5 select HAVE_DMA_API_DEBUG
6 select HAVE_IDE if PCI || ISA || PCMCIA
9 select SYS_SUPPORTS_APM_EMULATION
10 select GENERIC_ATOMIC64 if (CPU_V6 || !CPU_32v6K || !AEABI)
11 select HAVE_OPROFILE if (HAVE_PERF_EVENTS)
13 select HAVE_KPROBES if !XIP_KERNEL
14 select HAVE_KRETPROBES if (HAVE_KPROBES)
15 select HAVE_FUNCTION_TRACER if (!XIP_KERNEL)
16 select HAVE_FTRACE_MCOUNT_RECORD if (!XIP_KERNEL)
17 select HAVE_DYNAMIC_FTRACE if (!XIP_KERNEL)
18 select HAVE_FUNCTION_GRAPH_TRACER if (!THUMB2_KERNEL)
19 select HAVE_GENERIC_DMA_COHERENT
20 select HAVE_KERNEL_GZIP
21 select HAVE_KERNEL_LZO
22 select HAVE_KERNEL_LZMA
24 select HAVE_PERF_EVENTS
25 select PERF_USE_VMALLOC
26 select HAVE_REGS_AND_STACK_ACCESS_API
27 select HAVE_HW_BREAKPOINT if (PERF_EVENTS && (CPU_V6 || CPU_V6K || CPU_V7))
28 select HAVE_C_RECORDMCOUNT
29 select HAVE_GENERIC_HARDIRQS
30 select HAVE_SPARSE_IRQ
31 select GENERIC_IRQ_SHOW
32 select CPU_PM if (SUSPEND || CPU_IDLE)
34 The ARM series is a line of low-power-consumption RISC chip designs
35 licensed by ARM Ltd and targeted at embedded applications and
36 handhelds such as the Compaq IPAQ. ARM-based PCs are no longer
37 manufactured, but legacy ARM-based PC hardware remains popular in
38 Europe. There is an ARM Linux project with a web page at
39 <http://www.arm.linux.org.uk/>.
41 config ARM_HAS_SG_CHAIN
50 config SYS_SUPPORTS_APM_EMULATION
53 config HAVE_SCHED_CLOCK
59 config ARCH_USES_GETTIMEOFFSET
63 config GENERIC_CLOCKEVENTS
66 config GENERIC_CLOCKEVENTS_BROADCAST
68 depends on GENERIC_CLOCKEVENTS
77 select GENERIC_ALLOCATOR
88 The Extended Industry Standard Architecture (EISA) bus was
89 developed as an open alternative to the IBM MicroChannel bus.
91 The EISA bus provided some of the features of the IBM MicroChannel
92 bus while maintaining backward compatibility with cards made for
93 the older ISA bus. The EISA bus saw limited use between 1988 and
94 1995 when it was made obsolete by the PCI bus.
96 Say Y here if you are building a kernel for an EISA-based machine.
106 MicroChannel Architecture is found in some IBM PS/2 machines and
107 laptops. It is a bus system similar to PCI or ISA. See
108 <file:Documentation/mca.txt> (and especially the web page given
109 there) before attempting to build an MCA bus kernel.
111 config STACKTRACE_SUPPORT
115 config HAVE_LATENCYTOP_SUPPORT
120 config LOCKDEP_SUPPORT
124 config TRACE_IRQFLAGS_SUPPORT
128 config HARDIRQS_SW_RESEND
132 config GENERIC_IRQ_PROBE
136 config GENERIC_LOCKBREAK
139 depends on SMP && PREEMPT
141 config RWSEM_GENERIC_SPINLOCK
145 config RWSEM_XCHGADD_ALGORITHM
148 config ARCH_HAS_ILOG2_U32
151 config ARCH_HAS_ILOG2_U64
154 config ARCH_HAS_CPUFREQ
157 Internal node to signify that the ARCH has CPUFREQ support
158 and that the relevant menu configurations are displayed for
161 config ARCH_HAS_CPU_IDLE_WAIT
164 config GENERIC_HWEIGHT
168 config GENERIC_CALIBRATE_DELAY
172 config ARCH_MAY_HAVE_PC_FDC
178 config NEED_DMA_MAP_STATE
181 config GENERIC_ISA_DMA
192 default 0xffff0000 if MMU || CPU_HIGH_VECTOR
193 default DRAM_BASE if REMAP_VECTORS_TO_RAM
196 The base address of exception vectors.
198 config ARM_PATCH_PHYS_VIRT
199 bool "Patch physical to virtual translations at runtime" if EMBEDDED
201 depends on !XIP_KERNEL && MMU
202 depends on !ARCH_REALVIEW || !SPARSEMEM
204 Patch phys-to-virt and virt-to-phys translation functions at
205 boot and module load time according to the position of the
206 kernel in system memory.
208 This can only be used with non-XIP MMU kernels where the base
209 of physical memory is at a 16MB boundary.
211 Only disable this option if you know that you do not require
212 this feature (eg, building a kernel for a single machine) and
213 you need to shrink the kernel to the minimal size.
215 config NEED_MACH_MEMORY_H
218 Select this when mach/memory.h is required to provide special
219 definitions for this platform. The need for mach/memory.h should
220 be avoided when possible.
223 hex "Physical address of main memory" if MMU
224 depends on !ARM_PATCH_PHYS_VIRT && !NEED_MACH_MEMORY_H
225 default DRAM_BASE if !MMU
227 Please provide the physical address corresponding to the
228 location of main memory in your system.
234 source "init/Kconfig"
236 source "kernel/Kconfig.freezer"
241 bool "MMU-based Paged Memory Management Support"
244 Select if you want MMU-based virtualised addressing space
245 support by paged memory management. If unsure, say 'Y'.
248 # The "ARM system type" choice list is ordered alphabetically by option
249 # text. Please add new entries in the option alphabetic order.
252 prompt "ARM system type"
253 default ARCH_VERSATILE
255 config ARCH_INTEGRATOR
256 bool "ARM Ltd. Integrator family"
258 select ARCH_HAS_CPUFREQ
260 select HAVE_MACH_CLKDEV
262 select GENERIC_CLOCKEVENTS
263 select PLAT_VERSATILE
264 select PLAT_VERSATILE_FPGA_IRQ
265 select NEED_MACH_MEMORY_H
267 Support for ARM's Integrator platform.
270 bool "ARM Ltd. RealView family"
273 select HAVE_MACH_CLKDEV
275 select GENERIC_CLOCKEVENTS
276 select ARCH_WANT_OPTIONAL_GPIOLIB
277 select PLAT_VERSATILE
278 select PLAT_VERSATILE_CLCD
279 select ARM_TIMER_SP804
280 select GPIO_PL061 if GPIOLIB
281 select NEED_MACH_MEMORY_H
283 This enables support for ARM Ltd RealView boards.
285 config ARCH_VERSATILE
286 bool "ARM Ltd. Versatile family"
290 select HAVE_MACH_CLKDEV
292 select GENERIC_CLOCKEVENTS
293 select ARCH_WANT_OPTIONAL_GPIOLIB
294 select PLAT_VERSATILE
295 select PLAT_VERSATILE_CLCD
296 select PLAT_VERSATILE_FPGA_IRQ
297 select ARM_TIMER_SP804
299 This enables support for ARM Ltd Versatile board.
302 bool "ARM Ltd. Versatile Express family"
303 select ARCH_WANT_OPTIONAL_GPIOLIB
305 select ARM_TIMER_SP804
307 select HAVE_MACH_CLKDEV
308 select GENERIC_CLOCKEVENTS
310 select HAVE_PATA_PLATFORM
312 select PLAT_VERSATILE
313 select PLAT_VERSATILE_CLCD
315 This enables support for the ARM Ltd Versatile Express boards.
319 select ARCH_REQUIRE_GPIOLIB
323 This enables support for systems based on the Atmel AT91RM9200,
324 AT91SAM9 and AT91CAP9 processors.
327 bool "Broadcom BCMRING"
331 select ARM_TIMER_SP804
333 select GENERIC_CLOCKEVENTS
334 select ARCH_WANT_OPTIONAL_GPIOLIB
336 Support for Broadcom's BCMRing platform.
339 bool "Calxeda Highbank-based"
340 select ARCH_WANT_OPTIONAL_GPIOLIB
343 select ARM_TIMER_SP804
346 select GENERIC_CLOCKEVENTS
350 Support for the Calxeda Highbank SoC based boards.
353 bool "Cirrus Logic CLPS711x/EP721x-based"
