libata: fix oops when LPM is used with PMP
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / nand / cafe_nand.c
blobe06c8983978ebd82ec376d74eac64aed1d12b80c
1 /*
2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * The data sheet for this device can be found at:
5 * http://wiki.laptop.org/go/Datasheets
7 * Copyright © 2006 Red Hat, Inc.
8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9 */
11 #define DEBUG
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <asm/io.h>
26 #define CAFE_NAND_CTRL1 0x00
27 #define CAFE_NAND_CTRL2 0x04
28 #define CAFE_NAND_CTRL3 0x08
29 #define CAFE_NAND_STATUS 0x0c
30 #define CAFE_NAND_IRQ 0x10
31 #define CAFE_NAND_IRQ_MASK 0x14
32 #define CAFE_NAND_DATA_LEN 0x18
33 #define CAFE_NAND_ADDR1 0x1c
34 #define CAFE_NAND_ADDR2 0x20
35 #define CAFE_NAND_TIMING1 0x24
36 #define CAFE_NAND_TIMING2 0x28
37 #define CAFE_NAND_TIMING3 0x2c
38 #define CAFE_NAND_NONMEM 0x30
39 #define CAFE_NAND_ECC_RESULT 0x3C
40 #define CAFE_NAND_DMA_CTRL 0x40
41 #define CAFE_NAND_DMA_ADDR0 0x44
42 #define CAFE_NAND_DMA_ADDR1 0x48
43 #define CAFE_NAND_ECC_SYN01 0x50
44 #define CAFE_NAND_ECC_SYN23 0x54
45 #define CAFE_NAND_ECC_SYN45 0x58
46 #define CAFE_NAND_ECC_SYN67 0x5c
47 #define CAFE_NAND_READ_DATA 0x1000
48 #define CAFE_NAND_WRITE_DATA 0x2000
50 #define CAFE_GLOBAL_CTRL 0x3004
51 #define CAFE_GLOBAL_IRQ 0x3008
52 #define CAFE_GLOBAL_IRQ_MASK 0x300c
53 #define CAFE_NAND_RESET 0x3034
55 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
56 #define CTRL1_CHIPSELECT (1<<19)
58 struct cafe_priv {
59 struct nand_chip nand;
60 struct mtd_partition *parts;
61 struct pci_dev *pdev;
62 void __iomem *mmio;
63 struct rs_control *rs;
64 uint32_t ctl1;
65 uint32_t ctl2;
66 int datalen;
67 int nr_data;
68 int data_pos;
69 int page_addr;
70 dma_addr_t dmaaddr;
71 unsigned char *dmabuf;
74 static int usedma = 1;
75 module_param(usedma, int, 0644);
77 static int skipbbt = 0;
78 module_param(skipbbt, int, 0644);
80 static int debug = 0;
81 module_param(debug, int, 0644);
83 static int regdebug = 0;
84 module_param(regdebug, int, 0644);
86 static int checkecc = 1;
87 module_param(checkecc, int, 0644);
89 static unsigned int numtimings;
90 static int timing[3];
91 module_param_array(timing, int, &numtimings, 0644);
93 #ifdef CONFIG_MTD_PARTITIONS
94 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
95 #endif
97 /* Hrm. Why isn't this already conditional on something in the struct device? */
98 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
100 /* Make it easier to switch to PIO if we need to */
101 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
102 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
104 static int cafe_device_ready(struct mtd_info *mtd)
106 struct cafe_priv *cafe = mtd->priv;
107 int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
108 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
110 cafe_writel(cafe, irqs, NAND_IRQ);
112 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
113 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
114 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
116 return result;
120 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
122 struct cafe_priv *cafe = mtd->priv;
124 if (usedma)
125 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
126 else
127 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
129 cafe->datalen += len;
131 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
132 len, cafe->datalen);
135 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
137 struct cafe_priv *cafe = mtd->priv;
139 if (usedma)
140 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
141 else
142 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
144 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
145 len, cafe->datalen);
146 cafe->datalen += len;
149 static uint8_t cafe_read_byte(struct mtd_info *mtd)
151 struct cafe_priv *cafe = mtd->priv;
152 uint8_t d;
154 cafe_read_buf(mtd, &d, 1);
155 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
157 return d;
160 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
161 int column, int page_addr)
163 struct cafe_priv *cafe = mtd->priv;
164 int adrbytes = 0;
165 uint32_t ctl1;
166 uint32_t doneint = 0x80000000;
168 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
