4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 #include "cred-internals.h"
60 static void exit_mm(struct task_struct
* tsk
);
62 static void __unhash_process(struct task_struct
*p
)
65 detach_pid(p
, PIDTYPE_PID
);
66 if (thread_group_leader(p
)) {
67 detach_pid(p
, PIDTYPE_PGID
);
68 detach_pid(p
, PIDTYPE_SID
);
70 list_del_rcu(&p
->tasks
);
71 list_del_init(&p
->sibling
);
72 __get_cpu_var(process_counts
)--;
74 list_del_rcu(&p
->thread_group
);
78 * This function expects the tasklist_lock write-locked.
80 static void __exit_signal(struct task_struct
*tsk
)
82 struct signal_struct
*sig
= tsk
->signal
;
83 struct sighand_struct
*sighand
;
86 BUG_ON(!atomic_read(&sig
->count
));
88 sighand
= rcu_dereference(tsk
->sighand
);
89 spin_lock(&sighand
->siglock
);
91 posix_cpu_timers_exit(tsk
);
92 if (atomic_dec_and_test(&sig
->count
))
93 posix_cpu_timers_exit_group(tsk
);
96 * This can only happen if the caller is de_thread().
97 * FIXME: this is the temporary hack, we should teach
98 * posix-cpu-timers to handle this case correctly.
100 if (unlikely(has_group_leader_pid(tsk
)))
101 posix_cpu_timers_exit_group(tsk
);
104 * If there is any task waiting for the group exit
107 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
)
108 wake_up_process(sig
->group_exit_task
);
110 if (tsk
== sig
->curr_target
)
111 sig
->curr_target
= next_thread(tsk
);
113 * Accumulate here the counters for all threads but the
114 * group leader as they die, so they can be added into
115 * the process-wide totals when those are taken.
116 * The group leader stays around as a zombie as long
117 * as there are other threads. When it gets reaped,
118 * the exit.c code will add its counts into these totals.
119 * We won't ever get here for the group leader, since it
120 * will have been the last reference on the signal_struct.
122 sig
->utime
= cputime_add(sig
->utime
, tsk
->utime
);
123 sig
->stime
= cputime_add(sig
->stime
, tsk
->stime
);
124 sig
->gtime
= cputime_add(sig
->gtime
, tsk
->gtime
);
125 sig
->min_flt
+= tsk
->min_flt
;
126 sig
->maj_flt
+= tsk
->maj_flt
;
127 sig
->nvcsw
+= tsk
->nvcsw
;
128 sig
->nivcsw
+= tsk
->nivcsw
;
129 sig
->inblock
+= task_io_get_inblock(tsk
);
130 sig
->oublock
+= task_io_get_oublock(tsk
);
131 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
132 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
133 sig
= NULL
; /* Marker for below. */
136 __unhash_process(tsk
);
139 * Do this under ->siglock, we can race with another thread
140 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
142 flush_sigqueue(&tsk
->pending
);
146 spin_unlock(&sighand
->siglock
);
148 __cleanup_sighand(sighand
);
149 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
151 flush_sigqueue(&sig
->shared_pending
);
152 taskstats_tgid_free(sig
);
154 * Make sure ->signal can't go away under rq->lock,
155 * see account_group_exec_runtime().
157 task_rq_unlock_wait(tsk
);
158 __cleanup_signal(sig
);
162 static void delayed_put_task_struct(struct rcu_head
*rhp
)
164 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
166 #ifdef CONFIG_PERF_EVENTS
167 WARN_ON_ONCE(tsk
->perf_event_ctxp
);
169 trace_sched_process_free(tsk
);
170 put_task_struct(tsk
);
174 void release_task(struct task_struct
* p
)
176 struct task_struct
*leader
;
179 tracehook_prepare_release_task(p
);
180 /* don't need to get the RCU readlock here - the process is dead and
181 * can't be modifying its own credentials */
182 atomic_dec(&__task_cred(p
)->user
->processes
);
186 write_lock_irq(&tasklist_lock
);
187 tracehook_finish_release_task(p
);
191 * If we are the last non-leader member of the thread
192 * group, and the leader is zombie, then notify the
193 * group leader's parent process. (if it wants notification.)
196 leader
= p
->group_leader
;
197 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
198 BUG_ON(task_detached(leader
));
199 do_notify_parent(leader
, leader
->exit_signal
);
201 * If we were the last child thread and the leader has
202 * exited already, and the leader's parent ignores SIGCHLD,
203 * then we are the one who should release the leader.
205 * do_notify_parent() will have marked it self-reaping in
208 zap_leader
= task_detached(leader
);
211 * This maintains the invariant that release_task()
212 * only runs on a task in EXIT_DEAD, just for sanity.
215 leader
->exit_state
= EXIT_DEAD
;
218 write_unlock_irq(&tasklist_lock
);
220 call_rcu(&p
->rcu
, delayed_put_task_struct
);
223 if (unlikely(zap_leader
))
228 * This checks not only the pgrp, but falls back on the pid if no
229 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
232 * The caller must hold rcu lock or the tasklist lock.
