4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
38 LIST_HEAD(super_blocks
);
39 DEFINE_SPINLOCK(sb_lock
);
42 * One thing we have to be careful of with a per-sb shrinker is that we don't
43 * drop the last active reference to the superblock from within the shrinker.
44 * If that happens we could trigger unregistering the shrinker from within the
45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
46 * take a passive reference to the superblock to avoid this from occurring.
48 static int prune_super(struct shrinker
*shrink
, struct shrink_control
*sc
)
50 struct super_block
*sb
;
54 sb
= container_of(shrink
, struct super_block
, s_shrink
);
57 * Deadlock avoidance. We may hold various FS locks, and we don't want
58 * to recurse into the FS that called us in clear_inode() and friends..
60 if (sc
->nr_to_scan
&& !(sc
->gfp_mask
& __GFP_FS
))
63 if (!grab_super_passive(sb
))
64 return !sc
->nr_to_scan
? 0 : -1;
66 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
67 fs_objects
= sb
->s_op
->nr_cached_objects(sb
);
69 total_objects
= sb
->s_nr_dentry_unused
+
70 sb
->s_nr_inodes_unused
+ fs_objects
+ 1;
76 /* proportion the scan between the caches */
77 dentries
= (sc
->nr_to_scan
* sb
->s_nr_dentry_unused
) /
79 inodes
= (sc
->nr_to_scan
* sb
->s_nr_inodes_unused
) /
82 fs_objects
= (sc
->nr_to_scan
* fs_objects
) /
85 * prune the dcache first as the icache is pinned by it, then
86 * prune the icache, followed by the filesystem specific caches
88 prune_dcache_sb(sb
, dentries
);
89 prune_icache_sb(sb
, inodes
);
91 if (fs_objects
&& sb
->s_op
->free_cached_objects
) {
92 sb
->s_op
->free_cached_objects(sb
, fs_objects
);
93 fs_objects
= sb
->s_op
->nr_cached_objects(sb
);
95 total_objects
= sb
->s_nr_dentry_unused
+
96 sb
->s_nr_inodes_unused
+ fs_objects
;
99 total_objects
= (total_objects
/ 100) * sysctl_vfs_cache_pressure
;
101 return total_objects
;
105 * alloc_super - create new superblock
106 * @type: filesystem type superblock should belong to
108 * Allocates and initializes a new &struct super_block. alloc_super()
109 * returns a pointer new superblock or %NULL if allocation had failed.
111 static struct super_block
*alloc_super(struct file_system_type
*type
)
113 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
114 static const struct super_operations default_op
;
117 if (security_sb_alloc(s
)) {
123 s
->s_files
= alloc_percpu(struct list_head
);
132 for_each_possible_cpu(i
)
133 INIT_LIST_HEAD(per_cpu_ptr(s
->s_files
, i
));
136 INIT_LIST_HEAD(&s
->s_files
);
138 s
->s_bdi
= &default_backing_dev_info
;
139 INIT_LIST_HEAD(&s
->s_instances
);
140 INIT_HLIST_BL_HEAD(&s
->s_anon
);
141 INIT_LIST_HEAD(&s
->s_inodes
);
142 INIT_LIST_HEAD(&s
->s_dentry_lru
);
143 INIT_LIST_HEAD(&s
->s_inode_lru
);
144 spin_lock_init(&s
->s_inode_lru_lock
);
145 init_rwsem(&s
->s_umount
);
146 mutex_init(&s
->s_lock
);
147 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
149 * The locking rules for s_lock are up to the
150 * filesystem. For example ext3fs has different
151 * lock ordering than usbfs:
153 lockdep_set_class(&s
->s_lock
, &type
->s_lock_key
);
155 * sget() can have s_umount recursion.
