USB: speedtouch: fixed more brace and spacing coding style issues
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blob2270b941bcc76ec0e52cc0d1321d8572164299e1
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
213 int __user *ulen)
215 int err;
216 int len;
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
235 return __put_user(klen, ulen);
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 static struct inode *sock_alloc_inode(struct super_block *sb)
242 struct socket_alloc *ei;
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 if (!ei->socket.wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
252 init_waitqueue_head(&ei->socket.wq->wait);
253 ei->socket.wq->fasync_list = NULL;
255 ei->socket.state = SS_UNCONNECTED;
256 ei->socket.flags = 0;
257 ei->socket.ops = NULL;
258 ei->socket.sk = NULL;
259 ei->socket.file = NULL;
261 return &ei->vfs_inode;
265 static void wq_free_rcu(struct rcu_head *head)
267 struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
269 kfree(wq);
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
276 ei = container_of(inode, struct socket_alloc, vfs_inode);
277 call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278 kmem_cache_free(sock_inode_cachep, ei);
281 static void init_once(void *foo)
283 struct socket_alloc *ei = (struct socket_alloc *)foo;
285 inode_init_once(&ei->vfs_inode);
288 static int init_inodecache(void)
290 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291 sizeof(struct socket_alloc),
293 (SLAB_HWCACHE_ALIGN |
294 SLAB_RECLAIM_ACCOUNT |
295 SLAB_MEM_SPREAD),
296 init_once);
297 if (sock_inode_cachep == NULL)
298 return -ENOMEM;
299 return 0;
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
308 static int sockfs_get_sb(struct file_system_type *fs_type,
309 int flags, const char *dev_name, void *data,
310 struct vfsmount *mnt)
312 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
313 mnt);
316 static struct vfsmount *sock_mnt __read_mostly;
318 static struct file_system_type sock_fs_type = {
319 .name = "sockfs",
320 .get_sb = sockfs_get_sb,
321 .kill_sb = kill_anon_super,
325 * sockfs_dname() is called from d_path().
327 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
329 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
330 dentry->d_inode->i_ino);
333 static const struct dentry_operations sockfs_dentry_operations = {
334 .d_dname = sockfs_dname,
338 * Obtains the first available file descriptor and sets it up for use.
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
356 struct qstr name = { .name = "" };
357 struct path path;
358 struct file *file;
359 int fd;
361 fd = get_unused_fd_flags(flags);
362 if (unlikely(fd < 0))
363 return fd;
365 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
366 if (unlikely(!path.dentry)) {
367 put_unused_fd(fd);
368 return -ENOMEM;
370 path.mnt = mntget(sock_mnt);
372 path.dentry->d_op = &sockfs_dentry_operations;
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374 SOCK_INODE(sock)->i_fop = &socket_file_ops;
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(!file)) {
379 /* drop dentry, keep inode */
380 atomic_inc(&path.dentry->d_inode->i_count);
381 path_put(&path);
382 put_unused_fd(fd);
383 return -ENFILE;
386 sock->file = file;
387 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 file->f_pos = 0;
389 file->private_data = sock;
391 *f = file;
392 return fd;
395 int sock_map_fd(struct socket *sock, int flags)
397 struct file *newfile;
398 int fd = sock_alloc_file(sock, &newfile, flags);
400 if (likely(fd >= 0))
401 fd_install(fd, newfile);
403 return fd;
405 EXPORT_SYMBOL(sock_map_fd);
407 static struct socket *sock_from_file(struct file *file, int *err)
409 if (file->f_op == &socket_file_ops)
410 return file->private_data; /* set in sock_map_fd */
412 *err = -ENOTSOCK;
413 return NULL;
417 * sockfd_lookup - Go from a file number to its socket slot
418 * @fd: file handle
419 * @err: pointer to an error code return
421 * The file handle passed in is locked and the socket it is bound
422 * too is returned. If an error occurs the err pointer is overwritten
423 * with a negative errno code and NULL is returned. The function checks
424 * for both invalid handles and passing a handle which is not a socket.
426 * On a success the socket object pointer is returned.
429 struct socket *sockfd_lookup(int fd, int *err)
431 struct file *file;
432 struct socket *sock;
434 file = fget(fd);
435 if (!file) {
436 *err = -EBADF;
437 return NULL;
440 sock = sock_from_file(file, err);
441 if (!sock)
442 fput(file);
443 return sock;
445 EXPORT_SYMBOL(sockfd_lookup);
447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
449 struct file *file;
450 struct socket *sock;
452 *err = -EBADF;
453 file = fget_light(fd, fput_needed);
454 if (file) {
455 sock = sock_from_file(file, err);
456 if (sock)
457 return sock;
458 fput_light(file, *fput_needed);
460 return NULL;
464 * sock_alloc - allocate a socket
466 * Allocate a new inode and socket object. The two are bound together
467 * and initialised. The socket is then returned. If we are out of inodes
468 * NULL is returned.
471 static struct socket *sock_alloc(void)
473 struct inode *inode;
474 struct socket *sock;
476 inode = new_inode(sock_mnt->mnt_sb);
477 if (!inode)
478 return NULL;
480 sock = SOCKET_I(inode);
482 kmemcheck_annotate_bitfield(sock, type);
483 inode->i_mode = S_IFSOCK | S_IRWXUGO;
484 inode->i_uid = current_fsuid();
485 inode->i_gid = current_fsgid();
487 percpu_add(sockets_in_use, 1);
488 return sock;
492 * In theory you can't get an open on this inode, but /proc provides
493 * a back door. Remember to keep it shut otherwise you'll let the
494 * creepy crawlies in.
497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
499 return -ENXIO;
502 const struct file_operations bad_sock_fops = {
503 .owner = THIS_MODULE,
504 .open = sock_no_open,
508 * sock_release - close a socket
509 * @sock: socket to close
511 * The socket is released from the protocol stack if it has a release
512 * callback, and the inode is then released if the socket is bound to
513 * an inode not a file.
516 void sock_release(struct socket *sock)
518 if (sock->ops) {
519 struct module *owner = sock->ops->owner;
521 sock->ops->release(sock);
522 sock->ops = NULL;
523 module_put(owner);
526 if (sock->wq->fasync_list)
527 printk(KERN_ERR "sock_release: fasync list not empty!\n");
529 percpu_sub(sockets_in_use, 1);
530 if (!sock->file) {
531 iput(SOCK_INODE(sock));
532 return;
534 sock->file = NULL;
536 EXPORT_SYMBOL(sock_release);
538 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
539 union skb_shared_tx *shtx)
541 shtx->flags = 0;
542 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
543 shtx->hardware = 1;
544 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
545 shtx->software = 1;
546 return 0;
548 EXPORT_SYMBOL(sock_tx_timestamp);
550 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
551 struct msghdr *msg, size_t size)
553 struct sock_iocb *si = kiocb_to_siocb(iocb);
554 int err;
556 sock_update_classid(sock->sk);
558 si->sock = sock;
559 si->scm = NULL;
560 si->msg = msg;
561 si->size = size;
563 err = security_socket_sendmsg(sock, msg, size);
564 if (err)
565 return err;
567 return sock->ops->sendmsg(iocb, sock, msg, size);
570 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
572 struct kiocb iocb;
573 struct sock_iocb siocb;
574 int ret;
576 init_sync_kiocb(&iocb, NULL);
577 iocb.private = &siocb;
578 ret = __sock_sendmsg(&iocb, sock, msg, size);
579 if (-EIOCBQUEUED == ret)
580 ret = wait_on_sync_kiocb(&iocb);
581 return ret;
583 EXPORT_SYMBOL(sock_sendmsg);
585 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
586 struct kvec *vec, size_t num, size_t size)
588 mm_segment_t oldfs = get_fs();
589 int result;
591 set_fs(KERNEL_DS);
593 * the following is safe, since for compiler definitions of kvec and
594 * iovec are identical, yielding the same in-core layout and alignment
596 msg->msg_iov = (struct iovec *)vec;
597 msg->msg_iovlen = num;
598 result = sock_sendmsg(sock, msg, size);
599 set_fs(oldfs);
600 return result;
602 EXPORT_SYMBOL(kernel_sendmsg);
604 static int ktime2ts(ktime_t kt, struct timespec *ts)
606 if (kt.tv64) {
607 *ts = ktime_to_timespec(kt);
608 return 1;
609 } else {
610 return 0;
615 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
617 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
618 struct sk_buff *skb)
620 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
621 struct timespec ts[3];
622 int empty = 1;
623 struct skb_shared_hwtstamps *shhwtstamps =
624 skb_hwtstamps(skb);
626 /* Race occurred between timestamp enabling and packet
627 receiving. Fill in the current time for now. */
628 if (need_software_tstamp && skb->tstamp.tv64 == 0)
629 __net_timestamp(skb);
631 if (need_software_tstamp) {
632 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
633 struct timeval tv;
634 skb_get_timestamp(skb, &tv);
635 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
636 sizeof(tv), &tv);
637 } else {
638 skb_get_timestampns(skb, &ts[0]);
639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
640 sizeof(ts[0]), &ts[0]);
645 memset(ts, 0, sizeof(ts));
646 if (skb->tstamp.tv64 &&
647 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
648 skb_get_timestampns(skb, ts + 0);
649 empty = 0;
651 if (shhwtstamps) {
652 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
653 ktime2ts(shhwtstamps->syststamp, ts + 1))
