drm: Fix authentication kernel crash
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / kernel / perf_event.c
blob88b0941ce51ec674bbf46d604fcbb46f5dc25255
1 #undef DEBUG
3 /*
4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/spinlock.h>
22 #include <linux/uaccess.h>
24 #include <asm/cputype.h>
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/pmu.h>
28 #include <asm/stacktrace.h>
31 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
32 * another platform that supports more, we need to increase this to be the
33 * largest of all platforms.
35 * ARMv7 supports up to 32 events:
36 * cycle counter CCNT + 31 events counters CNT0..30.
37 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
39 #define ARMPMU_MAX_HWEVENTS 32
41 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
42 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
43 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
45 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
47 /* Set at runtime when we know what CPU type we are. */
48 static struct arm_pmu *cpu_pmu;
50 enum arm_perf_pmu_ids
51 armpmu_get_pmu_id(void)
53 int id = -ENODEV;
55 if (cpu_pmu != NULL)
56 id = cpu_pmu->id;
58 return id;
60 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
62 int
63 armpmu_get_max_events(void)
65 int max_events = 0;
67 if (cpu_pmu != NULL)
68 max_events = cpu_pmu->num_events;
70 return max_events;
72 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
74 int perf_num_counters(void)
76 return armpmu_get_max_events();
78 EXPORT_SYMBOL_GPL(perf_num_counters);
80 #define HW_OP_UNSUPPORTED 0xFFFF
82 #define C(_x) \
83 PERF_COUNT_HW_CACHE_##_x
85 #define CACHE_OP_UNSUPPORTED 0xFFFF
87 static int
88 armpmu_map_cache_event(const unsigned (*cache_map)
89 [PERF_COUNT_HW_CACHE_MAX]
90 [PERF_COUNT_HW_CACHE_OP_MAX]
91 [PERF_COUNT_HW_CACHE_RESULT_MAX],
92 u64 config)
94 unsigned int cache_type, cache_op, cache_result, ret;
96 cache_type = (config >> 0) & 0xff;
97 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
98 return -EINVAL;
100 cache_op = (config >> 8) & 0xff;
101 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
102 return -EINVAL;
104 cache_result = (config >> 16) & 0xff;
105 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
106 return -EINVAL;
108 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
110 if (ret == CACHE_OP_UNSUPPORTED)
111 return -ENOENT;
113 return ret;
116 static int
117 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
119 int mapping = (*event_map)[config];
120 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
123 static int
124 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
126 return (int)(config & raw_event_mask);
129 static int map_cpu_event(struct perf_event *event,
130 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
131 const unsigned (*cache_map)
132 [PERF_COUNT_HW_CACHE_MAX]
133 [PERF_COUNT_HW_CACHE_OP_MAX]
134 [PERF_COUNT_HW_CACHE_RESULT_MAX],
135 u32 raw_event_mask)
137 u64 config = event->attr.config;
139 switch (event->attr.type) {
140 case PERF_TYPE_HARDWARE:
141 return armpmu_map_event(event_map, config);
142 case PERF_TYPE_HW_CACHE:
143 return armpmu_map_cache_event(cache_map, config);
144 case PERF_TYPE_RAW:
145 return armpmu_map_raw_event(raw_event_mask, config);
148 return -ENOENT;
152 armpmu_event_set_period(struct perf_event *event,
153 struct hw_perf_event *hwc,
154 int idx)
156 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
157 s64 left = local64_read(&hwc->period_left);
158 s64 period = hwc->sample_period;
159 int ret = 0;
161 if (unlikely(left <= -period)) {
162 left = period;
163 local64_set(&hwc->period_left, left);
164 hwc->last_period = period;
165 ret = 1;
168 if (unlikely(left <= 0)) {
169 left += period;
170 local64_set(&hwc->period_left, left);
171 hwc->last_period = period;
172 ret = 1;
175 if (left > (s64)armpmu->max_period)
176 left = armpmu->max_period;
178 local64_set(&hwc->prev_count, (u64)-left);
180 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
182 perf_event_update_userpage(event);
184 return ret;
188 armpmu_event_update(struct perf_event *event,
189 struct hw_perf_event *hwc,
190 int idx, int overflow)
192 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193 u64 delta, prev_raw_count, new_raw_count;
195 again:
196 prev_raw_count = local64_read(&hwc->prev_count);
197 new_raw_count = armpmu->read_counter(idx);
199 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
200 new_raw_count) != prev_raw_count)
201 goto again;
203 new_raw_count &= armpmu->max_period;
204 prev_raw_count &= armpmu->max_period;
206 if (overflow)
207 delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
208 else
209 delta = new_raw_count - prev_raw_count;
211 local64_add(delta, &event->count);
212 local64_sub(delta, &hwc->period_left);
214 return new_raw_count;
217 static void
218 armpmu_read(struct perf_event *event)
220 struct hw_perf_event *hwc = &event->hw;
222 /* Don't read disabled counters! */
223 if (hwc->idx < 0)
224 return;
226 armpmu_event_update(event, hwc, hwc->idx, 0);
229 static void
230 armpmu_stop(struct perf_event *event, int flags)
232 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
233 struct hw_perf_event *hwc = &event->hw;
236 * ARM pmu always has to update the counter, so ignore
237 * PERF_EF_UPDATE, see comments in armpmu_start().