234 struct pid
*session_of_pgrp(struct pid
*pgrp
)
236 struct task_struct
*p
;
237 struct pid
*sid
= NULL
;
239 p
= pid_task(pgrp
, PIDTYPE_PGID
);
241 p
= pid_task(pgrp
, PIDTYPE_PID
);
243 sid
= task_session(p
);
249 * Determine if a process group is "orphaned", according to the POSIX
250 * definition in 2.2.2.52. Orphaned process groups are not to be affected
251 * by terminal-generated stop signals. Newly orphaned process groups are
252 * to receive a SIGHUP and a SIGCONT.
254 * "I ask you, have you ever known what it is to be an orphan?"
256 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
258 struct task_struct
*p
;
260 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
261 if ((p
== ignored_task
) ||
262 (p
->exit_state
&& thread_group_empty(p
)) ||
263 is_global_init(p
->real_parent
))
266 if (task_pgrp(p
->real_parent
) != pgrp
&&
267 task_session(p
->real_parent
) == task_session(p
))
269 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
274 int is_current_pgrp_orphaned(void)
278 read_lock(&tasklist_lock
);
279 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
280 read_unlock(&tasklist_lock
);
285 static int has_stopped_jobs(struct pid
*pgrp
)
288 struct task_struct
*p
;
290 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
291 if (!task_is_stopped(p
))
295 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
300 * Check to see if any process groups have become orphaned as
301 * a result of our exiting, and if they have any stopped jobs,
302 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
305 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
307 struct pid
*pgrp
= task_pgrp(tsk
);
308 struct task_struct
*ignored_task
= tsk
;
311 /* exit: our father is in a different pgrp than
312 * we are and we were the only connection outside.
314 parent
= tsk
->real_parent
;
316 /* reparent: our child is in a different pgrp than
317 * we are, and it was the only connection outside.
321 if (task_pgrp(parent
) != pgrp
&&
322 task_session(parent
) == task_session(tsk
) &&
323 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
324 has_stopped_jobs(pgrp
)) {
325 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
326 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
331 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
333 * If a kernel thread is launched as a result of a system call, or if
334 * it ever exits, it should generally reparent itself to kthreadd so it
335 * isn't in the way of other processes and is correctly cleaned up on exit.
337 * The various task state such as scheduling policy and priority may have
338 * been inherited from a user process, so we reset them to sane values here.
340 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
342 static void reparent_to_kthreadd(void)
344 write_lock_irq(&tasklist_lock
);
346 ptrace_unlink(current
);
347 /* Reparent to init */
348 current
->real_parent
= current
->parent
= kthreadd_task
;
349 list_move_tail(¤t
->sibling
, ¤t
->real_parent
->children
);
351 /* Set the exit signal to SIGCHLD so we signal init on exit */
352 current
->exit_signal
= SIGCHLD
;
354 if (task_nice(current
) < 0)
355 set_user_nice(current
, 0);
359 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
360 sizeof(current
->signal
->rlim
));
362 atomic_inc(&init_cred
.usage
);
363 commit_creds(&init_cred
);
364 write_unlock_irq(&tasklist_lock
);
367 void __set_special_pids(struct pid
*pid
)
369 struct task_struct
*curr
= current
->group_leader
;
371 if (task_session(curr
) != pid
)
372 change_pid(curr
, PIDTYPE_SID
, pid
);
374 if (task_pgrp(curr
) != pid
)
375 change_pid(curr
, PIDTYPE_PGID
, pid
);
378 static void set_special_pids(struct pid
*pid
)
380 write_lock_irq(&tasklist_lock
);
381 __set_special_pids(pid
);
382 write_unlock_irq(&tasklist_lock
);
386 * Let kernel threads use this to say that they allow a certain signal.
387 * Must not be used if kthread was cloned with CLONE_SIGHAND.
389 int allow_signal(int sig
)
391 if (!valid_signal(sig
) || sig
< 1)
394 spin_lock_irq(¤t
->sighand
->siglock
);
395 /* This is only needed for daemonize()'ed kthreads */
396 sigdelset(¤t
->blocked
, sig
);
398 * Kernel threads handle their own signals. Let the signal code
399 * know it'll be handled, so that they don't get converted to
400 * SIGKILL or just silently dropped.
402 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
404 spin_unlock_irq(¤t
->sighand
->siglock
);
408 EXPORT_SYMBOL(allow_signal
);
410 int disallow_signal(int sig
)
412 if (!valid_signal(sig
) || sig
< 1)
415 spin_lock_irq(¤t
->sighand
->siglock
);
416 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
418 spin_unlock_irq(¤t
->sighand
->siglock
);
422 EXPORT_SYMBOL(disallow_signal
);
425 * Put all the gunge required to become a kernel thread without
426 * attached user resources in one place where it belongs.
429 void daemonize(const char *name
, ...)
434 va_start(args
, name
);
435 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
439 * If we were started as result of loading a module, close all of the
440 * user space pages. We don't need them, and if we didn't close them
441 * they would be locked into memory.
445 * We don't want to have TIF_FREEZE set if the system-wide hibernation
446 * or suspend transition begins right now.