169 command, column, page_addr);
171 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
172 /* Second half of a command we already calculated */
173 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
174 ctl1 = cafe->ctl1;
175 cafe->ctl2 &= ~(1<<30);
176 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
177 cafe->ctl1, cafe->nr_data);
178 goto do_command;
180 /* Reset ECC engine */
181 cafe_writel(cafe, 0, NAND_CTRL2);
183 /* Emulate NAND_CMD_READOOB on large-page chips */
184 if (mtd->writesize > 512 &&
185 command == NAND_CMD_READOOB) {
186 column += mtd->writesize;
187 command = NAND_CMD_READ0;
190 /* FIXME: Do we need to send read command before sending data
191 for small-page chips, to position the buffer correctly? */
193 if (column != -1) {
194 cafe_writel(cafe, column, NAND_ADDR1);
195 adrbytes = 2;
196 if (page_addr != -1)
197 goto write_adr2;
198 } else if (page_addr != -1) {
199 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
200 page_addr >>= 16;
201 write_adr2:
202 cafe_writel(cafe, page_addr, NAND_ADDR2);
203 adrbytes += 2;
204 if (mtd->size > mtd->writesize << 16)
205 adrbytes++;
208 cafe->data_pos = cafe->datalen = 0;
210 /* Set command valid bit, mask in the chip select bit */
211 ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
213 /* Set RD or WR bits as appropriate */
214 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
215 ctl1 |= (1<<26); /* rd */
216 /* Always 5 bytes, for now */
217 cafe->datalen = 4;
218 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
219 adrbytes = 1;
220 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
221 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
222 ctl1 |= 1<<26; /* rd */
223 /* For now, assume just read to end of page */
224 cafe->datalen = mtd->writesize + mtd->oobsize - column;
225 } else if (command == NAND_CMD_SEQIN)
226 ctl1 |= 1<<25; /* wr */
228 /* Set number of address bytes */
229 if (adrbytes)
230 ctl1 |= ((adrbytes-1)|8) << 27;
232 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
233 /* Ignore the first command of a pair; the hardware
234 deals with them both at once, later */
235 cafe->ctl1 = ctl1;
236 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
237 cafe->ctl1, cafe->datalen);
238 return;
240 /* RNDOUT and READ0 commands need a following byte */
241 if (command == NAND_CMD_RNDOUT)
242 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
243 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
244 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
246 do_command:
247 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
248 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
250 /* NB: The datasheet lies -- we really should be subtracting 1 here */
251 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
252 cafe_writel(cafe, 0x90000000, NAND_IRQ);
253 if (usedma && (ctl1 & (3<<25))) {
254 uint32_t dmactl = 0xc0000000 + cafe->datalen;
255 /* If WR or RD bits set, set up DMA */
256 if (ctl1 & (1<<26)) {
257 /* It's a read */
258 dmactl |= (1<<29);
259 /* ... so it's done when the DMA is done, not just
260 the command. */
261 doneint = 0x10000000;
263 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
265 cafe->datalen = 0;
267 if (unlikely(regdebug)) {
268 int i;
269 printk("About to write command %08x to register 0\n", ctl1);
270 for (i=4; i< 0x5c; i+=4)
271 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
274 cafe_writel(cafe, ctl1, NAND_CTRL1);
275 /* Apply this short delay always to ensure that we do wait tWB in
276 * any case on any machine. */
277 ndelay(100);
279 if (1) {
280 int c;
281 uint32_t irqs;
283 for (c = 500000; c != 0; c--) {
284 irqs = cafe_readl(cafe, NAND_IRQ);
285 if (irqs & doneint)
286 break;
287 udelay(1);
288 if (!(c % 100000))
289 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
290 cpu_relax();
292 cafe_writel(cafe, doneint, NAND_IRQ);
293 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
294 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
297 WARN_ON(cafe->ctl2 & (1<<30));
299 switch (command) {
301 case NAND_CMD_CACHEDPROG:
302 case NAND_CMD_PAGEPROG:
303 case NAND_CMD_ERASE1:
304 case NAND_CMD_ERASE2:
305 case NAND_CMD_SEQIN:
306 case NAND_CMD_RNDIN:
307 case NAND_CMD_STATUS:
308 case NAND_CMD_DEPLETE1:
309 case NAND_CMD_RNDOUT:
