ACPI: thinkpad-acpi: preserve radio state across shutdown
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / dmaengine.c
blob403dbe781122660267ebf0919f9447a7679d72a5
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
23 * This code implements the DMA subsystem. It provides a HW-neutral interface
24 * for other kernel code to use asynchronous memory copy capabilities,
25 * if present, and allows different HW DMA drivers to register as providing
26 * this capability.
28 * Due to the fact we are accelerating what is already a relatively fast
29 * operation, the code goes to great lengths to avoid additional overhead,
30 * such as locking.
32 * LOCKING:
34 * The subsystem keeps a global list of dma_device structs it is protected by a
35 * mutex, dma_list_mutex.
37 * A subsystem can get access to a channel by calling dmaengine_get() followed
38 * by dma_find_channel(), or if it has need for an exclusive channel it can call
39 * dma_request_channel(). Once a channel is allocated a reference is taken
40 * against its corresponding driver to disable removal.
42 * Each device has a channels list, which runs unlocked but is never modified
43 * once the device is registered, it's just setup by the driver.
45 * See Documentation/dmaengine.txt for more details
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
62 static DEFINE_MUTEX(dma_list_mutex);
63 static LIST_HEAD(dma_device_list);
64 static long dmaengine_ref_count;
65 static struct idr dma_idr;
67 /* --- sysfs implementation --- */
69 /**
70 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
71 * @dev - device node
73 * Must be called under dma_list_mutex
75 static struct dma_chan *dev_to_dma_chan(struct device *dev)
77 struct dma_chan_dev *chan_dev;
79 chan_dev = container_of(dev, typeof(*chan_dev), device);
80 return chan_dev->chan;
83 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
85 struct dma_chan *chan;
86 unsigned long count = 0;
87 int i;
88 int err;
90 mutex_lock(&dma_list_mutex);
91 chan = dev_to_dma_chan(dev);
92 if (chan) {
93 for_each_possible_cpu(i)
94 count += per_cpu_ptr(chan->local, i)->memcpy_count;
95 err = sprintf(buf, "%lu\n", count);
96 } else
97 err = -ENODEV;
98 mutex_unlock(&dma_list_mutex);
100 return err;
103 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
104 char *buf)
106 struct dma_chan *chan;
107 unsigned long count = 0;
108 int i;
109 int err;
111 mutex_lock(&dma_list_mutex);
112 chan = dev_to_dma_chan(dev);
113 if (chan) {
114 for_each_possible_cpu(i)
115 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
116 err = sprintf(buf, "%lu\n", count);
117 } else
118 err = -ENODEV;
119 mutex_unlock(&dma_list_mutex);
121 return err;
124 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
126 struct dma_chan *chan;
127 int err;
129 mutex_lock(&dma_list_mutex);
130 chan = dev_to_dma_chan(dev);
131 if (chan)
132 err = sprintf(buf, "%d\n", chan->client_count);
133 else
134 err = -ENODEV;
135 mutex_unlock(&dma_list_mutex);
137 return err;
140 static struct device_attribute dma_attrs[] = {
141 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
142 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
143 __ATTR(in_use, S_IRUGO, show_in_use, NULL),
144 __ATTR_NULL
147 static void chan_dev_release(struct device *dev)
149 struct dma_chan_dev *chan_dev;
151 chan_dev = container_of(dev, typeof(*chan_dev), device);
152 if (atomic_dec_and_test(chan_dev->idr_ref)) {
153 mutex_lock(&dma_list_mutex);
154 idr_remove(&dma_idr, chan_dev->dev_id);
155 mutex_unlock(&dma_list_mutex);
156 kfree(chan_dev->idr_ref);
158 kfree(chan_dev);
161 static struct class dma_devclass = {
162 .name = "dma",
163 .dev_attrs = dma_attrs,
164 .dev_release = chan_dev_release,
167 /* --- client and device registration --- */
169 #define dma_device_satisfies_mask(device, mask) \
170 __dma_device_satisfies_mask((device), &(mask))
171 static int
172 __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
174 dma_cap_mask_t has;
176 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
177 DMA_TX_TYPE_END);
178 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
181 static struct module *dma_chan_to_owner(struct dma_chan *chan)
183 return chan->device->dev->driver->owner;
187 * balance_ref_count - catch up the channel reference count
188 * @chan - channel to balance ->client_count versus dmaengine_ref_count
190 * balance_ref_count must be called under dma_list_mutex
192 static void balance_ref_count(struct dma_chan *chan)
194 struct module *owner = dma_chan_to_owner(chan);