448 current
->flags
|= (PF_NOFREEZE
| PF_KTHREAD
);
450 if (current
->nsproxy
!= &init_nsproxy
) {
451 get_nsproxy(&init_nsproxy
);
452 switch_task_namespaces(current
, &init_nsproxy
);
454 set_special_pids(&init_struct_pid
);
455 proc_clear_tty(current
);
457 /* Block and flush all signals */
458 sigfillset(&blocked
);
459 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
460 flush_signals(current
);
462 /* Become as one with the init task */
464 daemonize_fs_struct();
466 current
->files
= init_task
.files
;
467 atomic_inc(¤t
->files
->count
);
469 reparent_to_kthreadd();
472 EXPORT_SYMBOL(daemonize
);
474 static void close_files(struct files_struct
* files
)
482 * It is safe to dereference the fd table without RCU or
483 * ->file_lock because this is the last reference to the
486 fdt
= files_fdtable(files
);
490 if (i
>= fdt
->max_fds
)
492 set
= fdt
->open_fds
->fds_bits
[j
++];
495 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
497 filp_close(file
, files
);
507 struct files_struct
*get_files_struct(struct task_struct
*task
)
509 struct files_struct
*files
;
514 atomic_inc(&files
->count
);
520 void put_files_struct(struct files_struct
*files
)
524 if (atomic_dec_and_test(&files
->count
)) {
527 * Free the fd and fdset arrays if we expanded them.
528 * If the fdtable was embedded, pass files for freeing
529 * at the end of the RCU grace period. Otherwise,
530 * you can free files immediately.
532 fdt
= files_fdtable(files
);
533 if (fdt
!= &files
->fdtab
)
534 kmem_cache_free(files_cachep
, files
);
539 void reset_files_struct(struct files_struct
*files
)
541 struct task_struct
*tsk
= current
;
542 struct files_struct
*old
;
548 put_files_struct(old
);
551 void exit_files(struct task_struct
*tsk
)
553 struct files_struct
* files
= tsk
->files
;
559 put_files_struct(files
);
563 #ifdef CONFIG_MM_OWNER
565 * Task p is exiting and it owned mm, lets find a new owner for it
568 mm_need_new_owner(struct mm_struct
*mm
, struct task_struct
*p
)
571 * If there are other users of the mm and the owner (us) is exiting
572 * we need to find a new owner to take on the responsibility.
574 if (atomic_read(&mm
->mm_users
) <= 1)
581 void mm_update_next_owner(struct mm_struct
*mm
)
583 struct task_struct
*c
, *g
, *p
= current
;
586 if (!mm_need_new_owner(mm
, p
))
589 read_lock(&tasklist_lock
);
591 * Search in the children
593 list_for_each_entry(c
, &p
->children
, sibling
) {
595 goto assign_new_owner
;
599 * Search in the siblings
601 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
603 goto assign_new_owner
;
607 * Search through everything else. We should not get
610 do_each_thread(g
, c
) {
612 goto assign_new_owner
;
613 } while_each_thread(g
, c
);
615 read_unlock(&tasklist_lock
);
617 * We found no owner yet mm_users > 1: this implies that we are
618 * most likely racing with swapoff (try_to_unuse()) or /proc or
619 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
628 * The task_lock protects c->mm from changing.
629 * We always want mm->owner->mm == mm
633 * Delay read_unlock() till we have the task_lock()
634 * to ensure that c does not slip away underneath us
636 read_unlock(&tasklist_lock
);
646 #endif /* CONFIG_MM_OWNER */
649 * Turn us into a lazy TLB process if we
652 static void exit_mm(struct task_struct
* tsk
)
654 struct mm_struct
*mm
= tsk
->mm
;
655 struct core_state
*core_state
;
661 * Serialize with any possible pending coredump.
662 * We must hold mmap_sem around checking core_state
663 * and clearing tsk->mm. The core-inducing thread
664 * will increment ->nr_threads for each thread in the
665 * group with ->mm != NULL.
667 down_read(&mm
->mmap_sem
);
668 core_state
= mm
->core_state
;
670 struct core_thread self
;
671 up_read(&mm
->mmap_sem
);
674 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
676 * Implies mb(), the result of xchg() must be visible
677 * to core_state->dumper.
679 if (atomic_dec_and_test(&core_state
->nr_threads
))
680 complete(&core_state
->startup
);
683 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
684 if (!self
.task
) /* see coredump_finish() */
688 __set_task_state(tsk
, TASK_RUNNING
);
689 down_read(&mm
->mmap_sem
);
691 atomic_inc(&mm
->mm_count
);
692 BUG_ON(mm
!= tsk
->active_mm
);
693 /* more a memory barrier than a real lock */
696 up_read(&mm
->mmap_sem
);
697 enter_lazy_tlb(mm
, current
);
698 /* We don't want this task to be frozen prematurely */
699 clear_freeze_flag(tsk
);
701 mm_update_next_owner(mm
);
706 * When we die, we re-parent all our children.
