tools/firewire: nosy-dump: change to kernel coding style
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / trace / trace_workqueue.c
blobcc2d2faa7d9e037734f1e4c11e87418c4a3a5400
1 /*
2 * Workqueue statistical tracer.
4 * Copyright (C) 2008 Frederic Weisbecker <fweisbec@gmail.com>
6 */
9 #include <trace/events/workqueue.h>
10 #include <linux/list.h>
11 #include <linux/percpu.h>
12 #include <linux/slab.h>
13 #include <linux/kref.h>
14 #include "trace_stat.h"
15 #include "trace.h"
18 /* A cpu workqueue thread */
19 struct cpu_workqueue_stats {
20 struct list_head list;
21 struct kref kref;
22 int cpu;
23 pid_t pid;
24 /* Can be inserted from interrupt or user context, need to be atomic */
25 atomic_t inserted;
27 * Don't need to be atomic, works are serialized in a single workqueue thread
28 * on a single CPU.
30 unsigned int executed;
33 /* List of workqueue threads on one cpu */
34 struct workqueue_global_stats {
35 struct list_head list;
36 spinlock_t lock;
39 /* Don't need a global lock because allocated before the workqueues, and
40 * never freed.
42 static DEFINE_PER_CPU(struct workqueue_global_stats, all_workqueue_stat);
43 #define workqueue_cpu_stat(cpu) (&per_cpu(all_workqueue_stat, cpu))
45 static void cpu_workqueue_stat_free(struct kref *kref)
47 kfree(container_of(kref, struct cpu_workqueue_stats, kref));
50 /* Insertion of a work */
51 static void
52 probe_workqueue_insertion(struct task_struct *wq_thread,
53 struct work_struct *work)
55 int cpu = cpumask_first(&wq_thread->cpus_allowed);
56 struct cpu_workqueue_stats *node;
57 unsigned long flags;
59 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
60 list_for_each_entry(node, &workqueue_cpu_stat(cpu)->list, list) {
61 if (node->pid == wq_thread->pid) {
62 atomic_inc(&node->inserted);
63 goto found;
66 pr_debug("trace_workqueue: entry not found\n");
67 found:
68 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
71 /* Execution of a work */
72 static void
73 probe_workqueue_execution(struct task_struct *wq_thread,
74 struct work_struct *work)
76 int cpu = cpumask_first(&wq_thread->cpus_allowed);
77 struct cpu_workqueue_stats *node;
78 unsigned long flags;
80 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
81 list_for_each_entry(node, &workqueue_cpu_stat(cpu)->list, list) {
82 if (node->pid == wq_thread->pid) {
83 node->executed++;
84 goto found;
87 pr_debug("trace_workqueue: entry not found\n");
88 found:
89 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
92 /* Creation of a cpu workqueue thread */
93 static void probe_workqueue_creation(struct task_struct *wq_thread, int cpu)
95 struct cpu_workqueue_stats *cws;
96 unsigned long flags;
98 WARN_ON(cpu < 0);
100 /* Workqueues are sometimes created in atomic context */
101 cws = kzalloc(sizeof(struct cpu_workqueue_stats), GFP_ATOMIC);
102 if (!cws) {
103 pr_warning("trace_workqueue: not enough memory\n");
104 return;
106 INIT_LIST_HEAD(&cws->list);
107 kref_init(&cws->kref);
108 cws->cpu = cpu;
109 cws->pid = wq_thread->pid;
111 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
112 list_add_tail(&cws->list, &workqueue_cpu_stat(cpu)->list);
113 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
116 /* Destruction of a cpu workqueue thread */
117 static void probe_workqueue_destruction(struct task_struct *wq_thread)
119 /* Workqueue only execute on one cpu */
120 int cpu = cpumask_first(&wq_thread->cpus_allowed);
121 struct cpu_workqueue_stats *node, *next;
122 unsigned long flags;
124 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
125 list_for_each_entry_safe(node, next, &workqueue_cpu_stat(cpu)->list,
126 list) {
127 if (node->pid == wq_thread->pid) {
128 list_del(&node->list);
129 kref_put(&node->kref, cpu_workqueue_stat_free);
130 goto found;
134 pr_debug("trace_workqueue: don't find workqueue to destroy\n");
135 found:
