Linux 2.6.34.3
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / ip_output.c
blobd1bcc9f21d4fb57fc53670f046bcedfe3a98bef0
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__ void ip_send_check(struct iphdr *iph)
89 iph->check = 0;
90 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 int __ip_local_out(struct sk_buff *skb)
95 struct iphdr *iph = ip_hdr(skb);
97 iph->tot_len = htons(skb->len);
98 ip_send_check(iph);
99 return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb_dst(skb)->dev,
100 dst_output);
103 int ip_local_out(struct sk_buff *skb)
105 int err;
107 err = __ip_local_out(skb);
108 if (likely(err == 1))
109 err = dst_output(skb);
111 return err;
113 EXPORT_SYMBOL_GPL(ip_local_out);
115 /* dev_loopback_xmit for use with netfilter. */
116 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
118 skb_reset_mac_header(newskb);
119 __skb_pull(newskb, skb_network_offset(newskb));
120 newskb->pkt_type = PACKET_LOOPBACK;
121 newskb->ip_summed = CHECKSUM_UNNECESSARY;
122 WARN_ON(!skb_dst(newskb));
123 netif_rx_ni(newskb);
124 return 0;
127 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
129 int ttl = inet->uc_ttl;
131 if (ttl < 0)
132 ttl = dst_metric(dst, RTAX_HOPLIMIT);
133 return ttl;
137 * Add an ip header to a skbuff and send it out.
140 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
141 __be32 saddr, __be32 daddr, struct ip_options *opt)
143 struct inet_sock *inet = inet_sk(sk);
144 struct rtable *rt = skb_rtable(skb);
145 struct iphdr *iph;
147 /* Build the IP header. */
148 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
149 skb_reset_network_header(skb);
150 iph = ip_hdr(skb);
151 iph->version = 4;
152 iph->ihl = 5;
153 iph->tos = inet->tos;
154 if (ip_dont_fragment(sk, &rt->u.dst))
155 iph->frag_off = htons(IP_DF);
156 else
157 iph->frag_off = 0;
158 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
159 iph->daddr = rt->rt_dst;
160 iph->saddr = rt->rt_src;
161 iph->protocol = sk->sk_protocol;
162 ip_select_ident(iph, &rt->u.dst, sk);
164 if (opt && opt->optlen) {
165 iph->ihl += opt->optlen>>2;
166 ip_options_build(skb, opt, daddr, rt, 0);
169 skb->priority = sk->sk_priority;
170 skb->mark = sk->sk_mark;
172 /* Send it out. */
173 return ip_local_out(skb);
176 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178 static inline int ip_finish_output2(struct sk_buff *skb)
180 struct dst_entry *dst = skb_dst(skb);
181 struct rtable *rt = (struct rtable *)dst;
182 struct net_device *dev = dst->dev;
183 unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 if (rt->rt_type == RTN_MULTICAST) {
186 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
187 } else if (rt->rt_type == RTN_BROADCAST)
188 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
190 /* Be paranoid, rather than too clever. */
191 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
192 struct sk_buff *skb2;
194 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
195 if (skb2 == NULL) {
196 kfree_skb(skb);
197 return -ENOMEM;
199 if (skb->sk)
200 skb_set_owner_w(skb2, skb->sk);
201 kfree_skb(skb);
202 skb = skb2;
205 if (dst->hh)
206 return neigh_hh_output(dst->hh, skb);
207 else if (dst->neighbour)
208 return dst->neighbour->output(skb);
210 if (net_ratelimit())
211 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
212 kfree_skb(skb);
213 return -EINVAL;
216 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
218 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
220 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
221 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
224 static int ip_finish_output(struct sk_buff *skb)
226 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
227 /* Policy lookup after SNAT yielded a new policy */
228 if (skb_dst(skb)->xfrm != NULL) {
229 IPCB(skb)->flags |= IPSKB_REROUTED;
230 return dst_output(skb);
232 #endif
233 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
234 return ip_fragment(skb, ip_finish_output2);
235 else
236 return ip_finish_output2(skb);
239 int ip_mc_output(struct sk_buff *skb)
241 struct sock *sk = skb->sk;
242 struct rtable *rt = skb_rtable(skb);
243 struct net_device *dev = rt->u.dst.dev;
246 * If the indicated interface is up and running, send the packet.
248 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
250 skb->dev = dev;
251 skb->protocol = htons(ETH_P_IP);
254 * Multicasts are looped back for other local users
257 if (rt->rt_flags&RTCF_MULTICAST) {
258 if (sk_mc_loop(sk)
259 #ifdef CONFIG_IP_MROUTE
260 /* Small optimization: do not loopback not local frames,
261 which returned after forwarding; they will be dropped
262 by ip_mr_input in any case.