157 * When it cannot find a suitable sb, it allocates a new
158 * one (this one), and tries again to find a suitable old
161 * In case that succeeds, it will acquire the s_umount
162 * lock of the old one. Since these are clearly distrinct
163 * locks, and this object isn't exposed yet, there's no
166 * Annotate this by putting this lock in a different
169 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
171 atomic_set(&s
->s_active
, 1);
172 mutex_init(&s
->s_vfs_rename_mutex
);
173 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
174 mutex_init(&s
->s_dquot
.dqio_mutex
);
175 mutex_init(&s
->s_dquot
.dqonoff_mutex
);
176 init_rwsem(&s
->s_dquot
.dqptr_sem
);
177 init_waitqueue_head(&s
->s_wait_unfrozen
);
178 s
->s_maxbytes
= MAX_NON_LFS
;
179 s
->s_op
= &default_op
;
180 s
->s_time_gran
= 1000000000;
181 s
->cleancache_poolid
= -1;
183 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
184 s
->s_shrink
.shrink
= prune_super
;
185 s
->s_shrink
.batch
= 1024;
192 * destroy_super - frees a superblock
193 * @s: superblock to free
195 * Frees a superblock.
197 static inline void destroy_super(struct super_block
*s
)
200 free_percpu(s
->s_files
);
208 /* Superblock refcounting */
211 * Drop a superblock's refcount. The caller must hold sb_lock.
213 void __put_super(struct super_block
*sb
)
215 if (!--sb
->s_count
) {
216 list_del_init(&sb
->s_list
);
222 * put_super - drop a temporary reference to superblock
223 * @sb: superblock in question
225 * Drops a temporary reference, frees superblock if there's no
228 void put_super(struct super_block
*sb
)
232 spin_unlock(&sb_lock
);
237 * deactivate_locked_super - drop an active reference to superblock
238 * @s: superblock to deactivate
240 * Drops an active reference to superblock, converting it into a temprory
241 * one if there is no other active references left. In that case we
242 * tell fs driver to shut it down and drop the temporary reference we
245 * Caller holds exclusive lock on superblock; that lock is released.
247 void deactivate_locked_super(struct super_block
*s
)
249 struct file_system_type
*fs
= s
->s_type
;
250 if (atomic_dec_and_test(&s
->s_active
)) {
251 cleancache_flush_fs(s
);
254 /* caches are now gone, we can safely kill the shrinker now */
255 unregister_shrinker(&s
->s_shrink
);
258 * We need to call rcu_barrier so all the delayed rcu free
259 * inodes are flushed before we release the fs module.
265 up_write(&s
->s_umount
);
269 EXPORT_SYMBOL(deactivate_locked_super
);
272 * deactivate_super - drop an active reference to superblock
273 * @s: superblock to deactivate
275 * Variant of deactivate_locked_super(), except that superblock is *not*
276 * locked by caller. If we are going to drop the final active reference,
277 * lock will be acquired prior to that.
279 void deactivate_super(struct super_block
*s
)
281 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
282 down_write(&s
->s_umount
);
283 deactivate_locked_super(s
);
287 EXPORT_SYMBOL(deactivate_super
);
290 * grab_super - acquire an active reference
291 * @s: reference we are trying to make active
293 * Tries to acquire an active reference. grab_super() is used when we
294 * had just found a superblock in super_blocks or fs_type->fs_supers
295 * and want to turn it into a full-blown active reference. grab_super()
296 * is called with sb_lock held and drops it. Returns 1 in case of
297 * success, 0 if we had failed (superblock contents was already dead or
298 * dying when grab_super() had been called).
