2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <linux/sched.h>
43 #include <linux/pagemap.h>
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE 50
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH 8
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS 0
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG 0
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG 0
83 #ifndef CONFIG_NANDSIM_MAX_PARTS
84 #define CONFIG_NANDSIM_MAX_PARTS 32
87 static uint first_id_byte
= CONFIG_NANDSIM_FIRST_ID_BYTE
;
88 static uint second_id_byte
= CONFIG_NANDSIM_SECOND_ID_BYTE
;
89 static uint third_id_byte
= CONFIG_NANDSIM_THIRD_ID_BYTE
;
90 static uint fourth_id_byte
= CONFIG_NANDSIM_FOURTH_ID_BYTE
;
91 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
92 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
93 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
94 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
95 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
96 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
97 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
98 static uint log
= CONFIG_NANDSIM_LOG
;
99 static uint dbg
= CONFIG_NANDSIM_DBG
;
100 static unsigned long parts
[CONFIG_NANDSIM_MAX_PARTS
];
101 static unsigned int parts_num
;
102 static char *badblocks
= NULL
;
103 static char *weakblocks
= NULL
;
104 static char *weakpages
= NULL
;
105 static unsigned int bitflips
= 0;
106 static char *gravepages
= NULL
;
107 static unsigned int rptwear
= 0;
108 static unsigned int overridesize
= 0;
109 static char *cache_file
= NULL
;
110 static unsigned int bbt
;
112 module_param(first_id_byte
, uint
, 0400);
113 module_param(second_id_byte
, uint
, 0400);
114 module_param(third_id_byte
, uint
, 0400);
115 module_param(fourth_id_byte
, uint
, 0400);
116 module_param(access_delay
, uint
, 0400);
117 module_param(programm_delay
, uint
, 0400);
118 module_param(erase_delay
, uint
, 0400);
119 module_param(output_cycle
, uint
, 0400);
120 module_param(input_cycle
, uint
, 0400);
121 module_param(bus_width
, uint
, 0400);
122 module_param(do_delays
, uint
, 0400);
123 module_param(log
, uint
, 0400);
124 module_param(dbg
, uint
, 0400);
125 module_param_array(parts
, ulong
, &parts_num
, 0400);
126 module_param(badblocks
, charp
, 0400);
127 module_param(weakblocks
, charp
, 0400);
128 module_param(weakpages
, charp
, 0400);
129 module_param(bitflips
, uint
, 0400);
130 module_param(gravepages
, charp
, 0400);
131 module_param(rptwear
, uint
, 0400);
132 module_param(overridesize
, uint
, 0400);
133 module_param(cache_file
, charp
, 0400);
134 module_param(bbt
, uint
, 0400);
136 MODULE_PARM_DESC(first_id_byte
, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
137 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
138 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command");
139 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command");
140 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microseconds)");
141 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
142 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
143 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanoseconds)");
144 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanoseconds)");
145 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
146 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
147 MODULE_PARM_DESC(log
, "Perform logging if not zero");
148 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
149 MODULE_PARM_DESC(parts
, "Partition sizes (in erase blocks) separated by commas");
150 /* Page and erase block positions for the following parameters are independent of any partitions */
151 MODULE_PARM_DESC(badblocks
, "Erase blocks that are initially marked bad, separated by commas");
152 MODULE_PARM_DESC(weakblocks
, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
153 " separated by commas e.g. 113:2 means eb 113"
154 " can be erased only twice before failing");
155 MODULE_PARM_DESC(weakpages
, "Weak pages [: maximum writes (defaults to 3)]"
156 " separated by commas e.g. 1401:2 means page 1401"
157 " can be written only twice before failing");
158 MODULE_PARM_DESC(bitflips
, "Maximum number of random bit flips per page (zero by default)");
159 MODULE_PARM_DESC(gravepages
, "Pages that lose data [: maximum reads (defaults to 3)]"
160 " separated by commas e.g. 1401:2 means page 1401"
161 " can be read only twice before failing");
162 MODULE_PARM_DESC(rptwear
, "Number of erases inbetween reporting wear, if not zero");
163 MODULE_PARM_DESC(overridesize
, "Specifies the NAND Flash size overriding the ID bytes. "
164 "The size is specified in erase blocks and as the exponent of a power of two"
165 " e.g. 5 means a size of 32 erase blocks");
166 MODULE_PARM_DESC(cache_file
, "File to use to cache nand pages instead of memory");
167 MODULE_PARM_DESC(bbt
, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
169 /* The largest possible page size */
170 #define NS_LARGEST_PAGE_SIZE 4096
172 /* The prefix for simulator output */
173 #define NS_OUTPUT_PREFIX "[nandsim]"
175 /* Simulator's output macros (logging, debugging, warning, error) */
176 #define NS_LOG(args...) \
177 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
178 #define NS_DBG(args...) \
179 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
180 #define NS_WARN(args...) \
181 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
182 #define NS_ERR(args...) \
183 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
184 #define NS_INFO(args...) \
185 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
187 /* Busy-wait delay macros (microseconds, milliseconds) */
188 #define NS_UDELAY(us) \
189 do { if (do_delays) udelay(us); } while(0)
190 #define NS_MDELAY(us) \
191 do { if (do_delays) mdelay(us); } while(0)
193 /* Is the nandsim structure initialized ? */
194 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
196 /* Good operation completion status */
197 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
199 /* Operation failed completion status */
200 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
202 /* Calculate the page offset in flash RAM image by (row, column) address */
203 #define NS_RAW_OFFSET(ns) \
204 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
206 /* Calculate the OOB offset in flash RAM image by (row, column) address */
207 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
209 /* After a command is input, the simulator goes to one of the following states */
210 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
211 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
212 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
213 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
214 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
215 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
216 #define STATE_CMD_STATUS 0x00000007 /* read status */
217 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
218 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
219 #define STATE_CMD_READID 0x0000000A /* read ID */
220 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
221 #define STATE_CMD_RESET 0x0000000C /* reset */
222 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
223 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
224 #define STATE_CMD_MASK 0x0000000F /* command states mask */
226 /* After an address is input, the simulator goes to one of these states */
227 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
228 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
229 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
230 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
231 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
233 /* During data input/output the simulator is in these states */
234 #define STATE_DATAIN 0x00000100 /* waiting for data input */
235 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
237 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
238 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
239 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
240 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
241 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
243 /* Previous operation is done, ready to accept new requests */
244 #define STATE_READY 0x00000000
246 /* This state is used to mark that the next state isn't known yet */
247 #define STATE_UNKNOWN 0x10000000
249 /* Simulator's actions bit masks */
250 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
251 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
252 #define ACTION_SECERASE 0x00300000 /* erase sector */
253 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
254 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
255 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
256 #define ACTION_MASK 0x00700000 /* action mask */
258 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
259 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
261 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
262 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
263 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
264 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
265 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
266 #define OPT_AUTOINCR 0x00000020 /* page number auto incrementation is possible */
267 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
268 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
269 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
270 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
272 /* Remove action bits from state */
273 #define NS_STATE(x) ((x) & ~ACTION_MASK)
276 * Maximum previous states which need to be saved. Currently saving is
277 * only needed for page program operation with preceded read command
278 * (which is only valid for 512-byte pages).
280 #define NS_MAX_PREVSTATES 1
282 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
283 #define NS_MAX_HELD_PAGES 16
286 * A union to represent flash memory contents and flash buffer.
289 u_char
*byte
; /* for byte access */
290 uint16_t *word
; /* for 16-bit word access */
294 * The structure which describes all the internal simulator data.
