2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
71 #include <linux/skbuff.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__
void ip_send_check(struct iphdr
*iph
)
90 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
93 int __ip_local_out(struct sk_buff
*skb
)
95 struct iphdr
*iph
= ip_hdr(skb
);
97 iph
->tot_len
= htons(skb
->len
);
99 return nf_hook(PF_INET
, NF_INET_LOCAL_OUT
, skb
, NULL
, skb_dst(skb
)->dev
,
103 int ip_local_out(struct sk_buff
*skb
)
107 err
= __ip_local_out(skb
);
108 if (likely(err
== 1))
109 err
= dst_output(skb
);
113 EXPORT_SYMBOL_GPL(ip_local_out
);
115 /* dev_loopback_xmit for use with netfilter. */
116 static int ip_dev_loopback_xmit(struct sk_buff
*newskb
)
118 skb_reset_mac_header(newskb
);
119 __skb_pull(newskb
, skb_network_offset(newskb
));
120 newskb
->pkt_type
= PACKET_LOOPBACK
;
121 newskb
->ip_summed
= CHECKSUM_UNNECESSARY
;
122 WARN_ON(!skb_dst(newskb
));
127 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
129 int ttl
= inet
->uc_ttl
;
132 ttl
= dst_metric(dst
, RTAX_HOPLIMIT
);
137 * Add an ip header to a skbuff and send it out.
140 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
141 __be32 saddr
, __be32 daddr
, struct ip_options
*opt
)
143 struct inet_sock
*inet
= inet_sk(sk
);
144 struct rtable
*rt
= skb_rtable(skb
);
147 /* Build the IP header. */
148 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
149 skb_reset_network_header(skb
);
153 iph
->tos
= inet
->tos
;
154 if (ip_dont_fragment(sk
, &rt
->u
.dst
))
155 iph
->frag_off
= htons(IP_DF
);
158 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
159 iph
->daddr
= rt
->rt_dst
;
160 iph
->saddr
= rt
->rt_src
;
161 iph
->protocol
= sk
->sk_protocol
;
162 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
164 if (opt
&& opt
->optlen
) {
165 iph
->ihl
+= opt
->optlen
>>2;
166 ip_options_build(skb
, opt
, daddr
, rt
, 0);
169 skb
->priority
= sk
->sk_priority
;
170 skb
->mark
= sk
->sk_mark
;
173 return ip_local_out(skb
);
176 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
178 static inline int ip_finish_output2(struct sk_buff
*skb
)
180 struct dst_entry
*dst
= skb_dst(skb
);
181 struct rtable
*rt
= (struct rtable
*)dst
;
182 struct net_device
*dev
= dst
->dev
;
183 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
185 if (rt
->rt_type
== RTN_MULTICAST
) {
186 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCAST
, skb
->len
);
187 } else if (rt
->rt_type
== RTN_BROADCAST
)
188 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCAST
, skb
->len
);
190 /* Be paranoid, rather than too clever. */
191 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
192 struct sk_buff
*skb2
;
194 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
200 skb_set_owner_w(skb2
, skb
->sk
);
206 return neigh_hh_output(dst
->hh
, skb
);
207 else if (dst
->neighbour
)
208 return dst
->neighbour
->output(skb
);
211 printk(KERN_DEBUG
"ip_finish_output2: No header cache and no neighbour!\n");
216 static inline int ip_skb_dst_mtu(struct sk_buff
*skb
)
218 struct inet_sock
*inet
= skb
->sk
? inet_sk(skb
->sk
) : NULL
;
220 return (inet
&& inet
->pmtudisc
== IP_PMTUDISC_PROBE
) ?
221 skb_dst(skb
)->dev
->mtu
: dst_mtu(skb_dst(skb
));
224 static int ip_finish_output(struct sk_buff
*skb
)
226 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
227 /* Policy lookup after SNAT yielded a new policy */
228 if (skb_dst(skb
)->xfrm
!= NULL
) {
229 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
230 return dst_output(skb
);
233 if (skb
->len
> ip_skb_dst_mtu(skb
) && !skb_is_gso(skb
))
234 return ip_fragment(skb
, ip_finish_output2
);
236 return ip_finish_output2(skb
);
239 int ip_mc_output(struct sk_buff
*skb
)
241 struct sock
*sk
= skb
->sk
;
242 struct rtable
*rt
= skb_rtable(skb
);
243 struct net_device
*dev
= rt
->u
.dst
.dev
;
246 * If the indicated interface is up and running, send the packet.
