4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy
)
127 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
132 static inline int task_has_rt_policy(struct task_struct
*p
)
134 return rt_policy(p
->policy
);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array
{
141 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
142 struct list_head queue
[MAX_RT_PRIO
];
145 struct rt_bandwidth
{
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock
;
150 struct hrtimer rt_period_timer
;
153 static struct rt_bandwidth def_rt_bandwidth
;
155 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
157 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
159 struct rt_bandwidth
*rt_b
=
160 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
166 now
= hrtimer_cb_get_time(timer
);
167 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
172 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
175 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
179 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
181 rt_b
->rt_period
= ns_to_ktime(period
);
182 rt_b
->rt_runtime
= runtime
;
184 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
186 hrtimer_init(&rt_b
->rt_period_timer
,
187 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
188 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime
>= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
200 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
203 if (hrtimer_active(&rt_b
->rt_period_timer
))
206 raw_spin_lock(&rt_b
->rt_runtime_lock
);
211 if (hrtimer_active(&rt_b
->rt_period_timer
))
214 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
215 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
217 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
218 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
219 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
220 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
221 HRTIMER_MODE_ABS_PINNED
, 0);
223 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
229 hrtimer_cancel(&rt_b
->rt_period_timer
);
234 * sched_domains_mutex serializes calls to init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex
);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
245 static LIST_HEAD(task_groups
);
247 /* task group related information */
249 struct cgroup_subsys_state css
;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity
**se
;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq
**cfs_rq
;
256 unsigned long shares
;
258 atomic_t load_weight
;
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity
**rt_se
;
263 struct rt_rq
**rt_rq
;
265 struct rt_bandwidth rt_bandwidth
;
269 struct list_head list
;
271 struct task_group
*parent
;
272 struct list_head siblings
;
273 struct list_head children
;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup
*autogroup
;
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock
);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
296 #define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION))
298 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group
;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
310 struct load_weight load
;
311 unsigned long nr_running
;
316 u64 min_vruntime_copy
;
319 struct rb_root tasks_timeline
;
320 struct rb_node
*rb_leftmost
;
322 struct list_head tasks
;
323 struct list_head
*balance_iterator
;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity
*curr
, *next
, *last
, *skip
;
331 #ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over
;
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
347 struct list_head leaf_cfs_rq_list
;
348 struct task_group
*tg
; /* group that "owns" this runqueue */
352 * the part of load.weight contributed by tasks
354 unsigned long task_weight
;
357 * h_load = weight * f(tg)
359 * Where f(tg) is the recursive weight fraction assigned to
362 unsigned long h_load
;
365 * Maintaining per-cpu shares distribution for group scheduling
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
373 u64 load_stamp
, load_last
, load_unacc_exec_time
;
375 unsigned long load_contribution
;
380 /* Real-Time classes' related field in a runqueue: */
382 struct rt_prio_array active
;
383 unsigned long rt_nr_running
;
384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
386 int curr
; /* highest queued rt task prio */
388 int next
; /* next highest */
393 unsigned long rt_nr_migratory
;
394 unsigned long rt_nr_total
;
396 struct plist_head pushable_tasks
;
401 /* Nests inside the rq lock: */
402 raw_spinlock_t rt_runtime_lock
;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 unsigned long rt_nr_boosted
;
408 struct list_head leaf_rt_rq_list
;
409 struct task_group
*tg
;
416 * We add the notion of a root-domain which will be used to define per-domain
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
419 * exclusive cpuset is created, we also create and attach a new root-domain
427 cpumask_var_t online
;
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
433 cpumask_var_t rto_mask
;
435 struct cpupri cpupri
;
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
442 static struct root_domain def_root_domain
;
444 #endif /* CONFIG_SMP */
447 * This is the main, per-CPU runqueue data structure.
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
461 unsigned long nr_running
;
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
464 unsigned long last_load_update_tick
;
467 unsigned char nohz_balance_kick
;
469 int skip_clock_update
;
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load
;
473 unsigned long nr_load_updates
;
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list
;
483 #ifdef CONFIG_RT_GROUP_SCHED
484 struct list_head leaf_rt_rq_list
;
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
493 unsigned long nr_uninterruptible
;
495 struct task_struct
*curr
, *idle
, *stop
;
496 unsigned long next_balance
;
497 struct mm_struct
*prev_mm
;
505 struct root_domain
*rd
;
506 struct sched_domain
*sd
;
508 unsigned long cpu_power
;
510 unsigned char idle_at_tick
;
511 /* For active balancing */
515 struct cpu_stop_work active_balance_work
;
516 /* cpu of this runqueue: */
520 unsigned long avg_load_per_task
;
528 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
532 /* calc_load related fields */
533 unsigned long calc_load_update
;
534 long calc_load_active
;
536 #ifdef CONFIG_SCHED_HRTICK
538 int hrtick_csd_pending
;
539 struct call_single_data hrtick_csd
;
541 struct hrtimer hrtick_timer
;
544 #ifdef CONFIG_SCHEDSTATS
546 struct sched_info rq_sched_info
;
547 unsigned long long rq_cpu_time
;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
550 /* sys_sched_yield() stats */
551 unsigned int yld_count
;
553 /* schedule() stats */
554 unsigned int sched_switch
;
555 unsigned int sched_count
;
556 unsigned int sched_goidle
;
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count
;
560 unsigned int ttwu_local
;
564 struct task_struct
*wake_list
;
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
571 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
573 static inline int cpu_of(struct rq
*rq
)
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_held() || \
585 lockdep_is_held(&sched_domains_mutex))
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
603 #ifdef CONFIG_CGROUP_SCHED
606 * Return the group to which this tasks belongs.
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
613 static inline struct task_group
*task_group(struct task_struct
*p
)
615 struct task_group
*tg
;
616 struct cgroup_subsys_state
*css
;
618 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
619 lockdep_is_held(&p
->pi_lock
));
620 tg
= container_of(css
, struct task_group
, css
);
622 return autogroup_task_group(p
, tg
);
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
630 p
->se
.parent
= task_group(p
)->se
[cpu
];
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
635 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
639 #else /* CONFIG_CGROUP_SCHED */
641 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
642 static inline struct task_group
*task_group(struct task_struct
*p
)
647 #endif /* CONFIG_CGROUP_SCHED */
649 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
651 static void update_rq_clock(struct rq
*rq
)
655 if (rq
->skip_clock_update
> 0)
658 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
660 update_rq_clock_task(rq
, delta
);
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
666 #ifdef CONFIG_SCHED_DEBUG
667 # define const_debug __read_mostly
669 # define const_debug static const
673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
674 * @cpu: the processor in question.
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
679 int runqueue_is_locked(int cpu
)
681 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
685 * Debugging: various feature bits
688 #define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
692 #include "sched_features.h"
697 #define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
700 const_debug
unsigned int sysctl_sched_features
=
701 #include "sched_features.h"
706 #ifdef CONFIG_SCHED_DEBUG
707 #define SCHED_FEAT(name, enabled) \
710 static __read_mostly
char *sched_feat_names
[] = {
711 #include "sched_features.h"
717 static int sched_feat_show(struct seq_file
*m
, void *v
)
721 for (i
= 0; sched_feat_names
[i
]; i
++) {
722 if (!(sysctl_sched_features
& (1UL << i
)))
724 seq_printf(m
, "%s ", sched_feat_names
[i
]);
732 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
733 size_t cnt
, loff_t
*ppos
)
743 if (copy_from_user(&buf
, ubuf
, cnt
))
749 if (strncmp(cmp
, "NO_", 3) == 0) {
754 for (i
= 0; sched_feat_names
[i
]; i
++) {
755 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
757 sysctl_sched_features
&= ~(1UL << i
);
759 sysctl_sched_features
|= (1UL << i
);
764 if (!sched_feat_names
[i
])
772 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
774 return single_open(filp
, sched_feat_show
, NULL
);
777 static const struct file_operations sched_feat_fops
= {
778 .open
= sched_feat_open
,
779 .write
= sched_feat_write
,
782 .release
= single_release
,
785 static __init
int sched_init_debug(void)
787 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
792 late_initcall(sched_init_debug
);
796 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
802 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
805 * period over which we average the RT time consumption, measured
810 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
813 * period over which we measure -rt task cpu usage in us.
816 unsigned int sysctl_sched_rt_period
= 1000000;
818 static __read_mostly
int scheduler_running
;
821 * part of the period that we allow rt tasks to run in us.
824 int sysctl_sched_rt_runtime
= 950000;
826 static inline u64
global_rt_period(void)
828 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
831 static inline u64
global_rt_runtime(void)
833 if (sysctl_sched_rt_runtime
< 0)
836 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
839 #ifndef prepare_arch_switch
840 # define prepare_arch_switch(next) do { } while (0)
842 #ifndef finish_arch_switch
843 # define finish_arch_switch(prev) do { } while (0)
846 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
848 return rq
->curr
== p
;
851 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
856 return task_current(rq
, p
);
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
873 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq
->lock
.owner
= current
;
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
893 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
895 raw_spin_unlock_irq(&rq
->lock
);
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
909 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 raw_spin_unlock_irq(&rq
->lock
);
912 raw_spin_unlock(&rq
->lock
);
916 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
927 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
934 * __task_rq_lock - lock the rq @p resides on.
936 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
941 lockdep_assert_held(&p
->pi_lock
);
945 raw_spin_lock(&rq
->lock
);
946 if (likely(rq
== task_rq(p
)))
948 raw_spin_unlock(&rq
->lock
);
953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
955 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
956 __acquires(p
->pi_lock
)
962 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
964 raw_spin_lock(&rq
->lock
);
965 if (likely(rq
== task_rq(p
)))
967 raw_spin_unlock(&rq
->lock
);
968 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
972 static void __task_rq_unlock(struct rq
*rq
)
975 raw_spin_unlock(&rq
->lock
);
979 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
981 __releases(p
->pi_lock
)
983 raw_spin_unlock(&rq
->lock
);
984 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq
*this_rq_lock(void)
997 raw_spin_lock(&rq
->lock
);
1002 #ifdef CONFIG_SCHED_HRTICK
1004 * Use HR-timers to deliver accurate preemption points.
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * - enabled by features
1017 * - hrtimer is actually high res
1019 static inline int hrtick_enabled(struct rq
*rq
)
1021 if (!sched_feat(HRTICK
))
1023 if (!cpu_active(cpu_of(rq
)))
1025 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1028 static void hrtick_clear(struct rq
*rq
)
1030 if (hrtimer_active(&rq
->hrtick_timer
))
1031 hrtimer_cancel(&rq
->hrtick_timer
);
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1038 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1040 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1042 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1044 raw_spin_lock(&rq
->lock
);
1045 update_rq_clock(rq
);
1046 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1047 raw_spin_unlock(&rq
->lock
);
1049 return HRTIMER_NORESTART
;
1054 * called from hardirq (IPI) context
1056 static void __hrtick_start(void *arg
)
1058 struct rq
*rq
= arg
;
1060 raw_spin_lock(&rq
->lock
);
1061 hrtimer_restart(&rq
->hrtick_timer
);
1062 rq
->hrtick_csd_pending
= 0;
1063 raw_spin_unlock(&rq
->lock
);
1067 * Called to set the hrtick timer state.
1069 * called with rq->lock held and irqs disabled
1071 static void hrtick_start(struct rq
*rq
, u64 delay
)
1073 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1074 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1076 hrtimer_set_expires(timer
, time
);
1078 if (rq
== this_rq()) {
1079 hrtimer_restart(timer
);
1080 } else if (!rq
->hrtick_csd_pending
) {
1081 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1082 rq
->hrtick_csd_pending
= 1;
1087 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1089 int cpu
= (int)(long)hcpu
;
1092 case CPU_UP_CANCELED
:
1093 case CPU_UP_CANCELED_FROZEN
:
1094 case CPU_DOWN_PREPARE
:
1095 case CPU_DOWN_PREPARE_FROZEN
:
1097 case CPU_DEAD_FROZEN
:
1098 hrtick_clear(cpu_rq(cpu
));
1105 static __init
void init_hrtick(void)
1107 hotcpu_notifier(hotplug_hrtick
, 0);
1111 * Called to set the hrtick timer state.
1113 * called with rq->lock held and irqs disabled
1115 static void hrtick_start(struct rq
*rq
, u64 delay
)
1117 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1118 HRTIMER_MODE_REL_PINNED
, 0);
1121 static inline void init_hrtick(void)
1124 #endif /* CONFIG_SMP */
1126 static void init_rq_hrtick(struct rq
*rq
)
1129 rq
->hrtick_csd_pending
= 0;
1131 rq
->hrtick_csd
.flags
= 0;
1132 rq
->hrtick_csd
.func
= __hrtick_start
;
1133 rq
->hrtick_csd
.info
= rq
;
1136 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1137 rq
->hrtick_timer
.function
= hrtick
;
1139 #else /* CONFIG_SCHED_HRTICK */
1140 static inline void hrtick_clear(struct rq
*rq
)
1144 static inline void init_rq_hrtick(struct rq
*rq
)
1148 static inline void init_hrtick(void)
1151 #endif /* CONFIG_SCHED_HRTICK */
1154 * resched_task - mark a task 'to be rescheduled now'.
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1162 #ifndef tsk_is_polling
1163 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1166 static void resched_task(struct task_struct
*p
)
1170 assert_raw_spin_locked(&task_rq(p
)->lock
);
1172 if (test_tsk_need_resched(p
))
1175 set_tsk_need_resched(p
);
1178 if (cpu
== smp_processor_id())
1181 /* NEED_RESCHED must be visible before we test polling */
1183 if (!tsk_is_polling(p
))
1184 smp_send_reschedule(cpu
);
1187 static void resched_cpu(int cpu
)
1189 struct rq
*rq
= cpu_rq(cpu
);
1190 unsigned long flags
;
1192 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1194 resched_task(cpu_curr(cpu
));
1195 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1207 int get_nohz_timer_target(void)
1209 int cpu
= smp_processor_id();
1211 struct sched_domain
*sd
;
1214 for_each_domain(cpu
, sd
) {
1215 for_each_cpu(i
, sched_domain_span(sd
)) {
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1236 void wake_up_idle_cpu(int cpu
)
1238 struct rq
*rq
= cpu_rq(cpu
);
1240 if (cpu
== smp_processor_id())
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1250 if (rq
->curr
!= rq
->idle
)
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1258 set_tsk_need_resched(rq
->idle
);
1260 /* NEED_RESCHED must be visible before we test polling */
1262 if (!tsk_is_polling(rq
->idle
))
1263 smp_send_reschedule(cpu
);
1266 #endif /* CONFIG_NO_HZ */
1268 static u64
sched_avg_period(void)
1270 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1273 static void sched_avg_update(struct rq
*rq
)
1275 s64 period
= sched_avg_period();
1277 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1283 asm("" : "+rm" (rq
->age_stamp
));
1284 rq
->age_stamp
+= period
;
1289 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1291 rq
->rt_avg
+= rt_delta
;
1292 sched_avg_update(rq
);
1295 #else /* !CONFIG_SMP */
1296 static void resched_task(struct task_struct
*p
)
1298 assert_raw_spin_locked(&task_rq(p
)->lock
);
1299 set_tsk_need_resched(p
);
1302 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1306 static void sched_avg_update(struct rq
*rq
)
1309 #endif /* CONFIG_SMP */
1311 #if BITS_PER_LONG == 32
1312 # define WMULT_CONST (~0UL)
1314 # define WMULT_CONST (1UL << 32)
1317 #define WMULT_SHIFT 32
1320 * Shift right and round:
1322 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1325 * delta *= weight / lw
1327 static unsigned long
1328 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1329 struct load_weight
*lw
)
1334 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1335 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1336 * 2^SCHED_LOAD_RESOLUTION.
1338 if (likely(weight
> (1UL << SCHED_LOAD_RESOLUTION
)))
1339 tmp
= (u64
)delta_exec
* scale_load_down(weight
);
1341 tmp
= (u64
)delta_exec
;
1343 if (!lw
->inv_weight
) {
1344 unsigned long w
= scale_load_down(lw
->weight
);
1346 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
1348 else if (unlikely(!w
))
1349 lw
->inv_weight
= WMULT_CONST
;
1351 lw
->inv_weight
= WMULT_CONST
/ w
;
1355 * Check whether we'd overflow the 64-bit multiplication:
1357 if (unlikely(tmp
> WMULT_CONST
))
1358 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1361 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1363 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1366 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1372 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1378 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389 * scaled version of the new time slice allocation that they receive on time
1393 #define WEIGHT_IDLEPRIO 3
1394 #define WMULT_IDLEPRIO 1431655765
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
1408 static const int prio_to_weight
[40] = {
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1426 static const u32 prio_to_wmult
[40] = {
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1437 /* Time spent by the tasks of the cpu accounting group executing in ... */
1438 enum cpuacct_stat_index
{
1439 CPUACCT_STAT_USER
, /* ... user mode */
1440 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1442 CPUACCT_STAT_NSTATS
,
1445 #ifdef CONFIG_CGROUP_CPUACCT
1446 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1447 static void cpuacct_update_stats(struct task_struct
*tsk
,
1448 enum cpuacct_stat_index idx
, cputime_t val
);
1450 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1451 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1452 enum cpuacct_stat_index idx
, cputime_t val
) {}
1455 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1457 update_load_add(&rq
->load
, load
);
1460 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1462 update_load_sub(&rq
->load
, load
);
1465 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1466 typedef int (*tg_visitor
)(struct task_group
*, void *);
1469 * Iterate the full tree, calling @down when first entering a node and @up when
1470 * leaving it for the final time.
1472 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1474 struct task_group
*parent
, *child
;
1478 parent
= &root_task_group
;
1480 ret
= (*down
)(parent
, data
);
1483 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1490 ret
= (*up
)(parent
, data
);
1495 parent
= parent
->parent
;
1504 static int tg_nop(struct task_group
*tg
, void *data
)
1511 /* Used instead of source_load when we know the type == 0 */
1512 static unsigned long weighted_cpuload(const int cpu
)
1514 return cpu_rq(cpu
)->load
.weight
;
1518 * Return a low guess at the load of a migration-source cpu weighted
1519 * according to the scheduling class and "nice" value.
1521 * We want to under-estimate the load of migration sources, to
1522 * balance conservatively.
1524 static unsigned long source_load(int cpu
, int type
)
1526 struct rq
*rq
= cpu_rq(cpu
);
1527 unsigned long total
= weighted_cpuload(cpu
);
1529 if (type
== 0 || !sched_feat(LB_BIAS
))
1532 return min(rq
->cpu_load
[type
-1], total
);
1536 * Return a high guess at the load of a migration-target cpu weighted
1537 * according to the scheduling class and "nice" value.
1539 static unsigned long target_load(int cpu
, int type
)
1541 struct rq
*rq
= cpu_rq(cpu
);
1542 unsigned long total
= weighted_cpuload(cpu
);
1544 if (type
== 0 || !sched_feat(LB_BIAS
))
1547 return max(rq
->cpu_load
[type
-1], total
);
1550 static unsigned long power_of(int cpu
)
1552 return cpu_rq(cpu
)->cpu_power
;
1555 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1557 static unsigned long cpu_avg_load_per_task(int cpu
)
1559 struct rq
*rq
= cpu_rq(cpu
);
1560 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1563 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1565 rq
->avg_load_per_task
= 0;
1567 return rq
->avg_load_per_task
;
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
1577 static int tg_load_down(struct task_group
*tg
, void *data
)
1580 long cpu
= (long)data
;
1583 load
= cpu_rq(cpu
)->load
.weight
;
1585 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1586 load
*= tg
->se
[cpu
]->load
.weight
;
1587 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1590 tg
->cfs_rq
[cpu
]->h_load
= load
;
1595 static void update_h_load(long cpu
)
1597 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1602 #ifdef CONFIG_PREEMPT
1604 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1607 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1608 * way at the expense of forcing extra atomic operations in all
1609 * invocations. This assures that the double_lock is acquired using the
1610 * same underlying policy as the spinlock_t on this architecture, which
1611 * reduces latency compared to the unfair variant below. However, it
1612 * also adds more overhead and therefore may reduce throughput.
1614 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1615 __releases(this_rq
->lock
)
1616 __acquires(busiest
->lock
)
1617 __acquires(this_rq
->lock
)
1619 raw_spin_unlock(&this_rq
->lock
);
1620 double_rq_lock(this_rq
, busiest
);
1627 * Unfair double_lock_balance: Optimizes throughput at the expense of
1628 * latency by eliminating extra atomic operations when the locks are
1629 * already in proper order on entry. This favors lower cpu-ids and will
1630 * grant the double lock to lower cpus over higher ids under contention,
1631 * regardless of entry order into the function.
1633 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1634 __releases(this_rq
->lock
)
1635 __acquires(busiest
->lock
)
1636 __acquires(this_rq
->lock
)
1640 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1641 if (busiest
< this_rq
) {
1642 raw_spin_unlock(&this_rq
->lock
);
1643 raw_spin_lock(&busiest
->lock
);
1644 raw_spin_lock_nested(&this_rq
->lock
,
1645 SINGLE_DEPTH_NESTING
);
1648 raw_spin_lock_nested(&busiest
->lock
,
1649 SINGLE_DEPTH_NESTING
);
1654 #endif /* CONFIG_PREEMPT */
1657 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1659 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1661 if (unlikely(!irqs_disabled())) {
1662 /* printk() doesn't work good under rq->lock */
1663 raw_spin_unlock(&this_rq
->lock
);
1667 return _double_lock_balance(this_rq
, busiest
);
1670 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1671 __releases(busiest
->lock
)
1673 raw_spin_unlock(&busiest
->lock
);
1674 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1678 * double_rq_lock - safely lock two runqueues
1680 * Note this does not disable interrupts like task_rq_lock,
1681 * you need to do so manually before calling.