297 struct mtd_partition partitions
[CONFIG_NANDSIM_MAX_PARTS
];
298 unsigned int nbparts
;
300 uint busw
; /* flash chip bus width (8 or 16) */
301 u_char ids
[4]; /* chip's ID bytes */
302 uint32_t options
; /* chip's characteristic bits */
303 uint32_t state
; /* current chip state */
304 uint32_t nxstate
; /* next expected state */
306 uint32_t *op
; /* current operation, NULL operations isn't known yet */
307 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
308 uint16_t npstates
; /* number of previous states saved */
309 uint16_t stateidx
; /* current state index */
311 /* The simulated NAND flash pages array */
314 /* Slab allocator for nand pages */
315 struct kmem_cache
*nand_pages_slab
;
317 /* Internal buffer of page + OOB size bytes */
320 /* NAND flash "geometry" */
322 uint64_t totsz
; /* total flash size, bytes */
323 uint32_t secsz
; /* flash sector (erase block) size, bytes */
324 uint pgsz
; /* NAND flash page size, bytes */
325 uint oobsz
; /* page OOB area size, bytes */
326 uint64_t totszoob
; /* total flash size including OOB, bytes */
327 uint pgszoob
; /* page size including OOB , bytes*/
328 uint secszoob
; /* sector size including OOB, bytes */
329 uint pgnum
; /* total number of pages */
330 uint pgsec
; /* number of pages per sector */
331 uint secshift
; /* bits number in sector size */
332 uint pgshift
; /* bits number in page size */
333 uint oobshift
; /* bits number in OOB size */
334 uint pgaddrbytes
; /* bytes per page address */
335 uint secaddrbytes
; /* bytes per sector address */
336 uint idbytes
; /* the number ID bytes that this chip outputs */
339 /* NAND flash internal registers */
341 unsigned command
; /* the command register */
342 u_char status
; /* the status register */
343 uint row
; /* the page number */
344 uint column
; /* the offset within page */
345 uint count
; /* internal counter */
346 uint num
; /* number of bytes which must be processed */
347 uint off
; /* fixed page offset */
350 /* NAND flash lines state */
352 int ce
; /* chip Enable */
353 int cle
; /* command Latch Enable */
354 int ale
; /* address Latch Enable */
355 int wp
; /* write Protect */
358 /* Fields needed when using a cache file */
359 struct file
*cfile
; /* Open file */
360 unsigned char *pages_written
; /* Which pages have been written */
362 struct page
*held_pages
[NS_MAX_HELD_PAGES
];
367 * Operations array. To perform any operation the simulator must pass
368 * through the correspondent states chain.
370 static struct nandsim_operations
{
371 uint32_t reqopts
; /* options which are required to perform the operation */
372 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
373 } ops
[NS_OPER_NUM
] = {
374 /* Read page + OOB from the beginning */
375 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
376 STATE_DATAOUT
, STATE_READY
}},
377 /* Read page + OOB from the second half */
378 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
379 STATE_DATAOUT
, STATE_READY
}},
381 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
382 STATE_DATAOUT
, STATE_READY
}},
383 /* Program page starting from the beginning */
384 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
385 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
386 /* Program page starting from the beginning */
387 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
388 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
389 /* Program page starting from the second half */
390 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
391 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
393 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
394 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
396 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
398 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
399 /* Read multi-plane status */
400 {OPT_SMARTMEDIA
, {STATE_CMD_STATUS_M
, STATE_DATAOUT_STATUS_M
, STATE_READY
}},
402 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
403 /* Large page devices read page */
404 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
405 STATE_DATAOUT
, STATE_READY
}},
406 /* Large page devices random page read */
407 {OPT_LARGEPAGE
, {STATE_CMD_RNDOUT
, STATE_ADDR_COLUMN
, STATE_CMD_RNDOUTSTART
| ACTION_CPY
,
408 STATE_DATAOUT
, STATE_READY
}},
412 struct list_head list
;
413 unsigned int erase_block_no
;
414 unsigned int max_erases
;
415 unsigned int erases_done
;
418 static LIST_HEAD(weak_blocks
);
421 struct list_head list
;
422 unsigned int page_no
;
423 unsigned int max_writes
;
424 unsigned int writes_done
;
427 static LIST_HEAD(weak_pages
);
430 struct list_head list
;
431 unsigned int page_no
;
432 unsigned int max_reads
;
433 unsigned int reads_done
;
436 static LIST_HEAD(grave_pages
);
438 static unsigned long *erase_block_wear
= NULL
;
439 static unsigned int wear_eb_count
= 0;
440 static unsigned long total_wear
= 0;
441 static unsigned int rptwear_cnt
= 0;
443 /* MTD structure for NAND controller */
444 static struct mtd_info
*nsmtd
;
446 static u_char ns_verify_buf
[NS_LARGEST_PAGE_SIZE
];
449 * Allocate array of page pointers, create slab allocation for an array
450 * and initialize the array by NULL pointers.
452 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
454 static int alloc_device(struct nandsim
*ns
)
460 cfile
= filp_open(cache_file
, O_CREAT
| O_RDWR
| O_LARGEFILE
, 0600);
462 return PTR_ERR(cfile
);
463 if (!cfile
->f_op
|| (!cfile
->f_op
->read
&& !cfile
->f_op
->aio_read
)) {
464 NS_ERR("alloc_device: cache file not readable\n");
468 if (!cfile
->f_op
->write
&& !cfile
->f_op
->aio_write
) {
469 NS_ERR("alloc_device: cache file not writeable\n");
473 ns
->pages_written
= vzalloc(ns
->geom
.pgnum
);
474 if (!ns
->pages_written
) {
475 NS_ERR("alloc_device: unable to allocate pages written array\n");
479 ns
->file_buf
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
481 NS_ERR("alloc_device: unable to allocate file buf\n");
489 ns
->pages
= vmalloc(ns
->geom
.pgnum
* sizeof(union ns_mem
));
491 NS_ERR("alloc_device: unable to allocate page array\n");
494 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
495 ns
->pages
[i
].byte
= NULL
;
497 ns
->nand_pages_slab
= kmem_cache_create("nandsim",
498 ns
->geom
.pgszoob
, 0, 0, NULL
);
499 if (!ns
->nand_pages_slab
) {
500 NS_ERR("cache_create: unable to create kmem_cache\n");
507 vfree(ns
->pages_written
);
509 filp_close(cfile
, NULL
);
514 * Free any allocated pages, and free the array of page pointers.
516 static void free_device(struct nandsim
*ns
)
522 vfree(ns
->pages_written
);
523 filp_close(ns
->cfile
, NULL
);
528 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
529 if (ns
->pages
[i
].byte
)
530 kmem_cache_free(ns
->nand_pages_slab
,
533 kmem_cache_destroy(ns
->nand_pages_slab
);
538 static char *get_partition_name(int i
)
541 sprintf(buf
, "NAND simulator partition %d", i
);
542 return kstrdup(buf
, GFP_KERNEL
);
545 static uint64_t divide(uint64_t n
, uint32_t d
)
552 * Initialize the nandsim structure.
554 * RETURNS: 0 if success, -ERRNO if failure.