355 select ARCH_USES_GETTIMEOFFSET
356 select NEED_MACH_MEMORY_H
358 Support for Cirrus Logic 711x/721x based boards.
361 bool "Cavium Networks CNS3XXX family"
363 select GENERIC_CLOCKEVENTS
365 select MIGHT_HAVE_PCI
366 select PCI_DOMAINS if PCI
368 Support for Cavium Networks CNS3XXX platform.
371 bool "Cortina Systems Gemini"
373 select ARCH_REQUIRE_GPIOLIB
374 select ARCH_USES_GETTIMEOFFSET
376 Support for the Cortina Systems Gemini family SoCs
379 bool "CSR SiRFSoC PRIMA2 ARM Cortex A9 Platform"
382 select GENERIC_CLOCKEVENTS
384 select GENERIC_IRQ_CHIP
388 Support for CSR SiRFSoC ARM Cortex A9 Platform
395 select ARCH_USES_GETTIMEOFFSET
396 select NEED_MACH_MEMORY_H
398 This is an evaluation board for the StrongARM processor available
399 from Digital. It has limited hardware on-board, including an
400 Ethernet interface, two PCMCIA sockets, two serial ports and a
409 select ARCH_REQUIRE_GPIOLIB
410 select ARCH_HAS_HOLES_MEMORYMODEL
411 select ARCH_USES_GETTIMEOFFSET
412 select NEED_MACH_MEMORY_H
414 This enables support for the Cirrus EP93xx series of CPUs.
416 config ARCH_FOOTBRIDGE
420 select GENERIC_CLOCKEVENTS
422 select NEED_MACH_MEMORY_H
424 Support for systems based on the DC21285 companion chip
425 ("FootBridge"), such as the Simtec CATS and the Rebel NetWinder.
428 bool "Freescale MXC/iMX-based"
429 select GENERIC_CLOCKEVENTS
430 select ARCH_REQUIRE_GPIOLIB
433 select GENERIC_IRQ_CHIP
434 select HAVE_SCHED_CLOCK
435 select MULTI_IRQ_HANDLER
437 Support for Freescale MXC/iMX-based family of processors
440 bool "Freescale MXS-based"
441 select GENERIC_CLOCKEVENTS
442 select ARCH_REQUIRE_GPIOLIB
446 Support for Freescale MXS-based family of processors
449 bool "Hilscher NetX based"
453 select GENERIC_CLOCKEVENTS
455 This enables support for systems based on the Hilscher NetX Soc
458 bool "Hynix HMS720x-based"
461 select ARCH_USES_GETTIMEOFFSET
463 This enables support for systems based on the Hynix HMS720x
471 select ARCH_SUPPORTS_MSI
473 select NEED_MACH_MEMORY_H
475 Support for Intel's IOP13XX (XScale) family of processors.
483 select ARCH_REQUIRE_GPIOLIB
485 Support for Intel's 80219 and IOP32X (XScale) family of
494 select ARCH_REQUIRE_GPIOLIB
496 Support for Intel's IOP33X (XScale) family of processors.
503 select ARCH_USES_GETTIMEOFFSET
504 select NEED_MACH_MEMORY_H
506 Support for Intel's IXP23xx (XScale) family of processors.
509 bool "IXP2400/2800-based"
513 select ARCH_USES_GETTIMEOFFSET
514 select NEED_MACH_MEMORY_H
516 Support for Intel's IXP2400/2800 (XScale) family of processors.
524 select GENERIC_CLOCKEVENTS
525 select HAVE_SCHED_CLOCK
526 select MIGHT_HAVE_PCI
527 select DMABOUNCE if PCI
529 Support for Intel's IXP4XX (XScale) family of processors.
535 select ARCH_REQUIRE_GPIOLIB
536 select GENERIC_CLOCKEVENTS
539 Support for the Marvell Dove SoC 88AP510
542 bool "Marvell Kirkwood"
545 select ARCH_REQUIRE_GPIOLIB
546 select GENERIC_CLOCKEVENTS
549 Support for the following Marvell Kirkwood series SoCs:
550 88F6180, 88F6192 and 88F6281.
556 select ARCH_REQUIRE_GPIOLIB
559 select USB_ARCH_HAS_OHCI
561 select GENERIC_CLOCKEVENTS
563 Support for the NXP LPC32XX family of processors
566 bool "Marvell MV78xx0"
569 select ARCH_REQUIRE_GPIOLIB
570 select GENERIC_CLOCKEVENTS
573 Support for the following Marvell MV78xx0 series SoCs:
581 select ARCH_REQUIRE_GPIOLIB
582 select GENERIC_CLOCKEVENTS
585 Support for the following Marvell Orion 5x series SoCs:
586 Orion-1 (5181), Orion-VoIP (5181L), Orion-NAS (5182),
587 Orion-2 (5281), Orion-1-90 (6183).
590 bool "Marvell PXA168/910/MMP2"
592 select ARCH_REQUIRE_GPIOLIB
594 select GENERIC_CLOCKEVENTS
595 select HAVE_SCHED_CLOCK
599 select GENERIC_ALLOCATOR
601 Support for Marvell's PXA168/PXA910(MMP) and MMP2 processor line.
604 bool "Micrel/Kendin KS8695"
606 select ARCH_REQUIRE_GPIOLIB
607 select ARCH_USES_GETTIMEOFFSET
608 select NEED_MACH_MEMORY_H
610 Support for Micrel/Kendin KS8695 "Centaur" (ARM922T) based
611 System-on-Chip devices.
614 bool "Nuvoton W90X900 CPU"
616 select ARCH_REQUIRE_GPIOLIB
619 select GENERIC_CLOCKEVENTS
621 Support for Nuvoton (Winbond logic dept.) ARM9 processor,
622 At present, the w90x900 has been renamed nuc900, regarding
623 the ARM series product line, you can login the following
624 link address to know more.
626 <http://www.nuvoton.com/hq/enu/ProductAndSales/ProductLines/
627 ConsumerElectronicsIC/ARMMicrocontroller/ARMMicrocontroller>
633 select GENERIC_CLOCKEVENTS
636 select HAVE_SCHED_CLOCK
637 select ARCH_HAS_CPUFREQ
639 This enables support for NVIDIA Tegra based systems (Tegra APX,
640 Tegra 6xx and Tegra 2 series).
642 config ARCH_PICOXCELL
643 bool "Picochip picoXcell"
644 select ARCH_REQUIRE_GPIOLIB
645 select ARM_PATCH_PHYS_VIRT
649 select GENERIC_CLOCKEVENTS
651 select HAVE_SCHED_CLOCK
656 This enables support for systems based on the Picochip picoXcell
657 family of Femtocell devices. The picoxcell support requires device tree
661 bool "Philips Nexperia PNX4008 Mobile"
664 select ARCH_USES_GETTIMEOFFSET
666 This enables support for Philips PNX4008 mobile platform.
669 bool "PXA2xx/PXA3xx-based"
672 select ARCH_HAS_CPUFREQ
675 select ARCH_REQUIRE_GPIOLIB
676 select GENERIC_CLOCKEVENTS
677 select HAVE_SCHED_CLOCK
682 select MULTI_IRQ_HANDLER
683 select ARM_CPU_SUSPEND if PM
686 Support for Intel/Marvell's PXA2xx/PXA3xx processor line.
691 select GENERIC_CLOCKEVENTS
692 select ARCH_REQUIRE_GPIOLIB
695 Support for Qualcomm MSM/QSD based systems. This runs on the
696 apps processor of the MSM/QSD and depends on a shared memory
697 interface to the modem processor which runs the baseband
698 stack and controls some vital subsystems
699 (clock and power control, etc).
702 bool "Renesas SH-Mobile / R-Mobile"
705 select HAVE_MACH_CLKDEV
706 select GENERIC_CLOCKEVENTS
709 select MULTI_IRQ_HANDLER
710 select PM_GENERIC_DOMAINS if PM
711 select NEED_MACH_MEMORY_H
713 Support for Renesas's SH-Mobile and R-Mobile ARM platforms.
720 select ARCH_MAY_HAVE_PC_FDC
721 select HAVE_PATA_PLATFORM
724 select ARCH_SPARSEMEM_ENABLE
725 select ARCH_USES_GETTIMEOFFSET
727 select NEED_MACH_MEMORY_H
729 On the Acorn Risc-PC, Linux can support the internal IDE disk and
730 CD-ROM interface, serial and parallel port, and the floppy drive.
737 select ARCH_SPARSEMEM_ENABLE
739 select ARCH_HAS_CPUFREQ
741 select GENERIC_CLOCKEVENTS
743 select HAVE_SCHED_CLOCK
745 select ARCH_REQUIRE_GPIOLIB
747 select NEED_MACH_MEMORY_H
749 Support for StrongARM 11x0 based boards.
752 bool "Samsung S3C2410, S3C2412, S3C2413, S3C2416, S3C2440, S3C2442, S3C2443, S3C2450"
754 select ARCH_HAS_CPUFREQ
757 select ARCH_USES_GETTIMEOFFSET
758 select HAVE_S3C2410_I2C if I2C
760 Samsung S3C2410X CPU based systems, such as the Simtec Electronics
761 BAST (<http://www.simtec.co.uk/products/EB110ITX/>), the IPAQ 1940 or
762 the Samsung SMDK2410 development board (and derivatives).