310 case NAND_CMD_STATUS_ERROR:
311 case NAND_CMD_STATUS_ERROR0:
312 case NAND_CMD_STATUS_ERROR1:
313 case NAND_CMD_STATUS_ERROR2:
314 case NAND_CMD_STATUS_ERROR3:
315 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
316 return;
318 nand_wait_ready(mtd);
319 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
322 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
324 struct cafe_priv *cafe = mtd->priv;
326 cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
328 /* Mask the appropriate bit into the stored value of ctl1
329 which will be used by cafe_nand_cmdfunc() */
330 if (chipnr)
331 cafe->ctl1 |= CTRL1_CHIPSELECT;
332 else
333 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
336 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
338 struct mtd_info *mtd = id;
339 struct cafe_priv *cafe = mtd->priv;
340 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
341 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
342 if (!irqs)
343 return IRQ_NONE;
345 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
346 return IRQ_HANDLED;
349 static void cafe_nand_bug(struct mtd_info *mtd)
351 BUG();
354 static int cafe_nand_write_oob(struct mtd_info *mtd,
355 struct nand_chip *chip, int page)
357 int status = 0;
359 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
360 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
361 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
362 status = chip->waitfunc(mtd, chip);
364 return status & NAND_STATUS_FAIL ? -EIO : 0;
367 /* Don't use -- use nand_read_oob_std for now */
368 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
369 int page, int sndcmd)
371 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
372 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
373 return 1;
376 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
377 * @mtd: mtd info structure
378 * @chip: nand chip info structure
379 * @buf: buffer to store read data
381 * The hw generator calculates the error syndrome automatically. Therefor
382 * we need a special oob layout and handling.
384 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
385 uint8_t *buf, int page)
387 struct cafe_priv *cafe = mtd->priv;
389 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
390 cafe_readl(cafe, NAND_ECC_RESULT),
391 cafe_readl(cafe, NAND_ECC_SYN01));
393 chip->read_buf(mtd, buf, mtd->writesize);
394 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
396 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
397 unsigned short syn[8], pat[4];
398 int pos[4];
399 u8 *oob = chip->oob_poi;
400 int i, n;
402 for (i=0; i<8; i+=2) {
403 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
404 syn[i] = cafe->rs->index_of[tmp & 0xfff];
405 syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
408 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
409 pat);
411 for (i = 0; i < n; i++) {
412 int p = pos[i];
414 /* The 12-bit symbols are mapped to bytes here */
416 if (p > 1374) {
417 /* out of range */
418 n = -1374;
419 } else if (p == 0) {
420 /* high four bits do not correspond to data */
421 if (pat[i] > 0xff)
422 n = -2048;
423 else
424 buf[0] ^= pat[i];
425 } else if (p == 1365) {
426 buf[2047] ^= pat[i] >> 4;
427 oob[0] ^= pat[i] << 4;
428 } else if (p > 1365) {
429 if ((p & 1) == 1) {
430 oob[3*p/2 - 2048] ^= pat[i] >> 4;
431 oob[3*p/2 - 2047] ^= pat[i] << 4;
432 } else {
433 oob[3*p/2 - 2049] ^= pat[i] >> 8;
434 oob[3*p/2 - 2048] ^= pat[i];
436 } else if ((p & 1) == 1) {
437 buf[3*p/2] ^= pat[i] >> 4;
438 buf[3*p/2 + 1] ^= pat[i] << 4;
439 } else {
440 buf[3*p/2 - 1] ^= pat[i] >> 8;
441 buf[3*p/2] ^= pat[i];
445 if (n < 0) {
446 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
447 cafe_readl(cafe, NAND_ADDR2) * 2048);
448 for (i = 0; i < 0x5c; i += 4)
449 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
450 mtd->ecc_stats.failed++;
451 } else {
452 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
453 mtd->ecc_stats.corrected += n;
457 return 0;
460 static struct nand_ecclayout cafe_oobinfo_2048 = {
461 .eccbytes = 14,
462 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
463 .oobfree = {{14, 50}}
466 /* Ick. The BBT code really ought to be able to work this bit out
467 for itself from the above, at least for the 2KiB case */