556 static int init_nandsim(struct mtd_info
*mtd
)
558 struct nand_chip
*chip
= mtd
->priv
;
559 struct nandsim
*ns
= chip
->priv
;
562 uint64_t next_offset
;
564 if (NS_IS_INITIALIZED(ns
)) {
565 NS_ERR("init_nandsim: nandsim is already initialized\n");
569 /* Force mtd to not do delays */
570 chip
->chip_delay
= 0;
572 /* Initialize the NAND flash parameters */
573 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
574 ns
->geom
.totsz
= mtd
->size
;
575 ns
->geom
.pgsz
= mtd
->writesize
;
576 ns
->geom
.oobsz
= mtd
->oobsize
;
577 ns
->geom
.secsz
= mtd
->erasesize
;
578 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
579 ns
->geom
.pgnum
= divide(ns
->geom
.totsz
, ns
->geom
.pgsz
);
580 ns
->geom
.totszoob
= ns
->geom
.totsz
+ (uint64_t)ns
->geom
.pgnum
* ns
->geom
.oobsz
;
581 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
582 ns
->geom
.pgshift
= chip
->page_shift
;
583 ns
->geom
.oobshift
= ffs(ns
->geom
.oobsz
) - 1;
584 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
585 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
588 if (ns
->geom
.pgsz
== 256) {
589 ns
->options
|= OPT_PAGE256
;
591 else if (ns
->geom
.pgsz
== 512) {
592 ns
->options
|= (OPT_PAGE512
| OPT_AUTOINCR
);
594 ns
->options
|= OPT_PAGE512_8BIT
;
595 } else if (ns
->geom
.pgsz
== 2048) {
596 ns
->options
|= OPT_PAGE2048
;
597 } else if (ns
->geom
.pgsz
== 4096) {
598 ns
->options
|= OPT_PAGE4096
;
600 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
604 if (ns
->options
& OPT_SMALLPAGE
) {
605 if (ns
->geom
.totsz
<= (32 << 20)) {
606 ns
->geom
.pgaddrbytes
= 3;
607 ns
->geom
.secaddrbytes
= 2;
609 ns
->geom
.pgaddrbytes
= 4;
610 ns
->geom
.secaddrbytes
= 3;
613 if (ns
->geom
.totsz
<= (128 << 20)) {
614 ns
->geom
.pgaddrbytes
= 4;
615 ns
->geom
.secaddrbytes
= 2;
617 ns
->geom
.pgaddrbytes
= 5;
618 ns
->geom
.secaddrbytes
= 3;
622 /* Fill the partition_info structure */
623 if (parts_num
> ARRAY_SIZE(ns
->partitions
)) {
624 NS_ERR("too many partitions.\n");
628 remains
= ns
->geom
.totsz
;
630 for (i
= 0; i
< parts_num
; ++i
) {
631 uint64_t part_sz
= (uint64_t)parts
[i
] * ns
->geom
.secsz
;
633 if (!part_sz
|| part_sz
> remains
) {
634 NS_ERR("bad partition size.\n");
638 ns
->partitions
[i
].name
= get_partition_name(i
);
639 ns
->partitions
[i
].offset
= next_offset
;
640 ns
->partitions
[i
].size
= part_sz
;
641 next_offset
+= ns
->partitions
[i
].size
;
642 remains
-= ns
->partitions
[i
].size
;
644 ns
->nbparts
= parts_num
;
646 if (parts_num
+ 1 > ARRAY_SIZE(ns
->partitions
)) {
647 NS_ERR("too many partitions.\n");
651 ns
->partitions
[i
].name
= get_partition_name(i
);
652 ns
->partitions
[i
].offset
= next_offset
;
653 ns
->partitions
[i
].size
= remains
;
657 /* Detect how many ID bytes the NAND chip outputs */
658 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
659 if (second_id_byte
!= nand_flash_ids
[i
].id
)
661 if (!(nand_flash_ids
[i
].options
& NAND_NO_AUTOINCR
))
662 ns
->options
|= OPT_AUTOINCR
;
666 NS_WARN("16-bit flashes support wasn't tested\n");
668 printk("flash size: %llu MiB\n",
669 (unsigned long long)ns
->geom
.totsz
>> 20);
670 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
671 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
672 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
673 printk("pages number: %u\n", ns
->geom
.pgnum
);
674 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
675 printk("bus width: %u\n", ns
->busw
);
676 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
677 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
678 printk("bits in OOB size: %u\n", ns
->geom
.oobshift
);
679 printk("flash size with OOB: %llu KiB\n",
680 (unsigned long long)ns
->geom
.totszoob
>> 10);
681 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
682 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
683 printk("options: %#x\n", ns
->options
);
685 if ((ret
= alloc_device(ns
)) != 0)
688 /* Allocate / initialize the internal buffer */
689 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
691 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
696 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
707 * Free the nandsim structure.
709 static void free_nandsim(struct nandsim
*ns
)
717 static int parse_badblocks(struct nandsim
*ns
, struct mtd_info
*mtd
)
721 unsigned int erase_block_no
;
728 zero_ok
= (*w
== '0' ? 1 : 0);
729 erase_block_no
= simple_strtoul(w
, &w
, 0);
730 if (!zero_ok
&& !erase_block_no
) {
731 NS_ERR("invalid badblocks.\n");
734 offset
= erase_block_no
* ns
->geom
.secsz
;
735 if (mtd
->block_markbad(mtd
, offset
)) {
736 NS_ERR("invalid badblocks.\n");
745 static int parse_weakblocks(void)
749 unsigned int erase_block_no
;
750 unsigned int max_erases
;
751 struct weak_block
*wb
;
757 zero_ok
= (*w
== '0' ? 1 : 0);
758 erase_block_no
= simple_strtoul(w
, &w
, 0);
759 if (!zero_ok
&& !erase_block_no
) {
760 NS_ERR("invalid weakblocks.\n");
766 max_erases
= simple_strtoul(w
, &w
, 0);
770 wb
= kzalloc(sizeof(*wb
), GFP_KERNEL
);
772 NS_ERR("unable to allocate memory.\n");
775 wb
->erase_block_no
= erase_block_no
;
776 wb
->max_erases
= max_erases
;
777 list_add(&wb
->list
, &weak_blocks
);
782 static int erase_error(unsigned int erase_block_no
)
784 struct weak_block
*wb
;
786 list_for_each_entry(wb
, &weak_blocks
, list
)
787 if (wb
->erase_block_no
== erase_block_no
) {
788 if (wb
->erases_done
>= wb
->max_erases
)
790 wb
->erases_done
+= 1;
796 static int parse_weakpages(void)
800 unsigned int page_no
;
801 unsigned int max_writes
;
802 struct weak_page
*wp
;
808 zero_ok
= (*w
== '0' ? 1 : 0);
809 page_no
= simple_strtoul(w
, &w
, 0);
810 if (!zero_ok
&& !page_no
) {