764 Note, the S3C2416 and the S3C2450 are so close that they even share
765 the same SoC ID code. This means that there is no separate machine
766 directory (no arch/arm/mach-s3c2450) as the S3C2416 was first.
769 bool "Samsung S3C64XX"
777 select ARCH_USES_GETTIMEOFFSET
778 select ARCH_HAS_CPUFREQ
779 select ARCH_REQUIRE_GPIOLIB
780 select SAMSUNG_CLKSRC
781 select SAMSUNG_IRQ_VIC_TIMER
782 select S3C_GPIO_TRACK
784 select USB_ARCH_HAS_OHCI
785 select SAMSUNG_GPIOLIB_4BIT
786 select HAVE_S3C2410_I2C if I2C
787 select HAVE_S3C2410_WATCHDOG if WATCHDOG
789 Samsung S3C64XX series based systems
792 bool "Samsung S5P6440 S5P6450"
798 select HAVE_S3C2410_WATCHDOG if WATCHDOG
799 select GENERIC_CLOCKEVENTS
800 select HAVE_SCHED_CLOCK
801 select HAVE_S3C2410_I2C if I2C
802 select HAVE_S3C_RTC if RTC_CLASS
804 Samsung S5P64X0 CPU based systems, such as the Samsung SMDK6440,
808 bool "Samsung S5PC100"
813 select ARM_L1_CACHE_SHIFT_6
814 select ARCH_USES_GETTIMEOFFSET
815 select HAVE_S3C2410_I2C if I2C
816 select HAVE_S3C_RTC if RTC_CLASS
817 select HAVE_S3C2410_WATCHDOG if WATCHDOG
819 Samsung S5PC100 series based systems
822 bool "Samsung S5PV210/S5PC110"
824 select ARCH_SPARSEMEM_ENABLE
825 select ARCH_HAS_HOLES_MEMORYMODEL
830 select ARM_L1_CACHE_SHIFT_6
831 select ARCH_HAS_CPUFREQ
832 select GENERIC_CLOCKEVENTS
833 select HAVE_SCHED_CLOCK
834 select HAVE_S3C2410_I2C if I2C
835 select HAVE_S3C_RTC if RTC_CLASS
836 select HAVE_S3C2410_WATCHDOG if WATCHDOG
837 select NEED_MACH_MEMORY_H
839 Samsung S5PV210/S5PC110 series based systems
842 bool "SAMSUNG EXYNOS"
844 select ARCH_SPARSEMEM_ENABLE
845 select ARCH_HAS_HOLES_MEMORYMODEL
849 select ARCH_HAS_CPUFREQ
850 select GENERIC_CLOCKEVENTS
851 select HAVE_S3C_RTC if RTC_CLASS
852 select HAVE_S3C2410_I2C if I2C
853 select HAVE_S3C2410_WATCHDOG if WATCHDOG
854 select NEED_MACH_MEMORY_H
856 Support for SAMSUNG's EXYNOS SoCs (EXYNOS4/5)
865 select ARCH_USES_GETTIMEOFFSET
866 select NEED_MACH_MEMORY_H
868 Support for the StrongARM based Digital DNARD machine, also known
869 as "Shark" (<http://www.shark-linux.de/shark.html>).
872 bool "Telechips TCC ARM926-based systems"
877 select GENERIC_CLOCKEVENTS
879 Support for Telechips TCC ARM926-based systems.
882 bool "ST-Ericsson U300 Series"
886 select HAVE_SCHED_CLOCK
889 select ARM_PATCH_PHYS_VIRT
891 select GENERIC_CLOCKEVENTS
893 select HAVE_MACH_CLKDEV
895 select ARCH_REQUIRE_GPIOLIB
896 select NEED_MACH_MEMORY_H
898 Support for ST-Ericsson U300 series mobile platforms.
901 bool "ST-Ericsson U8500 Series"
904 select GENERIC_CLOCKEVENTS
906 select ARCH_REQUIRE_GPIOLIB
907 select ARCH_HAS_CPUFREQ
909 Support for ST-Ericsson's Ux500 architecture
912 bool "STMicroelectronics Nomadik"
917 select GENERIC_CLOCKEVENTS
918 select ARCH_REQUIRE_GPIOLIB
920 Support for the Nomadik platform by ST-Ericsson
924 select GENERIC_CLOCKEVENTS
925 select ARCH_REQUIRE_GPIOLIB
929 select GENERIC_ALLOCATOR
930 select GENERIC_IRQ_CHIP
931 select ARCH_HAS_HOLES_MEMORYMODEL
933 Support for TI's DaVinci platform.
938 select ARCH_REQUIRE_GPIOLIB
939 select ARCH_HAS_CPUFREQ
941 select GENERIC_CLOCKEVENTS
942 select HAVE_SCHED_CLOCK
943 select ARCH_HAS_HOLES_MEMORYMODEL
945 Support for TI's OMAP platform (OMAP1/2/3/4).
950 select ARCH_REQUIRE_GPIOLIB
953 select GENERIC_CLOCKEVENTS
956 Support for ST's SPEAr platform (SPEAr3xx, SPEAr6xx and SPEAr13xx).
959 bool "VIA/WonderMedia 85xx"
962 select ARCH_HAS_CPUFREQ
963 select GENERIC_CLOCKEVENTS
964 select ARCH_REQUIRE_GPIOLIB
967 Support for VIA/WonderMedia VT8500/WM85xx System-on-Chip.
970 bool "Xilinx Zynq ARM Cortex A9 Platform"
972 select GENERIC_CLOCKEVENTS
979 Support for Xilinx Zynq ARM Cortex A9 Platform
983 # This is sorted alphabetically by mach-* pathname. However, plat-*
984 # Kconfigs may be included either alphabetically (according to the
985 # plat- suffix) or along side the corresponding mach-* source.