707 * Try to give them to another thread in our thread
708 * group, and if no such member exists, give it to
709 * the child reaper process (ie "init") in our pid
712 static struct task_struct
*find_new_reaper(struct task_struct
*father
)
714 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
715 struct task_struct
*thread
;
718 while_each_thread(father
, thread
) {
719 if (thread
->flags
& PF_EXITING
)
721 if (unlikely(pid_ns
->child_reaper
== father
))
722 pid_ns
->child_reaper
= thread
;
726 if (unlikely(pid_ns
->child_reaper
== father
)) {
727 write_unlock_irq(&tasklist_lock
);
728 if (unlikely(pid_ns
== &init_pid_ns
))
729 panic("Attempted to kill init!");
731 zap_pid_ns_processes(pid_ns
);
732 write_lock_irq(&tasklist_lock
);
734 * We can not clear ->child_reaper or leave it alone.
735 * There may by stealth EXIT_DEAD tasks on ->children,
736 * forget_original_parent() must move them somewhere.
738 pid_ns
->child_reaper
= init_pid_ns
.child_reaper
;
741 return pid_ns
->child_reaper
;
745 * Any that need to be release_task'd are put on the @dead list.
747 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
748 struct list_head
*dead
)
750 list_move_tail(&p
->sibling
, &p
->real_parent
->children
);
752 if (task_detached(p
))
755 * If this is a threaded reparent there is no need to
756 * notify anyone anything has happened.
758 if (same_thread_group(p
->real_parent
, father
))
761 /* We don't want people slaying init. */
762 p
->exit_signal
= SIGCHLD
;
764 /* If it has exited notify the new parent about this child's death. */
765 if (!task_ptrace(p
) &&
766 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
767 do_notify_parent(p
, p
->exit_signal
);
768 if (task_detached(p
)) {
769 p
->exit_state
= EXIT_DEAD
;
770 list_move_tail(&p
->sibling
, dead
);
774 kill_orphaned_pgrp(p
, father
);
777 static void forget_original_parent(struct task_struct
*father
)
779 struct task_struct
*p
, *n
, *reaper
;
780 LIST_HEAD(dead_children
);
784 write_lock_irq(&tasklist_lock
);
785 reaper
= find_new_reaper(father
);
787 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
788 struct task_struct
*t
= p
;
790 t
->real_parent
= reaper
;
791 if (t
->parent
== father
) {
792 BUG_ON(task_ptrace(t
));
793 t
->parent
= t
->real_parent
;
795 if (t
->pdeath_signal
)
796 group_send_sig_info(t
->pdeath_signal
,
798 } while_each_thread(p
, t
);
799 reparent_leader(father
, p
, &dead_children
);
801 write_unlock_irq(&tasklist_lock
);
803 BUG_ON(!list_empty(&father
->children
));
805 list_for_each_entry_safe(p
, n
, &dead_children
, sibling
) {
806 list_del_init(&p
->sibling
);
812 * Send signals to all our closest relatives so that they know
813 * to properly mourn us..
815 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
821 * This does two things:
823 * A. Make init inherit all the child processes
824 * B. Check to see if any process groups have become orphaned
825 * as a result of our exiting, and if they have any stopped
826 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
828 forget_original_parent(tsk
);
829 exit_task_namespaces(tsk
);
831 write_lock_irq(&tasklist_lock
);
833 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
835 /* Let father know we died
837 * Thread signals are configurable, but you aren't going to use
838 * that to send signals to arbitary processes.
839 * That stops right now.
841 * If the parent exec id doesn't match the exec id we saved
842 * when we started then we know the parent has changed security
845 * If our self_exec id doesn't match our parent_exec_id then
846 * we have changed execution domain as these two values started
847 * the same after a fork.
849 if (tsk
->exit_signal
!= SIGCHLD
&& !task_detached(tsk
) &&
850 (tsk
->parent_exec_id
!= tsk
->real_parent
->self_exec_id
||
851 tsk
->self_exec_id
!= tsk
->parent_exec_id
))
852 tsk
->exit_signal
= SIGCHLD
;
854 signal
= tracehook_notify_death(tsk
, &cookie
, group_dead
);
856 signal
= do_notify_parent(tsk
, signal
);
858 tsk
->exit_state
= signal
== DEATH_REAP
? EXIT_DEAD
: EXIT_ZOMBIE
;
860 /* mt-exec, de_thread() is waiting for us */
861 if (thread_group_leader(tsk
) &&
862 tsk
->signal
->group_exit_task
&&
863 tsk
->signal
->notify_count
< 0)
864 wake_up_process(tsk
->signal
->group_exit_task
);
866 write_unlock_irq(&tasklist_lock
);
868 tracehook_report_death(tsk
, signal
, cookie
, group_dead
);
870 /* If the process is dead, release it - nobody will wait for it */
871 if (signal
== DEATH_REAP
)
875 #ifdef CONFIG_DEBUG_STACK_USAGE
876 static void check_stack_usage(void)
878 static DEFINE_SPINLOCK(low_water_lock
);
879 static int lowest_to_date
= THREAD_SIZE
;
882 free
= stack_not_used(current
);
884 if (free
>= lowest_to_date
)
887 spin_lock(&low_water_lock
);
888 if (free
< lowest_to_date
) {
889 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
891 current
->comm
, free
);
892 lowest_to_date
= free
;
894 spin_unlock(&low_water_lock
);
897 static inline void check_stack_usage(void) {}
900 NORET_TYPE
void do_exit(long code
)
902 struct task_struct
*tsk
= current
;
905 profile_task_exit(tsk
);
907 WARN_ON(atomic_read(&tsk
->fs_excl
));
909 if (unlikely(in_interrupt()))
910 panic("Aiee, killing interrupt handler!");
911 if (unlikely(!tsk
->pid
))
912 panic("Attempted to kill the idle task!");
915 * If do_exit is called because this processes oopsed, it's possible
916 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
917 * continuing. Amongst other possible reasons, this is to prevent
918 * mm_release()->clear_child_tid() from writing to a user-controlled
923 tracehook_report_exit(&code
);
925 validate_creds_for_do_exit(tsk
);
928 * We're taking recursive faults here in do_exit. Safest is to just
929 * leave this task alone and wait for reboot.
