x86: print DMI information in the oops trace
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / process_32.c
blob7b9ee9f09639c5816170e915da562bf5e92443a4
1 /*
2 * Copyright (C) 1995 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <stdarg.h>
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40 #include <linux/dmi.h>
42 #include <asm/uaccess.h>
43 #include <asm/pgtable.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/ldt.h>
47 #include <asm/processor.h>
48 #include <asm/i387.h>
49 #include <asm/desc.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
54 #include <linux/err.h>
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 #include <asm/kdebug.h>
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
62 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
63 EXPORT_PER_CPU_SYMBOL(current_task);
65 DEFINE_PER_CPU(int, cpu_number);
66 EXPORT_PER_CPU_SYMBOL(cpu_number);
69 * Return saved PC of a blocked thread.
71 unsigned long thread_saved_pc(struct task_struct *tsk)
73 return ((unsigned long *)tsk->thread.sp)[3];
76 #ifdef CONFIG_HOTPLUG_CPU
77 #include <asm/nmi.h>
79 static void cpu_exit_clear(void)
81 int cpu = raw_smp_processor_id();
83 idle_task_exit();
85 cpu_uninit();
86 irq_ctx_exit(cpu);
88 cpu_clear(cpu, cpu_callout_map);
89 cpu_clear(cpu, cpu_callin_map);
91 numa_remove_cpu(cpu);
94 /* We don't actually take CPU down, just spin without interrupts. */
95 static inline void play_dead(void)
97 /* This must be done before dead CPU ack */
98 cpu_exit_clear();
99 wbinvd();
100 mb();
101 /* Ack it */
102 __get_cpu_var(cpu_state) = CPU_DEAD;
105 * With physical CPU hotplug, we should halt the cpu
107 local_irq_disable();
108 while (1)
109 halt();
111 #else
112 static inline void play_dead(void)
114 BUG();
116 #endif /* CONFIG_HOTPLUG_CPU */
119 * The idle thread. There's no useful work to be
120 * done, so just try to conserve power and have a
121 * low exit latency (ie sit in a loop waiting for
122 * somebody to say that they'd like to reschedule)
124 void cpu_idle(void)
126 int cpu = smp_processor_id();
128 current_thread_info()->status |= TS_POLLING;
130 /* endless idle loop with no priority at all */
131 while (1) {
132 tick_nohz_stop_sched_tick();
133 while (!need_resched()) {
135 check_pgt_cache();
136 rmb();
138 if (rcu_pending(cpu))
139 rcu_check_callbacks(cpu, 0);
141 if (cpu_is_offline(cpu))
142 play_dead();
144 local_irq_disable();
145 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
146 /* Don't trace irqs off for idle */
147 stop_critical_timings();
148 pm_idle();
149 start_critical_timings();
151 tick_nohz_restart_sched_tick();
152 preempt_enable_no_resched();
153 schedule();
154 preempt_disable();
158 void __show_registers(struct pt_regs *regs, int all)
160 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
161 unsigned long d0, d1, d2, d3, d6, d7;
162 unsigned long sp;
163 unsigned short ss, gs;
164 const char *board;
166 if (user_mode_vm(regs)) {
167 sp = regs->sp;
168 ss = regs->ss & 0xffff;
169 savesegment(gs, gs);
170 } else {
171 sp = (unsigned long) (&regs->sp);
172 savesegment(ss, ss);
173 savesegment(gs, gs);
176 printk("\n");
178 board = dmi_get_system_info(DMI_PRODUCT_NAME);
179 if (!board)
180 board = "";
181 printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
182 task_pid_nr(current), current->comm,
183 print_tainted(), init_utsname()->release,
184 (int)strcspn(init_utsname()->version, " "),
185 init_utsname()->version, board);
187 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
188 (u16)regs->cs, regs->ip, regs->flags,
189 smp_processor_id());
190 print_symbol("EIP is at %s\n", regs->ip);
192 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
193 regs->ax, regs->bx, regs->cx, regs->dx);
194 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
195 regs->si, regs->di, regs->bp, sp);
196 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
197 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
199 if (!all)
200 return;
202 cr0 = read_cr0();
203 cr2 = read_cr2();
204 cr3 = read_cr3();
205 cr4 = read_cr4_safe();
206 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
207 cr0, cr2, cr3, cr4);
209 get_debugreg(d0, 0);
210 get_debugreg(d1, 1);
211 get_debugreg(d2, 2);
212 get_debugreg(d3, 3);
213 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
214 d0, d1, d2, d3);
216 get_debugreg(d6, 6);
217 get_debugreg(d7, 7);
218 printk("DR6: %08lx DR7: %08lx\n",
219 d6, d7);
222 void show_regs(struct pt_regs *regs)
224 __show_registers(regs, 1);
225 show_trace(NULL, regs, &regs->sp, regs->bp);
229 * This gets run with %bx containing the
230 * function to call, and %dx containing
231 * the "args".