196 while (chan->client_count < dmaengine_ref_count) {
197 __module_get(owner);
198 chan->client_count++;
203 * dma_chan_get - try to grab a dma channel's parent driver module
204 * @chan - channel to grab
206 * Must be called under dma_list_mutex
208 static int dma_chan_get(struct dma_chan *chan)
210 int err = -ENODEV;
211 struct module *owner = dma_chan_to_owner(chan);
213 if (chan->client_count) {
214 __module_get(owner);
215 err = 0;
216 } else if (try_module_get(owner))
217 err = 0;
219 if (err == 0)
220 chan->client_count++;
222 /* allocate upon first client reference */
223 if (chan->client_count == 1 && err == 0) {
224 int desc_cnt = chan->device->device_alloc_chan_resources(chan);
226 if (desc_cnt < 0) {
227 err = desc_cnt;
228 chan->client_count = 0;
229 module_put(owner);
230 } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
231 balance_ref_count(chan);
234 return err;
238 * dma_chan_put - drop a reference to a dma channel's parent driver module
239 * @chan - channel to release
241 * Must be called under dma_list_mutex
243 static void dma_chan_put(struct dma_chan *chan)
245 if (!chan->client_count)
246 return; /* this channel failed alloc_chan_resources */
247 chan->client_count--;
248 module_put(dma_chan_to_owner(chan));
249 if (chan->client_count == 0)
250 chan->device->device_free_chan_resources(chan);
253 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
255 enum dma_status status;
256 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
258 dma_async_issue_pending(chan);
259 do {
260 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
261 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
262 printk(KERN_ERR "dma_sync_wait_timeout!\n");
263 return DMA_ERROR;
265 } while (status == DMA_IN_PROGRESS);
267 return status;
269 EXPORT_SYMBOL(dma_sync_wait);
272 * dma_cap_mask_all - enable iteration over all operation types
274 static dma_cap_mask_t dma_cap_mask_all;
277 * dma_chan_tbl_ent - tracks channel allocations per core/operation
278 * @chan - associated channel for this entry
280 struct dma_chan_tbl_ent {
281 struct dma_chan *chan;
285 * channel_table - percpu lookup table for memory-to-memory offload providers
287 static struct dma_chan_tbl_ent *channel_table[DMA_TX_TYPE_END];
289 static int __init dma_channel_table_init(void)
291 enum dma_transaction_type cap;
292 int err = 0;
294 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
296 /* 'interrupt', 'private', and 'slave' are channel capabilities,
297 * but are not associated with an operation so they do not need
298 * an entry in the channel_table
300 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
301 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
302 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
304 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
305 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
306 if (!channel_table[cap]) {
307 err = -ENOMEM;
308 break;
312 if (err) {
313 pr_err("dmaengine: initialization failure\n");
314 for_each_dma_cap_mask(cap, dma_cap_mask_all)
315 if (channel_table[cap])
316 free_percpu(channel_table[cap]);
319 return err;
321 arch_initcall(dma_channel_table_init);
324 * dma_find_channel - find a channel to carry out the operation
325 * @tx_type: transaction type
327 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
329 struct dma_chan *chan;
330 int cpu;
332 WARN_ONCE(dmaengine_ref_count == 0,
333 "client called %s without a reference", __func__);
335 cpu = get_cpu();
336 chan = per_cpu_ptr(channel_table[tx_type], cpu)->chan;
337 put_cpu();
339 return chan;
341 EXPORT_SYMBOL(dma_find_channel);
344 * dma_issue_pending_all - flush all pending operations across all channels
346 void dma_issue_pending_all(void)
348 struct dma_device *device;
349 struct dma_chan *chan;
351 WARN_ONCE(dmaengine_ref_count == 0,
352 "client called %s without a reference", __func__);
354 rcu_read_lock();
355 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
356 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
357 continue;
358 list_for_each_entry(chan, &device->channels, device_node)
359 if (chan->client_count)
360 device->device_issue_pending(chan);
362 rcu_read_unlock();
364 EXPORT_SYMBOL(dma_issue_pending_all);
367 * nth_chan - returns the nth channel of the given capability
368 * @cap: capability to match
369 * @n: nth channel desired
371 * Defaults to returning the channel with the desired capability and the
372 * lowest reference count when 'n' cannot be satisfied. Must be called
373 * under dma_list_mutex.
