n_gsm: copy mtu over when configuring via ioctl interface
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swapfile.c
blob07a458d72fa880f5adc366b8acf03e610841880e
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
56 static struct swap_list_t swap_list = {-1, -1};
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
60 static DEFINE_MUTEX(swapon_mutex);
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
66 static inline unsigned char swap_count(unsigned char ent)
68 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
75 swp_entry_t entry = swp_entry(si->type, offset);
76 struct page *page;
77 int ret = 0;
79 page = find_get_page(&swapper_space, entry.val);
80 if (!page)
81 return 0;
83 * This function is called from scan_swap_map() and it's called
84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 * We have to use trylock for avoiding deadlock. This is a special
86 * case and you should use try_to_free_swap() with explicit lock_page()
87 * in usual operations.
89 if (trylock_page(page)) {
90 ret = try_to_free_swap(page);
91 unlock_page(page);
93 page_cache_release(page);
94 return ret;
98 * We need this because the bdev->unplug_fn can sleep and we cannot
99 * hold swap_lock while calling the unplug_fn. And swap_lock
100 * cannot be turned into a mutex.
102 static DECLARE_RWSEM(swap_unplug_sem);
104 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
106 swp_entry_t entry;
108 down_read(&swap_unplug_sem);
109 entry.val = page_private(page);
110 if (PageSwapCache(page)) {
111 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
112 struct backing_dev_info *bdi;
115 * If the page is removed from swapcache from under us (with a
116 * racy try_to_unuse/swapoff) we need an additional reference
117 * count to avoid reading garbage from page_private(page) above.
118 * If the WARN_ON triggers during a swapoff it maybe the race
119 * condition and it's harmless. However if it triggers without
120 * swapoff it signals a problem.
122 WARN_ON(page_count(page) <= 1);
124 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
125 blk_run_backing_dev(bdi, page);
127 up_read(&swap_unplug_sem);
131 * swapon tell device that all the old swap contents can be discarded,
132 * to allow the swap device to optimize its wear-levelling.
134 static int discard_swap(struct swap_info_struct *si)
136 struct swap_extent *se;
137 sector_t start_block;
138 sector_t nr_blocks;
139 int err = 0;
141 /* Do not discard the swap header page! */
142 se = &si->first_swap_extent;
143 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 if (nr_blocks) {
146 err = blkdev_issue_discard(si->bdev, start_block,
147 nr_blocks, GFP_KERNEL, 0);
148 if (err)
149 return err;
150 cond_resched();
153 list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 start_block = se->start_block << (PAGE_SHIFT - 9);
155 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
157 err = blkdev_issue_discard(si->bdev, start_block,
158 nr_blocks, GFP_KERNEL, 0);
159 if (err)
160 break;
162 cond_resched();
164 return err; /* That will often be -EOPNOTSUPP */
168 * swap allocation tell device that a cluster of swap can now be discarded,
169 * to allow the swap device to optimize its wear-levelling.
171 static void discard_swap_cluster(struct swap_info_struct *si,
172 pgoff_t start_page, pgoff_t nr_pages)
174 struct swap_extent *se = si->curr_swap_extent;
175 int found_extent = 0;
177 while (nr_pages) {
178 struct list_head *lh;
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
184 sector_t nr_blocks = se->nr_pages - offset;
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
191 if (!found_extent++)
192 si->curr_swap_extent = se;
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
197 nr_blocks, GFP_NOIO, 0))
198 break;
201 lh = se->list.next;
202 se = list_entry(lh, struct swap_extent, list);
206 static int wait_for_discard(void *word)
208 schedule();
209 return 0;
212 #define SWAPFILE_CLUSTER 256
213 #define LATENCY_LIMIT 256
215 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
216 unsigned char usage)
218 unsigned long offset;
219 unsigned long scan_base;
220 unsigned long last_in_cluster = 0;
221 int latency_ration = LATENCY_LIMIT;
222 int found_free_cluster = 0;
225 * We try to cluster swap pages by allocating them sequentially
226 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
227 * way, however, we resort to first-free allocation, starting
228 * a new cluster. This prevents us from scattering swap pages
229 * all over the entire swap partition, so that we reduce
230 * overall disk seek times between swap pages. -- sct
231 * But we do now try to find an empty cluster. -Andrea
232 * And we let swap pages go all over an SSD partition. Hugh
235 si->flags += SWP_SCANNING;
236 scan_base = offset = si->cluster_next;
238 if (unlikely(!si->cluster_nr--)) {
239 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
240 si->cluster_nr = SWAPFILE_CLUSTER - 1;
241 goto checks;
243 if (si->flags & SWP_DISCARDABLE) {
245 * Start range check on racing allocations, in case
246 * they overlap the cluster we eventually decide on
247 * (we scan without swap_lock to allow preemption).
248 * It's hardly conceivable that cluster_nr could be
249 * wrapped during our scan, but don't depend on it.
251 if (si->lowest_alloc)
252 goto checks;
253 si->lowest_alloc = si->max;
254 si->highest_alloc = 0;
256 spin_unlock(&swap_lock);
259 * If seek is expensive, start searching for new cluster from
260 * start of partition, to minimize the span of allocated swap.
261 * But if seek is cheap, search from our current position, so
262 * that swap is allocated from all over the partition: if the
263 * Flash Translation Layer only remaps within limited zones,
264 * we don't want to wear out the first zone too quickly.
266 if (!(si->flags & SWP_SOLIDSTATE))
267 scan_base = offset = si->lowest_bit;
268 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
270 /* Locate the first empty (unaligned) cluster */
271 for (; last_in_cluster <= si->highest_bit; offset++) {
272 if (si->swap_map[offset])
273 last_in_cluster = offset + SWAPFILE_CLUSTER;
274 else if (offset == last_in_cluster) {
275 spin_lock(&swap_lock);
276 offset -= SWAPFILE_CLUSTER - 1;
277 si->cluster_next = offset;
278 si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 found_free_cluster = 1;
280 goto checks;
282 if (unlikely(--latency_ration < 0)) {
283 cond_resched();
284 latency_ration = LATENCY_LIMIT;
288 offset = si->lowest_bit;
289 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
291 /* Locate the first empty (unaligned) cluster */
292 for (; last_in_cluster < scan_base; offset++) {
293 if (si->swap_map[offset])
294 last_in_cluster = offset + SWAPFILE_CLUSTER;
295 else if (offset == last_in_cluster) {
296 spin_lock(&swap_lock);
297 offset -= SWAPFILE_CLUSTER - 1;
298 si->cluster_next = offset;
299 si->cluster_nr = SWAPFILE_CLUSTER - 1;
300 found_free_cluster = 1;
301 goto checks;
303 if (unlikely(--latency_ration < 0)) {
304 cond_resched();
305 latency_ration = LATENCY_LIMIT;
309 offset = scan_base;
310 spin_lock(&swap_lock);
311 si->cluster_nr = SWAPFILE_CLUSTER - 1;
312 si->lowest_alloc = 0;
315 checks:
316 if (!(si->flags & SWP_WRITEOK))
317 goto no_page;
318 if (!si->highest_bit)
319 goto no_page;
320 if (offset > si->highest_bit)
321 scan_base = offset = si->lowest_bit;
323 /* reuse swap entry of cache-only swap if not busy. */
324 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
325 int swap_was_freed;
326 spin_unlock(&swap_lock);
327 swap_was_freed = __try_to_reclaim_swap(si, offset);
328 spin_lock(&swap_lock);
329 /* entry was freed successfully, try to use this again */
330 if (swap_was_freed)
331 goto checks;
332 goto scan; /* check next one */
335 if (si->swap_map[offset])
336 goto scan;
338 if (offset == si->lowest_bit)
339 si->lowest_bit++;
340 if (offset == si->highest_bit)
341 si->highest_bit--;
342 si->inuse_pages++;
343 if (si->inuse_pages == si->pages) {
344 si->lowest_bit = si->max;
345 si->highest_bit = 0;
347 si->swap_map[offset] = usage;
348 si->cluster_next = offset + 1;
349 si->flags -= SWP_SCANNING;
351 if (si->lowest_alloc) {
353 * Only set when SWP_DISCARDABLE, and there's a scan
354 * for a free cluster in progress or just completed.
356 if (found_free_cluster) {
358 * To optimize wear-levelling, discard the
359 * old data of the cluster, taking care not to
360 * discard any of its pages that have already
361 * been allocated by racing tasks (offset has
362 * already stepped over any at the beginning).