654 empty = 0;
655 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
656 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
657 empty = 0;
659 if (!empty)
660 put_cmsg(msg, SOL_SOCKET,
661 SCM_TIMESTAMPING, sizeof(ts), &ts);
663 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
665 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
667 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
668 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
669 sizeof(__u32), &skb->dropcount);
672 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
673 struct sk_buff *skb)
675 sock_recv_timestamp(msg, sk, skb);
676 sock_recv_drops(msg, sk, skb);
678 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
680 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
681 struct msghdr *msg, size_t size, int flags)
683 struct sock_iocb *si = kiocb_to_siocb(iocb);
685 sock_update_classid(sock->sk);
687 si->sock = sock;
688 si->scm = NULL;
689 si->msg = msg;
690 si->size = size;
691 si->flags = flags;
693 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
696 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
697 struct msghdr *msg, size_t size, int flags)
699 int err = security_socket_recvmsg(sock, msg, size, flags);
701 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
704 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
705 size_t size, int flags)
707 struct kiocb iocb;
708 struct sock_iocb siocb;
709 int ret;
711 init_sync_kiocb(&iocb, NULL);
712 iocb.private = &siocb;
713 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
714 if (-EIOCBQUEUED == ret)
715 ret = wait_on_sync_kiocb(&iocb);
716 return ret;
718 EXPORT_SYMBOL(sock_recvmsg);
720 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
721 size_t size, int flags)
723 struct kiocb iocb;
724 struct sock_iocb siocb;
725 int ret;
727 init_sync_kiocb(&iocb, NULL);
728 iocb.private = &siocb;
729 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
730 if (-EIOCBQUEUED == ret)
731 ret = wait_on_sync_kiocb(&iocb);
732 return ret;
735 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
736 struct kvec *vec, size_t num, size_t size, int flags)
738 mm_segment_t oldfs = get_fs();
739 int result;
741 set_fs(KERNEL_DS);
743 * the following is safe, since for compiler definitions of kvec and
744 * iovec are identical, yielding the same in-core layout and alignment
746 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
747 result = sock_recvmsg(sock, msg, size, flags);
748 set_fs(oldfs);
749 return result;
751 EXPORT_SYMBOL(kernel_recvmsg);
753 static void sock_aio_dtor(struct kiocb *iocb)
755 kfree(iocb->private);
758 static ssize_t sock_sendpage(struct file *file, struct page *page,
759 int offset, size_t size, loff_t *ppos, int more)
761 struct socket *sock;
762 int flags;
764 sock = file->private_data;
766 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
767 if (more)
768 flags |= MSG_MORE;
770 return kernel_sendpage(sock, page, offset, size, flags);
773 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
774 struct pipe_inode_info *pipe, size_t len,
775 unsigned int flags)
777 struct socket *sock = file->private_data;
779 if (unlikely(!sock->ops->splice_read))
780 return -EINVAL;
782 sock_update_classid(sock->sk);
784 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
787 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
788 struct sock_iocb *siocb)
790 if (!is_sync_kiocb(iocb)) {
791 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
792 if (!siocb)
793 return NULL;
794 iocb->ki_dtor = sock_aio_dtor;
797 siocb->kiocb = iocb;
798 iocb->private = siocb;
799 return siocb;
802 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
803 struct file *file, const struct iovec *iov,
804 unsigned long nr_segs)
806 struct socket *sock = file->private_data;
807 size_t size = 0;
808 int i;
810 for (i = 0; i < nr_segs; i++)
811 size += iov[i].iov_len;
813 msg->msg_name = NULL;
814 msg->msg_namelen = 0;
815 msg->msg_control = NULL;
816 msg->msg_controllen = 0;
817 msg->msg_iov = (struct iovec *)iov;
818 msg->msg_iovlen = nr_segs;
819 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
821 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
824 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
825 unsigned long nr_segs, loff_t pos)
827 struct sock_iocb siocb, *x;
829 if (pos != 0)
830 return -ESPIPE;
832 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
833 return 0;
836 x = alloc_sock_iocb(iocb, &siocb);
837 if (!x)
838 return -ENOMEM;
839 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
842 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
843 struct file *file, const struct iovec *iov,
844 unsigned long nr_segs)
846 struct socket *sock = file->private_data;
847 size_t size = 0;
848 int i;
850 for (i = 0; i < nr_segs; i++)
851 size += iov[i].iov_len;
853 msg->msg_name = NULL;
854 msg->msg_namelen = 0;
855 msg->msg_control = NULL;
856 msg->msg_controllen = 0;
857 msg->msg_iov = (struct iovec *)iov;
858 msg->msg_iovlen = nr_segs;
859 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
860 if (sock->type == SOCK_SEQPACKET)
861 msg->msg_flags |= MSG_EOR;
863 return __sock_sendmsg(iocb, sock, msg, size);
866 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
867 unsigned long nr_segs, loff_t pos)
869 struct sock_iocb siocb, *x;
871 if (pos != 0)
872 return -ESPIPE;
874 x = alloc_sock_iocb(iocb, &siocb);
875 if (!x)
876 return -ENOMEM;
878 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
882 * Atomic setting of ioctl hooks to avoid race
883 * with module unload.
886 static DEFINE_MUTEX(br_ioctl_mutex);
887 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
889 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
891 mutex_lock(&br_ioctl_mutex);
892 br_ioctl_hook = hook;
893 mutex_unlock(&br_ioctl_mutex);
895 EXPORT_SYMBOL(brioctl_set);
897 static DEFINE_MUTEX(vlan_ioctl_mutex);
898 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
900 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
902 mutex_lock(&vlan_ioctl_mutex);
903 vlan_ioctl_hook = hook;
904 mutex_unlock(&vlan_ioctl_mutex);
906 EXPORT_SYMBOL(vlan_ioctl_set);
908 static DEFINE_MUTEX(dlci_ioctl_mutex);
909 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
911 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
913 mutex_lock(&dlci_ioctl_mutex);
914 dlci_ioctl_hook = hook;
915 mutex_unlock(&dlci_ioctl_mutex);
917 EXPORT_SYMBOL(dlci_ioctl_set);
919 static long sock_do_ioctl(struct net *net, struct socket *sock,
920 unsigned int cmd, unsigned long arg)
922 int err;
923 void __user *argp = (void __user *)arg;
925 err = sock->ops->ioctl(sock, cmd, arg);
928 * If this ioctl is unknown try to hand it down
929 * to the NIC driver.
931 if (err == -ENOIOCTLCMD)
932 err = dev_ioctl(net, cmd, argp);
934 return err;
938 * With an ioctl, arg may well be a user mode pointer, but we don't know
939 * what to do with it - that's up to the protocol still.
942 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
944 struct socket *sock;
945 struct sock *sk;
946 void __user *argp = (void __user *)arg;
947 int pid, err;
948 struct net *net;
950 sock = file->private_data;
951 sk = sock->sk;
952 net = sock_net(sk);
953 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
954 err = dev_ioctl(net, cmd, argp);
955 } else
956 #ifdef CONFIG_WEXT_CORE
957 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
958 err = dev_ioctl(net, cmd, argp);
959 } else
960 #endif
961 switch (cmd) {
962 case FIOSETOWN:
963 case SIOCSPGRP:
964 err = -EFAULT;
965 if (get_user(pid, (int __user *)argp))
966 break;
967 err = f_setown(sock->file, pid, 1);
968 break;
969 case FIOGETOWN:
970 case SIOCGPGRP:
971 err = put_user(f_getown(sock->file),
972 (int __user *)argp);
973 break;
974 case SIOCGIFBR:
975 case SIOCSIFBR:
976 case SIOCBRADDBR:
977 case SIOCBRDELBR:
978 err = -ENOPKG;
979 if (!br_ioctl_hook)
980 request_module("bridge");
982 mutex_lock(&br_ioctl_mutex);
983 if (br_ioctl_hook)
984 err = br_ioctl_hook(net, cmd, argp);
985 mutex_unlock(&br_ioctl_mutex);
986 break;
987 case SIOCGIFVLAN:
988 case SIOCSIFVLAN:
989 err = -ENOPKG;
990 if (!vlan_ioctl_hook)
991 request_module("8021q");
993 mutex_lock(&vlan_ioctl_mutex);
994 if (vlan_ioctl_hook)
995 err = vlan_ioctl_hook(net, argp);
996 mutex_unlock(&vlan_ioctl_mutex);
997 break;
998 case SIOCADDDLCI:
999 case SIOCDELDLCI:
1000 err = -ENOPKG;
1001 if (!dlci_ioctl_hook)
1002 request_module("dlci");
1004 mutex_lock(&dlci_ioctl_mutex);
1005 if (dlci_ioctl_hook)
1006 err = dlci_ioctl_hook(cmd, argp);
1007 mutex_unlock(&dlci_ioctl_mutex);
1008 break;
1009 default:
1010 err = sock_do_ioctl(net, sock, cmd, arg);
1011 break;
1013 return err;
1016 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1018 int err;
1019 struct socket *sock = NULL;
1021 err = security_socket_create(family, type, protocol, 1);
1022 if (err)
1023 goto out;
1025 sock = sock_alloc();
1026 if (!sock) {
1027 err = -ENOMEM;
1028 goto out;
1031 sock->type = type;
1032 err = security_socket_post_create(sock, family, type, protocol, 1);
1033 if (err)
1034 goto out_release;
1036 out:
1037 *res = sock;
1038 return err;
1039 out_release:
1040 sock_release(sock);
1041 sock = NULL;
1042 goto out;
1044 EXPORT_SYMBOL(sock_create_lite);
1046 /* No kernel lock held - perfect */
1047 static unsigned int sock_poll(struct file *file, poll_table *wait)
1049 struct socket *sock;
1052 * We can't return errors to poll, so it's either yes or no.
