[CIFS] Fix mask so can set new cifs security flags properly
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / skbuff.c
blobfb3770f9c09405f3dce34e2b429e74d4a9761508
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
77 * reliable.
80 /**
81 * skb_over_panic - private function
82 * @skb: buffer
83 * @sz: size
84 * @here: address
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%p end:%p dev:%s\n",
92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 skb->dev ? skb->dev->name : "<NULL>");
94 BUG();
97 /**
98 * skb_under_panic - private function
99 * @skb: buffer
100 * @sz: size
101 * @here: address
103 * Out of line support code for skb_push(). Not user callable.
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 "data:%p tail:%p end:%p dev:%s\n",
110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 skb->dev ? skb->dev->name : "<NULL>");
112 BUG();
115 void skb_truesize_bug(struct sk_buff *skb)
117 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
118 "len=%u, sizeof(sk_buff)=%Zd\n",
119 skb->truesize, skb->len, sizeof(struct sk_buff));
121 EXPORT_SYMBOL(skb_truesize_bug);
123 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
124 * 'private' fields and also do memory statistics to find all the
125 * [BEEP] leaks.
130 * __alloc_skb - allocate a network buffer
131 * @size: size to allocate
132 * @gfp_mask: allocation mask
133 * @fclone: allocate from fclone cache instead of head cache
134 * and allocate a cloned (child) skb
136 * Allocate a new &sk_buff. The returned buffer has no headroom and a
137 * tail room of size bytes. The object has a reference count of one.
138 * The return is the buffer. On a failure the return is %NULL.
140 * Buffers may only be allocated from interrupts using a @gfp_mask of
141 * %GFP_ATOMIC.
143 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
144 int fclone)
146 kmem_cache_t *cache;
147 struct skb_shared_info *shinfo;
148 struct sk_buff *skb;
149 u8 *data;
151 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
153 /* Get the HEAD */
154 skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
155 if (!skb)
156 goto out;
158 /* Get the DATA. Size must match skb_add_mtu(). */
159 size = SKB_DATA_ALIGN(size);
160 data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
161 if (!data)
162 goto nodata;
164 memset(skb, 0, offsetof(struct sk_buff, truesize));
165 skb->truesize = size + sizeof(struct sk_buff);
166 atomic_set(&skb->users, 1);
167 skb->head = data;
168 skb->data = data;
169 skb->tail = data;
170 skb->end = data + size;
171 /* make sure we initialize shinfo sequentially */
172 shinfo = skb_shinfo(skb);
173 atomic_set(&shinfo->dataref, 1);
174 shinfo->nr_frags = 0;
175 shinfo->tso_size = 0;
176 shinfo->tso_segs = 0;
177 shinfo->ufo_size = 0;
178 shinfo->ip6_frag_id = 0;
179 shinfo->frag_list = NULL;
181 if (fclone) {
182 struct sk_buff *child = skb + 1;
183 atomic_t *fclone_ref = (atomic_t *) (child + 1);
185 skb->fclone = SKB_FCLONE_ORIG;
186 atomic_set(fclone_ref, 1);
188 child->fclone = SKB_FCLONE_UNAVAILABLE;
190 out:
191 return skb;
192 nodata:
193 kmem_cache_free(cache, skb);
194 skb = NULL;
195 goto out;
199 * alloc_skb_from_cache - allocate a network buffer
200 * @cp: kmem_cache from which to allocate the data area
201 * (object size must be big enough for @size bytes + skb overheads)
202 * @size: size to allocate
203 * @gfp_mask: allocation mask
205 * Allocate a new &sk_buff. The returned buffer has no headroom and
206 * tail room of size bytes. The object has a reference count of one.
207 * The return is the buffer. On a failure the return is %NULL.
209 * Buffers may only be allocated from interrupts using a @gfp_mask of
210 * %GFP_ATOMIC.
212 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
213 unsigned int size,
214 gfp_t gfp_mask)
216 struct sk_buff *skb;
217 u8 *data;
219 /* Get the HEAD */
220 skb = kmem_cache_alloc(skbuff_head_cache,
221 gfp_mask & ~__GFP_DMA);
222 if (!skb)
223 goto out;
225 /* Get the DATA. */
226 size = SKB_DATA_ALIGN(size);
227 data = kmem_cache_alloc(cp, gfp_mask);
228 if (!data)
229 goto nodata;
231 memset(skb, 0, offsetof(struct sk_buff, truesize));
232 skb->truesize = size + sizeof(struct sk_buff);
233 atomic_set(&skb->users, 1);
234 skb->head = data;
235 skb->data = data;
236 skb->tail = data;
237 skb->end = data + size;
239 atomic_set(&(skb_shinfo(skb)->dataref), 1);
240 skb_shinfo(skb)->nr_frags = 0;
241 skb_shinfo(skb)->tso_size = 0;
242 skb_shinfo(skb)->tso_segs = 0;
243 skb_shinfo(skb)->frag_list = NULL;
244 out:
245 return skb;
246 nodata:
247 kmem_cache_free(skbuff_head_cache, skb);
248 skb = NULL;
249 goto out;
253 static void skb_drop_fraglist(struct sk_buff *skb)
255 struct sk_buff *list = skb_shinfo(skb)->frag_list;
257 skb_shinfo(skb)->frag_list = NULL;
259 do {
260 struct sk_buff *this = list;
261 list = list->next;
262 kfree_skb(this);
263 } while (list);
266 static void skb_clone_fraglist(struct sk_buff *skb)
268 struct sk_buff *list;
270 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
271 skb_get(list);
274 void skb_release_data(struct sk_buff *skb)
276 if (!skb->cloned ||
277 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
278 &skb_shinfo(skb)->dataref)) {
279 if (skb_shinfo(skb)->nr_frags) {
280 int i;
281 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
282 put_page(skb_shinfo(skb)->frags[i].page);
285 if (skb_shinfo(skb)->frag_list)
286 skb_drop_fraglist(skb);
288 kfree(skb->head);
293 * Free an skbuff by memory without cleaning the state.
