ar9170usb: reset device on resume
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / igb / igb_main.c
blobbca7e9f76be4ea8b6778b2470083a3e6899c44a1
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
72 /* required last entry */
73 {0, }
76 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
78 void igb_reset(struct igb_adapter *);
79 static int igb_setup_all_tx_resources(struct igb_adapter *);
80 static int igb_setup_all_rx_resources(struct igb_adapter *);
81 static void igb_free_all_tx_resources(struct igb_adapter *);
82 static void igb_free_all_rx_resources(struct igb_adapter *);
83 void igb_update_stats(struct igb_adapter *);
84 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
85 static void __devexit igb_remove(struct pci_dev *pdev);
86 static int igb_sw_init(struct igb_adapter *);
87 static int igb_open(struct net_device *);
88 static int igb_close(struct net_device *);
89 static void igb_configure_tx(struct igb_adapter *);
90 static void igb_configure_rx(struct igb_adapter *);
91 static void igb_setup_rctl(struct igb_adapter *);
92 static void igb_clean_all_tx_rings(struct igb_adapter *);
93 static void igb_clean_all_rx_rings(struct igb_adapter *);
94 static void igb_clean_tx_ring(struct igb_ring *);
95 static void igb_clean_rx_ring(struct igb_ring *);
96 static void igb_set_multi(struct net_device *);
97 static void igb_update_phy_info(unsigned long);
98 static void igb_watchdog(unsigned long);
99 static void igb_watchdog_task(struct work_struct *);
100 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
101 struct igb_ring *);
102 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static irqreturn_t igb_intr(int irq, void *);
107 static irqreturn_t igb_intr_msi(int irq, void *);
108 static irqreturn_t igb_msix_other(int irq, void *);
109 static irqreturn_t igb_msix_rx(int irq, void *);
110 static irqreturn_t igb_msix_tx(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_rx_dca(struct igb_ring *);
113 static void igb_update_tx_dca(struct igb_ring *);
114 static void igb_setup_dca(struct igb_adapter *);
115 #endif /* CONFIG_IGB_DCA */
116 static bool igb_clean_tx_irq(struct igb_ring *);
117 static int igb_poll(struct napi_struct *, int);
118 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
119 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
127 static void igb_ping_all_vfs(struct igb_adapter *);
128 static void igb_msg_task(struct igb_adapter *);
129 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
130 static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
131 static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
132 static void igb_vmm_control(struct igb_adapter *);
133 static inline void igb_set_vmolr(struct e1000_hw *, int);
134 static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
135 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
138 #ifdef CONFIG_PM
139 static int igb_suspend(struct pci_dev *, pm_message_t);
140 static int igb_resume(struct pci_dev *);
141 #endif
142 static void igb_shutdown(struct pci_dev *);
143 #ifdef CONFIG_IGB_DCA
144 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
145 static struct notifier_block dca_notifier = {
146 .notifier_call = igb_notify_dca,
147 .next = NULL,
148 .priority = 0
150 #endif
151 #ifdef CONFIG_NET_POLL_CONTROLLER
152 /* for netdump / net console */
153 static void igb_netpoll(struct net_device *);
154 #endif
155 #ifdef CONFIG_PCI_IOV
156 static unsigned int max_vfs = 0;
157 module_param(max_vfs, uint, 0);
158 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
159 "per physical function");
160 #endif /* CONFIG_PCI_IOV */
162 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
163 pci_channel_state_t);
164 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
165 static void igb_io_resume(struct pci_dev *);
167 static struct pci_error_handlers igb_err_handler = {
168 .error_detected = igb_io_error_detected,
169 .slot_reset = igb_io_slot_reset,
170 .resume = igb_io_resume,
174 static struct pci_driver igb_driver = {
175 .name = igb_driver_name,
176 .id_table = igb_pci_tbl,
177 .probe = igb_probe,
178 .remove = __devexit_p(igb_remove),
179 #ifdef CONFIG_PM
180 /* Power Managment Hooks */
181 .suspend = igb_suspend,
182 .resume = igb_resume,
183 #endif
184 .shutdown = igb_shutdown,
185 .err_handler = &igb_err_handler
188 static int global_quad_port_a; /* global quad port a indication */
190 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
191 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
192 MODULE_LICENSE("GPL");
193 MODULE_VERSION(DRV_VERSION);
196 * Scale the NIC clock cycle by a large factor so that
197 * relatively small clock corrections can be added or
198 * substracted at each clock tick. The drawbacks of a
199 * large factor are a) that the clock register overflows
200 * more quickly (not such a big deal) and b) that the
201 * increment per tick has to fit into 24 bits.
