powerpc/kexec: Fix orphaned offline CPUs across kexec
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blob60ba4e930020f3827cee6836b5895b6d0b9dd3f7
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 #include "cred-internals.h"
60 static void exit_mm(struct task_struct * tsk);
62 static void __unhash_process(struct task_struct *p)
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __get_cpu_var(process_counts)--;
74 list_del_rcu(&p->thread_group);
78 * This function expects the tasklist_lock write-locked.
80 static void __exit_signal(struct task_struct *tsk)
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
88 sighand = rcu_dereference(tsk->sighand);
89 spin_lock(&sighand->siglock);
91 posix_cpu_timers_exit(tsk);
92 if (atomic_dec_and_test(&sig->count))
93 posix_cpu_timers_exit_group(tsk);
94 else {
96 * This can only happen if the caller is de_thread().
97 * FIXME: this is the temporary hack, we should teach
98 * posix-cpu-timers to handle this case correctly.
100 if (unlikely(has_group_leader_pid(tsk)))
101 posix_cpu_timers_exit_group(tsk);
104 * If there is any task waiting for the group exit
105 * then notify it:
107 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
108 wake_up_process(sig->group_exit_task);
110 if (tsk == sig->curr_target)
111 sig->curr_target = next_thread(tsk);
113 * Accumulate here the counters for all threads but the
114 * group leader as they die, so they can be added into
115 * the process-wide totals when those are taken.
116 * The group leader stays around as a zombie as long
117 * as there are other threads. When it gets reaped,
118 * the exit.c code will add its counts into these totals.
119 * We won't ever get here for the group leader, since it
120 * will have been the last reference on the signal_struct.
122 sig->utime = cputime_add(sig->utime, tsk->utime);
123 sig->stime = cputime_add(sig->stime, tsk->stime);
124 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
125 sig->min_flt += tsk->min_flt;
126 sig->maj_flt += tsk->maj_flt;
127 sig->nvcsw += tsk->nvcsw;
128 sig->nivcsw += tsk->nivcsw;
129 sig->inblock += task_io_get_inblock(tsk);
130 sig->oublock += task_io_get_oublock(tsk);
131 task_io_accounting_add(&sig->ioac, &tsk->ioac);
132 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
133 sig = NULL; /* Marker for below. */
136 __unhash_process(tsk);
139 * Do this under ->siglock, we can race with another thread
140 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
142 flush_sigqueue(&tsk->pending);
144 tsk->signal = NULL;
145 tsk->sighand = NULL;
146 spin_unlock(&sighand->siglock);
148 __cleanup_sighand(sighand);
149 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
150 if (sig) {
151 flush_sigqueue(&sig->shared_pending);
152 taskstats_tgid_free(sig);
154 * Make sure ->signal can't go away under rq->lock,
155 * see account_group_exec_runtime().
157 task_rq_unlock_wait(tsk);
158 __cleanup_signal(sig);
162 static void delayed_put_task_struct(struct rcu_head *rhp)
164 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
166 #ifdef CONFIG_PERF_EVENTS
167 WARN_ON_ONCE(tsk->perf_event_ctxp);
168 #endif
169 trace_sched_process_free(tsk);
170 put_task_struct(tsk);
174 void release_task(struct task_struct * p)
176 struct task_struct *leader;
177 int zap_leader;
178 repeat:
179 tracehook_prepare_release_task(p);
180 /* don't need to get the RCU readlock here - the process is dead and
181 * can't be modifying its own credentials */
182 atomic_dec(&__task_cred(p)->user->processes);
184 proc_flush_task(p);
186 write_lock_irq(&tasklist_lock);
187 tracehook_finish_release_task(p);
188 __exit_signal(p);
191 * If we are the last non-leader member of the thread
192 * group, and the leader is zombie, then notify the
193 * group leader's parent process. (if it wants notification.)
195 zap_leader = 0;
196 leader = p->group_leader;
197 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
198 BUG_ON(task_detached(leader));
199 do_notify_parent(leader, leader->exit_signal);
201 * If we were the last child thread and the leader has
202 * exited already, and the leader's parent ignores SIGCHLD,
203 * then we are the one who should release the leader.
205 * do_notify_parent() will have marked it self-reaping in
206 * that case.
208 zap_leader = task_detached(leader);
211 * This maintains the invariant that release_task()
212 * only runs on a task in EXIT_DEAD, just for sanity.
214 if (zap_leader)
215 leader->exit_state = EXIT_DEAD;
218 write_unlock_irq(&tasklist_lock);
219 release_thread(p);
220 call_rcu(&p->rcu, delayed_put_task_struct);
222 p = leader;
223 if (unlikely(zap_leader))
224 goto repeat;
228 * This checks not only the pgrp, but falls back on the pid if no
229 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
230 * without this...
232 * The caller must hold rcu lock or the tasklist lock.
234 struct pid *session_of_pgrp(struct pid *pgrp)
236 struct task_struct *p;
237 struct pid *sid = NULL;
239 p = pid_task(pgrp, PIDTYPE_PGID);
240 if (p == NULL)
241 p = pid_task(pgrp, PIDTYPE_PID);
242 if (p != NULL)
243 sid = task_session(p);
245 return sid;
249 * Determine if a process group is "orphaned", according to the POSIX
250 * definition in 2.2.2.52. Orphaned process groups are not to be affected
251 * by terminal-generated stop signals. Newly orphaned process groups are
252 * to receive a SIGHUP and a SIGCONT.
254 * "I ask you, have you ever known what it is to be an orphan?"