364 if (offset < si->highest_alloc &&
365 si->lowest_alloc <= last_in_cluster)
366 last_in_cluster = si->lowest_alloc - 1;
367 si->flags |= SWP_DISCARDING;
368 spin_unlock(&swap_lock);
370 if (offset < last_in_cluster)
371 discard_swap_cluster(si, offset,
372 last_in_cluster - offset + 1);
374 spin_lock(&swap_lock);
375 si->lowest_alloc = 0;
376 si->flags &= ~SWP_DISCARDING;
378 smp_mb(); /* wake_up_bit advises this */
379 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
381 } else if (si->flags & SWP_DISCARDING) {
383 * Delay using pages allocated by racing tasks
384 * until the whole discard has been issued. We
385 * could defer that delay until swap_writepage,
386 * but it's easier to keep this self-contained.
388 spin_unlock(&swap_lock);
389 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
390 wait_for_discard, TASK_UNINTERRUPTIBLE);
391 spin_lock(&swap_lock);
392 } else {
394 * Note pages allocated by racing tasks while
395 * scan for a free cluster is in progress, so
396 * that its final discard can exclude them.
398 if (offset < si->lowest_alloc)
399 si->lowest_alloc = offset;
400 if (offset > si->highest_alloc)
401 si->highest_alloc = offset;
404 return offset;
406 scan:
407 spin_unlock(&swap_lock);
408 while (++offset <= si->highest_bit) {
409 if (!si->swap_map[offset]) {
410 spin_lock(&swap_lock);
411 goto checks;
413 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
414 spin_lock(&swap_lock);
415 goto checks;
417 if (unlikely(--latency_ration < 0)) {
418 cond_resched();
419 latency_ration = LATENCY_LIMIT;
422 offset = si->lowest_bit;
423 while (++offset < scan_base) {
424 if (!si->swap_map[offset]) {
425 spin_lock(&swap_lock);
426 goto checks;
428 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
429 spin_lock(&swap_lock);
430 goto checks;
432 if (unlikely(--latency_ration < 0)) {
433 cond_resched();
434 latency_ration = LATENCY_LIMIT;
437 spin_lock(&swap_lock);
439 no_page:
440 si->flags -= SWP_SCANNING;
441 return 0;
444 swp_entry_t get_swap_page(void)
446 struct swap_info_struct *si;
447 pgoff_t offset;
448 int type, next;
449 int wrapped = 0;
451 spin_lock(&swap_lock);
452 if (nr_swap_pages <= 0)
453 goto noswap;
454 nr_swap_pages--;
456 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
457 si = swap_info[type];
458 next = si->next;
459 if (next < 0 ||
460 (!wrapped && si->prio != swap_info[next]->prio)) {
461 next = swap_list.head;
462 wrapped++;
465 if (!si->highest_bit)
466 continue;
467 if (!(si->flags & SWP_WRITEOK))
468 continue;
470 swap_list.next = next;
471 /* This is called for allocating swap entry for cache */
472 offset = scan_swap_map(si, SWAP_HAS_CACHE);
473 if (offset) {
474 spin_unlock(&swap_lock);
475 return swp_entry(type, offset);
477 next = swap_list.next;
480 nr_swap_pages++;
481 noswap:
482 spin_unlock(&swap_lock);
483 return (swp_entry_t) {0};
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
489 struct swap_info_struct *si;
490 pgoff_t offset;
492 spin_lock(&swap_lock);
493 si = swap_info[type];
494 if (si && (si->flags & SWP_WRITEOK)) {
495 nr_swap_pages--;
496 /* This is called for allocating swap entry, not cache */
497 offset = scan_swap_map(si, 1);
498 if (offset) {
499 spin_unlock(&swap_lock);
500 return swp_entry(type, offset);
502 nr_swap_pages++;
504 spin_unlock(&swap_lock);
505 return (swp_entry_t) {0};
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
510 struct swap_info_struct *p;
511 unsigned long offset, type;
513 if (!entry.val)
514 goto out;
515 type = swp_type(entry);
516 if (type >= nr_swapfiles)
517 goto bad_nofile;
518 p = swap_info[type];
519 if (!(p->flags & SWP_USED))
520 goto bad_device;
521 offset = swp_offset(entry);
522 if (offset >= p->max)
523 goto bad_offset;
524 if (!p->swap_map[offset])
525 goto bad_free;
526 spin_lock(&swap_lock);
527 return p;
529 bad_free:
530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 goto out;
532 bad_offset:
533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 goto out;
535 bad_device:
536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 goto out;
538 bad_nofile:
539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541 return NULL;
544 static unsigned char swap_entry_free(struct swap_info_struct *p,
545 swp_entry_t entry, unsigned char usage)
547 unsigned long offset = swp_offset(entry);
548 unsigned char count;
549 unsigned char has_cache;
551 count = p->swap_map[offset];
552 has_cache = count & SWAP_HAS_CACHE;
553 count &= ~SWAP_HAS_CACHE;
555 if (usage == SWAP_HAS_CACHE) {
556 VM_BUG_ON(!has_cache);
557 has_cache = 0;
558 } else if (count == SWAP_MAP_SHMEM) {
560 * Or we could insist on shmem.c using a special
561 * swap_shmem_free() and free_shmem_swap_and_cache()...
563 count = 0;
564 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
565 if (count == COUNT_CONTINUED) {
566 if (swap_count_continued(p, offset, count))
567 count = SWAP_MAP_MAX | COUNT_CONTINUED;
568 else
569 count = SWAP_MAP_MAX;
570 } else
571 count--;
574 if (!count)
575 mem_cgroup_uncharge_swap(entry);
577 usage = count | has_cache;
578 p->swap_map[offset] = usage;
580 /* free if no reference */
581 if (!usage) {
582 struct gendisk *disk = p->bdev->bd_disk;
583 if (offset < p->lowest_bit)
584 p->lowest_bit = offset;
585 if (offset > p->highest_bit)
586 p->highest_bit = offset;
587 if (swap_list.next >= 0 &&
588 p->prio > swap_info[swap_list.next]->prio)
589 swap_list.next = p->type;
590 nr_swap_pages++;
591 p->inuse_pages--;
592 if ((p->flags & SWP_BLKDEV) &&
593 disk->fops->swap_slot_free_notify)
594 disk->fops->swap_slot_free_notify(p->bdev, offset);
597 return usage;
601 * Caller has made sure that the swapdevice corresponding to entry
602 * is still around or has not been recycled.
604 void swap_free(swp_entry_t entry)
606 struct swap_info_struct *p;
608 p = swap_info_get(entry);
609 if (p) {
610 swap_entry_free(p, entry, 1);
611 spin_unlock(&swap_lock);
616 * Called after dropping swapcache to decrease refcnt to swap entries.
618 void swapcache_free(swp_entry_t entry, struct page *page)
620 struct swap_info_struct *p;
621 unsigned char count;
623 p = swap_info_get(entry);
624 if (p) {
625 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
626 if (page)
627 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
628 spin_unlock(&swap_lock);
633 * How many references to page are currently swapped out?
634 * This does not give an exact answer when swap count is continued,
635 * but does include the high COUNT_CONTINUED flag to allow for that.
637 static inline int page_swapcount(struct page *page)
639 int count = 0;
640 struct swap_info_struct *p;
641 swp_entry_t entry;
643 entry.val = page_private(page);
644 p = swap_info_get(entry);
645 if (p) {
646 count = swap_count(p->swap_map[swp_offset(entry)]);
647 spin_unlock(&swap_lock);
649 return count;
653 * We can write to an anon page without COW if there are no other references
654 * to it. And as a side-effect, free up its swap: because the old content
655 * on disk will never be read, and seeking back there to write new content
656 * later would only waste time away from clustering.
658 int reuse_swap_page(struct page *page)
660 int count;
662 VM_BUG_ON(!PageLocked(page));
663 if (unlikely(PageKsm(page)))
664 return 0;
665 count = page_mapcount(page);
666 if (count <= 1 && PageSwapCache(page)) {
667 count += page_swapcount(page);
668 if (count == 1 && !PageWriteback(page)) {
669 delete_from_swap_cache(page);
670 SetPageDirty(page);
673 return count <= 1;
677 * If swap is getting full, or if there are no more mappings of this page,
678 * then try_to_free_swap is called to free its swap space.
680 int try_to_free_swap(struct page *page)
682 VM_BUG_ON(!PageLocked(page));
684 if (!PageSwapCache(page))
685 return 0;
686 if (PageWriteback(page))
687 return 0;
688 if (page_swapcount(page))
689 return 0;
692 * Once hibernation has begun to create its image of memory,
693 * there's a danger that one of the calls to try_to_free_swap()
694 * - most probably a call from __try_to_reclaim_swap() while
695 * hibernation is allocating its own swap pages for the image,
696 * but conceivably even a call from memory reclaim - will free
697 * the swap from a page which has already been recorded in the
698 * image as a clean swapcache page, and then reuse its swap for
699 * another page of the image. On waking from hibernation, the
700 * original page might be freed under memory pressure, then
701 * later read back in from swap, now with the wrong data.
