page() now.
1257 if (!(gfp_mask
& __GFP_WAIT
)) {
1258 struct page_cgroup
*pc
;
1261 pc
= lookup_page_cgroup(page
);
1264 lock_page_cgroup(pc
);
1265 if (PageCgroupUsed(pc
)) {
1266 unlock_page_cgroup(pc
);
1269 unlock_page_cgroup(pc
);
1272 if (unlikely(!mm
&& !mem
))
1275 if (page_is_file_cache(page
))
1276 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1277 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1280 if (PageSwapCache(page
)) {
1281 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1283 __mem_cgroup_commit_charge_swapin(page
, mem
,
1284 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
1286 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1287 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1293 * While swap-in, try_charge -> commit or cancel, the page is locked.
1294 * And when try_charge() successfully returns, one refcnt to memcg without
1295 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1296 * "commit()" or removed by "cancel()"
1298 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1300 gfp_t mask
, struct mem_cgroup
**ptr
)
1302 struct mem_cgroup
*mem
;
1305 if (mem_cgroup_disabled())
1308 if (!do_swap_account
)
1311 * A racing thread's fault, or swapoff, may have already updated
1312 * the pte, and even removed page from swap cache: return success
1313 * to go on to do_swap_page()'s pte_same() test, which should fail.
1315 if (!PageSwapCache(page
))
1317 mem
= try_get_mem_cgroup_from_swapcache(page
);
1321 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
1322 /* drop extra refcnt from tryget */
1328 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
1332 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1333 enum charge_type ctype
)
1335 struct page_cgroup
*pc
;
1337 if (mem_cgroup_disabled())
1341 pc
= lookup_page_cgroup(page
);
1342 mem_cgroup_lru_del_before_commit_swapcache(page
);
1343 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
1344 mem_cgroup_lru_add_after_commit_swapcache(page
);
1346 * Now swap is on-memory. This means this page may be
1347 * counted both as mem and swap....double count.
1348 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1349 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1350 * may call delete_from_swap_cache() before reach here.
1352 if (do_swap_account
&& PageSwapCache(page
)) {
1353 swp_entry_t ent
= {.val
= page_private(page
)};
1355 struct mem_cgroup
*memcg
;
1357 id
= swap_cgroup_record(ent
, 0);
1359 memcg
= mem_cgroup_lookup(id
);
1362 * This recorded memcg can be obsolete one. So, avoid
1363 * calling css_tryget
1365 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1366 mem_cgroup_put(memcg
);
1370 /* add this page(page_cgroup) to the LRU we want. */
1374 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1376 __mem_cgroup_commit_charge_swapin(page
, ptr
,
1377 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1380 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1382 if (mem_cgroup_disabled())
1386 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1387 if (do_swap_account
)
1388 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1394 * uncharge if !page_mapped(page)
1396 static struct mem_cgroup
*
1397 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
1399 struct page_cgroup
*pc
;
1400 struct mem_cgroup
*mem
= NULL
;
1401 struct mem_cgroup_per_zone
*mz
;
1403 if (mem_cgroup_disabled())
1406 if (PageSwapCache(page
))
1410 * Check if our page_cgroup is valid
1412 pc
= lookup_page_cgroup(page
);
1413 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
1416 lock_page_cgroup(pc
);
1418 mem
= pc
->mem_cgroup
;
1420 if (!PageCgroupUsed(pc
))
1424 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1425 if (page_mapped(page
))
1428 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
1429 if (!PageAnon(page
)) { /* Shared memory */
1430 if (page
->mapping
&& !page_is_file_cache(page
))
1432 } else if (page_mapped(page
)) /* Anon */
1439 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1440 if (do_swap_account
&& (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
))
1441 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1442 mem_cgroup_charge_statistics(mem
, pc
, false);
1444 ClearPageCgroupUsed(pc
);
1446 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1447 * freed from LRU. This is safe because uncharged page is expected not
1448 * to be reused (freed soon). Exception is SwapCache, it's handled by
1449 * special functions.