256 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
258 struct task_struct *p;
260 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
261 if ((p == ignored_task) ||
262 (p->exit_state && thread_group_empty(p)) ||
263 is_global_init(p->real_parent))
264 continue;
266 if (task_pgrp(p->real_parent) != pgrp &&
267 task_session(p->real_parent) == task_session(p))
268 return 0;
269 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
271 return 1;
274 int is_current_pgrp_orphaned(void)
276 int retval;
278 read_lock(&tasklist_lock);
279 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
280 read_unlock(&tasklist_lock);
282 return retval;
285 static int has_stopped_jobs(struct pid *pgrp)
287 int retval = 0;
288 struct task_struct *p;
290 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
291 if (!task_is_stopped(p))
292 continue;
293 retval = 1;
294 break;
295 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
296 return retval;
300 * Check to see if any process groups have become orphaned as
301 * a result of our exiting, and if they have any stopped jobs,
302 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
304 static void
305 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
307 struct pid *pgrp = task_pgrp(tsk);
308 struct task_struct *ignored_task = tsk;
310 if (!parent)
311 /* exit: our father is in a different pgrp than
312 * we are and we were the only connection outside.
314 parent = tsk->real_parent;
315 else
316 /* reparent: our child is in a different pgrp than
317 * we are, and it was the only connection outside.
319 ignored_task = NULL;
321 if (task_pgrp(parent) != pgrp &&
322 task_session(parent) == task_session(tsk) &&
323 will_become_orphaned_pgrp(pgrp, ignored_task) &&
324 has_stopped_jobs(pgrp)) {
325 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
326 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
331 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
333 * If a kernel thread is launched as a result of a system call, or if
334 * it ever exits, it should generally reparent itself to kthreadd so it
335 * isn't in the way of other processes and is correctly cleaned up on exit.
337 * The various task state such as scheduling policy and priority may have
338 * been inherited from a user process, so we reset them to sane values here.
340 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
342 static void reparent_to_kthreadd(void)
344 write_lock_irq(&tasklist_lock);
346 ptrace_unlink(current);
347 /* Reparent to init */
348 current->real_parent = current->parent = kthreadd_task;
349 list_move_tail(&current->sibling, &current->real_parent->children);
351 /* Set the exit signal to SIGCHLD so we signal init on exit */
352 current->exit_signal = SIGCHLD;
354 if (task_nice(current) < 0)
355 set_user_nice(current, 0);
356 /* cpus_allowed? */
357 /* rt_priority? */
358 /* signals? */
359 memcpy(current->signal->rlim, init_task.signal->rlim,
360 sizeof(current->signal->rlim));
362 atomic_inc(&init_cred.usage);
363 commit_creds(&init_cred);
364 write_unlock_irq(&tasklist_lock);
367 void __set_special_pids(struct pid *pid)
369 struct task_struct *curr = current->group_leader;
371 if (task_session(curr) != pid)
372 change_pid(curr, PIDTYPE_SID, pid);
374 if (task_pgrp(curr) != pid)
375 change_pid(curr, PIDTYPE_PGID, pid);
378 static void set_special_pids(struct pid *pid)
380 write_lock_irq(&tasklist_lock);
381 __set_special_pids(pid);
382 write_unlock_irq(&tasklist_lock);
386 * Let kernel threads use this to say that they allow a certain signal.
387 * Must not be used if kthread was cloned with CLONE_SIGHAND.
389 int allow_signal(int sig)
391 if (!valid_signal(sig) || sig < 1)
392 return -EINVAL;
394 spin_lock_irq(&current->sighand->siglock);
395 /* This is only needed for daemonize()'ed kthreads */
396 sigdelset(&current->blocked, sig);
398 * Kernel threads handle their own signals. Let the signal code
399 * know it'll be handled, so that they don't get converted to
400 * SIGKILL or just silently dropped.
402 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
403 recalc_sigpending();
404 spin_unlock_irq(&current->sighand->siglock);
405 return 0;
408 EXPORT_SYMBOL(allow_signal);
410 int disallow_signal(int sig)
412 if (!valid_signal(sig) || sig < 1)
413 return -EINVAL;
415 spin_lock_irq(&current->sighand->siglock);
416 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
417 recalc_sigpending();
418 spin_unlock_irq(&current->sighand->siglock);
419 return 0;
422 EXPORT_SYMBOL(disallow_signal);
425 * Put all the gunge required to become a kernel thread without
426 * attached user resources in one place where it belongs.
429 void daemonize(const char *name, ...)
431 va_list args;
432 sigset_t blocked;
434 va_start(args, name);
435 vsnprintf(current->comm, sizeof(current->comm), name, args);
436 va_end(args);
439 * If we were started as result of loading a module, close all of the
440 * user space pages. We don't need them, and if we didn't close them
441 * they would be locked into memory.
443 exit_mm(current);
445 * We don't want to have TIF_FREEZE set if the system-wide hibernation
446 * or suspend transition begins right now.
448 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
450 if (current->nsproxy != &init_nsproxy) {
451 get_nsproxy(&init_nsproxy);
452 switch_task_namespaces(current, &init_nsproxy);
454 set_special_pids(&init_struct_pid);
455 proc_clear_tty(current);
457 /* Block and flush all signals */
458 sigfillset(&blocked);
459 sigprocmask(SIG_BLOCK, &blocked, NULL);
460 flush_signals(current);
462 /* Become as one with the init task */
464 daemonize_fs_struct();
465 exit_files(current);
466 current->files = init_task.files;
467 atomic_inc(&current->files->count);
469 reparent_to_kthreadd();
472 EXPORT_SYMBOL(daemonize);
474 static void close_files(struct files_struct * files)
476 int i, j;
477 struct fdtable *fdt;
479 j = 0;
482 * It is safe to dereference the fd table without RCU or
483 * ->file_lock because this is the last reference to the
484 * files structure.
486 fdt = files_fdtable(files);
487 for (;;) {
488 unsigned long set;
489 i = j * __NFDBITS;
490 if (i >= fdt->max_fds)
491 break;
492 set = fdt->open_fds->fds_bits[j++];
493 while (set) {
494 if (set & 1) {
495 struct file * file = xchg(&fdt->fd[i], NULL);
496 if (file) {
497 filp_close(file, files);
498 cond_resched();
501 i++;
502 set >>= 1;
507 struct files_struct *get_files_struct(struct task_struct *task)
509 struct files_struct *files;
511 task_lock(task);
512 files = task->files;
513 if (files)
514 atomic_inc(&files->count);
515 task_unlock(task);
517 return files;
520 void put_files_struct(struct files_struct *files)
522 struct fdtable *fdt;
524 if (atomic_dec_and_test(&files->count)) {
525 close_files(files);
527 * Free the fd and fdset arrays if we expanded them.