1683 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1684 __acquires(rq1
->lock
)
1685 __acquires(rq2
->lock
)
1687 BUG_ON(!irqs_disabled());
1689 raw_spin_lock(&rq1
->lock
);
1690 __acquire(rq2
->lock
); /* Fake it out ;) */
1693 raw_spin_lock(&rq1
->lock
);
1694 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1696 raw_spin_lock(&rq2
->lock
);
1697 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1703 * double_rq_unlock - safely unlock two runqueues
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1708 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1709 __releases(rq1
->lock
)
1710 __releases(rq2
->lock
)
1712 raw_spin_unlock(&rq1
->lock
);
1714 raw_spin_unlock(&rq2
->lock
);
1716 __release(rq2
->lock
);
1719 #else /* CONFIG_SMP */
1722 * double_rq_lock - safely lock two runqueues
1724 * Note this does not disable interrupts like task_rq_lock,
1725 * you need to do so manually before calling.
1727 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1728 __acquires(rq1
->lock
)
1729 __acquires(rq2
->lock
)
1731 BUG_ON(!irqs_disabled());
1733 raw_spin_lock(&rq1
->lock
);
1734 __acquire(rq2
->lock
); /* Fake it out ;) */
1738 * double_rq_unlock - safely unlock two runqueues
1740 * Note this does not restore interrupts like task_rq_unlock,
1741 * you need to do so manually after calling.
1743 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1744 __releases(rq1
->lock
)
1745 __releases(rq2
->lock
)
1748 raw_spin_unlock(&rq1
->lock
);
1749 __release(rq2
->lock
);
1754 static void calc_load_account_idle(struct rq
*this_rq
);
1755 static void update_sysctl(void);
1756 static int get_update_sysctl_factor(void);
1757 static void update_cpu_load(struct rq
*this_rq
);
1759 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1761 set_task_rq(p
, cpu
);
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1769 task_thread_info(p
)->cpu
= cpu
;
1773 static const struct sched_class rt_sched_class
;
1775 #define sched_class_highest (&stop_sched_class)
1776 #define for_each_class(class) \
1777 for (class = sched_class_highest; class; class = class->next)
1779 #include "sched_stats.h"
1781 static void inc_nr_running(struct rq
*rq
)
1786 static void dec_nr_running(struct rq
*rq
)
1791 static void set_load_weight(struct task_struct
*p
)
1793 int prio
= p
->static_prio
- MAX_RT_PRIO
;
1794 struct load_weight
*load
= &p
->se
.load
;
1797 * SCHED_IDLE tasks get minimal weight:
1799 if (p
->policy
== SCHED_IDLE
) {
1800 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
1801 load
->inv_weight
= WMULT_IDLEPRIO
;
1805 load
->weight
= scale_load(prio_to_weight
[prio
]);
1806 load
->inv_weight
= prio_to_wmult
[prio
];
1809 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1811 update_rq_clock(rq
);
1812 sched_info_queued(p
);
1813 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1816 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1818 update_rq_clock(rq
);
1819 sched_info_dequeued(p
);
1820 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1824 * activate_task - move a task to the runqueue.
1826 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1828 if (task_contributes_to_load(p
))
1829 rq
->nr_uninterruptible
--;
1831 enqueue_task(rq
, p
, flags
);
1836 * deactivate_task - remove a task from the runqueue.
1838 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1840 if (task_contributes_to_load(p
))
1841 rq
->nr_uninterruptible
++;
1843 dequeue_task(rq
, p
, flags
);
1847 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1850 * There are no locks covering percpu hardirq/softirq time.
1851 * They are only modified in account_system_vtime, on corresponding CPU
1852 * with interrupts disabled. So, writes are safe.
1853 * They are read and saved off onto struct rq in update_rq_clock().
1854 * This may result in other CPU reading this CPU's irq time and can
1855 * race with irq/account_system_vtime on this CPU. We would either get old
1856 * or new value with a side effect of accounting a slice of irq time to wrong
1857 * task when irq is in progress while we read rq->clock. That is a worthy
1858 * compromise in place of having locks on each irq in account_system_time.
1860 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1861 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1863 static DEFINE_PER_CPU(u64
, irq_start_time
);
1864 static int sched_clock_irqtime
;
1866 void enable_sched_clock_irqtime(void)
1868 sched_clock_irqtime
= 1;
1871 void disable_sched_clock_irqtime(void)
1873 sched_clock_irqtime
= 0;
1876 #ifndef CONFIG_64BIT
1877 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
1879 static inline void irq_time_write_begin(void)
1881 __this_cpu_inc(irq_time_seq
.sequence
);
1885 static inline void irq_time_write_end(void)
1888 __this_cpu_inc(irq_time_seq
.sequence
);
1891 static inline u64
irq_time_read(int cpu
)
1897 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1898 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1899 per_cpu(cpu_hardirq_time
, cpu
);
1900 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1904 #else /* CONFIG_64BIT */
1905 static inline void irq_time_write_begin(void)
1909 static inline void irq_time_write_end(void)
1913 static inline u64
irq_time_read(int cpu
)
1915 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1917 #endif /* CONFIG_64BIT */
1920 * Called before incrementing preempt_count on {soft,}irq_enter
1921 * and before decrementing preempt_count on {soft,}irq_exit.
1923 void account_system_vtime(struct task_struct
*curr
)
1925 unsigned long flags
;
1929 if (!sched_clock_irqtime
)
1932 local_irq_save(flags
);
1934 cpu
= smp_processor_id();
1935 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
1936 __this_cpu_add(irq_start_time
, delta
);
1938 irq_time_write_begin();
1940 * We do not account for softirq time from ksoftirqd here.
1941 * We want to continue accounting softirq time to ksoftirqd thread
1942 * in that case, so as not to confuse scheduler with a special task
1943 * that do not consume any time, but still wants to run.
1945 if (hardirq_count())
1946 __this_cpu_add(cpu_hardirq_time
, delta
);
1947 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
1948 __this_cpu_add(cpu_softirq_time
, delta
);
1950 irq_time_write_end();
1951 local_irq_restore(flags
);
1953 EXPORT_SYMBOL_GPL(account_system_vtime
);
1955 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1959 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
1962 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1963 * this case when a previous update_rq_clock() happened inside a
1964 * {soft,}irq region.
1966 * When this happens, we stop ->clock_task and only update the
1967 * prev_irq_time stamp to account for the part that fit, so that a next
1968 * update will consume the rest. This ensures ->clock_task is
1971 * It does however cause some slight miss-attribution of {soft,}irq
1972 * time, a more accurate solution would be to update the irq_time using
1973 * the current rq->clock timestamp, except that would require using
1976 if (irq_delta
> delta
)
1979 rq
->prev_irq_time
+= irq_delta
;
1981 rq
->clock_task
+= delta
;
1983 if (irq_delta
&& sched_feat(NONIRQ_POWER
))
1984 sched_rt_avg_update(rq
, irq_delta
);
1987 static int irqtime_account_hi_update(void)
1989 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
1990 unsigned long flags
;
1994 local_irq_save(flags
);
1995 latest_ns
= this_cpu_read(cpu_hardirq_time
);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
1998 local_irq_restore(flags
);
2002 static int irqtime_account_si_update(void)
2004 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2005 unsigned long flags
;
2009 local_irq_save(flags
);
2010 latest_ns
= this_cpu_read(cpu_softirq_time
);
2011 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
2013 local_irq_restore(flags
);
2017 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2019 #define sched_clock_irqtime (0)
2021 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
2023 rq
->clock_task
+= delta
;
2026 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2028 #include "sched_idletask.c"
2029 #include "sched_fair.c"
2030 #include "sched_rt.c"
2031 #include "sched_autogroup.c"
2032 #include "sched_stoptask.c"
2033 #ifdef CONFIG_SCHED_DEBUG
2034 # include "sched_debug.c"
2037 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2039 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2040 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2044 * Make it appear like a SCHED_FIFO task, its something
2045 * userspace knows about and won't get confused about.
2047 * Also, it will make PI more or less work without too
2048 * much confusion -- but then, stop work should not
2049 * rely on PI working anyway.
2051 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2053 stop
->sched_class
= &stop_sched_class
;
2056 cpu_rq(cpu
)->stop
= stop
;
2060 * Reset it back to a normal scheduling class so that
2061 * it can die in pieces.
2063 old_stop
->sched_class
= &rt_sched_class
;
2068 * __normal_prio - return the priority that is based on the static prio
2070 static inline int __normal_prio(struct task_struct
*p
)
2072 return p
->static_prio
;
2076 * Calculate the expected normal priority: i.e. priority
2077 * without taking RT-inheritance into account. Might be
2078 * boosted by interactivity modifiers. Changes upon fork,
2079 * setprio syscalls, and whenever the interactivity
2080 * estimator recalculates.
2082 static inline int normal_prio(struct task_struct
*p
)
2086 if (task_has_rt_policy(p
))
2087 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2089 prio
= __normal_prio(p
);
2094 * Calculate the current priority, i.e. the priority
2095 * taken into account by the scheduler. This value might
2096 * be boosted by RT tasks, or might be boosted by
2097 * interactivity modifiers. Will be RT if the task got
2098 * RT-boosted. If not then it returns p->normal_prio.
2100 static int effective_prio(struct task_struct
*p
)
2102 p
->normal_prio
= normal_prio(p
);
2104 * If we are RT tasks or we were boosted to RT priority,
2105 * keep the priority unchanged. Otherwise, update priority
2106 * to the normal priority:
2108 if (!rt_prio(p
->prio
))
2109 return p
->normal_prio
;
2114 * task_curr - is this task currently executing on a CPU?
2115 * @p: the task in question.
2117 inline int task_curr(const struct task_struct
*p
)
2119 return cpu_curr(task_cpu(p
)) == p
;
2122 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2123 const struct sched_class
*prev_class
,
2126 if (prev_class
!= p
->sched_class
) {
2127 if (prev_class
->switched_from
)
2128 prev_class
->switched_from(rq
, p
);
2129 p
->sched_class
->switched_to(rq
, p
);
2130 } else if (oldprio
!= p
->prio
)
2131 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2134 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2136 const struct sched_class
*class;
2138 if (p
->sched_class
== rq
->curr
->sched_class
) {
2139 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2141 for_each_class(class) {
2142 if (class == rq
->curr
->sched_class
)
2144 if (class == p
->sched_class
) {
2145 resched_task(rq
->curr
);
2152 * A queue event has occurred, and we're going to schedule. In
2153 * this case, we can save a useless back to back clock update.
2155 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
2156 rq
->skip_clock_update
= 1;
2161 * Is this task likely cache-hot:
2164 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2168 if (p
->sched_class
!= &fair_sched_class
)
2171 if (unlikely(p
->policy
== SCHED_IDLE
))
2175 * Buddy candidates are cache hot:
2177 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2178 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2179 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2182 if (sysctl_sched_migration_cost
== -1)
2184 if (sysctl_sched_migration_cost
== 0)
2187 delta
= now
- p
->se
.exec_start
;
2189 return delta
< (s64
)sysctl_sched_migration_cost
;
2192 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2194 #ifdef CONFIG_SCHED_DEBUG
2196 * We should never call set_task_cpu() on a blocked task,
2197 * ttwu() will sort out the placement.
2199 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2200 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2202 #ifdef CONFIG_LOCKDEP
2203 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
2204 lockdep_is_held(&task_rq(p
)->lock
)));
2208 trace_sched_migrate_task(p
, new_cpu
);
2210 if (task_cpu(p
) != new_cpu
) {
2211 p
->se
.nr_migrations
++;
2212 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2215 __set_task_cpu(p
, new_cpu
);
2218 struct migration_arg
{
2219 struct task_struct
*task
;
2223 static int migration_cpu_stop(void *data
);
2226 * wait_task_inactive - wait for a thread to unschedule.
2228 * If @match_state is nonzero, it's the @p->state value just checked and
2229 * not expected to change. If it changes, i.e. @p might have woken up,
2230 * then return zero. When we succeed in waiting for @p to be off its CPU,
2231 * we return a positive number (its total switch count). If a second call
2232 * a short while later returns the same number, the caller can be sure that
2233 * @p has remained unscheduled the whole time.
2235 * The caller must ensure that the task *will* unschedule sometime soon,
2236 * else this function might spin for a *long* time. This function can't
2237 * be called with interrupts off, or it may introduce deadlock with
2238 * smp_call_function() if an IPI is sent by the same process we are
2239 * waiting to become inactive.
2241 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2243 unsigned long flags
;
2250 * We do the initial early heuristics without holding
2251 * any task-queue locks at all. We'll only try to get
2252 * the runqueue lock when things look like they will
2258 * If the task is actively running on another CPU
2259 * still, just relax and busy-wait without holding
2262 * NOTE! Since we don't hold any locks, it's not
2263 * even sure that "rq" stays as the right runqueue!
2264 * But we don't care, since "task_running()" will
2265 * return false if the runqueue has changed and p
2266 * is actually now running somewhere else!
2268 while (task_running(rq
, p
)) {
2269 if (match_state
&& unlikely(p
->state
!= match_state
))
2275 * Ok, time to look more closely! We need the rq
2276 * lock now, to be *sure*. If we're wrong, we'll
2277 * just go back and repeat.
2279 rq
= task_rq_lock(p
, &flags
);
2280 trace_sched_wait_task(p
);
2281 running
= task_running(rq
, p
);
2284 if (!match_state
|| p
->state
== match_state
)
2285 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2286 task_rq_unlock(rq
, p
, &flags
);
2289 * If it changed from the expected state, bail out now.
2291 if (unlikely(!ncsw
))
2295 * Was it really running after all now that we
2296 * checked with the proper locks actually held?
2298 * Oops. Go back and try again..
2300 if (unlikely(running
)) {
2306 * It's not enough that it's not actively running,
2307 * it must be off the runqueue _entirely_, and not
2310 * So if it was still runnable (but just not actively
2311 * running right now), it's preempted, and we should
2312 * yield - it could be a while.
2314 if (unlikely(on_rq
)) {
2315 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2317 set_current_state(TASK_UNINTERRUPTIBLE
);
2318 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2323 * Ahh, all good. It wasn't running, and it wasn't
2324 * runnable, which means that it will never become
2325 * running in the future either. We're all done!
2334 * kick_process - kick a running thread to enter/exit the kernel
2335 * @p: the to-be-kicked thread
2337 * Cause a process which is running on another CPU to enter
2338 * kernel-mode, without any delay. (to get signals handled.)
2340 * NOTE: this function doesn't have to take the runqueue lock,
2341 * because all it wants to ensure is that the remote task enters
2342 * the kernel. If the IPI races and the task has been migrated
2343 * to another CPU then no harm is done and the purpose has been
2346 void kick_process(struct task_struct
*p
)
2352 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2353 smp_send_reschedule(cpu
);
2356 EXPORT_SYMBOL_GPL(kick_process
);
2357 #endif /* CONFIG_SMP */
2361 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2363 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2366 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2368 /* Look for allowed, online CPU in same node. */
2369 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2370 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2373 /* Any allowed, online CPU? */
2374 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2375 if (dest_cpu
< nr_cpu_ids
)
2378 /* No more Mr. Nice Guy. */
2379 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2381 * Don't tell them about moving exiting tasks or
2382 * kernel threads (both mm NULL), since they never
2385 if (p
->mm
&& printk_ratelimit()) {
2386 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2387 task_pid_nr(p
), p
->comm
, cpu
);
2394 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2397 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2399 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2402 * In order not to call set_task_cpu() on a blocking task we need
2403 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2406 * Since this is common to all placement strategies, this lives here.
2408 * [ this allows ->select_task() to simply return task_cpu(p) and
2409 * not worry about this generic constraint ]
2411 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2413 cpu
= select_fallback_rq(task_cpu(p
), p
);
2418 static void update_avg(u64
*avg
, u64 sample
)
2420 s64 diff
= sample
- *avg
;
2426 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
2428 #ifdef CONFIG_SCHEDSTATS
2429 struct rq
*rq
= this_rq();
2432 int this_cpu
= smp_processor_id();
2434 if (cpu
== this_cpu
) {
2435 schedstat_inc(rq
, ttwu_local
);
2436 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2438 struct sched_domain
*sd
;
2440 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2442 for_each_domain(this_cpu
, sd
) {
2443 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2444 schedstat_inc(sd
, ttwu_wake_remote
);
2450 #endif /* CONFIG_SMP */
2452 schedstat_inc(rq
, ttwu_count
);
2453 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2455 if (wake_flags
& WF_SYNC
)
2456 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2458 if (cpu
!= task_cpu(p
))
2459 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2461 #endif /* CONFIG_SCHEDSTATS */
2464 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
2466 activate_task(rq
, p
, en_flags
);
2469 /* if a worker is waking up, notify workqueue */
2470 if (p
->flags
& PF_WQ_WORKER
)
2471 wq_worker_waking_up(p
, cpu_of(rq
));
2475 * Mark the task runnable and perform wakeup-preemption.
2478 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2480 trace_sched_wakeup(p
, true);
2481 check_preempt_curr(rq
, p
, wake_flags
);
2483 p
->state
= TASK_RUNNING
;
2485 if (p
->sched_class
->task_woken
)
2486 p
->sched_class
->task_woken(rq
, p
);
2488 if (unlikely(rq
->idle_stamp
)) {
2489 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2490 u64 max
= 2*sysctl_sched_migration_cost
;
2495 update_avg(&rq
->avg_idle
, delta
);
2502 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2505 if (p
->sched_contributes_to_load
)
2506 rq
->nr_uninterruptible
--;
2509 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
2510 ttwu_do_wakeup(rq
, p
, wake_flags
);
2514 * Called in case the task @p isn't fully descheduled from its runqueue,
2515 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2516 * since all we need to do is flip p->state to TASK_RUNNING, since
2517 * the task is still ->on_rq.
2519 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
2524 rq
= __task_rq_lock(p
);
2526 ttwu_do_wakeup(rq
, p
, wake_flags
);
2529 __task_rq_unlock(rq
);
2535 static void sched_ttwu_pending(void)
2537 struct rq
*rq
= this_rq();
2538 struct task_struct
*list
= xchg(&rq
->wake_list
, NULL
);
2543 raw_spin_lock(&rq
->lock
);
2546 struct task_struct
*p
= list
;
2547 list
= list
->wake_entry
;
2548 ttwu_do_activate(rq
, p
, 0);
2551 raw_spin_unlock(&rq
->lock
);
2554 void scheduler_ipi(void)
2556 sched_ttwu_pending();
2559 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
2561 struct rq
*rq
= cpu_rq(cpu
);
2562 struct task_struct
*next
= rq
->wake_list
;
2565 struct task_struct
*old
= next
;
2567 p
->wake_entry
= next
;
2568 next
= cmpxchg(&rq
->wake_list
, old
, p
);
2574 smp_send_reschedule(cpu
);
2577 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2578 static int ttwu_activate_remote(struct task_struct
*p
, int wake_flags
)
2583 rq
= __task_rq_lock(p
);
2585 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2586 ttwu_do_wakeup(rq
, p
, wake_flags
);
2589 __task_rq_unlock(rq
);
2594 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2595 #endif /* CONFIG_SMP */
2597 static void ttwu_queue(struct task_struct
*p
, int cpu
)
2599 struct rq
*rq
= cpu_rq(cpu
);
2601 #if defined(CONFIG_SMP)
2602 if (sched_feat(TTWU_QUEUE
) && cpu
!= smp_processor_id()) {
2603 ttwu_queue_remote(p
, cpu
);
2608 raw_spin_lock(&rq
->lock
);
2609 ttwu_do_activate(rq
, p
, 0);
2610 raw_spin_unlock(&rq
->lock
);
2614 * try_to_wake_up - wake up a thread
2615 * @p: the thread to be awakened
2616 * @state: the mask of task states that can be woken
2617 * @wake_flags: wake modifier flags (WF_*)
2619 * Put it on the run-queue if it's not already there. The "current"
2620 * thread is always on the run-queue (except when the actual
2621 * re-schedule is in progress), and as such you're allowed to do
2622 * the simpler "current->state = TASK_RUNNING" to mark yourself
2623 * runnable without the overhead of this.
2625 * Returns %true if @p was woken up, %false if it was already running
2626 * or @state didn't match @p's state.
2629 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
2631 unsigned long flags
;
2632 int cpu
, success
= 0;
2635 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2636 if (!(p
->state
& state
))
2639 success
= 1; /* we're going to change ->state */
2642 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2647 * If the owning (remote) cpu is still in the middle of schedule() with
2648 * this task as prev, wait until its done referencing the task.
2651 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2653 * In case the architecture enables interrupts in
2654 * context_switch(), we cannot busy wait, since that
2655 * would lead to deadlocks when an interrupt hits and
2656 * tries to wake up @prev. So bail and do a complete
2659 if (ttwu_activate_remote(p
, wake_flags
))
2666 * Pairs with the smp_wmb() in finish_lock_switch().
2670 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2671 p
->state
= TASK_WAKING
;
2673 if (p
->sched_class
->task_waking
)
2674 p
->sched_class
->task_waking(p
);
2676 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2677 if (task_cpu(p
) != cpu
)
2678 set_task_cpu(p
, cpu
);
2679 #endif /* CONFIG_SMP */
2683 ttwu_stat(p
, cpu
, wake_flags
);
2685 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2691 * try_to_wake_up_local - try to wake up a local task with rq lock held
2692 * @p: the thread to be awakened
2694 * Put @p on the run-queue if it's not already there. The caller must
2695 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2698 static void try_to_wake_up_local(struct task_struct
*p
)
2700 struct rq
*rq
= task_rq(p
);
2702 BUG_ON(rq
!= this_rq());
2703 BUG_ON(p
== current
);
2704 lockdep_assert_held(&rq
->lock
);
2706 if (!raw_spin_trylock(&p
->pi_lock
)) {
2707 raw_spin_unlock(&rq
->lock
);
2708 raw_spin_lock(&p
->pi_lock
);
2709 raw_spin_lock(&rq
->lock
);
2712 if (!(p
->state
& TASK_NORMAL
))
2716 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2718 ttwu_do_wakeup(rq
, p
, 0);
2719 ttwu_stat(p
, smp_processor_id(), 0);
2721 raw_spin_unlock(&p
->pi_lock
);
2725 * wake_up_process - Wake up a specific process
2726 * @p: The process to be woken up.