1452 mz
= page_cgroup_zoneinfo(pc
);
1453 unlock_page_cgroup(pc
);
1455 /* at swapout, this memcg will be accessed to record to swap */
1456 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1462 unlock_page_cgroup(pc
);
1466 void mem_cgroup_uncharge_page(struct page
*page
)
1469 if (page_mapped(page
))
1471 if (page
->mapping
&& !PageAnon(page
))
1473 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1476 void mem_cgroup_uncharge_cache_page(struct page
*page
)
1478 VM_BUG_ON(page_mapped(page
));
1479 VM_BUG_ON(page
->mapping
);
1480 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
1485 * called after __delete_from_swap_cache() and drop "page" account.
1486 * memcg information is recorded to swap_cgroup of "ent"
1488 void mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
)
1490 struct mem_cgroup
*memcg
;
1492 memcg
= __mem_cgroup_uncharge_common(page
,
1493 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
);
1494 /* record memcg information */
1495 if (do_swap_account
&& memcg
) {
1496 swap_cgroup_record(ent
, css_id(&memcg
->css
));
1497 mem_cgroup_get(memcg
);
1500 css_put(&memcg
->css
);
1504 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1506 * called from swap_entry_free(). remove record in swap_cgroup and
1507 * uncharge "memsw" account.
1509 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
1511 struct mem_cgroup
*memcg
;
1514 if (!do_swap_account
)
1517 id
= swap_cgroup_record(ent
, 0);
1519 memcg
= mem_cgroup_lookup(id
);
1522 * We uncharge this because swap is freed.
1523 * This memcg can be obsolete one. We avoid calling css_tryget
1525 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1526 mem_cgroup_put(memcg
);
1533 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1536 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
1538 struct page_cgroup
*pc
;
1539 struct mem_cgroup
*mem
= NULL
;
1542 if (mem_cgroup_disabled())
1545 pc
= lookup_page_cgroup(page
);
1546 lock_page_cgroup(pc
);
1547 if (PageCgroupUsed(pc
)) {
1548 mem
= pc
->mem_cgroup
;
1551 unlock_page_cgroup(pc
);
1554 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
1561 /* remove redundant charge if migration failed*/
1562 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
1563 struct page
*oldpage
, struct page
*newpage
)
1565 struct page
*target
, *unused
;
1566 struct page_cgroup
*pc
;
1567 enum charge_type ctype
;
1572 /* at migration success, oldpage->mapping is NULL. */
1573 if (oldpage
->mapping
) {
1581 if (PageAnon(target
))
1582 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
1583 else if (page_is_file_cache(target
))
1584 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
1586 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
1588 /* unused page is not on radix-tree now. */
1590 __mem_cgroup_uncharge_common(unused
, ctype
);
1592 pc
= lookup_page_cgroup(target
);
1594 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1595 * So, double-counting is effectively avoided.
1597 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1600 * Both of oldpage and newpage are still under lock_page().
1601 * Then, we don't have to care about race in radix-tree.
1602 * But we have to be careful that this page is unmapped or not.
1604 * There is a case for !page_mapped(). At the start of
1605 * migration, oldpage was mapped. But now, it's zapped.
1606 * But we know *target* page is not freed/reused under us.
1607 * mem_cgroup_uncharge_page() does all necessary checks.
1609 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
1610 mem_cgroup_uncharge_page(target
);
1614 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1615 * Calling hierarchical_reclaim is not enough because we should update
1616 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1617 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1618 * not from the memcg which this page would be charged to.
1619 * try_charge_swapin does all of these works properly.
1621 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
1622 struct mm_struct
*mm
,
1625 struct mem_cgroup
*mem
= NULL
;
1628 if (mem_cgroup_disabled())
1631 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1633 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
1638 static DEFINE_MUTEX(set_limit_mutex
);
1640 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
1641 unsigned long long val
)
1647 int children
= mem_cgroup_count_children(memcg
);
1648 u64 curusage
, oldusage
;
1651 * For keeping hierarchical_reclaim simple, how long we should retry
1652 * is depends on callers. We set our retry-count to be function
1653 * of # of children which we should visit in this loop.
1655 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
1657 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
1659 while (retry_count
) {
1660 if (signal_pending(current
)) {
1665 * Rather than hide all in some function, I do this in
1666 * open coded manner. You see what this really does.
1667 * We have to guarantee mem->res.limit < mem->memsw.limit.