703 * Hibernation clears bits from gfp_allowed_mask to prevent
704 * memory reclaim from writing to disk, so check that here.
706 if (!(gfp_allowed_mask & __GFP_IO))
707 return 0;
709 delete_from_swap_cache(page);
710 SetPageDirty(page);
711 return 1;
715 * Free the swap entry like above, but also try to
716 * free the page cache entry if it is the last user.
718 int free_swap_and_cache(swp_entry_t entry)
720 struct swap_info_struct *p;
721 struct page *page = NULL;
723 if (non_swap_entry(entry))
724 return 1;
726 p = swap_info_get(entry);
727 if (p) {
728 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
729 page = find_get_page(&swapper_space, entry.val);
730 if (page && !trylock_page(page)) {
731 page_cache_release(page);
732 page = NULL;
735 spin_unlock(&swap_lock);
737 if (page) {
739 * Not mapped elsewhere, or swap space full? Free it!
740 * Also recheck PageSwapCache now page is locked (above).
742 if (PageSwapCache(page) && !PageWriteback(page) &&
743 (!page_mapped(page) || vm_swap_full())) {
744 delete_from_swap_cache(page);
745 SetPageDirty(page);
747 unlock_page(page);
748 page_cache_release(page);
750 return p != NULL;
753 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
755 * mem_cgroup_count_swap_user - count the user of a swap entry
756 * @ent: the swap entry to be checked
757 * @pagep: the pointer for the swap cache page of the entry to be stored
759 * Returns the number of the user of the swap entry. The number is valid only
760 * for swaps of anonymous pages.
761 * If the entry is found on swap cache, the page is stored to pagep with
762 * refcount of it being incremented.
764 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
766 struct page *page;
767 struct swap_info_struct *p;
768 int count = 0;
770 page = find_get_page(&swapper_space, ent.val);
771 if (page)
772 count += page_mapcount(page);
773 p = swap_info_get(ent);
774 if (p) {
775 count += swap_count(p->swap_map[swp_offset(ent)]);
776 spin_unlock(&swap_lock);
779 *pagep = page;
780 return count;
782 #endif
784 #ifdef CONFIG_HIBERNATION
786 * Find the swap type that corresponds to given device (if any).
788 * @offset - number of the PAGE_SIZE-sized block of the device, starting
789 * from 0, in which the swap header is expected to be located.
791 * This is needed for the suspend to disk (aka swsusp).
793 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
795 struct block_device *bdev = NULL;
796 int type;
798 if (device)
799 bdev = bdget(device);
801 spin_lock(&swap_lock);
802 for (type = 0; type < nr_swapfiles; type++) {
803 struct swap_info_struct *sis = swap_info[type];
805 if (!(sis->flags & SWP_WRITEOK))
806 continue;
808 if (!bdev) {
809 if (bdev_p)
810 *bdev_p = bdgrab(sis->bdev);
812 spin_unlock(&swap_lock);
813 return type;
815 if (bdev == sis->bdev) {
816 struct swap_extent *se = &sis->first_swap_extent;
818 if (se->start_block == offset) {
819 if (bdev_p)
820 *bdev_p = bdgrab(sis->bdev);
822 spin_unlock(&swap_lock);
823 bdput(bdev);
824 return type;
828 spin_unlock(&swap_lock);
829 if (bdev)
830 bdput(bdev);
832 return -ENODEV;
836 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
837 * corresponding to given index in swap_info (swap type).
839 sector_t swapdev_block(int type, pgoff_t offset)
841 struct block_device *bdev;
843 if ((unsigned int)type >= nr_swapfiles)
844 return 0;
845 if (!(swap_info[type]->flags & SWP_WRITEOK))
846 return 0;
847 return map_swap_entry(swp_entry(type, offset), &bdev);
851 * Return either the total number of swap pages of given type, or the number
852 * of free pages of that type (depending on @free)
854 * This is needed for software suspend
856 unsigned int count_swap_pages(int type, int free)
858 unsigned int n = 0;
860 spin_lock(&swap_lock);
861 if ((unsigned int)type < nr_swapfiles) {
862 struct swap_info_struct *sis = swap_info[type];
864 if (sis->flags & SWP_WRITEOK) {
865 n = sis->pages;
866 if (free)
867 n -= sis->inuse_pages;
870 spin_unlock(&swap_lock);
871 return n;
873 #endif /* CONFIG_HIBERNATION */
876 * No need to decide whether this PTE shares the swap entry with others,
877 * just let do_wp_page work it out if a write is requested later - to
878 * force COW, vm_page_prot omits write permission from any private vma.
880 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
881 unsigned long addr, swp_entry_t entry, struct page *page)
883 struct mem_cgroup *ptr = NULL;
884 spinlock_t *ptl;
885 pte_t *pte;
886 int ret = 1;
888 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
889 ret = -ENOMEM;
890 goto out_nolock;
893 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
894 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
895 if (ret > 0)
896 mem_cgroup_cancel_charge_swapin(ptr);
897 ret = 0;
898 goto out;
901 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
902 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
903 get_page(page);
904 set_pte_at(vma->vm_mm, addr, pte,
905 pte_mkold(mk_pte(page, vma->vm_page_prot)));
906 page_add_anon_rmap(page, vma, addr);
907 mem_cgroup_commit_charge_swapin(page, ptr);
908 swap_free(entry);
910 * Move the page to the active list so it is not
911 * immediately swapped out again after swapon.
913 activate_page(page);
914 out:
915 pte_unmap_unlock(pte, ptl);
916 out_nolock:
917 return ret;
920 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
921 unsigned long addr, unsigned long end,
922 swp_entry_t entry, struct page *page)
924 pte_t swp_pte = swp_entry_to_pte(entry);
925 pte_t *pte;
926 int ret = 0;
929 * We don't actually need pte lock while scanning for swp_pte: since
930 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
931 * page table while we're scanning; though it could get zapped, and on
932 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
933 * of unmatched parts which look like swp_pte, so unuse_pte must
934 * recheck under pte lock. Scanning without pte lock lets it be
935 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
937 pte = pte_offset_map(pmd, addr);
938 do {
940 * swapoff spends a _lot_ of time in this loop!
941 * Test inline before going to call unuse_pte.
943 if (unlikely(pte_same(*pte, swp_pte))) {
944 pte_unmap(pte);
945 ret = unuse_pte(vma, pmd, addr, entry, page);
946 if (ret)
947 goto out;
948 pte = pte_offset_map(pmd, addr);
950 } while (pte++, addr += PAGE_SIZE, addr != end);
951 pte_unmap(pte - 1);
952 out:
953 return ret;
956 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
957 unsigned long addr, unsigned long end,
958 swp_entry_t entry, struct page *page)
960 pmd_t *pmd;
961 unsigned long next;
962 int ret;
964 pmd = pmd_offset(pud, addr);
965 do {
966 next = pmd_addr_end(addr, end);
967 if (unlikely(pmd_trans_huge(*pmd)))
968 continue;
969 if (pmd_none_or_clear_bad(pmd))
970 continue;
971 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
972 if (ret)
973 return ret;
974 } while (pmd++, addr = next, addr != end);
975 return 0;
978 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
979 unsigned long addr, unsigned long end,
980 swp_entry_t entry, struct page *page)
982 pud_t *pud;
983 unsigned long next;
984 int ret;
986 pud = pud_offset(pgd, addr);
987 do {
988 next = pud_addr_end(addr, end);
989 if (pud_none_or_clear_bad(pud))
990 continue;
991 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
992 if (ret)
993 return ret;
994 } while (pud++, addr = next, addr != end);
995 return 0;
998 static int unuse_vma(struct vm_area_struct *vma,
999 swp_entry_t entry, struct page *page)
1001 pgd_t *pgd;
1002 unsigned long addr, end, next;
1003 int ret;
1005 if (page_anon_vma(page)) {
1006 addr = page_address_in_vma(page, vma);
1007 if (addr == -EFAULT)
1008 return 0;
1009 else
1010 end = addr + PAGE_SIZE;
1011 } else {
1012 addr = vma->vm_start;
1013 end = vma->vm_end;
1016 pgd = pgd_offset(vma->vm_mm, addr);
1017 do {
1018 next = pgd_addr_end(addr, end);
1019 if (pgd_none_or_clear_bad(pgd))
1020 continue;
1021 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1022 if (ret)
1023 return ret;
1024 } while (pgd++, addr = next, addr != end);
1025 return 0;
1028 static int unuse_mm(struct mm_struct *mm,
1029 swp_entry_t entry, struct page *page)
1031 struct vm_area_struct *vma;
1032 int ret = 0;
1034 if (!down_read_trylock(&mm->mmap_sem)) {
1036 * Activate page so shrink_inactive_list is unlikely to unmap
1037 * its ptes while lock is dropped, so swapoff can make progress.