987 source "arch/arm/mach-at91/Kconfig"
989 source "arch/arm/mach-bcmring/Kconfig"
991 source "arch/arm/mach-clps711x/Kconfig"
993 source "arch/arm/mach-cns3xxx/Kconfig"
995 source "arch/arm/mach-davinci/Kconfig"
997 source "arch/arm/mach-dove/Kconfig"
999 source "arch/arm/mach-ep93xx/Kconfig"
1001 source "arch/arm/mach-footbridge/Kconfig"
1003 source "arch/arm/mach-gemini/Kconfig"
1005 source "arch/arm/mach-h720x/Kconfig"
1007 source "arch/arm/mach-integrator/Kconfig"
1009 source "arch/arm/mach-iop32x/Kconfig"
1011 source "arch/arm/mach-iop33x/Kconfig"
1013 source "arch/arm/mach-iop13xx/Kconfig"
1015 source "arch/arm/mach-ixp4xx/Kconfig"
1017 source "arch/arm/mach-ixp2000/Kconfig"
1019 source "arch/arm/mach-ixp23xx/Kconfig"
1021 source "arch/arm/mach-kirkwood/Kconfig"
1023 source "arch/arm/mach-ks8695/Kconfig"
1025 source "arch/arm/mach-lpc32xx/Kconfig"
1027 source "arch/arm/mach-msm/Kconfig"
1029 source "arch/arm/mach-mv78xx0/Kconfig"
1031 source "arch/arm/plat-mxc/Kconfig"
1033 source "arch/arm/mach-mxs/Kconfig"
1035 source "arch/arm/mach-netx/Kconfig"
1037 source "arch/arm/mach-nomadik/Kconfig"
1038 source "arch/arm/plat-nomadik/Kconfig"
1040 source "arch/arm/plat-omap/Kconfig"
1042 source "arch/arm/mach-omap1/Kconfig"
1044 source "arch/arm/mach-omap2/Kconfig"
1046 source "arch/arm/mach-orion5x/Kconfig"
1048 source "arch/arm/mach-pxa/Kconfig"
1049 source "arch/arm/plat-pxa/Kconfig"
1051 source "arch/arm/mach-mmp/Kconfig"
1053 source "arch/arm/mach-realview/Kconfig"
1055 source "arch/arm/mach-sa1100/Kconfig"
1057 source "arch/arm/plat-samsung/Kconfig"
1058 source "arch/arm/plat-s3c24xx/Kconfig"
1059 source "arch/arm/plat-s5p/Kconfig"
1061 source "arch/arm/plat-spear/Kconfig"
1063 source "arch/arm/plat-tcc/Kconfig"
1066 source "arch/arm/mach-s3c2410/Kconfig"
1067 source "arch/arm/mach-s3c2412/Kconfig"
1068 source "arch/arm/mach-s3c2416/Kconfig"
1069 source "arch/arm/mach-s3c2440/Kconfig"
1070 source "arch/arm/mach-s3c2443/Kconfig"
1074 source "arch/arm/mach-s3c64xx/Kconfig"
1077 source "arch/arm/mach-s5p64x0/Kconfig"
1079 source "arch/arm/mach-s5pc100/Kconfig"
1081 source "arch/arm/mach-s5pv210/Kconfig"
1083 source "arch/arm/mach-exynos/Kconfig"
1085 source "arch/arm/mach-shmobile/Kconfig"
1087 source "arch/arm/mach-tegra/Kconfig"
1089 source "arch/arm/mach-u300/Kconfig"
1091 source "arch/arm/mach-ux500/Kconfig"
1093 source "arch/arm/mach-versatile/Kconfig"
1095 source "arch/arm/mach-vexpress/Kconfig"
1096 source "arch/arm/plat-versatile/Kconfig"
1098 source "arch/arm/mach-vt8500/Kconfig"
1100 source "arch/arm/mach-w90x900/Kconfig"
1102 # Definitions to make life easier
1108 select GENERIC_CLOCKEVENTS
1109 select HAVE_SCHED_CLOCK
1114 select GENERIC_IRQ_CHIP
1115 select HAVE_SCHED_CLOCK
1120 config PLAT_VERSATILE
1123 config ARM_TIMER_SP804
1127 source arch/arm/mm/Kconfig
1130 bool "Enable iWMMXt support"
1131 depends on CPU_XSCALE || CPU_XSC3 || CPU_MOHAWK || CPU_PJ4
1132 default y if PXA27x || PXA3xx || PXA95x || ARCH_MMP
1134 Enable support for iWMMXt context switching at run time if
1135 running on a CPU that supports it.
1137 # bool 'Use XScale PMU as timer source' CONFIG_XSCALE_PMU_TIMER
1140 depends on CPU_XSCALE && !XSCALE_PMU_TIMER
1144 depends on (CPU_V6 || CPU_V6K || CPU_V7 || XSCALE_PMU) && \
1145 (!ARCH_OMAP3 || OMAP3_EMU)
1149 config MULTI_IRQ_HANDLER
1152 Allow each machine to specify it's own IRQ handler at run time.
1155 source "arch/arm/Kconfig-nommu"
1158 config ARM_ERRATA_411920
1159 bool "ARM errata: Invalidation of the Instruction Cache operation can fail"
1160 depends on CPU_V6 || CPU_V6K
1162 Invalidation of the Instruction Cache operation can
1163 fail. This erratum is present in 1136 (before r1p4), 1156 and 1176.
1164 It does not affect the MPCore. This option enables the ARM Ltd.
1165 recommended workaround.
1167 config ARM_ERRATA_430973
1168 bool "ARM errata: Stale prediction on replaced interworking branch"
1171 This option enables the workaround for the 430973 Cortex-A8
1172 (r1p0..r1p2) erratum. If a code sequence containing an ARM/Thumb
1173 interworking branch is replaced with another code sequence at the
1174 same virtual address, whether due to self-modifying code or virtual
1175 to physical address re-mapping, Cortex-A8 does not recover from the
1176 stale interworking branch prediction. This results in Cortex-A8
1177 executing the new code sequence in the incorrect ARM or Thumb state.
1178 The workaround enables the BTB/BTAC operations by setting ACTLR.IBE
1179 and also flushes the branch target cache at every context switch.
1180 Note that setting specific bits in the ACTLR register may not be
1181 available in non-secure mode.
1183 config ARM_ERRATA_458693
1184 bool "ARM errata: Processor deadlock when a false hazard is created"
1187 This option enables the workaround for the 458693 Cortex-A8 (r2p0)
1188 erratum. For very specific sequences of memory operations, it is
1189 possible for a hazard condition intended for a cache line to instead
1190 be incorrectly associated with a different cache line. This false
1191 hazard might then cause a processor deadlock. The workaround enables
1192 the L1 caching of the NEON accesses and disables the PLD instruction
1193 in the ACTLR register. Note that setting specific bits in the ACTLR
1194 register may not be available in non-secure mode.
1196 config ARM_ERRATA_460075
1197 bool "ARM errata: Data written to the L2 cache can be overwritten with stale data"
1200 This option enables the workaround for the 460075 Cortex-A8 (r2p0)
1201 erratum. Any asynchronous access to the L2 cache may encounter a
1202 situation in which recent store transactions to the L2 cache are lost
1203 and overwritten with stale memory contents from external memory. The
1204 workaround disables the write-allocate mode for the L2 cache via the
1205 ACTLR register. Note that setting specific bits in the ACTLR register
1206 may not be available in non-secure mode.
1208 config ARM_ERRATA_742230
1209 bool "ARM errata: DMB operation may be faulty"
1210 depends on CPU_V7 && SMP
1212 This option enables the workaround for the 742230 Cortex-A9
1213 (r1p0..r2p2) erratum. Under rare circumstances, a DMB instruction
1214 between two write operations may not ensure the correct visibility
1215 ordering of the two writes. This workaround sets a specific bit in
1216 the diagnostic register of the Cortex-A9 which causes the DMB
1217 instruction to behave as a DSB, ensuring the correct behaviour of
1220 config ARM_ERRATA_742231
1221 bool "ARM errata: Incorrect hazard handling in the SCU may lead to data corruption"
1222 depends on CPU_V7 && SMP
1224 This option enables the workaround for the 742231 Cortex-A9
1225 (r2p0..r2p2) erratum. Under certain conditions, specific to the
1226 Cortex-A9 MPCore micro-architecture, two CPUs working in SMP mode,
1227 accessing some data located in the same cache line, may get corrupted
1228 data due to bad handling of the address hazard when the line gets
1229 replaced from one of the CPUs at the same time as another CPU is
1230 accessing it. This workaround sets specific bits in the diagnostic
1231 register of the Cortex-A9 which reduces the linefill issuing
1232 capabilities of the processor.
1234 config PL310_ERRATA_588369
1235 bool "PL310 errata: Clean & Invalidate maintenance operations do not invalidate clean lines"
1236 depends on CACHE_L2X0
1238 The PL310 L2 cache controller implements three types of Clean &
1239 Invalidate maintenance operations: by Physical Address
1240 (offset 0x7F0), by Index/Way (0x7F8) and by Way (0x7FC).
1241 They are architecturally defined to behave as the execution of a
1242 clean operation followed immediately by an invalidate operation,
1243 both performing to the same memory location. This functionality
1244 is not correctly implemented in PL310 as clean lines are not
1245 invalidated as a result of these operations.
1247 config ARM_ERRATA_720789
1248 bool "ARM errata: TLBIASIDIS and TLBIMVAIS operations can broadcast a faulty ASID"
1251 This option enables the workaround for the 720789 Cortex-A9 (prior to
1252 r2p0) erratum. A faulty ASID can be sent to the other CPUs for the
1253 broadcasted CP15 TLB maintenance operations TLBIASIDIS and TLBIMVAIS.
1254 As a consequence of this erratum, some TLB entries which should be
1255 invalidated are not, resulting in an incoherency in the system page
1256 tables. The workaround changes the TLB flushing routines to invalidate
1257 entries regardless of the ASID.