233 extern void kernel_thread_helper(void);
236 * Create a kernel thread
238 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
240 struct pt_regs regs;
242 memset(&regs, 0, sizeof(regs));
244 regs.bx = (unsigned long) fn;
245 regs.dx = (unsigned long) arg;
247 regs.ds = __USER_DS;
248 regs.es = __USER_DS;
249 regs.fs = __KERNEL_PERCPU;
250 regs.orig_ax = -1;
251 regs.ip = (unsigned long) kernel_thread_helper;
252 regs.cs = __KERNEL_CS | get_kernel_rpl();
253 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
255 /* Ok, create the new process.. */
256 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
258 EXPORT_SYMBOL(kernel_thread);
261 * Free current thread data structures etc..
263 void exit_thread(void)
265 /* The process may have allocated an io port bitmap... nuke it. */
266 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
267 struct task_struct *tsk = current;
268 struct thread_struct *t = &tsk->thread;
269 int cpu = get_cpu();
270 struct tss_struct *tss = &per_cpu(init_tss, cpu);
272 kfree(t->io_bitmap_ptr);
273 t->io_bitmap_ptr = NULL;
274 clear_thread_flag(TIF_IO_BITMAP);
276 * Careful, clear this in the TSS too:
278 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
279 t->io_bitmap_max = 0;
280 tss->io_bitmap_owner = NULL;
281 tss->io_bitmap_max = 0;
282 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
283 put_cpu();
287 void flush_thread(void)
289 struct task_struct *tsk = current;
291 tsk->thread.debugreg0 = 0;
292 tsk->thread.debugreg1 = 0;
293 tsk->thread.debugreg2 = 0;
294 tsk->thread.debugreg3 = 0;
295 tsk->thread.debugreg6 = 0;
296 tsk->thread.debugreg7 = 0;
297 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
298 clear_tsk_thread_flag(tsk, TIF_DEBUG);
300 * Forget coprocessor state..
302 tsk->fpu_counter = 0;
303 clear_fpu(tsk);
304 clear_used_math();
307 void release_thread(struct task_struct *dead_task)
309 BUG_ON(dead_task->mm);
310 release_vm86_irqs(dead_task);
314 * This gets called before we allocate a new thread and copy
315 * the current task into it.
317 void prepare_to_copy(struct task_struct *tsk)
319 unlazy_fpu(tsk);
322 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
323 unsigned long unused,
324 struct task_struct * p, struct pt_regs * regs)
326 struct pt_regs * childregs;
327 struct task_struct *tsk;
328 int err;
330 childregs = task_pt_regs(p);
331 *childregs = *regs;
332 childregs->ax = 0;
333 childregs->sp = sp;
335 p->thread.sp = (unsigned long) childregs;
336 p->thread.sp0 = (unsigned long) (childregs+1);
338 p->thread.ip = (unsigned long) ret_from_fork;
340 savesegment(gs, p->thread.gs);
342 tsk = current;
343 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
344 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
345 IO_BITMAP_BYTES, GFP_KERNEL);
346 if (!p->thread.io_bitmap_ptr) {
347 p->thread.io_bitmap_max = 0;
348 return -ENOMEM;
350 set_tsk_thread_flag(p, TIF_IO_BITMAP);
353 err = 0;
356 * Set a new TLS for the child thread?
358 if (clone_flags & CLONE_SETTLS)
359 err = do_set_thread_area(p, -1,
360 (struct user_desc __user *)childregs->si, 0);
362 if (err && p->thread.io_bitmap_ptr) {
363 kfree(p->thread.io_bitmap_ptr);
364 p->thread.io_bitmap_max = 0;
366 return err;
369 void
370 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
372 __asm__("movl %0, %%gs" :: "r"(0));
373 regs->fs = 0;
374 set_fs(USER_DS);
375 regs->ds = __USER_DS;
376 regs->es = __USER_DS;
377 regs->ss = __USER_DS;
378 regs->cs = __USER_CS;
379 regs->ip = new_ip;
380 regs->sp = new_sp;
382 * Free the old FP and other extended state
384 free_thread_xstate(current);
386 EXPORT_SYMBOL_GPL(start_thread);
388 static void hard_disable_TSC(void)
390 write_cr4(read_cr4() | X86_CR4_TSD);
393 void disable_TSC(void)
395 preempt_disable();
396 if (!test_and_set_thread_flag(TIF_NOTSC))
398 * Must flip the CPU state synchronously with
399 * TIF_NOTSC in the current running context.