203 * Note that
204 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
205 * IGB_TSYNC_SCALE
206 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
208 * The base scale factor is intentionally a power of two
209 * so that the division in %struct timecounter can be done with
210 * a shift.
212 #define IGB_TSYNC_SHIFT (19)
213 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
216 * The duration of one clock cycle of the NIC.
218 * @todo This hard-coded value is part of the specification and might change
219 * in future hardware revisions. Add revision check.
221 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
223 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
224 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
225 #endif
228 * igb_read_clock - read raw cycle counter (to be used by time counter)
230 static cycle_t igb_read_clock(const struct cyclecounter *tc)
232 struct igb_adapter *adapter =
233 container_of(tc, struct igb_adapter, cycles);
234 struct e1000_hw *hw = &adapter->hw;
235 u64 stamp;
237 stamp = rd32(E1000_SYSTIML);
238 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
240 return stamp;
243 #ifdef DEBUG
245 * igb_get_hw_dev_name - return device name string
246 * used by hardware layer to print debugging information
248 char *igb_get_hw_dev_name(struct e1000_hw *hw)
250 struct igb_adapter *adapter = hw->back;
251 return adapter->netdev->name;
255 * igb_get_time_str - format current NIC and system time as string
257 static char *igb_get_time_str(struct igb_adapter *adapter,
258 char buffer[160])
260 cycle_t hw = adapter->cycles.read(&adapter->cycles);
261 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
262 struct timespec sys;
263 struct timespec delta;
264 getnstimeofday(&sys);
266 delta = timespec_sub(nic, sys);
268 sprintf(buffer,
269 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
271 (long)nic.tv_sec, nic.tv_nsec,
272 (long)sys.tv_sec, sys.tv_nsec,
273 (long)delta.tv_sec, delta.tv_nsec);
275 return buffer;
277 #endif
280 * igb_desc_unused - calculate if we have unused descriptors
282 static int igb_desc_unused(struct igb_ring *ring)
284 if (ring->next_to_clean > ring->next_to_use)
285 return ring->next_to_clean - ring->next_to_use - 1;
287 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
291 * igb_init_module - Driver Registration Routine
293 * igb_init_module is the first routine called when the driver is
294 * loaded. All it does is register with the PCI subsystem.
296 static int __init igb_init_module(void)
298 int ret;
299 printk(KERN_INFO "%s - version %s\n",
300 igb_driver_string, igb_driver_version);
302 printk(KERN_INFO "%s\n", igb_copyright);
304 global_quad_port_a = 0;
306 #ifdef CONFIG_IGB_DCA
307 dca_register_notify(&dca_notifier);
308 #endif
310 ret = pci_register_driver(&igb_driver);
311 return ret;
314 module_init(igb_init_module);
317 * igb_exit_module - Driver Exit Cleanup Routine
319 * igb_exit_module is called just before the driver is removed
320 * from memory.
322 static void __exit igb_exit_module(void)
324 #ifdef CONFIG_IGB_DCA
325 dca_unregister_notify(&dca_notifier);
326 #endif
327 pci_unregister_driver(&igb_driver);
330 module_exit(igb_exit_module);
332 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
334 * igb_cache_ring_register - Descriptor ring to register mapping
335 * @adapter: board private structure to initialize
337 * Once we know the feature-set enabled for the device, we'll cache
338 * the register offset the descriptor ring is assigned to.