1259 config PL310_ERRATA_727915
1260 bool "PL310 errata: Background Clean & Invalidate by Way operation can cause data corruption"
1261 depends on CACHE_L2X0
1263 PL310 implements the Clean & Invalidate by Way L2 cache maintenance
1264 operation (offset 0x7FC). This operation runs in background so that
1265 PL310 can handle normal accesses while it is in progress. Under very
1266 rare circumstances, due to this erratum, write data can be lost when
1267 PL310 treats a cacheable write transaction during a Clean &
1268 Invalidate by Way operation.
1270 config ARM_ERRATA_743622
1271 bool "ARM errata: Faulty hazard checking in the Store Buffer may lead to data corruption"
1274 This option enables the workaround for the 743622 Cortex-A9
1275 (r2p0..r2p2) erratum. Under very rare conditions, a faulty
1276 optimisation in the Cortex-A9 Store Buffer may lead to data
1277 corruption. This workaround sets a specific bit in the diagnostic
1278 register of the Cortex-A9 which disables the Store Buffer
1279 optimisation, preventing the defect from occurring. This has no
1280 visible impact on the overall performance or power consumption of the
1283 config ARM_ERRATA_751472
1284 bool "ARM errata: Interrupted ICIALLUIS may prevent completion of broadcasted operation"
1287 This option enables the workaround for the 751472 Cortex-A9 (prior
1288 to r3p0) erratum. An interrupted ICIALLUIS operation may prevent the
1289 completion of a following broadcasted operation if the second
1290 operation is received by a CPU before the ICIALLUIS has completed,
1291 potentially leading to corrupted entries in the cache or TLB.
1293 config PL310_ERRATA_753970
1294 bool "PL310 errata: cache sync operation may be faulty"
1295 depends on CACHE_PL310
1297 This option enables the workaround for the 753970 PL310 (r3p0) erratum.
1299 Under some condition the effect of cache sync operation on
1300 the store buffer still remains when the operation completes.
1301 This means that the store buffer is always asked to drain and
1302 this prevents it from merging any further writes. The workaround
1303 is to replace the normal offset of cache sync operation (0x730)
1304 by another offset targeting an unmapped PL310 register 0x740.
1305 This has the same effect as the cache sync operation: store buffer
1306 drain and waiting for all buffers empty.
1308 config ARM_ERRATA_754322
1309 bool "ARM errata: possible faulty MMU translations following an ASID switch"
1312 This option enables the workaround for the 754322 Cortex-A9 (r2p*,
1313 r3p*) erratum. A speculative memory access may cause a page table walk
1314 which starts prior to an ASID switch but completes afterwards. This
1315 can populate the micro-TLB with a stale entry which may be hit with
1316 the new ASID. This workaround places two dsb instructions in the mm
1317 switching code so that no page table walks can cross the ASID switch.
1319 config ARM_ERRATA_754327
1320 bool "ARM errata: no automatic Store Buffer drain"
1321 depends on CPU_V7 && SMP
1323 This option enables the workaround for the 754327 Cortex-A9 (prior to
1324 r2p0) erratum. The Store Buffer does not have any automatic draining
1325 mechanism and therefore a livelock may occur if an external agent
1326 continuously polls a memory location waiting to observe an update.
1327 This workaround defines cpu_relax() as smp_mb(), preventing correctly
1328 written polling loops from denying visibility of updates to memory.
1330 config ARM_ERRATA_364296
1331 bool "ARM errata: Possible cache data corruption with hit-under-miss enabled"
1332 depends on CPU_V6 && !SMP
1334 This options enables the workaround for the 364296 ARM1136
1335 r0p2 erratum (possible cache data corruption with
1336 hit-under-miss enabled). It sets the undocumented bit 31 in
1337 the auxiliary control register and the FI bit in the control
1338 register, thus disabling hit-under-miss without putting the
1339 processor into full low interrupt latency mode. ARM11MPCore
1342 config ARM_ERRATA_764369
1343 bool "ARM errata: Data cache line maintenance operation by MVA may not succeed"
1344 depends on CPU_V7 && SMP
1346 This option enables the workaround for erratum 764369
1347 affecting Cortex-A9 MPCore with two or more processors (all
1348 current revisions). Under certain timing circumstances, a data
1349 cache line maintenance operation by MVA targeting an Inner
1350 Shareable memory region may fail to proceed up to either the
1351 Point of Coherency or to the Point of Unification of the
1352 system. This workaround adds a DSB instruction before the
1353 relevant cache maintenance functions and sets a specific bit
1354 in the diagnostic control register of the SCU.
1356 config PL310_ERRATA_769419
1357 bool "PL310 errata: no automatic Store Buffer drain"
1358 depends on CACHE_L2X0
1360 On revisions of the PL310 prior to r3p2, the Store Buffer does
1361 not automatically drain. This can cause normal, non-cacheable
1362 writes to be retained when the memory system is idle, leading
1363 to suboptimal I/O performance for drivers using coherent DMA.
1364 This option adds a write barrier to the cpu_idle loop so that,
1365 on systems with an outer cache, the store buffer is drained
1370 source "arch/arm/common/Kconfig"
1380 Find out whether you have ISA slots on your motherboard. ISA is the
1381 name of a bus system, i.e. the way the CPU talks to the other stuff
1382 inside your box. Other bus systems are PCI, EISA, MicroChannel
1383 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
1384 newer boards don't support it. If you have ISA, say Y, otherwise N.
1386 # Select ISA DMA controller support
1391 # Select ISA DMA interface
1396 bool "PCI support" if MIGHT_HAVE_PCI
1398 Find out whether you have a PCI motherboard. PCI is the name of a
1399 bus system, i.e. the way the CPU talks to the other stuff inside
1400 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
1401 VESA. If you have PCI, say Y, otherwise N.
1407 config PCI_NANOENGINE
1408 bool "BSE nanoEngine PCI support"
1409 depends on SA1100_NANOENGINE
1411 Enable PCI on the BSE nanoEngine board.
1416 # Select the host bridge type
1417 config PCI_HOST_VIA82C505
1419 depends on PCI && ARCH_SHARK
1422 config PCI_HOST_ITE8152
1424 depends on PCI && MACH_ARMCORE
1428 source "drivers/pci/Kconfig"
1430 source "drivers/pcmcia/Kconfig"
1434 menu "Kernel Features"
1436 source "kernel/time/Kconfig"
1439 bool "Symmetric Multi-Processing"
1440 depends on CPU_V6K || CPU_V7
1441 depends on GENERIC_CLOCKEVENTS
1442 depends on REALVIEW_EB_ARM11MP || REALVIEW_EB_A9MP || \
1443 MACH_REALVIEW_PB11MP || MACH_REALVIEW_PBX || ARCH_OMAP4 || \
1444 ARCH_EXYNOS4 || ARCH_TEGRA || ARCH_U8500 || ARCH_VEXPRESS_CA9X4 || \
1445 ARCH_MSM_SCORPIONMP || ARCH_SHMOBILE || ARCH_HIGHBANK || SOC_IMX6Q
1447 select USE_GENERIC_SMP_HELPERS
1448 select HAVE_ARM_SCU if !ARCH_MSM_SCORPIONMP
1450 This enables support for systems with more than one CPU. If you have
1451 a system with only one CPU, like most personal computers, say N. If
1452 you have a system with more than one CPU, say Y.
1454 If you say N here, the kernel will run on single and multiprocessor
1455 machines, but will use only one CPU of a multiprocessor machine. If
1456 you say Y here, the kernel will run on many, but not all, single
1457 processor machines. On a single processor machine, the kernel will
1458 run faster if you say N here.
1460 See also <file:Documentation/x86/i386/IO-APIC.txt>,
1461 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
1462 <http://tldp.org/HOWTO/SMP-HOWTO.html>.
1464 If you don't know what to do here, say N.
1467 bool "Allow booting SMP kernel on uniprocessor systems (EXPERIMENTAL)"
1468 depends on EXPERIMENTAL
1469 depends on SMP && !XIP_KERNEL
1472 SMP kernels contain instructions which fail on non-SMP processors.
1473 Enabling this option allows the kernel to modify itself to make
1474 these instructions safe. Disabling it allows about 1K of space
1477 If you don't know what to do here, say Y.
1479 config ARM_CPU_TOPOLOGY
1480 bool "Support cpu topology definition"
1481 depends on SMP && CPU_V7
1484 Support ARM cpu topology definition. The MPIDR register defines
1485 affinity between processors which is then used to describe the cpu
1486 topology of an ARM System.
1489 bool "Multi-core scheduler support"
1490 depends on ARM_CPU_TOPOLOGY
1492 Multi-core scheduler support improves the CPU scheduler's decision
1493 making when dealing with multi-core CPU chips at a cost of slightly
1494 increased overhead in some places. If unsure say N here.
1497 bool "SMT scheduler support"
1498 depends on ARM_CPU_TOPOLOGY
1500 Improves the CPU scheduler's decision making when dealing with
1501 MultiThreading at a cost of slightly increased overhead in some
1502 places. If unsure say N here.