2728 * Attempt to wake up the nominated process and move it to the set of runnable
2729 * processes. Returns 1 if the process was woken up, 0 if it was already
2732 * It may be assumed that this function implies a write memory barrier before
2733 * changing the task state if and only if any tasks are woken up.
2735 int wake_up_process(struct task_struct
*p
)
2737 return try_to_wake_up(p
, TASK_ALL
, 0);
2739 EXPORT_SYMBOL(wake_up_process
);
2741 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2743 return try_to_wake_up(p
, state
, 0);
2747 * Perform scheduler related setup for a newly forked process p.
2748 * p is forked by current.
2750 * __sched_fork() is basic setup used by init_idle() too:
2752 static void __sched_fork(struct task_struct
*p
)
2757 p
->se
.exec_start
= 0;
2758 p
->se
.sum_exec_runtime
= 0;
2759 p
->se
.prev_sum_exec_runtime
= 0;
2760 p
->se
.nr_migrations
= 0;
2762 INIT_LIST_HEAD(&p
->se
.group_node
);
2764 #ifdef CONFIG_SCHEDSTATS
2765 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2768 INIT_LIST_HEAD(&p
->rt
.run_list
);
2770 #ifdef CONFIG_PREEMPT_NOTIFIERS
2771 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2776 * fork()/clone()-time setup:
2778 void sched_fork(struct task_struct
*p
)
2780 unsigned long flags
;
2781 int cpu
= get_cpu();
2785 * We mark the process as running here. This guarantees that
2786 * nobody will actually run it, and a signal or other external
2787 * event cannot wake it up and insert it on the runqueue either.
2789 p
->state
= TASK_RUNNING
;
2792 * Revert to default priority/policy on fork if requested.
2794 if (unlikely(p
->sched_reset_on_fork
)) {
2795 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2796 p
->policy
= SCHED_NORMAL
;
2797 p
->normal_prio
= p
->static_prio
;
2800 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2801 p
->static_prio
= NICE_TO_PRIO(0);
2802 p
->normal_prio
= p
->static_prio
;
2807 * We don't need the reset flag anymore after the fork. It has
2808 * fulfilled its duty:
2810 p
->sched_reset_on_fork
= 0;
2814 * Make sure we do not leak PI boosting priority to the child.
2816 p
->prio
= current
->normal_prio
;
2818 if (!rt_prio(p
->prio
))
2819 p
->sched_class
= &fair_sched_class
;
2821 if (p
->sched_class
->task_fork
)
2822 p
->sched_class
->task_fork(p
);
2825 * The child is not yet in the pid-hash so no cgroup attach races,
2826 * and the cgroup is pinned to this child due to cgroup_fork()
2827 * is ran before sched_fork().
2829 * Silence PROVE_RCU.
2831 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2832 set_task_cpu(p
, cpu
);
2833 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2835 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2836 if (likely(sched_info_on()))
2837 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2839 #if defined(CONFIG_SMP)
2842 #ifdef CONFIG_PREEMPT
2843 /* Want to start with kernel preemption disabled. */
2844 task_thread_info(p
)->preempt_count
= 1;
2847 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2854 * wake_up_new_task - wake up a newly created task for the first time.
2856 * This function will do some initial scheduler statistics housekeeping
2857 * that must be done for every newly created context, then puts the task
2858 * on the runqueue and wakes it.
2860 void wake_up_new_task(struct task_struct
*p
)
2862 unsigned long flags
;
2865 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2868 * Fork balancing, do it here and not earlier because:
2869 * - cpus_allowed can change in the fork path
2870 * - any previously selected cpu might disappear through hotplug
2872 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
2875 rq
= __task_rq_lock(p
);
2876 activate_task(rq
, p
, 0);
2878 trace_sched_wakeup_new(p
, true);
2879 check_preempt_curr(rq
, p
, WF_FORK
);
2881 if (p
->sched_class
->task_woken
)
2882 p
->sched_class
->task_woken(rq
, p
);
2884 task_rq_unlock(rq
, p
, &flags
);
2887 #ifdef CONFIG_PREEMPT_NOTIFIERS
2890 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2891 * @notifier: notifier struct to register
2893 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2895 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2897 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2900 * preempt_notifier_unregister - no longer interested in preemption notifications
2901 * @notifier: notifier struct to unregister
2903 * This is safe to call from within a preemption notifier.
2905 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2907 hlist_del(¬ifier
->link
);
2909 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2911 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2913 struct preempt_notifier
*notifier
;
2914 struct hlist_node
*node
;
2916 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2917 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2921 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2922 struct task_struct
*next
)
2924 struct preempt_notifier
*notifier
;
2925 struct hlist_node
*node
;
2927 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2928 notifier
->ops
->sched_out(notifier
, next
);
2931 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2933 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2938 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2939 struct task_struct
*next
)
2943 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2946 * prepare_task_switch - prepare to switch tasks
2947 * @rq: the runqueue preparing to switch
2948 * @prev: the current task that is being switched out
2949 * @next: the task we are going to switch to.
2951 * This is called with the rq lock held and interrupts off. It must
2952 * be paired with a subsequent finish_task_switch after the context
2955 * prepare_task_switch sets up locking and calls architecture specific
2959 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2960 struct task_struct
*next
)
2962 sched_info_switch(prev
, next
);
2963 perf_event_task_sched_out(prev
, next
);
2964 fire_sched_out_preempt_notifiers(prev
, next
);
2965 prepare_lock_switch(rq
, next
);
2966 prepare_arch_switch(next
);
2967 trace_sched_switch(prev
, next
);
2971 * finish_task_switch - clean up after a task-switch
2972 * @rq: runqueue associated with task-switch
2973 * @prev: the thread we just switched away from.
2975 * finish_task_switch must be called after the context switch, paired
2976 * with a prepare_task_switch call before the context switch.
2977 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2978 * and do any other architecture-specific cleanup actions.
2980 * Note that we may have delayed dropping an mm in context_switch(). If
2981 * so, we finish that here outside of the runqueue lock. (Doing it
2982 * with the lock held can cause deadlocks; see schedule() for
2985 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2986 __releases(rq
->lock
)
2988 struct mm_struct
*mm
= rq
->prev_mm
;
2994 * A task struct has one reference for the use as "current".
2995 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2996 * schedule one last time. The schedule call will never return, and
2997 * the scheduled task must drop that reference.
2998 * The test for TASK_DEAD must occur while the runqueue locks are
2999 * still held, otherwise prev could be scheduled on another cpu, die
3000 * there before we look at prev->state, and then the reference would
3002 * Manfred Spraul <manfred@colorfullife.com>
3004 prev_state
= prev
->state
;
3005 finish_arch_switch(prev
);
3006 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3007 local_irq_disable();
3008 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3009 perf_event_task_sched_in(current
);
3010 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3012 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3013 finish_lock_switch(rq
, prev
);
3015 fire_sched_in_preempt_notifiers(current
);
3018 if (unlikely(prev_state
== TASK_DEAD
)) {
3020 * Remove function-return probe instances associated with this
3021 * task and put them back on the free list.
3023 kprobe_flush_task(prev
);
3024 put_task_struct(prev
);
3030 /* assumes rq->lock is held */
3031 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
3033 if (prev
->sched_class
->pre_schedule
)
3034 prev
->sched_class
->pre_schedule(rq
, prev
);
3037 /* rq->lock is NOT held, but preemption is disabled */
3038 static inline void post_schedule(struct rq
*rq
)
3040 if (rq
->post_schedule
) {
3041 unsigned long flags
;
3043 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3044 if (rq
->curr
->sched_class
->post_schedule
)
3045 rq
->curr
->sched_class
->post_schedule(rq
);
3046 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3048 rq
->post_schedule
= 0;
3054 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
3058 static inline void post_schedule(struct rq
*rq
)
3065 * schedule_tail - first thing a freshly forked thread must call.
3066 * @prev: the thread we just switched away from.
3068 asmlinkage
void schedule_tail(struct task_struct
*prev
)
3069 __releases(rq
->lock
)
3071 struct rq
*rq
= this_rq();
3073 finish_task_switch(rq
, prev
);
3076 * FIXME: do we need to worry about rq being invalidated by the
3081 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3082 /* In this case, finish_task_switch does not reenable preemption */
3085 if (current
->set_child_tid
)
3086 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3090 * context_switch - switch to the new MM and the new
3091 * thread's register state.
3094 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3095 struct task_struct
*next
)
3097 struct mm_struct
*mm
, *oldmm
;
3099 prepare_task_switch(rq
, prev
, next
);
3102 oldmm
= prev
->active_mm
;
3104 * For paravirt, this is coupled with an exit in switch_to to
3105 * combine the page table reload and the switch backend into
3108 arch_start_context_switch(prev
);
3111 next
->active_mm
= oldmm
;
3112 atomic_inc(&oldmm
->mm_count
);
3113 enter_lazy_tlb(oldmm
, next
);
3115 switch_mm(oldmm
, mm
, next
);
3118 prev
->active_mm
= NULL
;
3119 rq
->prev_mm
= oldmm
;
3122 * Since the runqueue lock will be released by the next
3123 * task (which is an invalid locking op but in the case
3124 * of the scheduler it's an obvious special-case), so we
3125 * do an early lockdep release here:
3127 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3128 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3131 /* Here we just switch the register state and the stack. */
3132 switch_to(prev
, next
, prev
);
3136 * this_rq must be evaluated again because prev may have moved
3137 * CPUs since it called schedule(), thus the 'rq' on its stack
3138 * frame will be invalid.
3140 finish_task_switch(this_rq(), prev
);
3144 * nr_running, nr_uninterruptible and nr_context_switches:
3146 * externally visible scheduler statistics: current number of runnable
3147 * threads, current number of uninterruptible-sleeping threads, total
3148 * number of context switches performed since bootup.
3150 unsigned long nr_running(void)
3152 unsigned long i
, sum
= 0;
3154 for_each_online_cpu(i
)
3155 sum
+= cpu_rq(i
)->nr_running
;
3160 unsigned long nr_uninterruptible(void)
3162 unsigned long i
, sum
= 0;
3164 for_each_possible_cpu(i
)
3165 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3168 * Since we read the counters lockless, it might be slightly
3169 * inaccurate. Do not allow it to go below zero though:
3171 if (unlikely((long)sum
< 0))
3177 unsigned long long nr_context_switches(void)
3180 unsigned long long sum
= 0;
3182 for_each_possible_cpu(i
)
3183 sum
+= cpu_rq(i
)->nr_switches
;
3188 unsigned long nr_iowait(void)
3190 unsigned long i
, sum
= 0;
3192 for_each_possible_cpu(i
)
3193 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3198 unsigned long nr_iowait_cpu(int cpu
)
3200 struct rq
*this = cpu_rq(cpu
);
3201 return atomic_read(&this->nr_iowait
);
3204 unsigned long this_cpu_load(void)
3206 struct rq
*this = this_rq();
3207 return this->cpu_load
[0];
3211 /* Variables and functions for calc_load */
3212 static atomic_long_t calc_load_tasks
;
3213 static unsigned long calc_load_update
;
3214 unsigned long avenrun
[3];
3215 EXPORT_SYMBOL(avenrun
);
3217 static long calc_load_fold_active(struct rq
*this_rq
)
3219 long nr_active
, delta
= 0;
3221 nr_active
= this_rq
->nr_running
;
3222 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3224 if (nr_active
!= this_rq
->calc_load_active
) {
3225 delta
= nr_active
- this_rq
->calc_load_active
;
3226 this_rq
->calc_load_active
= nr_active
;
3232 static unsigned long
3233 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3236 load
+= active
* (FIXED_1
- exp
);
3237 load
+= 1UL << (FSHIFT
- 1);
3238 return load
>> FSHIFT
;
3243 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3245 * When making the ILB scale, we should try to pull this in as well.
3247 static atomic_long_t calc_load_tasks_idle
;
3249 static void calc_load_account_idle(struct rq
*this_rq
)
3253 delta
= calc_load_fold_active(this_rq
);
3255 atomic_long_add(delta
, &calc_load_tasks_idle
);
3258 static long calc_load_fold_idle(void)
3263 * Its got a race, we don't care...
3265 if (atomic_long_read(&calc_load_tasks_idle
))
3266 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3272 * fixed_power_int - compute: x^n, in O(log n) time
3274 * @x: base of the power
3275 * @frac_bits: fractional bits of @x
3276 * @n: power to raise @x to.
3278 * By exploiting the relation between the definition of the natural power
3279 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3280 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3281 * (where: n_i \elem {0, 1}, the binary vector representing n),
3282 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3283 * of course trivially computable in O(log_2 n), the length of our binary
3286 static unsigned long
3287 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3289 unsigned long result
= 1UL << frac_bits
;
3294 result
+= 1UL << (frac_bits
- 1);
3295 result
>>= frac_bits
;
3301 x
+= 1UL << (frac_bits
- 1);
3309 * a1 = a0 * e + a * (1 - e)
3311 * a2 = a1 * e + a * (1 - e)
3312 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3313 * = a0 * e^2 + a * (1 - e) * (1 + e)
3315 * a3 = a2 * e + a * (1 - e)
3316 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3317 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3321 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3322 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3323 * = a0 * e^n + a * (1 - e^n)
3325 * [1] application of the geometric series:
3328 * S_n := \Sum x^i = -------------
3331 static unsigned long
3332 calc_load_n(unsigned long load
, unsigned long exp
,
3333 unsigned long active
, unsigned int n
)
3336 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3340 * NO_HZ can leave us missing all per-cpu ticks calling
3341 * calc_load_account_active(), but since an idle CPU folds its delta into
3342 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3343 * in the pending idle delta if our idle period crossed a load cycle boundary.
3345 * Once we've updated the global active value, we need to apply the exponential
3346 * weights adjusted to the number of cycles missed.
3348 static void calc_global_nohz(unsigned long ticks
)
3350 long delta
, active
, n
;
3352 if (time_before(jiffies
, calc_load_update
))
3356 * If we crossed a calc_load_update boundary, make sure to fold
3357 * any pending idle changes, the respective CPUs might have
3358 * missed the tick driven calc_load_account_active() update
3361 delta
= calc_load_fold_idle();
3363 atomic_long_add(delta
, &calc_load_tasks
);
3366 * If we were idle for multiple load cycles, apply them.
3368 if (ticks
>= LOAD_FREQ
) {
3369 n
= ticks
/ LOAD_FREQ
;
3371 active
= atomic_long_read(&calc_load_tasks
);
3372 active
= active
> 0 ? active
* FIXED_1
: 0;
3374 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3375 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3376 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3378 calc_load_update
+= n
* LOAD_FREQ
;
3382 * Its possible the remainder of the above division also crosses
3383 * a LOAD_FREQ period, the regular check in calc_global_load()
3384 * which comes after this will take care of that.
3386 * Consider us being 11 ticks before a cycle completion, and us
3387 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3388 * age us 4 cycles, and the test in calc_global_load() will
3389 * pick up the final one.
3393 static void calc_load_account_idle(struct rq
*this_rq
)
3397 static inline long calc_load_fold_idle(void)
3402 static void calc_global_nohz(unsigned long ticks
)
3408 * get_avenrun - get the load average array
3409 * @loads: pointer to dest load array
3410 * @offset: offset to add
3411 * @shift: shift count to shift the result left
3413 * These values are estimates at best, so no need for locking.
3415 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3417 loads
[0] = (avenrun
[0] + offset
) << shift
;
3418 loads
[1] = (avenrun
[1] + offset
) << shift
;
3419 loads
[2] = (avenrun
[2] + offset
) << shift
;
3423 * calc_load - update the avenrun load estimates 10 ticks after the
3424 * CPUs have updated calc_load_tasks.
3426 void calc_global_load(unsigned long ticks
)
3430 calc_global_nohz(ticks
);
3432 if (time_before(jiffies
, calc_load_update
+ 10))
3435 active
= atomic_long_read(&calc_load_tasks
);
3436 active
= active
> 0 ? active
* FIXED_1
: 0;
3438 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3439 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3440 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3442 calc_load_update
+= LOAD_FREQ
;
3446 * Called from update_cpu_load() to periodically update this CPU's
3449 static void calc_load_account_active(struct rq
*this_rq
)
3453 if (time_before(jiffies
, this_rq
->calc_load_update
))
3456 delta
= calc_load_fold_active(this_rq
);
3457 delta
+= calc_load_fold_idle();
3459 atomic_long_add(delta
, &calc_load_tasks
);
3461 this_rq
->calc_load_update
+= LOAD_FREQ
;
3465 * The exact cpuload at various idx values, calculated at every tick would be
3466 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3468 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3469 * on nth tick when cpu may be busy, then we have:
3470 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3471 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3473 * decay_load_missed() below does efficient calculation of
3474 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3475 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3477 * The calculation is approximated on a 128 point scale.
3478 * degrade_zero_ticks is the number of ticks after which load at any
3479 * particular idx is approximated to be zero.
3480 * degrade_factor is a precomputed table, a row for each load idx.
3481 * Each column corresponds to degradation factor for a power of two ticks,
3482 * based on 128 point scale.
3484 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3485 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3487 * With this power of 2 load factors, we can degrade the load n times
3488 * by looking at 1 bits in n and doing as many mult/shift instead of
3489 * n mult/shifts needed by the exact degradation.
3491 #define DEGRADE_SHIFT 7
3492 static const unsigned char
3493 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3494 static const unsigned char
3495 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3496 {0, 0, 0, 0, 0, 0, 0, 0},
3497 {64, 32, 8, 0, 0, 0, 0, 0},
3498 {96, 72, 40, 12, 1, 0, 0},
3499 {112, 98, 75, 43, 15, 1, 0},
3500 {120, 112, 98, 76, 45, 16, 2} };
3503 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3504 * would be when CPU is idle and so we just decay the old load without
3505 * adding any new load.
3507 static unsigned long
3508 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3512 if (!missed_updates
)
3515 if (missed_updates
>= degrade_zero_ticks
[idx
])
3519 return load
>> missed_updates
;
3521 while (missed_updates
) {
3522 if (missed_updates
% 2)
3523 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3525 missed_updates
>>= 1;
3532 * Update rq->cpu_load[] statistics. This function is usually called every
3533 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3534 * every tick. We fix it up based on jiffies.
3536 static void update_cpu_load(struct rq
*this_rq
)
3538 unsigned long this_load
= this_rq
->load
.weight
;
3539 unsigned long curr_jiffies
= jiffies
;
3540 unsigned long pending_updates
;
3543 this_rq
->nr_load_updates
++;
3545 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3546 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3549 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3550 this_rq
->last_load_update_tick
= curr_jiffies
;
3552 /* Update our load: */
3553 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3554 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3555 unsigned long old_load
, new_load
;
3557 /* scale is effectively 1 << i now, and >> i divides by scale */
3559 old_load
= this_rq
->cpu_load
[i
];
3560 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3561 new_load
= this_load
;
3563 * Round up the averaging division if load is increasing. This
3564 * prevents us from getting stuck on 9 if the load is 10, for
3567 if (new_load
> old_load
)
3568 new_load
+= scale
- 1;
3570 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3573 sched_avg_update(this_rq
);
3576 static void update_cpu_load_active(struct rq
*this_rq
)
3578 update_cpu_load(this_rq
);
3580 calc_load_account_active(this_rq
);
3586 * sched_exec - execve() is a valuable balancing opportunity, because at
3587 * this point the task has the smallest effective memory and cache footprint.
3589 void sched_exec(void)
3591 struct task_struct
*p
= current
;
3592 unsigned long flags
;
3595 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3596 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3597 if (dest_cpu
== smp_processor_id())
3600 if (likely(cpu_active(dest_cpu
))) {
3601 struct migration_arg arg
= { p
, dest_cpu
};
3603 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3604 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3608 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3613 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3615 EXPORT_PER_CPU_SYMBOL(kstat
);
3618 * Return any ns on the sched_clock that have not yet been accounted in
3619 * @p in case that task is currently running.
3621 * Called with task_rq_lock() held on @rq.
3623 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3627 if (task_current(rq
, p
)) {
3628 update_rq_clock(rq
);
3629 ns
= rq
->clock_task
- p
->se
.exec_start
;
3637 unsigned long long task_delta_exec(struct task_struct
*p
)
3639 unsigned long flags
;
3643 rq
= task_rq_lock(p
, &flags
);
3644 ns
= do_task_delta_exec(p
, rq
);
3645 task_rq_unlock(rq
, p
, &flags
);
3651 * Return accounted runtime for the task.
3652 * In case the task is currently running, return the runtime plus current's
3653 * pending runtime that have not been accounted yet.
3655 unsigned long long task_sched_runtime(struct task_struct
*p
)
3657 unsigned long flags
;
3661 rq
= task_rq_lock(p
, &flags
);
3662 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3663 task_rq_unlock(rq
, p
, &flags
);
3669 * Return sum_exec_runtime for the thread group.
3670 * In case the task is currently running, return the sum plus current's
3671 * pending runtime that have not been accounted yet.
3673 * Note that the thread group might have other running tasks as well,
3674 * so the return value not includes other pending runtime that other
3675 * running tasks might have.
3677 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3679 struct task_cputime totals
;
3680 unsigned long flags
;
3684 rq
= task_rq_lock(p
, &flags
);
3685 thread_group_cputime(p
, &totals
);
3686 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3687 task_rq_unlock(rq
, p
, &flags
);
3693 * Account user cpu time to a process.
3694 * @p: the process that the cpu time gets accounted to
3695 * @cputime: the cpu time spent in user space since the last update
3696 * @cputime_scaled: cputime scaled by cpu frequency
3698 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3699 cputime_t cputime_scaled
)
3701 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3704 /* Add user time to process. */
3705 p
->utime
= cputime_add(p
->utime
, cputime
);
3706 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3707 account_group_user_time(p
, cputime
);
3709 /* Add user time to cpustat. */
3710 tmp
= cputime_to_cputime64(cputime
);
3711 if (TASK_NICE(p
) > 0)
3712 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3714 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3716 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3717 /* Account for user time used */
3718 acct_update_integrals(p
);
3722 * Account guest cpu time to a process.