248 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
251 skb
->protocol
= htons(ETH_P_IP
);
254 * Multicasts are looped back for other local users
257 if (rt
->rt_flags
&RTCF_MULTICAST
) {
259 #ifdef CONFIG_IP_MROUTE
260 /* Small optimization: do not loopback not local frames,
261 which returned after forwarding; they will be dropped
262 by ip_mr_input in any case.
263 Note, that local frames are looped back to be delivered
266 This check is duplicated in ip_mr_input at the moment.
269 ((rt
->rt_flags
& RTCF_LOCAL
) ||
270 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
273 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
275 NF_HOOK(PF_INET
, NF_INET_POST_ROUTING
, newskb
,
277 ip_dev_loopback_xmit
);
280 /* Multicasts with ttl 0 must not go beyond the host */
282 if (ip_hdr(skb
)->ttl
== 0) {
288 if (rt
->rt_flags
&RTCF_BROADCAST
) {
289 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
291 NF_HOOK(PF_INET
, NF_INET_POST_ROUTING
, newskb
, NULL
,
292 newskb
->dev
, ip_dev_loopback_xmit
);
295 return NF_HOOK_COND(PF_INET
, NF_INET_POST_ROUTING
, skb
, NULL
, skb
->dev
,
297 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
300 int ip_output(struct sk_buff
*skb
)
302 struct net_device
*dev
= skb_dst(skb
)->dev
;
304 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
307 skb
->protocol
= htons(ETH_P_IP
);
309 return NF_HOOK_COND(PF_INET
, NF_INET_POST_ROUTING
, skb
, NULL
, dev
,
311 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
314 int ip_queue_xmit(struct sk_buff
*skb
, int ipfragok
)
316 struct sock
*sk
= skb
->sk
;
317 struct inet_sock
*inet
= inet_sk(sk
);
318 struct ip_options
*opt
= inet
->opt
;
322 /* Skip all of this if the packet is already routed,
323 * f.e. by something like SCTP.
325 rt
= skb_rtable(skb
);
329 /* Make sure we can route this packet. */
330 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
334 /* Use correct destination address if we have options. */
335 daddr
= inet
->inet_daddr
;
340 struct flowi fl
= { .oif
= sk
->sk_bound_dev_if
,
344 .saddr
= inet
->inet_saddr
,
345 .tos
= RT_CONN_FLAGS(sk
) } },
346 .proto
= sk
->sk_protocol
,
347 .flags
= inet_sk_flowi_flags(sk
),
349 { .sport
= inet
->inet_sport
,
350 .dport
= inet
->inet_dport
} } };
352 /* If this fails, retransmit mechanism of transport layer will
353 * keep trying until route appears or the connection times
356 security_sk_classify_flow(sk
, &fl
);
357 if (ip_route_output_flow(sock_net(sk
), &rt
, &fl
, sk
, 0))
360 sk_setup_caps(sk
, &rt
->u
.dst
);
362 skb_dst_set(skb
, dst_clone(&rt
->u
.dst
));
365 if (opt
&& opt
->is_strictroute
&& rt
->rt_dst
!= rt
->rt_gateway
)
368 /* OK, we know where to send it, allocate and build IP header. */
369 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
370 skb_reset_network_header(skb
);
372 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
373 if (ip_dont_fragment(sk
, &rt
->u
.dst
) && !ipfragok
)
374 iph
->frag_off
= htons(IP_DF
);
377 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
378 iph
->protocol
= sk
->sk_protocol
;
379 iph
->saddr
= rt
->rt_src
;
380 iph
->daddr
= rt
->rt_dst
;
381 /* Transport layer set skb->h.foo itself. */
383 if (opt
&& opt
->optlen
) {
384 iph
->ihl
+= opt
->optlen
>> 2;
385 ip_options_build(skb
, opt
, inet
->inet_daddr
, rt
, 0);
388 ip_select_ident_more(iph
, &rt
->u
.dst
, sk
,
389 (skb_shinfo(skb
)->gso_segs
?: 1) - 1);
391 skb
->priority
= sk
->sk_priority
;
392 skb
->mark
= sk
->sk_mark
;
394 return ip_local_out(skb
);
397 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
399 return -EHOSTUNREACH
;
403 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
405 to
->pkt_type
= from
->pkt_type
;
406 to
->priority
= from
->priority
;
407 to