340 static void igb_cache_ring_register(struct igb_adapter *adapter)
342 int i;
343 unsigned int rbase_offset = adapter->vfs_allocated_count;
345 switch (adapter->hw.mac.type) {
346 case e1000_82576:
347 /* The queues are allocated for virtualization such that VF 0
348 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
349 * In order to avoid collision we start at the first free queue
350 * and continue consuming queues in the same sequence
352 for (i = 0; i < adapter->num_rx_queues; i++)
353 adapter->rx_ring[i].reg_idx = rbase_offset +
354 Q_IDX_82576(i);
355 for (i = 0; i < adapter->num_tx_queues; i++)
356 adapter->tx_ring[i].reg_idx = rbase_offset +
357 Q_IDX_82576(i);
358 break;
359 case e1000_82575:
360 default:
361 for (i = 0; i < adapter->num_rx_queues; i++)
362 adapter->rx_ring[i].reg_idx = i;
363 for (i = 0; i < adapter->num_tx_queues; i++)
364 adapter->tx_ring[i].reg_idx = i;
365 break;
370 * igb_alloc_queues - Allocate memory for all rings
371 * @adapter: board private structure to initialize
373 * We allocate one ring per queue at run-time since we don't know the
374 * number of queues at compile-time.
376 static int igb_alloc_queues(struct igb_adapter *adapter)
378 int i;
380 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
381 sizeof(struct igb_ring), GFP_KERNEL);
382 if (!adapter->tx_ring)
383 return -ENOMEM;
385 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
386 sizeof(struct igb_ring), GFP_KERNEL);
387 if (!adapter->rx_ring) {
388 kfree(adapter->tx_ring);
389 return -ENOMEM;
392 adapter->rx_ring->buddy = adapter->tx_ring;
394 for (i = 0; i < adapter->num_tx_queues; i++) {
395 struct igb_ring *ring = &(adapter->tx_ring[i]);
396 ring->count = adapter->tx_ring_count;
397 ring->adapter = adapter;
398 ring->queue_index = i;
400 for (i = 0; i < adapter->num_rx_queues; i++) {
401 struct igb_ring *ring = &(adapter->rx_ring[i]);
402 ring->count = adapter->rx_ring_count;
403 ring->adapter = adapter;
404 ring->queue_index = i;
405 ring->itr_register = E1000_ITR;
407 /* set a default napi handler for each rx_ring */
408 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
411 igb_cache_ring_register(adapter);
412 return 0;
415 static void igb_free_queues(struct igb_adapter *adapter)
417 int i;
419 for (i = 0; i < adapter->num_rx_queues; i++)
420 netif_napi_del(&adapter->rx_ring[i].napi);
422 adapter->num_rx_queues = 0;
423 adapter->num_tx_queues = 0;
425 kfree(adapter->tx_ring);
426 kfree(adapter->rx_ring);
429 #define IGB_N0_QUEUE -1
430 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
431 int tx_queue, int msix_vector)
433 u32 msixbm = 0;
434 struct e1000_hw *hw = &adapter->hw;
435 u32 ivar, index;
437 switch (hw->mac.type) {
438 case e1000_82575:
439 /* The 82575 assigns vectors using a bitmask, which matches the
440 bitmask for the EICR/EIMS/EIMC registers. To assign one
441 or more queues to a vector, we write the appropriate bits
442 into the MSIXBM register for that vector. */
443 if (rx_queue > IGB_N0_QUEUE) {
444 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
445 adapter->rx_ring[rx_queue].eims_value = msixbm;
447 if (tx_queue > IGB_N0_QUEUE) {
448 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
449 adapter->tx_ring[tx_queue].eims_value =
450 E1000_EICR_TX_QUEUE0 << tx_queue;
452 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
453 break;
454 case e1000_82576:
455 /* 82576 uses a table-based method for assigning vectors.