811 NS_ERR("invalid weakpagess.\n");
817 max_writes
= simple_strtoul(w
, &w
, 0);
821 wp
= kzalloc(sizeof(*wp
), GFP_KERNEL
);
823 NS_ERR("unable to allocate memory.\n");
826 wp
->page_no
= page_no
;
827 wp
->max_writes
= max_writes
;
828 list_add(&wp
->list
, &weak_pages
);
833 static int write_error(unsigned int page_no
)
835 struct weak_page
*wp
;
837 list_for_each_entry(wp
, &weak_pages
, list
)
838 if (wp
->page_no
== page_no
) {
839 if (wp
->writes_done
>= wp
->max_writes
)
841 wp
->writes_done
+= 1;
847 static int parse_gravepages(void)
851 unsigned int page_no
;
852 unsigned int max_reads
;
853 struct grave_page
*gp
;
859 zero_ok
= (*g
== '0' ? 1 : 0);
860 page_no
= simple_strtoul(g
, &g
, 0);
861 if (!zero_ok
&& !page_no
) {
862 NS_ERR("invalid gravepagess.\n");
868 max_reads
= simple_strtoul(g
, &g
, 0);
872 gp
= kzalloc(sizeof(*gp
), GFP_KERNEL
);
874 NS_ERR("unable to allocate memory.\n");
877 gp
->page_no
= page_no
;
878 gp
->max_reads
= max_reads
;
879 list_add(&gp
->list
, &grave_pages
);
884 static int read_error(unsigned int page_no
)
886 struct grave_page
*gp
;
888 list_for_each_entry(gp
, &grave_pages
, list
)
889 if (gp
->page_no
== page_no
) {
890 if (gp
->reads_done
>= gp
->max_reads
)
898 static void free_lists(void)
900 struct list_head
*pos
, *n
;
901 list_for_each_safe(pos
, n
, &weak_blocks
) {
903 kfree(list_entry(pos
, struct weak_block
, list
));
905 list_for_each_safe(pos
, n
, &weak_pages
) {
907 kfree(list_entry(pos
, struct weak_page
, list
));
909 list_for_each_safe(pos
, n
, &grave_pages
) {
911 kfree(list_entry(pos
, struct grave_page
, list
));
913 kfree(erase_block_wear
);
916 static int setup_wear_reporting(struct mtd_info
*mtd
)
922 wear_eb_count
= divide(mtd
->size
, mtd
->erasesize
);
923 mem
= wear_eb_count
* sizeof(unsigned long);
924 if (mem
/ sizeof(unsigned long) != wear_eb_count
) {
925 NS_ERR("Too many erase blocks for wear reporting\n");
928 erase_block_wear
= kzalloc(mem
, GFP_KERNEL
);
929 if (!erase_block_wear
) {
930 NS_ERR("Too many erase blocks for wear reporting\n");
936 static void update_wear(unsigned int erase_block_no
)
938 unsigned long wmin
= -1, wmax
= 0, avg
;
939 unsigned long deciles
[10], decile_max
[10], tot
= 0;
942 if (!erase_block_wear
)
946 NS_ERR("Erase counter total overflow\n");
947 erase_block_wear
[erase_block_no
] += 1;
948 if (erase_block_wear
[erase_block_no
] == 0)
949 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no
);
951 if (rptwear_cnt
< rptwear
)
954 /* Calc wear stats */
955 for (i
= 0; i
< wear_eb_count
; ++i
) {
956 unsigned long wear
= erase_block_wear
[i
];
963 for (i
= 0; i
< 9; ++i
) {
965 decile_max
[i
] = (wmax
* (i
+ 1) + 5) / 10;
968 decile_max
[9] = wmax
;
969 for (i
= 0; i
< wear_eb_count
; ++i
) {
971 unsigned long wear
= erase_block_wear
[i
];
972 for (d
= 0; d
< 10; ++d
)
973 if (wear
<= decile_max
[d
]) {
978 avg
= tot
/ wear_eb_count
;
979 /* Output wear report */
980 NS_INFO("*** Wear Report ***\n");
981 NS_INFO("Total numbers of erases: %lu\n", tot
);
982 NS_INFO("Number of erase blocks: %u\n", wear_eb_count
);
983 NS_INFO("Average number of erases: %lu\n", avg
);
984 NS_INFO("Maximum number of erases: %lu\n", wmax
);
985 NS_INFO("Minimum number of erases: %lu\n", wmin
);
986 for (i
= 0; i
< 10; ++i
) {
987 unsigned long from
= (i
? decile_max
[i
- 1] + 1 : 0);
988 if (from
> decile_max
[i
])
990 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
995 NS_INFO("*** End of Wear Report ***\n");
999 * Returns the string representation of 'state' state.
1001 static char *get_state_name(uint32_t state
)
1003 switch (NS_STATE(state
)) {
1004 case STATE_CMD_READ0
:
1005 return "STATE_CMD_READ0";
1006 case STATE_CMD_READ1
:
1007 return "STATE_CMD_READ1";
1008 case STATE_CMD_PAGEPROG
:
1009 return "STATE_CMD_PAGEPROG";
1010 case STATE_CMD_READOOB
:
1011 return "STATE_CMD_READOOB";
1012 case STATE_CMD_READSTART
:
1013 return "STATE_CMD_READSTART";
1014 case STATE_CMD_ERASE1
:
1015 return "STATE_CMD_ERASE1";
1016 case STATE_CMD_STATUS
:
1017 return "STATE_CMD_STATUS";
1018 case STATE_CMD_STATUS_M
:
1019 return "STATE_CMD_STATUS_M";
1020 case STATE_CMD_SEQIN
:
1021 return "STATE_CMD_SEQIN";
1022 case STATE_CMD_READID
:
1023 return "STATE_CMD_READID";
1024 case STATE_CMD_ERASE2
:
1025 return "STATE_CMD_ERASE2";
1026 case STATE_CMD_RESET
:
1027 return "STATE_CMD_RESET";
1028 case STATE_CMD_RNDOUT
:
1029 return "STATE_CMD_RNDOUT";
1030 case STATE_CMD_RNDOUTSTART
:
1031 return "STATE_CMD_RNDOUTSTART";
1032 case STATE_ADDR_PAGE
:
1033 return "STATE_ADDR_PAGE";
1034 case STATE_ADDR_SEC
:
1035 return "STATE_ADDR_SEC";
1036 case STATE_ADDR_ZERO
:
1037 return "STATE_ADDR_ZERO";
1038 case STATE_ADDR_COLUMN
:
1039 return "STATE_ADDR_COLUMN";
1041 return "STATE_DATAIN";
1043 return "STATE_DATAOUT";
1044 case STATE_DATAOUT_ID
:
1045 return "STATE_DATAOUT_ID";
1046 case STATE_DATAOUT_STATUS
:
1047 return "STATE_DATAOUT_STATUS";
1048 case STATE_DATAOUT_STATUS_M
:
1049 return "STATE_DATAOUT_STATUS_M";
1051 return "STATE_READY";
1053 return "STATE_UNKNOWN";
1056 NS_ERR("get_state_name: unknown state, BUG\n");
1061 * Check if command is valid.
1063 * RETURNS: 1 if wrong command, 0 if right.
1065 static int check_command(int cmd
)
1069 case NAND_CMD_READ0
:
1070 case NAND_CMD_READ1
:
1071 case NAND_CMD_READSTART
:
1072 case NAND_CMD_PAGEPROG
:
1073 case NAND_CMD_READOOB
:
1074 case NAND_CMD_ERASE1
:
1075 case NAND_CMD_STATUS
:
1076 case NAND_CMD_SEQIN
:
1077 case NAND_CMD_READID
:
1078 case NAND_CMD_ERASE2
:
1079 case NAND_CMD_RESET
:
1080 case NAND_CMD_RNDOUT
:
1081 case NAND_CMD_RNDOUTSTART
:
1084 case NAND_CMD_STATUS_MULTI
:
1091 * Returns state after command is accepted by command number.