468 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
469 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
471 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
472 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
475 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
476 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
477 | NAND_BBT_2BIT | NAND_BBT_VERSION,
478 .offs = 14,
479 .len = 4,
480 .veroffs = 18,
481 .maxblocks = 4,
482 .pattern = cafe_bbt_pattern_2048
485 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
486 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
487 | NAND_BBT_2BIT | NAND_BBT_VERSION,
488 .offs = 14,
489 .len = 4,
490 .veroffs = 18,
491 .maxblocks = 4,
492 .pattern = cafe_mirror_pattern_2048
495 static struct nand_ecclayout cafe_oobinfo_512 = {
496 .eccbytes = 14,
497 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
498 .oobfree = {{14, 2}}
501 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
502 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
503 | NAND_BBT_2BIT | NAND_BBT_VERSION,
504 .offs = 14,
505 .len = 1,
506 .veroffs = 15,
507 .maxblocks = 4,
508 .pattern = cafe_bbt_pattern_512
511 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
512 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
513 | NAND_BBT_2BIT | NAND_BBT_VERSION,
514 .offs = 14,
515 .len = 1,
516 .veroffs = 15,
517 .maxblocks = 4,
518 .pattern = cafe_mirror_pattern_512
522 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
523 struct nand_chip *chip, const uint8_t *buf)
525 struct cafe_priv *cafe = mtd->priv;
527 chip->write_buf(mtd, buf, mtd->writesize);
528 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
530 /* Set up ECC autogeneration */
531 cafe->ctl2 |= (1<<30);
534 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
535 const uint8_t *buf, int page, int cached, int raw)
537 int status;
539 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
541 if (unlikely(raw))
542 chip->ecc.write_page_raw(mtd, chip, buf);
543 else
544 chip->ecc.write_page(mtd, chip, buf);
547 * Cached progamming disabled for now, Not sure if its worth the
548 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
550 cached = 0;
552 if (!cached || !(chip->options & NAND_CACHEPRG)) {
554 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
555 status = chip->waitfunc(mtd, chip);
557 * See if operation failed and additional status checks are
558 * available
560 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
561 status = chip->errstat(mtd, chip, FL_WRITING, status,
562 page);
564 if (status & NAND_STATUS_FAIL)
565 return -EIO;
566 } else {
567 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
568 status = chip->waitfunc(mtd, chip);
571 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
572 /* Send command to read back the data */
573 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
575 if (chip->verify_buf(mtd, buf, mtd->writesize))
576 return -EIO;
577 #endif
578 return 0;
581 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
583 return 0;
586 /* F_2[X]/(X**6+X+1) */
587 static unsigned short __devinit gf64_mul(u8 a, u8 b)
589 u8 c;
590 unsigned int i;
592 c = 0;
593 for (i = 0; i < 6; i++) {
594 if (a & 1)
595 c ^= b;
596 a >>= 1;
597 b <<= 1;
598 if ((b & 0x40) != 0)
599 b ^= 0x43;
602 return c;
605 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
606 static u16 __devinit gf4096_mul(u16 a, u16 b)
608 u8 ah, al, bh, bl, ch, cl;
610 ah = a >> 6;
611 al = a & 0x3f;
612 bh = b >> 6;
613 bl = b & 0x3f;
615 ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
616 cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
618 return (ch << 6) ^ cl;
621 static int __devinit cafe_mul(int x)
623 if (x == 0)
624 return 1;
625 return gf4096_mul(x, 0xe01);
628 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
629 const struct pci_device_id *ent)
631 struct mtd_info *mtd;
632 struct cafe_priv *cafe;
633 uint32_t ctrl;
634 int err = 0;
635 #ifdef CONFIG_MTD_PARTITIONS
636 struct mtd_partition *parts;
637 int nr_parts;
638 #endif
640 /* Very old versions shared the same PCI ident for all three
641 functions on the chip. Verify the class too... */
642 if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
643 return -ENODEV;
645 err = pci_enable_device(pdev);
646 if (err)
647 return err;