3723 * @p: the process that the cpu time gets accounted to
3724 * @cputime: the cpu time spent in virtual machine since the last update
3725 * @cputime_scaled: cputime scaled by cpu frequency
3727 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3728 cputime_t cputime_scaled
)
3731 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3733 tmp
= cputime_to_cputime64(cputime
);
3735 /* Add guest time to process. */
3736 p
->utime
= cputime_add(p
->utime
, cputime
);
3737 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3738 account_group_user_time(p
, cputime
);
3739 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3741 /* Add guest time to cpustat. */
3742 if (TASK_NICE(p
) > 0) {
3743 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3744 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3746 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3747 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3752 * Account system cpu time to a process and desired cpustat field
3753 * @p: the process that the cpu time gets accounted to
3754 * @cputime: the cpu time spent in kernel space since the last update
3755 * @cputime_scaled: cputime scaled by cpu frequency
3756 * @target_cputime64: pointer to cpustat field that has to be updated
3759 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
3760 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
3762 cputime64_t tmp
= cputime_to_cputime64(cputime
);
3764 /* Add system time to process. */
3765 p
->stime
= cputime_add(p
->stime
, cputime
);
3766 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3767 account_group_system_time(p
, cputime
);
3769 /* Add system time to cpustat. */
3770 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
3771 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3773 /* Account for system time used */
3774 acct_update_integrals(p
);
3778 * Account system cpu time to a process.
3779 * @p: the process that the cpu time gets accounted to
3780 * @hardirq_offset: the offset to subtract from hardirq_count()
3781 * @cputime: the cpu time spent in kernel space since the last update
3782 * @cputime_scaled: cputime scaled by cpu frequency
3784 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3785 cputime_t cputime
, cputime_t cputime_scaled
)
3787 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3788 cputime64_t
*target_cputime64
;
3790 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3791 account_guest_time(p
, cputime
, cputime_scaled
);
3795 if (hardirq_count() - hardirq_offset
)
3796 target_cputime64
= &cpustat
->irq
;
3797 else if (in_serving_softirq())
3798 target_cputime64
= &cpustat
->softirq
;
3800 target_cputime64
= &cpustat
->system
;
3802 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
3806 * Account for involuntary wait time.
3807 * @cputime: the cpu time spent in involuntary wait
3809 void account_steal_time(cputime_t cputime
)
3811 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3812 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3814 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3818 * Account for idle time.
3819 * @cputime: the cpu time spent in idle wait
3821 void account_idle_time(cputime_t cputime
)
3823 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3824 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3825 struct rq
*rq
= this_rq();
3827 if (atomic_read(&rq
->nr_iowait
) > 0)
3828 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3830 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3833 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3835 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3837 * Account a tick to a process and cpustat
3838 * @p: the process that the cpu time gets accounted to
3839 * @user_tick: is the tick from userspace
3840 * @rq: the pointer to rq
3842 * Tick demultiplexing follows the order
3843 * - pending hardirq update
3844 * - pending softirq update
3848 * - check for guest_time
3849 * - else account as system_time
3851 * Check for hardirq is done both for system and user time as there is
3852 * no timer going off while we are on hardirq and hence we may never get an
3853 * opportunity to update it solely in system time.
3854 * p->stime and friends are only updated on system time and not on irq
3855 * softirq as those do not count in task exec_runtime any more.
3857 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3860 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3861 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
3862 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3864 if (irqtime_account_hi_update()) {
3865 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3866 } else if (irqtime_account_si_update()) {
3867 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3868 } else if (this_cpu_ksoftirqd() == p
) {
3870 * ksoftirqd time do not get accounted in cpu_softirq_time.
3871 * So, we have to handle it separately here.
3872 * Also, p->stime needs to be updated for ksoftirqd.
3874 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3876 } else if (user_tick
) {
3877 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3878 } else if (p
== rq
->idle
) {
3879 account_idle_time(cputime_one_jiffy
);
3880 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
3881 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3883 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3888 static void irqtime_account_idle_ticks(int ticks
)
3891 struct rq
*rq
= this_rq();
3893 for (i
= 0; i
< ticks
; i
++)
3894 irqtime_account_process_tick(current
, 0, rq
);
3896 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3897 static void irqtime_account_idle_ticks(int ticks
) {}
3898 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3900 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3903 * Account a single tick of cpu time.
3904 * @p: the process that the cpu time gets accounted to
3905 * @user_tick: indicates if the tick is a user or a system tick
3907 void account_process_tick(struct task_struct
*p
, int user_tick
)
3909 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3910 struct rq
*rq
= this_rq();
3912 if (sched_clock_irqtime
) {
3913 irqtime_account_process_tick(p
, user_tick
, rq
);
3918 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3919 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3920 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3923 account_idle_time(cputime_one_jiffy
);
3927 * Account multiple ticks of steal time.
3928 * @p: the process from which the cpu time has been stolen
3929 * @ticks: number of stolen ticks
3931 void account_steal_ticks(unsigned long ticks
)
3933 account_steal_time(jiffies_to_cputime(ticks
));
3937 * Account multiple ticks of idle time.
3938 * @ticks: number of stolen ticks
3940 void account_idle_ticks(unsigned long ticks
)
3943 if (sched_clock_irqtime
) {
3944 irqtime_account_idle_ticks(ticks
);
3948 account_idle_time(jiffies_to_cputime(ticks
));
3954 * Use precise platform statistics if available:
3956 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3957 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3963 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3965 struct task_cputime cputime
;
3967 thread_group_cputime(p
, &cputime
);
3969 *ut
= cputime
.utime
;
3970 *st
= cputime
.stime
;
3974 #ifndef nsecs_to_cputime
3975 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3978 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3980 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3983 * Use CFS's precise accounting:
3985 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3991 do_div(temp
, total
);
3992 utime
= (cputime_t
)temp
;
3997 * Compare with previous values, to keep monotonicity:
3999 p
->prev_utime
= max(p
->prev_utime
, utime
);
4000 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
4002 *ut
= p
->prev_utime
;
4003 *st
= p
->prev_stime
;
4007 * Must be called with siglock held.
4009 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4011 struct signal_struct
*sig
= p
->signal
;
4012 struct task_cputime cputime
;
4013 cputime_t rtime
, utime
, total
;
4015 thread_group_cputime(p
, &cputime
);
4017 total
= cputime_add(cputime
.utime
, cputime
.stime
);
4018 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
4023 temp
*= cputime
.utime
;
4024 do_div(temp
, total
);
4025 utime
= (cputime_t
)temp
;
4029 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
4030 sig
->prev_stime
= max(sig
->prev_stime
,
4031 cputime_sub(rtime
, sig
->prev_utime
));
4033 *ut
= sig
->prev_utime
;
4034 *st
= sig
->prev_stime
;
4039 * This function gets called by the timer code, with HZ frequency.
4040 * We call it with interrupts disabled.
4042 void scheduler_tick(void)
4044 int cpu
= smp_processor_id();
4045 struct rq
*rq
= cpu_rq(cpu
);
4046 struct task_struct
*curr
= rq
->curr
;
4050 raw_spin_lock(&rq
->lock
);
4051 update_rq_clock(rq
);
4052 update_cpu_load_active(rq
);
4053 curr
->sched_class
->task_tick(rq
, curr
, 0);
4054 raw_spin_unlock(&rq
->lock
);
4056 perf_event_task_tick();
4059 rq
->idle_at_tick
= idle_cpu(cpu
);
4060 trigger_load_balance(rq
, cpu
);
4064 notrace
unsigned long get_parent_ip(unsigned long addr
)
4066 if (in_lock_functions(addr
)) {
4067 addr
= CALLER_ADDR2
;
4068 if (in_lock_functions(addr
))
4069 addr
= CALLER_ADDR3
;
4074 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4075 defined(CONFIG_PREEMPT_TRACER))
4077 void __kprobes
add_preempt_count(int val
)
4079 #ifdef CONFIG_DEBUG_PREEMPT
4083 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4086 preempt_count() += val
;
4087 #ifdef CONFIG_DEBUG_PREEMPT
4089 * Spinlock count overflowing soon?
4091 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4094 if (preempt_count() == val
)
4095 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4097 EXPORT_SYMBOL(add_preempt_count
);
4099 void __kprobes
sub_preempt_count(int val
)
4101 #ifdef CONFIG_DEBUG_PREEMPT
4105 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4108 * Is the spinlock portion underflowing?
4110 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4111 !(preempt_count() & PREEMPT_MASK
)))
4115 if (preempt_count() == val
)
4116 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4117 preempt_count() -= val
;
4119 EXPORT_SYMBOL(sub_preempt_count
);
4124 * Print scheduling while atomic bug:
4126 static noinline
void __schedule_bug(struct task_struct
*prev
)
4128 struct pt_regs
*regs
= get_irq_regs();
4130 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4131 prev
->comm
, prev
->pid
, preempt_count());
4133 debug_show_held_locks(prev
);
4135 if (irqs_disabled())
4136 print_irqtrace_events(prev
);
4145 * Various schedule()-time debugging checks and statistics:
4147 static inline void schedule_debug(struct task_struct
*prev
)
4150 * Test if we are atomic. Since do_exit() needs to call into
4151 * schedule() atomically, we ignore that path for now.
4152 * Otherwise, whine if we are scheduling when we should not be.
4154 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4155 __schedule_bug(prev
);
4157 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4159 schedstat_inc(this_rq(), sched_count
);
4162 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4164 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
4165 update_rq_clock(rq
);
4166 prev
->sched_class
->put_prev_task(rq
, prev
);
4170 * Pick up the highest-prio task:
4172 static inline struct task_struct
*
4173 pick_next_task(struct rq
*rq
)
4175 const struct sched_class
*class;
4176 struct task_struct
*p
;
4179 * Optimization: we know that if all tasks are in
4180 * the fair class we can call that function directly:
4182 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4183 p
= fair_sched_class
.pick_next_task(rq
);
4188 for_each_class(class) {
4189 p
= class->pick_next_task(rq
);
4194 BUG(); /* the idle class will always have a runnable task */
4198 * schedule() is the main scheduler function.
4200 asmlinkage
void __sched
schedule(void)
4202 struct task_struct
*prev
, *next
;
4203 unsigned long *switch_count
;
4209 cpu
= smp_processor_id();
4211 rcu_note_context_switch(cpu
);
4214 schedule_debug(prev
);
4216 if (sched_feat(HRTICK
))
4219 raw_spin_lock_irq(&rq
->lock
);
4221 switch_count
= &prev
->nivcsw
;
4222 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4223 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4224 prev
->state
= TASK_RUNNING
;
4226 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4230 * If a worker went to sleep, notify and ask workqueue
4231 * whether it wants to wake up a task to maintain
4234 if (prev
->flags
& PF_WQ_WORKER
) {
4235 struct task_struct
*to_wakeup
;
4237 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4239 try_to_wake_up_local(to_wakeup
);
4243 * If we are going to sleep and we have plugged IO
4244 * queued, make sure to submit it to avoid deadlocks.
4246 if (blk_needs_flush_plug(prev
)) {
4247 raw_spin_unlock(&rq
->lock
);
4248 blk_schedule_flush_plug(prev
);
4249 raw_spin_lock(&rq
->lock
);
4252 switch_count
= &prev
->nvcsw
;
4255 pre_schedule(rq
, prev
);
4257 if (unlikely(!rq
->nr_running
))
4258 idle_balance(cpu
, rq
);
4260 put_prev_task(rq
, prev
);
4261 next
= pick_next_task(rq
);
4262 clear_tsk_need_resched(prev
);
4263 rq
->skip_clock_update
= 0;
4265 if (likely(prev
!= next
)) {
4270 context_switch(rq
, prev
, next
); /* unlocks the rq */
4272 * The context switch have flipped the stack from under us
4273 * and restored the local variables which were saved when
4274 * this task called schedule() in the past. prev == current
4275 * is still correct, but it can be moved to another cpu/rq.
4277 cpu
= smp_processor_id();
4280 raw_spin_unlock_irq(&rq
->lock
);
4284 preempt_enable_no_resched();
4288 EXPORT_SYMBOL(schedule
);
4290 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4292 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
4297 if (lock
->owner
!= owner
)
4301 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4302 * lock->owner still matches owner, if that fails, owner might
4303 * point to free()d memory, if it still matches, the rcu_read_lock()
4304 * ensures the memory stays valid.
4308 ret
= owner
->on_cpu
;
4316 * Look out! "owner" is an entirely speculative pointer
4317 * access and not reliable.
4319 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
4321 if (!sched_feat(OWNER_SPIN
))
4324 while (owner_running(lock
, owner
)) {
4328 arch_mutex_cpu_relax();
4332 * If the owner changed to another task there is likely
4333 * heavy contention, stop spinning.
4342 #ifdef CONFIG_PREEMPT
4344 * this is the entry point to schedule() from in-kernel preemption
4345 * off of preempt_enable. Kernel preemptions off return from interrupt
4346 * occur there and call schedule directly.
4348 asmlinkage
void __sched notrace
preempt_schedule(void)
4350 struct thread_info
*ti
= current_thread_info();
4353 * If there is a non-zero preempt_count or interrupts are disabled,
4354 * we do not want to preempt the current task. Just return..
4356 if (likely(ti
->preempt_count
|| irqs_disabled()))
4360 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4362 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4365 * Check again in case we missed a preemption opportunity
4366 * between schedule and now.
4369 } while (need_resched());
4371 EXPORT_SYMBOL(preempt_schedule
);
4374 * this is the entry point to schedule() from kernel preemption
4375 * off of irq context.
4376 * Note, that this is called and return with irqs disabled. This will
4377 * protect us against recursive calling from irq.
4379 asmlinkage
void __sched
preempt_schedule_irq(void)
4381 struct thread_info
*ti
= current_thread_info();
4383 /* Catch callers which need to be fixed */
4384 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4387 add_preempt_count(PREEMPT_ACTIVE
);
4390 local_irq_disable();
4391 sub_preempt_count(PREEMPT_ACTIVE
);
4394 * Check again in case we missed a preemption opportunity
4395 * between schedule and now.
4398 } while (need_resched());
4401 #endif /* CONFIG_PREEMPT */
4403 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4406 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4408 EXPORT_SYMBOL(default_wake_function
);
4411 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4412 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4413 * number) then we wake all the non-exclusive tasks and one exclusive task.
4415 * There are circumstances in which we can try to wake a task which has already
4416 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4417 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4419 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4420 int nr_exclusive
, int wake_flags
, void *key
)
4422 wait_queue_t
*curr
, *next
;
4424 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4425 unsigned flags
= curr
->flags
;
4427 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4428 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4434 * __wake_up - wake up threads blocked on a waitqueue.
4436 * @mode: which threads
4437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4438 * @key: is directly passed to the wakeup function
4440 * It may be assumed that this function implies a write memory barrier before
4441 * changing the task state if and only if any tasks are woken up.
4443 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4444 int nr_exclusive
, void *key
)
4446 unsigned long flags
;
4448 spin_lock_irqsave(&q
->lock
, flags
);
4449 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4450 spin_unlock_irqrestore(&q
->lock
, flags
);
4452 EXPORT_SYMBOL(__wake_up
);
4455 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4457 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4459 __wake_up_common(q
, mode
, 1, 0, NULL
);
4461 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4463 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4465 __wake_up_common(q
, mode
, 1, 0, key
);
4467 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4470 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4472 * @mode: which threads
4473 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4474 * @key: opaque value to be passed to wakeup targets
4476 * The sync wakeup differs that the waker knows that it will schedule
4477 * away soon, so while the target thread will be woken up, it will not
4478 * be migrated to another CPU - ie. the two threads are 'synchronized'
4479 * with each other. This can prevent needless bouncing between CPUs.
4481 * On UP it can prevent extra preemption.
4483 * It may be assumed that this function implies a write memory barrier before
4484 * changing the task state if and only if any tasks are woken up.
4486 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4487 int nr_exclusive
, void *key
)
4489 unsigned long flags
;
4490 int wake_flags
= WF_SYNC
;
4495 if (unlikely(!nr_exclusive
))
4498 spin_lock_irqsave(&q
->lock
, flags
);
4499 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4500 spin_unlock_irqrestore(&q
->lock
, flags
);
4502 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4505 * __wake_up_sync - see __wake_up_sync_key()
4507 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4509 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4511 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4514 * complete: - signals a single thread waiting on this completion
4515 * @x: holds the state of this particular completion
4517 * This will wake up a single thread waiting on this completion. Threads will be
4518 * awakened in the same order in which they were queued.
4520 * See also complete_all(), wait_for_completion() and related routines.
4522 * It may be assumed that this function implies a write memory barrier before
4523 * changing the task state if and only if any tasks are woken up.
4525 void complete(struct completion
*x
)
4527 unsigned long flags
;
4529 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4531 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4532 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4534 EXPORT_SYMBOL(complete
);
4537 * complete_all: - signals all threads waiting on this completion
4538 * @x: holds the state of this particular completion
4540 * This will wake up all threads waiting on this particular completion event.
4542 * It may be assumed that this function implies a write memory barrier before
4543 * changing the task state if and only if any tasks are woken up.
4545 void complete_all(struct completion
*x
)
4547 unsigned long flags
;
4549 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4550 x
->done
+= UINT_MAX
/2;
4551 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4552 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4554 EXPORT_SYMBOL(complete_all
);
4556 static inline long __sched
4557 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4560 DECLARE_WAITQUEUE(wait
, current
);
4562 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4564 if (signal_pending_state(state
, current
)) {
4565 timeout
= -ERESTARTSYS
;
4568 __set_current_state(state
);
4569 spin_unlock_irq(&x
->wait
.lock
);
4570 timeout
= schedule_timeout(timeout
);
4571 spin_lock_irq(&x
->wait
.lock
);
4572 } while (!x
->done
&& timeout
);
4573 __remove_wait_queue(&x
->wait
, &wait
);
4578 return timeout
?: 1;
4582 wait_for_common(struct completion
*x
, long timeout
, int state
)
4586 spin_lock_irq(&x
->wait
.lock
);
4587 timeout
= do_wait_for_common(x
, timeout
, state
);
4588 spin_unlock_irq(&x
->wait
.lock
);
4593 * wait_for_completion: - waits for completion of a task
4594 * @x: holds the state of this particular completion
4596 * This waits to be signaled for completion of a specific task. It is NOT
4597 * interruptible and there is no timeout.
4599 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4600 * and interrupt capability. Also see complete().
4602 void __sched
wait_for_completion(struct completion
*x
)
4604 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4606 EXPORT_SYMBOL(wait_for_completion
);
4609 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4610 * @x: holds the state of this particular completion
4611 * @timeout: timeout value in jiffies
4613 * This waits for either a completion of a specific task to be signaled or for a
4614 * specified timeout to expire. The timeout is in jiffies. It is not
4617 unsigned long __sched
4618 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4620 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4622 EXPORT_SYMBOL(wait_for_completion_timeout
);
4625 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4626 * @x: holds the state of this particular completion
4628 * This waits for completion of a specific task to be signaled. It is
4631 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4633 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4634 if (t
== -ERESTARTSYS
)
4638 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4641 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4642 * @x: holds the state of this particular completion
4643 * @timeout: timeout value in jiffies
4645 * This waits for either a completion of a specific task to be signaled or for a
4646 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4649 wait_for_completion_interruptible_timeout(struct completion
*x
,
4650 unsigned long timeout
)
4652 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4654 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4657 * wait_for_completion_killable: - waits for completion of a task (killable)
4658 * @x: holds the state of this particular completion
4660 * This waits to be signaled for completion of a specific task. It can be
4661 * interrupted by a kill signal.
4663 int __sched
wait_for_completion_killable(struct completion
*x
)
4665 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4666 if (t
== -ERESTARTSYS
)
4670 EXPORT_SYMBOL(wait_for_completion_killable
);
4673 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4674 * @x: holds the state of this particular completion
4675 * @timeout: timeout value in jiffies
4677 * This waits for either a completion of a specific task to be
4678 * signaled or for a specified timeout to expire. It can be
4679 * interrupted by a kill signal. The timeout is in jiffies.
4682 wait_for_completion_killable_timeout(struct completion
*x
,
4683 unsigned long timeout
)
4685 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4687 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4690 * try_wait_for_completion - try to decrement a completion without blocking
4691 * @x: completion structure
4693 * Returns: 0 if a decrement cannot be done without blocking
4694 * 1 if a decrement succeeded.
4696 * If a completion is being used as a counting completion,
4697 * attempt to decrement the counter without blocking. This
4698 * enables us to avoid waiting if the resource the completion
4699 * is protecting is not available.
4701 bool try_wait_for_completion(struct completion
*x
)
4703 unsigned long flags
;
4706 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4711 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4714 EXPORT_SYMBOL(try_wait_for_completion
);
4717 * completion_done - Test to see if a completion has any waiters
4718 * @x: completion structure
4720 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4721 * 1 if there are no waiters.
4724 bool completion_done(struct completion
*x
)
4726 unsigned long flags
;
4729 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4732 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4735 EXPORT_SYMBOL(completion_done
);
4738 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4740 unsigned long flags
;
4743 init_waitqueue_entry(&wait
, current
);
4745 __set_current_state(state
);
4747 spin_lock_irqsave(&q
->lock
, flags
);
4748 __add_wait_queue(q
, &wait
);
4749 spin_unlock(&q
->lock
);
4750 timeout
= schedule_timeout(timeout
);
4751 spin_lock_irq(&q
->lock
);
4752 __remove_wait_queue(q
, &wait
);
4753 spin_unlock_irqrestore(&q
->lock
, flags
);
4758 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4760 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4762 EXPORT_SYMBOL(interruptible_sleep_on
);
4765 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4767 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4769 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4771 void __sched
sleep_on(wait_queue_head_t
*q
)
4773 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4775 EXPORT_SYMBOL(sleep_on
);
4777 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4779 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4781 EXPORT_SYMBOL(sleep_on_timeout
);
4783 #ifdef CONFIG_RT_MUTEXES
4786 * rt_mutex_setprio - set the current priority of a task
4788 * @prio: prio value (kernel-internal form)
4790 * This function changes the 'effective' priority of a task. It does
4791 * not touch ->normal_prio like __setscheduler().