300 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
302 if (atomic_inc_not_zero(&s
->s_active
)) {
303 spin_unlock(&sb_lock
);
306 /* it's going away */
308 spin_unlock(&sb_lock
);
309 /* wait for it to die */
310 down_write(&s
->s_umount
);
311 up_write(&s
->s_umount
);
317 * grab_super_passive - acquire a passive reference
318 * @s: reference we are trying to grab
320 * Tries to acquire a passive reference. This is used in places where we
321 * cannot take an active reference but we need to ensure that the
322 * superblock does not go away while we are working on it. It returns
323 * false if a reference was not gained, and returns true with the s_umount
324 * lock held in read mode if a reference is gained. On successful return,
325 * the caller must drop the s_umount lock and the passive reference when
328 bool grab_super_passive(struct super_block
*sb
)
331 if (list_empty(&sb
->s_instances
)) {
332 spin_unlock(&sb_lock
);
337 spin_unlock(&sb_lock
);
339 if (down_read_trylock(&sb
->s_umount
)) {
342 up_read(&sb
->s_umount
);
350 * Superblock locking. We really ought to get rid of these two.
352 void lock_super(struct super_block
* sb
)
354 mutex_lock(&sb
->s_lock
);
357 void unlock_super(struct super_block
* sb
)
359 mutex_unlock(&sb
->s_lock
);
362 EXPORT_SYMBOL(lock_super
);
363 EXPORT_SYMBOL(unlock_super
);
366 * generic_shutdown_super - common helper for ->kill_sb()
367 * @sb: superblock to kill
369 * generic_shutdown_super() does all fs-independent work on superblock
370 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
371 * that need destruction out of superblock, call generic_shutdown_super()
372 * and release aforementioned objects. Note: dentries and inodes _are_
373 * taken care of and do not need specific handling.
375 * Upon calling this function, the filesystem may no longer alter or
376 * rearrange the set of dentries belonging to this super_block, nor may it
377 * change the attachments of dentries to inodes.
379 void generic_shutdown_super(struct super_block
*sb
)
381 const struct super_operations
*sop
= sb
->s_op
;
384 shrink_dcache_for_umount(sb
);
386 sb
->s_flags
&= ~MS_ACTIVE
;
388 fsnotify_unmount_inodes(&sb
->s_inodes
);
395 if (!list_empty(&sb
->s_inodes
)) {
396 printk("VFS: Busy inodes after unmount of %s. "
397 "Self-destruct in 5 seconds. Have a nice day...\n",
402 /* should be initialized for __put_super_and_need_restart() */
403 list_del_init(&sb
->s_instances
);
404 spin_unlock(&sb_lock
);
405 up_write(&sb
->s_umount
);
408 EXPORT_SYMBOL(generic_shutdown_super
);
411 * sget - find or create a superblock
412 * @type: filesystem type superblock should belong to
413 * @test: comparison callback
414 * @set: setup callback
415 * @data: argument to each of them
417 struct super_block
*sget(struct file_system_type
*type
,
418 int (*test
)(struct super_block
*,void *),
419 int (*set
)(struct super_block
*,void *),
422 struct super_block
*s
= NULL
;
423 struct super_block
*old
;
429 list_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
430 if (!test(old
, data
))
432 if (!grab_super(old
))
435 up_write(&s
->s_umount
);
439 down_write(&old
->s_umount
);
440 if (unlikely(!(old
->s_flags
& MS_BORN
))) {
441 deactivate_locked_super(old
);
448 spin_unlock(&sb_lock
);
449 s
= alloc_super(type
);
451 return ERR_PTR(-ENOMEM
);
457 spin_unlock(&sb_lock
);
458 up_write(&s
->s_umount
);
463 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
464 list_add_tail(&s
->s_list
, &super_blocks
);
465 list_add(&s
->s_instances
, &type
->fs_supers
);
466 spin_unlock(&sb_lock
);
467 get_filesystem(type
);
468 register_shrinker(&s
->s_shrink
);
474 void drop_super(struct super_block
*sb
)
476 up_read(&sb
->s_umount
);
480 EXPORT_SYMBOL(drop_super
);
483 * sync_supers - helper for periodic superblock writeback
485 * Call the write_super method if present on all dirty superblocks in
486 * the system. This is for the periodic writeback used by most older
487 * filesystems. For data integrity superblock writeback use
488 * sync_filesystems() instead.