528 * If the fdtable was embedded, pass files for freeing
529 * at the end of the RCU grace period. Otherwise,
530 * you can free files immediately.
532 fdt = files_fdtable(files);
533 if (fdt != &files->fdtab)
534 kmem_cache_free(files_cachep, files);
535 free_fdtable(fdt);
539 void reset_files_struct(struct files_struct *files)
541 struct task_struct *tsk = current;
542 struct files_struct *old;
544 old = tsk->files;
545 task_lock(tsk);
546 tsk->files = files;
547 task_unlock(tsk);
548 put_files_struct(old);
551 void exit_files(struct task_struct *tsk)
553 struct files_struct * files = tsk->files;
555 if (files) {
556 task_lock(tsk);
557 tsk->files = NULL;
558 task_unlock(tsk);
559 put_files_struct(files);
563 #ifdef CONFIG_MM_OWNER
565 * Task p is exiting and it owned mm, lets find a new owner for it
567 static inline int
568 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
571 * If there are other users of the mm and the owner (us) is exiting
572 * we need to find a new owner to take on the responsibility.
574 if (atomic_read(&mm->mm_users) <= 1)
575 return 0;
576 if (mm->owner != p)
577 return 0;
578 return 1;
581 void mm_update_next_owner(struct mm_struct *mm)
583 struct task_struct *c, *g, *p = current;
585 retry:
586 if (!mm_need_new_owner(mm, p))
587 return;
589 read_lock(&tasklist_lock);
591 * Search in the children
593 list_for_each_entry(c, &p->children, sibling) {
594 if (c->mm == mm)
595 goto assign_new_owner;
599 * Search in the siblings
601 list_for_each_entry(c, &p->real_parent->children, sibling) {
602 if (c->mm == mm)
603 goto assign_new_owner;
607 * Search through everything else. We should not get
608 * here often
610 do_each_thread(g, c) {
611 if (c->mm == mm)
612 goto assign_new_owner;
613 } while_each_thread(g, c);
615 read_unlock(&tasklist_lock);
617 * We found no owner yet mm_users > 1: this implies that we are
618 * most likely racing with swapoff (try_to_unuse()) or /proc or
619 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
621 mm->owner = NULL;
622 return;
624 assign_new_owner:
625 BUG_ON(c == p);
626 get_task_struct(c);
628 * The task_lock protects c->mm from changing.
629 * We always want mm->owner->mm == mm
631 task_lock(c);
633 * Delay read_unlock() till we have the task_lock()
634 * to ensure that c does not slip away underneath us
636 read_unlock(&tasklist_lock);
637 if (c->mm != mm) {
638 task_unlock(c);
639 put_task_struct(c);
640 goto retry;
642 mm->owner = c;
643 task_unlock(c);
644 put_task_struct(c);
646 #endif /* CONFIG_MM_OWNER */
649 * Turn us into a lazy TLB process if we
650 * aren't already..
652 static void exit_mm(struct task_struct * tsk)
654 struct mm_struct *mm = tsk->mm;
655 struct core_state *core_state;
657 mm_release(tsk, mm);
658 if (!mm)
659 return;
661 * Serialize with any possible pending coredump.
662 * We must hold mmap_sem around checking core_state
663 * and clearing tsk->mm. The core-inducing thread
664 * will increment ->nr_threads for each thread in the
665 * group with ->mm != NULL.
667 down_read(&mm->mmap_sem);
668 core_state = mm->core_state;
669 if (core_state) {
670 struct core_thread self;
671 up_read(&mm->mmap_sem);
673 self.task = tsk;
674 self.next = xchg(&core_state->dumper.next, &self);
676 * Implies mb(), the result of xchg() must be visible
677 * to core_state->dumper.
679 if (atomic_dec_and_test(&core_state->nr_threads))
680 complete(&core_state->startup);
682 for (;;) {
683 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
684 if (!self.task) /* see coredump_finish() */
685 break;
686 schedule();
688 __set_task_state(tsk, TASK_RUNNING);
689 down_read(&mm->mmap_sem);
691 atomic_inc(&mm->mm_count);
692 BUG_ON(mm != tsk->active_mm);
693 /* more a memory barrier than a real lock */
694 task_lock(tsk);
695 tsk->mm = NULL;
696 up_read(&mm->mmap_sem);
697 enter_lazy_tlb(mm, current);
698 /* We don't want this task to be frozen prematurely */
699 clear_freeze_flag(tsk);
700 task_unlock(tsk);
701 mm_update_next_owner(mm);
702 mmput(mm);
706 * When we die, we re-parent all our children.
707 * Try to give them to another thread in our thread
708 * group, and if no such member exists, give it to
709 * the child reaper process (ie "init") in our pid
710 * space.
712 static struct task_struct *find_new_reaper(struct task_struct *father)
714 struct pid_namespace *pid_ns = task_active_pid_ns(father);
715 struct task_struct *thread;
717 thread = father;
718 while_each_thread(father, thread) {
719 if (thread->flags & PF_EXITING)
720 continue;
721 if (unlikely(pid_ns->child_reaper == father))
722 pid_ns->child_reaper = thread;
723 return thread;
726 if (unlikely(pid_ns->child_reaper == father)) {
727 write_unlock_irq(&tasklist_lock);
728 if (unlikely(pid_ns == &init_pid_ns))
729 panic("Attempted to kill init!");
731 zap_pid_ns_processes(pid_ns);
732 write_lock_irq(&tasklist_lock);
734 * We can not clear ->child_reaper or leave it alone.
735 * There may by stealth EXIT_DEAD tasks on ->children,
736 * forget_original_parent() must move them somewhere.