931 if (unlikely(tsk
->flags
& PF_EXITING
)) {
933 "Fixing recursive fault but reboot is needed!\n");
935 * We can do this unlocked here. The futex code uses
936 * this flag just to verify whether the pi state
937 * cleanup has been done or not. In the worst case it
938 * loops once more. We pretend that the cleanup was
939 * done as there is no way to return. Either the
940 * OWNER_DIED bit is set by now or we push the blocked
941 * task into the wait for ever nirwana as well.
943 tsk
->flags
|= PF_EXITPIDONE
;
944 set_current_state(TASK_UNINTERRUPTIBLE
);
950 exit_signals(tsk
); /* sets PF_EXITING */
952 * tsk->flags are checked in the futex code to protect against
953 * an exiting task cleaning up the robust pi futexes.
956 raw_spin_unlock_wait(&tsk
->pi_lock
);
958 if (unlikely(in_atomic()))
959 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
960 current
->comm
, task_pid_nr(current
),
963 acct_update_integrals(tsk
);
965 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
967 hrtimer_cancel(&tsk
->signal
->real_timer
);
968 exit_itimers(tsk
->signal
);
970 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
972 acct_collect(code
, group_dead
);
975 if (unlikely(tsk
->audit_context
))
978 tsk
->exit_code
= code
;
979 taskstats_exit(tsk
, group_dead
);
985 trace_sched_process_exit(tsk
);
995 disassociate_ctty(1);
997 module_put(task_thread_info(tsk
)->exec_domain
->module
);
999 proc_exit_connector(tsk
);
1002 * FIXME: do that only when needed, using sched_exit tracepoint
1004 flush_ptrace_hw_breakpoint(tsk
);
1006 * Flush inherited counters to the parent - before the parent
1007 * gets woken up by child-exit notifications.
1009 perf_event_exit_task(tsk
);
1011 exit_notify(tsk
, group_dead
);
1013 mpol_put(tsk
->mempolicy
);
1014 tsk
->mempolicy
= NULL
;
1017 if (unlikely(current
->pi_state_cache
))
1018 kfree(current
->pi_state_cache
);
1021 * Make sure we are holding no locks:
1023 debug_check_no_locks_held(tsk
);
1025 * We can do this unlocked here. The futex code uses this flag
1026 * just to verify whether the pi state cleanup has been done
1027 * or not. In the worst case it loops once more.
1029 tsk
->flags
|= PF_EXITPIDONE
;
1031 if (tsk
->io_context
)
1032 exit_io_context(tsk
);
1034 if (tsk
->splice_pipe
)
1035 __free_pipe_info(tsk
->splice_pipe
);
1037 validate_creds_for_do_exit(tsk
);
1041 /* causes final put_task_struct in finish_task_switch(). */
1042 tsk
->state
= TASK_DEAD
;
1045 /* Avoid "noreturn function does return". */
1047 cpu_relax(); /* For when BUG is null */
1050 EXPORT_SYMBOL_GPL(do_exit
);
1052 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1060 EXPORT_SYMBOL(complete_and_exit
);
1062 SYSCALL_DEFINE1(exit
, int, error_code
)
1064 do_exit((error_code
&0xff)<<8);
1068 * Take down every thread in the group. This is called by fatal signals
1069 * as well as by sys_exit_group (below).
1072 do_group_exit(int exit_code
)
1074 struct signal_struct
*sig
= current
->signal
;
1076 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1078 if (signal_group_exit(sig
))
1079 exit_code
= sig
->group_exit_code
;
1080 else if (!thread_group_empty(current
)) {
1081 struct sighand_struct
*const sighand
= current
->sighand
;
1082 spin_lock_irq(&sighand
->siglock
);
1083 if (signal_group_exit(sig
))
1084 /* Another thread got here before we took the lock. */
1085 exit_code
= sig
->group_exit_code
;
1087 sig
->group_exit_code
= exit_code
;
1088 sig
->flags
= SIGNAL_GROUP_EXIT
;
1089 zap_other_threads(current
);
1091 spin_unlock_irq(&sighand
->siglock
);
1099 * this kills every thread in the thread group. Note that any externally
1100 * wait4()-ing process will get the correct exit code - even if this
1101 * thread is not the thread group leader.