1669 mutex_lock(&set_limit_mutex
);
1670 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1671 if (memswlimit
< val
) {
1673 mutex_unlock(&set_limit_mutex
);
1676 ret
= res_counter_set_limit(&memcg
->res
, val
);
1677 mutex_unlock(&set_limit_mutex
);
1682 progress
= mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
,
1684 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
1685 /* Usage is reduced ? */
1686 if (curusage
>= oldusage
)
1689 oldusage
= curusage
;
1695 int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
1696 unsigned long long val
)
1699 u64 memlimit
, oldusage
, curusage
;
1700 int children
= mem_cgroup_count_children(memcg
);
1703 if (!do_swap_account
)
1705 /* see mem_cgroup_resize_res_limit */
1706 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
1707 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1708 while (retry_count
) {
1709 if (signal_pending(current
)) {
1714 * Rather than hide all in some function, I do this in
1715 * open coded manner. You see what this really does.
1716 * We have to guarantee mem->res.limit < mem->memsw.limit.
1718 mutex_lock(&set_limit_mutex
);
1719 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1720 if (memlimit
> val
) {
1722 mutex_unlock(&set_limit_mutex
);
1725 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
1726 mutex_unlock(&set_limit_mutex
);
1731 mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
, true, true);
1732 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1733 /* Usage is reduced ? */
1734 if (curusage
>= oldusage
)
1737 oldusage
= curusage
;
1743 * This routine traverse page_cgroup in given list and drop them all.
1744 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1746 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
1747 int node
, int zid
, enum lru_list lru
)
1750 struct mem_cgroup_per_zone
*mz
;
1751 struct page_cgroup
*pc
, *busy
;
1752 unsigned long flags
, loop
;
1753 struct list_head
*list
;
1756 zone
= &NODE_DATA(node
)->node_zones
[zid
];
1757 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
1758 list
= &mz
->lists
[lru
];
1760 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
1761 /* give some margin against EBUSY etc...*/
1766 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1767 if (list_empty(list
)) {
1768 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1771 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
1773 list_move(&pc
->lru
, list
);
1775 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1778 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1780 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
1784 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
1785 /* found lock contention or "pc" is obsolete. */
1792 if (!ret
&& !list_empty(list
))
1798 * make mem_cgroup's charge to be 0 if there is no task.
1799 * This enables deleting this mem_cgroup.
1801 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
1804 int node
, zid
, shrink
;
1805 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1806 struct cgroup
*cgrp
= mem
->css
.cgroup
;
1811 /* should free all ? */
1815 while (mem
->res
.usage
> 0) {
1817 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
1820 if (signal_pending(current
))
1822 /* This is for making all *used* pages to be on LRU. */
1823 lru_add_drain_all();
1825 for_each_node_state(node
, N_HIGH_MEMORY
) {
1826 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
1829 ret
= mem_cgroup_force_empty_list(mem
,
1838 /* it seems parent cgroup doesn't have enough mem */
1849 /* returns EBUSY if there is a task or if we come here twice. */
1850 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
1854 /* we call try-to-free pages for make this cgroup empty */
1855 lru_add_drain_all();
1856 /* try to free all pages in this cgroup */
1858 while (nr_retries
&& mem
->res
.usage
> 0) {
1861 if (signal_pending(current
)) {
1865 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
1866 false, get_swappiness(mem
));
1869 /* maybe some writeback is necessary */
1870 congestion_wait(WRITE
, HZ
/10);
1875 /* try move_account...there may be some *locked* pages. */
1882 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
1884 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
1888 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
1890 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
1893 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
1897 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1898 struct cgroup
*parent
= cont
->parent
;
1899 struct mem_cgroup
*parent_mem
= NULL
;
1902 parent_mem
= mem_cgroup_from_cont(parent
);
1906 * If parent's use_hiearchy is set, we can't make any modifications
1907 * in the child subtrees. If it is unset, then the change can
1908 * occur, provided the current cgroup has no children.
1910 * For the root cgroup, parent_mem is NULL, we allow value to be
1911 * set if there are no children.
1913 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
1914 (val
== 1 || val
== 0)) {
1915 if (list_empty(&cont
->children
))
1916 mem
->use_hierarchy
= val
;
1926 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
1928 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1932 type
= MEMFILE_TYPE(cft
->private);
1933 name
= MEMFILE_ATTR(cft
->private);
1936 val
= res_counter_read_u64(&mem
->res
, name
);
1939 if (do_swap_account
)
1940 val
= res_counter_read_u64(&mem
->memsw
, name
);
1949 * The user of this function is...