738 pid_ns->child_reaper = init_pid_ns.child_reaper;
741 return pid_ns->child_reaper;
745 * Any that need to be release_task'd are put on the @dead list.
747 static void reparent_leader(struct task_struct *father, struct task_struct *p,
748 struct list_head *dead)
750 list_move_tail(&p->sibling, &p->real_parent->children);
752 if (task_detached(p))
753 return;
755 * If this is a threaded reparent there is no need to
756 * notify anyone anything has happened.
758 if (same_thread_group(p->real_parent, father))
759 return;
761 /* We don't want people slaying init. */
762 p->exit_signal = SIGCHLD;
764 /* If it has exited notify the new parent about this child's death. */
765 if (!task_ptrace(p) &&
766 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
767 do_notify_parent(p, p->exit_signal);
768 if (task_detached(p)) {
769 p->exit_state = EXIT_DEAD;
770 list_move_tail(&p->sibling, dead);
774 kill_orphaned_pgrp(p, father);
777 static void forget_original_parent(struct task_struct *father)
779 struct task_struct *p, *n, *reaper;
780 LIST_HEAD(dead_children);
782 exit_ptrace(father);
784 write_lock_irq(&tasklist_lock);
785 reaper = find_new_reaper(father);
787 list_for_each_entry_safe(p, n, &father->children, sibling) {
788 struct task_struct *t = p;
789 do {
790 t->real_parent = reaper;
791 if (t->parent == father) {
792 BUG_ON(task_ptrace(t));
793 t->parent = t->real_parent;
795 if (t->pdeath_signal)
796 group_send_sig_info(t->pdeath_signal,
797 SEND_SIG_NOINFO, t);
798 } while_each_thread(p, t);
799 reparent_leader(father, p, &dead_children);
801 write_unlock_irq(&tasklist_lock);
803 BUG_ON(!list_empty(&father->children));
805 list_for_each_entry_safe(p, n, &dead_children, sibling) {
806 list_del_init(&p->sibling);
807 release_task(p);
812 * Send signals to all our closest relatives so that they know
813 * to properly mourn us..
815 static void exit_notify(struct task_struct *tsk, int group_dead)
817 int signal;
818 void *cookie;
821 * This does two things:
823 * A. Make init inherit all the child processes
824 * B. Check to see if any process groups have become orphaned
825 * as a result of our exiting, and if they have any stopped
826 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
828 forget_original_parent(tsk);
829 exit_task_namespaces(tsk);
831 write_lock_irq(&tasklist_lock);
832 if (group_dead)
833 kill_orphaned_pgrp(tsk->group_leader, NULL);
835 /* Let father know we died
837 * Thread signals are configurable, but you aren't going to use
838 * that to send signals to arbitary processes.
839 * That stops right now.
841 * If the parent exec id doesn't match the exec id we saved
842 * when we started then we know the parent has changed security
843 * domain.
845 * If our self_exec id doesn't match our parent_exec_id then
846 * we have changed execution domain as these two values started
847 * the same after a fork.
849 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
850 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
851 tsk->self_exec_id != tsk->parent_exec_id))
852 tsk->exit_signal = SIGCHLD;
854 signal = tracehook_notify_death(tsk, &cookie, group_dead);
855 if (signal >= 0)
856 signal = do_notify_parent(tsk, signal);
858 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
860 /* mt-exec, de_thread() is waiting for us */
861 if (thread_group_leader(tsk) &&
862 tsk->signal->group_exit_task &&
863 tsk->signal->notify_count < 0)
864 wake_up_process(tsk->signal->group_exit_task);
866 write_unlock_irq(&tasklist_lock);
868 tracehook_report_death(tsk, signal, cookie, group_dead);
870 /* If the process is dead, release it - nobody will wait for it */
871 if (signal == DEATH_REAP)
872 release_task(tsk);
875 #ifdef CONFIG_DEBUG_STACK_USAGE
876 static void check_stack_usage(void)
878 static DEFINE_SPINLOCK(low_water_lock);
879 static int lowest_to_date = THREAD_SIZE;
880 unsigned long free;
882 free = stack_not_used(current);
884 if (free >= lowest_to_date)
885 return;
887 spin_lock(&low_water_lock);
888 if (free < lowest_to_date) {
889 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
890 "left\n",
891 current->comm, free);
892 lowest_to_date = free;
894 spin_unlock(&low_water_lock);
896 #else
897 static inline void check_stack_usage(void) {}
898 #endif
900 NORET_TYPE void do_exit(long code)
902 struct task_struct *tsk = current;
903 int group_dead;
905 profile_task_exit(tsk);
907 WARN_ON(atomic_read(&tsk->fs_excl));
909 if (unlikely(in_interrupt()))
910 panic("Aiee, killing interrupt handler!");
911 if (unlikely(!tsk->pid))
912 panic("Attempted to kill the idle task!");
915 * If do_exit is called because this processes oopsed, it's possible
916 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
917 * continuing. Amongst other possible reasons, this is to prevent
918 * mm_release()->clear_child_tid() from writing to a user-controlled
919 * kernel address.
921 set_fs(USER_DS);
923 tracehook_report_exit(&code);
925 validate_creds_for_do_exit(tsk);
928 * We're taking recursive faults here in do_exit. Safest is to just
929 * leave this task alone and wait for reboot.
931 if (unlikely(tsk->flags & PF_EXITING)) {
932 printk(KERN_ALERT
933 "Fixing recursive fault but reboot is needed!\n");
935 * We can do this unlocked here. The futex code uses
936 * this flag just to verify whether the pi state
937 * cleanup has been done or not. In the worst case it
938 * loops once more. We pretend that the cleanup was
939 * done as there is no way to return. Either the
940 * OWNER_DIED bit is set by now or we push the blocked
941 * task into the wait for ever nirwana as well.