1039 activate_page(page);
1040 unlock_page(page);
1041 down_read(&mm->mmap_sem);
1042 lock_page(page);
1044 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1045 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1046 break;
1048 up_read(&mm->mmap_sem);
1049 return (ret < 0)? ret: 0;
1053 * Scan swap_map from current position to next entry still in use.
1054 * Recycle to start on reaching the end, returning 0 when empty.
1056 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1057 unsigned int prev)
1059 unsigned int max = si->max;
1060 unsigned int i = prev;
1061 unsigned char count;
1064 * No need for swap_lock here: we're just looking
1065 * for whether an entry is in use, not modifying it; false
1066 * hits are okay, and sys_swapoff() has already prevented new
1067 * allocations from this area (while holding swap_lock).
1069 for (;;) {
1070 if (++i >= max) {
1071 if (!prev) {
1072 i = 0;
1073 break;
1076 * No entries in use at top of swap_map,
1077 * loop back to start and recheck there.
1079 max = prev + 1;
1080 prev = 0;
1081 i = 1;
1083 count = si->swap_map[i];
1084 if (count && swap_count(count) != SWAP_MAP_BAD)
1085 break;
1087 return i;
1091 * We completely avoid races by reading each swap page in advance,
1092 * and then search for the process using it. All the necessary
1093 * page table adjustments can then be made atomically.
1095 static int try_to_unuse(unsigned int type)
1097 struct swap_info_struct *si = swap_info[type];
1098 struct mm_struct *start_mm;
1099 unsigned char *swap_map;
1100 unsigned char swcount;
1101 struct page *page;
1102 swp_entry_t entry;
1103 unsigned int i = 0;
1104 int retval = 0;
1107 * When searching mms for an entry, a good strategy is to
1108 * start at the first mm we freed the previous entry from
1109 * (though actually we don't notice whether we or coincidence
1110 * freed the entry). Initialize this start_mm with a hold.
1112 * A simpler strategy would be to start at the last mm we
1113 * freed the previous entry from; but that would take less
1114 * advantage of mmlist ordering, which clusters forked mms
1115 * together, child after parent. If we race with dup_mmap(), we
1116 * prefer to resolve parent before child, lest we miss entries
1117 * duplicated after we scanned child: using last mm would invert
1118 * that.
1120 start_mm = &init_mm;
1121 atomic_inc(&init_mm.mm_users);
1124 * Keep on scanning until all entries have gone. Usually,
1125 * one pass through swap_map is enough, but not necessarily:
1126 * there are races when an instance of an entry might be missed.
1128 while ((i = find_next_to_unuse(si, i)) != 0) {
1129 if (signal_pending(current)) {
1130 retval = -EINTR;
1131 break;
1135 * Get a page for the entry, using the existing swap
1136 * cache page if there is one. Otherwise, get a clean
1137 * page and read the swap into it.
1139 swap_map = &si->swap_map[i];
1140 entry = swp_entry(type, i);
1141 page = read_swap_cache_async(entry,
1142 GFP_HIGHUSER_MOVABLE, NULL, 0);
1143 if (!page) {
1145 * Either swap_duplicate() failed because entry
1146 * has been freed independently, and will not be
1147 * reused since sys_swapoff() already disabled
1148 * allocation from here, or alloc_page() failed.
1150 if (!*swap_map)
1151 continue;
1152 retval = -ENOMEM;
1153 break;
1157 * Don't hold on to start_mm if it looks like exiting.
1159 if (atomic_read(&start_mm->mm_users) == 1) {
1160 mmput(start_mm);
1161 start_mm = &init_mm;
1162 atomic_inc(&init_mm.mm_users);
1166 * Wait for and lock page. When do_swap_page races with
1167 * try_to_unuse, do_swap_page can handle the fault much
1168 * faster than try_to_unuse can locate the entry. This
1169 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1170 * defer to do_swap_page in such a case - in some tests,
1171 * do_swap_page and try_to_unuse repeatedly compete.
1173 wait_on_page_locked(page);
1174 wait_on_page_writeback(page);
1175 lock_page(page);
1176 wait_on_page_writeback(page);
1179 * Remove all references to entry.
1181 swcount = *swap_map;
1182 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1183 retval = shmem_unuse(entry, page);
1184 /* page has already been unlocked and released */
1185 if (retval < 0)
1186 break;
1187 continue;
1189 if (swap_count(swcount) && start_mm != &init_mm)
1190 retval = unuse_mm(start_mm, entry, page);
1192 if (swap_count(*swap_map)) {
1193 int set_start_mm = (*swap_map >= swcount);
1194 struct list_head *p = &start_mm->mmlist;
1195 struct mm_struct *new_start_mm = start_mm;
1196 struct mm_struct *prev_mm = start_mm;
1197 struct mm_struct *mm;
1199 atomic_inc(&new_start_mm->mm_users);
1200 atomic_inc(&prev_mm->mm_users);
1201 spin_lock(&mmlist_lock);
1202 while (swap_count(*swap_map) && !retval &&
1203 (p = p->next) != &start_mm->mmlist) {
1204 mm = list_entry(p, struct mm_struct, mmlist);
1205 if (!atomic_inc_not_zero(&mm->mm_users))
1206 continue;
1207 spin_unlock(&mmlist_lock);
1208 mmput(prev_mm);
1209 prev_mm = mm;
1211 cond_resched();
1213 swcount = *swap_map;
1214 if (!swap_count(swcount)) /* any usage ? */
1216 else if (mm == &init_mm)
1217 set_start_mm = 1;
1218 else
1219 retval = unuse_mm(mm, entry, page);
1221 if (set_start_mm && *swap_map < swcount) {
1222 mmput(new_start_mm);
1223 atomic_inc(&mm->mm_users);
1224 new_start_mm = mm;
1225 set_start_mm = 0;
1227 spin_lock(&mmlist_lock);
1229 spin_unlock(&mmlist_lock);
1230 mmput(prev_mm);
1231 mmput(start_mm);
1232 start_mm = new_start_mm;
1234 if (retval) {
1235 unlock_page(page);
1236 page_cache_release(page);
1237 break;
1241 * If a reference remains (rare), we would like to leave
1242 * the page in the swap cache; but try_to_unmap could
1243 * then re-duplicate the entry once we drop page lock,
1244 * so we might loop indefinitely; also, that page could
1245 * not be swapped out to other storage meanwhile. So:
1246 * delete from cache even if there's another reference,
1247 * after ensuring that the data has been saved to disk -
1248 * since if the reference remains (rarer), it will be
1249 * read from disk into another page. Splitting into two
1250 * pages would be incorrect if swap supported "shared
1251 * private" pages, but they are handled by tmpfs files.
1253 * Given how unuse_vma() targets one particular offset
1254 * in an anon_vma, once the anon_vma has been determined,
1255 * this splitting happens to be just what is needed to
1256 * handle where KSM pages have been swapped out: re-reading
1257 * is unnecessarily slow, but we can fix that later on.
1259 if (swap_count(*swap_map) &&
1260 PageDirty(page) && PageSwapCache(page)) {
1261 struct writeback_control wbc = {
1262 .sync_mode = WB_SYNC_NONE,
1265 swap_writepage(page, &wbc);
1266 lock_page(page);
1267 wait_on_page_writeback(page);
1271 * It is conceivable that a racing task removed this page from
1272 * swap cache just before we acquired the page lock at the top,
1273 * or while we dropped it in unuse_mm(). The page might even
1274 * be back in swap cache on another swap area: that we must not
1275 * delete, since it may not have been written out to swap yet.
1277 if (PageSwapCache(page) &&
1278 likely(page_private(page) == entry.val))
1279 delete_from_swap_cache(page);
1282 * So we could skip searching mms once swap count went
1283 * to 1, we did not mark any present ptes as dirty: must
1284 * mark page dirty so shrink_page_list will preserve it.
1286 SetPageDirty(page);
1287 unlock_page(page);
1288 page_cache_release(page);
1291 * Make sure that we aren't completely killing
1292 * interactive performance.
1294 cond_resched();
1297 mmput(start_mm);
1298 return retval;
1302 * After a successful try_to_unuse, if no swap is now in use, we know
1303 * we can empty the mmlist. swap_lock must be held on entry and exit.
1304 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1305 * added to the mmlist just after page_duplicate - before would be racy.
1307 static void drain_mmlist(void)
1309 struct list_head *p, *next;
1310 unsigned int type;
1312 for (type = 0; type < nr_swapfiles; type++)
1313 if (swap_info[type]->inuse_pages)
1314 return;
1315 spin_lock(&mmlist_lock);
1316 list_for_each_safe(p, next, &init_mm.mmlist)
1317 list_del_init(p);
1318 spin_unlock(&mmlist_lock);
1322 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1323 * corresponds to page offset for the specified swap entry.