263 Note, that local frames are looped back to be delivered
264 to local recipients.
266 This check is duplicated in ip_mr_input at the moment.
269 ((rt->rt_flags & RTCF_LOCAL) ||
270 !(IPCB(skb)->flags & IPSKB_FORWARDED))
271 #endif
273 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
274 if (newskb)
275 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
276 NULL, newskb->dev,
277 ip_dev_loopback_xmit);
280 /* Multicasts with ttl 0 must not go beyond the host */
282 if (ip_hdr(skb)->ttl == 0) {
283 kfree_skb(skb);
284 return 0;
288 if (rt->rt_flags&RTCF_BROADCAST) {
289 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
290 if (newskb)
291 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
292 newskb->dev, ip_dev_loopback_xmit);
295 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
296 ip_finish_output,
297 !(IPCB(skb)->flags & IPSKB_REROUTED));
300 int ip_output(struct sk_buff *skb)
302 struct net_device *dev = skb_dst(skb)->dev;
304 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
306 skb->dev = dev;
307 skb->protocol = htons(ETH_P_IP);
309 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
310 ip_finish_output,
311 !(IPCB(skb)->flags & IPSKB_REROUTED));
314 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
316 struct sock *sk = skb->sk;
317 struct inet_sock *inet = inet_sk(sk);
318 struct ip_options *opt = inet->opt;
319 struct rtable *rt;
320 struct iphdr *iph;
322 /* Skip all of this if the packet is already routed,
323 * f.e. by something like SCTP.
325 rt = skb_rtable(skb);
326 if (rt != NULL)
327 goto packet_routed;
329 /* Make sure we can route this packet. */
330 rt = (struct rtable *)__sk_dst_check(sk, 0);
331 if (rt == NULL) {
332 __be32 daddr;
334 /* Use correct destination address if we have options. */
335 daddr = inet->inet_daddr;
336 if(opt && opt->srr)
337 daddr = opt->faddr;
340 struct flowi fl = { .oif = sk->sk_bound_dev_if,
341 .mark = sk->sk_mark,
342 .nl_u = { .ip4_u =
343 { .daddr = daddr,
344 .saddr = inet->inet_saddr,
345 .tos = RT_CONN_FLAGS(sk) } },
346 .proto = sk->sk_protocol,
347 .flags = inet_sk_flowi_flags(sk),
348 .uli_u = { .ports =
349 { .sport = inet->inet_sport,
350 .dport = inet->inet_dport } } };
352 /* If this fails, retransmit mechanism of transport layer will
353 * keep trying until route appears or the connection times
354 * itself out.
356 security_sk_classify_flow(sk, &fl);
357 if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
358 goto no_route;
360 sk_setup_caps(sk, &rt->u.dst);
362 skb_dst_set(skb, dst_clone(&rt->u.dst));
364 packet_routed:
365 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
366 goto no_route;
368 /* OK, we know where to send it, allocate and build IP header. */
369 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
370 skb_reset_network_header(skb);
371 iph = ip_hdr(skb);
372 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
373 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
374 iph->frag_off = htons(IP_DF);
375 else
376 iph->frag_off = 0;
377 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
378 iph->protocol = sk->sk_protocol;
379 iph->saddr = rt->rt_src;
380 iph->daddr = rt->rt_dst;
381 /* Transport layer set skb->h.foo itself. */
383 if (opt && opt->optlen) {
384 iph->ihl += opt->optlen >> 2;
385 ip_options_build(skb, opt, inet->inet_daddr, rt, 0);
388 ip_select_ident_more(iph, &rt->u.dst, sk,
389 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
391 skb->priority = sk->sk_priority;
392 skb->mark = sk->sk_mark;
394 return ip_local_out(skb);
396 no_route:
397 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
398 kfree_skb(skb);
399 return -EHOSTUNREACH;
403 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
405 to->pkt_type = from->pkt_type;
406 to->priority = from->priority;
407 to->protocol = from->protocol;
408 skb_dst_drop(to);
409 skb_dst_set(to, dst_clone(skb_dst(from)));
410 to->dev = from->dev;
411 to->mark = from->mark;
413 /* Copy the flags to each fragment. */
414 IPCB(to)->flags = IPCB(from)->flags;
416 #ifdef CONFIG_NET_SCHED
417 to->tc_index = from->tc_index;
418 #endif
419 nf_copy(to, from);
420 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
421 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
422 to->nf_trace = from->nf_trace;
423 #endif
424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
425 to->ipvs_property = from->ipvs_property;
426 #endif
427 skb_copy_secmark(to, from);
431 * This IP datagram is too large to be sent in one piece. Break it up into
432 * smaller pieces (each of size equal to IP header plus
433 * a block of the data of the original IP data part) that will yet fit in a
434 * single device frame, and queue such a frame for sending.