1093 static uint32_t get_state_by_command(unsigned command
)
1096 case NAND_CMD_READ0
:
1097 return STATE_CMD_READ0
;
1098 case NAND_CMD_READ1
:
1099 return STATE_CMD_READ1
;
1100 case NAND_CMD_PAGEPROG
:
1101 return STATE_CMD_PAGEPROG
;
1102 case NAND_CMD_READSTART
:
1103 return STATE_CMD_READSTART
;
1104 case NAND_CMD_READOOB
:
1105 return STATE_CMD_READOOB
;
1106 case NAND_CMD_ERASE1
:
1107 return STATE_CMD_ERASE1
;
1108 case NAND_CMD_STATUS
:
1109 return STATE_CMD_STATUS
;
1110 case NAND_CMD_STATUS_MULTI
:
1111 return STATE_CMD_STATUS_M
;
1112 case NAND_CMD_SEQIN
:
1113 return STATE_CMD_SEQIN
;
1114 case NAND_CMD_READID
:
1115 return STATE_CMD_READID
;
1116 case NAND_CMD_ERASE2
:
1117 return STATE_CMD_ERASE2
;
1118 case NAND_CMD_RESET
:
1119 return STATE_CMD_RESET
;
1120 case NAND_CMD_RNDOUT
:
1121 return STATE_CMD_RNDOUT
;
1122 case NAND_CMD_RNDOUTSTART
:
1123 return STATE_CMD_RNDOUTSTART
;
1126 NS_ERR("get_state_by_command: unknown command, BUG\n");
1131 * Move an address byte to the correspondent internal register.
1133 static inline void accept_addr_byte(struct nandsim
*ns
, u_char bt
)
1135 uint byte
= (uint
)bt
;
1137 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
1138 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
1140 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
1141 ns
->geom
.pgaddrbytes
+
1142 ns
->geom
.secaddrbytes
));
1149 * Switch to STATE_READY state.
1151 static inline void switch_to_ready_state(struct nandsim
*ns
, u_char status
)
1153 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY
));
1155 ns
->state
= STATE_READY
;
1156 ns
->nxstate
= STATE_UNKNOWN
;
1164 ns
->regs
.column
= 0;
1165 ns
->regs
.status
= status
;
1169 * If the operation isn't known yet, try to find it in the global array
1170 * of supported operations.
1172 * Operation can be unknown because of the following.
1173 * 1. New command was accepted and this is the first call to find the
1174 * correspondent states chain. In this case ns->npstates = 0;
1175 * 2. There are several operations which begin with the same command(s)
1176 * (for example program from the second half and read from the
1177 * second half operations both begin with the READ1 command). In this
1178 * case the ns->pstates[] array contains previous states.
1180 * Thus, the function tries to find operation containing the following
1181 * states (if the 'flag' parameter is 0):
1182 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1184 * If (one and only one) matching operation is found, it is accepted (
1185 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1188 * If there are several matches, the current state is pushed to the
1191 * The operation can be unknown only while commands are input to the chip.
1192 * As soon as address command is accepted, the operation must be known.
1193 * In such situation the function is called with 'flag' != 0, and the
1194 * operation is searched using the following pattern:
1195 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1197 * It is supposed that this pattern must either match one operation or
1198 * none. There can't be ambiguity in that case.
1200 * If no matches found, the function does the following:
1201 * 1. if there are saved states present, try to ignore them and search
1202 * again only using the last command. If nothing was found, switch
1203 * to the STATE_READY state.
1204 * 2. if there are no saved states, switch to the STATE_READY state.
1206 * RETURNS: -2 - no matched operations found.
1207 * -1 - several matches.
1208 * 0 - operation is found.
1210 static int find_operation(struct nandsim
*ns
, uint32_t flag
)
1215 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
1219 if (!(ns
->options
& ops
[i
].reqopts
))
1220 /* Ignore operations we can't perform */
1224 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
1227 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
1231 for (j
= 0; j
< ns
->npstates
; j
++)
1232 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
1233 && (ns
->options
& ops
[idx
].reqopts
)) {
1244 if (opsfound
== 1) {
1246 ns
->op
= &ops
[idx
].states
[0];
1249 * In this case the find_operation function was
1250 * called when address has just began input. But it isn't
1251 * yet fully input and the current state must
1252 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1253 * state must be the next state (ns->nxstate).
1255 ns
->stateidx
= ns
->npstates
- 1;
1257 ns
->stateidx
= ns
->npstates
;
1260 ns
->state
= ns
->op
[ns
->stateidx
];
1261 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1262 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1263 idx
, get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1267 if (opsfound
== 0) {
1268 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1269 if (ns
->npstates
!= 0) {
1270 NS_DBG("find_operation: no operation found, try again with state %s\n",
1271 get_state_name(ns
->state
));
1273 return find_operation(ns
, 0);
1276 NS_DBG("find_operation: no operations found\n");
1277 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1282 /* This shouldn't happen */
1283 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1287 NS_DBG("find_operation: there is still ambiguity\n");
1289 ns
->pstates
[ns
->npstates
++] = ns
->state
;
1294 static void put_pages(struct nandsim
*ns
)
1298 for (i
= 0; i
< ns
->held_cnt
; i
++)
1299 page_cache_release(ns
->held_pages
[i
]);
1302 /* Get page cache pages in advance to provide NOFS memory allocation */
1303 static int get_pages(struct nandsim
*ns
, struct file
*file
, size_t count
, loff_t pos
)
1305 pgoff_t index
, start_index
, end_index
;
1307 struct address_space
*mapping
= file
->f_mapping
;
1309 start_index
= pos
>> PAGE_CACHE_SHIFT
;
1310 end_index
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1311 if (end_index
- start_index
+ 1 > NS_MAX_HELD_PAGES
)
1314 for (index
= start_index
; index
<= end_index
; index
++) {
1315 page
= find_get_page(mapping
, index
);
1317 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1319 write_inode_now(mapping
->host
, 1);
1320 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1328 ns
->held_pages
[ns
->held_cnt
++] = page
;
1333 static int set_memalloc(void)
1335 if (current
->flags
& PF_MEMALLOC
)
1337 current
->flags
|= PF_MEMALLOC
;
1341 static void clear_memalloc(int memalloc
)
1344 current
->flags
&= ~PF_MEMALLOC
;
1347 static ssize_t
read_file(struct nandsim
*ns
, struct file
*file
, void *buf
, size_t count
, loff_t
*pos
)
1349 mm_segment_t old_fs
;
1353 err
= get_pages(ns
, file
, count
, *pos
);
1358 memalloc
= set_memalloc();
1359 tx
= vfs_read(file
, (char __user
*)buf
, count
, pos
);
1360 clear_memalloc(memalloc
);
1366 static ssize_t
write_file(struct nandsim
*ns
, struct file
*file
, void *buf
, size_t count
, loff_t
*pos
)
1368 mm_segment_t old_fs
;
1372 err
= get_pages(ns
, file
, count
, *pos
);
1377 memalloc
= set_memalloc();
1378 tx
= vfs_write(file
, (char __user
*)buf
, count
, pos
);
1379 clear_memalloc(memalloc
);
1386 * Returns a pointer to the current page.
1388 static inline union ns_mem
*NS_GET_PAGE(struct nandsim
*ns
)
1390 return &(ns
->pages
[ns
->regs
.row
]);
1394 * Retuns a pointer to the current byte, within the current page.