490 * Note: check the dirty flag before waiting, so we don't
491 * hold up the sync while mounting a device. (The newly
492 * mounted device won't need syncing.)
494 void sync_supers(void)
496 struct super_block
*sb
, *p
= NULL
;
499 list_for_each_entry(sb
, &super_blocks
, s_list
) {
500 if (list_empty(&sb
->s_instances
))
502 if (sb
->s_op
->write_super
&& sb
->s_dirt
) {
504 spin_unlock(&sb_lock
);
506 down_read(&sb
->s_umount
);
507 if (sb
->s_root
&& sb
->s_dirt
)
508 sb
->s_op
->write_super(sb
);
509 up_read(&sb
->s_umount
);
519 spin_unlock(&sb_lock
);
523 * iterate_supers - call function for all active superblocks
524 * @f: function to call
525 * @arg: argument to pass to it
527 * Scans the superblock list and calls given function, passing it
528 * locked superblock and given argument.
530 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
532 struct super_block
*sb
, *p
= NULL
;
535 list_for_each_entry(sb
, &super_blocks
, s_list
) {
536 if (list_empty(&sb
->s_instances
))
539 spin_unlock(&sb_lock
);
541 down_read(&sb
->s_umount
);
544 up_read(&sb
->s_umount
);
553 spin_unlock(&sb_lock
);
557 * iterate_supers_type - call function for superblocks of given type
559 * @f: function to call
560 * @arg: argument to pass to it
562 * Scans the superblock list and calls given function, passing it
563 * locked superblock and given argument.
565 void iterate_supers_type(struct file_system_type
*type
,
566 void (*f
)(struct super_block
*, void *), void *arg
)
568 struct super_block
*sb
, *p
= NULL
;
571 list_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
573 spin_unlock(&sb_lock
);
575 down_read(&sb
->s_umount
);
578 up_read(&sb
->s_umount
);
587 spin_unlock(&sb_lock
);
590 EXPORT_SYMBOL(iterate_supers_type
);
593 * get_super - get the superblock of a device
594 * @bdev: device to get the superblock for
596 * Scans the superblock list and finds the superblock of the file system
597 * mounted on the device given. %NULL is returned if no match is found.
600 struct super_block
*get_super(struct block_device
*bdev
)
602 struct super_block
*sb
;
609 list_for_each_entry(sb
, &super_blocks
, s_list
) {
610 if (list_empty(&sb
->s_instances
))
612 if (sb
->s_bdev
== bdev
) {
614 spin_unlock(&sb_lock
);
615 down_read(&sb
->s_umount
);
619 up_read(&sb
->s_umount
);
620 /* nope, got unmounted */
626 spin_unlock(&sb_lock
);
630 EXPORT_SYMBOL(get_super
);
633 * get_active_super - get an active reference to the superblock of a device
634 * @bdev: device to get the superblock for
636 * Scans the superblock list and finds the superblock of the file system
637 * mounted on the device given. Returns the superblock with an active
638 * reference or %NULL if none was found.
640 struct super_block
*get_active_super(struct block_device
*bdev
)
642 struct super_block
*sb
;
649 list_for_each_entry(sb
, &super_blocks
, s_list
) {
650 if (list_empty(&sb
->s_instances
))
652 if (sb
->s_bdev
== bdev
) {
653 if (grab_super(sb
)) /* drops sb_lock */
659 spin_unlock(&sb_lock
);
663 struct super_block
*user_get_super(dev_t dev
)
665 struct super_block
*sb
;
669 list_for_each_entry(sb
, &super_blocks
, s_list
) {
670 if (list_empty(&sb
->s_instances
))
672 if (sb
->s_dev
== dev
) {
674 spin_unlock(&sb_lock
);
675 down_read(&sb
->s_umount
);
679 up_read(&sb
->s_umount
);
680 /* nope, got unmounted */
686 spin_unlock(&sb_lock
);
691 * do_remount_sb - asks filesystem to change mount options.