437 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
439 struct iphdr *iph;
440 int raw = 0;
441 int ptr;
442 struct net_device *dev;
443 struct sk_buff *skb2;
444 unsigned int mtu, hlen, left, len, ll_rs, pad;
445 int offset;
446 __be16 not_last_frag;
447 struct rtable *rt = skb_rtable(skb);
448 int err = 0;
450 dev = rt->u.dst.dev;
453 * Point into the IP datagram header.
456 iph = ip_hdr(skb);
458 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
459 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
460 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
461 htonl(ip_skb_dst_mtu(skb)));
462 kfree_skb(skb);
463 return -EMSGSIZE;
467 * Setup starting values.
470 hlen = iph->ihl * 4;
471 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
472 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
474 /* When frag_list is given, use it. First, check its validity:
475 * some transformers could create wrong frag_list or break existing
476 * one, it is not prohibited. In this case fall back to copying.
478 * LATER: this step can be merged to real generation of fragments,
479 * we can switch to copy when see the first bad fragment.
481 if (skb_has_frags(skb)) {
482 struct sk_buff *frag;
483 int first_len = skb_pagelen(skb);
484 int truesizes = 0;
486 if (first_len - hlen > mtu ||
487 ((first_len - hlen) & 7) ||
488 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
489 skb_cloned(skb))
490 goto slow_path;
492 skb_walk_frags(skb, frag) {
493 /* Correct geometry. */
494 if (frag->len > mtu ||
495 ((frag->len & 7) && frag->next) ||
496 skb_headroom(frag) < hlen)
497 goto slow_path;
499 /* Partially cloned skb? */
500 if (skb_shared(frag))
501 goto slow_path;
503 BUG_ON(frag->sk);
504 if (skb->sk) {
505 frag->sk = skb->sk;
506 frag->destructor = sock_wfree;
508 truesizes += frag->truesize;
511 /* Everything is OK. Generate! */
513 err = 0;
514 offset = 0;
515 frag = skb_shinfo(skb)->frag_list;
516 skb_frag_list_init(skb);
517 skb->data_len = first_len - skb_headlen(skb);
518 skb->truesize -= truesizes;
519 skb->len = first_len;
520 iph->tot_len = htons(first_len);
521 iph->frag_off = htons(IP_MF);
522 ip_send_check(iph);
524 for (;;) {
525 /* Prepare header of the next frame,
526 * before previous one went down. */
527 if (frag) {
528 frag->ip_summed = CHECKSUM_NONE;
529 skb_reset_transport_header(frag);
530 __skb_push(frag, hlen);
531 skb_reset_network_header(frag);
532 memcpy(skb_network_header(frag), iph, hlen);
533 iph = ip_hdr(frag);
534 iph->tot_len = htons(frag->len);
535 ip_copy_metadata(frag, skb);
536 if (offset == 0)
537 ip_options_fragment(frag);
538 offset += skb->len - hlen;
539 iph->frag_off = htons(offset>>3);
540 if (frag->next != NULL)
541 iph->frag_off |= htons(IP_MF);
542 /* Ready, complete checksum */
543 ip_send_check(iph);
546 err = output(skb);
548 if (!err)
549 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
550 if (err || !frag)
551 break;
553 skb = frag;
554 frag = skb->next;
555 skb->next = NULL;
558 if (err == 0) {
559 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
560 return 0;
563 while (frag) {
564 skb = frag->next;
565 kfree_skb(frag);
566 frag = skb;
568 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
569 return err;
572 slow_path:
573 left = skb->len - hlen; /* Space per frame */
574 ptr = raw + hlen; /* Where to start from */
576 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
577 * we need to make room for the encapsulating header
579 pad = nf_bridge_pad(skb);
580 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
581 mtu -= pad;
584 * Fragment the datagram.
587 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
588 not_last_frag = iph->frag_off & htons(IP_MF);
591 * Keep copying data until we run out.
594 while (left > 0) {
595 len = left;
596 /* IF: it doesn't fit, use 'mtu' - the data space left */
597 if (len > mtu)
598 len = mtu;
599 /* IF: we are not sending upto and including the packet end
600 then align the next start on an eight byte boundary */
601 if (len < left) {
602 len &= ~7;
605 * Allocate buffer.