1103 SYSCALL_DEFINE1(exit_group
, int, error_code
)
1105 do_group_exit((error_code
& 0xff) << 8);
1111 enum pid_type wo_type
;
1115 struct siginfo __user
*wo_info
;
1116 int __user
*wo_stat
;
1117 struct rusage __user
*wo_rusage
;
1119 wait_queue_t child_wait
;
1124 struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
1126 if (type
!= PIDTYPE_PID
)
1127 task
= task
->group_leader
;
1128 return task
->pids
[type
].pid
;
1131 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
1133 return wo
->wo_type
== PIDTYPE_MAX
||
1134 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
1137 static int eligible_child(struct wait_opts
*wo
, struct task_struct
*p
)
1139 if (!eligible_pid(wo
, p
))
1141 /* Wait for all children (clone and not) if __WALL is set;
1142 * otherwise, wait for clone children *only* if __WCLONE is
1143 * set; otherwise, wait for non-clone children *only*. (Note:
1144 * A "clone" child here is one that reports to its parent
1145 * using a signal other than SIGCHLD.) */
1146 if (((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
1147 && !(wo
->wo_flags
& __WALL
))
1153 static int wait_noreap_copyout(struct wait_opts
*wo
, struct task_struct
*p
,
1154 pid_t pid
, uid_t uid
, int why
, int status
)
1156 struct siginfo __user
*infop
;
1157 int retval
= wo
->wo_rusage
1158 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1161 infop
= wo
->wo_info
;
1164 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1166 retval
= put_user(0, &infop
->si_errno
);
1168 retval
= put_user((short)why
, &infop
->si_code
);
1170 retval
= put_user(pid
, &infop
->si_pid
);
1172 retval
= put_user(uid
, &infop
->si_uid
);
1174 retval
= put_user(status
, &infop
->si_status
);
1182 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1183 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1184 * the lock and this task is uninteresting. If we return nonzero, we have
1185 * released the lock and the system call should return.
1187 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1189 unsigned long state
;
1190 int retval
, status
, traced
;
1191 pid_t pid
= task_pid_vnr(p
);
1192 uid_t uid
= __task_cred(p
)->uid
;
1193 struct siginfo __user
*infop
;
1195 if (!likely(wo
->wo_flags
& WEXITED
))
1198 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1199 int exit_code
= p
->exit_code
;
1203 read_unlock(&tasklist_lock
);
1204 if ((exit_code
& 0x7f) == 0) {
1206 status
= exit_code
>> 8;
1208 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1209 status
= exit_code
& 0x7f;
1211 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, status
);
1215 * Try to move the task's state to DEAD
1216 * only one thread is allowed to do this:
1218 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1219 if (state
!= EXIT_ZOMBIE
) {
1220 BUG_ON(state
!= EXIT_DEAD
);
1224 traced
= ptrace_reparented(p
);
1226 * It can be ptraced but not reparented, check
1227 * !task_detached() to filter out sub-threads.
1229 if (likely(!traced
) && likely(!task_detached(p
))) {
1230 struct signal_struct
*psig
;
1231 struct signal_struct
*sig
;
1232 unsigned long maxrss
;
1233 cputime_t tgutime
, tgstime
;
1236 * The resource counters for the group leader are in its
1237 * own task_struct. Those for dead threads in the group
1238 * are in its signal_struct, as are those for the child
1239 * processes it has previously reaped. All these
1240 * accumulate in the parent's signal_struct c* fields.
1242 * We don't bother to take a lock here to protect these
1243 * p->signal fields, because they are only touched by
1244 * __exit_signal, which runs with tasklist_lock
1245 * write-locked anyway, and so is excluded here. We do
1246 * need to protect the access to parent->signal fields,
1247 * as other threads in the parent group can be right
1248 * here reaping other children at the same time.
1250 * We use thread_group_times() to get times for the thread
1251 * group, which consolidates times for all threads in the
1252 * group including the group leader.
1254 thread_group_times(p
, &tgutime
, &tgstime
);
1255 spin_lock_irq(&p
->real_parent
->sighand
->siglock
);
1256 psig
= p
->real_parent
->signal
;
1259 cputime_add(psig
->cutime
,
1260 cputime_add(tgutime
,
1263 cputime_add(psig
->cstime
,
1264 cputime_add(tgstime
,
1267 cputime_add(psig
->cgtime
,
1268 cputime_add(p
->gtime
,
1269 cputime_add(sig
->gtime
,
1272 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1274 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1276 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1278 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1280 task_io_get_inblock(p
) +
1281 sig
->inblock
+ sig
->cinblock
;
1283 task_io_get_oublock(p
) +
1284 sig
->oublock
+ sig
->coublock
;
1285 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1286 if (psig
->cmaxrss
< maxrss
)
1287 psig
->cmaxrss
= maxrss
;
1288 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1289 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1290 spin_unlock_irq(&p
->real_parent
->sighand
->siglock
);
1294 * Now we are sure this task is interesting, and no other
1295 * thread can reap it because we set its state to EXIT_DEAD.