649 pci_set_master(pdev);
651 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
652 if (!mtd) {
653 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
654 return -ENOMEM;
656 cafe = (void *)(&mtd[1]);
658 mtd->dev.parent = &pdev->dev;
659 mtd->priv = cafe;
660 mtd->owner = THIS_MODULE;
662 cafe->pdev = pdev;
663 cafe->mmio = pci_iomap(pdev, 0, 0);
664 if (!cafe->mmio) {
665 dev_warn(&pdev->dev, "failed to iomap\n");
666 err = -ENOMEM;
667 goto out_free_mtd;
669 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
670 &cafe->dmaaddr, GFP_KERNEL);
671 if (!cafe->dmabuf) {
672 err = -ENOMEM;
673 goto out_ior;
675 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
677 cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
678 if (!cafe->rs) {
679 err = -ENOMEM;
680 goto out_ior;
683 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
684 cafe->nand.dev_ready = cafe_device_ready;
685 cafe->nand.read_byte = cafe_read_byte;
686 cafe->nand.read_buf = cafe_read_buf;
687 cafe->nand.write_buf = cafe_write_buf;
688 cafe->nand.select_chip = cafe_select_chip;
690 cafe->nand.chip_delay = 0;
692 /* Enable the following for a flash based bad block table */
693 cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
695 if (skipbbt) {
696 cafe->nand.options |= NAND_SKIP_BBTSCAN;
697 cafe->nand.block_bad = cafe_nand_block_bad;
700 if (numtimings && numtimings != 3) {
701 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
704 if (numtimings == 3) {
705 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
706 timing[0], timing[1], timing[2]);
707 } else {
708 timing[0] = cafe_readl(cafe, NAND_TIMING1);
709 timing[1] = cafe_readl(cafe, NAND_TIMING2);
710 timing[2] = cafe_readl(cafe, NAND_TIMING3);
712 if (timing[0] | timing[1] | timing[2]) {
713 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
714 timing[0], timing[1], timing[2]);
715 } else {
716 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
717 timing[0] = timing[1] = timing[2] = 0xffffffff;
721 /* Start off by resetting the NAND controller completely */
722 cafe_writel(cafe, 1, NAND_RESET);
723 cafe_writel(cafe, 0, NAND_RESET);
725 cafe_writel(cafe, timing[0], NAND_TIMING1);
726 cafe_writel(cafe, timing[1], NAND_TIMING2);
727 cafe_writel(cafe, timing[2], NAND_TIMING3);
729 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
730 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
731 "CAFE NAND", mtd);
732 if (err) {
733 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
734 goto out_free_dma;
737 /* Disable master reset, enable NAND clock */
738 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
739 ctrl &= 0xffffeff0;
740 ctrl |= 0x00007000;
741 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
742 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
743 cafe_writel(cafe, 0, NAND_DMA_CTRL);
745 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
746 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
748 /* Set up DMA address */
749 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
750 if (sizeof(cafe->dmaaddr) > 4)
751 /* Shift in two parts to shut the compiler up */
752 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
753 else
754 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
756 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
757 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
759 /* Enable NAND IRQ in global IRQ mask register */
760 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
761 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
762 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
764 /* Scan to find existence of the device */
765 if (nand_scan_ident(mtd, 2, NULL)) {
766 err = -ENXIO;
767 goto out_irq;
770 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
771 if (mtd->writesize == 2048)
772 cafe->ctl2 |= 1<<29; /* 2KiB page size */
774 /* Set up ECC according to the type of chip we found */
775 if (mtd->writesize == 2048) {
776 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
777 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
778 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
779 } else if (mtd->writesize == 512) {
780 cafe->nand.ecc.layout = &cafe_oobinfo_512;
781 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
782 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