295 void kfree_skbmem(struct sk_buff *skb)
297 struct sk_buff *other;
298 atomic_t *fclone_ref;
300 skb_release_data(skb);
301 switch (skb->fclone) {
302 case SKB_FCLONE_UNAVAILABLE:
303 kmem_cache_free(skbuff_head_cache, skb);
304 break;
306 case SKB_FCLONE_ORIG:
307 fclone_ref = (atomic_t *) (skb + 2);
308 if (atomic_dec_and_test(fclone_ref))
309 kmem_cache_free(skbuff_fclone_cache, skb);
310 break;
312 case SKB_FCLONE_CLONE:
313 fclone_ref = (atomic_t *) (skb + 1);
314 other = skb - 1;
316 /* The clone portion is available for
317 * fast-cloning again.
319 skb->fclone = SKB_FCLONE_UNAVAILABLE;
321 if (atomic_dec_and_test(fclone_ref))
322 kmem_cache_free(skbuff_fclone_cache, other);
323 break;
328 * __kfree_skb - private function
329 * @skb: buffer
331 * Free an sk_buff. Release anything attached to the buffer.
332 * Clean the state. This is an internal helper function. Users should
333 * always call kfree_skb
336 void __kfree_skb(struct sk_buff *skb)
338 dst_release(skb->dst);
339 #ifdef CONFIG_XFRM
340 secpath_put(skb->sp);
341 #endif
342 if (skb->destructor) {
343 WARN_ON(in_irq());
344 skb->destructor(skb);
346 #ifdef CONFIG_NETFILTER
347 nf_conntrack_put(skb->nfct);
348 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
349 nf_conntrack_put_reasm(skb->nfct_reasm);
350 #endif
351 #ifdef CONFIG_BRIDGE_NETFILTER
352 nf_bridge_put(skb->nf_bridge);
353 #endif
354 #endif
355 /* XXX: IS this still necessary? - JHS */
356 #ifdef CONFIG_NET_SCHED
357 skb->tc_index = 0;
358 #ifdef CONFIG_NET_CLS_ACT
359 skb->tc_verd = 0;
360 #endif
361 #endif
363 kfree_skbmem(skb);
367 * kfree_skb - free an sk_buff
368 * @skb: buffer to free
370 * Drop a reference to the buffer and free it if the usage count has
371 * hit zero.
373 void kfree_skb(struct sk_buff *skb)
375 if (unlikely(!skb))
376 return;
377 if (likely(atomic_read(&skb->users) == 1))
378 smp_rmb();
379 else if (likely(!atomic_dec_and_test(&skb->users)))
380 return;
381 __kfree_skb(skb);
385 * skb_clone - duplicate an sk_buff
386 * @skb: buffer to clone
387 * @gfp_mask: allocation priority
389 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
390 * copies share the same packet data but not structure. The new
391 * buffer has a reference count of 1. If the allocation fails the
392 * function returns %NULL otherwise the new buffer is returned.
394 * If this function is called from an interrupt gfp_mask() must be
395 * %GFP_ATOMIC.
398 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
400 struct sk_buff *n;
402 n = skb + 1;
403 if (skb->fclone == SKB_FCLONE_ORIG &&
404 n->fclone == SKB_FCLONE_UNAVAILABLE) {
405 atomic_t *fclone_ref = (atomic_t *) (n + 1);
406 n->fclone = SKB_FCLONE_CLONE;
407 atomic_inc(fclone_ref);
408 } else {
409 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
410 if (!n)
411 return NULL;
412 n->fclone = SKB_FCLONE_UNAVAILABLE;
415 #define C(x) n->x = skb->x
417 n->next = n->prev = NULL;
418 n->sk = NULL;
419 C(tstamp);
420 C(dev);
421 C(h);
422 C(nh);
423 C(mac);
424 C(dst);
425 dst_clone(skb->dst);
426 C(sp);
427 #ifdef CONFIG_INET
428 secpath_get(skb->sp);
429 #endif
430 memcpy(n->cb, skb->cb, sizeof(skb->cb));
431 C(len);
432 C(data_len);
433 C(csum);
434 C(local_df);
435 n->cloned = 1;
436 n->nohdr = 0;
437 C(pkt_type);
438 C(ip_summed);
439 C(priority);
440 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
441 C(ipvs_property);
442 #endif
443 C(protocol);
444 n->destructor = NULL;
445 #ifdef CONFIG_NETFILTER
446 C(nfmark);
447 C(nfct);
448 nf_conntrack_get(skb->nfct);
449 C(nfctinfo);
450 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
451 C(nfct_reasm);
452 nf_conntrack_get_reasm(skb->nfct_reasm);
453 #endif
454 #ifdef CONFIG_BRIDGE_NETFILTER
455 C(nf_bridge);
456 nf_bridge_get(skb->nf_bridge);
457 #endif
458 #endif /*CONFIG_NETFILTER*/
459 #ifdef CONFIG_NET_SCHED
460 C(tc_index);
461 #ifdef CONFIG_NET_CLS_ACT
462 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
463 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
464 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
465 C(input_dev);
466 #endif
468 #endif
469 C(truesize);
470 atomic_set(&n->users, 1);
471 C(head);
472 C(data);
473 C(tail);
474 C(end);
476 atomic_inc(&(skb_shinfo(skb)->dataref));
477 skb->cloned = 1;
479 return n;
482 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
485 * Shift between the two data areas in bytes
487 unsigned long offset = new->data - old->data;
489 new->sk = NULL;
490 new->dev = old->dev;
491 new->priority = old->priority;
492 new->protocol = old->protocol;
493 new->dst = dst_clone(old->dst);
494 #ifdef CONFIG_INET
495 new->sp = secpath_get(old->sp);
496 #endif
497 new->h.raw = old->h.raw + offset;
498 new->nh.raw = old->nh.raw + offset;
499 new->mac.raw = old->mac.raw + offset;
500 memcpy(new->cb, old->cb, sizeof(old->cb));
501 new->local_df = old->local_df;
502 new->fclone = SKB_FCLONE_UNAVAILABLE;
503 new->pkt_type = old->pkt_type;
504 new->tstamp = old->tstamp;
505 new->destructor = NULL;
506 #ifdef CONFIG_NETFILTER
507 new->nfmark = old->nfmark;
508 new->nfct = old->nfct;
509 nf_conntrack_get(old->nfct);
510 new->nfctinfo = old->nfctinfo;
511 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
512 new->nfct_reasm = old->nfct_reasm;
513 nf_conntrack_get_reasm(old->nfct_reasm);
514 #endif
515 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
516 new->ipvs_property = old->ipvs_property;
517 #endif
518 #ifdef CONFIG_BRIDGE_NETFILTER
519 new->nf_bridge = old->nf_bridge;
520 nf_bridge_get(old->nf_bridge);
521 #endif
522 #endif
523 #ifdef CONFIG_NET_SCHED
524 #ifdef CONFIG_NET_CLS_ACT
525 new->tc_verd = old->tc_verd;
526 #endif
527 new->tc_index = old->tc_index;
528 #endif
529 atomic_set(&new->users, 1);
530 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
531 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
535 * skb_copy - create private copy of an sk_buff
536 * @skb: buffer to copy
537 * @gfp_mask: allocation priority
539 * Make a copy of both an &sk_buff and its data. This is used when the
540 * caller wishes to modify the data and needs a private copy of the
541 * data to alter. Returns %NULL on failure or the pointer to the buffer
542 * on success. The returned buffer has a reference count of 1.