1297 read_unlock(&tasklist_lock
);
1299 retval
= wo
->wo_rusage
1300 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1301 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1302 ? p
->signal
->group_exit_code
: p
->exit_code
;
1303 if (!retval
&& wo
->wo_stat
)
1304 retval
= put_user(status
, wo
->wo_stat
);
1306 infop
= wo
->wo_info
;
1307 if (!retval
&& infop
)
1308 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1309 if (!retval
&& infop
)
1310 retval
= put_user(0, &infop
->si_errno
);
1311 if (!retval
&& infop
) {
1314 if ((status
& 0x7f) == 0) {
1318 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1321 retval
= put_user((short)why
, &infop
->si_code
);
1323 retval
= put_user(status
, &infop
->si_status
);
1325 if (!retval
&& infop
)
1326 retval
= put_user(pid
, &infop
->si_pid
);
1327 if (!retval
&& infop
)
1328 retval
= put_user(uid
, &infop
->si_uid
);
1333 write_lock_irq(&tasklist_lock
);
1334 /* We dropped tasklist, ptracer could die and untrace */
1337 * If this is not a detached task, notify the parent.
1338 * If it's still not detached after that, don't release
1341 if (!task_detached(p
)) {
1342 do_notify_parent(p
, p
->exit_signal
);
1343 if (!task_detached(p
)) {
1344 p
->exit_state
= EXIT_ZOMBIE
;
1348 write_unlock_irq(&tasklist_lock
);
1356 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1359 if (task_is_stopped_or_traced(p
))
1360 return &p
->exit_code
;
1362 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1363 return &p
->signal
->group_exit_code
;
1369 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1370 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1371 * the lock and this task is uninteresting. If we return nonzero, we have
1372 * released the lock and the system call should return.
1374 static int wait_task_stopped(struct wait_opts
*wo
,
1375 int ptrace
, struct task_struct
*p
)
1377 struct siginfo __user
*infop
;
1378 int retval
, exit_code
, *p_code
, why
;
1379 uid_t uid
= 0; /* unneeded, required by compiler */
1383 * Traditionally we see ptrace'd stopped tasks regardless of options.
1385 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1389 spin_lock_irq(&p
->sighand
->siglock
);
1391 p_code
= task_stopped_code(p
, ptrace
);
1392 if (unlikely(!p_code
))
1395 exit_code
= *p_code
;
1399 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1402 /* don't need the RCU readlock here as we're holding a spinlock */
1403 uid
= __task_cred(p
)->uid
;
1405 spin_unlock_irq(&p
->sighand
->siglock
);
1410 * Now we are pretty sure this task is interesting.
1411 * Make sure it doesn't get reaped out from under us while we
1412 * give up the lock and then examine it below. We don't want to
1413 * keep holding onto the tasklist_lock while we call getrusage and
1414 * possibly take page faults for user memory.
1417 pid
= task_pid_vnr(p
);
1418 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1419 read_unlock(&tasklist_lock
);
1421 if (unlikely(wo
->wo_flags
& WNOWAIT
))
1422 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, exit_code
);
1424 retval
= wo
->wo_rusage
1425 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1426 if (!retval
&& wo
->wo_stat
)
1427 retval
= put_user((exit_code
<< 8) | 0x7f, wo
->wo_stat
);
1429 infop
= wo
->wo_info
;
1430 if (!retval
&& infop
)
1431 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1432 if (!retval
&& infop
)
1433 retval
= put_user(0, &infop
->si_errno
);
1434 if (!retval
&& infop
)
1435 retval
= put_user((short)why
, &infop
->si_code
);
1436 if (!retval
&& infop
)
1437 retval
= put_user(exit_code
, &infop
->si_status
);
1438 if (!retval
&& infop
)
1439 retval
= put_user(pid
, &infop
->si_pid
);
1440 if (!retval
&& infop
)
1441 retval
= put_user(uid
, &infop
->si_uid
);
1451 * Handle do_wait work for one task in a live, non-stopped state.
1452 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1453 * the lock and this task is uninteresting. If we return nonzero, we have
1454 * released the lock and the system call should return.
1456 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1462 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1465 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1468 spin_lock_irq(&p
->sighand
->siglock
);
1469 /* Re-check with the lock held. */
1470 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1471 spin_unlock_irq(&p
->sighand
->siglock
);
1474 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1475 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1476 uid
= __task_cred(p
)->uid
;
1477 spin_unlock_irq(&p
->sighand
->siglock
);
1479 pid
= task_pid_vnr(p
);
1481 read_unlock(&tasklist_lock
);
1484 retval
= wo
->wo_rusage
1485 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1487 if (!retval
&& wo
->wo_stat
)
1488 retval
= put_user(0xffff, wo
->wo_stat
);
1492 retval
= wait_noreap_copyout(wo
, p
, pid
, uid
,
1493 CLD_CONTINUED
, SIGCONT
);
1494 BUG_ON(retval
== 0);
1501 * Consider @p for a wait by @parent.
1503 * -ECHILD should be in ->notask_error before the first call.
1504 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1505 * Returns zero if the search for a child should continue;
1506 * then ->notask_error is 0 if @p is an eligible child,
1507 * or another error from security_task_wait(), or still -ECHILD.
1509 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1510 struct task_struct
*p
)
1512 int ret
= eligible_child(wo
, p
);
1516 ret
= security_task_wait(p
);
1517 if (unlikely(ret
< 0)) {
1519 * If we have not yet seen any eligible child,
1520 * then let this error code replace -ECHILD.
