2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 struct memblock memblock __initdata_memblock
;
25 int memblock_debug __initdata_memblock
;
26 int memblock_can_resize __initdata_memblock
;
27 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
+ 1] __initdata_memblock
;
28 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
+ 1] __initdata_memblock
;
30 /* inline so we don't get a warning when pr_debug is compiled out */
31 static inline const char *memblock_type_name(struct memblock_type
*type
)
33 if (type
== &memblock
.memory
)
35 else if (type
== &memblock
.reserved
)
42 * Address comparison utilities
45 static phys_addr_t __init_memblock
memblock_align_down(phys_addr_t addr
, phys_addr_t size
)
47 return addr
& ~(size
- 1);
50 static phys_addr_t __init_memblock
memblock_align_up(phys_addr_t addr
, phys_addr_t size
)
52 return (addr
+ (size
- 1)) & ~(size
- 1);
55 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
56 phys_addr_t base2
, phys_addr_t size2
)
58 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
61 static long __init_memblock
memblock_addrs_adjacent(phys_addr_t base1
, phys_addr_t size1
,
62 phys_addr_t base2
, phys_addr_t size2
)
64 if (base2
== base1
+ size1
)
66 else if (base1
== base2
+ size2
)
72 static long __init_memblock
memblock_regions_adjacent(struct memblock_type
*type
,
73 unsigned long r1
, unsigned long r2
)
75 phys_addr_t base1
= type
->regions
[r1
].base
;
76 phys_addr_t size1
= type
->regions
[r1
].size
;
77 phys_addr_t base2
= type
->regions
[r2
].base
;
78 phys_addr_t size2
= type
->regions
[r2
].size
;
80 return memblock_addrs_adjacent(base1
, size1
, base2
, size2
);
83 long __init_memblock
memblock_overlaps_region(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
)
87 for (i
= 0; i
< type
->cnt
; i
++) {
88 phys_addr_t rgnbase
= type
->regions
[i
].base
;
89 phys_addr_t rgnsize
= type
->regions
[i
].size
;
90 if (memblock_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
94 return (i
< type
->cnt
) ? i
: -1;
98 * Find, allocate, deallocate or reserve unreserved regions. All allocations
102 static phys_addr_t __init_memblock
memblock_find_region(phys_addr_t start
, phys_addr_t end
,
103 phys_addr_t size
, phys_addr_t align
)
105 phys_addr_t base
, res_base
;
108 /* In case, huge size is requested */
110 return MEMBLOCK_ERROR
;
112 base
= memblock_align_down((end
- size
), align
);
114 /* Prevent allocations returning 0 as it's also used to
115 * indicate an allocation failure
120 while (start
<= base
) {
121 j
= memblock_overlaps_region(&memblock
.reserved
, base
, size
);
124 res_base
= memblock
.reserved
.regions
[j
].base
;
127 base
= memblock_align_down(res_base
- size
, align
);
130 return MEMBLOCK_ERROR
;
133 static phys_addr_t __init_memblock
memblock_find_base(phys_addr_t size
,
134 phys_addr_t align
, phys_addr_t start
, phys_addr_t end
)
140 size
= memblock_align_up(size
, align
);
142 /* Pump up max_addr */
143 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
144 end
= memblock
.current_limit
;
146 /* We do a top-down search, this tends to limit memory
147 * fragmentation by keeping early boot allocs near the
150 for (i
= memblock
.memory
.cnt
- 1; i
>= 0; i
--) {
151 phys_addr_t memblockbase
= memblock
.memory
.regions
[i
].base
;
152 phys_addr_t memblocksize
= memblock
.memory
.regions
[i
].size
;
153 phys_addr_t bottom
, top
, found
;
155 if (memblocksize
< size
)
157 if ((memblockbase
+ memblocksize
) <= start
)
159 bottom
= max(memblockbase
, start
);
160 top
= min(memblockbase
+ memblocksize
, end
);
163 found
= memblock_find_region(bottom
, top
, size
, align
);
164 if (found
!= MEMBLOCK_ERROR
)
167 return MEMBLOCK_ERROR
;
171 * Find a free area with specified alignment in a specific range.