544 * As by-product this function converts non-linear &sk_buff to linear
545 * one, so that &sk_buff becomes completely private and caller is allowed
546 * to modify all the data of returned buffer. This means that this
547 * function is not recommended for use in circumstances when only
548 * header is going to be modified. Use pskb_copy() instead.
551 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
553 int headerlen = skb->data - skb->head;
555 * Allocate the copy buffer
557 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
558 gfp_mask);
559 if (!n)
560 return NULL;
562 /* Set the data pointer */
563 skb_reserve(n, headerlen);
564 /* Set the tail pointer and length */
565 skb_put(n, skb->len);
566 n->csum = skb->csum;
567 n->ip_summed = skb->ip_summed;
569 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
570 BUG();
572 copy_skb_header(n, skb);
573 return n;
578 * pskb_copy - create copy of an sk_buff with private head.
579 * @skb: buffer to copy
580 * @gfp_mask: allocation priority
582 * Make a copy of both an &sk_buff and part of its data, located
583 * in header. Fragmented data remain shared. This is used when
584 * the caller wishes to modify only header of &sk_buff and needs
585 * private copy of the header to alter. Returns %NULL on failure
586 * or the pointer to the buffer on success.
587 * The returned buffer has a reference count of 1.
590 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
593 * Allocate the copy buffer
595 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
597 if (!n)
598 goto out;
600 /* Set the data pointer */
601 skb_reserve(n, skb->data - skb->head);
602 /* Set the tail pointer and length */
603 skb_put(n, skb_headlen(skb));
604 /* Copy the bytes */
605 memcpy(n->data, skb->data, n->len);
606 n->csum = skb->csum;
607 n->ip_summed = skb->ip_summed;
609 n->data_len = skb->data_len;
610 n->len = skb->len;
612 if (skb_shinfo(skb)->nr_frags) {
613 int i;
615 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
616 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
617 get_page(skb_shinfo(n)->frags[i].page);
619 skb_shinfo(n)->nr_frags = i;
622 if (skb_shinfo(skb)->frag_list) {
623 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
624 skb_clone_fraglist(n);
627 copy_skb_header(n, skb);
628 out:
629 return n;
633 * pskb_expand_head - reallocate header of &sk_buff
634 * @skb: buffer to reallocate
635 * @nhead: room to add at head
636 * @ntail: room to add at tail
637 * @gfp_mask: allocation priority
639 * Expands (or creates identical copy, if &nhead and &ntail are zero)
640 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
641 * reference count of 1. Returns zero in the case of success or error,
642 * if expansion failed. In the last case, &sk_buff is not changed.
644 * All the pointers pointing into skb header may change and must be
645 * reloaded after call to this function.
648 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
649 gfp_t gfp_mask)
651 int i;
652 u8 *data;
653 int size = nhead + (skb->end - skb->head) + ntail;
654 long off;
656 if (skb_shared(skb))
657 BUG();
659 size = SKB_DATA_ALIGN(size);
661 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
662 if (!data)
663 goto nodata;
665 /* Copy only real data... and, alas, header. This should be
666 * optimized for the cases when header is void. */
667 memcpy(data + nhead, skb->head, skb->tail - skb->head);
668 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
670 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
671 get_page(skb_shinfo(skb)->frags[i].page);
673 if (skb_shinfo(skb)->frag_list)
674 skb_clone_fraglist(skb);
676 skb_release_data(skb);
678 off = (data + nhead) - skb->head;
680 skb->head = data;
681 skb->end = data + size;
682 skb->data += off;
683 skb->tail += off;
684 skb->mac.raw += off;
685 skb->h.raw += off;
686 skb->nh.raw += off;
687 skb->cloned = 0;
688 skb->nohdr = 0;
689 atomic_set(&skb_shinfo(skb)->dataref, 1);
690 return 0;
692 nodata:
693 return -ENOMEM;
696 /* Make private copy of skb with writable head and some headroom */
698 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
700 struct sk_buff *skb2;
701 int delta = headroom - skb_headroom(skb);
703 if (delta <= 0)
704 skb2 = pskb_copy(skb, GFP_ATOMIC);
705 else {
706 skb2 = skb_clone(skb, GFP_ATOMIC);
707 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
708 GFP_ATOMIC)) {
709 kfree_skb(skb2);
710 skb2 = NULL;
713 return skb2;
718 * skb_copy_expand - copy and expand sk_buff
719 * @skb: buffer to copy
720 * @newheadroom: new free bytes at head
721 * @newtailroom: new free bytes at tail
722 * @gfp_mask: allocation priority
724 * Make a copy of both an &sk_buff and its data and while doing so
725 * allocate additional space.
727 * This is used when the caller wishes to modify the data and needs a
728 * private copy of the data to alter as well as more space for new fields.
729 * Returns %NULL on failure or the pointer to the buffer
730 * on success. The returned buffer has a reference count of 1.
732 * You must pass %GFP_ATOMIC as the allocation priority if this function
733 * is called from an interrupt.