375 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
377 struct dma_device *device;
378 struct dma_chan *chan;
379 struct dma_chan *ret = NULL;
380 struct dma_chan *min = NULL;
382 list_for_each_entry(device, &dma_device_list, global_node) {
383 if (!dma_has_cap(cap, device->cap_mask) ||
384 dma_has_cap(DMA_PRIVATE, device->cap_mask))
385 continue;
386 list_for_each_entry(chan, &device->channels, device_node) {
387 if (!chan->client_count)
388 continue;
389 if (!min)
390 min = chan;
391 else if (chan->table_count < min->table_count)
392 min = chan;
394 if (n-- == 0) {
395 ret = chan;
396 break; /* done */
399 if (ret)
400 break; /* done */
403 if (!ret)
404 ret = min;
406 if (ret)
407 ret->table_count++;
409 return ret;
413 * dma_channel_rebalance - redistribute the available channels
415 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
416 * operation type) in the SMP case, and operation isolation (avoid
417 * multi-tasking channels) in the non-SMP case. Must be called under
418 * dma_list_mutex.
420 static void dma_channel_rebalance(void)
422 struct dma_chan *chan;
423 struct dma_device *device;
424 int cpu;
425 int cap;
426 int n;
428 /* undo the last distribution */
429 for_each_dma_cap_mask(cap, dma_cap_mask_all)
430 for_each_possible_cpu(cpu)
431 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
433 list_for_each_entry(device, &dma_device_list, global_node) {
434 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
435 continue;
436 list_for_each_entry(chan, &device->channels, device_node)
437 chan->table_count = 0;
440 /* don't populate the channel_table if no clients are available */
441 if (!dmaengine_ref_count)
442 return;
444 /* redistribute available channels */
445 n = 0;
446 for_each_dma_cap_mask(cap, dma_cap_mask_all)
447 for_each_online_cpu(cpu) {
448 if (num_possible_cpus() > 1)
449 chan = nth_chan(cap, n++);
450 else
451 chan = nth_chan(cap, -1);
453 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
457 static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
458 dma_filter_fn fn, void *fn_param)
460 struct dma_chan *chan;
462 if (!__dma_device_satisfies_mask(dev, mask)) {
463 pr_debug("%s: wrong capabilities\n", __func__);
464 return NULL;
466 /* devices with multiple channels need special handling as we need to
467 * ensure that all channels are either private or public.
469 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
470 list_for_each_entry(chan, &dev->channels, device_node) {
471 /* some channels are already publicly allocated */
472 if (chan->client_count)
473 return NULL;
476 list_for_each_entry(chan, &dev->channels, device_node) {
477 if (chan->client_count) {
478 pr_debug("%s: %s busy\n",
479 __func__, dma_chan_name(chan));
480 continue;
482 if (fn && !fn(chan, fn_param)) {
483 pr_debug("%s: %s filter said false\n",
484 __func__, dma_chan_name(chan));
485 continue;
487 return chan;
490 return NULL;
494 * dma_request_channel - try to allocate an exclusive channel
495 * @mask: capabilities that the channel must satisfy
496 * @fn: optional callback to disposition available channels
497 * @fn_param: opaque parameter to pass to dma_filter_fn
499 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
501 struct dma_device *device, *_d;
502 struct dma_chan *chan = NULL;
503 int err;
505 /* Find a channel */
506 mutex_lock(&dma_list_mutex);
507 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
508 chan = private_candidate(mask, device, fn, fn_param);
509 if (chan) {
510 /* Found a suitable channel, try to grab, prep, and
511 * return it. We first set DMA_PRIVATE to disable
512 * balance_ref_count as this channel will not be
513 * published in the general-purpose allocator
515 dma_cap_set(DMA_PRIVATE, device->cap_mask);
516 err = dma_chan_get(chan);
518 if (err == -ENODEV) {
519 pr_debug("%s: %s module removed\n", __func__,
520 dma_chan_name(chan));
521 list_del_rcu(&device->global_node);
522 } else if (err)
523 pr_err("dmaengine: failed to get %s: (%d)\n",
524 dma_chan_name(chan), err);
525 else
526 break;
527 chan = NULL;