1324 * Note that the type of this function is sector_t, but it returns page offset
1325 * into the bdev, not sector offset.
1327 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1329 struct swap_info_struct *sis;
1330 struct swap_extent *start_se;
1331 struct swap_extent *se;
1332 pgoff_t offset;
1334 sis = swap_info[swp_type(entry)];
1335 *bdev = sis->bdev;
1337 offset = swp_offset(entry);
1338 start_se = sis->curr_swap_extent;
1339 se = start_se;
1341 for ( ; ; ) {
1342 struct list_head *lh;
1344 if (se->start_page <= offset &&
1345 offset < (se->start_page + se->nr_pages)) {
1346 return se->start_block + (offset - se->start_page);
1348 lh = se->list.next;
1349 se = list_entry(lh, struct swap_extent, list);
1350 sis->curr_swap_extent = se;
1351 BUG_ON(se == start_se); /* It *must* be present */
1356 * Returns the page offset into bdev for the specified page's swap entry.
1358 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1360 swp_entry_t entry;
1361 entry.val = page_private(page);
1362 return map_swap_entry(entry, bdev);
1366 * Free all of a swapdev's extent information
1368 static void destroy_swap_extents(struct swap_info_struct *sis)
1370 while (!list_empty(&sis->first_swap_extent.list)) {
1371 struct swap_extent *se;
1373 se = list_entry(sis->first_swap_extent.list.next,
1374 struct swap_extent, list);
1375 list_del(&se->list);
1376 kfree(se);
1381 * Add a block range (and the corresponding page range) into this swapdev's
1382 * extent list. The extent list is kept sorted in page order.
1384 * This function rather assumes that it is called in ascending page order.
1386 static int
1387 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1388 unsigned long nr_pages, sector_t start_block)
1390 struct swap_extent *se;
1391 struct swap_extent *new_se;
1392 struct list_head *lh;
1394 if (start_page == 0) {
1395 se = &sis->first_swap_extent;
1396 sis->curr_swap_extent = se;
1397 se->start_page = 0;
1398 se->nr_pages = nr_pages;
1399 se->start_block = start_block;
1400 return 1;
1401 } else {
1402 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1403 se = list_entry(lh, struct swap_extent, list);
1404 BUG_ON(se->start_page + se->nr_pages != start_page);
1405 if (se->start_block + se->nr_pages == start_block) {
1406 /* Merge it */
1407 se->nr_pages += nr_pages;
1408 return 0;
1413 * No merge. Insert a new extent, preserving ordering.
1415 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1416 if (new_se == NULL)
1417 return -ENOMEM;
1418 new_se->start_page = start_page;
1419 new_se->nr_pages = nr_pages;
1420 new_se->start_block = start_block;
1422 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1423 return 1;
1427 * A `swap extent' is a simple thing which maps a contiguous range of pages
1428 * onto a contiguous range of disk blocks. An ordered list of swap extents
1429 * is built at swapon time and is then used at swap_writepage/swap_readpage
1430 * time for locating where on disk a page belongs.
1432 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1433 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1434 * swap files identically.
1436 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1437 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1438 * swapfiles are handled *identically* after swapon time.
1440 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1441 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1442 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1443 * requirements, they are simply tossed out - we will never use those blocks
1444 * for swapping.
1446 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1447 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1448 * which will scribble on the fs.
1450 * The amount of disk space which a single swap extent represents varies.
1451 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1452 * extents in the list. To avoid much list walking, we cache the previous
1453 * search location in `curr_swap_extent', and start new searches from there.
1454 * This is extremely effective. The average number of iterations in
1455 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1457 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1459 struct inode *inode;
1460 unsigned blocks_per_page;
1461 unsigned long page_no;
1462 unsigned blkbits;
1463 sector_t probe_block;
1464 sector_t last_block;
1465 sector_t lowest_block = -1;
1466 sector_t highest_block = 0;
1467 int nr_extents = 0;
1468 int ret;
1470 inode = sis->swap_file->f_mapping->host;
1471 if (S_ISBLK(inode->i_mode)) {
1472 ret = add_swap_extent(sis, 0, sis->max, 0);
1473 *span = sis->pages;
1474 goto out;
1477 blkbits = inode->i_blkbits;
1478 blocks_per_page = PAGE_SIZE >> blkbits;
1481 * Map all the blocks into the extent list. This code doesn't try
1482 * to be very smart.
1484 probe_block = 0;
1485 page_no = 0;
1486 last_block = i_size_read(inode) >> blkbits;
1487 while ((probe_block + blocks_per_page) <= last_block &&
1488 page_no < sis->max) {
1489 unsigned block_in_page;
1490 sector_t first_block;
1492 first_block = bmap(inode, probe_block);
1493 if (first_block == 0)
1494 goto bad_bmap;
1497 * It must be PAGE_SIZE aligned on-disk
1499 if (first_block & (blocks_per_page - 1)) {
1500 probe_block++;
1501 goto reprobe;
1504 for (block_in_page = 1; block_in_page < blocks_per_page;
1505 block_in_page++) {
1506 sector_t block;
1508 block = bmap(inode, probe_block + block_in_page);
1509 if (block == 0)
1510 goto bad_bmap;
1511 if (block != first_block + block_in_page) {
1512 /* Discontiguity */
1513 probe_block++;
1514 goto reprobe;
1518 first_block >>= (PAGE_SHIFT - blkbits);
1519 if (page_no) { /* exclude the header page */
1520 if (first_block < lowest_block)
1521 lowest_block = first_block;
1522 if (first_block > highest_block)
1523 highest_block = first_block;
1527 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1529 ret = add_swap_extent(sis, page_no, 1, first_block);
1530 if (ret < 0)
1531 goto out;
1532 nr_extents += ret;
1533 page_no++;
1534 probe_block += blocks_per_page;
1535 reprobe:
1536 continue;
1538 ret = nr_extents;
1539 *span = 1 + highest_block - lowest_block;
1540 if (page_no == 0)
1541 page_no = 1; /* force Empty message */
1542 sis->max = page_no;
1543 sis->pages = page_no - 1;
1544 sis->highest_bit = page_no - 1;
1545 out:
1546 return ret;
1547 bad_bmap:
1548 printk(KERN_ERR "swapon: swapfile has holes\n");
1549 ret = -EINVAL;
1550 goto out;
1553 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1555 struct swap_info_struct *p = NULL;
1556 unsigned char *swap_map;
1557 struct file *swap_file, *victim;
1558 struct address_space *mapping;
1559 struct inode *inode;
1560 char *pathname;
1561 int i, type, prev;
1562 int err;
1564 if (!capable(CAP_SYS_ADMIN))
1565 return -EPERM;
1567 pathname = getname(specialfile);
1568 err = PTR_ERR(pathname);
1569 if (IS_ERR(pathname))
1570 goto out;
1572 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1573 putname(pathname);
1574 err = PTR_ERR(victim);
1575 if (IS_ERR(victim))
1576 goto out;
1578 mapping = victim->f_mapping;
1579 prev = -1;
1580 spin_lock(&swap_lock);
1581 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1582 p = swap_info[type];
1583 if (p->flags & SWP_WRITEOK) {
1584 if (p->swap_file->f_mapping == mapping)
1585 break;
1587 prev = type;
1589 if (type < 0) {
1590 err = -EINVAL;
1591 spin_unlock(&swap_lock);
1592 goto out_dput;
1594 if (!security_vm_enough_memory(p->pages))
1595 vm_unacct_memory(p->pages);
1596 else {
1597 err = -ENOMEM;
1598 spin_unlock(&swap_lock);
1599 goto out_dput;
1601 if (prev < 0)
1602 swap_list.head = p->next;
1603 else
1604 swap_info[prev]->next = p->next;
1605 if (type == swap_list.next) {
1606 /* just pick something that's safe... */
1607 swap_list.next = swap_list.head;
1609 if (p->prio < 0) {
1610 for (i = p->next; i >= 0; i = swap_info[i]->next)
1611 swap_info[i]->prio = p->prio--;
1612 least_priority++;
1614 nr_swap_pages -= p->pages;
1615 total_swap_pages -= p->pages;
1616 p->flags &= ~SWP_WRITEOK;
1617 spin_unlock(&swap_lock);
1619 current->flags |= PF_OOM_ORIGIN;
1620 err = try_to_unuse(type);
1621 current->flags &= ~PF_OOM_ORIGIN;