173 u64 __init_memblock
memblock_find_in_range(u64 start
, u64 end
, u64 size
, u64 align
)
175 return memblock_find_base(size
, align
, start
, end
);
179 * Free memblock.reserved.regions
181 int __init_memblock
memblock_free_reserved_regions(void)
183 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
186 return memblock_free(__pa(memblock
.reserved
.regions
),
187 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
191 * Reserve memblock.reserved.regions
193 int __init_memblock
memblock_reserve_reserved_regions(void)
195 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
198 return memblock_reserve(__pa(memblock
.reserved
.regions
),
199 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
202 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
206 for (i
= r
; i
< type
->cnt
- 1; i
++) {
207 type
->regions
[i
].base
= type
->regions
[i
+ 1].base
;
208 type
->regions
[i
].size
= type
->regions
[i
+ 1].size
;
213 /* Assumption: base addr of region 1 < base addr of region 2 */
214 static void __init_memblock
memblock_coalesce_regions(struct memblock_type
*type
,
215 unsigned long r1
, unsigned long r2
)
217 type
->regions
[r1
].size
+= type
->regions
[r2
].size
;
218 memblock_remove_region(type
, r2
);
221 /* Defined below but needed now */
222 static long memblock_add_region(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
);
224 static int __init_memblock
memblock_double_array(struct memblock_type
*type
)
226 struct memblock_region
*new_array
, *old_array
;
227 phys_addr_t old_size
, new_size
, addr
;
228 int use_slab
= slab_is_available();
230 /* We don't allow resizing until we know about the reserved regions
231 * of memory that aren't suitable for allocation
233 if (!memblock_can_resize
)
236 /* Calculate new doubled size */
237 old_size
= type
->max
* sizeof(struct memblock_region
);
238 new_size
= old_size
<< 1;
240 /* Try to find some space for it.
242 * WARNING: We assume that either slab_is_available() and we use it or
243 * we use MEMBLOCK for allocations. That means that this is unsafe to use
244 * when bootmem is currently active (unless bootmem itself is implemented
245 * on top of MEMBLOCK which isn't the case yet)
247 * This should however not be an issue for now, as we currently only
248 * call into MEMBLOCK while it's still active, or much later when slab is
249 * active for memory hotplug operations
252 new_array
= kmalloc(new_size
, GFP_KERNEL
);
253 addr
= new_array
== NULL
? MEMBLOCK_ERROR
: __pa(new_array
);
255 addr
= memblock_find_base(new_size
, sizeof(phys_addr_t
), 0, MEMBLOCK_ALLOC_ACCESSIBLE
);
256 if (addr
== MEMBLOCK_ERROR
) {
257 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
258 memblock_type_name(type
), type
->max
, type
->max
* 2);
261 new_array
= __va(addr
);
263 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
264 memblock_type_name(type
), type
->max
* 2, (u64
)addr
, (u64
)addr
+ new_size
- 1);
266 /* Found space, we now need to move the array over before
267 * we add the reserved region since it may be our reserved
268 * array itself that is full.
270 memcpy(new_array
, type
->regions
, old_size
);
271 memset(new_array
+ type
->max
, 0, old_size
);
272 old_array
= type
->regions
;
273 type
->regions
= new_array
;
276 /* If we use SLAB that's it, we are done */
280 /* Add the new reserved region now. Should not fail ! */
281 BUG_ON(memblock_add_region(&memblock
.reserved
, addr
, new_size
) < 0);
283 /* If the array wasn't our static init one, then free it. We only do
284 * that before SLAB is available as later on, we don't know whether
285 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
288 if (old_array
!= memblock_memory_init_regions
&&
289 old_array
!= memblock_reserved_init_regions
)
290 memblock_free(__pa(old_array
), old_size
);
295 extern int __init_memblock __weak
memblock_memory_can_coalesce(phys_addr_t addr1
, phys_addr_t size1
,
296 phys_addr_t addr2
, phys_addr_t size2
)
301 static long __init_memblock
memblock_add_region(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
)
303 unsigned long coalesced
= 0;
306 if ((type
->cnt
== 1) && (type
->regions
[0].size
== 0)) {
307 type
->regions
[0].base
= base
;
308 type
->regions
[0].size
= size
;
312 /* First try and coalesce this MEMBLOCK with another. */
313 for (i
= 0; i
< type
->cnt
; i
++) {
314 phys_addr_t rgnbase
= type
->regions
[i
].base
;
315 phys_addr_t rgnsize
= type
->regions
[i
].size
;
317 if ((rgnbase
== base
) && (rgnsize
== size
))
318 /* Already have this region, so we're done */
321 adjacent
= memblock_addrs_adjacent(base
, size
, rgnbase
, rgnsize
);
322 /* Check if arch allows coalescing */
323 if (adjacent
!= 0 && type
== &memblock
.memory
&&
324 !memblock_memory_can_coalesce(base
, size
, rgnbase
, rgnsize
))
327 type
->regions
[i
].base
-= size
;
328 type
->regions
[i
].size
+= size
;
331 } else if (adjacent
< 0) {
332 type
->regions
[i
].size
+= size
;
338 /* If we plugged a hole, we may want to also coalesce with the
341 if ((i
< type
->cnt
- 1) && memblock_regions_adjacent(type
, i
, i
+1) &&
342 ((type
!= &memblock
.memory
|| memblock_memory_can_coalesce(type
->regions
[i
].base
,
343 type
->regions
[i
].size
,
344 type
->regions
[i
+1].base
,
345 type
->regions
[i
+1].size
)))) {
346 memblock_coalesce_regions(type
, i
, i
+1);
353 /* If we are out of space, we fail. It's too late to resize the array
354 * but then this shouldn't have happened in the first place.