692 * @sb: superblock in question
693 * @flags: numeric part of options
694 * @data: the rest of options
695 * @force: whether or not to force the change
697 * Alters the mount options of a mounted file system.
699 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
704 if (sb
->s_frozen
!= SB_UNFROZEN
)
708 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
712 if (flags
& MS_RDONLY
)
714 shrink_dcache_sb(sb
);
717 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
719 /* If we are remounting RDONLY and current sb is read/write,
720 make sure there are no rw files opened */
724 else if (!fs_may_remount_ro(sb
))
728 if (sb
->s_op
->remount_fs
) {
729 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
733 /* If forced remount, go ahead despite any errors */
734 WARN(1, "forced remount of a %s fs returned %i\n",
735 sb
->s_type
->name
, retval
);
738 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
741 * Some filesystems modify their metadata via some other path than the
742 * bdev buffer cache (eg. use a private mapping, or directories in
743 * pagecache, etc). Also file data modifications go via their own
744 * mappings. So If we try to mount readonly then copy the filesystem
745 * from bdev, we could get stale data, so invalidate it to give a best
746 * effort at coherency.
748 if (remount_ro
&& sb
->s_bdev
)
749 invalidate_bdev(sb
->s_bdev
);
753 static void do_emergency_remount(struct work_struct
*work
)
755 struct super_block
*sb
, *p
= NULL
;
758 list_for_each_entry(sb
, &super_blocks
, s_list
) {
759 if (list_empty(&sb
->s_instances
))
762 spin_unlock(&sb_lock
);
763 down_write(&sb
->s_umount
);
764 if (sb
->s_root
&& sb
->s_bdev
&& !(sb
->s_flags
& MS_RDONLY
)) {
766 * What lock protects sb->s_flags??
768 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
770 up_write(&sb
->s_umount
);
778 spin_unlock(&sb_lock
);
780 printk("Emergency Remount complete\n");
783 void emergency_remount(void)
785 struct work_struct
*work
;
787 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
789 INIT_WORK(work
, do_emergency_remount
);
795 * Unnamed block devices are dummy devices used by virtual
796 * filesystems which don't use real block-devices. -- jrs
799 static DEFINE_IDA(unnamed_dev_ida
);
800 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
801 static int unnamed_dev_start
= 0; /* don't bother trying below it */
803 int get_anon_bdev(dev_t
*p
)
809 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
811 spin_lock(&unnamed_dev_lock
);
812 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
814 unnamed_dev_start
= dev
+ 1;
815 spin_unlock(&unnamed_dev_lock
);
816 if (error
== -EAGAIN
)
817 /* We raced and lost with another CPU. */
822 if ((dev
& MAX_ID_MASK
) == (1 << MINORBITS
)) {
823 spin_lock(&unnamed_dev_lock
);
824 ida_remove(&unnamed_dev_ida
, dev
);
825 if (unnamed_dev_start
> dev
)
826 unnamed_dev_start
= dev
;
827 spin_unlock(&unnamed_dev_lock
);
830 *p
= MKDEV(0, dev
& MINORMASK
);
833 EXPORT_SYMBOL(get_anon_bdev
);
835 void free_anon_bdev(dev_t dev
)
837 int slot
= MINOR(dev
);
838 spin_lock(&unnamed_dev_lock
);
839 ida_remove(&unnamed_dev_ida
, slot
);
840 if (slot
< unnamed_dev_start
)
841 unnamed_dev_start
= slot
;
842 spin_unlock(&unnamed_dev_lock
);
844 EXPORT_SYMBOL(free_anon_bdev
);
846 int set_anon_super(struct super_block
*s
, void *data
)
848 int error
= get_anon_bdev(&s
->s_dev
);
850 s
->s_bdi
= &noop_backing_dev_info
;
854 EXPORT_SYMBOL(set_anon_super
);
856 void kill_anon_super(struct super_block