1054 sock = file->private_data;
1055 return sock->ops->poll(file, sock, wait);
1058 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1060 struct socket *sock = file->private_data;
1062 return sock->ops->mmap(file, sock, vma);
1065 static int sock_close(struct inode *inode, struct file *filp)
1068 * It was possible the inode is NULL we were
1069 * closing an unfinished socket.
1072 if (!inode) {
1073 printk(KERN_DEBUG "sock_close: NULL inode\n");
1074 return 0;
1076 sock_release(SOCKET_I(inode));
1077 return 0;
1081 * Update the socket async list
1083 * Fasync_list locking strategy.
1085 * 1. fasync_list is modified only under process context socket lock
1086 * i.e. under semaphore.
1087 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1088 * or under socket lock
1091 static int sock_fasync(int fd, struct file *filp, int on)
1093 struct socket *sock = filp->private_data;
1094 struct sock *sk = sock->sk;
1096 if (sk == NULL)
1097 return -EINVAL;
1099 lock_sock(sk);
1101 fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1103 if (!sock->wq->fasync_list)
1104 sock_reset_flag(sk, SOCK_FASYNC);
1105 else
1106 sock_set_flag(sk, SOCK_FASYNC);
1108 release_sock(sk);
1109 return 0;
1112 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1114 int sock_wake_async(struct socket *sock, int how, int band)
1116 struct socket_wq *wq;
1118 if (!sock)
1119 return -1;
1120 rcu_read_lock();
1121 wq = rcu_dereference(sock->wq);
1122 if (!wq || !wq->fasync_list) {
1123 rcu_read_unlock();
1124 return -1;
1126 switch (how) {
1127 case SOCK_WAKE_WAITD:
1128 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1129 break;
1130 goto call_kill;
1131 case SOCK_WAKE_SPACE:
1132 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1133 break;
1134 /* fall through */
1135 case SOCK_WAKE_IO:
1136 call_kill:
1137 kill_fasync(&wq->fasync_list, SIGIO, band);
1138 break;
1139 case SOCK_WAKE_URG:
1140 kill_fasync(&wq->fasync_list, SIGURG, band);
1142 rcu_read_unlock();
1143 return 0;
1145 EXPORT_SYMBOL(sock_wake_async);
1147 static int __sock_create(struct net *net, int family, int type, int protocol,
1148 struct socket **res, int kern)
1150 int err;
1151 struct socket *sock;
1152 const struct net_proto_family *pf;
1155 * Check protocol is in range
1157 if (family < 0 || family >= NPROTO)
1158 return -EAFNOSUPPORT;
1159 if (type < 0 || type >= SOCK_MAX)
1160 return -EINVAL;
1162 /* Compatibility.
1164 This uglymoron is moved from INET layer to here to avoid
1165 deadlock in module load.
1167 if (family == PF_INET && type == SOCK_PACKET) {
1168 static int warned;
1169 if (!warned) {
1170 warned = 1;
1171 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1172 current->comm);
1174 family = PF_PACKET;
1177 err = security_socket_create(family, type, protocol, kern);
1178 if (err)
1179 return err;
1182 * Allocate the socket and allow the family to set things up. if
1183 * the protocol is 0, the family is instructed to select an appropriate
1184 * default.
1186 sock = sock_alloc();
1187 if (!sock) {
1188 if (net_ratelimit())
1189 printk(KERN_WARNING "socket: no more sockets\n");
1190 return -ENFILE; /* Not exactly a match, but its the
1191 closest posix thing */
1194 sock->type = type;
1196 #ifdef CONFIG_MODULES
1197 /* Attempt to load a protocol module if the find failed.
1199 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1200 * requested real, full-featured networking support upon configuration.
1201 * Otherwise module support will break!
1203 if (net_families[family] == NULL)
1204 request_module("net-pf-%d", family);
1205 #endif
1207 rcu_read_lock();
1208 pf = rcu_dereference(net_families[family]);
1209 err = -EAFNOSUPPORT;
1210 if (!pf)
1211 goto out_release;
1214 * We will call the ->create function, that possibly is in a loadable
1215 * module, so we have to bump that loadable module refcnt first.
1217 if (!try_module_get(pf->owner))
1218 goto out_release;
1220 /* Now protected by module ref count */
1221 rcu_read_unlock();
1223 err = pf->create(net, sock, protocol, kern);
1224 if (err < 0)
1225 goto out_module_put;
1228 * Now to bump the refcnt of the [loadable] module that owns this
1229 * socket at sock_release time we decrement its refcnt.
1231 if (!try_module_get(sock->ops->owner))
1232 goto out_module_busy;
1235 * Now that we're done with the ->create function, the [loadable]
1236 * module can have its refcnt decremented
1238 module_put(pf->owner);
1239 err = security_socket_post_create(sock, family, type, protocol, kern);
1240 if (err)
1241 goto out_sock_release;
1242 *res = sock;
1244 return 0;
1246 out_module_busy:
1247 err = -EAFNOSUPPORT;
1248 out_module_put:
1249 sock->ops = NULL;
1250 module_put(pf->owner);
1251 out_sock_release:
1252 sock_release(sock);
1253 return err;
1255 out_release:
1256 rcu_read_unlock();
1257 goto out_sock_release;
1260 int sock_create(int family, int type, int protocol, struct socket **res)
1262 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1264 EXPORT_SYMBOL(sock_create);
1266 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1268 return __sock_create(&init_net, family, type, protocol, res, 1);
1270 EXPORT_SYMBOL(sock_create_kern);
1272 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1274 int retval;
1275 struct socket *sock;
1276 int flags;
1278 /* Check the SOCK_* constants for consistency. */
1279 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1280 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1281 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1282 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1284 flags = type & ~SOCK_TYPE_MASK;
1285 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1286 return -EINVAL;
1287 type &= SOCK_TYPE_MASK;
1289 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1290 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1292 retval = sock_create(family, type, protocol, &sock);
1293 if (retval < 0)
1294 goto out;
1296 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1297 if (retval < 0)
1298 goto out_release;
1300 out:
1301 /* It may be already another descriptor 8) Not kernel problem. */
1302 return retval;
1304 out_release:
1305 sock_release(sock);
1306 return retval;
1310 * Create a pair of connected sockets.
1313 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1314 int __user *, usockvec)
1316 struct socket *sock1, *sock2;
1317 int fd1, fd2, err;
1318 struct file *newfile1, *newfile2;
1319 int flags;
1321 flags = type & ~SOCK_TYPE_MASK;
1322 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1323 return -EINVAL;
1324 type &= SOCK_TYPE_MASK;
1326 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1327 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1330 * Obtain the first socket and check if the underlying protocol
1331 * supports the socketpair call.
1334 err = sock_create(family, type, protocol, &sock1);
1335 if (err < 0)
1336 goto out;
1338 err = sock_create(family, type, protocol, &sock2);
1339 if (err < 0)
1340 goto out_release_1;
1342 err = sock1->ops->socketpair(sock1, sock2);
1343 if (err < 0)
1344 goto out_release_both;
1346 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1347 if (unlikely(fd1 < 0)) {
1348 err = fd1;
1349 goto out_release_both;
1352 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1353 if (unlikely(fd2 < 0)) {
1354 err = fd2;
1355 fput(newfile1);
1356 put_unused_fd(fd1);
1357 sock_release(sock2);
1358 goto out;
1361 audit_fd_pair(fd1, fd2);
1362 fd_install(fd1, newfile1);
1363 fd_install(fd2, newfile2);
1364 /* fd1 and fd2 may be already another descriptors.