356 if (WARN_ON(type
->cnt
>= type
->max
))
359 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
360 for (i
= type
->cnt
- 1; i
>= 0; i
--) {
361 if (base
< type
->regions
[i
].base
) {
362 type
->regions
[i
+1].base
= type
->regions
[i
].base
;
363 type
->regions
[i
+1].size
= type
->regions
[i
].size
;
365 type
->regions
[i
+1].base
= base
;
366 type
->regions
[i
+1].size
= size
;
371 if (base
< type
->regions
[0].base
) {
372 type
->regions
[0].base
= base
;
373 type
->regions
[0].size
= size
;
377 /* The array is full ? Try to resize it. If that fails, we undo
378 * our allocation and return an error
380 if (type
->cnt
== type
->max
&& memblock_double_array(type
)) {
388 long __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
390 return memblock_add_region(&memblock
.memory
, base
, size
);
394 static long __init_memblock
__memblock_remove(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
)
396 phys_addr_t rgnbegin
, rgnend
;
397 phys_addr_t end
= base
+ size
;
400 rgnbegin
= rgnend
= 0; /* supress gcc warnings */
402 /* Find the region where (base, size) belongs to */
403 for (i
=0; i
< type
->cnt
; i
++) {
404 rgnbegin
= type
->regions
[i
].base
;
405 rgnend
= rgnbegin
+ type
->regions
[i
].size
;
407 if ((rgnbegin
<= base
) && (end
<= rgnend
))
411 /* Didn't find the region */
415 /* Check to see if we are removing entire region */
416 if ((rgnbegin
== base
) && (rgnend
== end
)) {
417 memblock_remove_region(type
, i
);
421 /* Check to see if region is matching at the front */
422 if (rgnbegin
== base
) {
423 type
->regions
[i
].base
= end
;
424 type
->regions
[i
].size
-= size
;
428 /* Check to see if the region is matching at the end */
430 type
->regions
[i
].size
-= size
;
435 * We need to split the entry - adjust the current one to the
436 * beginging of the hole and add the region after hole.
438 type
->regions
[i
].size
= base
- type
->regions
[i
].base
;
439 return memblock_add_region(type
, end
, rgnend
- end
);
442 long __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
444 return __memblock_remove(&memblock
.memory
, base
, size
);
447 long __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
449 return __memblock_remove(&memblock
.reserved
, base
, size
);
452 long __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
454 struct memblock_type
*_rgn
= &memblock
.reserved
;
458 return memblock_add_region(_rgn
, base
, size
);
461 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
465 /* We align the size to limit fragmentation. Without this, a lot of
466 * small allocs quickly eat up the whole reserve array on sparc
468 size
= memblock_align_up(size
, align
);
470 found
= memblock_find_base(size
, align
, 0, max_addr
);
471 if (found
!= MEMBLOCK_ERROR
&&
472 memblock_add_region(&memblock
.reserved
, found
, size
) >= 0)
478 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
482 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
485 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
486 (unsigned long long) size
, (unsigned long long) max_addr
);
491 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
493 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
498 * Additional node-local allocators. Search for node memory is bottom up
499 * and walks memblock regions within that node bottom-up as well, but allocation
500 * within an memblock region is top-down. XXX I plan to fix that at some stage
502 * WARNING: Only available after early_node_map[] has been populated,
503 * on some architectures, that is after all the calls to add_active_range()
504 * have been done to populate it.