->protocol
= from
->protocol
;
409 skb_dst_set(to
, dst_clone(skb_dst(from
)));
411 to
->mark
= from
->mark
;
413 /* Copy the flags to each fragment. */
414 IPCB(to
)->flags
= IPCB(from
)->flags
;
416 #ifdef CONFIG_NET_SCHED
417 to
->tc_index
= from
->tc_index
;
420 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
421 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
422 to
->nf_trace
= from
->nf_trace
;
424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
425 to
->ipvs_property
= from
->ipvs_property
;
427 skb_copy_secmark(to
, from
);
431 * This IP datagram is too large to be sent in one piece. Break it up into
432 * smaller pieces (each of size equal to IP header plus
433 * a block of the data of the original IP data part) that will yet fit in a
434 * single device frame, and queue such a frame for sending.
437 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
442 struct net_device
*dev
;
443 struct sk_buff
*skb2
;
444 unsigned int mtu
, hlen
, left
, len
, ll_rs
, pad
;
446 __be16 not_last_frag
;
447 struct rtable
*rt
= skb_rtable(skb
);
453 * Point into the IP datagram header.
458 if (unlikely((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
)) {
459 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
460 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
461 htonl(ip_skb_dst_mtu(skb
)));
467 * Setup starting values.
471 mtu
= dst_mtu(&rt
->u
.dst
) - hlen
; /* Size of data space */
472 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
474 /* When frag_list is given, use it. First, check its validity:
475 * some transformers could create wrong frag_list or break existing
476 * one, it is not prohibited. In this case fall back to copying.
478 * LATER: this step can be merged to real generation of fragments,
479 * we can switch to copy when see the first bad fragment.
481 if (skb_has_frags(skb
)) {
482 struct sk_buff
*frag
;
483 int first_len
= skb_pagelen(skb
);
486 if (first_len
- hlen
> mtu
||
487 ((first_len
- hlen
) & 7) ||
488 (iph
->frag_off
& htons(IP_MF
|IP_OFFSET
)) ||
492 skb_walk_frags(skb
, frag
) {
493 /* Correct geometry. */
494 if (frag
->len
> mtu
||
495 ((frag
->len
& 7) && frag
->next
) ||
496 skb_headroom(frag
) < hlen
)
499 /* Partially cloned skb? */
500 if (skb_shared(frag
))
506 frag
->destructor
= sock_wfree
;
508 truesizes
+= frag
->truesize
;
511 /* Everything is OK. Generate! */
515 frag
= skb_shinfo(skb
)->frag_list
;
516 skb_frag_list_init(skb
);
517 skb
->data_len
= first_len
- skb_headlen(skb
);
518 skb
->truesize
-= truesizes
;
519 skb
->len
= first_len
;
520 iph
->tot_len
= htons(first_len
);
521 iph
->frag_off
= htons(IP_MF
);
525 /* Prepare header of the next frame,
526 * before previous one went down. */
528 frag
->ip_summed
= CHECKSUM_NONE
;
529 skb_reset_transport_header(frag
);
530 __skb_push(frag
, hlen
);
531 skb_reset_network_header(frag
);
532 memcpy(skb_network_header(frag
), iph
, hlen
);
534 iph
->tot_len
= htons(frag
->len
);
535 ip_copy_metadata(frag
, skb
);
537 ip_options_fragment(frag
);
538 offset
+= skb
->len
- hlen
;
539 iph
->frag_off
= htons(offset
>>3);
540 if (frag
->next
!= NULL
)
541 iph
->frag_off
|= htons(IP_MF
);
542 /* Ready, complete checksum */
549 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
559 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
568 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
573 left
= skb
->len
- hlen
; /* Space per frame */
574 ptr
= raw
+ hlen
; /* Where to start from */
576 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
577 * we need to make room for the encapsulating header
579 pad
= nf_bridge_pad(skb
);
580 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->u
.dst
.dev
, pad
);
584 * Fragment the datagram.