608 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
609 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
610 err = -ENOMEM;
611 goto fail;
615 * Set up data on packet
618 ip_copy_metadata(skb2, skb);
619 skb_reserve(skb2, ll_rs);
620 skb_put(skb2, len + hlen);
621 skb_reset_network_header(skb2);
622 skb2->transport_header = skb2->network_header + hlen;
625 * Charge the memory for the fragment to any owner
626 * it might possess
629 if (skb->sk)
630 skb_set_owner_w(skb2, skb->sk);
633 * Copy the packet header into the new buffer.
636 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
639 * Copy a block of the IP datagram.
641 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
642 BUG();
643 left -= len;
646 * Fill in the new header fields.
648 iph = ip_hdr(skb2);
649 iph->frag_off = htons((offset >> 3));
651 /* ANK: dirty, but effective trick. Upgrade options only if
652 * the segment to be fragmented was THE FIRST (otherwise,
653 * options are already fixed) and make it ONCE
654 * on the initial skb, so that all the following fragments
655 * will inherit fixed options.
657 if (offset == 0)
658 ip_options_fragment(skb);
661 * Added AC : If we are fragmenting a fragment that's not the
662 * last fragment then keep MF on each bit
664 if (left > 0 || not_last_frag)
665 iph->frag_off |= htons(IP_MF);
666 ptr += len;
667 offset += len;
670 * Put this fragment into the sending queue.
672 iph->tot_len = htons(len + hlen);
674 ip_send_check(iph);
676 err = output(skb2);
677 if (err)
678 goto fail;
680 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
682 kfree_skb(skb);
683 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
684 return err;
686 fail:
687 kfree_skb(skb);
688 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
689 return err;
692 EXPORT_SYMBOL(ip_fragment);
695 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
697 struct iovec *iov = from;
699 if (skb->ip_summed == CHECKSUM_PARTIAL) {
700 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
701 return -EFAULT;
702 } else {
703 __wsum csum = 0;
704 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
705 return -EFAULT;
706 skb->csum = csum_block_add(skb->csum, csum, odd);
708 return 0;
711 static inline __wsum
712 csum_page(struct page *page, int offset, int copy)
714 char *kaddr;
715 __wsum csum;
716 kaddr = kmap(page);
717 csum = csum_partial(kaddr + offset, copy, 0);
718 kunmap(page);
719 return csum;
722 static inline int ip_ufo_append_data(struct sock *sk,
723 int getfrag(void *from, char *to, int offset, int len,
724 int odd, struct sk_buff *skb),
725 void *from, int length, int hh_len, int fragheaderlen,
726 int transhdrlen, int mtu, unsigned int flags)
728 struct sk_buff *skb;
729 int err;
731 /* There is support for UDP fragmentation offload by network
732 * device, so create one single skb packet containing complete
733 * udp datagram
735 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
736 skb = sock_alloc_send_skb(sk,
737 hh_len + fragheaderlen + transhdrlen + 20,
738 (flags & MSG_DONTWAIT), &err);
740 if (skb == NULL)
741 return err;
743 /* reserve space for Hardware header */
744 skb_reserve(skb, hh_len);
746 /* create space for UDP/IP header */
747 skb_put(skb, fragheaderlen + transhdrlen);
749 /* initialize network header pointer */
750 skb_reset_network_header(skb);
752 /* initialize protocol header pointer */
753 skb->transport_header = skb->network_header + fragheaderlen;
755 skb->ip_summed = CHECKSUM_PARTIAL;
756 skb->csum = 0;
757 sk->sk_sndmsg_off = 0;
759 /* specify the length of each IP datagram fragment */
760 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
761 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
762 __skb_queue_tail(&sk->sk_write_queue, skb);
765 return skb_append_datato_frags(sk, skb, getfrag, from,
766 (length - transhdrlen));
770 * ip_append_data() and ip_append_page() can make one large IP datagram
771 * from many pieces of data. Each pieces will be holded on the socket
772 * until ip_push_pending_frames() is called. Each piece can be a page
773 * or non-page data.
775 * Not only UDP, other transport protocols - e.g. raw sockets - can use
776 * this interface potentially.
778 * LATER: length must be adjusted by pad at tail, when it is required.
780 int ip_append_data(struct sock *sk,
781 int getfrag(void *from, char *to, int offset, int len,
782 int odd, struct sk_buff *skb),
783 void *from, int length, int transhdrlen,
784 struct ipcm_cookie *ipc, struct rtable **rtp,
785 unsigned int flags)
787 struct inet_sock *inet = inet_sk(sk);
788 struct sk_buff *skb;
790 struct ip_options *opt = NULL;
791 int hh_len;
792 int exthdrlen;
793 int mtu;
794 int copy;
795 int err;
796 int offset = 0;
797 unsigned int maxfraglen, fragheaderlen;
798 int csummode = CHECKSUM_NONE;
799 struct rtable *rt;
801 if (flags&MSG_PROBE)
802 return 0;
804 if (skb_queue_empty(&sk->sk_write_queue)) {
806 * setup for corking.