239 if (!(hwc->state & PERF_HES_STOPPED)) {
240 armpmu->disable(hwc, hwc->idx);
241 barrier(); /* why? */
242 armpmu_event_update(event, hwc, hwc->idx, 0);
243 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
247 static void
248 armpmu_start(struct perf_event *event, int flags)
250 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
251 struct hw_perf_event *hwc = &event->hw;
254 * ARM pmu always has to reprogram the period, so ignore
255 * PERF_EF_RELOAD, see the comment below.
257 if (flags & PERF_EF_RELOAD)
258 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
260 hwc->state = 0;
262 * Set the period again. Some counters can't be stopped, so when we
263 * were stopped we simply disabled the IRQ source and the counter
264 * may have been left counting. If we don't do this step then we may
265 * get an interrupt too soon or *way* too late if the overflow has
266 * happened since disabling.
268 armpmu_event_set_period(event, hwc, hwc->idx);
269 armpmu->enable(hwc, hwc->idx);
272 static void
273 armpmu_del(struct perf_event *event, int flags)
275 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
276 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
277 struct hw_perf_event *hwc = &event->hw;
278 int idx = hwc->idx;
280 WARN_ON(idx < 0);
282 armpmu_stop(event, PERF_EF_UPDATE);
283 hw_events->events[idx] = NULL;
284 clear_bit(idx, hw_events->used_mask);
286 perf_event_update_userpage(event);
289 static int
290 armpmu_add(struct perf_event *event, int flags)
292 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
293 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
294 struct hw_perf_event *hwc = &event->hw;
295 int idx;
296 int err = 0;
298 perf_pmu_disable(event->pmu);
300 /* If we don't have a space for the counter then finish early. */
301 idx = armpmu->get_event_idx(hw_events, hwc);
302 if (idx < 0) {
303 err = idx;
304 goto out;
308 * If there is an event in the counter we are going to use then make
309 * sure it is disabled.
311 event->hw.idx = idx;
312 armpmu->disable(hwc, idx);
313 hw_events->events[idx] = event;
315 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
316 if (flags & PERF_EF_START)
317 armpmu_start(event, PERF_EF_RELOAD);
319 /* Propagate our changes to the userspace mapping. */
320 perf_event_update_userpage(event);
322 out:
323 perf_pmu_enable(event->pmu);
324 return err;
327 static int
328 validate_event(struct pmu_hw_events *hw_events,
329 struct perf_event *event)
331 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332 struct hw_perf_event fake_event = event->hw;
333 struct pmu *leader_pmu = event->group_leader->pmu;
335 if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
336 return 1;
338 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
341 static int
342 validate_group(struct perf_event *event)
344 struct perf_event *sibling, *leader = event->group_leader;
345 struct pmu_hw_events fake_pmu;
346 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
349 * Initialise the fake PMU. We only need to populate the
350 * used_mask for the purposes of validation.