1952 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
1955 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
1957 unsigned long long val
;
1960 type
= MEMFILE_TYPE(cft
->private);
1961 name
= MEMFILE_ATTR(cft
->private);
1964 /* This function does all necessary parse...reuse it */
1965 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
1969 ret
= mem_cgroup_resize_limit(memcg
, val
);
1971 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
1974 ret
= -EINVAL
; /* should be BUG() ? */
1980 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
1981 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
1983 struct cgroup
*cgroup
;
1984 unsigned long long min_limit
, min_memsw_limit
, tmp
;
1986 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1987 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1988 cgroup
= memcg
->css
.cgroup
;
1989 if (!memcg
->use_hierarchy
)
1992 while (cgroup
->parent
) {
1993 cgroup
= cgroup
->parent
;
1994 memcg
= mem_cgroup_from_cont(cgroup
);
1995 if (!memcg
->use_hierarchy
)
1997 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1998 min_limit
= min(min_limit
, tmp
);
1999 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2000 min_memsw_limit
= min(min_memsw_limit
, tmp
);
2003 *mem_limit
= min_limit
;
2004 *memsw_limit
= min_memsw_limit
;
2008 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
2010 struct mem_cgroup
*mem
;
2013 mem
= mem_cgroup_from_cont(cont
);
2014 type
= MEMFILE_TYPE(event
);
2015 name
= MEMFILE_ATTR(event
);
2019 res_counter_reset_max(&mem
->res
);
2021 res_counter_reset_max(&mem
->memsw
);
2025 res_counter_reset_failcnt(&mem
->res
);
2027 res_counter_reset_failcnt(&mem
->memsw
);
2034 /* For read statistics */
2048 struct mcs_total_stat
{
2049 s64 stat
[NR_MCS_STAT
];
2055 } memcg_stat_strings
[NR_MCS_STAT
] = {
2056 {"cache", "total_cache"},
2057 {"rss", "total_rss"},
2058 {"pgpgin", "total_pgpgin"},
2059 {"pgpgout", "total_pgpgout"},
2060 {"inactive_anon", "total_inactive_anon"},
2061 {"active_anon", "total_active_anon"},
2062 {"inactive_file", "total_inactive_file"},
2063 {"active_file", "total_active_file"},
2064 {"unevictable", "total_unevictable"}
2068 static int mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, void *data
)
2070 struct mcs_total_stat
*s
= data
;
2074 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_CACHE
);
2075 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
2076 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
2077 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
2078 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
2079 s
->stat
[MCS_PGPGIN
] += val
;
2080 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
2081 s
->stat
[MCS_PGPGOUT
] += val
;
2084 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
2085 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
2086 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
2087 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
2088 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
2089 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
2090 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
2091 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
2092 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
2093 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
2098 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
2100 mem_cgroup_walk_tree(mem
, s
, mem_cgroup_get_local_stat
);
2103 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
2104 struct cgroup_map_cb
*cb
)
2106 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
2107 struct mcs_total_stat mystat
;
2110 memset(&mystat
, 0, sizeof(mystat
));
2111 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
2113 for (i
= 0; i
< NR_MCS_STAT
; i
++)
2114 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
2116 /* Hierarchical information */
2118 unsigned long long limit
, memsw_limit
;
2119 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
2120 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
2121 if (do_swap_account
)
2122 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
2125 memset(&mystat
, 0, sizeof(mystat
));
2126 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
2127 for (i
= 0; i
< NR_MCS_STAT
; i
++)
2128 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
2131 #ifdef CONFIG_DEBUG_VM
2132 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
2136 struct mem_cgroup_per_zone
*mz
;
2137 unsigned long recent_rotated
[2] = {0, 0};
2138 unsigned long recent_scanned
[2] = {0, 0};
2140 for_each_online_node(nid
)