1507 This option enables support for the ARM system coherency unit
1514 This options enables support for the ARM timer and watchdog unit
1517 prompt "Memory split"
1520 Select the desired split between kernel and user memory.
1522 If you are not absolutely sure what you are doing, leave this
1526 bool "3G/1G user/kernel split"
1528 bool "2G/2G user/kernel split"
1530 bool "1G/3G user/kernel split"
1535 default 0x40000000 if VMSPLIT_1G
1536 default 0x80000000 if VMSPLIT_2G
1540 int "Maximum number of CPUs (2-32)"
1546 bool "Support for hot-pluggable CPUs (EXPERIMENTAL)"
1547 depends on SMP && HOTPLUG && EXPERIMENTAL
1549 Say Y here to experiment with turning CPUs off and on. CPUs
1550 can be controlled through /sys/devices/system/cpu.
1553 bool "Use local timer interrupts"
1556 select HAVE_ARM_TWD if (!ARCH_MSM_SCORPIONMP && !EXYNOS4_MCT)
1558 Enable support for local timers on SMP platforms, rather then the
1559 legacy IPI broadcast method. Local timers allows the system
1560 accounting to be spread across the timer interval, preventing a
1561 "thundering herd" at every timer tick.
1563 source kernel/Kconfig.preempt
1567 default 200 if ARCH_EBSA110 || ARCH_S3C2410 || ARCH_S5P64X0 || \
1568 ARCH_S5PV210 || ARCH_EXYNOS4
1569 default OMAP_32K_TIMER_HZ if ARCH_OMAP && OMAP_32K_TIMER
1570 default AT91_TIMER_HZ if ARCH_AT91
1571 default SHMOBILE_TIMER_HZ if ARCH_SHMOBILE
1574 config THUMB2_KERNEL
1575 bool "Compile the kernel in Thumb-2 mode (EXPERIMENTAL)"
1576 depends on CPU_V7 && !CPU_V6 && !CPU_V6K && EXPERIMENTAL
1578 select ARM_ASM_UNIFIED
1581 By enabling this option, the kernel will be compiled in
1582 Thumb-2 mode. A compiler/assembler that understand the unified
1583 ARM-Thumb syntax is needed.
1587 config THUMB2_AVOID_R_ARM_THM_JUMP11
1588 bool "Work around buggy Thumb-2 short branch relocations in gas"
1589 depends on THUMB2_KERNEL && MODULES
1592 Various binutils versions can resolve Thumb-2 branches to
1593 locally-defined, preemptible global symbols as short-range "b.n"
1594 branch instructions.
1596 This is a problem, because there's no guarantee the final
1597 destination of the symbol, or any candidate locations for a
1598 trampoline, are within range of the branch. For this reason, the
1599 kernel does not support fixing up the R_ARM_THM_JUMP11 (102)
1600 relocation in modules at all, and it makes little sense to add
1603 The symptom is that the kernel fails with an "unsupported
1604 relocation" error when loading some modules.
1606 Until fixed tools are available, passing
1607 -fno-optimize-sibling-calls to gcc should prevent gcc generating
1608 code which hits this problem, at the cost of a bit of extra runtime
1609 stack usage in some cases.
1611 The problem is described in more detail at:
1612 https://bugs.launchpad.net/binutils-linaro/+bug/725126
1614 Only Thumb-2 kernels are affected.
1616 Unless you are sure your tools don't have this problem, say Y.
1618 config ARM_ASM_UNIFIED
1622 bool "Use the ARM EABI to compile the kernel"
1624 This option allows for the kernel to be compiled using the latest
1625 ARM ABI (aka EABI). This is only useful if you are using a user
1626 space environment that is also compiled with EABI.
1628 Since there are major incompatibilities between the legacy ABI and
1629 EABI, especially with regard to structure member alignment, this
1630 option also changes the kernel syscall calling convention to
1631 disambiguate both ABIs and allow for backward compatibility support
1632 (selected with CONFIG_OABI_COMPAT).
1634 To use this you need GCC version 4.0.0 or later.
1637 bool "Allow old ABI binaries to run with this kernel (EXPERIMENTAL)"
1638 depends on AEABI && EXPERIMENTAL && !THUMB2_KERNEL
1641 This option preserves the old syscall interface along with the
1642 new (ARM EABI) one. It also provides a compatibility layer to
1643 intercept syscalls that have structure arguments which layout
1644 in memory differs between the legacy ABI and the new ARM EABI
1645 (only for non "thumb" binaries). This option adds a tiny
1646 overhead to all syscalls and produces a slightly larger kernel.
1647 If you know you'll be using only pure EABI user space then you
1648 can say N here. If this option is not selected and you attempt
1649 to execute a legacy ABI binary then the result will be
1650 UNPREDICTABLE (in fact it can be predicted that it won't work
1651 at all). If in doubt say Y.
1653 config ARCH_HAS_HOLES_MEMORYMODEL
1656 config ARCH_SPARSEMEM_ENABLE
1659 config ARCH_SPARSEMEM_DEFAULT
1660 def_bool ARCH_SPARSEMEM_ENABLE
1662 config ARCH_SELECT_MEMORY_MODEL
1663 def_bool ARCH_SPARSEMEM_ENABLE
1665 config HAVE_ARCH_PFN_VALID
1666 def_bool ARCH_HAS_HOLES_MEMORYMODEL || !SPARSEMEM
1669 bool "High Memory Support"
1672 The address space of ARM processors is only 4 Gigabytes large
1673 and it has to accommodate user address space, kernel address
1674 space as well as some memory mapped IO. That means that, if you
1675 have a large amount of physical memory and/or IO, not all of the
1676 memory can be "permanently mapped" by the kernel. The physical
1677 memory that is not permanently mapped is called "high memory".
1679 Depending on the selected kernel/user memory split, minimum
1680 vmalloc space and actual amount of RAM, you may not need this
1681 option which should result in a slightly faster kernel.
1686 bool "Allocate 2nd-level pagetables from highmem"
1689 config HW_PERF_EVENTS
1690 bool "Enable hardware performance counter support for perf events"
1691 depends on PERF_EVENTS && CPU_HAS_PMU
1694 Enable hardware performance counter support for perf events. If
1695 disabled, perf events will use software events only.
1699 config FORCE_MAX_ZONEORDER
1700 int "Maximum zone order" if ARCH_SHMOBILE
1701 range 11 64 if ARCH_SHMOBILE
1702 default "9" if SA1111
1705 The kernel memory allocator divides physically contiguous memory
1706 blocks into "zones", where each zone is a power of two number of
1707 pages. This option selects the largest power of two that the kernel
1708 keeps in the memory allocator. If you need to allocate very large
1709 blocks of physically contiguous memory, then you may need to
1710 increase this value.
1712 This config option is actually maximum order plus one. For example,
1713 a value of 11 means that the largest free memory block is 2^10 pages.
1716 bool "Timer and CPU usage LEDs"
1717 depends on ARCH_CDB89712 || ARCH_EBSA110 || \
1718 ARCH_EBSA285 || ARCH_INTEGRATOR || \
1719 ARCH_LUBBOCK || MACH_MAINSTONE || ARCH_NETWINDER || \
1720 ARCH_OMAP || ARCH_P720T || ARCH_PXA_IDP || \
1721 ARCH_SA1100 || ARCH_SHARK || ARCH_VERSATILE || \
1722 ARCH_AT91 || ARCH_DAVINCI || \
1723 ARCH_KS8695 || MACH_RD88F5182 || ARCH_REALVIEW
1725 If you say Y here, the LEDs on your machine will be used
1726 to provide useful information about your current system status.
1728 If you are compiling a kernel for a NetWinder or EBSA-285, you will
1729 be able to select which LEDs are active using the options below. If
1730 you are compiling a kernel for the EBSA-110 or the LART however, the
1731 red LED will simply flash regularly to indicate that the system is
1732 still functional. It is safe to say Y here if you have a CATS
1733 system, but the driver will do nothing.
1736 bool "Timer LED" if (!ARCH_CDB89712 && !ARCH_OMAP) || \
1737 OMAP_OSK_MISTRAL || MACH_OMAP_H2 \
1738 || MACH_OMAP_PERSEUS2
1740 depends on !GENERIC_CLOCKEVENTS
1741 default y if ARCH_EBSA110
1743 If you say Y here, one of the system LEDs (the green one on the
1744 NetWinder, the amber one on the EBSA285, or the red one on the LART)
1745 will flash regularly to indicate that the system is still
1746 operational. This is mainly useful to kernel hackers who are
1747 debugging unstable kernels.
1749 The LART uses the same LED for both Timer LED and CPU usage LED
1750 functions. You may choose to use both, but the Timer LED function
1751 will overrule the CPU usage LED.