352 memset(fake_used_mask, 0, sizeof(fake_used_mask));
353 fake_pmu.used_mask = fake_used_mask;
355 if (!validate_event(&fake_pmu, leader))
356 return -EINVAL;
358 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
359 if (!validate_event(&fake_pmu, sibling))
360 return -EINVAL;
363 if (!validate_event(&fake_pmu, event))
364 return -EINVAL;
366 return 0;
369 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
371 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
372 struct platform_device *plat_device = armpmu->plat_device;
373 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
375 return plat->handle_irq(irq, dev, armpmu->handle_irq);
378 static void
379 armpmu_release_hardware(struct arm_pmu *armpmu)
381 int i, irq, irqs;
382 struct platform_device *pmu_device = armpmu->plat_device;
384 irqs = min(pmu_device->num_resources, num_possible_cpus());
386 for (i = 0; i < irqs; ++i) {
387 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
388 continue;
389 irq = platform_get_irq(pmu_device, i);
390 if (irq >= 0)
391 free_irq(irq, armpmu);
394 release_pmu(armpmu->type);
397 static int
398 armpmu_reserve_hardware(struct arm_pmu *armpmu)
400 struct arm_pmu_platdata *plat;
401 irq_handler_t handle_irq;
402 int i, err, irq, irqs;
403 struct platform_device *pmu_device = armpmu->plat_device;
405 if (!pmu_device)
406 return -ENODEV;
408 err = reserve_pmu(armpmu->type);
409 if (err) {
410 pr_warning("unable to reserve pmu\n");
411 return err;
414 plat = dev_get_platdata(&pmu_device->dev);
415 if (plat && plat->handle_irq)
416 handle_irq = armpmu_platform_irq;
417 else
418 handle_irq = armpmu->handle_irq;
420 irqs = min(pmu_device->num_resources, num_possible_cpus());
421 if (irqs < 1) {
422 pr_err("no irqs for PMUs defined\n");
423 return -ENODEV;
426 for (i = 0; i < irqs; ++i) {
427 err = 0;
428 irq = platform_get_irq(pmu_device, i);
429 if (irq < 0)
430 continue;
433 * If we have a single PMU interrupt that we can't shift,
434 * assume that we're running on a uniprocessor machine and
435 * continue. Otherwise, continue without this interrupt.
437 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
438 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
439 irq, i);
440 continue;
443 err = request_irq(irq, handle_irq,
444 IRQF_DISABLED | IRQF_NOBALANCING,
445 "arm-pmu", armpmu);
446 if (err) {
447 pr_err("unable to request IRQ%d for ARM PMU counters\n",
448 irq);
449 armpmu_release_hardware(armpmu);
450 return err;
453 cpumask_set_cpu(i, &armpmu->active_irqs);
456 return 0;
459 static void
460 hw_perf_event_destroy(struct perf_event *event)
462 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
463 atomic_t *active_events = &armpmu->active_events;
464 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
466 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
467 armpmu_release_hardware(armpmu);
468 mutex_unlock(pmu_reserve_mutex);
472 static int
473 event_requires_mode_exclusion(struct perf_event_attr *attr)
475 return attr->exclude_idle || attr->exclude_user ||
476 attr->exclude_kernel || attr->exclude_hv;
479 static int
480 __hw_perf_event_init(struct perf_event *event)
482 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
483 struct hw_perf_event *hwc = &event->hw;
484 int mapping, err;
486 mapping = armpmu->map_event(event);
488 if (mapping < 0) {
489 pr_debug("event %x:%llx not supported\n", event->attr.type,
490 event->attr.config);
491 return mapping;
495 * We don't assign an index until we actually place the event onto
496 * hardware. Use -1 to signify that we haven't decided where to put it
497 * yet. For SMP systems, each core has it's own PMU so we can't do any
498 * clever allocation or constraints checking at this point.
500 hwc->idx = -1;
501 hwc->config_base = 0;
502 hwc->config = 0;
503 hwc->event_base = 0;
506 * Check whether we need to exclude the counter from certain modes.
508 if ((!armpmu->set_event_filter ||
509 armpmu->set_event_filter(hwc, &event->attr)) &&
510 event_requires_mode_exclusion(&event->attr)) {
511 pr_debug("ARM performance counters do not support "
512 "mode exclusion\n");
513 return -EPERM;
517 * Store the event encoding into the config_base field.