456 Each queue has a single entry in the table to which we write
457 a vector number along with a "valid" bit. Sadly, the layout
458 of the table is somewhat counterintuitive. */
459 if (rx_queue > IGB_N0_QUEUE) {
460 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
461 ivar = array_rd32(E1000_IVAR0, index);
462 if (rx_queue & 0x1) {
463 /* vector goes into third byte of register */
464 ivar = ivar & 0xFF00FFFF;
465 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
466 } else {
467 /* vector goes into low byte of register */
468 ivar = ivar & 0xFFFFFF00;
469 ivar |= msix_vector | E1000_IVAR_VALID;
471 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
472 array_wr32(E1000_IVAR0, index, ivar);
474 if (tx_queue > IGB_N0_QUEUE) {
475 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
476 ivar = array_rd32(E1000_IVAR0, index);
477 if (tx_queue & 0x1) {
478 /* vector goes into high byte of register */
479 ivar = ivar & 0x00FFFFFF;
480 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
481 } else {
482 /* vector goes into second byte of register */
483 ivar = ivar & 0xFFFF00FF;
484 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
486 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
487 array_wr32(E1000_IVAR0, index, ivar);
489 break;
490 default:
491 BUG();
492 break;
497 * igb_configure_msix - Configure MSI-X hardware
499 * igb_configure_msix sets up the hardware to properly
500 * generate MSI-X interrupts.
502 static void igb_configure_msix(struct igb_adapter *adapter)
504 u32 tmp;
505 int i, vector = 0;
506 struct e1000_hw *hw = &adapter->hw;
508 adapter->eims_enable_mask = 0;
509 if (hw->mac.type == e1000_82576)
510 /* Turn on MSI-X capability first, or our settings
511 * won't stick. And it will take days to debug. */
512 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
513 E1000_GPIE_PBA | E1000_GPIE_EIAME |
514 E1000_GPIE_NSICR);
516 for (i = 0; i < adapter->num_tx_queues; i++) {
517 struct igb_ring *tx_ring = &adapter->tx_ring[i];
518 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
519 adapter->eims_enable_mask |= tx_ring->eims_value;
520 if (tx_ring->itr_val)
521 writel(tx_ring->itr_val,
522 hw->hw_addr + tx_ring->itr_register);
523 else
524 writel(1, hw->hw_addr + tx_ring->itr_register);
527 for (i = 0; i < adapter->num_rx_queues; i++) {
528 struct igb_ring *rx_ring = &adapter->rx_ring[i];
529 rx_ring->buddy = NULL;
530 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
531 adapter->eims_enable_mask |= rx_ring->eims_value;
532 if (rx_ring->itr_val)
533 writel(rx_ring->itr_val,
534 hw->hw_addr + rx_ring->itr_register);
535 else
536 writel(1, hw->hw_addr + rx_ring->itr_register);
540 /* set vector for other causes, i.e. link changes */
541 switch (hw->mac.type) {
542 case e1000_82575:
543 array_wr32(E1000_MSIXBM(0), vector++,
544 E1000_EIMS_OTHER);
546 tmp = rd32(E1000_CTRL_EXT);
547 /* enable MSI-X PBA support*/
548 tmp |= E1000_CTRL_EXT_PBA_CLR;
550 /* Auto-Mask interrupts upon ICR read. */
551 tmp |= E1000_CTRL_EXT_EIAME;
552 tmp |= E1000_CTRL_EXT_IRCA;
554 wr32(E1000_CTRL_EXT, tmp);
555 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
556 adapter->eims_other = E1000_EIMS_OTHER;
558 break;
560 case e1000_82576:
561 tmp = (vector++ | E1000_IVAR_VALID) << 8;
562 wr32(E1000_IVAR_MISC, tmp);
564 adapter->eims_enable_mask = (1 << (vector)) - 1;
565 adapter->eims_other = 1 << (vector - 1);
566 break;
567 default:
568 /* do nothing, since nothing else supports MSI-X */
569 break;
570 } /* switch (hw->mac.type) */
571 wrfl();
575 * igb_request_msix - Initialize MSI-X interrupts
577 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
578 * kernel.