136 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
140 static struct cpu_workqueue_stats *workqueue_stat_start_cpu(int cpu)
142 unsigned long flags;
143 struct cpu_workqueue_stats *ret = NULL;
146 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
148 if (!list_empty(&workqueue_cpu_stat(cpu)->list)) {
149 ret = list_entry(workqueue_cpu_stat(cpu)->list.next,
150 struct cpu_workqueue_stats, list);
151 kref_get(&ret->kref);
154 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
156 return ret;
159 static void *workqueue_stat_start(struct tracer_stat *trace)
161 int cpu;
162 void *ret = NULL;
164 for_each_possible_cpu(cpu) {
165 ret = workqueue_stat_start_cpu(cpu);
166 if (ret)
167 return ret;
169 return NULL;
172 static void *workqueue_stat_next(void *prev, int idx)
174 struct cpu_workqueue_stats *prev_cws = prev;
175 struct cpu_workqueue_stats *ret;
176 int cpu = prev_cws->cpu;
177 unsigned long flags;
179 spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
180 if (list_is_last(&prev_cws->list, &workqueue_cpu_stat(cpu)->list)) {
181 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
182 do {
183 cpu = cpumask_next(cpu, cpu_possible_mask);
184 if (cpu >= nr_cpu_ids)
185 return NULL;
186 } while (!(ret = workqueue_stat_start_cpu(cpu)));
187 return ret;
188 } else {
189 ret = list_entry(prev_cws->list.next,
190 struct cpu_workqueue_stats, list);
191 kref_get(&ret->kref);
193 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
195 return ret;
198 static int workqueue_stat_show(struct seq_file *s, void *p)
200 struct cpu_workqueue_stats *cws = p;
201 struct pid *pid;
202 struct task_struct *tsk;
204 pid = find_get_pid(cws->pid);
205 if (pid) {
206 tsk = get_pid_task(pid, PIDTYPE_PID);
207 if (tsk) {
208 seq_printf(s, "%3d %6d %6u %s\n", cws->cpu,
209 atomic_read(&cws->inserted), cws->executed,
210 tsk->comm);
211 put_task_struct(tsk);
213 put_pid(pid);
216 return 0;
219 static void workqueue_stat_release(void *stat)
221 struct cpu_workqueue_stats *node = stat;
223 kref_put(&node->kref, cpu_workqueue_stat_free);
226 static int workqueue_stat_headers(struct seq_file *s)
228 seq_printf(s, "# CPU INSERTED EXECUTED NAME\n");
229 seq_printf(s, "# | | | |\n");
230 return 0;
233 struct tracer_stat workqueue_stats __read_mostly = {
234 .name = "workqueues",
235 .stat_start = workqueue_stat_start,
236 .stat_next = workqueue_stat_next,
237 .stat_show = workqueue_stat_show,
238 .stat_release = workqueue_stat_release,
239 .stat_headers = workqueue_stat_headers
243 int __init stat_workqueue_init(void)
245 if (register_stat_tracer(&workqueue_stats)) {
246 pr_warning("Unable to register workqueue stat tracer\n");
247 return 1;
250 return 0;
252 fs_initcall(stat_workqueue_init);
255 * Workqueues are created very early, just after pre-smp initcalls.
256 * So we must register our tracepoints at this stage.
258 int __init trace_workqueue_early_init(void)
260 int ret, cpu;
262 ret = register_trace_workqueue_insertion(probe_workqueue_insertion);
263 if (ret)
264 goto out;
266 ret = register_trace_workqueue_execution(probe_workqueue_execution);
267 if (ret)
268 goto no_insertion;
270 ret = register_trace_workqueue_creation(probe_workqueue_creation);
271 if (ret)
272 goto no_execution;
274 ret = register_trace_workqueue_destruction(probe_workqueue_destruction);
275 if (ret)
276 goto no_creation;
278 for_each_possible_cpu(cpu) {
279 spin_lock_init(&workqueue_cpu_stat(cpu)->lock);
280 INIT_LIST_HEAD(&workqueue_cpu_stat(cpu)->list);
283 return 0;
285 no_creation:
286 unregister_trace_workqueue_creation(probe_workqueue_creation);
287 no_execution:
288 unregister_trace_workqueue_execution(probe_workqueue_execution);
289 no_insertion:
290 unregister_trace_workqueue_insertion(probe_workqueue_insertion);
291 out:
292 pr_warning("trace_workqueue: unable to trace workqueues\n");
294 return 1;
296 early_initcall(trace_workqueue_early_init);