530 mutex_unlock(&dma_list_mutex);
532 pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail",
533 chan ? dma_chan_name(chan) : NULL);
535 return chan;
537 EXPORT_SYMBOL_GPL(__dma_request_channel);
539 void dma_release_channel(struct dma_chan *chan)
541 mutex_lock(&dma_list_mutex);
542 WARN_ONCE(chan->client_count != 1,
543 "chan reference count %d != 1\n", chan->client_count);
544 dma_chan_put(chan);
545 mutex_unlock(&dma_list_mutex);
547 EXPORT_SYMBOL_GPL(dma_release_channel);
550 * dmaengine_get - register interest in dma_channels
552 void dmaengine_get(void)
554 struct dma_device *device, *_d;
555 struct dma_chan *chan;
556 int err;
558 mutex_lock(&dma_list_mutex);
559 dmaengine_ref_count++;
561 /* try to grab channels */
562 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
563 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
564 continue;
565 list_for_each_entry(chan, &device->channels, device_node) {
566 err = dma_chan_get(chan);
567 if (err == -ENODEV) {
568 /* module removed before we could use it */
569 list_del_rcu(&device->global_node);
570 break;
571 } else if (err)
572 pr_err("dmaengine: failed to get %s: (%d)\n",
573 dma_chan_name(chan), err);
577 /* if this is the first reference and there were channels
578 * waiting we need to rebalance to get those channels
579 * incorporated into the channel table
581 if (dmaengine_ref_count == 1)
582 dma_channel_rebalance();
583 mutex_unlock(&dma_list_mutex);
585 EXPORT_SYMBOL(dmaengine_get);
588 * dmaengine_put - let dma drivers be removed when ref_count == 0
590 void dmaengine_put(void)
592 struct dma_device *device;
593 struct dma_chan *chan;
595 mutex_lock(&dma_list_mutex);
596 dmaengine_ref_count--;
597 BUG_ON(dmaengine_ref_count < 0);
598 /* drop channel references */
599 list_for_each_entry(device, &dma_device_list, global_node) {
600 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
601 continue;
602 list_for_each_entry(chan, &device->channels, device_node)
603 dma_chan_put(chan);
605 mutex_unlock(&dma_list_mutex);
607 EXPORT_SYMBOL(dmaengine_put);
610 * dma_async_device_register - registers DMA devices found
611 * @device: &dma_device
613 int dma_async_device_register(struct dma_device *device)
615 int chancnt = 0, rc;
616 struct dma_chan* chan;
617 atomic_t *idr_ref;
619 if (!device)
620 return -ENODEV;
622 /* validate device routines */
623 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
624 !device->device_prep_dma_memcpy);
625 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
626 !device->device_prep_dma_xor);
627 BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) &&
628 !device->device_prep_dma_zero_sum);
629 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
630 !device->device_prep_dma_memset);
631 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
632 !device->device_prep_dma_interrupt);
633 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
634 !device->device_prep_slave_sg);
635 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
636 !device->device_terminate_all);
638 BUG_ON(!device->device_alloc_chan_resources);
639 BUG_ON(!device->device_free_chan_resources);
640 BUG_ON(!device->device_is_tx_complete);
641 BUG_ON(!device->device_issue_pending);
642 BUG_ON(!device->dev);
644 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
645 if (!idr_ref)
646 return -ENOMEM;
647 atomic_set(idr_ref, 0);
648 idr_retry:
649 if (!idr_pre_get(&dma_idr, GFP_KERNEL))
650 return -ENOMEM;
651 mutex_lock(&dma_list_mutex);
652 rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
653 mutex_unlock(&dma_list_mutex);
654 if (rc == -EAGAIN)
655 goto idr_retry;
656 else if (rc != 0)
657 return rc;
659 /* represent channels in sysfs. Probably want devs too */
660 list_for_each_entry(chan, &device->channels, device_node) {
661 chan->local = alloc_percpu(typeof(*chan->local));
662 if (chan->local == NULL)
663 continue;
664 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
665 if (chan->dev == NULL) {
666 free_percpu(chan->local);
667 continue;
670 chan->chan_id = chancnt++;