587 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
588 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
591 * Keep copying data until we run out.
596 /* IF: it doesn't fit, use 'mtu' - the data space left */
599 /* IF: we are not sending upto and including the packet end
600 then align the next start on an eight byte boundary */
608 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
609 NETDEBUG(KERN_INFO
"IP: frag: no memory for new fragment!\n");
615 * Set up data on packet
618 ip_copy_metadata(skb2
, skb
);
619 skb_reserve(skb2
, ll_rs
);
620 skb_put(skb2
, len
+ hlen
);
621 skb_reset_network_header(skb2
);
622 skb2
->transport_header
= skb2
->network_header
+ hlen
;
625 * Charge the memory for the fragment to any owner
630 skb_set_owner_w(skb2
, skb
->sk
);
633 * Copy the packet header into the new buffer.
636 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
639 * Copy a block of the IP datagram.
641 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
646 * Fill in the new header fields.
649 iph
->frag_off
= htons((offset
>> 3));
651 /* ANK: dirty, but effective trick. Upgrade options only if
652 * the segment to be fragmented was THE FIRST (otherwise,
653 * options are already fixed) and make it ONCE
654 * on the initial skb, so that all the following fragments
655 * will inherit fixed options.
658 ip_options_fragment(skb
);
661 * Added AC : If we are fragmenting a fragment that's not the
662 * last fragment then keep MF on each bit
664 if (left
> 0 || not_last_frag
)
665 iph
->frag_off
|= htons(IP_MF
);
670 * Put this fragment into the sending queue.
672 iph
->tot_len
= htons(len
+ hlen
);
680 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
683 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
688 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
692 EXPORT_SYMBOL(ip_fragment
);
695 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
697 struct iovec
*iov
= from
;
699 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
700 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
704 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
706 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
712 csum_page(struct page
*page
, int offset
, int copy
)
717 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
722 static inline int ip_ufo_append_data(struct sock
*sk
,
723 int getfrag(void *from
, char *to
, int offset
, int len
,
724 int odd
, struct sk_buff
*skb
),
725 void *from
, int length
, int hh_len
, int fragheaderlen
,
726 int transhdrlen
, int mtu
, unsigned int flags
)
731 /* There is support for UDP fragmentation offload by network
732 * device, so create one single skb packet containing complete
735 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
) {
736 skb
= sock_alloc_send_skb(sk
,
737 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
738 (flags
& MSG_DONTWAIT
), &err
);
743 /* reserve space for Hardware header */
744 skb_reserve(skb
, hh_len
);
746 /* create space for UDP/IP header */
747 skb_put(skb
, fragheaderlen
+ transhdrlen
);
749 /* initialize network header pointer */
750 skb_reset_network_header(skb
);
752 /* initialize protocol header pointer */
753 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
755 skb
->ip_summed
= CHECKSUM_PARTIAL
;
757 sk
->sk_sndmsg_off
= 0;
759 /* specify the length of each IP datagram fragment */
760 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
761 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
762 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
765 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
766 (length
- transhdrlen
));
770 * ip_append_data() and ip_append_page() can make one large IP datagram
771 * from many pieces of data. Each pieces will be holded on the socket
772 * until ip_push_pending_frames() is called. Each piece can be a page
775 * Not only UDP, other transport protocols - e.g. raw sockets - can use
776 * this interface potentially.
778 * LATER: length must be adjusted by pad at tail, when it is required.