1396 static inline u_char
*NS_PAGE_BYTE_OFF(struct nandsim
*ns
)
1398 return NS_GET_PAGE(ns
)->byte
+ ns
->regs
.column
+ ns
->regs
.off
;
1401 int do_read_error(struct nandsim
*ns
, int num
)
1403 unsigned int page_no
= ns
->regs
.row
;
1405 if (read_error(page_no
)) {
1407 memset(ns
->buf
.byte
, 0xFF, num
);
1408 for (i
= 0; i
< num
; ++i
)
1409 ns
->buf
.byte
[i
] = random32();
1410 NS_WARN("simulating read error in page %u\n", page_no
);
1416 void do_bit_flips(struct nandsim
*ns
, int num
)
1418 if (bitflips
&& random32() < (1 << 22)) {
1421 flips
= (random32() % (int) bitflips
) + 1;
1423 int pos
= random32() % (num
* 8);
1424 ns
->buf
.byte
[pos
/ 8] ^= (1 << (pos
% 8));
1425 NS_WARN("read_page: flipping bit %d in page %d "
1426 "reading from %d ecc: corrected=%u failed=%u\n",
1427 pos
, ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
,
1428 nsmtd
->ecc_stats
.corrected
, nsmtd
->ecc_stats
.failed
);
1434 * Fill the NAND buffer with data read from the specified page.
1436 static void read_page(struct nandsim
*ns
, int num
)
1438 union ns_mem
*mypage
;
1441 if (!ns
->pages_written
[ns
->regs
.row
]) {
1442 NS_DBG("read_page: page %d not written\n", ns
->regs
.row
);
1443 memset(ns
->buf
.byte
, 0xFF, num
);
1448 NS_DBG("read_page: page %d written, reading from %d\n",
1449 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1450 if (do_read_error(ns
, num
))
1452 pos
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
+ ns
->regs
.column
+ ns
->regs
.off
;
1453 tx
= read_file(ns
, ns
->cfile
, ns
->buf
.byte
, num
, &pos
);
1455 NS_ERR("read_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1458 do_bit_flips(ns
, num
);
1463 mypage
= NS_GET_PAGE(ns
);
1464 if (mypage
->byte
== NULL
) {
1465 NS_DBG("read_page: page %d not allocated\n", ns
->regs
.row
);
1466 memset(ns
->buf
.byte
, 0xFF, num
);
1468 NS_DBG("read_page: page %d allocated, reading from %d\n",
1469 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1470 if (do_read_error(ns
, num
))
1472 memcpy(ns
->buf
.byte
, NS_PAGE_BYTE_OFF(ns
), num
);
1473 do_bit_flips(ns
, num
);
1478 * Erase all pages in the specified sector.
1480 static void erase_sector(struct nandsim
*ns
)
1482 union ns_mem
*mypage
;
1486 for (i
= 0; i
< ns
->geom
.pgsec
; i
++)
1487 if (ns
->pages_written
[ns
->regs
.row
+ i
]) {
1488 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+ i
);
1489 ns
->pages_written
[ns
->regs
.row
+ i
] = 0;
1494 mypage
= NS_GET_PAGE(ns
);
1495 for (i
= 0; i
< ns
->geom
.pgsec
; i
++) {
1496 if (mypage
->byte
!= NULL
) {
1497 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+i
);
1498 kmem_cache_free(ns
->nand_pages_slab
, mypage
->byte
);
1499 mypage
->byte
= NULL
;
1506 * Program the specified page with the contents from the NAND buffer.
1508 static int prog_page(struct nandsim
*ns
, int num
)
1511 union ns_mem
*mypage
;
1519 NS_DBG("prog_page: writing page %d\n", ns
->regs
.row
);
1520 pg_off
= ns
->file_buf
+ ns
->regs
.column
+ ns
->regs
.off
;
1521 off
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
+ ns
->regs
.column
+ ns
->regs
.off
;
1522 if (!ns
->pages_written
[ns
->regs
.row
]) {
1524 memset(ns
->file_buf
, 0xff, ns
->geom
.pgszoob
);
1528 tx
= read_file(ns
, ns
->cfile
, pg_off
, num
, &pos
);
1530 NS_ERR("prog_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1534 for (i
= 0; i
< num
; i
++)
1535 pg_off
[i
] &= ns
->buf
.byte
[i
];
1537 pos
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
;
1538 tx
= write_file(ns
, ns
->cfile
, ns
->file_buf
, ns
->geom
.pgszoob
, &pos
);
1539 if (tx
!= ns
->geom
.pgszoob
) {
1540 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1543 ns
->pages_written
[ns
->regs
.row
] = 1;
1546 tx
= write_file(ns
, ns
->cfile
, pg_off
, num
, &pos
);
1548 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1555 mypage
= NS_GET_PAGE(ns
);
1556 if (mypage
->byte
== NULL
) {
1557 NS_DBG("prog_page: allocating page %d\n", ns
->regs
.row
);
1559 * We allocate memory with GFP_NOFS because a flash FS may
1560 * utilize this. If it is holding an FS lock, then gets here,
1561 * then kernel memory alloc runs writeback which goes to the FS
1562 * again and deadlocks. This was seen in practice.
1564 mypage
->byte
= kmem_cache_alloc(ns
->nand_pages_slab
, GFP_NOFS
);
1565 if (mypage
->byte
== NULL
) {
1566 NS_ERR("prog_page: error allocating memory for page %d\n", ns
->regs
.row
);
1569 memset(mypage
->byte
, 0xFF, ns
->geom
.pgszoob
);
1572 pg_off
= NS_PAGE_BYTE_OFF(ns
);
1573 for (i
= 0; i
< num
; i
++)
1574 pg_off
[i
] &= ns
->buf
.byte
[i
];
1580 * If state has any action bit, perform this action.
1582 * RETURNS: 0 if success, -1 if error.
1584 static int do_state_action(struct nandsim
*ns
, uint32_t action
)
1587 int busdiv
= ns
->busw
== 8 ? 1 : 2;
1588 unsigned int erase_block_no
, page_no
;
1590 action
&= ACTION_MASK
;
1592 /* Check that page address input is correct */
1593 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
1594 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
1602 * Copy page data to the internal buffer.
1605 /* Column shouldn't be very large */
1606 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
1607 NS_ERR("do_state_action: column number is too large\n");
1610 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1613 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1614 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1616 if (ns
->regs
.off
== 0)
1617 NS_LOG("read page %d\n", ns
->regs
.row
);
1618 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
1619 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
1621 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
1623 NS_UDELAY(access_delay
);
1624 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1628 case ACTION_SECERASE
:
1634 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1638 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
1639 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
1640 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
1644 ns
->regs
.row
= (ns
->regs
.row
<<
1645 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
1646 ns
->regs
.column
= 0;
1648 erase_block_no
= ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
);
1650 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1651 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
1652 NS_LOG("erase sector %u\n", erase_block_no
);
1656 NS_MDELAY(erase_delay
);
1658 if (erase_block_wear
)
1659 update_wear(erase_block_no
);
1661 if (erase_error(erase_block_no
)) {
1662 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no
);
1668 case ACTION_PRGPAGE
:
1670 * Program page - move internal buffer data to the page.
1674 NS_WARN("do_state_action: device is write-protected, programm\n");
1678 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1679 if (num
!= ns
->regs
.count
) {
1680 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1681 ns
->regs
.count
, num
);
1685 if (prog_page(ns
, num
) == -1)
1688 page_no
= ns
->regs
.row
;
1690 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1691 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1692 NS_LOG("programm page %d\n", ns
->regs
.row
);
1694 NS_UDELAY(programm_delay
);
1695 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1697 if (write_error(page_no
)) {
1698 NS_WARN("simulating write failure in page %u\n", page_no
);
1704 case ACTION_ZEROOFF
:
1705 NS_DBG("do_state_action: set internal offset to 0\n");
1709 case ACTION_HALFOFF
:
1710 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
1711 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1712 "byte page size 8x chips\n");
1715 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
1716 ns
->regs
.off
= ns
->geom
.pgsz
/2;
1720 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
1721 ns
->regs
.off
= ns
->geom
.pgsz
;
1725 NS_DBG("do_state_action: BUG! unknown action\n");
1732 * Switch simulator's state.