783 } else {
784 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
785 mtd->writesize);
786 goto out_irq;
788 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
789 cafe->nand.ecc.size = mtd->writesize;
790 cafe->nand.ecc.bytes = 14;
791 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
792 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
793 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
794 cafe->nand.write_page = cafe_nand_write_page;
795 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
796 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
797 cafe->nand.ecc.read_page = cafe_nand_read_page;
798 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
800 err = nand_scan_tail(mtd);
801 if (err)
802 goto out_irq;
804 pci_set_drvdata(pdev, mtd);
806 /* We register the whole device first, separate from the partitions */
807 add_mtd_device(mtd);
809 #ifdef CONFIG_MTD_PARTITIONS
810 #ifdef CONFIG_MTD_CMDLINE_PARTS
811 mtd->name = "cafe_nand";
812 #endif
813 nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
814 if (nr_parts > 0) {
815 cafe->parts = parts;
816 dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
817 add_mtd_partitions(mtd, parts, nr_parts);
819 #endif
820 goto out;
822 out_irq:
823 /* Disable NAND IRQ in global IRQ mask register */
824 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
825 free_irq(pdev->irq, mtd);
826 out_free_dma:
827 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
828 out_ior:
829 pci_iounmap(pdev, cafe->mmio);
830 out_free_mtd:
831 kfree(mtd);
832 out:
833 return err;
836 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
838 struct mtd_info *mtd = pci_get_drvdata(pdev);
839 struct cafe_priv *cafe = mtd->priv;
841 del_mtd_device(mtd);
842 /* Disable NAND IRQ in global IRQ mask register */
843 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
844 free_irq(pdev->irq, mtd);
845 nand_release(mtd);
846 free_rs(cafe->rs);
847 pci_iounmap(pdev, cafe->mmio);
848 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
849 kfree(mtd);
852 static const struct pci_device_id cafe_nand_tbl[] = {
853 { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
854 PCI_ANY_ID, PCI_ANY_ID },
858 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
860 static int cafe_nand_resume(struct pci_dev *pdev)
862 uint32_t ctrl;
863 struct mtd_info *mtd = pci_get_drvdata(pdev);
864 struct cafe_priv *cafe = mtd->priv;
866 /* Start off by resetting the NAND controller completely */
867 cafe_writel(cafe, 1, NAND_RESET);
868 cafe_writel(cafe, 0, NAND_RESET);
869 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
871 /* Restore timing configuration */
872 cafe_writel(cafe, timing[0], NAND_TIMING1);
873 cafe_writel(cafe, timing[1], NAND_TIMING2);
874 cafe_writel(cafe, timing[2], NAND_TIMING3);
876 /* Disable master reset, enable NAND clock */
877 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
878 ctrl &= 0xffffeff0;
879 ctrl |= 0x00007000;
880 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
881 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
882 cafe_writel(cafe, 0, NAND_DMA_CTRL);
883 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
884 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
886 /* Set up DMA address */
887 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
888 if (sizeof(cafe->dmaaddr) > 4)
889 /* Shift in two parts to shut the compiler up */
890 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
891 else
892 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
894 /* Enable NAND IRQ in global IRQ mask register */
895 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
896 return 0;
899 static struct pci_driver cafe_nand_pci_driver = {
900 .name = "CAFÉ NAND",
901 .id_table = cafe_nand_tbl,
902 .probe = cafe_nand_probe,
903 .remove = __devexit_p(cafe_nand_remove),
904 .resume = cafe_nand_resume,
907 static int __init cafe_nand_init(void)
909 return pci_register_driver(&cafe_nand_pci_driver);
912 static void __exit cafe_nand_exit(void)
914 pci_unregister_driver(&cafe_nand_pci_driver);
916 module_init(cafe_nand_init);
917 module_exit(cafe_nand_exit);
919 MODULE_LICENSE("GPL");
920 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
921 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");