580 static int igb_request_msix(struct igb_adapter *adapter)
582 struct net_device *netdev = adapter->netdev;
583 int i, err = 0, vector = 0;
585 vector = 0;
587 for (i = 0; i < adapter->num_tx_queues; i++) {
588 struct igb_ring *ring = &(adapter->tx_ring[i]);
589 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
590 err = request_irq(adapter->msix_entries[vector].vector,
591 &igb_msix_tx, 0, ring->name,
592 &(adapter->tx_ring[i]));
593 if (err)
594 goto out;
595 ring->itr_register = E1000_EITR(0) + (vector << 2);
596 ring->itr_val = 976; /* ~4000 ints/sec */
597 vector++;
599 for (i = 0; i < adapter->num_rx_queues; i++) {
600 struct igb_ring *ring = &(adapter->rx_ring[i]);
601 if (strlen(netdev->name) < (IFNAMSIZ - 5))
602 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
603 else
604 memcpy(ring->name, netdev->name, IFNAMSIZ);
605 err = request_irq(adapter->msix_entries[vector].vector,
606 &igb_msix_rx, 0, ring->name,
607 &(adapter->rx_ring[i]));
608 if (err)
609 goto out;
610 ring->itr_register = E1000_EITR(0) + (vector << 2);
611 ring->itr_val = adapter->itr;
612 vector++;
615 err = request_irq(adapter->msix_entries[vector].vector,
616 &igb_msix_other, 0, netdev->name, netdev);
617 if (err)
618 goto out;
620 igb_configure_msix(adapter);
621 return 0;
622 out:
623 return err;
626 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
628 if (adapter->msix_entries) {
629 pci_disable_msix(adapter->pdev);
630 kfree(adapter->msix_entries);
631 adapter->msix_entries = NULL;
632 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
633 pci_disable_msi(adapter->pdev);
634 return;
639 * igb_set_interrupt_capability - set MSI or MSI-X if supported
641 * Attempt to configure interrupts using the best available
642 * capabilities of the hardware and kernel.
644 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
646 int err;
647 int numvecs, i;
649 /* Number of supported queues. */
650 /* Having more queues than CPUs doesn't make sense. */
651 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
652 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
654 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
655 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
656 GFP_KERNEL);
657 if (!adapter->msix_entries)
658 goto msi_only;
660 for (i = 0; i < numvecs; i++)
661 adapter->msix_entries[i].entry = i;
663 err = pci_enable_msix(adapter->pdev,
664 adapter->msix_entries,
665 numvecs);
666 if (err == 0)
667 goto out;
669 igb_reset_interrupt_capability(adapter);
671 /* If we can't do MSI-X, try MSI */
672 msi_only:
673 #ifdef CONFIG_PCI_IOV
674 /* disable SR-IOV for non MSI-X configurations */
675 if (adapter->vf_data) {
676 struct e1000_hw *hw = &adapter->hw;
677 /* disable iov and allow time for transactions to clear */
678 pci_disable_sriov(adapter->pdev);
679 msleep(500);
681 kfree(adapter->vf_data);
682 adapter->vf_data = NULL;
683 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
684 msleep(100);
685 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
687 #endif
688 adapter->num_rx_queues = 1;
689 adapter->num_tx_queues = 1;
690 if (!pci_enable_msi(adapter->pdev))
691 adapter->flags |= IGB_FLAG_HAS_MSI;
692 out:
693 /* Notify the stack of the (possibly) reduced Tx Queue count. */
694 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
695 return;
699 * igb_request_irq - initialize interrupts
701 * Attempts to configure interrupts using the best available
702 * capabilities of the hardware and kernel.