4793 * Used by the rt_mutex code to implement priority inheritance logic.
4795 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4797 int oldprio
, on_rq
, running
;
4799 const struct sched_class
*prev_class
;
4801 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4803 rq
= __task_rq_lock(p
);
4805 trace_sched_pi_setprio(p
, prio
);
4807 prev_class
= p
->sched_class
;
4809 running
= task_current(rq
, p
);
4811 dequeue_task(rq
, p
, 0);
4813 p
->sched_class
->put_prev_task(rq
, p
);
4816 p
->sched_class
= &rt_sched_class
;
4818 p
->sched_class
= &fair_sched_class
;
4823 p
->sched_class
->set_curr_task(rq
);
4825 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4827 check_class_changed(rq
, p
, prev_class
, oldprio
);
4828 __task_rq_unlock(rq
);
4833 void set_user_nice(struct task_struct
*p
, long nice
)
4835 int old_prio
, delta
, on_rq
;
4836 unsigned long flags
;
4839 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4842 * We have to be careful, if called from sys_setpriority(),
4843 * the task might be in the middle of scheduling on another CPU.
4845 rq
= task_rq_lock(p
, &flags
);
4847 * The RT priorities are set via sched_setscheduler(), but we still
4848 * allow the 'normal' nice value to be set - but as expected
4849 * it wont have any effect on scheduling until the task is
4850 * SCHED_FIFO/SCHED_RR:
4852 if (task_has_rt_policy(p
)) {
4853 p
->static_prio
= NICE_TO_PRIO(nice
);
4858 dequeue_task(rq
, p
, 0);
4860 p
->static_prio
= NICE_TO_PRIO(nice
);
4863 p
->prio
= effective_prio(p
);
4864 delta
= p
->prio
- old_prio
;
4867 enqueue_task(rq
, p
, 0);
4869 * If the task increased its priority or is running and
4870 * lowered its priority, then reschedule its CPU:
4872 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4873 resched_task(rq
->curr
);
4876 task_rq_unlock(rq
, p
, &flags
);
4878 EXPORT_SYMBOL(set_user_nice
);
4881 * can_nice - check if a task can reduce its nice value
4885 int can_nice(const struct task_struct
*p
, const int nice
)
4887 /* convert nice value [19,-20] to rlimit style value [1,40] */
4888 int nice_rlim
= 20 - nice
;
4890 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4891 capable(CAP_SYS_NICE
));
4894 #ifdef __ARCH_WANT_SYS_NICE
4897 * sys_nice - change the priority of the current process.
4898 * @increment: priority increment
4900 * sys_setpriority is a more generic, but much slower function that
4901 * does similar things.
4903 SYSCALL_DEFINE1(nice
, int, increment
)
4908 * Setpriority might change our priority at the same moment.
4909 * We don't have to worry. Conceptually one call occurs first
4910 * and we have a single winner.
4912 if (increment
< -40)
4917 nice
= TASK_NICE(current
) + increment
;
4923 if (increment
< 0 && !can_nice(current
, nice
))
4926 retval
= security_task_setnice(current
, nice
);
4930 set_user_nice(current
, nice
);
4937 * task_prio - return the priority value of a given task.
4938 * @p: the task in question.
4940 * This is the priority value as seen by users in /proc.
4941 * RT tasks are offset by -200. Normal tasks are centered
4942 * around 0, value goes from -16 to +15.
4944 int task_prio(const struct task_struct
*p
)
4946 return p
->prio
- MAX_RT_PRIO
;
4950 * task_nice - return the nice value of a given task.
4951 * @p: the task in question.
4953 int task_nice(const struct task_struct
*p
)
4955 return TASK_NICE(p
);
4957 EXPORT_SYMBOL(task_nice
);
4960 * idle_cpu - is a given cpu idle currently?
4961 * @cpu: the processor in question.
4963 int idle_cpu(int cpu
)
4965 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4969 * idle_task - return the idle task for a given cpu.
4970 * @cpu: the processor in question.
4972 struct task_struct
*idle_task(int cpu
)
4974 return cpu_rq(cpu
)->idle
;
4978 * find_process_by_pid - find a process with a matching PID value.
4979 * @pid: the pid in question.
4981 static struct task_struct
*find_process_by_pid(pid_t pid
)
4983 return pid
? find_task_by_vpid(pid
) : current
;
4986 /* Actually do priority change: must hold rq lock. */
4988 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4991 p
->rt_priority
= prio
;
4992 p
->normal_prio
= normal_prio(p
);
4993 /* we are holding p->pi_lock already */
4994 p
->prio
= rt_mutex_getprio(p
);
4995 if (rt_prio(p
->prio
))
4996 p
->sched_class
= &rt_sched_class
;
4998 p
->sched_class
= &fair_sched_class
;
5003 * check the target process has a UID that matches the current process's
5005 static bool check_same_owner(struct task_struct
*p
)
5007 const struct cred
*cred
= current_cred(), *pcred
;
5011 pcred
= __task_cred(p
);
5012 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
5013 match
= (cred
->euid
== pcred
->euid
||
5014 cred
->euid
== pcred
->uid
);
5021 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5022 const struct sched_param
*param
, bool user
)
5024 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5025 unsigned long flags
;
5026 const struct sched_class
*prev_class
;
5030 /* may grab non-irq protected spin_locks */
5031 BUG_ON(in_interrupt());
5033 /* double check policy once rq lock held */
5035 reset_on_fork
= p
->sched_reset_on_fork
;
5036 policy
= oldpolicy
= p
->policy
;
5038 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
5039 policy
&= ~SCHED_RESET_ON_FORK
;
5041 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5042 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5043 policy
!= SCHED_IDLE
)
5048 * Valid priorities for SCHED_FIFO and SCHED_RR are
5049 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5050 * SCHED_BATCH and SCHED_IDLE is 0.
5052 if (param
->sched_priority
< 0 ||
5053 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5054 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5056 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5060 * Allow unprivileged RT tasks to decrease priority:
5062 if (user
&& !capable(CAP_SYS_NICE
)) {
5063 if (rt_policy(policy
)) {
5064 unsigned long rlim_rtprio
=
5065 task_rlimit(p
, RLIMIT_RTPRIO
);
5067 /* can't set/change the rt policy */
5068 if (policy
!= p
->policy
&& !rlim_rtprio
)
5071 /* can't increase priority */
5072 if (param
->sched_priority
> p
->rt_priority
&&
5073 param
->sched_priority
> rlim_rtprio
)
5078 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5079 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5081 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
5082 if (!can_nice(p
, TASK_NICE(p
)))
5086 /* can't change other user's priorities */
5087 if (!check_same_owner(p
))
5090 /* Normal users shall not reset the sched_reset_on_fork flag */
5091 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
5096 retval
= security_task_setscheduler(p
);
5102 * make sure no PI-waiters arrive (or leave) while we are
5103 * changing the priority of the task:
5105 * To be able to change p->policy safely, the appropriate
5106 * runqueue lock must be held.
5108 rq
= task_rq_lock(p
, &flags
);
5111 * Changing the policy of the stop threads its a very bad idea
5113 if (p
== rq
->stop
) {
5114 task_rq_unlock(rq
, p
, &flags
);
5119 * If not changing anything there's no need to proceed further:
5121 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
5122 param
->sched_priority
== p
->rt_priority
))) {
5124 __task_rq_unlock(rq
);
5125 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5129 #ifdef CONFIG_RT_GROUP_SCHED
5132 * Do not allow realtime tasks into groups that have no runtime
5135 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5136 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5137 !task_group_is_autogroup(task_group(p
))) {
5138 task_rq_unlock(rq
, p
, &flags
);
5144 /* recheck policy now with rq lock held */
5145 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5146 policy
= oldpolicy
= -1;
5147 task_rq_unlock(rq
, p
, &flags
);
5151 running
= task_current(rq
, p
);
5153 deactivate_task(rq
, p
, 0);
5155 p
->sched_class
->put_prev_task(rq
, p
);
5157 p
->sched_reset_on_fork
= reset_on_fork
;
5160 prev_class
= p
->sched_class
;
5161 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5164 p
->sched_class
->set_curr_task(rq
);
5166 activate_task(rq
, p
, 0);
5168 check_class_changed(rq
, p
, prev_class
, oldprio
);
5169 task_rq_unlock(rq
, p
, &flags
);
5171 rt_mutex_adjust_pi(p
);
5177 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5178 * @p: the task in question.
5179 * @policy: new policy.
5180 * @param: structure containing the new RT priority.
5182 * NOTE that the task may be already dead.
5184 int sched_setscheduler(struct task_struct
*p
, int policy
,
5185 const struct sched_param
*param
)
5187 return __sched_setscheduler(p
, policy
, param
, true);
5189 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5192 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5193 * @p: the task in question.
5194 * @policy: new policy.
5195 * @param: structure containing the new RT priority.
5197 * Just like sched_setscheduler, only don't bother checking if the
5198 * current context has permission. For example, this is needed in
5199 * stop_machine(): we create temporary high priority worker threads,
5200 * but our caller might not have that capability.
5202 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5203 const struct sched_param
*param
)
5205 return __sched_setscheduler(p
, policy
, param
, false);
5209 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5211 struct sched_param lparam
;
5212 struct task_struct
*p
;
5215 if (!param
|| pid
< 0)
5217 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5222 p
= find_process_by_pid(pid
);
5224 retval
= sched_setscheduler(p
, policy
, &lparam
);
5231 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5232 * @pid: the pid in question.
5233 * @policy: new policy.
5234 * @param: structure containing the new RT priority.
5236 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5237 struct sched_param __user
*, param
)
5239 /* negative values for policy are not valid */
5243 return do_sched_setscheduler(pid
, policy
, param
);
5247 * sys_sched_setparam - set/change the RT priority of a thread
5248 * @pid: the pid in question.
5249 * @param: structure containing the new RT priority.
5251 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5253 return do_sched_setscheduler(pid
, -1, param
);
5257 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5258 * @pid: the pid in question.
5260 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5262 struct task_struct
*p
;
5270 p
= find_process_by_pid(pid
);
5272 retval
= security_task_getscheduler(p
);
5275 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5282 * sys_sched_getparam - get the RT priority of a thread
5283 * @pid: the pid in question.
5284 * @param: structure containing the RT priority.
5286 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5288 struct sched_param lp
;
5289 struct task_struct
*p
;
5292 if (!param
|| pid
< 0)
5296 p
= find_process_by_pid(pid
);
5301 retval
= security_task_getscheduler(p
);
5305 lp
.sched_priority
= p
->rt_priority
;
5309 * This one might sleep, we cannot do it with a spinlock held ...
5311 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5320 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5322 cpumask_var_t cpus_allowed
, new_mask
;
5323 struct task_struct
*p
;
5329 p
= find_process_by_pid(pid
);
5336 /* Prevent p going away */
5340 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5344 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5346 goto out_free_cpus_allowed
;
5349 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5352 retval
= security_task_setscheduler(p
);
5356 cpuset_cpus_allowed(p
, cpus_allowed
);
5357 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5359 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5362 cpuset_cpus_allowed(p
, cpus_allowed
);
5363 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5365 * We must have raced with a concurrent cpuset
5366 * update. Just reset the cpus_allowed to the
5367 * cpuset's cpus_allowed
5369 cpumask_copy(new_mask
, cpus_allowed
);
5374 free_cpumask_var(new_mask
);
5375 out_free_cpus_allowed
:
5376 free_cpumask_var(cpus_allowed
);
5383 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5384 struct cpumask
*new_mask
)
5386 if (len
< cpumask_size())
5387 cpumask_clear(new_mask
);
5388 else if (len
> cpumask_size())
5389 len
= cpumask_size();
5391 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5395 * sys_sched_setaffinity - set the cpu affinity of a process
5396 * @pid: pid of the process
5397 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5398 * @user_mask_ptr: user-space pointer to the new cpu mask
5400 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5401 unsigned long __user
*, user_mask_ptr
)
5403 cpumask_var_t new_mask
;
5406 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5409 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5411 retval
= sched_setaffinity(pid
, new_mask
);
5412 free_cpumask_var(new_mask
);
5416 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5418 struct task_struct
*p
;
5419 unsigned long flags
;
5426 p
= find_process_by_pid(pid
);
5430 retval
= security_task_getscheduler(p
);
5434 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5435 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5436 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5446 * sys_sched_getaffinity - get the cpu affinity of a process
5447 * @pid: pid of the process
5448 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5449 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5451 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5452 unsigned long __user
*, user_mask_ptr
)
5457 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5459 if (len
& (sizeof(unsigned long)-1))
5462 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5465 ret
= sched_getaffinity(pid
, mask
);
5467 size_t retlen
= min_t(size_t, len
, cpumask_size());
5469 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5474 free_cpumask_var(mask
);
5480 * sys_sched_yield - yield the current processor to other threads.
5482 * This function yields the current CPU to other tasks. If there are no
5483 * other threads running on this CPU then this function will return.
5485 SYSCALL_DEFINE0(sched_yield
)
5487 struct rq
*rq
= this_rq_lock();
5489 schedstat_inc(rq
, yld_count
);
5490 current
->sched_class
->yield_task(rq
);
5493 * Since we are going to call schedule() anyway, there's
5494 * no need to preempt or enable interrupts:
5496 __release(rq
->lock
);
5497 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5498 do_raw_spin_unlock(&rq
->lock
);
5499 preempt_enable_no_resched();
5506 static inline int should_resched(void)
5508 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5511 static void __cond_resched(void)
5513 add_preempt_count(PREEMPT_ACTIVE
);
5515 sub_preempt_count(PREEMPT_ACTIVE
);
5518 int __sched
_cond_resched(void)
5520 if (should_resched()) {
5526 EXPORT_SYMBOL(_cond_resched
);
5529 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5530 * call schedule, and on return reacquire the lock.
5532 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5533 * operations here to prevent schedule() from being called twice (once via
5534 * spin_unlock(), once by hand).
5536 int __cond_resched_lock(spinlock_t
*lock
)
5538 int resched
= should_resched();
5541 lockdep_assert_held(lock
);
5543 if (spin_needbreak(lock
) || resched
) {
5554 EXPORT_SYMBOL(__cond_resched_lock
);
5556 int __sched
__cond_resched_softirq(void)
5558 BUG_ON(!in_softirq());
5560 if (should_resched()) {
5568 EXPORT_SYMBOL(__cond_resched_softirq
);
5571 * yield - yield the current processor to other threads.
5573 * This is a shortcut for kernel-space yielding - it marks the
5574 * thread runnable and calls sys_sched_yield().
5576 void __sched
yield(void)
5578 set_current_state(TASK_RUNNING
);
5581 EXPORT_SYMBOL(yield
);
5584 * yield_to - yield the current processor to another thread in
5585 * your thread group, or accelerate that thread toward the
5586 * processor it's on.
5588 * @preempt: whether task preemption is allowed or not
5590 * It's the caller's job to ensure that the target task struct
5591 * can't go away on us before we can do any checks.
5593 * Returns true if we indeed boosted the target task.
5595 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
5597 struct task_struct
*curr
= current
;
5598 struct rq
*rq
, *p_rq
;
5599 unsigned long flags
;
5602 local_irq_save(flags
);
5607 double_rq_lock(rq
, p_rq
);
5608 while (task_rq(p
) != p_rq
) {
5609 double_rq_unlock(rq
, p_rq
);
5613 if (!curr
->sched_class
->yield_to_task
)
5616 if (curr
->sched_class
!= p
->sched_class
)
5619 if (task_running(p_rq
, p
) || p
->state
)
5622 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5624 schedstat_inc(rq
, yld_count
);
5626 * Make p's CPU reschedule; pick_next_entity takes care of
5629 if (preempt
&& rq
!= p_rq
)
5630 resched_task(p_rq
->curr
);
5634 double_rq_unlock(rq
, p_rq
);
5635 local_irq_restore(flags
);
5642 EXPORT_SYMBOL_GPL(yield_to
);
5645 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5646 * that process accounting knows that this is a task in IO wait state.
5648 void __sched
io_schedule(void)
5650 struct rq
*rq
= raw_rq();
5652 delayacct_blkio_start();
5653 atomic_inc(&rq
->nr_iowait
);
5654 blk_flush_plug(current
);
5655 current
->in_iowait
= 1;
5657 current
->in_iowait
= 0;
5658 atomic_dec(&rq
->nr_iowait
);
5659 delayacct_blkio_end();
5661 EXPORT_SYMBOL(io_schedule
);
5663 long __sched
io_schedule_timeout(long timeout
)
5665 struct rq
*rq
= raw_rq();
5668 delayacct_blkio_start();
5669 atomic_inc(&rq
->nr_iowait
);
5670 blk_flush_plug(current
);
5671 current
->in_iowait
= 1;
5672 ret
= schedule_timeout(timeout
);
5673 current
->in_iowait
= 0;
5674 atomic_dec(&rq
->nr_iowait
);
5675 delayacct_blkio_end();
5680 * sys_sched_get_priority_max - return maximum RT priority.
5681 * @policy: scheduling class.
5683 * this syscall returns the maximum rt_priority that can be used
5684 * by a given scheduling class.
5686 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5693 ret
= MAX_USER_RT_PRIO
-1;
5705 * sys_sched_get_priority_min - return minimum RT priority.
5706 * @policy: scheduling class.
5708 * this syscall returns the minimum rt_priority that can be used
5709 * by a given scheduling class.
5711 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5729 * sys_sched_rr_get_interval - return the default timeslice of a process.
5730 * @pid: pid of the process.
5731 * @interval: userspace pointer to the timeslice value.
5733 * this syscall writes the default timeslice value of a given process
5734 * into the user-space timespec buffer. A value of '0' means infinity.
5736 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5737 struct timespec __user
*, interval
)
5739 struct task_struct
*p
;
5740 unsigned int time_slice
;
5741 unsigned long flags
;
5751 p
= find_process_by_pid(pid
);
5755 retval
= security_task_getscheduler(p
);
5759 rq
= task_rq_lock(p
, &flags
);
5760 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5761 task_rq_unlock(rq
, p
, &flags
);
5764 jiffies_to_timespec(time_slice
, &t
);
5765 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5773 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5775 void sched_show_task(struct task_struct
*p
)
5777 unsigned long free
= 0;
5780 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5781 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5782 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5783 #if BITS_PER_LONG == 32
5784 if (state
== TASK_RUNNING
)
5785 printk(KERN_CONT
" running ");
5787 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5789 if (state
== TASK_RUNNING
)
5790 printk(KERN_CONT
" running task ");
5792 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5794 #ifdef CONFIG_DEBUG_STACK_USAGE
5795 free
= stack_not_used(p
);
5797 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5798 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5799 (unsigned long)task_thread_info(p
)->flags
);
5801 show_stack(p
, NULL
);
5804 void show_state_filter(unsigned long state_filter
)
5806 struct task_struct
*g
, *p
;
5808 #if BITS_PER_LONG == 32
5810 " task PC stack pid father\n");
5813 " task PC stack pid father\n");
5815 read_lock(&tasklist_lock
);
5816 do_each_thread(g
, p
) {
5818 * reset the NMI-timeout, listing all files on a slow
5819 * console might take a lot of time:
5821 touch_nmi_watchdog();
5822 if (!state_filter
|| (p
->state
& state_filter
))
5824 } while_each_thread(g
, p
);
5826 touch_all_softlockup_watchdogs();
5828 #ifdef CONFIG_SCHED_DEBUG
5829 sysrq_sched_debug_show();
5831 read_unlock(&tasklist_lock
);
5833 * Only show locks if all tasks are dumped:
5836 debug_show_all_locks();
5839 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5841 idle
->sched_class
= &idle_sched_class
;
5845 * init_idle - set up an idle thread for a given CPU
5846 * @idle: task in question
5847 * @cpu: cpu the idle task belongs to
5849 * NOTE: this function does not set the idle thread's NEED_RESCHED
5850 * flag, to make booting more robust.
5852 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5854 struct rq
*rq
= cpu_rq(cpu
);
5855 unsigned long flags
;
5857 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5860 idle
->state
= TASK_RUNNING
;
5861 idle
->se
.exec_start
= sched_clock();
5863 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
5865 * We're having a chicken and egg problem, even though we are
5866 * holding rq->lock, the cpu isn't yet set to this cpu so the
5867 * lockdep check in task_group() will fail.
5869 * Similar case to sched_fork(). / Alternatively we could
5870 * use task_rq_lock() here and obtain the other rq->lock.
5875 __set_task_cpu(idle
, cpu
);
5878 rq
->curr
= rq
->idle
= idle
;
5879 #if defined(CONFIG_SMP)
5882 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5884 /* Set the preempt count _outside_ the spinlocks! */
5885 task_thread_info(idle
)->preempt_count
= 0;
5888 * The idle tasks have their own, simple scheduling class:
5890 idle
->sched_class
= &idle_sched_class
;
5891 ftrace_graph_init_idle_task(idle
, cpu
);
5895 * In a system that switches off the HZ timer nohz_cpu_mask
5896 * indicates which cpus entered this state. This is used
5897 * in the rcu update to wait only for active cpus. For system
5898 * which do not switch off the HZ timer nohz_cpu_mask should
5899 * always be CPU_BITS_NONE.