1734 static void switch_state(struct nandsim
*ns
)
1738 * The current operation have already been identified.
1739 * Just follow the states chain.
1743 ns
->state
= ns
->nxstate
;
1744 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1746 NS_DBG("switch_state: operation is known, switch to the next state, "
1747 "state: %s, nxstate: %s\n",
1748 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1750 /* See, whether we need to do some action */
1751 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1752 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1758 * We don't yet know which operation we perform.
1759 * Try to identify it.
1763 * The only event causing the switch_state function to
1764 * be called with yet unknown operation is new command.
1766 ns
->state
= get_state_by_command(ns
->regs
.command
);
1768 NS_DBG("switch_state: operation is unknown, try to find it\n");
1770 if (find_operation(ns
, 0) != 0)
1773 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1774 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1779 /* For 16x devices column means the page offset in words */
1780 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
1781 NS_DBG("switch_state: double the column number for 16x device\n");
1782 ns
->regs
.column
<<= 1;
1785 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
1787 * The current state is the last. Return to STATE_READY
1790 u_char status
= NS_STATUS_OK(ns
);
1792 /* In case of data states, see if all bytes were input/output */
1793 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
1794 && ns
->regs
.count
!= ns
->regs
.num
) {
1795 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1796 ns
->regs
.num
- ns
->regs
.count
);
1797 status
= NS_STATUS_FAILED(ns
);
1800 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1802 switch_to_ready_state(ns
, status
);
1805 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1807 * If the next state is data input/output, switch to it now
1810 ns
->state
= ns
->nxstate
;
1811 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1812 ns
->regs
.num
= ns
->regs
.count
= 0;
1814 NS_DBG("switch_state: the next state is data I/O, switch, "
1815 "state: %s, nxstate: %s\n",
1816 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1819 * Set the internal register to the count of bytes which
1820 * are expected to be input or output
1822 switch (NS_STATE(ns
->state
)) {
1825 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1828 case STATE_DATAOUT_ID
:
1829 ns
->regs
.num
= ns
->geom
.idbytes
;
1832 case STATE_DATAOUT_STATUS
:
1833 case STATE_DATAOUT_STATUS_M
:
1834 ns
->regs
.count
= ns
->regs
.num
= 0;
1838 NS_ERR("switch_state: BUG! unknown data state\n");
1841 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1843 * If the next state is address input, set the internal
1844 * register to the number of expected address bytes
1849 switch (NS_STATE(ns
->nxstate
)) {
1850 case STATE_ADDR_PAGE
:
1851 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1854 case STATE_ADDR_SEC
:
1855 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1858 case STATE_ADDR_ZERO
:
1862 case STATE_ADDR_COLUMN
:
1863 /* Column address is always 2 bytes */
1864 ns
->regs
.num
= ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
;
1868 NS_ERR("switch_state: BUG! unknown address state\n");
1872 * Just reset internal counters.
1880 static u_char
ns_nand_read_byte(struct mtd_info
*mtd
)
1882 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
1885 /* Sanity and correctness checks */
1886 if (!ns
->lines
.ce
) {
1887 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1890 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1891 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1894 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1895 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1896 "return %#x\n", get_state_name(ns
->state
), (uint
)outb
);
1900 /* Status register may be read as many times as it is wanted */
1901 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1902 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1903 return ns
->regs
.status
;
1906 /* Check if there is any data in the internal buffer which may be read */
1907 if (ns
->regs
.count
== ns
->regs
.num
) {
1908 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1912 switch (NS_STATE(ns
->state
)) {
1914 if (ns
->busw
== 8) {
1915 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1916 ns
->regs
.count
+= 1;
1918 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1919 ns
->regs
.count
+= 2;
1922 case STATE_DATAOUT_ID
:
1923 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1924 outb
= ns
->ids
[ns
->regs
.count
];
1925 ns
->regs
.count
+= 1;
1931 if (ns
->regs
.count
== ns
->regs
.num
) {
1932 NS_DBG("read_byte: all bytes were read\n");
1935 * The OPT_AUTOINCR allows to read next consecutive pages without
1936 * new read operation cycle.
1938 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1940 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1942 NS_DBG("read_byte: switch to the next page (%#x)\n", ns
->regs
.row
);
1943 do_state_action(ns
, ACTION_CPY
);
1945 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1953 static void ns_nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
1955 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
1957 /* Sanity and correctness checks */
1958 if (!ns
->lines
.ce
) {
1959 NS_ERR("write_byte: chip is disabled, ignore write\n");
1962 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1963 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1967 if (ns
->lines
.cle
== 1) {
1969 * The byte written is a command.
1972 if (byte
== NAND_CMD_RESET
) {
1973 NS_LOG("reset chip\n");
1974 switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
1978 /* Check that the command byte is correct */
1979 if (check_command(byte
)) {
1980 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
1984 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
1985 || NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS_M
1986 || NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1987 int row
= ns
->regs
.row
;
1990 if (byte
== NAND_CMD_RNDOUT
)
1994 /* Check if chip is expecting command */
1995 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
1996 /* Do not warn if only 2 id bytes are read */
1997 if (!(ns
->regs
.command
== NAND_CMD_READID
&&
1998 NS_STATE(ns
->state
) == STATE_DATAOUT_ID
&& ns
->regs
.count
== 2)) {
2000 * We are in situation when something else (not command)
2001 * was expected but command was input. In this case ignore
2002 * previous command(s)/state(s) and accept the last one.
2004 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2005 "ignore previous states\n", (uint
)byte
, get_state_name(ns
->nxstate
));
2007 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2010 NS_DBG("command byte corresponding to %s state accepted\n",
2011 get_state_name(get_state_by_command(byte
)));
2012 ns
->regs
.command
= byte
;
2015 } else if (ns
->lines
.ale
== 1) {
2017 * The byte written is an address.
2020 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
2022 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2024 if (find_operation(ns
, 1) < 0)
2027 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
2028 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2033 switch (NS_STATE(ns
->nxstate
)) {
2034 case STATE_ADDR_PAGE
:
2035 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
2037 case STATE_ADDR_SEC
:
2038 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
2040 case STATE_ADDR_ZERO
:
2048 /* Check that chip is expecting address */
2049 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
2050 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2051 "switch to STATE_READY\n", (uint
)byte
, get_state_name(ns
->nxstate
));
2052 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2056 /* Check if this is expected byte */
2057 if (ns
->regs
.count
== ns
->regs
.num
) {
2058 NS_ERR("write_byte: no more address bytes expected\n");
2059 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2063 accept_addr_byte(ns
, byte
);
2065 ns
->regs
.count
+= 1;
2067 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2068 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
2070 if (ns
->regs
.count
== ns
->regs
.num
) {
2071 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
2077 * The byte written is an input data.