507 phys_addr_t __weak __init
memblock_nid_range(phys_addr_t start
, phys_addr_t end
, int *nid
)
509 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
511 * This code originates from sparc which really wants use to walk by addresses
512 * and returns the nid. This is not very convenient for early_pfn_map[] users
513 * as the map isn't sorted yet, and it really wants to be walked by nid.
515 * For now, I implement the inefficient method below which walks the early
516 * map multiple times. Eventually we may want to use an ARCH config option
517 * to implement a completely different method for both case.
519 unsigned long start_pfn
, end_pfn
;
522 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
523 get_pfn_range_for_nid(i
, &start_pfn
, &end_pfn
);
524 if (start
< PFN_PHYS(start_pfn
) || start
>= PFN_PHYS(end_pfn
))
527 return min(end
, PFN_PHYS(end_pfn
));
535 static phys_addr_t __init
memblock_alloc_nid_region(struct memblock_region
*mp
,
537 phys_addr_t align
, int nid
)
539 phys_addr_t start
, end
;
542 end
= start
+ mp
->size
;
544 start
= memblock_align_up(start
, align
);
545 while (start
< end
) {
546 phys_addr_t this_end
;
549 this_end
= memblock_nid_range(start
, end
, &this_nid
);
550 if (this_nid
== nid
) {
551 phys_addr_t ret
= memblock_find_region(start
, this_end
, size
, align
);
552 if (ret
!= MEMBLOCK_ERROR
&&
553 memblock_add_region(&memblock
.reserved
, ret
, size
) >= 0)
559 return MEMBLOCK_ERROR
;
562 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
564 struct memblock_type
*mem
= &memblock
.memory
;
569 /* We align the size to limit fragmentation. Without this, a lot of
570 * small allocs quickly eat up the whole reserve array on sparc
572 size
= memblock_align_up(size
, align
);
574 /* We do a bottom-up search for a region with the right
575 * nid since that's easier considering how memblock_nid_range()
578 for (i
= 0; i
< mem
->cnt
; i
++) {
579 phys_addr_t ret
= memblock_alloc_nid_region(&mem
->regions
[i
],
581 if (ret
!= MEMBLOCK_ERROR
)
588 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
590 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
594 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ANYWHERE
);
599 * Remaining API functions
602 /* You must call memblock_analyze() before this. */
603 phys_addr_t __init
memblock_phys_mem_size(void)
605 return memblock
.memory_size
;
608 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
610 int idx
= memblock
.memory
.cnt
- 1;
612 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
615 /* You must call memblock_analyze() after this. */
616 void __init
memblock_enforce_memory_limit(phys_addr_t memory_limit
)
620 struct memblock_region
*p
;
625 /* Truncate the memblock regions to satisfy the memory limit. */
626 limit
= memory_limit
;
627 for (i
= 0; i
< memblock
.memory
.cnt
; i
++) {
628 if (limit
> memblock
.memory
.regions
[i
].size
) {
629 limit
-= memblock
.memory
.regions
[i
].size
;
633 memblock
.memory
.regions
[i
].size
= limit
;
634 memblock
.memory
.cnt
= i
+ 1;
638 memory_limit
= memblock_end_of_DRAM();
640 /* And truncate any reserves above the limit also. */
641 for (i
= 0; i
< memblock
.reserved
.cnt
; i
++) {
642 p
= &memblock
.reserved
.regions
[i
];
644 if (p
->base
> memory_limit
)
646 else if ((p
->base
+ p
->size
) > memory_limit
)
647 p
->size
= memory_limit
- p
->base
;
650 memblock_remove_region(&memblock
.reserved
, i
);
656 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
658 unsigned int left
= 0, right
= type
->cnt
;
661 unsigned int mid
= (right
+ left
) / 2;
663 if (addr
< type
->regions
[mid
].base
)
665 else if (addr
>= (type
->regions
[mid
].base
+
666 type
->regions
[mid
].size
))
670 } while (left
< right
);
674 int __init
memblock_is_reserved(phys_addr_t addr
)
676 return memblock_search(&memblock
.reserved
, addr
) != -1;
679 int __init_memblock
memblock_is_memory(phys_addr_t addr
)
681 return memblock_search(&memblock
.memory
, addr
) != -1;
684 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