5901 cpumask_var_t nohz_cpu_mask
;
5904 * Increase the granularity value when there are more CPUs,
5905 * because with more CPUs the 'effective latency' as visible
5906 * to users decreases. But the relationship is not linear,
5907 * so pick a second-best guess by going with the log2 of the
5910 * This idea comes from the SD scheduler of Con Kolivas:
5912 static int get_update_sysctl_factor(void)
5914 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5915 unsigned int factor
;
5917 switch (sysctl_sched_tunable_scaling
) {
5918 case SCHED_TUNABLESCALING_NONE
:
5921 case SCHED_TUNABLESCALING_LINEAR
:
5924 case SCHED_TUNABLESCALING_LOG
:
5926 factor
= 1 + ilog2(cpus
);
5933 static void update_sysctl(void)
5935 unsigned int factor
= get_update_sysctl_factor();
5937 #define SET_SYSCTL(name) \
5938 (sysctl_##name = (factor) * normalized_sysctl_##name)
5939 SET_SYSCTL(sched_min_granularity
);
5940 SET_SYSCTL(sched_latency
);
5941 SET_SYSCTL(sched_wakeup_granularity
);
5945 static inline void sched_init_granularity(void)
5951 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
5953 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
5954 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5956 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5957 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5962 * This is how migration works:
5964 * 1) we invoke migration_cpu_stop() on the target CPU using
5966 * 2) stopper starts to run (implicitly forcing the migrated thread
5968 * 3) it checks whether the migrated task is still in the wrong runqueue.
5969 * 4) if it's in the wrong runqueue then the migration thread removes
5970 * it and puts it into the right queue.
5971 * 5) stopper completes and stop_one_cpu() returns and the migration
5976 * Change a given task's CPU affinity. Migrate the thread to a
5977 * proper CPU and schedule it away if the CPU it's executing on
5978 * is removed from the allowed bitmask.
5980 * NOTE: the caller must have a valid reference to the task, the
5981 * task must not exit() & deallocate itself prematurely. The
5982 * call is not atomic; no spinlocks may be held.
5984 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5986 unsigned long flags
;
5988 unsigned int dest_cpu
;
5991 rq
= task_rq_lock(p
, &flags
);
5993 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
5996 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
6001 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
6006 do_set_cpus_allowed(p
, new_mask
);
6008 /* Can the task run on the task's current CPU? If so, we're done */
6009 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6012 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
6014 struct migration_arg arg
= { p
, dest_cpu
};
6015 /* Need help from migration thread: drop lock and wait. */
6016 task_rq_unlock(rq
, p
, &flags
);
6017 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
6018 tlb_migrate_finish(p
->mm
);
6022 task_rq_unlock(rq
, p
, &flags
);
6026 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6029 * Move (not current) task off this cpu, onto dest cpu. We're doing
6030 * this because either it can't run here any more (set_cpus_allowed()
6031 * away from this CPU, or CPU going down), or because we're
6032 * attempting to rebalance this task on exec (sched_exec).
6034 * So we race with normal scheduler movements, but that's OK, as long
6035 * as the task is no longer on this CPU.
6037 * Returns non-zero if task was successfully migrated.
6039 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6041 struct rq
*rq_dest
, *rq_src
;
6044 if (unlikely(!cpu_active(dest_cpu
)))
6047 rq_src
= cpu_rq(src_cpu
);
6048 rq_dest
= cpu_rq(dest_cpu
);
6050 raw_spin_lock(&p
->pi_lock
);
6051 double_rq_lock(rq_src
, rq_dest
);
6052 /* Already moved. */
6053 if (task_cpu(p
) != src_cpu
)
6055 /* Affinity changed (again). */
6056 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6060 * If we're not on a rq, the next wake-up will ensure we're
6064 deactivate_task(rq_src
, p
, 0);
6065 set_task_cpu(p
, dest_cpu
);
6066 activate_task(rq_dest
, p
, 0);
6067 check_preempt_curr(rq_dest
, p
, 0);
6072 double_rq_unlock(rq_src
, rq_dest
);
6073 raw_spin_unlock(&p
->pi_lock
);
6078 * migration_cpu_stop - this will be executed by a highprio stopper thread
6079 * and performs thread migration by bumping thread off CPU then
6080 * 'pushing' onto another runqueue.
6082 static int migration_cpu_stop(void *data
)
6084 struct migration_arg
*arg
= data
;
6087 * The original target cpu might have gone down and we might
6088 * be on another cpu but it doesn't matter.
6090 local_irq_disable();
6091 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
6096 #ifdef CONFIG_HOTPLUG_CPU
6099 * Ensures that the idle task is using init_mm right before its cpu goes
6102 void idle_task_exit(void)
6104 struct mm_struct
*mm
= current
->active_mm
;
6106 BUG_ON(cpu_online(smp_processor_id()));
6109 switch_mm(mm
, &init_mm
, current
);
6114 * While a dead CPU has no uninterruptible tasks queued at this point,
6115 * it might still have a nonzero ->nr_uninterruptible counter, because
6116 * for performance reasons the counter is not stricly tracking tasks to
6117 * their home CPUs. So we just add the counter to another CPU's counter,
6118 * to keep the global sum constant after CPU-down:
6120 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6122 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6124 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6125 rq_src
->nr_uninterruptible
= 0;
6129 * remove the tasks which were accounted by rq from calc_load_tasks.
6131 static void calc_global_load_remove(struct rq
*rq
)
6133 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6134 rq
->calc_load_active
= 0;
6138 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6139 * try_to_wake_up()->select_task_rq().
6141 * Called with rq->lock held even though we'er in stop_machine() and
6142 * there's no concurrency possible, we hold the required locks anyway
6143 * because of lock validation efforts.
6145 static void migrate_tasks(unsigned int dead_cpu
)
6147 struct rq
*rq
= cpu_rq(dead_cpu
);
6148 struct task_struct
*next
, *stop
= rq
->stop
;
6152 * Fudge the rq selection such that the below task selection loop
6153 * doesn't get stuck on the currently eligible stop task.
6155 * We're currently inside stop_machine() and the rq is either stuck
6156 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6157 * either way we should never end up calling schedule() until we're
6164 * There's this thread running, bail when that's the only
6167 if (rq
->nr_running
== 1)
6170 next
= pick_next_task(rq
);
6172 next
->sched_class
->put_prev_task(rq
, next
);
6174 /* Find suitable destination for @next, with force if needed. */
6175 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6176 raw_spin_unlock(&rq
->lock
);
6178 __migrate_task(next
, dead_cpu
, dest_cpu
);
6180 raw_spin_lock(&rq
->lock
);
6186 #endif /* CONFIG_HOTPLUG_CPU */
6188 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6190 static struct ctl_table sd_ctl_dir
[] = {
6192 .procname
= "sched_domain",
6198 static struct ctl_table sd_ctl_root
[] = {
6200 .procname
= "kernel",
6202 .child
= sd_ctl_dir
,
6207 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6209 struct ctl_table
*entry
=
6210 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6215 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6217 struct ctl_table
*entry
;
6220 * In the intermediate directories, both the child directory and
6221 * procname are dynamically allocated and could fail but the mode
6222 * will always be set. In the lowest directory the names are
6223 * static strings and all have proc handlers.
6225 for (entry
= *tablep
; entry
->mode
; entry
++) {
6227 sd_free_ctl_entry(&entry
->child
);
6228 if (entry
->proc_handler
== NULL
)
6229 kfree(entry
->procname
);
6237 set_table_entry(struct ctl_table
*entry
,
6238 const char *procname
, void *data
, int maxlen
,
6239 mode_t mode
, proc_handler
*proc_handler
)
6241 entry
->procname
= procname
;
6243 entry
->maxlen
= maxlen
;
6245 entry
->proc_handler
= proc_handler
;
6248 static struct ctl_table
*
6249 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6251 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6256 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6257 sizeof(long), 0644, proc_doulongvec_minmax
);
6258 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6259 sizeof(long), 0644, proc_doulongvec_minmax
);
6260 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6261 sizeof(int), 0644, proc_dointvec_minmax
);
6262 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6263 sizeof(int), 0644, proc_dointvec_minmax
);
6264 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6265 sizeof(int), 0644, proc_dointvec_minmax
);
6266 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6267 sizeof(int), 0644, proc_dointvec_minmax
);
6268 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6269 sizeof(int), 0644, proc_dointvec_minmax
);
6270 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6271 sizeof(int), 0644, proc_dointvec_minmax
);
6272 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6273 sizeof(int), 0644, proc_dointvec_minmax
);
6274 set_table_entry(&table
[9], "cache_nice_tries",
6275 &sd
->cache_nice_tries
,
6276 sizeof(int), 0644, proc_dointvec_minmax
);
6277 set_table_entry(&table
[10], "flags", &sd
->flags
,
6278 sizeof(int), 0644, proc_dointvec_minmax
);
6279 set_table_entry(&table
[11], "name", sd
->name
,
6280 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6281 /* &table[12] is terminator */
6286 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6288 struct ctl_table
*entry
, *table
;
6289 struct sched_domain
*sd
;
6290 int domain_num
= 0, i
;
6293 for_each_domain(cpu
, sd
)
6295 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6300 for_each_domain(cpu
, sd
) {
6301 snprintf(buf
, 32, "domain%d", i
);
6302 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6304 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6311 static struct ctl_table_header
*sd_sysctl_header
;
6312 static void register_sched_domain_sysctl(void)
6314 int i
, cpu_num
= num_possible_cpus();
6315 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6318 WARN_ON(sd_ctl_dir
[0].child
);
6319 sd_ctl_dir
[0].child
= entry
;
6324 for_each_possible_cpu(i
) {
6325 snprintf(buf
, 32, "cpu%d", i
);
6326 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6328 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6332 WARN_ON(sd_sysctl_header
);
6333 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6336 /* may be called multiple times per register */
6337 static void unregister_sched_domain_sysctl(void)
6339 if (sd_sysctl_header
)
6340 unregister_sysctl_table(sd_sysctl_header
);
6341 sd_sysctl_header
= NULL
;
6342 if (sd_ctl_dir
[0].child
)
6343 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6346 static void register_sched_domain_sysctl(void)
6349 static void unregister_sched_domain_sysctl(void)
6354 static void set_rq_online(struct rq
*rq
)
6357 const struct sched_class
*class;
6359 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6362 for_each_class(class) {
6363 if (class->rq_online
)
6364 class->rq_online(rq
);
6369 static void set_rq_offline(struct rq
*rq
)
6372 const struct sched_class
*class;
6374 for_each_class(class) {
6375 if (class->rq_offline
)
6376 class->rq_offline(rq
);
6379 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6385 * migration_call - callback that gets triggered when a CPU is added.
6386 * Here we can start up the necessary migration thread for the new CPU.
6388 static int __cpuinit
6389 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6391 int cpu
= (long)hcpu
;
6392 unsigned long flags
;
6393 struct rq
*rq
= cpu_rq(cpu
);
6395 switch (action
& ~CPU_TASKS_FROZEN
) {
6397 case CPU_UP_PREPARE
:
6398 rq
->calc_load_update
= calc_load_update
;
6402 /* Update our root-domain */
6403 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6405 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6409 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6412 #ifdef CONFIG_HOTPLUG_CPU
6414 sched_ttwu_pending();
6415 /* Update our root-domain */
6416 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6418 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6422 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6423 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6425 migrate_nr_uninterruptible(rq
);
6426 calc_global_load_remove(rq
);
6431 update_max_interval();
6437 * Register at high priority so that task migration (migrate_all_tasks)
6438 * happens before everything else. This has to be lower priority than
6439 * the notifier in the perf_event subsystem, though.
6441 static struct notifier_block __cpuinitdata migration_notifier
= {
6442 .notifier_call
= migration_call
,
6443 .priority
= CPU_PRI_MIGRATION
,
6446 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6447 unsigned long action
, void *hcpu
)
6449 switch (action
& ~CPU_TASKS_FROZEN
) {
6451 case CPU_DOWN_FAILED
:
6452 set_cpu_active((long)hcpu
, true);
6459 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6460 unsigned long action
, void *hcpu
)
6462 switch (action
& ~CPU_TASKS_FROZEN
) {
6463 case CPU_DOWN_PREPARE
:
6464 set_cpu_active((long)hcpu
, false);
6471 static int __init
migration_init(void)
6473 void *cpu
= (void *)(long)smp_processor_id();
6476 /* Initialize migration for the boot CPU */
6477 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6478 BUG_ON(err
== NOTIFY_BAD
);
6479 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6480 register_cpu_notifier(&migration_notifier
);
6482 /* Register cpu active notifiers */
6483 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6484 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6488 early_initcall(migration_init
);
6493 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
6495 #ifdef CONFIG_SCHED_DEBUG
6497 static __read_mostly
int sched_domain_debug_enabled
;
6499 static int __init
sched_domain_debug_setup(char *str
)
6501 sched_domain_debug_enabled
= 1;
6505 early_param("sched_debug", sched_domain_debug_setup
);
6507 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6508 struct cpumask
*groupmask
)
6510 struct sched_group
*group
= sd
->groups
;
6513 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6514 cpumask_clear(groupmask
);
6516 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6518 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6519 printk("does not load-balance\n");
6521 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6526 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6528 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6529 printk(KERN_ERR
"ERROR: domain->span does not contain "
6532 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6533 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6537 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6541 printk(KERN_ERR
"ERROR: group is NULL\n");
6545 if (!group
->cpu_power
) {
6546 printk(KERN_CONT
"\n");
6547 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6552 if (!cpumask_weight(sched_group_cpus(group
))) {
6553 printk(KERN_CONT
"\n");
6554 printk(KERN_ERR
"ERROR: empty group\n");
6558 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6559 printk(KERN_CONT
"\n");
6560 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6564 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6566 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6568 printk(KERN_CONT
" %s", str
);
6569 if (group
->cpu_power
!= SCHED_POWER_SCALE
) {
6570 printk(KERN_CONT
" (cpu_power = %d)",
6574 group
= group
->next
;
6575 } while (group
!= sd
->groups
);
6576 printk(KERN_CONT
"\n");
6578 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6579 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6582 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6583 printk(KERN_ERR
"ERROR: parent span is not a superset "
6584 "of domain->span\n");
6588 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6592 if (!sched_domain_debug_enabled
)
6596 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6600 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6603 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
6611 #else /* !CONFIG_SCHED_DEBUG */
6612 # define sched_domain_debug(sd, cpu) do { } while (0)
6613 #endif /* CONFIG_SCHED_DEBUG */
6615 static int sd_degenerate(struct sched_domain
*sd
)
6617 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6620 /* Following flags need at least 2 groups */
6621 if (sd
->flags
& (SD_LOAD_BALANCE
|
6622 SD_BALANCE_NEWIDLE
|
6626 SD_SHARE_PKG_RESOURCES
)) {
6627 if (sd
->groups
!= sd
->groups
->next
)
6631 /* Following flags don't use groups */
6632 if (sd
->flags
& (SD_WAKE_AFFINE
))
6639 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6641 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6643 if (sd_degenerate(parent
))
6646 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6649 /* Flags needing groups don't count if only 1 group in parent */
6650 if (parent
->groups
== parent
->groups
->next
) {
6651 pflags
&= ~(SD_LOAD_BALANCE
|
6652 SD_BALANCE_NEWIDLE
|
6656 SD_SHARE_PKG_RESOURCES
);
6657 if (nr_node_ids
== 1)
6658 pflags
&= ~SD_SERIALIZE
;
6660 if (~cflags
& pflags
)
6666 static void free_rootdomain(struct rcu_head
*rcu
)
6668 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
6670 cpupri_cleanup(&rd
->cpupri
);
6671 free_cpumask_var(rd
->rto_mask
);
6672 free_cpumask_var(rd
->online
);
6673 free_cpumask_var(rd
->span
);
6677 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6679 struct root_domain
*old_rd
= NULL
;
6680 unsigned long flags
;
6682 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6687 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6690 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6693 * If we dont want to free the old_rt yet then
6694 * set old_rd to NULL to skip the freeing later
6697 if (!atomic_dec_and_test(&old_rd
->refcount
))
6701 atomic_inc(&rd
->refcount
);
6704 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6705 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6708 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6711 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
6714 static int init_rootdomain(struct root_domain
*rd
)
6716 memset(rd
, 0, sizeof(*rd
));
6718 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6720 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6722 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6725 if (cpupri_init(&rd
->cpupri
) != 0)
6730 free_cpumask_var(rd
->rto_mask
);
6732 free_cpumask_var(rd
->online
);
6734 free_cpumask_var(rd
->span
);
6739 static void init_defrootdomain(void)
6741 init_rootdomain(&def_root_domain
);
6743 atomic_set(&def_root_domain
.refcount
, 1);
6746 static struct root_domain
*alloc_rootdomain(void)
6748 struct root_domain
*rd
;
6750 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6754 if (init_rootdomain(rd
) != 0) {
6762 static void free_sched_domain(struct rcu_head
*rcu
)
6764 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
6765 if (atomic_dec_and_test(&sd
->groups
->ref
))
6770 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
6772 call_rcu(&sd
->rcu
, free_sched_domain
);
6775 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
6777 for (; sd
; sd
= sd
->parent
)
6778 destroy_sched_domain(sd
, cpu
);
6782 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6783 * hold the hotplug lock.
6786 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6788 struct rq
*rq
= cpu_rq(cpu
);
6789 struct sched_domain
*tmp
;
6791 /* Remove the sched domains which do not contribute to scheduling. */
6792 for (tmp
= sd
; tmp
; ) {
6793 struct sched_domain
*parent
= tmp
->parent
;
6797 if (sd_parent_degenerate(tmp
, parent
)) {
6798 tmp
->parent
= parent
->parent
;
6800 parent
->parent
->child
= tmp
;
6801 destroy_sched_domain(parent
, cpu
);
6806 if (sd
&& sd_degenerate(sd
)) {
6809 destroy_sched_domain(tmp
, cpu
);
6814 sched_domain_debug(sd
, cpu
);
6816 rq_attach_root(rq
, rd
);
6818 rcu_assign_pointer(rq
->sd
, sd
);
6819 destroy_sched_domains(tmp
, cpu
);
6822 /* cpus with isolated domains */
6823 static cpumask_var_t cpu_isolated_map
;
6825 /* Setup the mask of cpus configured for isolated domains */
6826 static int __init
isolated_cpu_setup(char *str
)
6828 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6829 cpulist_parse(str
, cpu_isolated_map
);
6833 __setup("isolcpus=", isolated_cpu_setup
);
6835 #define SD_NODES_PER_DOMAIN 16
6840 * find_next_best_node - find the next node to include in a sched_domain
6841 * @node: node whose sched_domain we're building
6842 * @used_nodes: nodes already in the sched_domain
6844 * Find the next node to include in a given scheduling domain. Simply
6845 * finds the closest node not already in the @used_nodes map.
6847 * Should use nodemask_t.
6849 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6851 int i
, n
, val
, min_val
, best_node
= -1;
6855 for (i
= 0; i
< nr_node_ids
; i
++) {
6856 /* Start at @node */
6857 n
= (node
+ i
) % nr_node_ids
;
6859 if (!nr_cpus_node(n
))
6862 /* Skip already used nodes */
6863 if (node_isset(n
, *used_nodes
))
6866 /* Simple min distance search */
6867 val
= node_distance(node
, n
);
6869 if (val
< min_val
) {
6875 if (best_node
!= -1)
6876 node_set(best_node
, *used_nodes
);
6881 * sched_domain_node_span - get a cpumask for a node's sched_domain
6882 * @node: node whose cpumask we're constructing
6883 * @span: resulting cpumask
6885 * Given a node, construct a good cpumask for its sched_domain to span. It
6886 * should be one that prevents unnecessary balancing, but also spreads tasks
6889 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6891 nodemask_t used_nodes
;
6894 cpumask_clear(span
);
6895 nodes_clear(used_nodes
);
6897 cpumask_or(span
, span
, cpumask_of_node(node
));
6898 node_set(node
, used_nodes
);
6900 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6901 int next_node
= find_next_best_node(node
, &used_nodes
);
6904 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6908 static const struct cpumask
*cpu_node_mask(int cpu
)
6910 lockdep_assert_held(&sched_domains_mutex
);
6912 sched_domain_node_span(cpu_to_node(cpu
), sched_domains_tmpmask
);
6914 return sched_domains_tmpmask
;
6917 static const struct cpumask
*cpu_allnodes_mask(int cpu
)
6919 return cpu_possible_mask
;
6921 #endif /* CONFIG_NUMA */
6923 static const struct cpumask
*cpu_cpu_mask(int cpu
)
6925 return cpumask_of_node(cpu_to_node(cpu
));
6928 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6931 struct sched_domain
**__percpu sd
;
6932 struct sched_group
**__percpu sg
;
6936 struct sched_domain
** __percpu sd
;
6937 struct root_domain
*rd
;
6947 struct sched_domain_topology_level
;
6949 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
6950 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
6952 struct sched_domain_topology_level
{
6953 sched_domain_init_f init
;
6954 sched_domain_mask_f mask
;
6955 struct sd_data data
;
6959 * Assumes the sched_domain tree is fully constructed
6961 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
6963 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
6964 struct sched_domain
*child
= sd
->child
;
6967 cpu
= cpumask_first(sched_domain_span(child
));
6970 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
6976 * build_sched_groups takes the cpumask we wish to span, and a pointer
6977 * to a function which identifies what group(along with sched group) a CPU
6978 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6979 * (due to the fact that we keep track of groups covered with a struct cpumask).
6981 * build_sched_groups will build a circular linked list of the groups
6982 * covered by the given span, and will set each group's ->cpumask correctly,
6983 * and ->cpu_power to 0.
6986 build_sched_groups(struct sched_domain
*sd
)
6988 struct sched_group
*first
= NULL
, *last
= NULL
;
6989 struct sd_data
*sdd
= sd
->private;
6990 const struct cpumask
*span
= sched_domain_span(sd
);
6991 struct cpumask
*covered
;
6994 lockdep_assert_held(&sched_domains_mutex
);
6995 covered
= sched_domains_tmpmask
;
6997 cpumask_clear(covered
);
6999 for_each_cpu(i
, span
) {
7000 struct sched_group
*sg
;
7001 int group
= get_group(i
, sdd
, &sg
);
7004 if (cpumask_test_cpu(i
, covered
))
7007 cpumask_clear(sched_group_cpus(sg
));
7010 for_each_cpu(j
, span
) {
7011 if (get_group(j
, sdd
, NULL
) != group
)
7014 cpumask_set_cpu(j
, covered
);
7015 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7028 * Initialize sched groups cpu_power.
7030 * cpu_power indicates the capacity of sched group, which is used while
7031 * distributing the load between different sched groups in a sched domain.