735 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
736 * only by netfilter in the cases when checksum is recalculated? --ANK
738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
739 int newheadroom, int newtailroom,
740 gfp_t gfp_mask)
743 * Allocate the copy buffer
745 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
746 gfp_mask);
747 int head_copy_len, head_copy_off;
749 if (!n)
750 return NULL;
752 skb_reserve(n, newheadroom);
754 /* Set the tail pointer and length */
755 skb_put(n, skb->len);
757 head_copy_len = skb_headroom(skb);
758 head_copy_off = 0;
759 if (newheadroom <= head_copy_len)
760 head_copy_len = newheadroom;
761 else
762 head_copy_off = newheadroom - head_copy_len;
764 /* Copy the linear header and data. */
765 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
766 skb->len + head_copy_len))
767 BUG();
769 copy_skb_header(n, skb);
771 return n;
775 * skb_pad - zero pad the tail of an skb
776 * @skb: buffer to pad
777 * @pad: space to pad
779 * Ensure that a buffer is followed by a padding area that is zero
780 * filled. Used by network drivers which may DMA or transfer data
781 * beyond the buffer end onto the wire.
783 * May return NULL in out of memory cases.
786 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
788 struct sk_buff *nskb;
790 /* If the skbuff is non linear tailroom is always zero.. */
791 if (skb_tailroom(skb) >= pad) {
792 memset(skb->data+skb->len, 0, pad);
793 return skb;
796 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
797 kfree_skb(skb);
798 if (nskb)
799 memset(nskb->data+nskb->len, 0, pad);
800 return nskb;
803 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
804 * If realloc==0 and trimming is impossible without change of data,
805 * it is BUG().
808 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
810 int offset = skb_headlen(skb);
811 int nfrags = skb_shinfo(skb)->nr_frags;
812 int i;
814 for (i = 0; i < nfrags; i++) {
815 int end = offset + skb_shinfo(skb)->frags[i].size;
816 if (end > len) {
817 if (skb_cloned(skb)) {
818 BUG_ON(!realloc);
819 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
820 return -ENOMEM;
822 if (len <= offset) {
823 put_page(skb_shinfo(skb)->frags[i].page);
824 skb_shinfo(skb)->nr_frags--;
825 } else {
826 skb_shinfo(skb)->frags[i].size = len - offset;
829 offset = end;
832 if (offset < len) {
833 skb->data_len -= skb->len - len;
834 skb->len = len;
835 } else {
836 if (len <= skb_headlen(skb)) {
837 skb->len = len;
838 skb->data_len = 0;
839 skb->tail = skb->data + len;
840 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
841 skb_drop_fraglist(skb);
842 } else {
843 skb->data_len -= skb->len - len;
844 skb->len = len;
848 return 0;
852 * __pskb_pull_tail - advance tail of skb header
853 * @skb: buffer to reallocate
854 * @delta: number of bytes to advance tail
856 * The function makes a sense only on a fragmented &sk_buff,
857 * it expands header moving its tail forward and copying necessary
858 * data from fragmented part.
860 * &sk_buff MUST have reference count of 1.
862 * Returns %NULL (and &sk_buff does not change) if pull failed
863 * or value of new tail of skb in the case of success.
865 * All the pointers pointing into skb header may change and must be
866 * reloaded after call to this function.
869 /* Moves tail of skb head forward, copying data from fragmented part,
870 * when it is necessary.
871 * 1. It may fail due to malloc failure.
872 * 2. It may change skb pointers.
874 * It is pretty complicated. Luckily, it is called only in exceptional cases.
876 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
878 /* If skb has not enough free space at tail, get new one
879 * plus 128 bytes for future expansions. If we have enough
880 * room at tail, reallocate without expansion only if skb is cloned.
882 int i, k, eat = (skb->tail + delta) - skb->end;
884 if (eat > 0 || skb_cloned(skb)) {
885 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
886 GFP_ATOMIC))
887 return NULL;
890 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
891 BUG();
893 /* Optimization: no fragments, no reasons to preestimate
894 * size of pulled pages. Superb.
896 if (!skb_shinfo(skb)->frag_list)
897 goto pull_pages;
899 /* Estimate size of pulled pages. */
900 eat = delta;
901 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
902 if (skb_shinfo(skb)->frags[i].size >= eat)
903 goto pull_pages;
904 eat -= skb_shinfo(skb)->frags[i].size;
907 /* If we need update frag list, we are in troubles.
908 * Certainly, it possible to add an offset to skb data,
909 * but taking into account that pulling is expected to
910 * be very rare operation, it is worth to fight against
911 * further bloating skb head and crucify ourselves here instead.