704 static int igb_request_irq(struct igb_adapter *adapter)
706 struct net_device *netdev = adapter->netdev;
707 struct e1000_hw *hw = &adapter->hw;
708 int err = 0;
710 if (adapter->msix_entries) {
711 err = igb_request_msix(adapter);
712 if (!err)
713 goto request_done;
714 /* fall back to MSI */
715 igb_reset_interrupt_capability(adapter);
716 if (!pci_enable_msi(adapter->pdev))
717 adapter->flags |= IGB_FLAG_HAS_MSI;
718 igb_free_all_tx_resources(adapter);
719 igb_free_all_rx_resources(adapter);
720 adapter->num_rx_queues = 1;
721 igb_alloc_queues(adapter);
722 } else {
723 switch (hw->mac.type) {
724 case e1000_82575:
725 wr32(E1000_MSIXBM(0),
726 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
727 break;
728 case e1000_82576:
729 wr32(E1000_IVAR0, E1000_IVAR_VALID);
730 break;
731 default:
732 break;
736 if (adapter->flags & IGB_FLAG_HAS_MSI) {
737 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
738 netdev->name, netdev);
739 if (!err)
740 goto request_done;
741 /* fall back to legacy interrupts */
742 igb_reset_interrupt_capability(adapter);
743 adapter->flags &= ~IGB_FLAG_HAS_MSI;
746 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
747 netdev->name, netdev);
749 if (err)
750 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
751 err);
753 request_done:
754 return err;
757 static void igb_free_irq(struct igb_adapter *adapter)
759 struct net_device *netdev = adapter->netdev;
761 if (adapter->msix_entries) {
762 int vector = 0, i;
764 for (i = 0; i < adapter->num_tx_queues; i++)
765 free_irq(adapter->msix_entries[vector++].vector,
766 &(adapter->tx_ring[i]));
767 for (i = 0; i < adapter->num_rx_queues; i++)
768 free_irq(adapter->msix_entries[vector++].vector,
769 &(adapter->rx_ring[i]));
771 free_irq(adapter->msix_entries[vector++].vector, netdev);
772 return;
775 free_irq(adapter->pdev->irq, netdev);
779 * igb_irq_disable - Mask off interrupt generation on the NIC
780 * @adapter: board private structure
782 static void igb_irq_disable(struct igb_adapter *adapter)
784 struct e1000_hw *hw = &adapter->hw;
786 if (adapter->msix_entries) {
787 wr32(E1000_EIAM, 0);
788 wr32(E1000_EIMC, ~0);
789 wr32(E1000_EIAC, 0);
792 wr32(E1000_IAM, 0);
793 wr32(E1000_IMC, ~0);
794 wrfl();
795 synchronize_irq(adapter->pdev->irq);
799 * igb_irq_enable - Enable default interrupt generation settings
800 * @adapter: board private structure
802 static void igb_irq_enable(struct igb_adapter *adapter)
804 struct e1000_hw *hw = &adapter->hw;
806 if (adapter->msix_entries) {
807 wr32(E1000_EIAC, adapter->eims_enable_mask);
808 wr32(E1000_EIAM, adapter->eims_enable_mask);
809 wr32(E1000_EIMS, adapter->eims_enable_mask);
810 if (adapter->vfs_allocated_count)
811 wr32(E1000_MBVFIMR, 0xFF);
812 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
813 E1000_IMS_DOUTSYNC));
814 } else {
815 wr32(E1000_IMS, IMS_ENABLE_MASK);
816 wr32(E1000_IAM, IMS_ENABLE_MASK);
820 static void igb_update_mng_vlan(struct igb_adapter *adapter)
822 struct net_device *netdev = adapter->netdev;
823 u16 vid = adapter->hw.mng_cookie.vlan_id;
824 u16 old_vid = adapter->mng_vlan_id;
825 if (adapter->vlgrp) {
826 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
827 if (adapter->hw.mng_cookie.status &
828 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
829 igb_vlan_rx_add_vid(netdev, vid);
830 adapter->mng_vlan_id = vid;
831 } else
832 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
834 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
835 (vid != old_vid) &&
836 !vlan_group_get_device(adapter->vlgrp, old_vid))
837 igb_vlan_rx_kill_vid(netdev, old_vid);
838 } else
839 adapter->mng_vlan_id = vid;
844 * igb_release_hw_control - release control of the h/w to f/w
845 * @adapter: address of board private structure
847 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
848 * For ASF and Pass Through versions of f/w this means that the
849 * driver is no longer loaded.