*sb
)
858 dev_t dev
= sb
->s_dev
;
859 generic_shutdown_super(sb
);
863 EXPORT_SYMBOL(kill_anon_super
);
865 void kill_litter_super(struct super_block
*sb
)
868 d_genocide(sb
->s_root
);
872 EXPORT_SYMBOL(kill_litter_super
);
874 static int ns_test_super(struct super_block
*sb
, void *data
)
876 return sb
->s_fs_info
== data
;
879 static int ns_set_super(struct super_block
*sb
, void *data
)
881 sb
->s_fs_info
= data
;
882 return set_anon_super(sb
, NULL
);
885 struct dentry
*mount_ns(struct file_system_type
*fs_type
, int flags
,
886 void *data
, int (*fill_super
)(struct super_block
*, void *, int))
888 struct super_block
*sb
;
890 sb
= sget(fs_type
, ns_test_super
, ns_set_super
, data
);
897 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
899 deactivate_locked_super(sb
);
903 sb
->s_flags
|= MS_ACTIVE
;
906 return dget(sb
->s_root
);
909 EXPORT_SYMBOL(mount_ns
);
912 static int set_bdev_super(struct super_block
*s
, void *data
)
915 s
->s_dev
= s
->s_bdev
->bd_dev
;
918 * We set the bdi here to the queue backing, file systems can
919 * overwrite this in ->fill_super()
921 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
925 static int test_bdev_super(struct super_block
*s
, void *data
)
927 return (void *)s
->s_bdev
== data
;
930 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
931 int flags
, const char *dev_name
, void *data
,
932 int (*fill_super
)(struct super_block
*, void *, int))
934 struct block_device
*bdev
;
935 struct super_block
*s
;
936 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
939 if (!(flags
& MS_RDONLY
))
942 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
944 return ERR_CAST(bdev
);
947 * once the super is inserted into the list by sget, s_umount
948 * will protect the lockfs code from trying to start a snapshot
949 * while we are mounting
951 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
952 if (bdev
->bd_fsfreeze_count
> 0) {
953 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
957 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, bdev
);
958 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
963 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
964 deactivate_locked_super(s
);
970 * s_umount nests inside bd_mutex during
971 * __invalidate_device(). blkdev_put() acquires
972 * bd_mutex and can't be called under s_umount. Drop
973 * s_umount temporarily. This is safe as we're
974 * holding an active reference.
976 up_write(&s
->s_umount
);
977 blkdev_put(bdev
, mode
);
978 down_write(&s
->s_umount
);
980 char b
[BDEVNAME_SIZE
];
982 s
->s_flags
= flags
| MS_NOSEC
;
984 strlcpy(s
->s_id
, bdevname(bdev
, b
), sizeof(s
->s_id
));
985 sb_set_blocksize(s
, block_size(bdev
));
986 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
988 deactivate_locked_super(s
);
992 s
->s_flags
|= MS_ACTIVE
;
996 return dget(s
->s_root
);
1001 blkdev_put(bdev
, mode
);
1003 return ERR_PTR(error
);
1005 EXPORT_SYMBOL(mount_bdev
);
1007 void kill_block_super(struct super_block
*sb
)
1009 struct block_device
*bdev
= sb
->s_bdev
;
1010 fmode_t mode
= sb
->s_mode
;
1012 bdev
->bd_super
= NULL
;
1013 generic_shutdown_super(sb
);
1014 sync_blockdev(bdev
);
1015 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1016 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1019 EXPORT_SYMBOL(kill_block_super
);
1022 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1023 int flags
, void *data
,
1024 int (*fill_super
)(struct super_block
*, void *, int))