912 * Pure masohism, indeed. 8)8)
914 if (eat) {
915 struct sk_buff *list = skb_shinfo(skb)->frag_list;
916 struct sk_buff *clone = NULL;
917 struct sk_buff *insp = NULL;
919 do {
920 BUG_ON(!list);
922 if (list->len <= eat) {
923 /* Eaten as whole. */
924 eat -= list->len;
925 list = list->next;
926 insp = list;
927 } else {
928 /* Eaten partially. */
930 if (skb_shared(list)) {
931 /* Sucks! We need to fork list. :-( */
932 clone = skb_clone(list, GFP_ATOMIC);
933 if (!clone)
934 return NULL;
935 insp = list->next;
936 list = clone;
937 } else {
938 /* This may be pulled without
939 * problems. */
940 insp = list;
942 if (!pskb_pull(list, eat)) {
943 if (clone)
944 kfree_skb(clone);
945 return NULL;
947 break;
949 } while (eat);
951 /* Free pulled out fragments. */
952 while ((list = skb_shinfo(skb)->frag_list) != insp) {
953 skb_shinfo(skb)->frag_list = list->next;
954 kfree_skb(list);
956 /* And insert new clone at head. */
957 if (clone) {
958 clone->next = list;
959 skb_shinfo(skb)->frag_list = clone;
962 /* Success! Now we may commit changes to skb data. */
964 pull_pages:
965 eat = delta;
966 k = 0;
967 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
968 if (skb_shinfo(skb)->frags[i].size <= eat) {
969 put_page(skb_shinfo(skb)->frags[i].page);
970 eat -= skb_shinfo(skb)->frags[i].size;
971 } else {
972 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
973 if (eat) {
974 skb_shinfo(skb)->frags[k].page_offset += eat;
975 skb_shinfo(skb)->frags[k].size -= eat;
976 eat = 0;
978 k++;
981 skb_shinfo(skb)->nr_frags = k;
983 skb->tail += delta;
984 skb->data_len -= delta;
986 return skb->tail;
989 /* Copy some data bits from skb to kernel buffer. */
991 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
993 int i, copy;
994 int start = skb_headlen(skb);
996 if (offset > (int)skb->len - len)
997 goto fault;
999 /* Copy header. */
1000 if ((copy = start - offset) > 0) {
1001 if (copy > len)
1002 copy = len;
1003 memcpy(to, skb->data + offset, copy);
1004 if ((len -= copy) == 0)
1005 return 0;
1006 offset += copy;
1007 to += copy;
1010 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1011 int end;
1013 BUG_TRAP(start <= offset + len);
1015 end = start + skb_shinfo(skb)->frags[i].size;
1016 if ((copy = end - offset) > 0) {
1017 u8 *vaddr;
1019 if (copy > len)
1020 copy = len;
1022 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1023 memcpy(to,
1024 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1025 offset - start, copy);
1026 kunmap_skb_frag(vaddr);
1028 if ((len -= copy) == 0)
1029 return 0;
1030 offset += copy;
1031 to += copy;
1033 start = end;
1036 if (skb_shinfo(skb)->frag_list) {
1037 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1039 for (; list; list = list->next) {
1040 int end;
1042 BUG_TRAP(start <= offset + len);
1044 end = start + list->len;
1045 if ((copy = end - offset) > 0) {
1046 if (copy > len)
1047 copy = len;
1048 if (skb_copy_bits(list, offset - start,
1049 to, copy))
1050 goto fault;
1051 if ((len -= copy) == 0)
1052 return 0;
1053 offset += copy;
1054 to += copy;
1056 start = end;
1059 if (!len)
1060 return 0;
1062 fault:
1063 return -EFAULT;
1067 * skb_store_bits - store bits from kernel buffer to skb
1068 * @skb: destination buffer
1069 * @offset: offset in destination
1070 * @from: source buffer
1071 * @len: number of bytes to copy
1073 * Copy the specified number of bytes from the source buffer to the
1074 * destination skb. This function handles all the messy bits of
1075 * traversing fragment lists and such.
1078 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1080 int i, copy;
1081 int start = skb_headlen(skb);
1083 if (offset > (int)skb->len - len)
1084 goto fault;
1086 if ((copy = start - offset) > 0) {
1087 if (copy > len)
1088 copy = len;
1089 memcpy(skb->data + offset, from, copy);
1090 if ((len -= copy) == 0)
1091 return 0;
1092 offset += copy;
1093 from += copy;
1096 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1097 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1098 int end;
1100 BUG_TRAP(start <= offset + len);
1102 end = start + frag->size;
1103 if ((copy = end - offset) > 0) {
1104 u8 *vaddr;
1106 if (copy > len)
1107 copy = len;
1109 vaddr = kmap_skb_frag(frag);
1110 memcpy(vaddr + frag->page_offset + offset - start,
1111 from, copy);
1112 kunmap_skb_frag(vaddr);
1114 if ((len -= copy) == 0)
1115 return 0;
1116 offset += copy;
1117 from += copy;
1119 start = end;
1122 if (skb_shinfo(skb)->frag_list) {
1123 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1125 for (; list; list = list->next) {
1126 int end;
1128 BUG_TRAP(start <= offset + len);
1130 end = start + list->len;
1131 if ((copy = end - offset) > 0) {
1132 if (copy > len)
1133 copy = len;
1134 if (skb_store_bits(list, offset - start,
1135 from, copy))
1136 goto fault;
1137 if ((len -= copy) == 0)
1138 return 0;
1139 offset += copy;
1140 from += copy;
1142 start = end;
1145 if (!len)
1146 return 0;
1148 fault:
1149 return -EFAULT;
1152 EXPORT_SYMBOL(skb_store_bits);
1154 /* Checksum skb data. */
1156 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1157 int len, unsigned int csum)
1159 int start = skb_headlen(skb);
1160 int i, copy = start - offset;
1161 int pos = 0;
1163 /* Checksum header. */
1164 if (copy > 0) {
1165 if (copy > len)
1166 copy = len;
1167 csum = csum_partial(skb->data + offset, copy, csum);
1168 if ((len -= copy) == 0)
1169 return csum;
1170 offset += copy;
1171 pos = copy;
1174 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1175 int end;
1177 BUG_TRAP(start <= offset + len);
1179 end = start + skb_shinfo(skb)->frags[i].size;
1180 if ((copy = end - offset) > 0) {
1181 unsigned int csum2;
1182 u8 *vaddr;
1183 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1185 if (copy > len)
1186 copy = len;
1187 vaddr = kmap_skb_frag(frag);
1188 csum2 = csum_partial(vaddr + frag->page_offset +
1189 offset - start, copy, 0);
1190 kunmap_skb_frag(vaddr);
1191 csum = csum_block_add(csum, csum2, pos);
1192 if (!(len -= copy))
1193 return csum;
1194 offset += copy;
1195 pos += copy;
1197 start = end;
1200 if (skb_shinfo(skb)->frag_list) {
1201 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1203 for (; list; list = list->next) {
1204 int end;
1206 BUG_TRAP(start <= offset + len);
1208 end = start + list->len;
1209 if ((copy = end - offset) > 0) {
1210 unsigned int csum2;
1211 if (copy > len)
1212 copy = len;
1213 csum2 = skb_checksum(list, offset - start,
1214 copy, 0);
1215 csum = csum_block_add(csum, csum2, pos);
1216 if ((len -= copy) == 0)
1217 return csum;
1218 offset += copy;
1219 pos += copy;
1221 start = end;
1224 BUG_ON(len);
1226 return csum;