852 static void igb_release_hw_control(struct igb_adapter *adapter)
854 struct e1000_hw *hw = &adapter->hw;
855 u32 ctrl_ext;
857 /* Let firmware take over control of h/w */
858 ctrl_ext = rd32(E1000_CTRL_EXT);
859 wr32(E1000_CTRL_EXT,
860 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
865 * igb_get_hw_control - get control of the h/w from f/w
866 * @adapter: address of board private structure
868 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
869 * For ASF and Pass Through versions of f/w this means that
870 * the driver is loaded.
873 static void igb_get_hw_control(struct igb_adapter *adapter)
875 struct e1000_hw *hw = &adapter->hw;
876 u32 ctrl_ext;
878 /* Let firmware know the driver has taken over */
879 ctrl_ext = rd32(E1000_CTRL_EXT);
880 wr32(E1000_CTRL_EXT,
881 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
885 * igb_configure - configure the hardware for RX and TX
886 * @adapter: private board structure
888 static void igb_configure(struct igb_adapter *adapter)
890 struct net_device *netdev = adapter->netdev;
891 int i;
893 igb_get_hw_control(adapter);
894 igb_set_multi(netdev);
896 igb_restore_vlan(adapter);
898 igb_configure_tx(adapter);
899 igb_setup_rctl(adapter);
900 igb_configure_rx(adapter);
902 igb_rx_fifo_flush_82575(&adapter->hw);
904 /* call igb_desc_unused which always leaves
905 * at least 1 descriptor unused to make sure
906 * next_to_use != next_to_clean */
907 for (i = 0; i < adapter->num_rx_queues; i++) {
908 struct igb_ring *ring = &adapter->rx_ring[i];
909 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
913 adapter->tx_queue_len = netdev->tx_queue_len;
918 * igb_up - Open the interface and prepare it to handle traffic
919 * @adapter: board private structure
922 int igb_up(struct igb_adapter *adapter)
924 struct e1000_hw *hw = &adapter->hw;
925 int i;
927 /* hardware has been reset, we need to reload some things */
928 igb_configure(adapter);
930 clear_bit(__IGB_DOWN, &adapter->state);
932 for (i = 0; i < adapter->num_rx_queues; i++)
933 napi_enable(&adapter->rx_ring[i].napi);
934 if (adapter->msix_entries)
935 igb_configure_msix(adapter);
937 igb_vmm_control(adapter);
938 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
939 igb_set_vmolr(hw, adapter->vfs_allocated_count);
941 /* Clear any pending interrupts. */
942 rd32(E1000_ICR);
943 igb_irq_enable(adapter);
945 netif_tx_start_all_queues(adapter->netdev);
947 /* Fire a link change interrupt to start the watchdog. */
948 wr32(E1000_ICS, E1000_ICS_LSC);
949 return 0;
952 void igb_down(struct igb_adapter *adapter)
954 struct e1000_hw *hw = &adapter->hw;
955 struct net_device *netdev = adapter->netdev;
956 u32 tctl, rctl;
957 int i;
959 /* signal that we're down so the interrupt handler does not
960 * reschedule our watchdog timer */
961 set_bit(__IGB_DOWN, &adapter->state);
963 /* disable receives in the hardware */
964 rctl = rd32(E1000_RCTL);
965 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
966 /* flush and sleep below */
968 netif_tx_stop_all_queues(netdev);
970 /* disable transmits in the hardware */
971 tctl = rd32(E1000_TCTL);
972 tctl &= ~E1000_TCTL_EN;
973 wr32(E1000_TCTL, tctl);
974 /* flush both disables and wait for them to finish */
975 wrfl();
976 msleep(10);
978 for (i = 0; i < adapter->num_rx_queues; i++)
979 napi_disable(&adapter->rx_ring[i].napi);
981 igb_irq_disable(adapter);
983 del_timer_sync(&adapter->watchdog_timer);
984 del_timer_sync(&adapter->phy_info_timer);
986 netdev->tx_queue_len = adapter->tx_queue_len;
987 netif_carrier_off(netdev);
989 /* record the stats before reset*/
990 igb_update_stats(adapter);
992 adapter->link_speed = 0;
993 adapter->link_duplex = 0;
995 if (!pci_channel_offline(adapter->pdev))
996 igb_reset(adapter);
997 igb_clean_all_tx_rings(adapter);
998 igb_clean_all_rx_rings(adapter);
1001 void igb_reinit_locked(struct igb_adapter *adapter)
1003 WARN_ON(in_interrupt());
1004 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1005 msleep(1);
1006 igb_down(adapter);
1007 igb_up(adapter);
1008 clear_bit(__IGB_RESETTING, &adapter->state);
1011 void igb_reset(struct igb_adapter *adapter)
1013 struct e1000_hw *hw = &adapter->hw;
1014 struct e1000_mac_info *mac = &hw->mac;
1015 struct e1000_fc_info *fc = &hw->fc;
1016 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1017 u16 hwm;
1019 /* Repartition Pba for greater than 9k mtu
1020 * To take effect CTRL.RST is required.