1365 * Not kernel problem.
1368 err = put_user(fd1, &usockvec[0]);
1369 if (!err)
1370 err = put_user(fd2, &usockvec[1]);
1371 if (!err)
1372 return 0;
1374 sys_close(fd2);
1375 sys_close(fd1);
1376 return err;
1378 out_release_both:
1379 sock_release(sock2);
1380 out_release_1:
1381 sock_release(sock1);
1382 out:
1383 return err;
1387 * Bind a name to a socket. Nothing much to do here since it's
1388 * the protocol's responsibility to handle the local address.
1390 * We move the socket address to kernel space before we call
1391 * the protocol layer (having also checked the address is ok).
1394 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1396 struct socket *sock;
1397 struct sockaddr_storage address;
1398 int err, fput_needed;
1400 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1401 if (sock) {
1402 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1403 if (err >= 0) {
1404 err = security_socket_bind(sock,
1405 (struct sockaddr *)&address,
1406 addrlen);
1407 if (!err)
1408 err = sock->ops->bind(sock,
1409 (struct sockaddr *)
1410 &address, addrlen);
1412 fput_light(sock->file, fput_needed);
1414 return err;
1418 * Perform a listen. Basically, we allow the protocol to do anything
1419 * necessary for a listen, and if that works, we mark the socket as
1420 * ready for listening.
1423 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1425 struct socket *sock;
1426 int err, fput_needed;
1427 int somaxconn;
1429 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1430 if (sock) {
1431 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1432 if ((unsigned)backlog > somaxconn)
1433 backlog = somaxconn;
1435 err = security_socket_listen(sock, backlog);
1436 if (!err)
1437 err = sock->ops->listen(sock, backlog);
1439 fput_light(sock->file, fput_needed);
1441 return err;
1445 * For accept, we attempt to create a new socket, set up the link
1446 * with the client, wake up the client, then return the new
1447 * connected fd. We collect the address of the connector in kernel
1448 * space and move it to user at the very end. This is unclean because
1449 * we open the socket then return an error.
1451 * 1003.1g adds the ability to recvmsg() to query connection pending
1452 * status to recvmsg. We need to add that support in a way thats
1453 * clean when we restucture accept also.
1456 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1457 int __user *, upeer_addrlen, int, flags)
1459 struct socket *sock, *newsock;
1460 struct file *newfile;
1461 int err, len, newfd, fput_needed;
1462 struct sockaddr_storage address;
1464 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1465 return -EINVAL;
1467 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1468 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1470 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1471 if (!sock)
1472 goto out;
1474 err = -ENFILE;
1475 newsock = sock_alloc();
1476 if (!newsock)
1477 goto out_put;
1479 newsock->type = sock->type;
1480 newsock->ops = sock->ops;
1483 * We don't need try_module_get here, as the listening socket (sock)
1484 * has the protocol module (sock->ops->owner) held.
1486 __module_get(newsock->ops->owner);
1488 newfd = sock_alloc_file(newsock, &newfile, flags);
1489 if (unlikely(newfd < 0)) {
1490 err = newfd;
1491 sock_release(newsock);
1492 goto out_put;
1495 err = security_socket_accept(sock, newsock);
1496 if (err)
1497 goto out_fd;
1499 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1500 if (err < 0)
1501 goto out_fd;
1503 if (upeer_sockaddr) {
1504 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1505 &len, 2) < 0) {
1506 err = -ECONNABORTED;
1507 goto out_fd;
1509 err = move_addr_to_user((struct sockaddr *)&address,
1510 len, upeer_sockaddr, upeer_addrlen);
1511 if (err < 0)
1512 goto out_fd;
1515 /* File flags are not inherited via accept() unlike another OSes. */
1517 fd_install(newfd, newfile);
1518 err = newfd;
1520 out_put:
1521 fput_light(sock->file, fput_needed);
1522 out:
1523 return err;
1524 out_fd:
1525 fput(newfile);
1526 put_unused_fd(newfd);
1527 goto out_put;
1530 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1531 int __user *, upeer_addrlen)
1533 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1537 * Attempt to connect to a socket with the server address. The address
1538 * is in user space so we verify it is OK and move it to kernel space.
1540 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1541 * break bindings
1543 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1544 * other SEQPACKET protocols that take time to connect() as it doesn't
1545 * include the -EINPROGRESS status for such sockets.
1548 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1549 int, addrlen)
1551 struct socket *sock;
1552 struct sockaddr_storage address;
1553 int err, fput_needed;
1555 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1556 if (!sock)
1557 goto out;
1558 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1559 if (err < 0)
1560 goto out_put;
1562 err =
1563 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1564 if (err)
1565 goto out_put;
1567 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1568 sock->file->f_flags);
1569 out_put:
1570 fput_light(sock->file, fput_needed);
1571 out:
1572 return err;
1576 * Get the local address ('name') of a socket object. Move the obtained
1577 * name to user space.
1580 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1581 int __user *, usockaddr_len)
1583 struct socket *sock;
1584 struct sockaddr_storage address;
1585 int len, err, fput_needed;
1587 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1588 if (!sock)
1589 goto out;
1591 err = security_socket_getsockname(sock);
1592 if (err)
1593 goto out_put;
1595 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1596 if (err)
1597 goto out_put;
1598 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1600 out_put:
1601 fput_light(sock->file, fput_needed);
1602 out:
1603 return err;
1607 * Get the remote address ('name') of a socket object. Move the obtained
1608 * name to user space.
1611 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1612 int __user *, usockaddr_len)
1614 struct socket *sock;
1615 struct sockaddr_storage address;
1616 int len, err, fput_needed;
1618 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1619 if (sock != NULL) {
1620 err = security_socket_getpeername(sock);
1621 if (err) {
1622 fput_light(sock->file, fput_needed);
1623 return err;
1626 err =
1627 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1629 if (!err)
1630 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1631 usockaddr_len);
1632 fput_light(sock->file, fput_needed);
1634 return err;
1638 * Send a datagram to a given address. We move the address into kernel
1639 * space and check the user space data area is readable before invoking
1640 * the protocol.
1643 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1644 unsigned, flags, struct sockaddr __user *, addr,
1645 int, addr_len)
1647 struct socket *sock;
1648 struct sockaddr_storage address;
1649 int err;
1650 struct msghdr msg;
1651 struct iovec iov;
1652 int fput_needed;
1654 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1655 if (!sock)
1656 goto out;
1658 iov.iov_base = buff;
1659 iov.iov_len = len;
1660 msg.msg_name = NULL;
1661 msg.msg_iov = &iov;
1662 msg.msg_iovlen = 1;
1663 msg.msg_control = NULL;
1664 msg.msg_controllen = 0;
1665 msg.msg_namelen = 0;
1666 if (addr) {
1667 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1668 if (err < 0)
1669 goto out_put;
1670 msg.msg_name = (struct sockaddr *)&address;
1671 msg.msg_namelen = addr_len;
1673 if (sock->file->f_flags & O_NONBLOCK)
1674 flags |= MSG_DONTWAIT;
1675 msg.msg_flags = flags;
1676 err = sock_sendmsg(sock, &msg, len);
1678 out_put:
1679 fput_light(sock->file, fput_needed);
1680 out:
1681 return err;
1685 * Send a datagram down a socket.
1688 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1689 unsigned, flags)
1691 return sys_sendto(fd, buff, len, flags, NULL, 0);
1695 * Receive a frame from the socket and optionally record the address of the
1696 * sender. We verify the buffers are writable and if needed move the
1697 * sender address from kernel to user space.
1700 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1701 unsigned, flags, struct sockaddr __user *, addr,
1702 int __user *, addr_len)
1704 struct socket *sock;
1705 struct iovec iov;
1706 struct msghdr msg;
1707 struct sockaddr_storage address;
1708 int err, err2;
1709 int fput_needed;
1711 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1712 if (!sock)
1713 goto out;
1715 msg.msg_control = NULL;
1716 msg.msg_controllen = 0;
1717 msg.msg_iovlen = 1;
1718 msg.msg_iov = &iov;
1719 iov.iov_len = size;
1720 iov.iov_base = ubuf;
1721 msg.msg_name = (struct sockaddr *)&address;
1722 msg.msg_namelen = sizeof(address);
1723 if (sock->file->f_flags & O_NONBLOCK)
1724 flags |= MSG_DONTWAIT;
1725 err = sock_recvmsg(sock, &msg, size, flags);
1727 if (err >= 0 && addr != NULL) {
1728 err2 = move_addr_to_user((struct sockaddr *)&address,
1729 msg.msg_namelen, addr, addr_len);
1730 if (err2 < 0)
1731 err = err2;
1734 fput_light(sock->file, fput_needed);
1735 out:
1736 return err;
1740 * Receive a datagram from a socket.