943 tsk->flags |= PF_EXITPIDONE;
944 set_current_state(TASK_UNINTERRUPTIBLE);
945 schedule();
948 exit_irq_thread();
950 exit_signals(tsk); /* sets PF_EXITING */
952 * tsk->flags are checked in the futex code to protect against
953 * an exiting task cleaning up the robust pi futexes.
955 smp_mb();
956 raw_spin_unlock_wait(&tsk->pi_lock);
958 if (unlikely(in_atomic()))
959 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
960 current->comm, task_pid_nr(current),
961 preempt_count());
963 acct_update_integrals(tsk);
965 group_dead = atomic_dec_and_test(&tsk->signal->live);
966 if (group_dead) {
967 hrtimer_cancel(&tsk->signal->real_timer);
968 exit_itimers(tsk->signal);
969 if (tsk->mm)
970 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
972 acct_collect(code, group_dead);
973 if (group_dead)
974 tty_audit_exit();
975 if (unlikely(tsk->audit_context))
976 audit_free(tsk);
978 tsk->exit_code = code;
979 taskstats_exit(tsk, group_dead);
981 exit_mm(tsk);
983 if (group_dead)
984 acct_process();
985 trace_sched_process_exit(tsk);
987 exit_sem(tsk);
988 exit_files(tsk);
989 exit_fs(tsk);
990 check_stack_usage();
991 exit_thread();
992 cgroup_exit(tsk, 1);
994 if (group_dead)
995 disassociate_ctty(1);
997 module_put(task_thread_info(tsk)->exec_domain->module);
999 proc_exit_connector(tsk);
1002 * FIXME: do that only when needed, using sched_exit tracepoint
1004 flush_ptrace_hw_breakpoint(tsk);
1006 * Flush inherited counters to the parent - before the parent
1007 * gets woken up by child-exit notifications.
1009 perf_event_exit_task(tsk);
1011 exit_notify(tsk, group_dead);
1012 #ifdef CONFIG_NUMA
1013 mpol_put(tsk->mempolicy);
1014 tsk->mempolicy = NULL;
1015 #endif
1016 #ifdef CONFIG_FUTEX
1017 if (unlikely(current->pi_state_cache))
1018 kfree(current->pi_state_cache);
1019 #endif
1021 * Make sure we are holding no locks:
1023 debug_check_no_locks_held(tsk);
1025 * We can do this unlocked here. The futex code uses this flag
1026 * just to verify whether the pi state cleanup has been done
1027 * or not. In the worst case it loops once more.
1029 tsk->flags |= PF_EXITPIDONE;
1031 if (tsk->io_context)
1032 exit_io_context(tsk);
1034 if (tsk->splice_pipe)
1035 __free_pipe_info(tsk->splice_pipe);
1037 validate_creds_for_do_exit(tsk);
1039 preempt_disable();
1040 exit_rcu();
1041 /* causes final put_task_struct in finish_task_switch(). */
1042 tsk->state = TASK_DEAD;
1043 schedule();
1044 BUG();
1045 /* Avoid "noreturn function does return". */
1046 for (;;)
1047 cpu_relax(); /* For when BUG is null */
1050 EXPORT_SYMBOL_GPL(do_exit);
1052 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1054 if (comp)
1055 complete(comp);
1057 do_exit(code);
1060 EXPORT_SYMBOL(complete_and_exit);
1062 SYSCALL_DEFINE1(exit, int, error_code)
1064 do_exit((error_code&0xff)<<8);
1068 * Take down every thread in the group. This is called by fatal signals
1069 * as well as by sys_exit_group (below).
1071 NORET_TYPE void
1072 do_group_exit(int exit_code)
1074 struct signal_struct *sig = current->signal;
1076 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1078 if (signal_group_exit(sig))
1079 exit_code = sig->group_exit_code;
1080 else if (!thread_group_empty(current)) {
1081 struct sighand_struct *const sighand = current->sighand;
1082 spin_lock_irq(&sighand->siglock);
1083 if (signal_group_exit(sig))
1084 /* Another thread got here before we took the lock. */
1085 exit_code = sig->group_exit_code;
1086 else {
1087 sig->group_exit_code = exit_code;
1088 sig->flags = SIGNAL_GROUP_EXIT;
1089 zap_other_threads(current);
1091 spin_unlock_irq(&sighand->siglock);
1094 do_exit(exit_code);
1095 /* NOTREACHED */
1099 * this kills every thread in the thread group. Note that any externally
1100 * wait4()-ing process will get the correct exit code - even if this
1101 * thread is not the thread group leader.
1103 SYSCALL_DEFINE1(exit_group, int, error_code)
1105 do_group_exit((error_code & 0xff) << 8);
1106 /* NOTREACHED */
1107 return 0;
1110 struct wait_opts {
1111 enum pid_type wo_type;
1112 int wo_flags;
1113 struct pid *wo_pid;
1115 struct siginfo __user *wo_info;
1116 int __user *wo_stat;
1117 struct rusage __user *wo_rusage;
1119 wait_queue_t child_wait;
1120 int notask_error;
1123 static inline
1124 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1126 if (type != PIDTYPE_PID)
1127 task = task->group_leader;
1128 return task->pids[type].pid;
1131 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1133 return wo->wo_type == PIDTYPE_MAX ||
1134 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1137 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1139 if (!eligible_pid(wo, p))
1140 return 0;
1141 /* Wait for all children (clone and not) if __WALL is set;
1142 * otherwise, wait for clone children *only* if __WCLONE is
1143 * set; otherwise, wait for non-clone children *only*. (Note:
1144 * A "clone" child here is one that reports to its parent
1145 * using a signal other than SIGCHLD.) */
1146 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1147 && !(wo->wo_flags & __WALL))
1148 return 0;
1150 return 1;
1153 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1154 pid_t pid, uid_t uid, int why, int status)
1156 struct siginfo __user *infop;
1157 int retval = wo->wo_rusage
1158 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1160 put_task_struct(p);
1161 infop = wo->wo_info;
1162 if (infop) {
1163 if (!retval)
1164 retval = put_user(SIGCHLD, &infop->si_signo);
1165 if (!retval)
1166 retval = put_user(0, &infop->si_errno);
1167 if (!retval)
1168 retval = put_user((short)why, &infop->si_code);
1169 if (!retval)
1170 retval = put_user(pid, &infop->si_pid);
1171 if (!retval)
1172 retval = put_user(uid, &infop->si_uid);
1173 if (!retval)
1174 retval = put_user(status, &infop->si_status);
1176 if (!retval)
1177 retval = pid;
1178 return retval;
1182 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1183 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1184 * the lock and this task is uninteresting. If we return nonzero, we have
1185 * released the lock and the system call should return.