808 opt = ipc->opt;
809 if (opt) {
810 if (inet->cork.opt == NULL) {
811 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
812 if (unlikely(inet->cork.opt == NULL))
813 return -ENOBUFS;
815 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
816 inet->cork.flags |= IPCORK_OPT;
817 inet->cork.addr = ipc->addr;
819 rt = *rtp;
820 if (unlikely(!rt))
821 return -EFAULT;
823 * We steal reference to this route, caller should not release it
825 *rtp = NULL;
826 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
827 rt->u.dst.dev->mtu :
828 dst_mtu(rt->u.dst.path);
829 inet->cork.dst = &rt->u.dst;
830 inet->cork.length = 0;
831 sk->sk_sndmsg_page = NULL;
832 sk->sk_sndmsg_off = 0;
833 if ((exthdrlen = rt->u.dst.header_len) != 0) {
834 length += exthdrlen;
835 transhdrlen += exthdrlen;
837 } else {
838 rt = (struct rtable *)inet->cork.dst;
839 if (inet->cork.flags & IPCORK_OPT)
840 opt = inet->cork.opt;
842 transhdrlen = 0;
843 exthdrlen = 0;
844 mtu = inet->cork.fragsize;
846 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
848 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
849 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
851 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
852 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport,
853 mtu-exthdrlen);
854 return -EMSGSIZE;
858 * transhdrlen > 0 means that this is the first fragment and we wish
859 * it won't be fragmented in the future.
861 if (transhdrlen &&
862 length + fragheaderlen <= mtu &&
863 rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
864 !exthdrlen)
865 csummode = CHECKSUM_PARTIAL;
867 inet->cork.length += length;
868 if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
869 (sk->sk_protocol == IPPROTO_UDP) &&
870 (rt->u.dst.dev->features & NETIF_F_UFO)) {
871 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
872 fragheaderlen, transhdrlen, mtu,
873 flags);
874 if (err)
875 goto error;
876 return 0;
879 /* So, what's going on in the loop below?
881 * We use calculated fragment length to generate chained skb,
882 * each of segments is IP fragment ready for sending to network after
883 * adding appropriate IP header.
886 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
887 goto alloc_new_skb;
889 while (length > 0) {
890 /* Check if the remaining data fits into current packet. */
891 copy = mtu - skb->len;
892 if (copy < length)
893 copy = maxfraglen - skb->len;
894 if (copy <= 0) {
895 char *data;
896 unsigned int datalen;
897 unsigned int fraglen;
898 unsigned int fraggap;
899 unsigned int alloclen;
900 struct sk_buff *skb_prev;
901 alloc_new_skb:
902 skb_prev = skb;
903 if (skb_prev)
904 fraggap = skb_prev->len - maxfraglen;
905 else
906 fraggap = 0;
909 * If remaining data exceeds the mtu,
910 * we know we need more fragment(s).
912 datalen = length + fraggap;
913 if (datalen > mtu - fragheaderlen)
914 datalen = maxfraglen - fragheaderlen;
915 fraglen = datalen + fragheaderlen;
917 if ((flags & MSG_MORE) &&
918 !(rt->u.dst.dev->features&NETIF_F_SG))
919 alloclen = mtu;
920 else
921 alloclen = datalen + fragheaderlen;
923 /* The last fragment gets additional space at tail.
924 * Note, with MSG_MORE we overallocate on fragments,
925 * because we have no idea what fragment will be
926 * the last.
928 if (datalen == length + fraggap)
929 alloclen += rt->u.dst.trailer_len;
931 if (transhdrlen) {
932 skb = sock_alloc_send_skb(sk,
933 alloclen + hh_len + 15,
934 (flags & MSG_DONTWAIT), &err);
935 } else {
936 skb = NULL;
937 if (atomic_read(&sk->sk_wmem_alloc) <=
938 2 * sk->sk_sndbuf)
939 skb = sock_wmalloc(sk,
940 alloclen + hh_len + 15, 1,
941 sk->sk_allocation);
942 if (unlikely(skb == NULL))
943 err = -ENOBUFS;
944 else
945 /* only the initial fragment is
946 time stamped */
947 ipc->shtx.flags = 0;
949 if (skb == NULL)
950 goto error;
953 * Fill in the control structures
955 skb->ip_summed = csummode;
956 skb->csum = 0;
957 skb_reserve(skb, hh_len);
958 *skb_tx(skb) = ipc->shtx;
961 * Find where to start putting bytes.