1743 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1744 unsigned flags)
1746 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1750 * Set a socket option. Because we don't know the option lengths we have
1751 * to pass the user mode parameter for the protocols to sort out.
1754 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1755 char __user *, optval, int, optlen)
1757 int err, fput_needed;
1758 struct socket *sock;
1760 if (optlen < 0)
1761 return -EINVAL;
1763 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1764 if (sock != NULL) {
1765 err = security_socket_setsockopt(sock, level, optname);
1766 if (err)
1767 goto out_put;
1769 if (level == SOL_SOCKET)
1770 err =
1771 sock_setsockopt(sock, level, optname, optval,
1772 optlen);
1773 else
1774 err =
1775 sock->ops->setsockopt(sock, level, optname, optval,
1776 optlen);
1777 out_put:
1778 fput_light(sock->file, fput_needed);
1780 return err;
1784 * Get a socket option. Because we don't know the option lengths we have
1785 * to pass a user mode parameter for the protocols to sort out.
1788 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1789 char __user *, optval, int __user *, optlen)
1791 int err, fput_needed;
1792 struct socket *sock;
1794 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1795 if (sock != NULL) {
1796 err = security_socket_getsockopt(sock, level, optname);
1797 if (err)
1798 goto out_put;
1800 if (level == SOL_SOCKET)
1801 err =
1802 sock_getsockopt(sock, level, optname, optval,
1803 optlen);
1804 else
1805 err =
1806 sock->ops->getsockopt(sock, level, optname, optval,
1807 optlen);
1808 out_put:
1809 fput_light(sock->file, fput_needed);
1811 return err;
1815 * Shutdown a socket.
1818 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1820 int err, fput_needed;
1821 struct socket *sock;
1823 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1824 if (sock != NULL) {
1825 err = security_socket_shutdown(sock, how);
1826 if (!err)
1827 err = sock->ops->shutdown(sock, how);
1828 fput_light(sock->file, fput_needed);
1830 return err;
1833 /* A couple of helpful macros for getting the address of the 32/64 bit
1834 * fields which are the same type (int / unsigned) on our platforms.
1836 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1837 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1838 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1841 * BSD sendmsg interface
1844 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1846 struct compat_msghdr __user *msg_compat =
1847 (struct compat_msghdr __user *)msg;
1848 struct socket *sock;
1849 struct sockaddr_storage address;
1850 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1851 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1852 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1853 /* 20 is size of ipv6_pktinfo */
1854 unsigned char *ctl_buf = ctl;
1855 struct msghdr msg_sys;
1856 int err, ctl_len, iov_size, total_len;
1857 int fput_needed;
1859 err = -EFAULT;
1860 if (MSG_CMSG_COMPAT & flags) {
1861 if (get_compat_msghdr(&msg_sys, msg_compat))
1862 return -EFAULT;
1863 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1864 return -EFAULT;
1866 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1867 if (!sock)
1868 goto out;
1870 /* do not move before msg_sys is valid */
1871 err = -EMSGSIZE;
1872 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1873 goto out_put;
1875 /* Check whether to allocate the iovec area */
1876 err = -ENOMEM;
1877 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1878 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1879 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1880 if (!iov)
1881 goto out_put;
1884 /* This will also move the address data into kernel space */
1885 if (MSG_CMSG_COMPAT & flags) {
1886 err = verify_compat_iovec(&msg_sys, iov,
1887 (struct sockaddr *)&address,
1888 VERIFY_READ);
1889 } else
1890 err = verify_iovec(&msg_sys, iov,
1891 (struct sockaddr *)&address,
1892 VERIFY_READ);
1893 if (err < 0)
1894 goto out_freeiov;
1895 total_len = err;
1897 err = -ENOBUFS;
1899 if (msg_sys.msg_controllen > INT_MAX)
1900 goto out_freeiov;
1901 ctl_len = msg_sys.msg_controllen;
1902 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1903 err =
1904 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1905 sizeof(ctl));
1906 if (err)
1907 goto out_freeiov;
1908 ctl_buf = msg_sys.msg_control;
1909 ctl_len = msg_sys.msg_controllen;
1910 } else if (ctl_len) {
1911 if (ctl_len > sizeof(ctl)) {
1912 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1913 if (ctl_buf == NULL)
1914 goto out_freeiov;
1916 err = -EFAULT;
1918 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1919 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1920 * checking falls down on this.
1922 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1923 ctl_len))
1924 goto out_freectl;
1925 msg_sys.msg_control = ctl_buf;
1927 msg_sys.msg_flags = flags;
1929 if (sock->file->f_flags & O_NONBLOCK)
1930 msg_sys.msg_flags |= MSG_DONTWAIT;
1931 err = sock_sendmsg(sock, &msg_sys, total_len);
1933 out_freectl:
1934 if (ctl_buf != ctl)
1935 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1936 out_freeiov:
1937 if (iov != iovstack)
1938 sock_kfree_s(sock->sk, iov, iov_size);
1939 out_put:
1940 fput_light(sock->file, fput_needed);
1941 out:
1942 return err;
1945 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1946 struct msghdr *msg_sys, unsigned flags, int nosec)
1948 struct compat_msghdr __user *msg_compat =
1949 (struct compat_msghdr __user *)msg;
1950 struct iovec iovstack[UIO_FASTIOV];
1951 struct iovec *iov = iovstack;
1952 unsigned long cmsg_ptr;
1953 int err, iov_size, total_len, len;
1955 /* kernel mode address */
1956 struct sockaddr_storage addr;
1958 /* user mode address pointers */
1959 struct sockaddr __user *uaddr;
1960 int __user *uaddr_len;
1962 if (MSG_CMSG_COMPAT & flags) {
1963 if (get_compat_msghdr(msg_sys, msg_compat))
1964 return -EFAULT;
1965 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1966 return -EFAULT;
1968 err = -EMSGSIZE;
1969 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1970 goto out;
1972 /* Check whether to allocate the iovec area */
1973 err = -ENOMEM;
1974 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1975 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1976 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1977 if (!iov)
1978 goto out;
1982 * Save the user-mode address (verify_iovec will change the
1983 * kernel msghdr to use the kernel address space)
1986 uaddr = (__force void __user *)msg_sys->msg_name;
1987 uaddr_len = COMPAT_NAMELEN(msg);
1988 if (MSG_CMSG_COMPAT & flags) {
1989 err = verify_compat_iovec(msg_sys, iov,
1990 (struct sockaddr *)&addr,
1991 VERIFY_WRITE);
1992 } else
1993 err = verify_iovec(msg_sys, iov,
1994 (struct sockaddr *)&addr,
1995 VERIFY_WRITE);
1996 if (err < 0)
1997 goto out_freeiov;
1998 total_len = err;
2000 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2001 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2003 if (sock->file->f_flags & O_NONBLOCK)
2004 flags |= MSG_DONTWAIT;
2005 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2006 total_len, flags);
2007 if (err < 0)
2008 goto out_freeiov;
2009 len = err;
2011 if (uaddr != NULL) {
2012 err = move_addr_to_user((struct sockaddr *)&addr,
2013 msg_sys->msg_namelen, uaddr,
2014 uaddr_len);
2015 if (err < 0)
2016 goto out_freeiov;
2018 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2019 COMPAT_FLAGS(msg));
2020 if (err)
2021 goto out_freeiov;
2022 if (MSG_CMSG_COMPAT & flags)
2023 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2024 &msg_compat->msg_controllen);
2025 else
2026 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2027 &msg->msg_controllen);
2028 if (err)
2029 goto out_freeiov;
2030 err = len;
2032 out_freeiov:
2033 if (iov != iovstack)
2034 sock_kfree_s(sock->sk, iov, iov_size);
2035 out:
2036 return err;
2040 * BSD recvmsg interface
2043 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2044 unsigned int, flags)
2046 int fput_needed, err;
2047 struct msghdr msg_sys;
2048 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2050 if (!sock)
2051 goto out;
2053 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2055 fput_light(sock->file, fput_needed);
2056 out:
2057 return err;
2061 * Linux recvmmsg interface
2064 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2065 unsigned int flags, struct timespec *timeout)
2067 int fput_needed, err, datagrams;
2068 struct socket *sock;
2069 struct mmsghdr __user *entry;
2070 struct compat_mmsghdr __user *compat_entry;
2071 struct msghdr msg_sys;
2072 struct timespec end_time;
2074 if (timeout &&
2075 poll_select_set_timeout(&end_time, timeout->tv_sec,
2076 timeout->tv_nsec))
2077 return -EINVAL;
2079 datagrams = 0;
2081 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2082 if (!sock)
2083 return err;
2085 err = sock_error(sock->sk);
2086 if (err)
2087 goto out_put;
2089 entry = mmsg;
2090 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2092 while (datagrams < vlen) {
2094 * No need to ask LSM for more than the first datagram.