1754 bool "CPU usage LED" if (!ARCH_CDB89712 && !ARCH_EBSA110 && \
1756 || OMAP_OSK_MISTRAL || MACH_OMAP_H2 \
1757 || MACH_OMAP_PERSEUS2
1760 If you say Y here, the red LED will be used to give a good real
1761 time indication of CPU usage, by lighting whenever the idle task
1762 is not currently executing.
1764 The LART uses the same LED for both Timer LED and CPU usage LED
1765 functions. You may choose to use both, but the Timer LED function
1766 will overrule the CPU usage LED.
1768 config ALIGNMENT_TRAP
1770 depends on CPU_CP15_MMU
1771 default y if !ARCH_EBSA110
1772 select HAVE_PROC_CPU if PROC_FS
1774 ARM processors cannot fetch/store information which is not
1775 naturally aligned on the bus, i.e., a 4 byte fetch must start at an
1776 address divisible by 4. On 32-bit ARM processors, these non-aligned
1777 fetch/store instructions will be emulated in software if you say
1778 here, which has a severe performance impact. This is necessary for
1779 correct operation of some network protocols. With an IP-only
1780 configuration it is safe to say N, otherwise say Y.
1782 config UACCESS_WITH_MEMCPY
1783 bool "Use kernel mem{cpy,set}() for {copy_to,clear}_user() (EXPERIMENTAL)"
1784 depends on MMU && EXPERIMENTAL
1785 default y if CPU_FEROCEON
1787 Implement faster copy_to_user and clear_user methods for CPU
1788 cores where a 8-word STM instruction give significantly higher
1789 memory write throughput than a sequence of individual 32bit stores.
1791 A possible side effect is a slight increase in scheduling latency
1792 between threads sharing the same address space if they invoke
1793 such copy operations with large buffers.
1795 However, if the CPU data cache is using a write-allocate mode,
1796 this option is unlikely to provide any performance gain.
1800 prompt "Enable seccomp to safely compute untrusted bytecode"
1802 This kernel feature is useful for number crunching applications
1803 that may need to compute untrusted bytecode during their
1804 execution. By using pipes or other transports made available to
1805 the process as file descriptors supporting the read/write
1806 syscalls, it's possible to isolate those applications in
1807 their own address space using seccomp. Once seccomp is
1808 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1809 and the task is only allowed to execute a few safe syscalls
1810 defined by each seccomp mode.
1812 config CC_STACKPROTECTOR
1813 bool "Enable -fstack-protector buffer overflow detection (EXPERIMENTAL)"
1814 depends on EXPERIMENTAL
1816 This option turns on the -fstack-protector GCC feature. This
1817 feature puts, at the beginning of functions, a canary value on
1818 the stack just before the return address, and validates
1819 the value just before actually returning. Stack based buffer
1820 overflows (that need to overwrite this return address) now also
1821 overwrite the canary, which gets detected and the attack is then
1822 neutralized via a kernel panic.
1823 This feature requires gcc version 4.2 or above.
1825 config DEPRECATED_PARAM_STRUCT
1826 bool "Provide old way to pass kernel parameters"
1828 This was deprecated in 2001 and announced to live on for 5 years.
1829 Some old boot loaders still use this way.
1836 bool "Flattened Device Tree support"
1838 select OF_EARLY_FLATTREE
1841 Include support for flattened device tree machine descriptions.
1843 # Compressed boot loader in ROM. Yes, we really want to ask about
1844 # TEXT and BSS so we preserve their values in the config files.
1845 config ZBOOT_ROM_TEXT
1846 hex "Compressed ROM boot loader base address"
1849 The physical address at which the ROM-able zImage is to be
1850 placed in the target. Platforms which normally make use of
1851 ROM-able zImage formats normally set this to a suitable
1852 value in their defconfig file.
1854 If ZBOOT_ROM is not enabled, this has no effect.
1856 config ZBOOT_ROM_BSS
1857 hex "Compressed ROM boot loader BSS address"
1860 The base address of an area of read/write memory in the target
1861 for the ROM-able zImage which must be available while the
1862 decompressor is running. It must be large enough to hold the
1863 entire decompressed kernel plus an additional 128 KiB.
1864 Platforms which normally make use of ROM-able zImage formats
1865 normally set this to a suitable value in their defconfig file.
1867 If ZBOOT_ROM is not enabled, this has no effect.
1870 bool "Compressed boot loader in ROM/flash"
1871 depends on ZBOOT_ROM_TEXT != ZBOOT_ROM_BSS
1873 Say Y here if you intend to execute your compressed kernel image
1874 (zImage) directly from ROM or flash. If unsure, say N.
1877 prompt "Include SD/MMC loader in zImage (EXPERIMENTAL)"
1878 depends on ZBOOT_ROM && ARCH_SH7372 && EXPERIMENTAL
1879 default ZBOOT_ROM_NONE
1881 Include experimental SD/MMC loading code in the ROM-able zImage.
1882 With this enabled it is possible to write the the ROM-able zImage
1883 kernel image to an MMC or SD card and boot the kernel straight
1884 from the reset vector. At reset the processor Mask ROM will load
1885 the first part of the the ROM-able zImage which in turn loads the
1886 rest the kernel image to RAM.
1888 config ZBOOT_ROM_NONE
1889 bool "No SD/MMC loader in zImage (EXPERIMENTAL)"
1891 Do not load image from SD or MMC
1893 config ZBOOT_ROM_MMCIF
1894 bool "Include MMCIF loader in zImage (EXPERIMENTAL)"
1896 Load image from MMCIF hardware block.
1898 config ZBOOT_ROM_SH_MOBILE_SDHI
1899 bool "Include SuperH Mobile SDHI loader in zImage (EXPERIMENTAL)"
1901 Load image from SDHI hardware block
1905 config ARM_APPENDED_DTB
1906 bool "Use appended device tree blob to zImage (EXPERIMENTAL)"
1907 depends on OF && !ZBOOT_ROM && EXPERIMENTAL
1909 With this option, the boot code will look for a device tree binary
1910 (DTB) appended to zImage
1911 (e.g. cat zImage <filename>.dtb > zImage_w_dtb).
1913 This is meant as a backward compatibility convenience for those
1914 systems with a bootloader that can't be upgraded to accommodate
1915 the documented boot protocol using a device tree.
1917 Beware that there is very little in terms of protection against
1918 this option being confused by leftover garbage in memory that might
1919 look like a DTB header after a reboot if no actual DTB is appended
1920 to zImage. Do not leave this option active in a production kernel
1921 if you don't intend to always append a DTB. Proper passing of the
1922 location into r2 of a bootloader provided DTB is always preferable
1925 config ARM_ATAG_DTB_COMPAT
1926 bool "Supplement the appended DTB with traditional ATAG information"
1927 depends on ARM_APPENDED_DTB
1929 Some old bootloaders can't be updated to a DTB capable one, yet
1930 they provide ATAGs with memory configuration, the ramdisk address,
1931 the kernel cmdline string, etc. Such information is dynamically
1932 provided by the bootloader and can't always be stored in a static
1933 DTB. To allow a device tree enabled kernel to be used with such
1934 bootloaders, this option allows zImage to extract the information
1935 from the ATAG list and store it at run time into the appended DTB.
1938 string "Default kernel command string"
1941 On some architectures (EBSA110 and CATS), there is currently no way
1942 for the boot loader to pass arguments to the kernel. For these
1943 architectures, you should supply some command-line options at build
1944 time by entering them here. As a minimum, you should specify the
1945 memory size and the root device (e.g., mem=64M root=/dev/nfs).
1948 prompt "Kernel command line type" if CMDLINE != ""
1949 default CMDLINE_FROM_BOOTLOADER
1951 config CMDLINE_FROM_BOOTLOADER
1952 bool "Use bootloader kernel arguments if available"
1954 Uses the command-line options passed by the boot loader. If
1955 the boot loader doesn't provide any, the default kernel command
1956 string provided in CMDLINE will be used.
1958 config CMDLINE_EXTEND
1959 bool "Extend bootloader kernel arguments"
1961 The command-line arguments provided by the boot loader will be
1962 appended to the default kernel command string.
1964 config CMDLINE_FORCE
1965 bool "Always use the default kernel command string"
1967 Always use the default kernel command string, even if the boot
1968 loader passes other arguments to the kernel.
1969 This is useful if you cannot or don't want to change the
1970 command-line options your boot loader passes to the kernel.