686 int idx
= memblock_search(&memblock
.memory
, base
);
690 return memblock
.memory
.regions
[idx
].base
<= base
&&
691 (memblock
.memory
.regions
[idx
].base
+
692 memblock
.memory
.regions
[idx
].size
) >= (base
+ size
);
695 int __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
697 return memblock_overlaps_region(&memblock
.reserved
, base
, size
) >= 0;
701 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
703 memblock
.current_limit
= limit
;
706 static void __init_memblock
memblock_dump(struct memblock_type
*region
, char *name
)
708 unsigned long long base
, size
;
711 pr_info(" %s.cnt = 0x%lx\n", name
, region
->cnt
);
713 for (i
= 0; i
< region
->cnt
; i
++) {
714 base
= region
->regions
[i
].base
;
715 size
= region
->regions
[i
].size
;
717 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
718 name
, i
, base
, base
+ size
- 1, size
);
722 void __init_memblock
memblock_dump_all(void)
727 pr_info("MEMBLOCK configuration:\n");
728 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock
.memory_size
);
730 memblock_dump(&memblock
.memory
, "memory");
731 memblock_dump(&memblock
.reserved
, "reserved");
734 void __init
memblock_analyze(void)
738 /* Check marker in the unused last array entry */
739 WARN_ON(memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
].base
740 != (phys_addr_t
)RED_INACTIVE
);
741 WARN_ON(memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
].base
742 != (phys_addr_t
)RED_INACTIVE
);
744 memblock
.memory_size
= 0;
746 for (i
= 0; i
< memblock
.memory
.cnt
; i
++)
747 memblock
.memory_size
+= memblock
.memory
.regions
[i
].size
;
749 /* We allow resizing from there */
750 memblock_can_resize
= 1;
753 void __init
memblock_init(void)
755 static int init_done __initdata
= 0;
761 /* Hookup the initial arrays */
762 memblock
.memory
.regions
= memblock_memory_init_regions
;
763 memblock
.memory
.max
= INIT_MEMBLOCK_REGIONS
;
764 memblock
.reserved
.regions
= memblock_reserved_init_regions
;
765 memblock
.reserved
.max
= INIT_MEMBLOCK_REGIONS
;
767 /* Write a marker in the unused last array entry */
768 memblock
.memory
.regions
[INIT_MEMBLOCK_REGIONS
].base
= (phys_addr_t
)RED_INACTIVE
;
769 memblock
.reserved
.regions
[INIT_MEMBLOCK_REGIONS
].base
= (phys_addr_t
)RED_INACTIVE
;
771 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
772 * This simplifies the memblock_add() code below...
774 memblock
.memory
.regions
[0].base
= 0;
775 memblock
.memory
.regions
[0].size
= 0;
776 memblock
.memory
.cnt
= 1;
779 memblock
.reserved
.regions
[0].base
= 0;
780 memblock
.reserved
.regions
[0].size
= 0;
781 memblock
.reserved
.cnt
= 1;
783 memblock
.current_limit
= MEMBLOCK_ALLOC_ANYWHERE
;
786 static int __init
early_memblock(char *p
)
788 if (p
&& strstr(p
, "debug"))
792 early_param("memblock", early_memblock
);
794 #if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
796 static int memblock_debug_show(struct seq_file
*m
, void *private)
798 struct memblock_type
*type
= m
->private;
799 struct memblock_region
*reg
;
802 for (i
= 0; i
< type
->cnt
; i
++) {
803 reg
= &type
->regions
[i
];
804 seq_printf(m
, "%4d: ", i
);
805 if (sizeof(phys_addr_t
) == 4)
806 seq_printf(m
, "0x%08lx..0x%08lx\n",
807 (unsigned long)reg
->base
,
808 (unsigned long)(reg
->base
+ reg
->size
- 1));
810 seq_printf(m
, "0x%016llx..0x%016llx\n",
811 (unsigned long long)reg
->base
,
812 (unsigned long long)(reg
->base
+ reg
->size
- 1));
818 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
820 return single_open(file
, memblock_debug_show
, inode
->i_private
);
823 static const struct file_operations memblock_debug_fops
= {
824 .open
= memblock_debug_open
,
827 .release
= single_release
,
830 static int __init
memblock_init_debugfs(void)
832 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
835 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
836 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
840 __initcall(memblock_init_debugfs
);
842 #endif /* CONFIG_DEBUG_FS */