1187 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1189 unsigned long state;
1190 int retval, status, traced;
1191 pid_t pid = task_pid_vnr(p);
1192 uid_t uid = __task_cred(p)->uid;
1193 struct siginfo __user *infop;
1195 if (!likely(wo->wo_flags & WEXITED))
1196 return 0;
1198 if (unlikely(wo->wo_flags & WNOWAIT)) {
1199 int exit_code = p->exit_code;
1200 int why, status;
1202 get_task_struct(p);
1203 read_unlock(&tasklist_lock);
1204 if ((exit_code & 0x7f) == 0) {
1205 why = CLD_EXITED;
1206 status = exit_code >> 8;
1207 } else {
1208 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1209 status = exit_code & 0x7f;
1211 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1215 * Try to move the task's state to DEAD
1216 * only one thread is allowed to do this:
1218 state = xchg(&p->exit_state, EXIT_DEAD);
1219 if (state != EXIT_ZOMBIE) {
1220 BUG_ON(state != EXIT_DEAD);
1221 return 0;
1224 traced = ptrace_reparented(p);
1226 * It can be ptraced but not reparented, check
1227 * !task_detached() to filter out sub-threads.
1229 if (likely(!traced) && likely(!task_detached(p))) {
1230 struct signal_struct *psig;
1231 struct signal_struct *sig;
1232 unsigned long maxrss;
1233 cputime_t tgutime, tgstime;
1236 * The resource counters for the group leader are in its
1237 * own task_struct. Those for dead threads in the group
1238 * are in its signal_struct, as are those for the child
1239 * processes it has previously reaped. All these
1240 * accumulate in the parent's signal_struct c* fields.
1242 * We don't bother to take a lock here to protect these
1243 * p->signal fields, because they are only touched by
1244 * __exit_signal, which runs with tasklist_lock
1245 * write-locked anyway, and so is excluded here. We do
1246 * need to protect the access to parent->signal fields,
1247 * as other threads in the parent group can be right
1248 * here reaping other children at the same time.
1250 * We use thread_group_times() to get times for the thread
1251 * group, which consolidates times for all threads in the
1252 * group including the group leader.
1254 thread_group_times(p, &tgutime, &tgstime);
1255 spin_lock_irq(&p->real_parent->sighand->siglock);
1256 psig = p->real_parent->signal;
1257 sig = p->signal;
1258 psig->cutime =
1259 cputime_add(psig->cutime,
1260 cputime_add(tgutime,
1261 sig->cutime));
1262 psig->cstime =
1263 cputime_add(psig->cstime,
1264 cputime_add(tgstime,
1265 sig->cstime));
1266 psig->cgtime =
1267 cputime_add(psig->cgtime,
1268 cputime_add(p->gtime,
1269 cputime_add(sig->gtime,
1270 sig->cgtime)));
1271 psig->cmin_flt +=
1272 p->min_flt + sig->min_flt + sig->cmin_flt;
1273 psig->cmaj_flt +=
1274 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1275 psig->cnvcsw +=
1276 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1277 psig->cnivcsw +=
1278 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1279 psig->cinblock +=
1280 task_io_get_inblock(p) +
1281 sig->inblock + sig->cinblock;
1282 psig->coublock +=
1283 task_io_get_oublock(p) +
1284 sig->oublock + sig->coublock;
1285 maxrss = max(sig->maxrss, sig->cmaxrss);
1286 if (psig->cmaxrss < maxrss)
1287 psig->cmaxrss = maxrss;
1288 task_io_accounting_add(&psig->ioac, &p->ioac);
1289 task_io_accounting_add(&psig->ioac, &sig->ioac);
1290 spin_unlock_irq(&p->real_parent->sighand->siglock);
1294 * Now we are sure this task is interesting, and no other
1295 * thread can reap it because we set its state to EXIT_DEAD.
1297 read_unlock(&tasklist_lock);
1299 retval = wo->wo_rusage
1300 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1301 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1302 ? p->signal->group_exit_code : p->exit_code;
1303 if (!retval && wo->wo_stat)
1304 retval = put_user(status, wo->wo_stat);
1306 infop = wo->wo_info;
1307 if (!retval && infop)
1308 retval = put_user(SIGCHLD, &infop->si_signo);
1309 if (!retval && infop)
1310 retval = put_user(0, &infop->si_errno);
1311 if (!retval && infop) {
1312 int why;
1314 if ((status & 0x7f) == 0) {
1315 why = CLD_EXITED;
1316 status >>= 8;
1317 } else {
1318 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1319 status &= 0x7f;
1321 retval = put_user((short)why, &infop->si_code);
1322 if (!retval)
1323 retval = put_user(status, &infop->si_status);
1325 if (!retval && infop)
1326 retval = put_user(pid, &infop->si_pid);
1327 if (!retval && infop)
1328 retval = put_user(uid, &infop->si_uid);
1329 if (!retval)
1330 retval = pid;
1332 if (traced) {
1333 write_lock_irq(&tasklist_lock);
1334 /* We dropped tasklist, ptracer could die and untrace */
1335 ptrace_unlink(p);
1337 * If this is not a detached task, notify the parent.
1338 * If it's still not detached after that, don't release
1339 * it now.