1974 bool "Kernel Execute-In-Place from ROM"
1975 depends on !ZBOOT_ROM
1977 Execute-In-Place allows the kernel to run from non-volatile storage
1978 directly addressable by the CPU, such as NOR flash. This saves RAM
1979 space since the text section of the kernel is not loaded from flash
1980 to RAM. Read-write sections, such as the data section and stack,
1981 are still copied to RAM. The XIP kernel is not compressed since
1982 it has to run directly from flash, so it will take more space to
1983 store it. The flash address used to link the kernel object files,
1984 and for storing it, is configuration dependent. Therefore, if you
1985 say Y here, you must know the proper physical address where to
1986 store the kernel image depending on your own flash memory usage.
1988 Also note that the make target becomes "make xipImage" rather than
1989 "make zImage" or "make Image". The final kernel binary to put in
1990 ROM memory will be arch/arm/boot/xipImage.
1994 config XIP_PHYS_ADDR
1995 hex "XIP Kernel Physical Location"
1996 depends on XIP_KERNEL
1997 default "0x00080000"
1999 This is the physical address in your flash memory the kernel will
2000 be linked for and stored to. This address is dependent on your
2004 bool "Kexec system call (EXPERIMENTAL)"
2005 depends on EXPERIMENTAL
2007 kexec is a system call that implements the ability to shutdown your
2008 current kernel, and to start another kernel. It is like a reboot
2009 but it is independent of the system firmware. And like a reboot
2010 you can start any kernel with it, not just Linux.
2012 It is an ongoing process to be certain the hardware in a machine
2013 is properly shutdown, so do not be surprised if this code does not
2014 initially work for you. It may help to enable device hotplugging
2018 bool "Export atags in procfs"
2022 Should the atags used to boot the kernel be exported in an "atags"
2023 file in procfs. Useful with kexec.
2026 bool "Build kdump crash kernel (EXPERIMENTAL)"
2027 depends on EXPERIMENTAL
2029 Generate crash dump after being started by kexec. This should
2030 be normally only set in special crash dump kernels which are
2031 loaded in the main kernel with kexec-tools into a specially
2032 reserved region and then later executed after a crash by
2033 kdump/kexec. The crash dump kernel must be compiled to a
2034 memory address not used by the main kernel
2036 For more details see Documentation/kdump/kdump.txt
2038 config AUTO_ZRELADDR
2039 bool "Auto calculation of the decompressed kernel image address"
2040 depends on !ZBOOT_ROM && !ARCH_U300
2042 ZRELADDR is the physical address where the decompressed kernel
2043 image will be placed. If AUTO_ZRELADDR is selected, the address
2044 will be determined at run-time by masking the current IP with
2045 0xf8000000. This assumes the zImage being placed in the first 128MB
2046 from start of memory.
2050 menu "CPU Power Management"
2054 source "drivers/cpufreq/Kconfig"
2057 tristate "CPUfreq driver for i.MX CPUs"
2058 depends on ARCH_MXC && CPU_FREQ
2060 This enables the CPUfreq driver for i.MX CPUs.
2062 config CPU_FREQ_SA1100
2065 config CPU_FREQ_SA1110
2068 config CPU_FREQ_INTEGRATOR
2069 tristate "CPUfreq driver for ARM Integrator CPUs"
2070 depends on ARCH_INTEGRATOR && CPU_FREQ
2073 This enables the CPUfreq driver for ARM Integrator CPUs.
2075 For details, take a look at <file:Documentation/cpu-freq>.
2081 depends on CPU_FREQ && ARCH_PXA && PXA25x
2083 select CPU_FREQ_TABLE
2084 select CPU_FREQ_DEFAULT_GOV_USERSPACE
2089 Internal configuration node for common cpufreq on Samsung SoC
2091 config CPU_FREQ_S3C24XX
2092 bool "CPUfreq driver for Samsung S3C24XX series CPUs (EXPERIMENTAL)"
2093 depends on ARCH_S3C2410 && CPU_FREQ && EXPERIMENTAL
2096 This enables the CPUfreq driver for the Samsung S3C24XX family
2099 For details, take a look at <file:Documentation/cpu-freq>.
2103 config CPU_FREQ_S3C24XX_PLL
2104 bool "Support CPUfreq changing of PLL frequency (EXPERIMENTAL)"
2105 depends on CPU_FREQ_S3C24XX && EXPERIMENTAL
2107 Compile in support for changing the PLL frequency from the
2108 S3C24XX series CPUfreq driver. The PLL takes time to settle
2109 after a frequency change, so by default it is not enabled.
2111 This also means that the PLL tables for the selected CPU(s) will
2112 be built which may increase the size of the kernel image.
2114 config CPU_FREQ_S3C24XX_DEBUG
2115 bool "Debug CPUfreq Samsung driver core"
2116 depends on CPU_FREQ_S3C24XX
2118 Enable s3c_freq_dbg for the Samsung S3C CPUfreq core
2120 config CPU_FREQ_S3C24XX_IODEBUG
2121 bool "Debug CPUfreq Samsung driver IO timing"
2122 depends on CPU_FREQ_S3C24XX
2124 Enable s3c_freq_iodbg for the Samsung S3C CPUfreq core
2126 config CPU_FREQ_S3C24XX_DEBUGFS
2127 bool "Export debugfs for CPUFreq"
2128 depends on CPU_FREQ_S3C24XX && DEBUG_FS
2130 Export status information via debugfs.
2134 source "drivers/cpuidle/Kconfig"
2138 menu "Floating point emulation"
2140 comment "At least one emulation must be selected"
2143 bool "NWFPE math emulation"
2144 depends on (!AEABI || OABI_COMPAT) && !THUMB2_KERNEL
2146 Say Y to include the NWFPE floating point emulator in the kernel.
2147 This is necessary to run most binaries. Linux does not currently
2148 support floating point hardware so you need to say Y here even if
2149 your machine has an FPA or floating point co-processor podule.
2151 You may say N here if you are going to load the Acorn FPEmulator
2152 early in the bootup.
2155 bool "Support extended precision"
2156 depends on FPE_NWFPE
2158 Say Y to include 80-bit support in the kernel floating-point
2159 emulator. Otherwise, only 32 and 64-bit support is compiled in.
2160 Note that gcc does not generate 80-bit operations by default,
2161 so in most cases this option only enlarges the size of the
2162 floating point emulator without any good reason.
2164 You almost surely want to say N here.
2167 bool "FastFPE math emulation (EXPERIMENTAL)"
2168 depends on (!AEABI || OABI_COMPAT) && !CPU_32v3 && EXPERIMENTAL
2170 Say Y here to include the FAST floating point emulator in the kernel.
2171 This is an experimental much faster emulator which now also has full
2172 precision for the mantissa. It does not support any exceptions.
2173 It is very simple, and approximately 3-6 times faster than NWFPE.
2175 It should be sufficient for most programs. It may be not suitable
2176 for scientific calculations, but you have to check this for yourself.
2177 If you do not feel you need a faster FP emulation you should better
2181 bool "VFP-format floating point maths"
2182 depends on CPU_V6 || CPU_V6K || CPU_ARM926T || CPU_V7 || CPU_FEROCEON
2184 Say Y to include VFP support code in the kernel. This is needed
2185 if your hardware includes a VFP unit.
2187 Please see <file:Documentation/arm/VFP/release-notes.txt> for
2188 release notes and additional status information.
2190 Say N if your target does not have VFP hardware.
2198 bool "Advanced SIMD (NEON) Extension support"
2199 depends on VFPv3 && CPU_V7
2201 Say Y to include support code for NEON, the ARMv7 Advanced SIMD
2206 menu "Userspace binary formats"
2208 source "fs/Kconfig.binfmt"
2211 tristate "RISC OS personality"
2214 Say Y here to include the kernel code necessary if you want to run
2215 Acorn RISC OS/Arthur binaries under Linux. This code is still very
2216 experimental; if this sounds frightening, say N and sleep in peace.
2217 You can also say M here to compile this support as a module (which
2218 will be called arthur).
2222 menu "Power management options"
2224 source "kernel/power/Kconfig"
2226 config ARCH_SUSPEND_POSSIBLE
2227 depends on !ARCH_S5PC100
2228 depends on CPU_ARM920T || CPU_ARM926T || CPU_SA1100 || \
2229 CPU_V6 || CPU_V6K || CPU_V7 || CPU_XSC3 || CPU_XSCALE
2232 config ARM_CPU_SUSPEND
2237 source "net/Kconfig"
2239 source "drivers/Kconfig"
2243 source "arch/arm/Kconfig.debug"
2245 source "security/Kconfig"
2247 source "crypto/Kconfig"
2249 source "lib/Kconfig"