2096 if (MSG_CMSG_COMPAT & flags) {
2097 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2098 &msg_sys, flags, datagrams);
2099 if (err < 0)
2100 break;
2101 err = __put_user(err, &compat_entry->msg_len);
2102 ++compat_entry;
2103 } else {
2104 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2105 &msg_sys, flags, datagrams);
2106 if (err < 0)
2107 break;
2108 err = put_user(err, &entry->msg_len);
2109 ++entry;
2112 if (err)
2113 break;
2114 ++datagrams;
2116 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2117 if (flags & MSG_WAITFORONE)
2118 flags |= MSG_DONTWAIT;
2120 if (timeout) {
2121 ktime_get_ts(timeout);
2122 *timeout = timespec_sub(end_time, *timeout);
2123 if (timeout->tv_sec < 0) {
2124 timeout->tv_sec = timeout->tv_nsec = 0;
2125 break;
2128 /* Timeout, return less than vlen datagrams */
2129 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2130 break;
2133 /* Out of band data, return right away */
2134 if (msg_sys.msg_flags & MSG_OOB)
2135 break;
2138 out_put:
2139 fput_light(sock->file, fput_needed);
2141 if (err == 0)
2142 return datagrams;
2144 if (datagrams != 0) {
2146 * We may return less entries than requested (vlen) if the
2147 * sock is non block and there aren't enough datagrams...
2149 if (err != -EAGAIN) {
2151 * ... or if recvmsg returns an error after we
2152 * received some datagrams, where we record the
2153 * error to return on the next call or if the
2154 * app asks about it using getsockopt(SO_ERROR).
2156 sock->sk->sk_err = -err;
2159 return datagrams;
2162 return err;
2165 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2166 unsigned int, vlen, unsigned int, flags,
2167 struct timespec __user *, timeout)
2169 int datagrams;
2170 struct timespec timeout_sys;
2172 if (!timeout)
2173 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2175 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2176 return -EFAULT;
2178 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2180 if (datagrams > 0 &&
2181 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2182 datagrams = -EFAULT;
2184 return datagrams;
2187 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2188 /* Argument list sizes for sys_socketcall */
2189 #define AL(x) ((x) * sizeof(unsigned long))
2190 static const unsigned char nargs[20] = {
2191 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2192 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2193 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2194 AL(4), AL(5)
2197 #undef AL
2200 * System call vectors.
2202 * Argument checking cleaned up. Saved 20% in size.
2203 * This function doesn't need to set the kernel lock because
2204 * it is set by the callees.
2207 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2209 unsigned long a[6];
2210 unsigned long a0, a1;
2211 int err;
2212 unsigned int len;
2214 if (call < 1 || call > SYS_RECVMMSG)
2215 return -EINVAL;
2217 len = nargs[call];
2218 if (len > sizeof(a))
2219 return -EINVAL;
2221 /* copy_from_user should be SMP safe. */
2222 if (copy_from_user(a, args, len))
2223 return -EFAULT;
2225 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2227 a0 = a[0];
2228 a1 = a[1];
2230 switch (call) {
2231 case SYS_SOCKET:
2232 err = sys_socket(a0, a1, a[2]);
2233 break;
2234 case SYS_BIND:
2235 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2236 break;
2237 case SYS_CONNECT:
2238 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2239 break;
2240 case SYS_LISTEN:
2241 err = sys_listen(a0, a1);
2242 break;
2243 case SYS_ACCEPT:
2244 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2245 (int __user *)a[2], 0);
2246 break;
2247 case SYS_GETSOCKNAME:
2248 err =
2249 sys_getsockname(a0, (struct sockaddr __user *)a1,
2250 (int __user *)a[2]);
2251 break;
2252 case SYS_GETPEERNAME:
2253 err =
2254 sys_getpeername(a0, (struct sockaddr __user *)a1,
2255 (int __user *)a[2]);
2256 break;
2257 case SYS_SOCKETPAIR:
2258 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2259 break;
2260 case SYS_SEND:
2261 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2262 break;
2263 case SYS_SENDTO:
2264 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2265 (struct sockaddr __user *)a[4], a[5]);
2266 break;
2267 case SYS_RECV:
2268 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2269 break;
2270 case SYS_RECVFROM:
2271 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2272 (struct sockaddr __user *)a[4],
2273 (int __user *)a[5]);
2274 break;
2275 case SYS_SHUTDOWN:
2276 err = sys_shutdown(a0, a1);
2277 break;
2278 case SYS_SETSOCKOPT:
2279 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2280 break;
2281 case SYS_GETSOCKOPT:
2282 err =
2283 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2284 (int __user *)a[4]);
2285 break;
2286 case SYS_SENDMSG:
2287 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2288 break;
2289 case SYS_RECVMSG:
2290 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2291 break;
2292 case SYS_RECVMMSG:
2293 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2294 (struct timespec __user *)a[4]);
2295 break;
2296 case SYS_ACCEPT4:
2297 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2298 (int __user *)a[2], a[3]);
2299 break;
2300 default:
2301 err = -EINVAL;
2302 break;
2304 return err;
2307 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2310 * sock_register - add a socket protocol handler
2311 * @ops: description of protocol
2313 * This function is called by a protocol handler that wants to
2314 * advertise its address family, and have it linked into the
2315 * socket interface. The value ops->family coresponds to the
2316 * socket system call protocol family.
2318 int sock_register(const struct net_proto_family *ops)
2320 int err;
2322 if (ops->family >= NPROTO) {
2323 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2324 NPROTO);
2325 return -ENOBUFS;
2328 spin_lock(&net_family_lock);
2329 if (net_families[ops->family])
2330 err = -EEXIST;
2331 else {
2332 net_families[ops->family] = ops;
2333 err = 0;
2335 spin_unlock(&net_family_lock);
2337 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2338 return err;
2340 EXPORT_SYMBOL(sock_register);
2343 * sock_unregister - remove a protocol handler
2344 * @family: protocol family to remove
2346 * This function is called by a protocol handler that wants to
2347 * remove its address family, and have it unlinked from the
2348 * new socket creation.
2350 * If protocol handler is a module, then it can use module reference
2351 * counts to protect against new references. If protocol handler is not
2352 * a module then it needs to provide its own protection in
2353 * the ops->create routine.
2355 void sock_unregister(int family)
2357 BUG_ON(family < 0 || family >= NPROTO);
2359 spin_lock(&net_family_lock);
2360 net_families[family] = NULL;
2361 spin_unlock(&net_family_lock);
2363 synchronize_rcu();
2365 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2367 EXPORT_SYMBOL(sock_unregister);
2369 static int __init sock_init(void)
2372 * Initialize sock SLAB cache.
2375 sk_init();
2378 * Initialize skbuff SLAB cache
2380 skb_init();
2383 * Initialize the protocols module.
2386 init_inodecache();
2387 register_filesystem(&sock_fs_type);
2388 sock_mnt = kern_mount(&sock_fs_type);
2390 /* The real protocol initialization is performed in later initcalls.
2393 #ifdef CONFIG_NETFILTER
2394 netfilter_init();
2395 #endif
2397 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2398 skb_timestamping_init();
2399 #endif
2401 return 0;
2404 core_initcall(sock_init); /* early initcall */
2406 #ifdef CONFIG_PROC_FS
2407 void socket_seq_show(struct seq_file *seq)
2409 int cpu;
2410 int counter = 0;
2412 for_each_possible_cpu(cpu)
2413 counter += per_cpu(sockets_in_use, cpu);
2415 /* It can be negative, by the way. 8) */
2416 if (counter < 0)
2417 counter = 0;
2419 seq_printf(seq, "sockets: used %d\n", counter);
2421 #endif /* CONFIG_PROC_FS */
2423 #ifdef CONFIG_COMPAT
2424 static int do_siocgstamp(struct net *net, struct socket *sock,
2425 unsigned int cmd, struct compat_timeval __user *up)
2427 mm_segment_t old_fs = get_fs();
2428 struct timeval ktv;
2429 int err;
2431 set_fs(KERNEL_DS);
2432 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2433 set_fs(old_fs);
2434 if (!err) {
2435 err = put_user(ktv.tv_sec, &up->tv_sec);
2436 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2438 return err;
2441 static int do_siocgstampns(struct net *net, struct socket *sock,
2442 unsigned int cmd, struct compat_timespec __user *up)
2444 mm_segment_t old_fs = get_fs();
2445 struct timespec kts;
2446 int err;
2448 set_fs(KERNEL_DS);
2449 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2450 set_fs(old_fs);
2451 if (!err) {
2452 err = put_user(kts.tv_sec, &up->tv_sec);
2453 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2455 return err;
2458 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2460 struct ifreq __user *uifr;
2461 int err;
2463 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2464 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2465 return -EFAULT;
2467 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2468 if (err)
2469 return err;
2471 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2472 return -EFAULT;
2474 return 0;
2477 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2479 struct compat_ifconf ifc32;
2480 struct ifconf ifc;
2481 struct ifconf __user *uifc;
2482 struct compat_ifreq __user *ifr32;
2483 struct ifreq __user *ifr;
2484 unsigned int i, j;
2485 int err;
2487 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2488 return -EFAULT;
2490 if (ifc32.ifcbuf == 0) {
2491 ifc32.ifc_len = 0;
2492 ifc.ifc_len = 0;
2493 ifc.ifc_req = NULL;
2494 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2495 } else {
2496 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2497 sizeof(struct ifreq);
2498 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2499 ifc.ifc_len = len;
2500 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2501 ifr32 = compat_ptr(ifc32.ifcbuf);
2502 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2503 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2504 return -EFAULT;
2505 ifr++;
2506 ifr32++;
2509 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2510 return -EFAULT;
2512 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2513 if (err)
2514 return err;
2516 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2517 return -EFAULT;
2519 ifr = ifc.ifc_req;
2520 ifr32 = compat_ptr(ifc32.ifcbuf);
2521 for (i = 0, j = 0;
2522 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2523 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2524 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2525 return -EFAULT;
2526 ifr32++;
2527 ifr++;
2530 if (ifc32.ifcbuf == 0) {
2531 /* Translate from 64-bit structure multiple to
2532 * a 32-bit one.