401 hard_disable_TSC();
402 preempt_enable();
405 static void hard_enable_TSC(void)
407 write_cr4(read_cr4() & ~X86_CR4_TSD);
410 static void enable_TSC(void)
412 preempt_disable();
413 if (test_and_clear_thread_flag(TIF_NOTSC))
415 * Must flip the CPU state synchronously with
416 * TIF_NOTSC in the current running context.
418 hard_enable_TSC();
419 preempt_enable();
422 int get_tsc_mode(unsigned long adr)
424 unsigned int val;
426 if (test_thread_flag(TIF_NOTSC))
427 val = PR_TSC_SIGSEGV;
428 else
429 val = PR_TSC_ENABLE;
431 return put_user(val, (unsigned int __user *)adr);
434 int set_tsc_mode(unsigned int val)
436 if (val == PR_TSC_SIGSEGV)
437 disable_TSC();
438 else if (val == PR_TSC_ENABLE)
439 enable_TSC();
440 else
441 return -EINVAL;
443 return 0;
446 static noinline void
447 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
448 struct tss_struct *tss)
450 struct thread_struct *prev, *next;
451 unsigned long debugctl;
453 prev = &prev_p->thread;
454 next = &next_p->thread;
456 debugctl = prev->debugctlmsr;
457 if (next->ds_area_msr != prev->ds_area_msr) {
458 /* we clear debugctl to make sure DS
459 * is not in use when we change it */
460 debugctl = 0;
461 update_debugctlmsr(0);
462 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
465 if (next->debugctlmsr != debugctl)
466 update_debugctlmsr(next->debugctlmsr);
468 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
469 set_debugreg(next->debugreg0, 0);
470 set_debugreg(next->debugreg1, 1);
471 set_debugreg(next->debugreg2, 2);
472 set_debugreg(next->debugreg3, 3);
473 /* no 4 and 5 */
474 set_debugreg(next->debugreg6, 6);
475 set_debugreg(next->debugreg7, 7);
478 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
479 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
480 /* prev and next are different */
481 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
482 hard_disable_TSC();
483 else
484 hard_enable_TSC();
487 #ifdef X86_BTS
488 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
489 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
491 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
492 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
493 #endif
496 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
498 * Disable the bitmap via an invalid offset. We still cache
499 * the previous bitmap owner and the IO bitmap contents:
501 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
502 return;
505 if (likely(next == tss->io_bitmap_owner)) {
507 * Previous owner of the bitmap (hence the bitmap content)
508 * matches the next task, we dont have to do anything but
509 * to set a valid offset in the TSS:
511 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
512 return;
515 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
516 * and we let the task to get a GPF in case an I/O instruction
517 * is performed. The handler of the GPF will verify that the
518 * faulting task has a valid I/O bitmap and, it true, does the
519 * real copy and restart the instruction. This will save us
520 * redundant copies when the currently switched task does not
521 * perform any I/O during its timeslice.
523 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
527 * switch_to(x,yn) should switch tasks from x to y.
529 * We fsave/fwait so that an exception goes off at the right time
530 * (as a call from the fsave or fwait in effect) rather than to
531 * the wrong process. Lazy FP saving no longer makes any sense
532 * with modern CPU's, and this simplifies a lot of things (SMP
533 * and UP become the same).
535 * NOTE! We used to use the x86 hardware context switching. The
536 * reason for not using it any more becomes apparent when you
537 * try to recover gracefully from saved state that is no longer
538 * valid (stale segment register values in particular). With the
539 * hardware task-switch, there is no way to fix up bad state in
540 * a reasonable manner.
542 * The fact that Intel documents the hardware task-switching to
543 * be slow is a fairly red herring - this code is not noticeably
544 * faster. However, there _is_ some room for improvement here,
545 * so the performance issues may eventually be a valid point.
546 * More important, however, is the fact that this allows us much
547 * more flexibility.
549 * The return value (in %ax) will be the "prev" task after
550 * the task-switch, and shows up in ret_from_fork in entry.S,
551 * for example.
553 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
555 struct thread_struct *prev = &prev_p->thread,
556 *next = &next_p->thread;
557 int cpu = smp_processor_id();
558 struct tss_struct *tss = &per_cpu(init_tss, cpu);
560 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
562 __unlazy_fpu(prev_p);
565 /* we're going to use this soon, after a few expensive things */
566 if (next_p->fpu_counter > 5)
567 prefetch(next->xstate);
570 * Reload esp0.