519 hwc->config_base |= (unsigned long)mapping;
521 if (!hwc->sample_period) {
522 hwc->sample_period = armpmu->max_period;
523 hwc->last_period = hwc->sample_period;
524 local64_set(&hwc->period_left, hwc->sample_period);
527 err = 0;
528 if (event->group_leader != event) {
529 err = validate_group(event);
530 if (err)
531 return -EINVAL;
534 return err;
537 static int armpmu_event_init(struct perf_event *event)
539 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
540 int err = 0;
541 atomic_t *active_events = &armpmu->active_events;
543 if (armpmu->map_event(event) == -ENOENT)
544 return -ENOENT;
546 event->destroy = hw_perf_event_destroy;
548 if (!atomic_inc_not_zero(active_events)) {
549 mutex_lock(&armpmu->reserve_mutex);
550 if (atomic_read(active_events) == 0)
551 err = armpmu_reserve_hardware(armpmu);
553 if (!err)
554 atomic_inc(active_events);
555 mutex_unlock(&armpmu->reserve_mutex);
558 if (err)
559 return err;
561 err = __hw_perf_event_init(event);
562 if (err)
563 hw_perf_event_destroy(event);
565 return err;
568 static void armpmu_enable(struct pmu *pmu)
570 struct arm_pmu *armpmu = to_arm_pmu(pmu);
571 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
572 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
574 if (enabled)
575 armpmu->start();
578 static void armpmu_disable(struct pmu *pmu)
580 struct arm_pmu *armpmu = to_arm_pmu(pmu);
581 armpmu->stop();
584 static void __init armpmu_init(struct arm_pmu *armpmu)
586 atomic_set(&armpmu->active_events, 0);
587 mutex_init(&armpmu->reserve_mutex);
589 armpmu->pmu = (struct pmu) {
590 .pmu_enable = armpmu_enable,
591 .pmu_disable = armpmu_disable,
592 .event_init = armpmu_event_init,
593 .add = armpmu_add,
594 .del = armpmu_del,
595 .start = armpmu_start,
596 .stop = armpmu_stop,
597 .read = armpmu_read,
601 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
603 armpmu_init(armpmu);
604 return perf_pmu_register(&armpmu->pmu, name, type);
607 /* Include the PMU-specific implementations. */
608 #include "perf_event_xscale.c"
609 #include "perf_event_v6.c"
610 #include "perf_event_v7.c"
613 * Ensure the PMU has sane values out of reset.
614 * This requires SMP to be available, so exists as a separate initcall.
616 static int __init
617 cpu_pmu_reset(void)
619 if (cpu_pmu && cpu_pmu->reset)
620 return on_each_cpu(cpu_pmu->reset, NULL, 1);
621 return 0;
623 arch_initcall(cpu_pmu_reset);
626 * PMU platform driver and devicetree bindings.
628 static struct of_device_id armpmu_of_device_ids[] = {
629 {.compatible = "arm,cortex-a9-pmu"},
630 {.compatible = "arm,cortex-a8-pmu"},
631 {.compatible = "arm,arm1136-pmu"},
632 {.compatible = "arm,arm1176-pmu"},
636 static struct platform_device_id armpmu_plat_device_ids[] = {
637 {.name = "arm-pmu"},
641 static int __devinit armpmu_device_probe(struct platform_device *pdev)
643 if (!cpu_pmu)
644 return -ENODEV;
646 cpu_pmu->plat_device = pdev;
647 return 0;
650 static struct platform_driver armpmu_driver = {
651 .driver = {
652 .name = "arm-pmu",
653 .of_match_table = armpmu_of_device_ids,
655 .probe = armpmu_device_probe,
656 .id_table = armpmu_plat_device_ids,
659 static int __init register_pmu_driver(void)
661 return platform_driver_register(&armpmu_driver);
663 device_initcall(register_pmu_driver);
665 static struct pmu_hw_events *armpmu_get_cpu_events(void)
667 return &__get_cpu_var(cpu_hw_events);
670 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
672 int cpu;
673 for_each_possible_cpu(cpu) {
674 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
675 events->events = per_cpu(hw_events, cpu);
676 events->used_mask = per_cpu(used_mask, cpu);
677 raw_spin_lock_init(&events->pmu_lock);
679 armpmu->get_hw_events = armpmu_get_cpu_events;
680 armpmu->type = ARM_PMU_DEVICE_CPU;
684 * CPU PMU identification and registration.