1229 /* Both of above in one bottle. */
1231 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1232 u8 *to, int len, unsigned int csum)
1234 int start = skb_headlen(skb);
1235 int i, copy = start - offset;
1236 int pos = 0;
1238 /* Copy header. */
1239 if (copy > 0) {
1240 if (copy > len)
1241 copy = len;
1242 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1243 copy, csum);
1244 if ((len -= copy) == 0)
1245 return csum;
1246 offset += copy;
1247 to += copy;
1248 pos = copy;
1251 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1252 int end;
1254 BUG_TRAP(start <= offset + len);
1256 end = start + skb_shinfo(skb)->frags[i].size;
1257 if ((copy = end - offset) > 0) {
1258 unsigned int csum2;
1259 u8 *vaddr;
1260 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1262 if (copy > len)
1263 copy = len;
1264 vaddr = kmap_skb_frag(frag);
1265 csum2 = csum_partial_copy_nocheck(vaddr +
1266 frag->page_offset +
1267 offset - start, to,
1268 copy, 0);
1269 kunmap_skb_frag(vaddr);
1270 csum = csum_block_add(csum, csum2, pos);
1271 if (!(len -= copy))
1272 return csum;
1273 offset += copy;
1274 to += copy;
1275 pos += copy;
1277 start = end;
1280 if (skb_shinfo(skb)->frag_list) {
1281 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1283 for (; list; list = list->next) {
1284 unsigned int csum2;
1285 int end;
1287 BUG_TRAP(start <= offset + len);
1289 end = start + list->len;
1290 if ((copy = end - offset) > 0) {
1291 if (copy > len)
1292 copy = len;
1293 csum2 = skb_copy_and_csum_bits(list,
1294 offset - start,
1295 to, copy, 0);
1296 csum = csum_block_add(csum, csum2, pos);
1297 if ((len -= copy) == 0)
1298 return csum;
1299 offset += copy;
1300 to += copy;
1301 pos += copy;
1303 start = end;
1306 BUG_ON(len);
1307 return csum;
1310 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1312 unsigned int csum;
1313 long csstart;
1315 if (skb->ip_summed == CHECKSUM_HW)
1316 csstart = skb->h.raw - skb->data;
1317 else
1318 csstart = skb_headlen(skb);
1320 BUG_ON(csstart > skb_headlen(skb));
1322 memcpy(to, skb->data, csstart);
1324 csum = 0;
1325 if (csstart != skb->len)
1326 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1327 skb->len - csstart, 0);
1329 if (skb->ip_summed == CHECKSUM_HW) {
1330 long csstuff = csstart + skb->csum;
1332 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1337 * skb_dequeue - remove from the head of the queue
1338 * @list: list to dequeue from
1340 * Remove the head of the list. The list lock is taken so the function
1341 * may be used safely with other locking list functions. The head item is
1342 * returned or %NULL if the list is empty.
1345 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1347 unsigned long flags;
1348 struct sk_buff *result;
1350 spin_lock_irqsave(&list->lock, flags);
1351 result = __skb_dequeue(list);
1352 spin_unlock_irqrestore(&list->lock, flags);
1353 return result;
1357 * skb_dequeue_tail - remove from the tail of the queue
1358 * @list: list to dequeue from
1360 * Remove the tail of the list. The list lock is taken so the function
1361 * may be used safely with other locking list functions. The tail item is
1362 * returned or %NULL if the list is empty.
1364 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1366 unsigned long flags;
1367 struct sk_buff *result;
1369 spin_lock_irqsave(&list->lock, flags);
1370 result = __skb_dequeue_tail(list);
1371 spin_unlock_irqrestore(&list->lock, flags);
1372 return result;
1376 * skb_queue_purge - empty a list
1377 * @list: list to empty
1379 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1380 * the list and one reference dropped. This function takes the list
1381 * lock and is atomic with respect to other list locking functions.
1383 void skb_queue_purge(struct sk_buff_head *list)
1385 struct sk_buff *skb;
1386 while ((skb = skb_dequeue(list)) != NULL)
1387 kfree_skb(skb);
1391 * skb_queue_head - queue a buffer at the list head
1392 * @list: list to use
1393 * @newsk: buffer to queue
1395 * Queue a buffer at the start of the list. This function takes the
1396 * list lock and can be used safely with other locking &sk_buff functions
1397 * safely.
1399 * A buffer cannot be placed on two lists at the same time.
1401 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1403 unsigned long flags;
1405 spin_lock_irqsave(&list->lock, flags);
1406 __skb_queue_head(list, newsk);
1407 spin_unlock_irqrestore(&list->lock, flags);
1411 * skb_queue_tail - queue a buffer at the list tail
1412 * @list: list to use
1413 * @newsk: buffer to queue
1415 * Queue a buffer at the tail of the list. This function takes the
1416 * list lock and can be used safely with other locking &sk_buff functions
1417 * safely.
1419 * A buffer cannot be placed on two lists at the same time.
1421 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1423 unsigned long flags;
1425 spin_lock_irqsave(&list->lock, flags);
1426 __skb_queue_tail(list, newsk);
1427 spin_unlock_irqrestore(&list->lock, flags);
1431 * skb_unlink - remove a buffer from a list
1432 * @skb: buffer to remove
1433 * @list: list to use
1435 * Remove a packet from a list. The list locks are taken and this
1436 * function is atomic with respect to other list locked calls
1438 * You must know what list the SKB is on.
1440 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1442 unsigned long flags;
1444 spin_lock_irqsave(&list->lock, flags);
1445 __skb_unlink(skb, list);
1446 spin_unlock_irqrestore(&list->lock, flags);
1450 * skb_append - append a buffer
1451 * @old: buffer to insert after
1452 * @newsk: buffer to insert
1453 * @list: list to use
1455 * Place a packet after a given packet in a list. The list locks are taken
1456 * and this function is atomic with respect to other list locked calls.
1457 * A buffer cannot be placed on two lists at the same time.
1459 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1461 unsigned long flags;
1463 spin_lock_irqsave(&list->lock, flags);
1464 __skb_append(old, newsk, list);
1465 spin_unlock_irqrestore(&list->lock, flags);
1470 * skb_insert - insert a buffer
1471 * @old: buffer to insert before
1472 * @newsk: buffer to insert
1473 * @list: list to use
1475 * Place a packet before a given packet in a list. The list locks are
1476 * taken and this function is atomic with respect to other list locked
1477 * calls.
1479 * A buffer cannot be placed on two lists at the same time.
1481 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1483 unsigned long flags;
1485 spin_lock_irqsave(&list->lock, flags);
1486 __skb_insert(newsk, old->prev, old, list);
1487 spin_unlock_irqrestore(&list->lock, flags);
1490 #if 0
1492 * Tune the memory allocator for a new MTU size.