963 data = skb_put(skb, fraglen);
964 skb_set_network_header(skb, exthdrlen);
965 skb->transport_header = (skb->network_header +
966 fragheaderlen);
967 data += fragheaderlen;
969 if (fraggap) {
970 skb->csum = skb_copy_and_csum_bits(
971 skb_prev, maxfraglen,
972 data + transhdrlen, fraggap, 0);
973 skb_prev->csum = csum_sub(skb_prev->csum,
974 skb->csum);
975 data += fraggap;
976 pskb_trim_unique(skb_prev, maxfraglen);
979 copy = datalen - transhdrlen - fraggap;
980 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
981 err = -EFAULT;
982 kfree_skb(skb);
983 goto error;
986 offset += copy;
987 length -= datalen - fraggap;
988 transhdrlen = 0;
989 exthdrlen = 0;
990 csummode = CHECKSUM_NONE;
993 * Put the packet on the pending queue.
995 __skb_queue_tail(&sk->sk_write_queue, skb);
996 continue;
999 if (copy > length)
1000 copy = length;
1002 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
1003 unsigned int off;
1005 off = skb->len;
1006 if (getfrag(from, skb_put(skb, copy),
1007 offset, copy, off, skb) < 0) {
1008 __skb_trim(skb, off);
1009 err = -EFAULT;
1010 goto error;
1012 } else {
1013 int i = skb_shinfo(skb)->nr_frags;
1014 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1015 struct page *page = sk->sk_sndmsg_page;
1016 int off = sk->sk_sndmsg_off;
1017 unsigned int left;
1019 if (page && (left = PAGE_SIZE - off) > 0) {
1020 if (copy >= left)
1021 copy = left;
1022 if (page != frag->page) {
1023 if (i == MAX_SKB_FRAGS) {
1024 err = -EMSGSIZE;
1025 goto error;
1027 get_page(page);
1028 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1029 frag = &skb_shinfo(skb)->frags[i];
1031 } else if (i < MAX_SKB_FRAGS) {
1032 if (copy > PAGE_SIZE)
1033 copy = PAGE_SIZE;
1034 page = alloc_pages(sk->sk_allocation, 0);
1035 if (page == NULL) {
1036 err = -ENOMEM;
1037 goto error;
1039 sk->sk_sndmsg_page = page;
1040 sk->sk_sndmsg_off = 0;
1042 skb_fill_page_desc(skb, i, page, 0, 0);
1043 frag = &skb_shinfo(skb)->frags[i];
1044 } else {
1045 err = -EMSGSIZE;
1046 goto error;
1048 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1049 err = -EFAULT;
1050 goto error;
1052 sk->sk_sndmsg_off += copy;
1053 frag->size += copy;
1054 skb->len += copy;
1055 skb->data_len += copy;
1056 skb->truesize += copy;
1057 atomic_add(copy, &sk->sk_wmem_alloc);
1059 offset += copy;
1060 length -= copy;
1063 return 0;
1065 error:
1066 inet->cork.length -= length;
1067 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1068 return err;
1071 ssize_t ip_append_page(struct sock *sk, struct page *page,
1072 int offset, size_t size, int flags)
1074 struct inet_sock *inet = inet_sk(sk);
1075 struct sk_buff *skb;
1076 struct rtable *rt;
1077 struct ip_options *opt = NULL;
1078 int hh_len;
1079 int mtu;
1080 int len;
1081 int err;
1082 unsigned int maxfraglen, fragheaderlen, fraggap;
1084 if (inet->hdrincl)
1085 return -EPERM;
1087 if (flags&MSG_PROBE)
1088 return 0;
1090 if (skb_queue_empty(&sk->sk_write_queue))
1091 return -EINVAL;
1093 rt = (struct rtable *)inet->cork.dst;
1094 if (inet->cork.flags & IPCORK_OPT)
1095 opt = inet->cork.opt;
1097 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1098 return -EOPNOTSUPP;
1100 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1101 mtu = inet->cork.fragsize;
1103 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1104 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1106 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1107 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport, mtu);
1108 return -EMSGSIZE;
1111 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1112 return -EINVAL;
1114 inet->cork.length += size;
1115 if ((sk->sk_protocol == IPPROTO_UDP) &&
1116 (rt->u.dst.dev->features & NETIF_F_UFO)) {
1117 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1118 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1122 while (size > 0) {
1123 int i;
1125 if (skb_is_gso(skb))
1126 len = size;
1127 else {
1129 /* Check if the remaining data fits into current packet. */
1130 len = mtu - skb->len;
1131 if (len < size)
1132 len = maxfraglen - skb->len;
1134 if (len <= 0) {
1135 struct sk_buff *skb_prev;
1136 int alloclen;
1138 skb_prev = skb;
1139 fraggap = skb_prev->len - maxfraglen;
1141 alloclen = fragheaderlen + hh_len + fraggap + 15;
1142 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1143 if (unlikely(!skb)) {
1144 err = -ENOBUFS;
1145 goto error;
1149 * Fill in the control structures
1151 skb->ip_summed = CHECKSUM_NONE;
1152 skb->csum = 0;
1153 skb_reserve(skb, hh_len);
1156 * Find where to start putting bytes.