671 chan->dev->device.class = &dma_devclass;
672 chan->dev->device.parent = device->dev;
673 chan->dev->chan = chan;
674 chan->dev->idr_ref = idr_ref;
675 chan->dev->dev_id = device->dev_id;
676 atomic_inc(idr_ref);
677 dev_set_name(&chan->dev->device, "dma%dchan%d",
678 device->dev_id, chan->chan_id);
680 rc = device_register(&chan->dev->device);
681 if (rc) {
682 free_percpu(chan->local);
683 chan->local = NULL;
684 goto err_out;
686 chan->client_count = 0;
688 device->chancnt = chancnt;
690 mutex_lock(&dma_list_mutex);
691 /* take references on public channels */
692 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
693 list_for_each_entry(chan, &device->channels, device_node) {
694 /* if clients are already waiting for channels we need
695 * to take references on their behalf
697 if (dma_chan_get(chan) == -ENODEV) {
698 /* note we can only get here for the first
699 * channel as the remaining channels are
700 * guaranteed to get a reference
702 rc = -ENODEV;
703 mutex_unlock(&dma_list_mutex);
704 goto err_out;
707 list_add_tail_rcu(&device->global_node, &dma_device_list);
708 dma_channel_rebalance();
709 mutex_unlock(&dma_list_mutex);
711 return 0;
713 err_out:
714 list_for_each_entry(chan, &device->channels, device_node) {
715 if (chan->local == NULL)
716 continue;
717 mutex_lock(&dma_list_mutex);
718 chan->dev->chan = NULL;
719 mutex_unlock(&dma_list_mutex);
720 device_unregister(&chan->dev->device);
721 free_percpu(chan->local);
723 return rc;
725 EXPORT_SYMBOL(dma_async_device_register);
728 * dma_async_device_unregister - unregister a DMA device
729 * @device: &dma_device
731 * This routine is called by dma driver exit routines, dmaengine holds module
732 * references to prevent it being called while channels are in use.
734 void dma_async_device_unregister(struct dma_device *device)
736 struct dma_chan *chan;
738 mutex_lock(&dma_list_mutex);
739 list_del_rcu(&device->global_node);
740 dma_channel_rebalance();
741 mutex_unlock(&dma_list_mutex);
743 list_for_each_entry(chan, &device->channels, device_node) {
744 WARN_ONCE(chan->client_count,
745 "%s called while %d clients hold a reference\n",
746 __func__, chan->client_count);
747 mutex_lock(&dma_list_mutex);
748 chan->dev->chan = NULL;
749 mutex_unlock(&dma_list_mutex);
750 device_unregister(&chan->dev->device);
753 EXPORT_SYMBOL(dma_async_device_unregister);
756 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
757 * @chan: DMA channel to offload copy to
758 * @dest: destination address (virtual)
759 * @src: source address (virtual)
760 * @len: length
762 * Both @dest and @src must be mappable to a bus address according to the
763 * DMA mapping API rules for streaming mappings.
764 * Both @dest and @src must stay memory resident (kernel memory or locked
765 * user space pages).
767 dma_cookie_t
768 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
769 void *src, size_t len)
771 struct dma_device *dev = chan->device;
772 struct dma_async_tx_descriptor *tx;
773 dma_addr_t dma_dest, dma_src;
774 dma_cookie_t cookie;
775 int cpu;
777 dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
778 dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
779 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
780 DMA_CTRL_ACK);
782 if (!tx) {
783 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
784 dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
785 return -ENOMEM;
788 tx->callback = NULL;
789 cookie = tx->tx_submit(tx);
791 cpu = get_cpu();
792 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
793 per_cpu_ptr(chan->local, cpu)->memcpy_count++;
794 put_cpu();
796 return cookie;
798 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
801 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
802 * @chan: DMA channel to offload copy to
803 * @page: destination page
804 * @offset: offset in page to copy to
805 * @kdata: source address (virtual)
806 * @len: length
808 * Both @page/@offset and @kdata must be mappable to a bus address according
809 * to the DMA mapping API rules for streaming mappings.