1623 if (err) {
1624 /* re-insert swap space back into swap_list */
1625 spin_lock(&swap_lock);
1626 if (p->prio < 0)
1627 p->prio = --least_priority;
1628 prev = -1;
1629 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1630 if (p->prio >= swap_info[i]->prio)
1631 break;
1632 prev = i;
1634 p->next = i;
1635 if (prev < 0)
1636 swap_list.head = swap_list.next = type;
1637 else
1638 swap_info[prev]->next = type;
1639 nr_swap_pages += p->pages;
1640 total_swap_pages += p->pages;
1641 p->flags |= SWP_WRITEOK;
1642 spin_unlock(&swap_lock);
1643 goto out_dput;
1646 /* wait for any unplug function to finish */
1647 down_write(&swap_unplug_sem);
1648 up_write(&swap_unplug_sem);
1650 destroy_swap_extents(p);
1651 if (p->flags & SWP_CONTINUED)
1652 free_swap_count_continuations(p);
1654 mutex_lock(&swapon_mutex);
1655 spin_lock(&swap_lock);
1656 drain_mmlist();
1658 /* wait for anyone still in scan_swap_map */
1659 p->highest_bit = 0; /* cuts scans short */
1660 while (p->flags >= SWP_SCANNING) {
1661 spin_unlock(&swap_lock);
1662 schedule_timeout_uninterruptible(1);
1663 spin_lock(&swap_lock);
1666 swap_file = p->swap_file;
1667 p->swap_file = NULL;
1668 p->max = 0;
1669 swap_map = p->swap_map;
1670 p->swap_map = NULL;
1671 p->flags = 0;
1672 spin_unlock(&swap_lock);
1673 mutex_unlock(&swapon_mutex);
1674 vfree(swap_map);
1675 /* Destroy swap account informatin */
1676 swap_cgroup_swapoff(type);
1678 inode = mapping->host;
1679 if (S_ISBLK(inode->i_mode)) {
1680 struct block_device *bdev = I_BDEV(inode);
1681 set_blocksize(bdev, p->old_block_size);
1682 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1683 } else {
1684 mutex_lock(&inode->i_mutex);
1685 inode->i_flags &= ~S_SWAPFILE;
1686 mutex_unlock(&inode->i_mutex);
1688 filp_close(swap_file, NULL);
1689 err = 0;
1690 atomic_inc(&proc_poll_event);
1691 wake_up_interruptible(&proc_poll_wait);
1693 out_dput:
1694 filp_close(victim, NULL);
1695 out:
1696 return err;
1699 #ifdef CONFIG_PROC_FS
1700 struct proc_swaps {
1701 struct seq_file seq;
1702 int event;
1705 static unsigned swaps_poll(struct file *file, poll_table *wait)
1707 struct proc_swaps *s = file->private_data;
1709 poll_wait(file, &proc_poll_wait, wait);
1711 if (s->event != atomic_read(&proc_poll_event)) {
1712 s->event = atomic_read(&proc_poll_event);
1713 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1716 return POLLIN | POLLRDNORM;
1719 /* iterator */
1720 static void *swap_start(struct seq_file *swap, loff_t *pos)
1722 struct swap_info_struct *si;
1723 int type;
1724 loff_t l = *pos;
1726 mutex_lock(&swapon_mutex);
1728 if (!l)
1729 return SEQ_START_TOKEN;
1731 for (type = 0; type < nr_swapfiles; type++) {
1732 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1733 si = swap_info[type];
1734 if (!(si->flags & SWP_USED) || !si->swap_map)
1735 continue;
1736 if (!--l)
1737 return si;
1740 return NULL;
1743 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1745 struct swap_info_struct *si = v;
1746 int type;
1748 if (v == SEQ_START_TOKEN)
1749 type = 0;
1750 else
1751 type = si->type + 1;
1753 for (; type < nr_swapfiles; type++) {
1754 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1755 si = swap_info[type];
1756 if (!(si->flags & SWP_USED) || !si->swap_map)
1757 continue;
1758 ++*pos;
1759 return si;
1762 return NULL;
1765 static void swap_stop(struct seq_file *swap, void *v)
1767 mutex_unlock(&swapon_mutex);
1770 static int swap_show(struct seq_file *swap, void *v)
1772 struct swap_info_struct *si = v;
1773 struct file *file;
1774 int len;
1776 if (si == SEQ_START_TOKEN) {
1777 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1778 return 0;
1781 file = si->swap_file;
1782 len = seq_path(swap, &file->f_path, " \t\n\\");
1783 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1784 len < 40 ? 40 - len : 1, " ",
1785 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1786 "partition" : "file\t",
1787 si->pages << (PAGE_SHIFT - 10),
1788 si->inuse_pages << (PAGE_SHIFT - 10),
1789 si->prio);
1790 return 0;
1793 static const struct seq_operations swaps_op = {
1794 .start = swap_start,
1795 .next = swap_next,
1796 .stop = swap_stop,
1797 .show = swap_show
1800 static int swaps_open(struct inode *inode, struct file *file)
1802 struct proc_swaps *s;
1803 int ret;
1805 s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1806 if (!s)
1807 return -ENOMEM;
1809 file->private_data = s;
1811 ret = seq_open(file, &swaps_op);
1812 if (ret) {
1813 kfree(s);
1814 return ret;
1817 s->seq.private = s;
1818 s->event = atomic_read(&proc_poll_event);
1819 return ret;
1822 static const struct file_operations proc_swaps_operations = {
1823 .open = swaps_open,
1824 .read = seq_read,
1825 .llseek = seq_lseek,
1826 .release = seq_release,
1827 .poll = swaps_poll,
1830 static int __init procswaps_init(void)
1832 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1833 return 0;
1835 __initcall(procswaps_init);
1836 #endif /* CONFIG_PROC_FS */
1838 #ifdef MAX_SWAPFILES_CHECK
1839 static int __init max_swapfiles_check(void)
1841 MAX_SWAPFILES_CHECK();
1842 return 0;
1844 late_initcall(max_swapfiles_check);
1845 #endif
1848 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1850 * The swapon system call
1852 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1854 struct swap_info_struct *p;
1855 char *name = NULL;
1856 struct block_device *bdev = NULL;
1857 struct file *swap_file = NULL;
1858 struct address_space *mapping;
1859 unsigned int type;
1860 int i, prev;
1861 int error;
1862 union swap_header *swap_header;
1863 unsigned int nr_good_pages;
1864 int nr_extents = 0;
1865 sector_t span;
1866 unsigned long maxpages;
1867 unsigned long swapfilepages;
1868 unsigned char *swap_map = NULL;
1869 struct page *page = NULL;
1870 struct inode *inode = NULL;
1871 int did_down = 0;
1873 if (!capable(CAP_SYS_ADMIN))
1874 return -EPERM;
1876 p = kzalloc(sizeof(*p), GFP_KERNEL);
1877 if (!p)
1878 return -ENOMEM;
1880 spin_lock(&swap_lock);
1881 for (type = 0; type < nr_swapfiles; type++) {
1882 if (!(swap_info[type]->flags & SWP_USED))
1883 break;
1885 error = -EPERM;
1886 if (type >= MAX_SWAPFILES) {
1887 spin_unlock(&swap_lock);
1888 kfree(p);
1889 goto out;
1891 if (type >= nr_swapfiles) {
1892 p->type = type;
1893 swap_info[type] = p;
1895 * Write swap_info[type] before nr_swapfiles, in case a
1896 * racing procfs swap_start() or swap_next() is reading them.
1897 * (We never shrink nr_swapfiles, we never free this entry.)
1899 smp_wmb();
1900 nr_swapfiles++;
1901 } else {
1902 kfree(p);
1903 p = swap_info[type];
1905 * Do not memset this entry: a racing procfs swap_next()
1906 * would be relying on p->type to remain valid.
1909 INIT_LIST_HEAD(&p->first_swap_extent.list);
1910 p->flags = SWP_USED;
1911 p->next = -1;
1912 spin_unlock(&swap_lock);
1914 name = getname(specialfile);
1915 error = PTR_ERR(name);
1916 if (IS_ERR(name)) {
1917 name = NULL;
1918 goto bad_swap_2;
1920 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1921 error = PTR_ERR(swap_file);
1922 if (IS_ERR(swap_file)) {
1923 swap_file = NULL;
1924 goto bad_swap_2;
1927 p->swap_file = swap_file;
1928 mapping = swap_file->f_mapping;
1929 inode = mapping->host;
1931 error = -EBUSY;
1932 for (i = 0; i < nr_swapfiles; i++) {
1933 struct swap_info_struct *q = swap_info[i];
1935 if (i == type || !q->swap_file)
1936 continue;
1937 if (mapping == q->swap_file->f_mapping)
1938 goto bad_swap;
1941 error = -EINVAL;
1942 if (S_ISBLK(inode->i_mode)) {
1943 bdev = I_BDEV(inode);
1944 error = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1945 sys_swapon);
1946 if (error < 0) {
1947 bdev = NULL;
1948 error = -EINVAL;
1949 goto bad_swap;
1951 p->old_block_size = block_size(bdev);
1952 error = set_blocksize(bdev, PAGE_SIZE);
1953 if (error < 0)
1954 goto bad_swap;
1955 p->bdev = bdev;
1956 p->flags |= SWP_BLKDEV;
1957 } else if (S_ISREG(inode->i_mode)) {
1958 p->bdev = inode->i_sb->s_bdev;
1959 mutex_lock(&inode->i_mutex);
1960 did_down = 1;
1961 if (IS_SWAPFILE(inode)) {
1962 error = -EBUSY;
1963 goto bad_swap;
1965 } else {
1966 goto bad_swap;
1969 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1972 * Read the swap header.