2534 i = ifc.ifc_len;
2535 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2536 ifc32.ifc_len = i;
2537 } else {
2538 ifc32.ifc_len = i;
2540 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2541 return -EFAULT;
2543 return 0;
2546 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2548 struct ifreq __user *ifr;
2549 u32 data;
2550 void __user *datap;
2552 ifr = compat_alloc_user_space(sizeof(*ifr));
2554 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2555 return -EFAULT;
2557 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2558 return -EFAULT;
2560 datap = compat_ptr(data);
2561 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2562 return -EFAULT;
2564 return dev_ioctl(net, SIOCETHTOOL, ifr);
2567 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2569 void __user *uptr;
2570 compat_uptr_t uptr32;
2571 struct ifreq __user *uifr;
2573 uifr = compat_alloc_user_space(sizeof(*uifr));
2574 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2575 return -EFAULT;
2577 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2578 return -EFAULT;
2580 uptr = compat_ptr(uptr32);
2582 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2583 return -EFAULT;
2585 return dev_ioctl(net, SIOCWANDEV, uifr);
2588 static int bond_ioctl(struct net *net, unsigned int cmd,
2589 struct compat_ifreq __user *ifr32)
2591 struct ifreq kifr;
2592 struct ifreq __user *uifr;
2593 mm_segment_t old_fs;
2594 int err;
2595 u32 data;
2596 void __user *datap;
2598 switch (cmd) {
2599 case SIOCBONDENSLAVE:
2600 case SIOCBONDRELEASE:
2601 case SIOCBONDSETHWADDR:
2602 case SIOCBONDCHANGEACTIVE:
2603 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2604 return -EFAULT;
2606 old_fs = get_fs();
2607 set_fs(KERNEL_DS);
2608 err = dev_ioctl(net, cmd, &kifr);
2609 set_fs(old_fs);
2611 return err;
2612 case SIOCBONDSLAVEINFOQUERY:
2613 case SIOCBONDINFOQUERY:
2614 uifr = compat_alloc_user_space(sizeof(*uifr));
2615 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2616 return -EFAULT;
2618 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2619 return -EFAULT;
2621 datap = compat_ptr(data);
2622 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2623 return -EFAULT;
2625 return dev_ioctl(net, cmd, uifr);
2626 default:
2627 return -EINVAL;
2631 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2632 struct compat_ifreq __user *u_ifreq32)
2634 struct ifreq __user *u_ifreq64;
2635 char tmp_buf[IFNAMSIZ];
2636 void __user *data64;
2637 u32 data32;
2639 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2640 IFNAMSIZ))
2641 return -EFAULT;
2642 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2643 return -EFAULT;
2644 data64 = compat_ptr(data32);
2646 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2648 /* Don't check these user accesses, just let that get trapped
2649 * in the ioctl handler instead.
2651 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2652 IFNAMSIZ))
2653 return -EFAULT;
2654 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2655 return -EFAULT;
2657 return dev_ioctl(net, cmd, u_ifreq64);
2660 static int dev_ifsioc(struct net *net, struct socket *sock,
2661 unsigned int cmd, struct compat_ifreq __user *uifr32)
2663 struct ifreq __user *uifr;
2664 int err;
2666 uifr = compat_alloc_user_space(sizeof(*uifr));
2667 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2668 return -EFAULT;
2670 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2672 if (!err) {
2673 switch (cmd) {
2674 case SIOCGIFFLAGS:
2675 case SIOCGIFMETRIC:
2676 case SIOCGIFMTU:
2677 case SIOCGIFMEM:
2678 case SIOCGIFHWADDR:
2679 case SIOCGIFINDEX:
2680 case SIOCGIFADDR:
2681 case SIOCGIFBRDADDR:
2682 case SIOCGIFDSTADDR:
2683 case SIOCGIFNETMASK:
2684 case SIOCGIFPFLAGS:
2685 case SIOCGIFTXQLEN:
2686 case SIOCGMIIPHY:
2687 case SIOCGMIIREG:
2688 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2689 err = -EFAULT;
2690 break;
2693 return err;
2696 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2697 struct compat_ifreq __user *uifr32)
2699 struct ifreq ifr;
2700 struct compat_ifmap __user *uifmap32;
2701 mm_segment_t old_fs;
2702 int err;
2704 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2705 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2706 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2707 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2708 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2709 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2710 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2711 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2712 if (err)
2713 return -EFAULT;
2715 old_fs = get_fs();
2716 set_fs(KERNEL_DS);
2717 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2718 set_fs(old_fs);
2720 if (cmd == SIOCGIFMAP && !err) {
2721 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2722 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2723 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2724 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2725 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2726 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2727 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2728 if (err)
2729 err = -EFAULT;
2731 return err;
2734 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2736 void __user *uptr;
2737 compat_uptr_t uptr32;
2738 struct ifreq __user *uifr;
2740 uifr = compat_alloc_user_space(sizeof(*uifr));
2741 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2742 return -EFAULT;
2744 if (get_user(uptr32, &uifr32->ifr_data))
2745 return -EFAULT;
2747 uptr = compat_ptr(uptr32);
2749 if (put_user(uptr, &uifr->ifr_data))
2750 return -EFAULT;
2752 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2755 struct rtentry32 {
2756 u32 rt_pad1;
2757 struct sockaddr rt_dst; /* target address */
2758 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2759 struct sockaddr rt_genmask; /* target network mask (IP) */
2760 unsigned short rt_flags;
2761 short rt_pad2;
2762 u32 rt_pad3;
2763 unsigned char rt_tos;
2764 unsigned char rt_class;
2765 short rt_pad4;
2766 short rt_metric; /* +1 for binary compatibility! */
2767 /* char * */ u32 rt_dev; /* forcing the device at add */
2768 u32 rt_mtu; /* per route MTU/Window */
2769 u32 rt_window; /* Window clamping */
2770 unsigned short rt_irtt; /* Initial RTT */
2773 struct in6_rtmsg32 {
2774 struct in6_addr rtmsg_dst;
2775 struct in6_addr rtmsg_src;
2776 struct in6_addr rtmsg_gateway;
2777 u32 rtmsg_type;
2778 u16 rtmsg_dst_len;
2779 u16 rtmsg_src_len;
2780 u32 rtmsg_metric;
2781 u32 rtmsg_info;
2782 u32 rtmsg_flags;
2783 s32 rtmsg_ifindex;
2786 static int routing_ioctl(struct net *net, struct socket *sock,
2787 unsigned int cmd, void __user *argp)
2789 int ret;
2790 void *r = NULL;
2791 struct in6_rtmsg r6;
2792 struct rtentry r4;
2793 char devname[16];
2794 u32 rtdev;
2795 mm_segment_t old_fs = get_fs();
2797 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2798 struct in6_rtmsg32 __user *ur6 = argp;
2799 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2800 3 * sizeof(struct in6_addr));
2801 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2802 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2803 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2804 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2805 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2806 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2807 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2809 r = (void *) &r6;
2810 } else { /* ipv4 */