686 static int __init
687 init_hw_perf_events(void)
689 unsigned long cpuid = read_cpuid_id();
690 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
691 unsigned long part_number = (cpuid & 0xFFF0);
693 /* ARM Ltd CPUs. */
694 if (0x41 == implementor) {
695 switch (part_number) {
696 case 0xB360: /* ARM1136 */
697 case 0xB560: /* ARM1156 */
698 case 0xB760: /* ARM1176 */
699 cpu_pmu = armv6pmu_init();
700 break;
701 case 0xB020: /* ARM11mpcore */
702 cpu_pmu = armv6mpcore_pmu_init();
703 break;
704 case 0xC080: /* Cortex-A8 */
705 cpu_pmu = armv7_a8_pmu_init();
706 break;
707 case 0xC090: /* Cortex-A9 */
708 cpu_pmu = armv7_a9_pmu_init();
709 break;
710 case 0xC050: /* Cortex-A5 */
711 cpu_pmu = armv7_a5_pmu_init();
712 break;
713 case 0xC0F0: /* Cortex-A15 */
714 cpu_pmu = armv7_a15_pmu_init();
715 break;
717 /* Intel CPUs [xscale]. */
718 } else if (0x69 == implementor) {
719 part_number = (cpuid >> 13) & 0x7;
720 switch (part_number) {
721 case 1:
722 cpu_pmu = xscale1pmu_init();
723 break;
724 case 2:
725 cpu_pmu = xscale2pmu_init();
726 break;
730 if (cpu_pmu) {
731 pr_info("enabled with %s PMU driver, %d counters available\n",
732 cpu_pmu->name, cpu_pmu->num_events);
733 cpu_pmu_init(cpu_pmu);
734 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
735 } else {
736 pr_info("no hardware support available\n");
739 return 0;
741 early_initcall(init_hw_perf_events);
744 * Callchain handling code.
748 * The registers we're interested in are at the end of the variable
749 * length saved register structure. The fp points at the end of this
750 * structure so the address of this struct is:
751 * (struct frame_tail *)(xxx->fp)-1
753 * This code has been adapted from the ARM OProfile support.
755 struct frame_tail {
756 struct frame_tail __user *fp;
757 unsigned long sp;
758 unsigned long lr;
759 } __attribute__((packed));
762 * Get the return address for a single stackframe and return a pointer to the
763 * next frame tail.
765 static struct frame_tail __user *
766 user_backtrace(struct frame_tail __user *tail,
767 struct perf_callchain_entry *entry)
769 struct frame_tail buftail;
771 /* Also check accessibility of one struct frame_tail beyond */
772 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
773 return NULL;
774 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
775 return NULL;
777 perf_callchain_store(entry, buftail.lr);
780 * Frame pointers should strictly progress back up the stack
781 * (towards higher addresses).
783 if (tail + 1 >= buftail.fp)
784 return NULL;
786 return buftail.fp - 1;
789 void
790 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
792 struct frame_tail __user *tail;
795 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
797 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
798 tail && !((unsigned long)tail & 0x3))
799 tail = user_backtrace(tail, entry);
803 * Gets called by walk_stackframe() for every stackframe. This will be called
804 * whist unwinding the stackframe and is like a subroutine return so we use
805 * the PC.
807 static int
808 callchain_trace(struct stackframe *fr,
809 void *data)
811 struct perf_callchain_entry *entry = data;
812 perf_callchain_store(entry, fr->pc);
813 return 0;
816 void
817 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
819 struct stackframe fr;
821 fr.fp = regs->ARM_fp;
822 fr.sp = regs->ARM_sp;
823 fr.lr = regs->ARM_lr;
824 fr.pc = regs->ARM_pc;
825 walk_stackframe(&fr, callchain_trace, entry);