2080 /* Check that chip is expecting data input */
2081 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2082 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2083 "switch to %s\n", (uint
)byte
,
2084 get_state_name(ns
->state
), get_state_name(STATE_READY
));
2085 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2089 /* Check if this is expected byte */
2090 if (ns
->regs
.count
== ns
->regs
.num
) {
2091 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2096 if (ns
->busw
== 8) {
2097 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
2098 ns
->regs
.count
+= 1;
2100 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
2101 ns
->regs
.count
+= 2;
2108 static void ns_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int bitmask
)
2110 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
2112 ns
->lines
.cle
= bitmask
& NAND_CLE
? 1 : 0;
2113 ns
->lines
.ale
= bitmask
& NAND_ALE
? 1 : 0;
2114 ns
->lines
.ce
= bitmask
& NAND_NCE
? 1 : 0;
2116 if (cmd
!= NAND_CMD_NONE
)
2117 ns_nand_write_byte(mtd
, cmd
);
2120 static int ns_device_ready(struct mtd_info
*mtd
)
2122 NS_DBG("device_ready\n");
2126 static uint16_t ns_nand_read_word(struct mtd_info
*mtd
)
2128 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
2130 NS_DBG("read_word\n");
2132 return chip
->read_byte(mtd
) | (chip
->read_byte(mtd
) << 8);
2135 static void ns_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
2137 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
2139 /* Check that chip is expecting data input */
2140 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2141 NS_ERR("write_buf: data input isn't expected, state is %s, "
2142 "switch to STATE_READY\n", get_state_name(ns
->state
));
2143 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2147 /* Check if these are expected bytes */
2148 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2149 NS_ERR("write_buf: too many input bytes\n");
2150 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2154 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
2155 ns
->regs
.count
+= len
;
2157 if (ns
->regs
.count
== ns
->regs
.num
) {
2158 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
2162 static void ns_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
2164 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
2166 /* Sanity and correctness checks */
2167 if (!ns
->lines
.ce
) {
2168 NS_ERR("read_buf: chip is disabled\n");
2171 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
2172 NS_ERR("read_buf: ALE or CLE pin is high\n");
2175 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
2176 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2177 get_state_name(ns
->state
));
2181 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
2184 for (i
= 0; i
< len
; i
++)
2185 buf
[i
] = ((struct nand_chip
*)mtd
->priv
)->read_byte(mtd
);
2190 /* Check if these are expected bytes */
2191 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2192 NS_ERR("read_buf: too many bytes to read\n");
2193 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2197 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
2198 ns
->regs
.count
+= len
;
2200 if (ns
->regs
.count
== ns
->regs
.num
) {
2201 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
2203 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
2205 NS_DBG("read_buf: switch to the next page (%#x)\n", ns
->regs
.row
);
2206 do_state_action(ns
, ACTION_CPY
);
2208 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
2215 static int ns_nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
2217 ns_nand_read_buf(mtd
, (u_char
*)&ns_verify_buf
[0], len
);
2219 if (!memcmp(buf
, &ns_verify_buf
[0], len
)) {
2220 NS_DBG("verify_buf: the buffer is OK\n");
2223 NS_DBG("verify_buf: the buffer is wrong\n");
2229 * Module initialization function
2231 static int __init
ns_init_module(void)
2233 struct nand_chip
*chip
;
2234 struct nandsim
*nand
;
2235 int retval
= -ENOMEM
, i
;
2237 if (bus_width
!= 8 && bus_width
!= 16) {
2238 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
2242 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2243 nsmtd
= kzalloc(sizeof(struct mtd_info
) + sizeof(struct nand_chip
)
2244 + sizeof(struct nandsim
), GFP_KERNEL
);
2246 NS_ERR("unable to allocate core structures.\n");
2249 chip
= (struct nand_chip
*)(nsmtd
+ 1);
2250 nsmtd
->priv
= (void *)chip
;
2251 nand
= (struct nandsim
*)(chip
+ 1);
2252 chip
->priv
= (void *)nand
;
2255 * Register simulator's callbacks.
2257 chip
->cmd_ctrl
= ns_hwcontrol
;
2258 chip
->read_byte
= ns_nand_read_byte
;
2259 chip
->dev_ready
= ns_device_ready
;
2260 chip
->write_buf
= ns_nand_write_buf
;
2261 chip
->read_buf
= ns_nand_read_buf
;
2262 chip
->verify_buf
= ns_nand_verify_buf
;
2263 chip
->read_word
= ns_nand_read_word
;
2264 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2265 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2266 /* and 'badblocks' parameters to work */
2267 chip
->options
|= NAND_SKIP_BBTSCAN
;
2271 chip
->options
|= NAND_USE_FLASH_BBT_NO_OOB
;
2273 chip
->options
|= NAND_USE_FLASH_BBT
;
2277 NS_ERR("bbt has to be 0..2\n");
2282 * Perform minimum nandsim structure initialization to handle
2283 * the initial ID read command correctly
2285 if (third_id_byte
!= 0xFF || fourth_id_byte
!= 0xFF)
2286 nand
->geom
.idbytes
= 4;
2288 nand
->geom
.idbytes
= 2;
2289 nand
->regs
.status
= NS_STATUS_OK(nand
);
2290 nand
->nxstate
= STATE_UNKNOWN
;
2291 nand
->options
|= OPT_PAGE256
; /* temporary value */
2292 nand
->ids
[0] = first_id_byte
;
2293 nand
->ids
[1] = second_id_byte
;
2294 nand
->ids
[2] = third_id_byte
;
2295 nand
->ids
[3] = fourth_id_byte
;
2296 if (bus_width
== 16) {
2298 chip
->options
|= NAND_BUSWIDTH_16
;
2301 nsmtd
->owner
= THIS_MODULE
;
2303 if ((retval
= parse_weakblocks()) != 0)
2306 if ((retval
= parse_weakpages()) != 0)
2309 if ((retval
= parse_gravepages()) != 0)
2312 if ((retval
= nand_scan(nsmtd
, 1)) != 0) {
2313 NS_ERR("can't register NAND Simulator\n");
2320 uint64_t new_size
= (uint64_t)nsmtd
->erasesize
<< overridesize
;
2321 if (new_size
>> overridesize
!= nsmtd
->erasesize
) {
2322 NS_ERR("overridesize is too big\n");
2325 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2326 nsmtd
->size
= new_size
;
2327 chip
->chipsize
= new_size
;
2328 chip
->chip_shift
= ffs(nsmtd
->erasesize
) + overridesize
- 1;
2329 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2332 if ((retval
= setup_wear_reporting(nsmtd
)) != 0)
2335 if ((retval
= init_nandsim(nsmtd
)) != 0)
2338 if ((retval
= nand_default_bbt(nsmtd
)) != 0)
2341 if ((retval
= parse_badblocks(nand
, nsmtd
)) != 0)
2344 /* Register NAND partitions */
2345 if ((retval
= add_mtd_partitions(nsmtd
, &nand
->partitions
[0], nand
->nbparts
)) != 0)
2352 nand_release(nsmtd
);
2353 for (i
= 0;i
< ARRAY_SIZE(nand
->partitions
); ++i
)
2354 kfree(nand
->partitions
[i
].name
);
2362 module_init(ns_init_module
);
2365 * Module clean-up function
2367 static void __exit
ns_cleanup_module(void)
2369 struct nandsim
*ns
= ((struct nand_chip
*)nsmtd
->priv
)->priv
;
2372 free_nandsim(ns
); /* Free nandsim private resources */
2373 nand_release(nsmtd
); /* Unregister driver */
2374 for (i
= 0;i
< ARRAY_SIZE(ns
->partitions
); ++i
)
2375 kfree(ns
->partitions
[i
].name
);
2376 kfree(nsmtd
); /* Free other structures */
2380 module_exit(ns_cleanup_module
);
2382 MODULE_LICENSE ("GPL");
2383 MODULE_AUTHOR ("Artem B. Bityuckiy");
2384 MODULE_DESCRIPTION ("The NAND flash simulator");