780 int ip_append_data(struct sock
*sk
,
781 int getfrag(void *from
, char *to
, int offset
, int len
,
782 int odd
, struct sk_buff
*skb
),
783 void *from
, int length
, int transhdrlen
,
784 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
787 struct inet_sock
*inet
= inet_sk(sk
);
790 struct ip_options
*opt
= NULL
;
797 unsigned int maxfraglen
, fragheaderlen
;
798 int csummode
= CHECKSUM_NONE
;
804 if (skb_queue_empty(&sk
->sk_write_queue
)) {
810 if (inet
->cork
.opt
== NULL
) {
811 inet
->cork
.opt
= kmalloc(sizeof(struct ip_options
) + 40, sk
->sk_allocation
);
812 if (unlikely(inet
->cork
.opt
== NULL
))
815 memcpy(inet
->cork
.opt
, opt
, sizeof(struct ip_options
)+opt
->optlen
);
816 inet
->cork
.flags
|= IPCORK_OPT
;
817 inet
->cork
.addr
= ipc
->addr
;
823 * We steal reference to this route, caller should not release it
826 inet
->cork
.fragsize
= mtu
= inet
->pmtudisc
== IP_PMTUDISC_PROBE
?
828 dst_mtu(rt
->u
.dst
.path
);
829 inet
->cork
.dst
= &rt
->u
.dst
;
830 inet
->cork
.length
= 0;
831 sk
->sk_sndmsg_page
= NULL
;
832 sk
->sk_sndmsg_off
= 0;
833 if ((exthdrlen
= rt
->u
.dst
.header_len
) != 0) {
835 transhdrlen
+= exthdrlen
;
838 rt
= (struct rtable
*)inet
->cork
.dst
;
839 if (inet
->cork
.flags
& IPCORK_OPT
)
840 opt
= inet
->cork
.opt
;
844 mtu
= inet
->cork
.fragsize
;
846 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
848 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
849 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
851 if (inet
->cork
.length
+ length
> 0xFFFF - fragheaderlen
) {
852 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->inet_dport
,
858 * transhdrlen > 0 means that this is the first fragment and we wish
859 * it won't be fragmented in the future.
862 length
+ fragheaderlen
<= mtu
&&
863 rt
->u
.dst
.dev
->features
& NETIF_F_V4_CSUM
&&
865 csummode
= CHECKSUM_PARTIAL
;
867 inet
->cork
.length
+= length
;
868 if (((length
> mtu
) || !skb_queue_empty(&sk
->sk_write_queue
)) &&
869 (sk
->sk_protocol
== IPPROTO_UDP
) &&
870 (rt
->u
.dst
.dev
->features
& NETIF_F_UFO
)) {
871 err
= ip_ufo_append_data(sk
, getfrag
, from
, length
, hh_len
,
872 fragheaderlen
, transhdrlen
, mtu
,
879 /* So, what's going on in the loop below?
881 * We use calculated fragment length to generate chained skb,
882 * each of segments is IP fragment ready for sending to network after
883 * adding appropriate IP header.
886 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
890 /* Check if the remaining data fits into current packet. */
891 copy
= mtu
- skb
->len
;
893 copy
= maxfraglen
- skb
->len
;
896 unsigned int datalen
;
897 unsigned int fraglen
;
898 unsigned int fraggap
;
899 unsigned int alloclen
;
900 struct sk_buff
*skb_prev
;
904 fraggap
= skb_prev
->len
- maxfraglen
;
909 * If remaining data exceeds the mtu,
910 * we know we need more fragment(s).
912 datalen
= length
+ fraggap
;
913 if (datalen
> mtu
- fragheaderlen
)
914 datalen
= maxfraglen
- fragheaderlen
;
915 fraglen
= datalen
+ fragheaderlen
;
917 if ((flags
& MSG_MORE
) &&
918 !(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
921 alloclen
= datalen
+ fragheaderlen
;
923 /* The last fragment gets additional space at tail.