1158 skb_put(skb, fragheaderlen + fraggap);
1159 skb_reset_network_header(skb);
1160 skb->transport_header = (skb->network_header +
1161 fragheaderlen);
1162 if (fraggap) {
1163 skb->csum = skb_copy_and_csum_bits(skb_prev,
1164 maxfraglen,
1165 skb_transport_header(skb),
1166 fraggap, 0);
1167 skb_prev->csum = csum_sub(skb_prev->csum,
1168 skb->csum);
1169 pskb_trim_unique(skb_prev, maxfraglen);
1173 * Put the packet on the pending queue.
1175 __skb_queue_tail(&sk->sk_write_queue, skb);
1176 continue;
1179 i = skb_shinfo(skb)->nr_frags;
1180 if (len > size)
1181 len = size;
1182 if (skb_can_coalesce(skb, i, page, offset)) {
1183 skb_shinfo(skb)->frags[i-1].size += len;
1184 } else if (i < MAX_SKB_FRAGS) {
1185 get_page(page);
1186 skb_fill_page_desc(skb, i, page, offset, len);
1187 } else {
1188 err = -EMSGSIZE;
1189 goto error;
1192 if (skb->ip_summed == CHECKSUM_NONE) {
1193 __wsum csum;
1194 csum = csum_page(page, offset, len);
1195 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1198 skb->len += len;
1199 skb->data_len += len;
1200 skb->truesize += len;
1201 atomic_add(len, &sk->sk_wmem_alloc);
1202 offset += len;
1203 size -= len;
1205 return 0;
1207 error:
1208 inet->cork.length -= size;
1209 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1210 return err;
1213 static void ip_cork_release(struct inet_sock *inet)
1215 inet->cork.flags &= ~IPCORK_OPT;
1216 kfree(inet->cork.opt);
1217 inet->cork.opt = NULL;
1218 dst_release(inet->cork.dst);
1219 inet->cork.dst = NULL;
1223 * Combined all pending IP fragments on the socket as one IP datagram
1224 * and push them out.
1226 int ip_push_pending_frames(struct sock *sk)
1228 struct sk_buff *skb, *tmp_skb;
1229 struct sk_buff **tail_skb;
1230 struct inet_sock *inet = inet_sk(sk);
1231 struct net *net = sock_net(sk);
1232 struct ip_options *opt = NULL;
1233 struct rtable *rt = (struct rtable *)inet->cork.dst;
1234 struct iphdr *iph;
1235 __be16 df = 0;
1236 __u8 ttl;
1237 int err = 0;
1239 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1240 goto out;
1241 tail_skb = &(skb_shinfo(skb)->frag_list);
1243 /* move skb->data to ip header from ext header */
1244 if (skb->data < skb_network_header(skb))
1245 __skb_pull(skb, skb_network_offset(skb));
1246 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1247 __skb_pull(tmp_skb, skb_network_header_len(skb));
1248 *tail_skb = tmp_skb;
1249 tail_skb = &(tmp_skb->next);
1250 skb->len += tmp_skb->len;
1251 skb->data_len += tmp_skb->len;
1252 skb->truesize += tmp_skb->truesize;
1253 tmp_skb->destructor = NULL;
1254 tmp_skb->sk = NULL;
1257 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1258 * to fragment the frame generated here. No matter, what transforms
1259 * how transforms change size of the packet, it will come out.
1261 if (inet->pmtudisc < IP_PMTUDISC_DO)
1262 skb->local_df = 1;
1264 /* DF bit is set when we want to see DF on outgoing frames.