1027 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, NULL
);
1034 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1036 deactivate_locked_super(s
);
1037 return ERR_PTR(error
);
1039 s
->s_flags
|= MS_ACTIVE
;
1040 return dget(s
->s_root
);
1042 EXPORT_SYMBOL(mount_nodev
);
1044 static int compare_single(struct super_block
*s
, void *p
)
1049 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1050 int flags
, void *data
,
1051 int (*fill_super
)(struct super_block
*, void *, int))
1053 struct super_block
*s
;
1056 s
= sget(fs_type
, compare_single
, set_anon_super
, NULL
);
1061 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1063 deactivate_locked_super(s
);
1064 return ERR_PTR(error
);
1066 s
->s_flags
|= MS_ACTIVE
;
1068 do_remount_sb(s
, flags
, data
, 0);
1070 return dget(s
->s_root
);
1072 EXPORT_SYMBOL(mount_single
);
1075 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1077 struct dentry
*root
;
1078 struct super_block
*sb
;
1079 char *secdata
= NULL
;
1080 int error
= -ENOMEM
;
1082 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1083 secdata
= alloc_secdata();
1087 error
= security_sb_copy_data(data
, secdata
);
1089 goto out_free_secdata
;
1092 root
= type
->mount(type
, flags
, name
, data
);
1094 error
= PTR_ERR(root
);
1095 goto out_free_secdata
;
1099 WARN_ON(!sb
->s_bdi
);
1100 WARN_ON(sb
->s_bdi
== &default_backing_dev_info
);
1101 sb
->s_flags
|= MS_BORN
;
1103 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1108 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1109 * but s_maxbytes was an unsigned long long for many releases. Throw
1110 * this warning for a little while to try and catch filesystems that
1111 * violate this rule.
1113 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1114 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1116 up_write(&sb
->s_umount
);
1117 free_secdata(secdata
);
1121 deactivate_locked_super(sb
);
1123 free_secdata(secdata
);
1125 return ERR_PTR(error
);
1129 * freeze_super - lock the filesystem and force it into a consistent state
1130 * @sb: the super to lock
1132 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1133 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1136 int freeze_super(struct super_block
*sb
)
1140 atomic_inc(&sb
->s_active
);
1141 down_write(&sb
->s_umount
);
1143 deactivate_locked_super(sb
);
1147 if (sb
->s_flags
& MS_RDONLY
) {
1148 sb
->s_frozen
= SB_FREEZE_TRANS
;
1150 up_write(&sb
->s_umount
);
1154 sb
->s_frozen
= SB_FREEZE_WRITE
;
1157 sync_filesystem(sb
);
1159 sb
->s_frozen
= SB_FREEZE_TRANS
;
1162 sync_blockdev(sb
->s_bdev
);
1163 if (sb
->s_op
->freeze_fs
) {
1164 ret
= sb
->s_op
->freeze_fs(sb
);
1167 "VFS:Filesystem freeze failed\n");
1168 sb
->s_frozen
= SB_UNFROZEN
;
1169 deactivate_locked_super(sb
);
1173 up_write(&sb
->s_umount
);
1176 EXPORT_SYMBOL(freeze_super
);
1179 * thaw_super -- unlock filesystem
1180 * @sb: the super to thaw
1182 * Unlocks the filesystem and marks it writeable again after freeze_super().
1184 int thaw_super(struct super_block
*sb
)
1188 down_write(&sb
->s_umount
);
1189 if (sb
->s_frozen
== SB_UNFROZEN
) {
1190 up_write(&sb
->s_umount
);
1194 if (sb
->s_flags
& MS_RDONLY
)
1197 if (sb
->s_op
->unfreeze_fs
) {
1198 error
= sb
->s_op
->unfreeze_fs(sb
);
1201 "VFS:Filesystem thaw failed\n");
1202 sb
->s_frozen
= SB_FREEZE_TRANS
;
1203 up_write(&sb
->s_umount
);
1209 sb
->s_frozen
= SB_UNFROZEN
;
1211 wake_up(&sb
->s_wait_unfrozen
);
1212 deactivate_locked_super(sb
);
1216 EXPORT_SYMBOL(thaw_super
);