924 * Note, with MSG_MORE we overallocate on fragments,
925 * because we have no idea what fragment will be
928 if (datalen
== length
+ fraggap
)
929 alloclen
+= rt
->u
.dst
.trailer_len
;
932 skb
= sock_alloc_send_skb(sk
,
933 alloclen
+ hh_len
+ 15,
934 (flags
& MSG_DONTWAIT
), &err
);
937 if (atomic_read(&sk
->sk_wmem_alloc
) <=
939 skb
= sock_wmalloc(sk
,
940 alloclen
+ hh_len
+ 15, 1,
942 if (unlikely(skb
== NULL
))
945 /* only the initial fragment is
953 * Fill in the control structures
955 skb
->ip_summed
= csummode
;
957 skb_reserve(skb
, hh_len
);
958 *skb_tx(skb
) = ipc
->shtx
;
961 * Find where to start putting bytes.
963 data
= skb_put(skb
, fraglen
);
964 skb_set_network_header(skb
, exthdrlen
);
965 skb
->transport_header
= (skb
->network_header
+
967 data
+= fragheaderlen
;
970 skb
->csum
= skb_copy_and_csum_bits(
971 skb_prev
, maxfraglen
,
972 data
+ transhdrlen
, fraggap
, 0);
973 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
976 pskb_trim_unique(skb_prev
, maxfraglen
);
979 copy
= datalen
- transhdrlen
- fraggap
;
980 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
987 length
-= datalen
- fraggap
;
990 csummode
= CHECKSUM_NONE
;
993 * Put the packet on the pending queue.
995 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1002 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
)) {
1006 if (getfrag(from
, skb_put(skb
, copy
),
1007 offset
, copy
, off
, skb
) < 0) {
1008 __skb_trim(skb
, off
);
1013 int i
= skb_shinfo(skb
)->nr_frags
;
1014 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
-1];
1015 struct page
*page
= sk
->sk_sndmsg_page
;
1016 int off
= sk
->sk_sndmsg_off
;
1019 if (page
&& (left
= PAGE_SIZE
- off
) > 0) {
1022 if (page
!= frag
->page
) {
1023 if (i
== MAX_SKB_FRAGS
) {
1028 skb_fill_page_desc(skb
, i
, page
, sk
->sk_sndmsg_off
, 0);
1029 frag
= &skb_shinfo(skb
)->frags
[i
];
1031 } else if (i
< MAX_SKB_FRAGS
) {
1032 if (copy
> PAGE_SIZE
)
1034 page
= alloc_pages(sk
->sk_allocation
, 0);
1039 sk
->sk_sndmsg_page
= page
;
1040 sk
->sk_sndmsg_off
= 0;
1042 skb_fill_page_desc(skb
, i
, page
, 0, 0);
1043 frag
= &skb_shinfo(skb
)->frags
[i
];
1048 if (getfrag(from
, page_address(frag
->page
)+frag
->page_offset
+frag
->size
, offset
, copy
, skb
->len
, skb
) < 0) {
1052 sk
->sk_sndmsg_off
+= copy
;
1055 skb
->data_len
+= copy
;
1056 skb
->truesize
+= copy
;
1057 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1066 inet
->cork
.length
-= length
;
1067 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1071 ssize_t
ip_append_page(struct sock
*sk
, struct page
*page
,
1072 int offset
, size_t size
, int flags
)
1074 struct inet_sock
*inet
= inet_sk(sk
);
1075 struct sk_buff
*skb
;
1077 struct ip_options
*opt
= NULL
;
1082 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
1087 if (flags
&MSG_PROBE
)
1090 if (skb_queue_empty(&sk
->sk_write_queue
))
1093 rt
= (struct rtable
*)inet
->cork
.dst
;
1094 if (inet
->cork
.flags
& IPCORK_OPT
)
1095 opt
= inet
->cork
.opt
;
1097 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
1100 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
1101 mtu
= inet
->cork
.fragsize
;
1103 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1104 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1106 if (inet
->cork
.length
+ size
> 0xFFFF - fragheaderlen
) {
1107 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->inet_dport
, mtu
);
1111 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1114 inet
->cork
.length
+= size
;
1115 if ((sk
->sk_protocol
== IPPROTO_UDP
) &&
1116 (rt
->u
.dst
.dev
->features
& NETIF_F_UFO
)) {
1117 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1118 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1125 if (skb_is_gso(skb
))
1129 /* Check if the remaining data fits into current packet. */
1130 len
= mtu
- skb
->len
;
1132 len
= maxfraglen
- skb
->len
;
1135 struct sk_buff
*skb_prev
;
1139 fraggap
= skb_prev
->len
- maxfraglen
;
1141 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1142 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1143 if (unlikely(!skb
)) {
1149 * Fill in the control structures
1151 skb
->ip_summed
= CHECKSUM_NONE
;
1153 skb_reserve(skb
, hh_len
);
1156 * Find where to start putting bytes.