2141 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
2142 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
2144 recent_rotated
[0] +=
2145 mz
->reclaim_stat
.recent_rotated
[0];
2146 recent_rotated
[1] +=
2147 mz
->reclaim_stat
.recent_rotated
[1];
2148 recent_scanned
[0] +=
2149 mz
->reclaim_stat
.recent_scanned
[0];
2150 recent_scanned
[1] +=
2151 mz
->reclaim_stat
.recent_scanned
[1];
2153 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
2154 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
2155 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
2156 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
2163 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
2165 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
2167 return get_swappiness(memcg
);
2170 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
2173 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
2174 struct mem_cgroup
*parent
;
2179 if (cgrp
->parent
== NULL
)
2182 parent
= mem_cgroup_from_cont(cgrp
->parent
);
2186 /* If under hierarchy, only empty-root can set this value */
2187 if ((parent
->use_hierarchy
) ||
2188 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
2193 spin_lock(&memcg
->reclaim_param_lock
);
2194 memcg
->swappiness
= val
;
2195 spin_unlock(&memcg
->reclaim_param_lock
);
2203 static struct cftype mem_cgroup_files
[] = {
2205 .name
= "usage_in_bytes",
2206 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
2207 .read_u64
= mem_cgroup_read
,
2210 .name
= "max_usage_in_bytes",
2211 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
2212 .trigger
= mem_cgroup_reset
,
2213 .read_u64
= mem_cgroup_read
,
2216 .name
= "limit_in_bytes",
2217 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
2218 .write_string
= mem_cgroup_write
,
2219 .read_u64
= mem_cgroup_read
,
2223 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
2224 .trigger
= mem_cgroup_reset
,
2225 .read_u64
= mem_cgroup_read
,
2229 .read_map
= mem_control_stat_show
,
2232 .name
= "force_empty",
2233 .trigger
= mem_cgroup_force_empty_write
,
2236 .name
= "use_hierarchy",
2237 .write_u64
= mem_cgroup_hierarchy_write
,
2238 .read_u64
= mem_cgroup_hierarchy_read
,
2241 .name
= "swappiness",
2242 .read_u64
= mem_cgroup_swappiness_read
,
2243 .write_u64
= mem_cgroup_swappiness_write
,
2247 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2248 static struct cftype memsw_cgroup_files
[] = {
2250 .name
= "memsw.usage_in_bytes",
2251 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
2252 .read_u64
= mem_cgroup_read
,
2255 .name
= "memsw.max_usage_in_bytes",
2256 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
2257 .trigger
= mem_cgroup_reset
,
2258 .read_u64
= mem_cgroup_read
,
2261 .name
= "memsw.limit_in_bytes",
2262 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
2263 .write_string
= mem_cgroup_write
,
2264 .read_u64
= mem_cgroup_read
,
2267 .name
= "memsw.failcnt",
2268 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
2269 .trigger
= mem_cgroup_reset
,
2270 .read_u64
= mem_cgroup_read
,
2274 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2276 if (!do_swap_account
)
2278 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
2279 ARRAY_SIZE(memsw_cgroup_files
));
2282 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2288 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2290 struct mem_cgroup_per_node
*pn
;
2291 struct mem_cgroup_per_zone
*mz
;
2293 int zone
, tmp
= node
;
2295 * This routine is called against possible nodes.
2296 * But it's BUG to call kmalloc() against offline node.
2298 * TODO: this routine can waste much memory for nodes which will
2299 * never be onlined. It's better to use memory hotplug callback
2302 if (!node_state(node
, N_NORMAL_MEMORY
))
2304 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
2308 mem
->info
.nodeinfo
[node
] = pn
;
2309 memset(pn
, 0, sizeof(*pn
));
2311 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
2312 mz
= &pn
->zoneinfo
[zone
];
2314 INIT_LIST_HEAD(&mz
->lists
[l
]);
2319 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2321 kfree(mem
->info
.nodeinfo
[node
]);
2324 static int mem_cgroup_size(void)
2326 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
2327 return sizeof(struct mem_cgroup
) + cpustat_size
;
2330 static struct mem_cgroup
*mem_cgroup_alloc(void)
2332 struct mem_cgroup
*mem
;
2333 int size
= mem_cgroup_size();
2335 if (size
< PAGE_SIZE
)
2336 mem
= kmalloc(size
, GFP_KERNEL
);
2338 mem
= vmalloc(size
);
2341 memset(mem
, 0, size
);
2346 * At destroying mem_cgroup, references from swap_cgroup can remain.