1974 if (!mapping->a_ops->readpage) {
1975 error = -EINVAL;
1976 goto bad_swap;
1978 page = read_mapping_page(mapping, 0, swap_file);
1979 if (IS_ERR(page)) {
1980 error = PTR_ERR(page);
1981 goto bad_swap;
1983 swap_header = kmap(page);
1985 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1986 printk(KERN_ERR "Unable to find swap-space signature\n");
1987 error = -EINVAL;
1988 goto bad_swap;
1991 /* swap partition endianess hack... */
1992 if (swab32(swap_header->info.version) == 1) {
1993 swab32s(&swap_header->info.version);
1994 swab32s(&swap_header->info.last_page);
1995 swab32s(&swap_header->info.nr_badpages);
1996 for (i = 0; i < swap_header->info.nr_badpages; i++)
1997 swab32s(&swap_header->info.badpages[i]);
1999 /* Check the swap header's sub-version */
2000 if (swap_header->info.version != 1) {
2001 printk(KERN_WARNING
2002 "Unable to handle swap header version %d\n",
2003 swap_header->info.version);
2004 error = -EINVAL;
2005 goto bad_swap;
2008 p->lowest_bit = 1;
2009 p->cluster_next = 1;
2010 p->cluster_nr = 0;
2013 * Find out how many pages are allowed for a single swap
2014 * device. There are two limiting factors: 1) the number of
2015 * bits for the swap offset in the swp_entry_t type and
2016 * 2) the number of bits in the a swap pte as defined by
2017 * the different architectures. In order to find the
2018 * largest possible bit mask a swap entry with swap type 0
2019 * and swap offset ~0UL is created, encoded to a swap pte,
2020 * decoded to a swp_entry_t again and finally the swap
2021 * offset is extracted. This will mask all the bits from
2022 * the initial ~0UL mask that can't be encoded in either
2023 * the swp_entry_t or the architecture definition of a
2024 * swap pte.
2026 maxpages = swp_offset(pte_to_swp_entry(
2027 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2028 if (maxpages > swap_header->info.last_page) {
2029 maxpages = swap_header->info.last_page + 1;
2030 /* p->max is an unsigned int: don't overflow it */
2031 if ((unsigned int)maxpages == 0)
2032 maxpages = UINT_MAX;
2034 p->highest_bit = maxpages - 1;
2036 error = -EINVAL;
2037 if (!maxpages)
2038 goto bad_swap;
2039 if (swapfilepages && maxpages > swapfilepages) {
2040 printk(KERN_WARNING
2041 "Swap area shorter than signature indicates\n");
2042 goto bad_swap;
2044 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2045 goto bad_swap;
2046 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2047 goto bad_swap;
2049 /* OK, set up the swap map and apply the bad block list */
2050 swap_map = vmalloc(maxpages);
2051 if (!swap_map) {
2052 error = -ENOMEM;
2053 goto bad_swap;
2056 memset(swap_map, 0, maxpages);
2057 nr_good_pages = maxpages - 1; /* omit header page */
2059 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2060 unsigned int page_nr = swap_header->info.badpages[i];
2061 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2062 error = -EINVAL;
2063 goto bad_swap;
2065 if (page_nr < maxpages) {
2066 swap_map[page_nr] = SWAP_MAP_BAD;
2067 nr_good_pages--;
2071 error = swap_cgroup_swapon(type, maxpages);
2072 if (error)
2073 goto bad_swap;
2075 if (nr_good_pages) {
2076 swap_map[0] = SWAP_MAP_BAD;
2077 p->max = maxpages;
2078 p->pages = nr_good_pages;
2079 nr_extents = setup_swap_extents(p, &span);
2080 if (nr_extents < 0) {
2081 error = nr_extents;
2082 goto bad_swap;
2084 nr_good_pages = p->pages;
2086 if (!nr_good_pages) {
2087 printk(KERN_WARNING "Empty swap-file\n");
2088 error = -EINVAL;
2089 goto bad_swap;
2092 if (p->bdev) {
2093 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2094 p->flags |= SWP_SOLIDSTATE;
2095 p->cluster_next = 1 + (random32() % p->highest_bit);
2097 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2098 p->flags |= SWP_DISCARDABLE;
2101 mutex_lock(&swapon_mutex);
2102 spin_lock(&swap_lock);
2103 if (swap_flags & SWAP_FLAG_PREFER)
2104 p->prio =
2105 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2106 else
2107 p->prio = --least_priority;
2108 p->swap_map = swap_map;
2109 p->flags |= SWP_WRITEOK;
2110 nr_swap_pages += nr_good_pages;
2111 total_swap_pages += nr_good_pages;
2113 printk(KERN_INFO "Adding %uk swap on %s. "
2114 "Priority:%d extents:%d across:%lluk %s%s\n",
2115 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2116 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2117 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2118 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2120 /* insert swap space into swap_list: */
2121 prev = -1;
2122 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2123 if (p->prio >= swap_info[i]->prio)
2124 break;
2125 prev = i;
2127 p->next = i;
2128 if (prev < 0)
2129 swap_list.head = swap_list.next = type;
2130 else
2131 swap_info[prev]->next = type;
2132 spin_unlock(&swap_lock);
2133 mutex_unlock(&swapon_mutex);
2134 atomic_inc(&proc_poll_event);
2135 wake_up_interruptible(&proc_poll_wait);
2137 error = 0;
2138 goto out;
2139 bad_swap:
2140 if (bdev) {
2141 set_blocksize(bdev, p->old_block_size);
2142 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2144 destroy_swap_extents(p);
2145 swap_cgroup_swapoff(type);
2146 bad_swap_2:
2147 spin_lock(&swap_lock);
2148 p->swap_file = NULL;
2149 p->flags = 0;
2150 spin_unlock(&swap_lock);
2151 vfree(swap_map);
2152 if (swap_file)
2153 filp_close(swap_file, NULL);
2154 out:
2155 if (page && !IS_ERR(page)) {
2156 kunmap(page);
2157 page_cache_release(page);
2159 if (name)
2160 putname(name);
2161 if (did_down) {
2162 if (!error)
2163 inode->i_flags |= S_SWAPFILE;
2164 mutex_unlock(&inode->i_mutex);
2166 return error;
2169 void si_swapinfo(struct sysinfo *val)
2171 unsigned int type;
2172 unsigned long nr_to_be_unused = 0;
2174 spin_lock(&swap_lock);
2175 for (type = 0; type < nr_swapfiles; type++) {
2176 struct swap_info_struct *si = swap_info[type];
2178 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2179 nr_to_be_unused += si->inuse_pages;
2181 val->freeswap = nr_swap_pages + nr_to_be_unused;
2182 val->totalswap = total_swap_pages + nr_to_be_unused;
2183 spin_unlock(&swap_lock);
2187 * Verify that a swap entry is valid and increment its swap map count.
2189 * Returns error code in following case.
2190 * - success -> 0
2191 * - swp_entry is invalid -> EINVAL
2192 * - swp_entry is migration entry -> EINVAL
2193 * - swap-cache reference is requested but there is already one. -> EEXIST
2194 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2195 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2197 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2199 struct swap_info_struct *p;
2200 unsigned long offset, type;
2201 unsigned char count;
2202 unsigned char has_cache;
2203 int err = -EINVAL;
2205 if (non_swap_entry(entry))
2206 goto out;
2208 type = swp_type(entry);
2209 if (type >= nr_swapfiles)
2210 goto bad_file;
2211 p = swap_info[type];
2212 offset = swp_offset(entry);
2214 spin_lock(&swap_lock);
2215 if (unlikely(offset >= p->max))
2216 goto unlock_out;
2218 count = p->swap_map[offset];
2219 has_cache = count & SWAP_HAS_CACHE;
2220 count &= ~SWAP_HAS_CACHE;
2221 err = 0;
2223 if (usage == SWAP_HAS_CACHE) {
2225 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2226 if (!has_cache && count)
2227 has_cache = SWAP_HAS_CACHE;
2228 else if (has_cache) /* someone else added cache */
2229 err = -EEXIST;
2230 else /* no users remaining */
2231 err = -ENOENT;
2233 } else if (count || has_cache) {
2235 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2236 count += usage;
2237 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2238 err = -EINVAL;
2239 else if (swap_count_continued(p, offset, count))
2240 count = COUNT_CONTINUED;
2241 else
2242 err = -ENOMEM;
2243 } else
2244 err = -ENOENT; /* unused swap entry */
2246 p->swap_map[offset] = count | has_cache;
2248 unlock_out:
2249 spin_unlock(&swap_lock);
2250 out:
2251 return err;
2253 bad_file:
2254 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2255 goto out;
2259 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2260 * (in which case its reference count is never incremented).