1494 void skb_add_mtu(int mtu)
1496 /* Must match allocation in alloc_skb */
1497 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1499 kmem_add_cache_size(mtu);
1501 #endif
1503 static inline void skb_split_inside_header(struct sk_buff *skb,
1504 struct sk_buff* skb1,
1505 const u32 len, const int pos)
1507 int i;
1509 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1511 /* And move data appendix as is. */
1512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1513 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1515 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1516 skb_shinfo(skb)->nr_frags = 0;
1517 skb1->data_len = skb->data_len;
1518 skb1->len += skb1->data_len;
1519 skb->data_len = 0;
1520 skb->len = len;
1521 skb->tail = skb->data + len;
1524 static inline void skb_split_no_header(struct sk_buff *skb,
1525 struct sk_buff* skb1,
1526 const u32 len, int pos)
1528 int i, k = 0;
1529 const int nfrags = skb_shinfo(skb)->nr_frags;
1531 skb_shinfo(skb)->nr_frags = 0;
1532 skb1->len = skb1->data_len = skb->len - len;
1533 skb->len = len;
1534 skb->data_len = len - pos;
1536 for (i = 0; i < nfrags; i++) {
1537 int size = skb_shinfo(skb)->frags[i].size;
1539 if (pos + size > len) {
1540 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1542 if (pos < len) {
1543 /* Split frag.
1544 * We have two variants in this case:
1545 * 1. Move all the frag to the second
1546 * part, if it is possible. F.e.
1547 * this approach is mandatory for TUX,
1548 * where splitting is expensive.
1549 * 2. Split is accurately. We make this.
1551 get_page(skb_shinfo(skb)->frags[i].page);
1552 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1553 skb_shinfo(skb1)->frags[0].size -= len - pos;
1554 skb_shinfo(skb)->frags[i].size = len - pos;
1555 skb_shinfo(skb)->nr_frags++;
1557 k++;
1558 } else
1559 skb_shinfo(skb)->nr_frags++;
1560 pos += size;
1562 skb_shinfo(skb1)->nr_frags = k;
1566 * skb_split - Split fragmented skb to two parts at length len.
1567 * @skb: the buffer to split
1568 * @skb1: the buffer to receive the second part
1569 * @len: new length for skb
1571 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1573 int pos = skb_headlen(skb);
1575 if (len < pos) /* Split line is inside header. */
1576 skb_split_inside_header(skb, skb1, len, pos);
1577 else /* Second chunk has no header, nothing to copy. */
1578 skb_split_no_header(skb, skb1, len, pos);
1582 * skb_prepare_seq_read - Prepare a sequential read of skb data
1583 * @skb: the buffer to read
1584 * @from: lower offset of data to be read
1585 * @to: upper offset of data to be read
1586 * @st: state variable
1588 * Initializes the specified state variable. Must be called before
1589 * invoking skb_seq_read() for the first time.
1591 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1592 unsigned int to, struct skb_seq_state *st)
1594 st->lower_offset = from;
1595 st->upper_offset = to;
1596 st->root_skb = st->cur_skb = skb;
1597 st->frag_idx = st->stepped_offset = 0;
1598 st->frag_data = NULL;
1602 * skb_seq_read - Sequentially read skb data
1603 * @consumed: number of bytes consumed by the caller so far
1604 * @data: destination pointer for data to be returned
1605 * @st: state variable
1607 * Reads a block of skb data at &consumed relative to the
1608 * lower offset specified to skb_prepare_seq_read(). Assigns
1609 * the head of the data block to &data and returns the length
1610 * of the block or 0 if the end of the skb data or the upper
1611 * offset has been reached.
1613 * The caller is not required to consume all of the data
1614 * returned, i.e. &consumed is typically set to the number
1615 * of bytes already consumed and the next call to
1616 * skb_seq_read() will return the remaining part of the block.
1618 * Note: The size of each block of data returned can be arbitary,
1619 * this limitation is the cost for zerocopy seqeuental
1620 * reads of potentially non linear data.
1622 * Note: Fragment lists within fragments are not implemented
1623 * at the moment, state->root_skb could be replaced with
1624 * a stack for this purpose.
1626 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1627 struct skb_seq_state *st)
1629 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1630 skb_frag_t *frag;
1632 if (unlikely(abs_offset >= st->upper_offset))
1633 return 0;
1635 next_skb:
1636 block_limit = skb_headlen(st->cur_skb);
1638 if (abs_offset < block_limit) {
1639 *data = st->cur_skb->data + abs_offset;
1640 return block_limit - abs_offset;
1643 if (st->frag_idx == 0 && !st->frag_data)
1644 st->stepped_offset += skb_headlen(st->cur_skb);
1646 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1647 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1648 block_limit = frag->size + st->stepped_offset;
1650 if (abs_offset < block_limit) {
1651 if (!st->frag_data)
1652 st->frag_data = kmap_skb_frag(frag);
1654 *data = (u8 *) st->frag_data + frag->page_offset +
1655 (abs_offset - st->stepped_offset);
1657 return block_limit - abs_offset;
1660 if (st->frag_data) {
1661 kunmap_skb_frag(st->frag_data);
1662 st->frag_data = NULL;
1665 st->frag_idx++;
1666 st->stepped_offset += frag->size;
1669 if (st->cur_skb->next) {
1670 st->cur_skb = st->cur_skb->next;
1671 st->frag_idx = 0;
1672 goto next_skb;
1673 } else if (st->root_skb == st->cur_skb &&
1674 skb_shinfo(st->root_skb)->frag_list) {
1675 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1676 goto next_skb;
1679 return 0;
1683 * skb_abort_seq_read - Abort a sequential read of skb data
1684 * @st: state variable
1686 * Must be called if skb_seq_read() was not called until it
1687 * returned 0.