7032 * Typically cpu_power for all the groups in a sched domain will be same unless
7033 * there are asymmetries in the topology. If there are asymmetries, group
7034 * having more cpu_power will pickup more load compared to the group having
7037 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7039 WARN_ON(!sd
|| !sd
->groups
);
7041 if (cpu
!= group_first_cpu(sd
->groups
))
7044 sd
->groups
->group_weight
= cpumask_weight(sched_group_cpus(sd
->groups
));
7046 update_group_power(sd
, cpu
);
7050 * Initializers for schedule domains
7051 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7054 #ifdef CONFIG_SCHED_DEBUG
7055 # define SD_INIT_NAME(sd, type) sd->name = #type
7057 # define SD_INIT_NAME(sd, type) do { } while (0)
7060 #define SD_INIT_FUNC(type) \
7061 static noinline struct sched_domain * \
7062 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7064 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7065 *sd = SD_##type##_INIT; \
7066 SD_INIT_NAME(sd, type); \
7067 sd->private = &tl->data; \
7073 SD_INIT_FUNC(ALLNODES
)
7076 #ifdef CONFIG_SCHED_SMT
7077 SD_INIT_FUNC(SIBLING
)
7079 #ifdef CONFIG_SCHED_MC
7082 #ifdef CONFIG_SCHED_BOOK
7086 static int default_relax_domain_level
= -1;
7087 int sched_domain_level_max
;
7089 static int __init
setup_relax_domain_level(char *str
)
7093 val
= simple_strtoul(str
, NULL
, 0);
7094 if (val
< sched_domain_level_max
)
7095 default_relax_domain_level
= val
;
7099 __setup("relax_domain_level=", setup_relax_domain_level
);
7101 static void set_domain_attribute(struct sched_domain
*sd
,
7102 struct sched_domain_attr
*attr
)
7106 if (!attr
|| attr
->relax_domain_level
< 0) {
7107 if (default_relax_domain_level
< 0)
7110 request
= default_relax_domain_level
;
7112 request
= attr
->relax_domain_level
;
7113 if (request
< sd
->level
) {
7114 /* turn off idle balance on this domain */
7115 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7117 /* turn on idle balance on this domain */
7118 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7122 static void __sdt_free(const struct cpumask
*cpu_map
);
7123 static int __sdt_alloc(const struct cpumask
*cpu_map
);
7125 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7126 const struct cpumask
*cpu_map
)
7130 if (!atomic_read(&d
->rd
->refcount
))
7131 free_rootdomain(&d
->rd
->rcu
); /* fall through */
7133 free_percpu(d
->sd
); /* fall through */
7135 __sdt_free(cpu_map
); /* fall through */
7141 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7142 const struct cpumask
*cpu_map
)
7144 memset(d
, 0, sizeof(*d
));
7146 if (__sdt_alloc(cpu_map
))
7147 return sa_sd_storage
;
7148 d
->sd
= alloc_percpu(struct sched_domain
*);
7150 return sa_sd_storage
;
7151 d
->rd
= alloc_rootdomain();
7154 return sa_rootdomain
;
7158 * NULL the sd_data elements we've used to build the sched_domain and
7159 * sched_group structure so that the subsequent __free_domain_allocs()
7160 * will not free the data we're using.
7162 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
7164 struct sd_data
*sdd
= sd
->private;
7165 struct sched_group
*sg
= sd
->groups
;
7167 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
7168 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
7170 if (cpu
== cpumask_first(sched_group_cpus(sg
))) {
7171 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sg
, cpu
) != sg
);
7172 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
7176 #ifdef CONFIG_SCHED_SMT
7177 static const struct cpumask
*cpu_smt_mask(int cpu
)
7179 return topology_thread_cpumask(cpu
);
7184 * Topology list, bottom-up.
7186 static struct sched_domain_topology_level default_topology
[] = {
7187 #ifdef CONFIG_SCHED_SMT
7188 { sd_init_SIBLING
, cpu_smt_mask
, },
7190 #ifdef CONFIG_SCHED_MC
7191 { sd_init_MC
, cpu_coregroup_mask
, },
7193 #ifdef CONFIG_SCHED_BOOK
7194 { sd_init_BOOK
, cpu_book_mask
, },
7196 { sd_init_CPU
, cpu_cpu_mask
, },
7198 { sd_init_NODE
, cpu_node_mask
, },
7199 { sd_init_ALLNODES
, cpu_allnodes_mask
, },
7204 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
7206 static int __sdt_alloc(const struct cpumask
*cpu_map
)
7208 struct sched_domain_topology_level
*tl
;
7211 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7212 struct sd_data
*sdd
= &tl
->data
;
7214 sdd
->sd
= alloc_percpu(struct sched_domain
*);
7218 sdd
->sg
= alloc_percpu(struct sched_group
*);
7222 for_each_cpu(j
, cpu_map
) {
7223 struct sched_domain
*sd
;
7224 struct sched_group
*sg
;
7226 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
7227 GFP_KERNEL
, cpu_to_node(j
));
7231 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
7233 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7234 GFP_KERNEL
, cpu_to_node(j
));
7238 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
7245 static void __sdt_free(const struct cpumask
*cpu_map
)
7247 struct sched_domain_topology_level
*tl
;
7250 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7251 struct sd_data
*sdd
= &tl
->data
;
7253 for_each_cpu(j
, cpu_map
) {
7254 kfree(*per_cpu_ptr(sdd
->sd
, j
));
7255 kfree(*per_cpu_ptr(sdd
->sg
, j
));
7257 free_percpu(sdd
->sd
);
7258 free_percpu(sdd
->sg
);
7262 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
7263 struct s_data
*d
, const struct cpumask
*cpu_map
,
7264 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
7267 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
7271 set_domain_attribute(sd
, attr
);
7272 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
7274 sd
->level
= child
->level
+ 1;
7275 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
7284 * Build sched domains for a given set of cpus and attach the sched domains
7285 * to the individual cpus
7287 static int build_sched_domains(const struct cpumask
*cpu_map
,
7288 struct sched_domain_attr
*attr
)
7290 enum s_alloc alloc_state
= sa_none
;
7291 struct sched_domain
*sd
;
7293 int i
, ret
= -ENOMEM
;
7295 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7296 if (alloc_state
!= sa_rootdomain
)
7299 /* Set up domains for cpus specified by the cpu_map. */
7300 for_each_cpu(i
, cpu_map
) {
7301 struct sched_domain_topology_level
*tl
;
7304 for (tl
= sched_domain_topology
; tl
->init
; tl
++)
7305 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
7310 *per_cpu_ptr(d
.sd
, i
) = sd
;
7313 /* Build the groups for the domains */
7314 for_each_cpu(i
, cpu_map
) {
7315 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7316 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
7317 get_group(i
, sd
->private, &sd
->groups
);
7318 atomic_inc(&sd
->groups
->ref
);
7320 if (i
!= cpumask_first(sched_domain_span(sd
)))
7323 build_sched_groups(sd
);
7327 /* Calculate CPU power for physical packages and nodes */
7328 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
7329 if (!cpumask_test_cpu(i
, cpu_map
))
7332 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7333 claim_allocations(i
, sd
);
7334 init_sched_groups_power(i
, sd
);
7338 /* Attach the domains */
7340 for_each_cpu(i
, cpu_map
) {
7341 sd
= *per_cpu_ptr(d
.sd
, i
);
7342 cpu_attach_domain(sd
, d
.rd
, i
);
7348 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7352 static cpumask_var_t
*doms_cur
; /* current sched domains */
7353 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7354 static struct sched_domain_attr
*dattr_cur
;
7355 /* attribues of custom domains in 'doms_cur' */
7358 * Special case: If a kmalloc of a doms_cur partition (array of
7359 * cpumask) fails, then fallback to a single sched domain,
7360 * as determined by the single cpumask fallback_doms.
7362 static cpumask_var_t fallback_doms
;
7365 * arch_update_cpu_topology lets virtualized architectures update the
7366 * cpu core maps. It is supposed to return 1 if the topology changed
7367 * or 0 if it stayed the same.
7369 int __attribute__((weak
)) arch_update_cpu_topology(void)
7374 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7377 cpumask_var_t
*doms
;
7379 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7382 for (i
= 0; i
< ndoms
; i
++) {
7383 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7384 free_sched_domains(doms
, i
);
7391 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7394 for (i
= 0; i
< ndoms
; i
++)
7395 free_cpumask_var(doms
[i
]);
7400 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7401 * For now this just excludes isolated cpus, but could be used to
7402 * exclude other special cases in the future.
7404 static int init_sched_domains(const struct cpumask
*cpu_map
)
7408 arch_update_cpu_topology();
7410 doms_cur
= alloc_sched_domains(ndoms_cur
);
7412 doms_cur
= &fallback_doms
;
7413 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7415 err
= build_sched_domains(doms_cur
[0], NULL
);
7416 register_sched_domain_sysctl();
7422 * Detach sched domains from a group of cpus specified in cpu_map
7423 * These cpus will now be attached to the NULL domain
7425 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7430 for_each_cpu(i
, cpu_map
)
7431 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7435 /* handle null as "default" */
7436 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7437 struct sched_domain_attr
*new, int idx_new
)
7439 struct sched_domain_attr tmp
;
7446 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7447 new ? (new + idx_new
) : &tmp
,
7448 sizeof(struct sched_domain_attr
));
7452 * Partition sched domains as specified by the 'ndoms_new'
7453 * cpumasks in the array doms_new[] of cpumasks. This compares
7454 * doms_new[] to the current sched domain partitioning, doms_cur[].
7455 * It destroys each deleted domain and builds each new domain.
7457 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7458 * The masks don't intersect (don't overlap.) We should setup one
7459 * sched domain for each mask. CPUs not in any of the cpumasks will
7460 * not be load balanced. If the same cpumask appears both in the
7461 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7464 * The passed in 'doms_new' should be allocated using
7465 * alloc_sched_domains. This routine takes ownership of it and will
7466 * free_sched_domains it when done with it. If the caller failed the
7467 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7468 * and partition_sched_domains() will fallback to the single partition
7469 * 'fallback_doms', it also forces the domains to be rebuilt.
7471 * If doms_new == NULL it will be replaced with cpu_online_mask.
7472 * ndoms_new == 0 is a special case for destroying existing domains,
7473 * and it will not create the default domain.
7475 * Call with hotplug lock held
7477 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7478 struct sched_domain_attr
*dattr_new
)
7483 mutex_lock(&sched_domains_mutex
);
7485 /* always unregister in case we don't destroy any domains */
7486 unregister_sched_domain_sysctl();
7488 /* Let architecture update cpu core mappings. */
7489 new_topology
= arch_update_cpu_topology();
7491 n
= doms_new
? ndoms_new
: 0;
7493 /* Destroy deleted domains */
7494 for (i
= 0; i
< ndoms_cur
; i
++) {
7495 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7496 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7497 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7500 /* no match - a current sched domain not in new doms_new[] */
7501 detach_destroy_domains(doms_cur
[i
]);
7506 if (doms_new
== NULL
) {
7508 doms_new
= &fallback_doms
;
7509 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7510 WARN_ON_ONCE(dattr_new
);
7513 /* Build new domains */
7514 for (i
= 0; i
< ndoms_new
; i
++) {
7515 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7516 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7517 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7520 /* no match - add a new doms_new */
7521 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
7526 /* Remember the new sched domains */
7527 if (doms_cur
!= &fallback_doms
)
7528 free_sched_domains(doms_cur
, ndoms_cur
);
7529 kfree(dattr_cur
); /* kfree(NULL) is safe */
7530 doms_cur
= doms_new
;
7531 dattr_cur
= dattr_new
;
7532 ndoms_cur
= ndoms_new
;
7534 register_sched_domain_sysctl();
7536 mutex_unlock(&sched_domains_mutex
);
7539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7540 static void reinit_sched_domains(void)
7544 /* Destroy domains first to force the rebuild */
7545 partition_sched_domains(0, NULL
, NULL
);
7547 rebuild_sched_domains();
7551 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7553 unsigned int level
= 0;
7555 if (sscanf(buf
, "%u", &level
) != 1)
7559 * level is always be positive so don't check for
7560 * level < POWERSAVINGS_BALANCE_NONE which is 0
7561 * What happens on 0 or 1 byte write,
7562 * need to check for count as well?
7565 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7569 sched_smt_power_savings
= level
;
7571 sched_mc_power_savings
= level
;
7573 reinit_sched_domains();
7578 #ifdef CONFIG_SCHED_MC
7579 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7580 struct sysdev_class_attribute
*attr
,
7583 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7585 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7586 struct sysdev_class_attribute
*attr
,
7587 const char *buf
, size_t count
)
7589 return sched_power_savings_store(buf
, count
, 0);
7591 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7592 sched_mc_power_savings_show
,
7593 sched_mc_power_savings_store
);
7596 #ifdef CONFIG_SCHED_SMT
7597 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7598 struct sysdev_class_attribute
*attr
,
7601 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7603 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7604 struct sysdev_class_attribute
*attr
,
7605 const char *buf
, size_t count
)
7607 return sched_power_savings_store(buf
, count
, 1);
7609 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7610 sched_smt_power_savings_show
,
7611 sched_smt_power_savings_store
);
7614 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7618 #ifdef CONFIG_SCHED_SMT
7620 err
= sysfs_create_file(&cls
->kset
.kobj
,
7621 &attr_sched_smt_power_savings
.attr
);
7623 #ifdef CONFIG_SCHED_MC
7624 if (!err
&& mc_capable())
7625 err
= sysfs_create_file(&cls
->kset
.kobj
,
7626 &attr_sched_mc_power_savings
.attr
);
7630 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7633 * Update cpusets according to cpu_active mask. If cpusets are
7634 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7635 * around partition_sched_domains().
7637 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7640 switch (action
& ~CPU_TASKS_FROZEN
) {
7642 case CPU_DOWN_FAILED
:
7643 cpuset_update_active_cpus();
7650 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7653 switch (action
& ~CPU_TASKS_FROZEN
) {
7654 case CPU_DOWN_PREPARE
:
7655 cpuset_update_active_cpus();
7662 static int update_runtime(struct notifier_block
*nfb
,
7663 unsigned long action
, void *hcpu
)
7665 int cpu
= (int)(long)hcpu
;
7668 case CPU_DOWN_PREPARE
:
7669 case CPU_DOWN_PREPARE_FROZEN
:
7670 disable_runtime(cpu_rq(cpu
));
7673 case CPU_DOWN_FAILED
:
7674 case CPU_DOWN_FAILED_FROZEN
:
7676 case CPU_ONLINE_FROZEN
:
7677 enable_runtime(cpu_rq(cpu
));
7685 void __init
sched_init_smp(void)
7687 cpumask_var_t non_isolated_cpus
;
7689 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7690 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7693 mutex_lock(&sched_domains_mutex
);
7694 init_sched_domains(cpu_active_mask
);
7695 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7696 if (cpumask_empty(non_isolated_cpus
))
7697 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7698 mutex_unlock(&sched_domains_mutex
);
7701 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7702 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7704 /* RT runtime code needs to handle some hotplug events */
7705 hotcpu_notifier(update_runtime
, 0);
7709 /* Move init over to a non-isolated CPU */
7710 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7712 sched_init_granularity();
7713 free_cpumask_var(non_isolated_cpus
);
7715 init_sched_rt_class();
7718 void __init
sched_init_smp(void)
7720 sched_init_granularity();
7722 #endif /* CONFIG_SMP */
7724 const_debug
unsigned int sysctl_timer_migration
= 1;
7726 int in_sched_functions(unsigned long addr
)
7728 return in_lock_functions(addr
) ||
7729 (addr
>= (unsigned long)__sched_text_start
7730 && addr
< (unsigned long)__sched_text_end
);
7733 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7735 cfs_rq
->tasks_timeline
= RB_ROOT
;
7736 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7737 #ifdef CONFIG_FAIR_GROUP_SCHED
7739 /* allow initial update_cfs_load() to truncate */
7741 cfs_rq
->load_stamp
= 1;
7744 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7747 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7749 struct rt_prio_array
*array
;
7752 array
= &rt_rq
->active
;
7753 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7754 INIT_LIST_HEAD(array
->queue
+ i
);
7755 __clear_bit(i
, array
->bitmap
);
7757 /* delimiter for bitsearch: */
7758 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7760 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7761 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7763 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7767 rt_rq
->rt_nr_migratory
= 0;
7768 rt_rq
->overloaded
= 0;
7769 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7773 rt_rq
->rt_throttled
= 0;
7774 rt_rq
->rt_runtime
= 0;
7775 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7777 #ifdef CONFIG_RT_GROUP_SCHED
7778 rt_rq
->rt_nr_boosted
= 0;
7783 #ifdef CONFIG_FAIR_GROUP_SCHED
7784 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7785 struct sched_entity
*se
, int cpu
,
7786 struct sched_entity
*parent
)
7788 struct rq
*rq
= cpu_rq(cpu
);
7789 tg
->cfs_rq
[cpu
] = cfs_rq
;
7790 init_cfs_rq(cfs_rq
, rq
);
7794 /* se could be NULL for root_task_group */
7799 se
->cfs_rq
= &rq
->cfs
;
7801 se
->cfs_rq
= parent
->my_q
;
7804 update_load_set(&se
->load
, 0);
7805 se
->parent
= parent
;
7809 #ifdef CONFIG_RT_GROUP_SCHED
7810 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7811 struct sched_rt_entity
*rt_se
, int cpu
,
7812 struct sched_rt_entity
*parent
)
7814 struct rq
*rq
= cpu_rq(cpu
);
7816 tg
->rt_rq
[cpu
] = rt_rq
;
7817 init_rt_rq(rt_rq
, rq
);
7819 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7821 tg
->rt_se
[cpu
] = rt_se
;
7826 rt_se
->rt_rq
= &rq
->rt
;
7828 rt_se
->rt_rq
= parent
->my_q
;
7830 rt_se
->my_q
= rt_rq
;
7831 rt_se
->parent
= parent
;
7832 INIT_LIST_HEAD(&rt_se
->run_list
);
7836 void __init
sched_init(void)
7839 unsigned long alloc_size
= 0, ptr
;
7841 #ifdef CONFIG_FAIR_GROUP_SCHED
7842 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7844 #ifdef CONFIG_RT_GROUP_SCHED
7845 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7847 #ifdef CONFIG_CPUMASK_OFFSTACK
7848 alloc_size
+= num_possible_cpus() * cpumask_size();
7851 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7853 #ifdef CONFIG_FAIR_GROUP_SCHED
7854 root_task_group
.se
= (struct sched_entity
**)ptr
;
7855 ptr
+= nr_cpu_ids
* sizeof(void **);
7857 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7858 ptr
+= nr_cpu_ids
* sizeof(void **);
7860 #endif /* CONFIG_FAIR_GROUP_SCHED */
7861 #ifdef CONFIG_RT_GROUP_SCHED
7862 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7863 ptr
+= nr_cpu_ids
* sizeof(void **);
7865 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7866 ptr
+= nr_cpu_ids
* sizeof(void **);
7868 #endif /* CONFIG_RT_GROUP_SCHED */
7869 #ifdef CONFIG_CPUMASK_OFFSTACK
7870 for_each_possible_cpu(i
) {
7871 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7872 ptr
+= cpumask_size();
7874 #endif /* CONFIG_CPUMASK_OFFSTACK */
7878 init_defrootdomain();
7881 init_rt_bandwidth(&def_rt_bandwidth
,
7882 global_rt_period(), global_rt_runtime());
7884 #ifdef CONFIG_RT_GROUP_SCHED
7885 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7886 global_rt_period(), global_rt_runtime());
7887 #endif /* CONFIG_RT_GROUP_SCHED */
7889 #ifdef CONFIG_CGROUP_SCHED
7890 list_add(&root_task_group
.list
, &task_groups
);
7891 INIT_LIST_HEAD(&root_task_group
.children
);
7892 autogroup_init(&init_task
);
7893 #endif /* CONFIG_CGROUP_SCHED */
7895 for_each_possible_cpu(i
) {
7899 raw_spin_lock_init(&rq
->lock
);
7901 rq
->calc_load_active
= 0;
7902 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7903 init_cfs_rq(&rq
->cfs
, rq
);
7904 init_rt_rq(&rq
->rt
, rq
);
7905 #ifdef CONFIG_FAIR_GROUP_SCHED
7906 root_task_group
.shares
= root_task_group_load
;
7907 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7909 * How much cpu bandwidth does root_task_group get?
7911 * In case of task-groups formed thr' the cgroup filesystem, it
7912 * gets 100% of the cpu resources in the system. This overall
7913 * system cpu resource is divided among the tasks of
7914 * root_task_group and its child task-groups in a fair manner,
7915 * based on each entity's (task or task-group's) weight
7916 * (se->load.weight).
7918 * In other words, if root_task_group has 10 tasks of weight
7919 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7920 * then A0's share of the cpu resource is:
7922 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7924 * We achieve this by letting root_task_group's tasks sit
7925 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7927 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7928 #endif /* CONFIG_FAIR_GROUP_SCHED */
7930 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7931 #ifdef CONFIG_RT_GROUP_SCHED
7932 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7933 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7936 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7937 rq
->cpu_load
[j
] = 0;
7939 rq
->last_load_update_tick
= jiffies
;
7944 rq
->cpu_power
= SCHED_POWER_SCALE
;
7945 rq
->post_schedule
= 0;
7946 rq
->active_balance
= 0;
7947 rq
->next_balance
= jiffies
;
7952 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7953 rq_attach_root(rq
, &def_root_domain
);
7955 rq
->nohz_balance_kick
= 0;
7956 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
7960 atomic_set(&rq
->nr_iowait
, 0);
7963 set_load_weight(&init_task
);
7965 #ifdef CONFIG_PREEMPT_NOTIFIERS
7966 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7970 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7973 #ifdef CONFIG_RT_MUTEXES
7974 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7978 * The boot idle thread does lazy MMU switching as well:
7980 atomic_inc(&init_mm
.mm_count
);
7981 enter_lazy_tlb(&init_mm
, current
);
7984 * Make us the idle thread. Technically, schedule() should not be
7985 * called from this thread, however somewhere below it might be,
7986 * but because we are the idle thread, we just pick up running again
7987 * when this runqueue becomes "idle".