2262 void swap_shmem_alloc(swp_entry_t entry)
2264 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2268 * Increase reference count of swap entry by 1.
2269 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2270 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2271 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2272 * might occur if a page table entry has got corrupted.
2274 int swap_duplicate(swp_entry_t entry)
2276 int err = 0;
2278 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2279 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2280 return err;
2284 * @entry: swap entry for which we allocate swap cache.
2286 * Called when allocating swap cache for existing swap entry,
2287 * This can return error codes. Returns 0 at success.
2288 * -EBUSY means there is a swap cache.
2289 * Note: return code is different from swap_duplicate().
2291 int swapcache_prepare(swp_entry_t entry)
2293 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2297 * swap_lock prevents swap_map being freed. Don't grab an extra
2298 * reference on the swaphandle, it doesn't matter if it becomes unused.
2300 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2302 struct swap_info_struct *si;
2303 int our_page_cluster = page_cluster;
2304 pgoff_t target, toff;
2305 pgoff_t base, end;
2306 int nr_pages = 0;
2308 if (!our_page_cluster) /* no readahead */
2309 return 0;
2311 si = swap_info[swp_type(entry)];
2312 target = swp_offset(entry);
2313 base = (target >> our_page_cluster) << our_page_cluster;
2314 end = base + (1 << our_page_cluster);
2315 if (!base) /* first page is swap header */
2316 base++;
2318 spin_lock(&swap_lock);
2319 if (end > si->max) /* don't go beyond end of map */
2320 end = si->max;
2322 /* Count contiguous allocated slots above our target */
2323 for (toff = target; ++toff < end; nr_pages++) {
2324 /* Don't read in free or bad pages */
2325 if (!si->swap_map[toff])
2326 break;
2327 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2328 break;
2330 /* Count contiguous allocated slots below our target */
2331 for (toff = target; --toff >= base; nr_pages++) {
2332 /* Don't read in free or bad pages */
2333 if (!si->swap_map[toff])
2334 break;
2335 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2336 break;
2338 spin_unlock(&swap_lock);
2341 * Indicate starting offset, and return number of pages to get:
2342 * if only 1, say 0, since there's then no readahead to be done.
2344 *offset = ++toff;
2345 return nr_pages? ++nr_pages: 0;
2349 * add_swap_count_continuation - called when a swap count is duplicated
2350 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2351 * page of the original vmalloc'ed swap_map, to hold the continuation count
2352 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2353 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2355 * These continuation pages are seldom referenced: the common paths all work
2356 * on the original swap_map, only referring to a continuation page when the
2357 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2359 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2360 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2361 * can be called after dropping locks.
2363 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2365 struct swap_info_struct *si;
2366 struct page *head;
2367 struct page *page;
2368 struct page *list_page;
2369 pgoff_t offset;
2370 unsigned char count;
2373 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2374 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2376 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2378 si = swap_info_get(entry);
2379 if (!si) {
2381 * An acceptable race has occurred since the failing
2382 * __swap_duplicate(): the swap entry has been freed,
2383 * perhaps even the whole swap_map cleared for swapoff.
2385 goto outer;
2388 offset = swp_offset(entry);
2389 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2391 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2393 * The higher the swap count, the more likely it is that tasks
2394 * will race to add swap count continuation: we need to avoid
2395 * over-provisioning.
2397 goto out;
2400 if (!page) {
2401 spin_unlock(&swap_lock);
2402 return -ENOMEM;
2406 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2407 * no architecture is using highmem pages for kernel pagetables: so it
2408 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2410 head = vmalloc_to_page(si->swap_map + offset);
2411 offset &= ~PAGE_MASK;
2414 * Page allocation does not initialize the page's lru field,
2415 * but it does always reset its private field.
2417 if (!page_private(head)) {
2418 BUG_ON(count & COUNT_CONTINUED);
2419 INIT_LIST_HEAD(&head->lru);
2420 set_page_private(head, SWP_CONTINUED);
2421 si->flags |= SWP_CONTINUED;
2424 list_for_each_entry(list_page, &head->lru, lru) {
2425 unsigned char *map;
2428 * If the previous map said no continuation, but we've found
2429 * a continuation page, free our allocation and use this one.
2431 if (!(count & COUNT_CONTINUED))
2432 goto out;
2434 map = kmap_atomic(list_page, KM_USER0) + offset;
2435 count = *map;
2436 kunmap_atomic(map, KM_USER0);
2439 * If this continuation count now has some space in it,
2440 * free our allocation and use this one.
2442 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2443 goto out;
2446 list_add_tail(&page->lru, &head->lru);
2447 page = NULL; /* now it's attached, don't free it */
2448 out:
2449 spin_unlock(&swap_lock);
2450 outer:
2451 if (page)
2452 __free_page(page);
2453 return 0;
2457 * swap_count_continued - when the original swap_map count is incremented
2458 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2459 * into, carry if so, or else fail until a new continuation page is allocated;
2460 * when the original swap_map count is decremented from 0 with continuation,
2461 * borrow from the continuation and report whether it still holds more.
2462 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2464 static bool swap_count_continued(struct swap_info_struct *si,
2465 pgoff_t offset, unsigned char count)
2467 struct page *head;
2468 struct page *page;
2469 unsigned char *map;
2471 head = vmalloc_to_page(si->swap_map + offset);
2472 if (page_private(head) != SWP_CONTINUED) {
2473 BUG_ON(count & COUNT_CONTINUED);
2474 return false; /* need to add count continuation */
2477 offset &= ~PAGE_MASK;
2478 page = list_entry(head->lru.next, struct page, lru);
2479 map = kmap_atomic(page, KM_USER0) + offset;
2481 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2482 goto init_map; /* jump over SWAP_CONT_MAX checks */
2484 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2486 * Think of how you add 1 to 999
2488 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2489 kunmap_atomic(map, KM_USER0);
2490 page = list_entry(page->lru.next, struct page, lru);
2491 BUG_ON(page == head);
2492 map = kmap_atomic(page, KM_USER0) + offset;
2494 if (*map == SWAP_CONT_MAX) {
2495 kunmap_atomic(map, KM_USER0);
2496 page = list_entry(page->lru.next, struct page, lru);
2497 if (page == head)
2498 return false; /* add count continuation */
2499 map = kmap_atomic(page, KM_USER0) + offset;
2500 init_map: *map = 0; /* we didn't zero the page */
2502 *map += 1;
2503 kunmap_atomic(map, KM_USER0);
2504 page = list_entry(page->lru.prev, struct page, lru);
2505 while (page != head) {
2506 map = kmap_atomic(page, KM_USER0) + offset;
2507 *map = COUNT_CONTINUED;
2508 kunmap_atomic(map, KM_USER0);
2509 page = list_entry(page->lru.prev, struct page, lru);
2511 return true; /* incremented */
2513 } else { /* decrementing */
2515 * Think of how you subtract 1 from 1000
2517 BUG_ON(count != COUNT_CONTINUED);
2518 while (*map == COUNT_CONTINUED) {
2519 kunmap_atomic(map, KM_USER0);
2520 page = list_entry(page->lru.next, struct page, lru);
2521 BUG_ON(page == head);
2522 map = kmap_atomic(page, KM_USER0) + offset;
2524 BUG_ON(*map == 0);
2525 *map -= 1;
2526 if (*map == 0)
2527 count = 0;
2528 kunmap_atomic(map, KM_USER0);
2529 page = list_entry(page->lru.prev, struct page, lru);
2530 while (page != head) {
2531 map = kmap_atomic(page, KM_USER0) + offset;
2532 *map = SWAP_CONT_MAX | count;
2533 count = COUNT_CONTINUED;
2534 kunmap_atomic(map, KM_USER0);
2535 page = list_entry(page->lru.prev, struct page, lru);
2537 return count == COUNT_CONTINUED;
2542 * free_swap_count_continuations - swapoff free all the continuation pages
2543 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2545 static void free_swap_count_continuations(struct swap_info_struct *si)
2547 pgoff_t offset;
2549 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2550 struct page *head;
2551 head = vmalloc_to_page(si->swap_map + offset);
2552 if (page_private(head)) {
2553 struct list_head *this, *next;
2554 list_for_each_safe(this, next, &head->lru) {
2555 struct page *page;
2556 page = list_entry(this, struct page, lru);
2557 list_del(this);
2558 __free_page(page);