1265 * If local_df is set too, we still allow to fragment this frame
1266 * locally. */
1267 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1268 (skb->len <= dst_mtu(&rt->u.dst) &&
1269 ip_dont_fragment(sk, &rt->u.dst)))
1270 df = htons(IP_DF);
1272 if (inet->cork.flags & IPCORK_OPT)
1273 opt = inet->cork.opt;
1275 if (rt->rt_type == RTN_MULTICAST)
1276 ttl = inet->mc_ttl;
1277 else
1278 ttl = ip_select_ttl(inet, &rt->u.dst);
1280 iph = (struct iphdr *)skb->data;
1281 iph->version = 4;
1282 iph->ihl = 5;
1283 if (opt) {
1284 iph->ihl += opt->optlen>>2;
1285 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1287 iph->tos = inet->tos;
1288 iph->frag_off = df;
1289 ip_select_ident(iph, &rt->u.dst, sk);
1290 iph->ttl = ttl;
1291 iph->protocol = sk->sk_protocol;
1292 iph->saddr = rt->rt_src;
1293 iph->daddr = rt->rt_dst;
1295 skb->priority = sk->sk_priority;
1296 skb->mark = sk->sk_mark;
1298 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1299 * on dst refcount
1301 inet->cork.dst = NULL;
1302 skb_dst_set(skb, &rt->u.dst);
1304 if (iph->protocol == IPPROTO_ICMP)
1305 icmp_out_count(net, ((struct icmphdr *)
1306 skb_transport_header(skb))->type);
1308 /* Netfilter gets whole the not fragmented skb. */
1309 err = ip_local_out(skb);
1310 if (err) {
1311 if (err > 0)
1312 err = net_xmit_errno(err);
1313 if (err)
1314 goto error;
1317 out:
1318 ip_cork_release(inet);
1319 return err;
1321 error:
1322 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1323 goto out;
1327 * Throw away all pending data on the socket.
1329 void ip_flush_pending_frames(struct sock *sk)
1331 struct sk_buff *skb;
1333 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1334 kfree_skb(skb);
1336 ip_cork_release(inet_sk(sk));
1341 * Fetch data from kernel space and fill in checksum if needed.
1343 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1344 int len, int odd, struct sk_buff *skb)
1346 __wsum csum;
1348 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1349 skb->csum = csum_block_add(skb->csum, csum, odd);
1350 return 0;
1354 * Generic function to send a packet as reply to another packet.
1355 * Used to send TCP resets so far. ICMP should use this function too.
1357 * Should run single threaded per socket because it uses the sock
1358 * structure to pass arguments.
1360 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1361 unsigned int len)
1363 struct inet_sock *inet = inet_sk(sk);
1364 struct {
1365 struct ip_options opt;
1366 char data[40];
1367 } replyopts;
1368 struct ipcm_cookie ipc;
1369 __be32 daddr;
1370 struct rtable *rt = skb_rtable(skb);
1372 if (ip_options_echo(&replyopts.opt, skb))
1373 return;
1375 daddr = ipc.addr = rt->rt_src;
1376 ipc.opt = NULL;
1377 ipc.shtx.flags = 0;
1379 if (replyopts.opt.optlen) {
1380 ipc.opt = &replyopts.opt;
1382 if (ipc.opt->srr)
1383 daddr = replyopts.opt.faddr;
1387 struct flowi fl = { .oif = arg->bound_dev_if,
1388 .nl_u = { .ip4_u =
1389 { .daddr = daddr,
1390 .saddr = rt->rt_spec_dst,
1391 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1392 /* Not quite clean, but right. */
1393 .uli_u = { .ports =
1394 { .sport = tcp_hdr(skb)->dest,
1395 .dport = tcp_hdr(skb)->source } },
1396 .proto = sk->sk_protocol,
1397 .flags = ip_reply_arg_flowi_flags(arg) };
1398 security_skb_classify_flow(skb, &fl);
1399 if (ip_route_output_key(sock_net(sk), &rt, &fl))
1400 return;
1403 /* And let IP do all the hard work.
1405 This chunk is not reenterable, hence spinlock.
1406 Note that it uses the fact, that this function is called
1407 with locally disabled BH and that sk cannot be already spinlocked.
1409 bh_lock_sock(sk);
1410 inet->tos = ip_hdr(skb)->tos;
1411 sk->sk_priority = skb->priority;
1412 sk->sk_protocol = ip_hdr(skb)->protocol;
1413 sk->sk_bound_dev_if = arg->bound_dev_if;
1414 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1415 &ipc, &rt, MSG_DONTWAIT);
1416 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1417 if (arg->csumoffset >= 0)
1418 *((__sum16 *)skb_transport_header(skb) +
1419 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1420 arg->csum));
1421 skb->ip_summed = CHECKSUM_NONE;
1422 ip_push_pending_frames(sk);
1425 bh_unlock_sock(sk);
1427 ip_rt_put(rt);
1430 void __init ip_init(void)
1432 ip_rt_init();
1433 inet_initpeers();
1435 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1436 igmp_mc_proc_init();
1437 #endif
1440 EXPORT_SYMBOL(ip_generic_getfrag);
1441 EXPORT_SYMBOL(ip_queue_xmit);
1442 EXPORT_SYMBOL(ip_send_check);