1158 skb_put(skb
, fragheaderlen
+ fraggap
);
1159 skb_reset_network_header(skb
);
1160 skb
->transport_header
= (skb
->network_header
+
1163 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1165 skb_transport_header(skb
),
1167 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1169 pskb_trim_unique(skb_prev
, maxfraglen
);
1173 * Put the packet on the pending queue.
1175 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1179 i
= skb_shinfo(skb
)->nr_frags
;
1182 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1183 skb_shinfo(skb
)->frags
[i
-1].size
+= len
;
1184 } else if (i
< MAX_SKB_FRAGS
) {
1186 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1192 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1194 csum
= csum_page(page
, offset
, len
);
1195 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1199 skb
->data_len
+= len
;
1200 skb
->truesize
+= len
;
1201 atomic_add(len
, &sk
->sk_wmem_alloc
);
1208 inet
->cork
.length
-= size
;
1209 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1213 static void ip_cork_release(struct inet_sock
*inet
)
1215 inet
->cork
.flags
&= ~IPCORK_OPT
;
1216 kfree(inet
->cork
.opt
);
1217 inet
->cork
.opt
= NULL
;
1218 dst_release(inet
->cork
.dst
);
1219 inet
->cork
.dst
= NULL
;
1223 * Combined all pending IP fragments on the socket as one IP datagram
1224 * and push them out.
1226 int ip_push_pending_frames(struct sock
*sk
)
1228 struct sk_buff
*skb
, *tmp_skb
;
1229 struct sk_buff
**tail_skb
;
1230 struct inet_sock
*inet
= inet_sk(sk
);
1231 struct net
*net
= sock_net(sk
);
1232 struct ip_options
*opt
= NULL
;
1233 struct rtable
*rt
= (struct rtable
*)inet
->cork
.dst
;
1239 if ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) == NULL
)
1241 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1243 /* move skb->data to ip header from ext header */
1244 if (skb
->data
< skb_network_header(skb
))
1245 __skb_pull(skb
, skb_network_offset(skb
));
1246 while ((tmp_skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
1247 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1248 *tail_skb
= tmp_skb
;
1249 tail_skb
= &(tmp_skb
->next
);
1250 skb
->len
+= tmp_skb
->len
;
1251 skb
->data_len
+= tmp_skb
->len
;
1252 skb
->truesize
+= tmp_skb
->truesize
;
1253 tmp_skb
->destructor
= NULL
;
1257 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1258 * to fragment the frame generated here. No matter, what transforms
1259 * how transforms change size of the packet, it will come out.
1261 if (inet
->pmtudisc
< IP_PMTUDISC_DO
)
1264 /* DF bit is set when we want to see DF on outgoing frames.