1521 * A permission error will give the user a clue
1522 * to look for security policy problems, rather
1523 * than for mysterious wait bugs.
1525 if (wo
->notask_error
)
1526 wo
->notask_error
= ret
;
1530 if (likely(!ptrace
) && unlikely(task_ptrace(p
))) {
1532 * This child is hidden by ptrace.
1533 * We aren't allowed to see it now, but eventually we will.
1535 wo
->notask_error
= 0;
1539 if (p
->exit_state
== EXIT_DEAD
)
1543 * We don't reap group leaders with subthreads.
1545 if (p
->exit_state
== EXIT_ZOMBIE
&& !delay_group_leader(p
))
1546 return wait_task_zombie(wo
, p
);
1549 * It's stopped or running now, so it might
1550 * later continue, exit, or stop again.
1552 wo
->notask_error
= 0;
1554 if (task_stopped_code(p
, ptrace
))
1555 return wait_task_stopped(wo
, ptrace
, p
);
1557 return wait_task_continued(wo
, p
);
1561 * Do the work of do_wait() for one thread in the group, @tsk.
1563 * -ECHILD should be in ->notask_error before the first call.
1564 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1565 * Returns zero if the search for a child should continue; then
1566 * ->notask_error is 0 if there were any eligible children,
1567 * or another error from security_task_wait(), or still -ECHILD.
1569 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1571 struct task_struct
*p
;
1573 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1574 int ret
= wait_consider_task(wo
, 0, p
);
1582 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1584 struct task_struct
*p
;
1586 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1587 int ret
= wait_consider_task(wo
, 1, p
);
1595 static int child_wait_callback(wait_queue_t
*wait
, unsigned mode
,
1596 int sync
, void *key
)
1598 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1600 struct task_struct
*p
= key
;
1602 if (!eligible_pid(wo
, p
))
1605 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1608 return default_wake_function(wait
, mode
, sync
, key
);
1611 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1613 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1614 TASK_INTERRUPTIBLE
, 1, p
);
1617 static long do_wait(struct wait_opts
*wo
)
1619 struct task_struct
*tsk
;
1622 trace_sched_process_wait(wo
->wo_pid
);
1624 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1625 wo
->child_wait
.private = current
;
1626 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1629 * If there is nothing that can match our critiera just get out.
1630 * We will clear ->notask_error to zero if we see any child that
1631 * might later match our criteria, even if we are not able to reap
1634 wo
->notask_error
= -ECHILD
;
1635 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1636 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1639 set_current_state(TASK_INTERRUPTIBLE
);
1640 read_lock(&tasklist_lock
);
1643 retval
= do_wait_thread(wo
, tsk
);
1647 retval
= ptrace_do_wait(wo
, tsk
);
1651 if (wo
->wo_flags
& __WNOTHREAD
)
1653 } while_each_thread(current
, tsk
);
1654 read_unlock(&tasklist_lock
);
1657 retval
= wo
->notask_error
;
1658 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1659 retval
= -ERESTARTSYS
;
1660 if (!signal_pending(current
)) {
1666 __set_current_state(TASK_RUNNING
);
1667 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1671 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1672 infop
, int, options
, struct rusage __user
*, ru
)
1674 struct wait_opts wo
;
1675 struct pid
*pid
= NULL
;
1679 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1681 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1694 type
= PIDTYPE_PGID
;
1702 if (type
< PIDTYPE_MAX
)
1703 pid
= find_get_pid(upid
);
1707 wo
.wo_flags
= options
;
1717 * For a WNOHANG return, clear out all the fields
1718 * we would set so the user can easily tell the
1722 ret
= put_user(0, &infop
->si_signo
);
1724 ret
= put_user(0, &infop
->si_errno
);
1726 ret
= put_user(0, &infop
->si_code
);
1728 ret
= put_user(0, &infop
->si_pid
);
1730 ret
= put_user(0, &infop
->si_uid
);
1732 ret
= put_user(0, &infop
->si_status
);
1737 /* avoid REGPARM breakage on x86: */
1738 asmlinkage_protect(5, ret
, which
, upid
, infop
, options
, ru
);
1742 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1743 int, options
, struct rusage __user
*, ru
)
1745 struct wait_opts wo
;
1746 struct pid
*pid
= NULL
;
1750 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1751 __WNOTHREAD
|__WCLONE
|__WALL
))
1756 else if (upid
< 0) {
1757 type
= PIDTYPE_PGID
;
1758 pid
= find_get_pid(-upid
);
1759 } else if (upid
== 0) {
1760 type
= PIDTYPE_PGID
;
1761 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1762 } else /* upid > 0 */ {
1764 pid
= find_get_pid(upid
);
1769 wo
.wo_flags
= options
| WEXITED
;
1771 wo
.wo_stat
= stat_addr
;
1776 /* avoid REGPARM breakage on x86: */
1777 asmlinkage_protect(4, ret
, upid
, stat_addr
, options
, ru
);
1781 #ifdef __ARCH_WANT_SYS_WAITPID
1784 * sys_waitpid() remains for compatibility. waitpid() should be
1785 * implemented by calling sys_wait4() from libc.a.
1787 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1789 return sys_wait4(pid
, stat_addr
, options
, NULL
);