2811 struct rtentry32 __user *ur4 = argp;
2812 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2813 3 * sizeof(struct sockaddr));
2814 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2815 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2816 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2817 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2818 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2819 ret |= __get_user(rtdev, &(ur4->rt_dev));
2820 if (rtdev) {
2821 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2822 r4.rt_dev = devname; devname[15] = 0;
2823 } else
2824 r4.rt_dev = NULL;
2826 r = (void *) &r4;
2829 if (ret) {
2830 ret = -EFAULT;
2831 goto out;
2834 set_fs(KERNEL_DS);
2835 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2836 set_fs(old_fs);
2838 out:
2839 return ret;
2842 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2843 * for some operations; this forces use of the newer bridge-utils that
2844 * use compatiable ioctls
2846 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2848 compat_ulong_t tmp;
2850 if (get_user(tmp, argp))
2851 return -EFAULT;
2852 if (tmp == BRCTL_GET_VERSION)
2853 return BRCTL_VERSION + 1;
2854 return -EINVAL;
2857 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2858 unsigned int cmd, unsigned long arg)
2860 void __user *argp = compat_ptr(arg);
2861 struct sock *sk = sock->sk;
2862 struct net *net = sock_net(sk);
2864 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2865 return siocdevprivate_ioctl(net, cmd, argp);
2867 switch (cmd) {
2868 case SIOCSIFBR:
2869 case SIOCGIFBR:
2870 return old_bridge_ioctl(argp);
2871 case SIOCGIFNAME:
2872 return dev_ifname32(net, argp);
2873 case SIOCGIFCONF:
2874 return dev_ifconf(net, argp);
2875 case SIOCETHTOOL:
2876 return ethtool_ioctl(net, argp);
2877 case SIOCWANDEV:
2878 return compat_siocwandev(net, argp);
2879 case SIOCGIFMAP:
2880 case SIOCSIFMAP:
2881 return compat_sioc_ifmap(net, cmd, argp);
2882 case SIOCBONDENSLAVE:
2883 case SIOCBONDRELEASE:
2884 case SIOCBONDSETHWADDR:
2885 case SIOCBONDSLAVEINFOQUERY:
2886 case SIOCBONDINFOQUERY:
2887 case SIOCBONDCHANGEACTIVE:
2888 return bond_ioctl(net, cmd, argp);
2889 case SIOCADDRT:
2890 case SIOCDELRT:
2891 return routing_ioctl(net, sock, cmd, argp);
2892 case SIOCGSTAMP:
2893 return do_siocgstamp(net, sock, cmd, argp);
2894 case SIOCGSTAMPNS:
2895 return do_siocgstampns(net, sock, cmd, argp);
2896 case SIOCSHWTSTAMP:
2897 return compat_siocshwtstamp(net, argp);
2899 case FIOSETOWN:
2900 case SIOCSPGRP:
2901 case FIOGETOWN:
2902 case SIOCGPGRP:
2903 case SIOCBRADDBR:
2904 case SIOCBRDELBR:
2905 case SIOCGIFVLAN:
2906 case SIOCSIFVLAN:
2907 case SIOCADDDLCI:
2908 case SIOCDELDLCI:
2909 return sock_ioctl(file, cmd, arg);
2911 case SIOCGIFFLAGS:
2912 case SIOCSIFFLAGS:
2913 case SIOCGIFMETRIC:
2914 case SIOCSIFMETRIC:
2915 case SIOCGIFMTU:
2916 case SIOCSIFMTU:
2917 case SIOCGIFMEM:
2918 case SIOCSIFMEM:
2919 case SIOCGIFHWADDR:
2920 case SIOCSIFHWADDR:
2921 case SIOCADDMULTI:
2922 case SIOCDELMULTI:
2923 case SIOCGIFINDEX:
2924 case SIOCGIFADDR:
2925 case SIOCSIFADDR:
2926 case SIOCSIFHWBROADCAST:
2927 case SIOCDIFADDR:
2928 case SIOCGIFBRDADDR:
2929 case SIOCSIFBRDADDR:
2930 case SIOCGIFDSTADDR:
2931 case SIOCSIFDSTADDR:
2932 case SIOCGIFNETMASK:
2933 case SIOCSIFNETMASK:
2934 case SIOCSIFPFLAGS:
2935 case SIOCGIFPFLAGS:
2936 case SIOCGIFTXQLEN:
2937 case SIOCSIFTXQLEN:
2938 case SIOCBRADDIF:
2939 case SIOCBRDELIF:
2940 case SIOCSIFNAME:
2941 case SIOCGMIIPHY:
2942 case SIOCGMIIREG:
2943 case SIOCSMIIREG:
2944 return dev_ifsioc(net, sock, cmd, argp);
2946 case SIOCSARP:
2947 case SIOCGARP:
2948 case SIOCDARP:
2949 case SIOCATMARK:
2950 return sock_do_ioctl(net, sock, cmd, arg);
2953 /* Prevent warning from compat_sys_ioctl, these always
2954 * result in -EINVAL in the native case anyway. */
2955 switch (cmd) {
2956 case SIOCRTMSG:
2957 case SIOCGIFCOUNT:
2958 case SIOCSRARP:
2959 case SIOCGRARP:
2960 case SIOCDRARP:
2961 case SIOCSIFLINK:
2962 case SIOCGIFSLAVE:
2963 case SIOCSIFSLAVE:
2964 return -EINVAL;
2967 return -ENOIOCTLCMD;
2970 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2971 unsigned long arg)
2973 struct socket *sock = file->private_data;
2974 int ret = -ENOIOCTLCMD;
2975 struct sock *sk;
2976 struct net *net;
2978 sk = sock->sk;
2979 net = sock_net(sk);
2981 if (sock->ops->compat_ioctl)
2982 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2984 if (ret == -ENOIOCTLCMD &&
2985 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2986 ret = compat_wext_handle_ioctl(net, cmd, arg);
2988 if (ret == -ENOIOCTLCMD)
2989 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2991 return ret;
2993 #endif
2995 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2997 return sock->ops->bind(sock, addr, addrlen);
2999 EXPORT_SYMBOL(kernel_bind);
3001 int kernel_listen(struct socket *sock, int backlog)
3003 return sock->ops->listen(sock, backlog);
3005 EXPORT_SYMBOL(kernel_listen);
3007 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3009 struct sock *sk = sock->sk;
3010 int err;
3012 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3013 newsock);
3014 if (err < 0)
3015 goto done;
3017 err = sock->ops->accept(sock, *newsock, flags);
3018 if (err < 0) {
3019 sock_release(*newsock);
3020 *newsock = NULL;
3021 goto done;
3024 (*newsock)->ops = sock->ops;
3025 __module_get((*newsock)->ops->owner);
3027 done:
3028 return err;
3030 EXPORT_SYMBOL(kernel_accept);
3032 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3033 int flags)
3035 return sock->ops->connect(sock, addr, addrlen, flags);
3037 EXPORT_SYMBOL(kernel_connect);
3039 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3040 int *addrlen)
3042 return sock->ops->getname(sock, addr, addrlen, 0);
3044 EXPORT_SYMBOL(kernel_getsockname);
3046 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3047 int *addrlen)
3049 return sock->ops->getname(sock, addr, addrlen, 1);
3051 EXPORT_SYMBOL(kernel_getpeername);
3053 int kernel_getsockopt(struct socket *sock, int level, int optname,
3054 char *optval, int *optlen)
3056 mm_segment_t oldfs = get_fs();
3057 int err;
3059 set_fs(KERNEL_DS);
3060 if (level == SOL_SOCKET)
3061 err = sock_getsockopt(sock, level, optname, optval, optlen);
3062 else
3063 err = sock->ops->getsockopt(sock, level, optname, optval,
3064 optlen);
3065 set_fs(oldfs);
3066 return err;
3068 EXPORT_SYMBOL(kernel_getsockopt);
3070 int kernel_setsockopt(struct socket *sock, int level, int optname,
3071 char *optval, unsigned int optlen)
3073 mm_segment_t oldfs = get_fs();
3074 int err;
3076 set_fs(KERNEL_DS);
3077 if (level == SOL_SOCKET)
3078 err = sock_setsockopt(sock, level, optname, optval, optlen);
3079 else
3080 err = sock->ops->setsockopt(sock, level, optname, optval,
3081 optlen);
3082 set_fs(oldfs);
3083 return err;
3085 EXPORT_SYMBOL(kernel_setsockopt);
3087 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3088 size_t size, int flags)
3090 sock_update_classid(sock->sk);
3092 if (sock->ops->sendpage)
3093 return sock->ops->sendpage(sock, page, offset, size, flags);
3095 return sock_no_sendpage(sock, page, offset, size, flags);
3097 EXPORT_SYMBOL(kernel_sendpage);
3099 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3101 mm_segment_t oldfs = get_fs();
3102 int err;
3104 set_fs(KERNEL_DS);
3105 err = sock->ops->ioctl(sock, cmd, arg);
3106 set_fs(oldfs);
3108 return err;
3110 EXPORT_SYMBOL(kernel_sock_ioctl);
3112 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3114 return sock->ops->shutdown(sock, how);
3116 EXPORT_SYMBOL(kernel_sock_shutdown);