1265 * If local_df is set too, we still allow to fragment this frame
1267 if (inet
->pmtudisc
>= IP_PMTUDISC_DO
||
1268 (skb
->len
<= dst_mtu(&rt
->u
.dst
) &&
1269 ip_dont_fragment(sk
, &rt
->u
.dst
)))
1272 if (inet
->cork
.flags
& IPCORK_OPT
)
1273 opt
= inet
->cork
.opt
;
1275 if (rt
->rt_type
== RTN_MULTICAST
)
1278 ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
1280 iph
= (struct iphdr
*)skb
->data
;
1284 iph
->ihl
+= opt
->optlen
>>2;
1285 ip_options_build(skb
, opt
, inet
->cork
.addr
, rt
, 0);
1287 iph
->tos
= inet
->tos
;
1289 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
1291 iph
->protocol
= sk
->sk_protocol
;
1292 iph
->saddr
= rt
->rt_src
;
1293 iph
->daddr
= rt
->rt_dst
;
1295 skb
->priority
= sk
->sk_priority
;
1296 skb
->mark
= sk
->sk_mark
;
1298 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1301 inet
->cork
.dst
= NULL
;
1302 skb_dst_set(skb
, &rt
->u
.dst
);
1304 if (iph
->protocol
== IPPROTO_ICMP
)
1305 icmp_out_count(net
, ((struct icmphdr
*)
1306 skb_transport_header(skb
))->type
);
1308 /* Netfilter gets whole the not fragmented skb. */
1309 err
= ip_local_out(skb
);
1312 err
= net_xmit_errno(err
);
1318 ip_cork_release(inet
);
1322 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1327 * Throw away all pending data on the socket.
1329 void ip_flush_pending_frames(struct sock
*sk
)
1331 struct sk_buff
*skb
;
1333 while ((skb
= __skb_dequeue_tail(&sk
->sk_write_queue
)) != NULL
)
1336 ip_cork_release(inet_sk(sk
));
1341 * Fetch data from kernel space and fill in checksum if needed.
1343 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1344 int len
, int odd
, struct sk_buff
*skb
)
1348 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1349 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1354 * Generic function to send a packet as reply to another packet.
1355 * Used to send TCP resets so far. ICMP should use this function too.
1357 * Should run single threaded per socket because it uses the sock
1358 * structure to pass arguments.
1360 void ip_send_reply(struct sock
*sk
, struct sk_buff
*skb
, struct ip_reply_arg
*arg
,
1363 struct inet_sock
*inet
= inet_sk(sk
);
1365 struct ip_options opt
;
1368 struct ipcm_cookie ipc
;
1370 struct rtable
*rt
= skb_rtable(skb
);
1372 if (ip_options_echo(&replyopts
.opt
, skb
))
1375 daddr
= ipc
.addr
= rt
->rt_src
;
1379 if (replyopts
.opt
.optlen
) {
1380 ipc
.opt
= &replyopts
.opt
;
1383 daddr
= replyopts
.opt
.faddr
;
1387 struct flowi fl
= { .oif
= arg
->bound_dev_if
,
1390 .saddr
= rt
->rt_spec_dst
,
1391 .tos
= RT_TOS(ip_hdr(skb
)->tos
) } },
1392 /* Not quite clean, but right. */
1394 { .sport
= tcp_hdr(skb
)->dest
,
1395 .dport
= tcp_hdr(skb
)->source
} },
1396 .proto
= sk
->sk_protocol
,
1397 .flags
= ip_reply_arg_flowi_flags(arg
) };
1398 security_skb_classify_flow(skb
, &fl
);
1399 if (ip_route_output_key(sock_net(sk
), &rt
, &fl
))
1403 /* And let IP do all the hard work.
1405 This chunk is not reenterable, hence spinlock.
1406 Note that it uses the fact, that this function is called
1407 with locally disabled BH and that sk cannot be already spinlocked.
1410 inet
->tos
= ip_hdr(skb
)->tos
;
1411 sk
->sk_priority
= skb
->priority
;
1412 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1413 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1414 ip_append_data(sk
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1415 &ipc
, &rt
, MSG_DONTWAIT
);
1416 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
) {
1417 if (arg
->csumoffset
>= 0)
1418 *((__sum16
*)skb_transport_header(skb
) +
1419 arg
->csumoffset
) = csum_fold(csum_add(skb
->csum
,
1421 skb
->ip_summed
= CHECKSUM_NONE
;
1422 ip_push_pending_frames(sk
);
1430 void __init
ip_init(void)
1435 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1436 igmp_mc_proc_init();
1440 EXPORT_SYMBOL(ip_generic_getfrag
);
1441 EXPORT_SYMBOL(ip_queue_xmit
);
1442 EXPORT_SYMBOL(ip_send_check
);