1341 if (!task_detached(p)) {
1342 do_notify_parent(p, p->exit_signal);
1343 if (!task_detached(p)) {
1344 p->exit_state = EXIT_ZOMBIE;
1345 p = NULL;
1348 write_unlock_irq(&tasklist_lock);
1350 if (p != NULL)
1351 release_task(p);
1353 return retval;
1356 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1358 if (ptrace) {
1359 if (task_is_stopped_or_traced(p))
1360 return &p->exit_code;
1361 } else {
1362 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1363 return &p->signal->group_exit_code;
1365 return NULL;
1369 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1370 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1371 * the lock and this task is uninteresting. If we return nonzero, we have
1372 * released the lock and the system call should return.
1374 static int wait_task_stopped(struct wait_opts *wo,
1375 int ptrace, struct task_struct *p)
1377 struct siginfo __user *infop;
1378 int retval, exit_code, *p_code, why;
1379 uid_t uid = 0; /* unneeded, required by compiler */
1380 pid_t pid;
1383 * Traditionally we see ptrace'd stopped tasks regardless of options.
1385 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1386 return 0;
1388 exit_code = 0;
1389 spin_lock_irq(&p->sighand->siglock);
1391 p_code = task_stopped_code(p, ptrace);
1392 if (unlikely(!p_code))
1393 goto unlock_sig;
1395 exit_code = *p_code;
1396 if (!exit_code)
1397 goto unlock_sig;
1399 if (!unlikely(wo->wo_flags & WNOWAIT))
1400 *p_code = 0;
1402 /* don't need the RCU readlock here as we're holding a spinlock */
1403 uid = __task_cred(p)->uid;
1404 unlock_sig:
1405 spin_unlock_irq(&p->sighand->siglock);
1406 if (!exit_code)
1407 return 0;
1410 * Now we are pretty sure this task is interesting.
1411 * Make sure it doesn't get reaped out from under us while we
1412 * give up the lock and then examine it below. We don't want to
1413 * keep holding onto the tasklist_lock while we call getrusage and
1414 * possibly take page faults for user memory.
1416 get_task_struct(p);
1417 pid = task_pid_vnr(p);
1418 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1419 read_unlock(&tasklist_lock);
1421 if (unlikely(wo->wo_flags & WNOWAIT))
1422 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1424 retval = wo->wo_rusage
1425 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1426 if (!retval && wo->wo_stat)
1427 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1429 infop = wo->wo_info;
1430 if (!retval && infop)
1431 retval = put_user(SIGCHLD, &infop->si_signo);
1432 if (!retval && infop)
1433 retval = put_user(0, &infop->si_errno);
1434 if (!retval && infop)
1435 retval = put_user((short)why, &infop->si_code);
1436 if (!retval && infop)
1437 retval = put_user(exit_code, &infop->si_status);
1438 if (!retval && infop)
1439 retval = put_user(pid, &infop->si_pid);
1440 if (!retval && infop)
1441 retval = put_user(uid, &infop->si_uid);
1442 if (!retval)
1443 retval = pid;
1444 put_task_struct(p);
1446 BUG_ON(!retval);
1447 return retval;
1451 * Handle do_wait work for one task in a live, non-stopped state.
1452 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1453 * the lock and this task is uninteresting. If we return nonzero, we have
1454 * released the lock and the system call should return.
1456 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1458 int retval;
1459 pid_t pid;
1460 uid_t uid;
1462 if (!unlikely(wo->wo_flags & WCONTINUED))
1463 return 0;
1465 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1466 return 0;
1468 spin_lock_irq(&p->sighand->siglock);
1469 /* Re-check with the lock held. */
1470 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1471 spin_unlock_irq(&p->sighand->siglock);
1472 return 0;
1474 if (!unlikely(wo->wo_flags & WNOWAIT))
1475 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1476 uid = __task_cred(p)->uid;
1477 spin_unlock_irq(&p->sighand->siglock);
1479 pid = task_pid_vnr(p);
1480 get_task_struct(p);
1481 read_unlock(&tasklist_lock);
1483 if (!wo->wo_info) {
1484 retval = wo->wo_rusage
1485 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1486 put_task_struct(p);
1487 if (!retval && wo->wo_stat)
1488 retval = put_user(0xffff, wo->wo_stat);
1489 if (!retval)
1490 retval = pid;
1491 } else {
1492 retval = wait_noreap_copyout(wo, p, pid, uid,
1493 CLD_CONTINUED, SIGCONT);
1494 BUG_ON(retval == 0);
1497 return retval;
1501 * Consider @p for a wait by @parent.
1503 * -ECHILD should be in ->notask_error before the first call.
1504 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1505 * Returns zero if the search for a child should continue;
1506 * then ->notask_error is 0 if @p is an eligible child,
1507 * or another error from security_task_wait(), or still -ECHILD.
1509 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1510 struct task_struct *p)
1512 int ret = eligible_child(wo, p);
1513 if (!ret)
1514 return ret;
1516 ret = security_task_wait(p);
1517 if (unlikely(ret < 0)) {
1519 * If we have not yet seen any eligible child,
1520 * then let this error code replace -ECHILD.
1521 * A permission error will give the user a clue
1522 * to look for security policy problems, rather
1523 * than for mysterious wait bugs.
1525 if (wo->notask_error)
1526 wo->notask_error = ret;
1527 return 0;
1530 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1532 * This child is hidden by ptrace.
1533 * We aren't allowed to see it now, but eventually we will.
1535 wo->notask_error = 0;
1536 return 0;
1539 if (p->exit_state == EXIT_DEAD)
1540 return 0;
1543 * We don't reap group leaders with subthreads.
1545 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1546 return wait_task_zombie(wo, p);
1549 * It's stopped or running now, so it might
1550 * later continue, exit, or stop again.
1552 wo->notask_error = 0;
1554 if (task_stopped_code(p, ptrace))
1555 return wait_task_stopped(wo, ptrace, p);
1557 return wait_task_continued(wo, p);
1561 * Do the work of do_wait() for one thread in the group, @tsk.