2347 * (scanning all at force_empty is too costly...)
2349 * Instead of clearing all references at force_empty, we remember
2350 * the number of reference from swap_cgroup and free mem_cgroup when
2351 * it goes down to 0.
2353 * Removal of cgroup itself succeeds regardless of refs from swap.
2356 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
2360 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
2362 for_each_node_state(node
, N_POSSIBLE
)
2363 free_mem_cgroup_per_zone_info(mem
, node
);
2365 if (mem_cgroup_size() < PAGE_SIZE
)
2371 static void mem_cgroup_get(struct mem_cgroup
*mem
)
2373 atomic_inc(&mem
->refcnt
);
2376 static void mem_cgroup_put(struct mem_cgroup
*mem
)
2378 if (atomic_dec_and_test(&mem
->refcnt
)) {
2379 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
2380 __mem_cgroup_free(mem
);
2382 mem_cgroup_put(parent
);
2387 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2389 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
2391 if (!mem
->res
.parent
)
2393 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
2396 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2397 static void __init
enable_swap_cgroup(void)
2399 if (!mem_cgroup_disabled() && really_do_swap_account
)
2400 do_swap_account
= 1;
2403 static void __init
enable_swap_cgroup(void)
2408 static struct cgroup_subsys_state
* __ref
2409 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
2411 struct mem_cgroup
*mem
, *parent
;
2412 long error
= -ENOMEM
;
2415 mem
= mem_cgroup_alloc();
2417 return ERR_PTR(error
);
2419 for_each_node_state(node
, N_POSSIBLE
)
2420 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
2423 if (cont
->parent
== NULL
) {
2424 enable_swap_cgroup();
2427 parent
= mem_cgroup_from_cont(cont
->parent
);
2428 mem
->use_hierarchy
= parent
->use_hierarchy
;
2431 if (parent
&& parent
->use_hierarchy
) {
2432 res_counter_init(&mem
->res
, &parent
->res
);
2433 res_counter_init(&mem
->memsw
, &parent
->memsw
);
2435 * We increment refcnt of the parent to ensure that we can
2436 * safely access it on res_counter_charge/uncharge.
2437 * This refcnt will be decremented when freeing this
2438 * mem_cgroup(see mem_cgroup_put).
2440 mem_cgroup_get(parent
);
2442 res_counter_init(&mem
->res
, NULL
);
2443 res_counter_init(&mem
->memsw
, NULL
);
2445 mem
->last_scanned_child
= 0;
2446 spin_lock_init(&mem
->reclaim_param_lock
);
2449 mem
->swappiness
= get_swappiness(parent
);
2450 atomic_set(&mem
->refcnt
, 1);
2453 __mem_cgroup_free(mem
);
2454 return ERR_PTR(error
);
2457 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
2458 struct cgroup
*cont
)
2460 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2462 return mem_cgroup_force_empty(mem
, false);
2465 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
2466 struct cgroup
*cont
)
2468 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2470 mem_cgroup_put(mem
);
2473 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
2474 struct cgroup
*cont
)
2478 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
2479 ARRAY_SIZE(mem_cgroup_files
));
2482 ret
= register_memsw_files(cont
, ss
);
2486 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
2487 struct cgroup
*cont
,
2488 struct cgroup
*old_cont
,
2489 struct task_struct
*p
)
2491 mutex_lock(&memcg_tasklist
);
2493 * FIXME: It's better to move charges of this process from old
2494 * memcg to new memcg. But it's just on TODO-List now.
2496 mutex_unlock(&memcg_tasklist
);
2499 struct cgroup_subsys mem_cgroup_subsys
= {
2501 .subsys_id
= mem_cgroup_subsys_id
,
2502 .create
= mem_cgroup_create
,
2503 .pre_destroy
= mem_cgroup_pre_destroy
,
2504 .destroy
= mem_cgroup_destroy
,
2505 .populate
= mem_cgroup_populate
,
2506 .attach
= mem_cgroup_move_task
,
2511 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2513 static int __init
disable_swap_account(char *s
)
2515 really_do_swap_account
= 0;
2518 __setup("noswapaccount", disable_swap_account
);