572 load_sp0(tss, next);
575 * Save away %gs. No need to save %fs, as it was saved on the
576 * stack on entry. No need to save %es and %ds, as those are
577 * always kernel segments while inside the kernel. Doing this
578 * before setting the new TLS descriptors avoids the situation
579 * where we temporarily have non-reloadable segments in %fs
580 * and %gs. This could be an issue if the NMI handler ever
581 * used %fs or %gs (it does not today), or if the kernel is
582 * running inside of a hypervisor layer.
584 savesegment(gs, prev->gs);
587 * Load the per-thread Thread-Local Storage descriptor.
589 load_TLS(next, cpu);
592 * Restore IOPL if needed. In normal use, the flags restore
593 * in the switch assembly will handle this. But if the kernel
594 * is running virtualized at a non-zero CPL, the popf will
595 * not restore flags, so it must be done in a separate step.
597 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
598 set_iopl_mask(next->iopl);
601 * Now maybe handle debug registers and/or IO bitmaps
603 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
604 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
605 __switch_to_xtra(prev_p, next_p, tss);
608 * Leave lazy mode, flushing any hypercalls made here.
609 * This must be done before restoring TLS segments so
610 * the GDT and LDT are properly updated, and must be
611 * done before math_state_restore, so the TS bit is up
612 * to date.
614 arch_leave_lazy_cpu_mode();
616 /* If the task has used fpu the last 5 timeslices, just do a full
617 * restore of the math state immediately to avoid the trap; the
618 * chances of needing FPU soon are obviously high now
620 * tsk_used_math() checks prevent calling math_state_restore(),
621 * which can sleep in the case of !tsk_used_math()
623 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
624 math_state_restore();
627 * Restore %gs if needed (which is common)
629 if (prev->gs | next->gs)
630 loadsegment(gs, next->gs);
632 x86_write_percpu(current_task, next_p);
634 return prev_p;
637 asmlinkage int sys_fork(struct pt_regs regs)
639 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
642 asmlinkage int sys_clone(struct pt_regs regs)
644 unsigned long clone_flags;
645 unsigned long newsp;
646 int __user *parent_tidptr, *child_tidptr;
648 clone_flags = regs.bx;
649 newsp = regs.cx;
650 parent_tidptr = (int __user *)regs.dx;
651 child_tidptr = (int __user *)regs.di;
652 if (!newsp)
653 newsp = regs.sp;
654 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
658 * This is trivial, and on the face of it looks like it
659 * could equally well be done in user mode.
661 * Not so, for quite unobvious reasons - register pressure.
662 * In user mode vfork() cannot have a stack frame, and if
663 * done by calling the "clone()" system call directly, you
664 * do not have enough call-clobbered registers to hold all
665 * the information you need.
667 asmlinkage int sys_vfork(struct pt_regs regs)
669 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
673 * sys_execve() executes a new program.
675 asmlinkage int sys_execve(struct pt_regs regs)
677 int error;
678 char * filename;
680 filename = getname((char __user *) regs.bx);
681 error = PTR_ERR(filename);
682 if (IS_ERR(filename))
683 goto out;
684 error = do_execve(filename,
685 (char __user * __user *) regs.cx,
686 (char __user * __user *) regs.dx,
687 &regs);
688 if (error == 0) {
689 /* Make sure we don't return using sysenter.. */
690 set_thread_flag(TIF_IRET);
692 putname(filename);
693 out:
694 return error;
697 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
698 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
700 unsigned long get_wchan(struct task_struct *p)
702 unsigned long bp, sp, ip;
703 unsigned long stack_page;
704 int count = 0;
705 if (!p || p == current || p->state == TASK_RUNNING)
706 return 0;
707 stack_page = (unsigned long)task_stack_page(p);
708 sp = p->thread.sp;
709 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
710 return 0;
711 /* include/asm-i386/system.h:switch_to() pushes bp last. */
712 bp = *(unsigned long *) sp;
713 do {
714 if (bp < stack_page || bp > top_ebp+stack_page)
715 return 0;
716 ip = *(unsigned long *) (bp+4);
717 if (!in_sched_functions(ip))
718 return ip;
719 bp = *(unsigned long *) bp;
720 } while (count++ < 16);
721 return 0;
724 unsigned long arch_align_stack(unsigned long sp)
726 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
727 sp -= get_random_int() % 8192;
728 return sp & ~0xf;
731 unsigned long arch_randomize_brk(struct mm_struct *mm)
733 unsigned long range_end = mm->brk + 0x02000000;
734 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;