7989 init_idle(current
, smp_processor_id());
7991 calc_load_update
= jiffies
+ LOAD_FREQ
;
7994 * During early bootup we pretend to be a normal task:
7996 current
->sched_class
= &fair_sched_class
;
7998 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7999 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
8001 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
8003 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8004 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8005 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8006 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8007 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8009 /* May be allocated at isolcpus cmdline parse time */
8010 if (cpu_isolated_map
== NULL
)
8011 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8014 scheduler_running
= 1;
8017 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8018 static inline int preempt_count_equals(int preempt_offset
)
8020 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8022 return (nested
== preempt_offset
);
8025 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8028 static unsigned long prev_jiffy
; /* ratelimiting */
8030 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8031 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8033 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8035 prev_jiffy
= jiffies
;
8038 "BUG: sleeping function called from invalid context at %s:%d\n",
8041 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8042 in_atomic(), irqs_disabled(),
8043 current
->pid
, current
->comm
);
8045 debug_show_held_locks(current
);
8046 if (irqs_disabled())
8047 print_irqtrace_events(current
);
8051 EXPORT_SYMBOL(__might_sleep
);
8054 #ifdef CONFIG_MAGIC_SYSRQ
8055 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8057 const struct sched_class
*prev_class
= p
->sched_class
;
8058 int old_prio
= p
->prio
;
8063 deactivate_task(rq
, p
, 0);
8064 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8066 activate_task(rq
, p
, 0);
8067 resched_task(rq
->curr
);
8070 check_class_changed(rq
, p
, prev_class
, old_prio
);
8073 void normalize_rt_tasks(void)
8075 struct task_struct
*g
, *p
;
8076 unsigned long flags
;
8079 read_lock_irqsave(&tasklist_lock
, flags
);
8080 do_each_thread(g
, p
) {
8082 * Only normalize user tasks:
8087 p
->se
.exec_start
= 0;
8088 #ifdef CONFIG_SCHEDSTATS
8089 p
->se
.statistics
.wait_start
= 0;
8090 p
->se
.statistics
.sleep_start
= 0;
8091 p
->se
.statistics
.block_start
= 0;
8096 * Renice negative nice level userspace
8099 if (TASK_NICE(p
) < 0 && p
->mm
)
8100 set_user_nice(p
, 0);
8104 raw_spin_lock(&p
->pi_lock
);
8105 rq
= __task_rq_lock(p
);
8107 normalize_task(rq
, p
);
8109 __task_rq_unlock(rq
);
8110 raw_spin_unlock(&p
->pi_lock
);
8111 } while_each_thread(g
, p
);
8113 read_unlock_irqrestore(&tasklist_lock
, flags
);
8116 #endif /* CONFIG_MAGIC_SYSRQ */
8118 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8120 * These functions are only useful for the IA64 MCA handling, or kdb.
8122 * They can only be called when the whole system has been
8123 * stopped - every CPU needs to be quiescent, and no scheduling
8124 * activity can take place. Using them for anything else would
8125 * be a serious bug, and as a result, they aren't even visible
8126 * under any other configuration.
8130 * curr_task - return the current task for a given cpu.
8131 * @cpu: the processor in question.
8133 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8135 struct task_struct
*curr_task(int cpu
)
8137 return cpu_curr(cpu
);
8140 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8144 * set_curr_task - set the current task for a given cpu.
8145 * @cpu: the processor in question.
8146 * @p: the task pointer to set.
8148 * Description: This function must only be used when non-maskable interrupts
8149 * are serviced on a separate stack. It allows the architecture to switch the
8150 * notion of the current task on a cpu in a non-blocking manner. This function
8151 * must be called with all CPU's synchronized, and interrupts disabled, the
8152 * and caller must save the original value of the current task (see
8153 * curr_task() above) and restore that value before reenabling interrupts and
8154 * re-starting the system.
8156 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8158 void set_curr_task(int cpu
, struct task_struct
*p
)
8165 #ifdef CONFIG_FAIR_GROUP_SCHED
8166 static void free_fair_sched_group(struct task_group
*tg
)
8170 for_each_possible_cpu(i
) {
8172 kfree(tg
->cfs_rq
[i
]);
8182 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8184 struct cfs_rq
*cfs_rq
;
8185 struct sched_entity
*se
;
8188 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8191 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8195 tg
->shares
= NICE_0_LOAD
;
8197 for_each_possible_cpu(i
) {
8198 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8199 GFP_KERNEL
, cpu_to_node(i
));
8203 se
= kzalloc_node(sizeof(struct sched_entity
),
8204 GFP_KERNEL
, cpu_to_node(i
));
8208 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8219 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8221 struct rq
*rq
= cpu_rq(cpu
);
8222 unsigned long flags
;
8225 * Only empty task groups can be destroyed; so we can speculatively
8226 * check on_list without danger of it being re-added.
8228 if (!tg
->cfs_rq
[cpu
]->on_list
)
8231 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8232 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8233 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8235 #else /* !CONFG_FAIR_GROUP_SCHED */
8236 static inline void free_fair_sched_group(struct task_group
*tg
)
8241 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8246 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8249 #endif /* CONFIG_FAIR_GROUP_SCHED */
8251 #ifdef CONFIG_RT_GROUP_SCHED
8252 static void free_rt_sched_group(struct task_group
*tg
)
8256 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8258 for_each_possible_cpu(i
) {
8260 kfree(tg
->rt_rq
[i
]);
8262 kfree(tg
->rt_se
[i
]);
8270 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8272 struct rt_rq
*rt_rq
;
8273 struct sched_rt_entity
*rt_se
;
8276 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8279 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8283 init_rt_bandwidth(&tg
->rt_bandwidth
,
8284 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8286 for_each_possible_cpu(i
) {
8287 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8288 GFP_KERNEL
, cpu_to_node(i
));
8292 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8293 GFP_KERNEL
, cpu_to_node(i
));
8297 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8307 #else /* !CONFIG_RT_GROUP_SCHED */
8308 static inline void free_rt_sched_group(struct task_group
*tg
)
8313 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8317 #endif /* CONFIG_RT_GROUP_SCHED */
8319 #ifdef CONFIG_CGROUP_SCHED
8320 static void free_sched_group(struct task_group
*tg
)
8322 free_fair_sched_group(tg
);
8323 free_rt_sched_group(tg
);
8328 /* allocate runqueue etc for a new task group */
8329 struct task_group
*sched_create_group(struct task_group
*parent
)
8331 struct task_group
*tg
;
8332 unsigned long flags
;
8334 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8336 return ERR_PTR(-ENOMEM
);
8338 if (!alloc_fair_sched_group(tg
, parent
))
8341 if (!alloc_rt_sched_group(tg
, parent
))
8344 spin_lock_irqsave(&task_group_lock
, flags
);
8345 list_add_rcu(&tg
->list
, &task_groups
);
8347 WARN_ON(!parent
); /* root should already exist */
8349 tg
->parent
= parent
;
8350 INIT_LIST_HEAD(&tg
->children
);
8351 list_add_rcu(&tg
->siblings
, &parent
->children
);
8352 spin_unlock_irqrestore(&task_group_lock
, flags
);
8357 free_sched_group(tg
);
8358 return ERR_PTR(-ENOMEM
);
8361 /* rcu callback to free various structures associated with a task group */
8362 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8364 /* now it should be safe to free those cfs_rqs */
8365 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8368 /* Destroy runqueue etc associated with a task group */
8369 void sched_destroy_group(struct task_group
*tg
)
8371 unsigned long flags
;
8374 /* end participation in shares distribution */
8375 for_each_possible_cpu(i
)
8376 unregister_fair_sched_group(tg
, i
);
8378 spin_lock_irqsave(&task_group_lock
, flags
);
8379 list_del_rcu(&tg
->list
);
8380 list_del_rcu(&tg
->siblings
);
8381 spin_unlock_irqrestore(&task_group_lock
, flags
);
8383 /* wait for possible concurrent references to cfs_rqs complete */
8384 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8387 /* change task's runqueue when it moves between groups.
8388 * The caller of this function should have put the task in its new group
8389 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8390 * reflect its new group.
8392 void sched_move_task(struct task_struct
*tsk
)
8395 unsigned long flags
;
8398 rq
= task_rq_lock(tsk
, &flags
);
8400 running
= task_current(rq
, tsk
);
8404 dequeue_task(rq
, tsk
, 0);
8405 if (unlikely(running
))
8406 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8408 #ifdef CONFIG_FAIR_GROUP_SCHED
8409 if (tsk
->sched_class
->task_move_group
)
8410 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8413 set_task_rq(tsk
, task_cpu(tsk
));
8415 if (unlikely(running
))
8416 tsk
->sched_class
->set_curr_task(rq
);
8418 enqueue_task(rq
, tsk
, 0);
8420 task_rq_unlock(rq
, tsk
, &flags
);
8422 #endif /* CONFIG_CGROUP_SCHED */
8424 #ifdef CONFIG_FAIR_GROUP_SCHED
8425 static DEFINE_MUTEX(shares_mutex
);
8427 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8430 unsigned long flags
;
8433 * We can't change the weight of the root cgroup.
8438 if (shares
< MIN_SHARES
)
8439 shares
= MIN_SHARES
;
8440 else if (shares
> MAX_SHARES
)
8441 shares
= MAX_SHARES
;
8443 mutex_lock(&shares_mutex
);
8444 if (tg
->shares
== shares
)
8447 tg
->shares
= shares
;
8448 for_each_possible_cpu(i
) {
8449 struct rq
*rq
= cpu_rq(i
);
8450 struct sched_entity
*se
;
8453 /* Propagate contribution to hierarchy */
8454 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8455 for_each_sched_entity(se
)
8456 update_cfs_shares(group_cfs_rq(se
));
8457 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8461 mutex_unlock(&shares_mutex
);
8465 unsigned long sched_group_shares(struct task_group
*tg
)
8471 #ifdef CONFIG_RT_GROUP_SCHED
8473 * Ensure that the real time constraints are schedulable.
8475 static DEFINE_MUTEX(rt_constraints_mutex
);
8477 static unsigned long to_ratio(u64 period
, u64 runtime
)
8479 if (runtime
== RUNTIME_INF
)
8482 return div64_u64(runtime
<< 20, period
);
8485 /* Must be called with tasklist_lock held */
8486 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8488 struct task_struct
*g
, *p
;
8490 do_each_thread(g
, p
) {
8491 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8493 } while_each_thread(g
, p
);
8498 struct rt_schedulable_data
{
8499 struct task_group
*tg
;
8504 static int tg_schedulable(struct task_group
*tg
, void *data
)
8506 struct rt_schedulable_data
*d
= data
;
8507 struct task_group
*child
;
8508 unsigned long total
, sum
= 0;
8509 u64 period
, runtime
;
8511 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8512 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8515 period
= d
->rt_period
;
8516 runtime
= d
->rt_runtime
;
8520 * Cannot have more runtime than the period.
8522 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8526 * Ensure we don't starve existing RT tasks.
8528 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8531 total
= to_ratio(period
, runtime
);
8534 * Nobody can have more than the global setting allows.
8536 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8540 * The sum of our children's runtime should not exceed our own.
8542 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8543 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8544 runtime
= child
->rt_bandwidth
.rt_runtime
;
8546 if (child
== d
->tg
) {
8547 period
= d
->rt_period
;
8548 runtime
= d
->rt_runtime
;
8551 sum
+= to_ratio(period
, runtime
);
8560 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8562 struct rt_schedulable_data data
= {
8564 .rt_period
= period
,
8565 .rt_runtime
= runtime
,
8568 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8571 static int tg_set_bandwidth(struct task_group
*tg
,
8572 u64 rt_period
, u64 rt_runtime
)
8576 mutex_lock(&rt_constraints_mutex
);
8577 read_lock(&tasklist_lock
);
8578 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8582 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8583 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8584 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8586 for_each_possible_cpu(i
) {
8587 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8589 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8590 rt_rq
->rt_runtime
= rt_runtime
;
8591 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8593 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8595 read_unlock(&tasklist_lock
);
8596 mutex_unlock(&rt_constraints_mutex
);
8601 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8603 u64 rt_runtime
, rt_period
;
8605 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8606 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8607 if (rt_runtime_us
< 0)
8608 rt_runtime
= RUNTIME_INF
;
8610 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8613 long sched_group_rt_runtime(struct task_group
*tg
)
8617 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8620 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8621 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8622 return rt_runtime_us
;
8625 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8627 u64 rt_runtime
, rt_period
;
8629 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8630 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8635 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8638 long sched_group_rt_period(struct task_group
*tg
)
8642 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8643 do_div(rt_period_us
, NSEC_PER_USEC
);
8644 return rt_period_us
;
8647 static int sched_rt_global_constraints(void)
8649 u64 runtime
, period
;
8652 if (sysctl_sched_rt_period
<= 0)
8655 runtime
= global_rt_runtime();
8656 period
= global_rt_period();
8659 * Sanity check on the sysctl variables.
8661 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8664 mutex_lock(&rt_constraints_mutex
);
8665 read_lock(&tasklist_lock
);
8666 ret
= __rt_schedulable(NULL
, 0, 0);
8667 read_unlock(&tasklist_lock
);
8668 mutex_unlock(&rt_constraints_mutex
);
8673 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8675 /* Don't accept realtime tasks when there is no way for them to run */
8676 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8682 #else /* !CONFIG_RT_GROUP_SCHED */
8683 static int sched_rt_global_constraints(void)
8685 unsigned long flags
;
8688 if (sysctl_sched_rt_period
<= 0)
8692 * There's always some RT tasks in the root group
8693 * -- migration, kstopmachine etc..
8695 if (sysctl_sched_rt_runtime
== 0)
8698 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8699 for_each_possible_cpu(i
) {
8700 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8702 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8703 rt_rq
->rt_runtime
= global_rt_runtime();
8704 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8706 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8710 #endif /* CONFIG_RT_GROUP_SCHED */
8712 int sched_rt_handler(struct ctl_table
*table
, int write
,
8713 void __user
*buffer
, size_t *lenp
,
8717 int old_period
, old_runtime
;
8718 static DEFINE_MUTEX(mutex
);
8721 old_period
= sysctl_sched_rt_period
;
8722 old_runtime
= sysctl_sched_rt_runtime
;
8724 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8726 if (!ret
&& write
) {
8727 ret
= sched_rt_global_constraints();
8729 sysctl_sched_rt_period
= old_period
;
8730 sysctl_sched_rt_runtime
= old_runtime
;
8732 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8733 def_rt_bandwidth
.rt_period
=
8734 ns_to_ktime(global_rt_period());
8737 mutex_unlock(&mutex
);
8742 #ifdef CONFIG_CGROUP_SCHED
8744 /* return corresponding task_group object of a cgroup */
8745 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8747 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8748 struct task_group
, css
);
8751 static struct cgroup_subsys_state
*
8752 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8754 struct task_group
*tg
, *parent
;
8756 if (!cgrp
->parent
) {
8757 /* This is early initialization for the top cgroup */
8758 return &root_task_group
.css
;
8761 parent
= cgroup_tg(cgrp
->parent
);
8762 tg
= sched_create_group(parent
);
8764 return ERR_PTR(-ENOMEM
);
8770 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8772 struct task_group
*tg
= cgroup_tg(cgrp
);
8774 sched_destroy_group(tg
);
8778 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8780 #ifdef CONFIG_RT_GROUP_SCHED
8781 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8784 /* We don't support RT-tasks being in separate groups */
8785 if (tsk
->sched_class
!= &fair_sched_class
)
8792 cpu_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8794 sched_move_task(tsk
);
8798 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8799 struct cgroup
*old_cgrp
, struct task_struct
*task
)
8802 * cgroup_exit() is called in the copy_process() failure path.
8803 * Ignore this case since the task hasn't ran yet, this avoids
8804 * trying to poke a half freed task state from generic code.
8806 if (!(task
->flags
& PF_EXITING
))
8809 sched_move_task(task
);
8812 #ifdef CONFIG_FAIR_GROUP_SCHED
8813 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8816 return sched_group_set_shares(cgroup_tg(cgrp
), scale_load(shareval
));
8819 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8821 struct task_group
*tg
= cgroup_tg(cgrp
);
8823 return (u64
) scale_load_down(tg
->shares
);
8825 #endif /* CONFIG_FAIR_GROUP_SCHED */
8827 #ifdef CONFIG_RT_GROUP_SCHED
8828 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8831 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8834 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8836 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8839 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8842 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8845 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8847 return sched_group_rt_period(cgroup_tg(cgrp
));
8849 #endif /* CONFIG_RT_GROUP_SCHED */
8851 static struct cftype cpu_files
[] = {
8852 #ifdef CONFIG_FAIR_GROUP_SCHED
8855 .read_u64
= cpu_shares_read_u64
,
8856 .write_u64
= cpu_shares_write_u64
,
8859 #ifdef CONFIG_RT_GROUP_SCHED
8861 .name
= "rt_runtime_us",
8862 .read_s64
= cpu_rt_runtime_read
,
8863 .write_s64
= cpu_rt_runtime_write
,
8866 .name
= "rt_period_us",
8867 .read_u64
= cpu_rt_period_read_uint
,
8868 .write_u64
= cpu_rt_period_write_uint
,
8873 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8875 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8878 struct cgroup_subsys cpu_cgroup_subsys
= {
8880 .create
= cpu_cgroup_create
,
8881 .destroy
= cpu_cgroup_destroy
,
8882 .can_attach_task
= cpu_cgroup_can_attach_task
,
8883 .attach_task
= cpu_cgroup_attach_task
,
8884 .exit
= cpu_cgroup_exit
,
8885 .populate
= cpu_cgroup_populate
,
8886 .subsys_id
= cpu_cgroup_subsys_id
,
8890 #endif /* CONFIG_CGROUP_SCHED */
8892 #ifdef CONFIG_CGROUP_CPUACCT
8895 * CPU accounting code for task groups.
8897 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8898 * (balbir@in.ibm.com).
8901 /* track cpu usage of a group of tasks and its child groups */
8903 struct cgroup_subsys_state css
;
8904 /* cpuusage holds pointer to a u64-type object on every cpu */
8905 u64 __percpu
*cpuusage
;
8906 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8907 struct cpuacct
*parent
;
8910 struct cgroup_subsys cpuacct_subsys
;
8912 /* return cpu accounting group corresponding to this container */
8913 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8915 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8916 struct cpuacct
, css
);
8919 /* return cpu accounting group to which this task belongs */
8920 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8922 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8923 struct cpuacct
, css
);
8926 /* create a new cpu accounting group */
8927 static struct cgroup_subsys_state
*cpuacct_create(
8928 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8930 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8936 ca
->cpuusage
= alloc_percpu(u64
);
8940 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8941 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8942 goto out_free_counters
;
8945 ca
->parent
= cgroup_ca(cgrp
->parent
);
8951 percpu_counter_destroy(&ca
->cpustat
[i
]);
8952 free_percpu(ca
->cpuusage
);
8956 return ERR_PTR(-ENOMEM
);
8959 /* destroy an existing cpu accounting group */
8961 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8963 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8966 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8967 percpu_counter_destroy(&ca
->cpustat
[i
]);
8968 free_percpu(ca
->cpuusage
);
8972 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8974 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8977 #ifndef CONFIG_64BIT
8979 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8981 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8983 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8991 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8993 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8995 #ifndef CONFIG_64BIT
8997 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8999 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9001 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9007 /* return total cpu usage (in nanoseconds) of a group */
9008 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9010 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9011 u64 totalcpuusage
= 0;
9014 for_each_present_cpu(i
)
9015 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9017 return totalcpuusage
;
9020 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9023 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9032 for_each_present_cpu(i
)
9033 cpuacct_cpuusage_write(ca
, i
, 0);
9039 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9042 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9046 for_each_present_cpu(i
) {
9047 percpu
= cpuacct_cpuusage_read(ca
, i
);
9048 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9050 seq_printf(m
, "\n");
9054 static const char *cpuacct_stat_desc
[] = {
9055 [CPUACCT_STAT_USER
] = "user",
9056 [CPUACCT_STAT_SYSTEM
] = "system",
9059 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9060 struct cgroup_map_cb
*cb
)
9062 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9065 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9066 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9067 val
= cputime64_to_clock_t(val
);
9068 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9073 static struct cftype files
[] = {
9076 .read_u64
= cpuusage_read
,
9077 .write_u64
= cpuusage_write
,
9080 .name
= "usage_percpu",
9081 .read_seq_string
= cpuacct_percpu_seq_read
,
9085 .read_map
= cpuacct_stats_show
,
9089 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9091 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9095 * charge this task's execution time to its accounting group.
9097 * called with rq->lock held.
9099 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9104 if (unlikely(!cpuacct_subsys
.active
))
9107 cpu
= task_cpu(tsk
);
9113 for (; ca
; ca
= ca
->parent
) {
9114 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9115 *cpuusage
+= cputime
;
9122 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9123 * in cputime_t units. As a result, cpuacct_update_stats calls
9124 * percpu_counter_add with values large enough to always overflow the
9125 * per cpu batch limit causing bad SMP scalability.
9127 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9128 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9129 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9132 #define CPUACCT_BATCH \
9133 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9135 #define CPUACCT_BATCH 0
9139 * Charge the system/user time to the task's accounting group.
9141 static void cpuacct_update_stats(struct task_struct
*tsk
,
9142 enum cpuacct_stat_index idx
, cputime_t val
)
9145 int batch
= CPUACCT_BATCH
;
9147 if (unlikely(!cpuacct_subsys
.active
))
9154 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9160 struct cgroup_subsys cpuacct_subsys
= {
9162 .create
= cpuacct_create
,
9163 .destroy
= cpuacct_destroy
,
9164 .populate
= cpuacct_populate
,
9165 .subsys_id
= cpuacct_subsys_id
,
9167 #endif /* CONFIG_CGROUP_CPUACCT */