1689 void skb_abort_seq_read(struct skb_seq_state *st)
1691 if (st->frag_data)
1692 kunmap_skb_frag(st->frag_data);
1695 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1697 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1698 struct ts_config *conf,
1699 struct ts_state *state)
1701 return skb_seq_read(offset, text, TS_SKB_CB(state));
1704 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1706 skb_abort_seq_read(TS_SKB_CB(state));
1710 * skb_find_text - Find a text pattern in skb data
1711 * @skb: the buffer to look in
1712 * @from: search offset
1713 * @to: search limit
1714 * @config: textsearch configuration
1715 * @state: uninitialized textsearch state variable
1717 * Finds a pattern in the skb data according to the specified
1718 * textsearch configuration. Use textsearch_next() to retrieve
1719 * subsequent occurrences of the pattern. Returns the offset
1720 * to the first occurrence or UINT_MAX if no match was found.
1722 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1723 unsigned int to, struct ts_config *config,
1724 struct ts_state *state)
1726 config->get_next_block = skb_ts_get_next_block;
1727 config->finish = skb_ts_finish;
1729 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1731 return textsearch_find(config, state);
1735 * skb_append_datato_frags: - append the user data to a skb
1736 * @sk: sock structure
1737 * @skb: skb structure to be appened with user data.
1738 * @getfrag: call back function to be used for getting the user data
1739 * @from: pointer to user message iov
1740 * @length: length of the iov message
1742 * Description: This procedure append the user data in the fragment part
1743 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1745 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1746 int (*getfrag)(void *from, char *to, int offset,
1747 int len, int odd, struct sk_buff *skb),
1748 void *from, int length)
1750 int frg_cnt = 0;
1751 skb_frag_t *frag = NULL;
1752 struct page *page = NULL;
1753 int copy, left;
1754 int offset = 0;
1755 int ret;
1757 do {
1758 /* Return error if we don't have space for new frag */
1759 frg_cnt = skb_shinfo(skb)->nr_frags;
1760 if (frg_cnt >= MAX_SKB_FRAGS)
1761 return -EFAULT;
1763 /* allocate a new page for next frag */
1764 page = alloc_pages(sk->sk_allocation, 0);
1766 /* If alloc_page fails just return failure and caller will
1767 * free previous allocated pages by doing kfree_skb()
1769 if (page == NULL)
1770 return -ENOMEM;
1772 /* initialize the next frag */
1773 sk->sk_sndmsg_page = page;
1774 sk->sk_sndmsg_off = 0;
1775 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1776 skb->truesize += PAGE_SIZE;
1777 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1779 /* get the new initialized frag */
1780 frg_cnt = skb_shinfo(skb)->nr_frags;
1781 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1783 /* copy the user data to page */
1784 left = PAGE_SIZE - frag->page_offset;
1785 copy = (length > left)? left : length;
1787 ret = getfrag(from, (page_address(frag->page) +
1788 frag->page_offset + frag->size),
1789 offset, copy, 0, skb);
1790 if (ret < 0)
1791 return -EFAULT;
1793 /* copy was successful so update the size parameters */
1794 sk->sk_sndmsg_off += copy;
1795 frag->size += copy;
1796 skb->len += copy;
1797 skb->data_len += copy;
1798 offset += copy;
1799 length -= copy;
1801 } while (length > 0);
1803 return 0;
1807 * skb_pull_rcsum - pull skb and update receive checksum
1808 * @skb: buffer to update
1809 * @start: start of data before pull
1810 * @len: length of data pulled
1812 * This function performs an skb_pull on the packet and updates
1813 * update the CHECKSUM_HW checksum. It should be used on receive
1814 * path processing instead of skb_pull unless you know that the
1815 * checksum difference is zero (e.g., a valid IP header) or you
1816 * are setting ip_summed to CHECKSUM_NONE.
1818 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1820 BUG_ON(len > skb->len);
1821 skb->len -= len;
1822 BUG_ON(skb->len < skb->data_len);
1823 skb_postpull_rcsum(skb, skb->data, len);
1824 return skb->data += len;
1827 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1829 void __init skb_init(void)
1831 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1832 sizeof(struct sk_buff),
1834 SLAB_HWCACHE_ALIGN,
1835 NULL, NULL);
1836 if (!skbuff_head_cache)
1837 panic("cannot create skbuff cache");
1839 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1840 (2*sizeof(struct sk_buff)) +
1841 sizeof(atomic_t),
1843 SLAB_HWCACHE_ALIGN,
1844 NULL, NULL);
1845 if (!skbuff_fclone_cache)
1846 panic("cannot create skbuff cache");
1849 EXPORT_SYMBOL(___pskb_trim);
1850 EXPORT_SYMBOL(__kfree_skb);
1851 EXPORT_SYMBOL(kfree_skb);
1852 EXPORT_SYMBOL(__pskb_pull_tail);
1853 EXPORT_SYMBOL(__alloc_skb);
1854 EXPORT_SYMBOL(pskb_copy);
1855 EXPORT_SYMBOL(pskb_expand_head);
1856 EXPORT_SYMBOL(skb_checksum);
1857 EXPORT_SYMBOL(skb_clone);
1858 EXPORT_SYMBOL(skb_clone_fraglist);
1859 EXPORT_SYMBOL(skb_copy);
1860 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1861 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1862 EXPORT_SYMBOL(skb_copy_bits);
1863 EXPORT_SYMBOL(skb_copy_expand);
1864 EXPORT_SYMBOL(skb_over_panic);
1865 EXPORT_SYMBOL(skb_pad);
1866 EXPORT_SYMBOL(skb_realloc_headroom);
1867 EXPORT_SYMBOL(skb_under_panic);
1868 EXPORT_SYMBOL(skb_dequeue);
1869 EXPORT_SYMBOL(skb_dequeue_tail);
1870 EXPORT_SYMBOL(skb_insert);
1871 EXPORT_SYMBOL(skb_queue_purge);
1872 EXPORT_SYMBOL(skb_queue_head);
1873 EXPORT_SYMBOL(skb_queue_tail);
1874 EXPORT_SYMBOL(skb_unlink);
1875 EXPORT_SYMBOL(skb_append);
1876 EXPORT_SYMBOL(skb_split);
1877 EXPORT_SYMBOL(skb_prepare_seq_read);
1878 EXPORT_SYMBOL(skb_seq_read);
1879 EXPORT_SYMBOL(skb_abort_seq_read);
1880 EXPORT_SYMBOL(skb_find_text);
1881 EXPORT_SYMBOL(skb_append_datato_frags);