810 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
811 * locked user space pages)
813 dma_cookie_t
814 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
815 unsigned int offset, void *kdata, size_t len)
817 struct dma_device *dev = chan->device;
818 struct dma_async_tx_descriptor *tx;
819 dma_addr_t dma_dest, dma_src;
820 dma_cookie_t cookie;
821 int cpu;
823 dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
824 dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
825 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
826 DMA_CTRL_ACK);
828 if (!tx) {
829 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
830 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
831 return -ENOMEM;
834 tx->callback = NULL;
835 cookie = tx->tx_submit(tx);
837 cpu = get_cpu();
838 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
839 per_cpu_ptr(chan->local, cpu)->memcpy_count++;
840 put_cpu();
842 return cookie;
844 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
847 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
848 * @chan: DMA channel to offload copy to
849 * @dest_pg: destination page
850 * @dest_off: offset in page to copy to
851 * @src_pg: source page
852 * @src_off: offset in page to copy from
853 * @len: length
855 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
856 * address according to the DMA mapping API rules for streaming mappings.
857 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
858 * (kernel memory or locked user space pages).
860 dma_cookie_t
861 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
862 unsigned int dest_off, struct page *src_pg, unsigned int src_off,
863 size_t len)
865 struct dma_device *dev = chan->device;
866 struct dma_async_tx_descriptor *tx;
867 dma_addr_t dma_dest, dma_src;
868 dma_cookie_t cookie;
869 int cpu;
871 dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
872 dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
873 DMA_FROM_DEVICE);
874 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
875 DMA_CTRL_ACK);
877 if (!tx) {
878 dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
879 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
880 return -ENOMEM;
883 tx->callback = NULL;
884 cookie = tx->tx_submit(tx);
886 cpu = get_cpu();
887 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
888 per_cpu_ptr(chan->local, cpu)->memcpy_count++;
889 put_cpu();
891 return cookie;
893 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
895 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
896 struct dma_chan *chan)
898 tx->chan = chan;
899 spin_lock_init(&tx->lock);
901 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
903 /* dma_wait_for_async_tx - spin wait for a transaction to complete
904 * @tx: in-flight transaction to wait on
906 * This routine assumes that tx was obtained from a call to async_memcpy,
907 * async_xor, async_memset, etc which ensures that tx is "in-flight" (prepped
908 * and submitted). Walking the parent chain is only meant to cover for DMA
909 * drivers that do not implement the DMA_INTERRUPT capability and may race with
910 * the driver's descriptor cleanup routine.
912 enum dma_status
913 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
915 enum dma_status status;
916 struct dma_async_tx_descriptor *iter;
917 struct dma_async_tx_descriptor *parent;
919 if (!tx)
920 return DMA_SUCCESS;
922 WARN_ONCE(tx->parent, "%s: speculatively walking dependency chain for"
923 " %s\n", __func__, dma_chan_name(tx->chan));
925 /* poll through the dependency chain, return when tx is complete */
926 do {
927 iter = tx;
929 /* find the root of the unsubmitted dependency chain */
930 do {
931 parent = iter->parent;
932 if (!parent)
933 break;
934 else
935 iter = parent;
936 } while (parent);
938 /* there is a small window for ->parent == NULL and
939 * ->cookie == -EBUSY
941 while (iter->cookie == -EBUSY)
942 cpu_relax();
944 status = dma_sync_wait(iter->chan, iter->cookie);
945 } while (status == DMA_IN_PROGRESS || (iter != tx));
947 return status;
949 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
951 /* dma_run_dependencies - helper routine for dma drivers to process
952 * (start) dependent operations on their target channel
953 * @tx: transaction with dependencies
955 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
957 struct dma_async_tx_descriptor *dep = tx->next;
958 struct dma_async_tx_descriptor *dep_next;
959 struct dma_chan *chan;
961 if (!dep)
962 return;
964 chan = dep->chan;
966 /* keep submitting up until a channel switch is detected
967 * in that case we will be called again as a result of
968 * processing the interrupt from async_tx_channel_switch
970 for (; dep; dep = dep_next) {
971 spin_lock_bh(&dep->lock);
972 dep->parent = NULL;
973 dep_next = dep->next;
974 if (dep_next && dep_next->chan == chan)
975 dep->next = NULL; /* ->next will be submitted */
976 else
977 dep_next = NULL; /* submit current dep and terminate */
978 spin_unlock_bh(&dep->lock);
980 dep->tx_submit(dep);
983 chan->device->device_issue_pending(chan);
985 EXPORT_SYMBOL_GPL(dma_run_dependencies);
987 static int __init dma_bus_init(void)
989 idr_init(&dma_idr);
990 mutex_init(&dma_list_mutex);
991 return class_register(&dma_devclass);
993 arch_initcall(dma_bus_init);