1563 * -ECHILD should be in ->notask_error before the first call.
1564 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1565 * Returns zero if the search for a child should continue; then
1566 * ->notask_error is 0 if there were any eligible children,
1567 * or another error from security_task_wait(), or still -ECHILD.
1569 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1571 struct task_struct *p;
1573 list_for_each_entry(p, &tsk->children, sibling) {
1574 int ret = wait_consider_task(wo, 0, p);
1575 if (ret)
1576 return ret;
1579 return 0;
1582 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1584 struct task_struct *p;
1586 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1587 int ret = wait_consider_task(wo, 1, p);
1588 if (ret)
1589 return ret;
1592 return 0;
1595 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1596 int sync, void *key)
1598 struct wait_opts *wo = container_of(wait, struct wait_opts,
1599 child_wait);
1600 struct task_struct *p = key;
1602 if (!eligible_pid(wo, p))
1603 return 0;
1605 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1606 return 0;
1608 return default_wake_function(wait, mode, sync, key);
1611 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1613 __wake_up_sync_key(&parent->signal->wait_chldexit,
1614 TASK_INTERRUPTIBLE, 1, p);
1617 static long do_wait(struct wait_opts *wo)
1619 struct task_struct *tsk;
1620 int retval;
1622 trace_sched_process_wait(wo->wo_pid);
1624 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1625 wo->child_wait.private = current;
1626 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1627 repeat:
1629 * If there is nothing that can match our critiera just get out.
1630 * We will clear ->notask_error to zero if we see any child that
1631 * might later match our criteria, even if we are not able to reap
1632 * it yet.
1634 wo->notask_error = -ECHILD;
1635 if ((wo->wo_type < PIDTYPE_MAX) &&
1636 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1637 goto notask;
1639 set_current_state(TASK_INTERRUPTIBLE);
1640 read_lock(&tasklist_lock);
1641 tsk = current;
1642 do {
1643 retval = do_wait_thread(wo, tsk);
1644 if (retval)
1645 goto end;
1647 retval = ptrace_do_wait(wo, tsk);
1648 if (retval)
1649 goto end;
1651 if (wo->wo_flags & __WNOTHREAD)
1652 break;
1653 } while_each_thread(current, tsk);
1654 read_unlock(&tasklist_lock);
1656 notask:
1657 retval = wo->notask_error;
1658 if (!retval && !(wo->wo_flags & WNOHANG)) {
1659 retval = -ERESTARTSYS;
1660 if (!signal_pending(current)) {
1661 schedule();
1662 goto repeat;
1665 end:
1666 __set_current_state(TASK_RUNNING);
1667 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1668 return retval;
1671 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1672 infop, int, options, struct rusage __user *, ru)
1674 struct wait_opts wo;
1675 struct pid *pid = NULL;
1676 enum pid_type type;
1677 long ret;
1679 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1680 return -EINVAL;
1681 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1682 return -EINVAL;
1684 switch (which) {
1685 case P_ALL:
1686 type = PIDTYPE_MAX;
1687 break;
1688 case P_PID:
1689 type = PIDTYPE_PID;
1690 if (upid <= 0)
1691 return -EINVAL;
1692 break;
1693 case P_PGID:
1694 type = PIDTYPE_PGID;
1695 if (upid <= 0)
1696 return -EINVAL;
1697 break;
1698 default:
1699 return -EINVAL;
1702 if (type < PIDTYPE_MAX)
1703 pid = find_get_pid(upid);
1705 wo.wo_type = type;
1706 wo.wo_pid = pid;
1707 wo.wo_flags = options;
1708 wo.wo_info = infop;
1709 wo.wo_stat = NULL;
1710 wo.wo_rusage = ru;
1711 ret = do_wait(&wo);
1713 if (ret > 0) {
1714 ret = 0;
1715 } else if (infop) {
1717 * For a WNOHANG return, clear out all the fields
1718 * we would set so the user can easily tell the
1719 * difference.
1721 if (!ret)
1722 ret = put_user(0, &infop->si_signo);
1723 if (!ret)
1724 ret = put_user(0, &infop->si_errno);
1725 if (!ret)
1726 ret = put_user(0, &infop->si_code);
1727 if (!ret)
1728 ret = put_user(0, &infop->si_pid);
1729 if (!ret)
1730 ret = put_user(0, &infop->si_uid);
1731 if (!ret)
1732 ret = put_user(0, &infop->si_status);
1735 put_pid(pid);
1737 /* avoid REGPARM breakage on x86: */
1738 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1739 return ret;
1742 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1743 int, options, struct rusage __user *, ru)
1745 struct wait_opts wo;
1746 struct pid *pid = NULL;
1747 enum pid_type type;
1748 long ret;
1750 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1751 __WNOTHREAD|__WCLONE|__WALL))
1752 return -EINVAL;
1754 if (upid == -1)
1755 type = PIDTYPE_MAX;
1756 else if (upid < 0) {
1757 type = PIDTYPE_PGID;
1758 pid = find_get_pid(-upid);
1759 } else if (upid == 0) {
1760 type = PIDTYPE_PGID;
1761 pid = get_task_pid(current, PIDTYPE_PGID);
1762 } else /* upid > 0 */ {
1763 type = PIDTYPE_PID;
1764 pid = find_get_pid(upid);
1767 wo.wo_type = type;
1768 wo.wo_pid = pid;
1769 wo.wo_flags = options | WEXITED;
1770 wo.wo_info = NULL;
1771 wo.wo_stat = stat_addr;
1772 wo.wo_rusage = ru;
1773 ret = do_wait(&wo);
1774 put_pid(pid);
1776 /* avoid REGPARM breakage on x86: */
1777 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1778 return ret;
1781 #ifdef __ARCH_WANT_SYS_WAITPID
1784 * sys_waitpid() remains for compatibility. waitpid() should be
1785 * implemented by calling sys_wait4() from libc.a.
1787 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1789 return sys_wait4(pid, stat_addr, options, NULL);
1792 #endif