1022 switch (mac->type) {
1023 case e1000_82576:
1024 pba = E1000_PBA_64K;
1025 break;
1026 case e1000_82575:
1027 default:
1028 pba = E1000_PBA_34K;
1029 break;
1032 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1033 (mac->type < e1000_82576)) {
1034 /* adjust PBA for jumbo frames */
1035 wr32(E1000_PBA, pba);
1037 /* To maintain wire speed transmits, the Tx FIFO should be
1038 * large enough to accommodate two full transmit packets,
1039 * rounded up to the next 1KB and expressed in KB. Likewise,
1040 * the Rx FIFO should be large enough to accommodate at least
1041 * one full receive packet and is similarly rounded up and
1042 * expressed in KB. */
1043 pba = rd32(E1000_PBA);
1044 /* upper 16 bits has Tx packet buffer allocation size in KB */
1045 tx_space = pba >> 16;
1046 /* lower 16 bits has Rx packet buffer allocation size in KB */
1047 pba &= 0xffff;
1048 /* the tx fifo also stores 16 bytes of information about the tx
1049 * but don't include ethernet FCS because hardware appends it */
1050 min_tx_space = (adapter->max_frame_size +
1051 sizeof(union e1000_adv_tx_desc) -
1052 ETH_FCS_LEN) * 2;
1053 min_tx_space = ALIGN(min_tx_space, 1024);
1054 min_tx_space >>= 10;
1055 /* software strips receive CRC, so leave room for it */
1056 min_rx_space = adapter->max_frame_size;
1057 min_rx_space = ALIGN(min_rx_space, 1024);
1058 min_rx_space >>= 10;
1060 /* If current Tx allocation is less than the min Tx FIFO size,
1061 * and the min Tx FIFO size is less than the current Rx FIFO
1062 * allocation, take space away from current Rx allocation */
1063 if (tx_space < min_tx_space &&
1064 ((min_tx_space - tx_space) < pba)) {
1065 pba = pba - (min_tx_space - tx_space);
1067 /* if short on rx space, rx wins and must trump tx
1068 * adjustment */
1069 if (pba < min_rx_space)
1070 pba = min_rx_space;
1072 wr32(E1000_PBA, pba);
1075 /* flow control settings */
1076 /* The high water mark must be low enough to fit one full frame
1077 * (or the size used for early receive) above it in the Rx FIFO.
1078 * Set it to the lower of:
1079 * - 90% of the Rx FIFO size, or
1080 * - the full Rx FIFO size minus one full frame */
1081 hwm = min(((pba << 10) * 9 / 10),
1082 ((pba << 10) - 2 * adapter->max_frame_size));
1084 if (mac->type < e1000_82576) {
1085 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1086 fc->low_water = fc->high_water - 8;
1087 } else {
1088 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1089 fc->low_water = fc->high_water - 16;
1091 fc->pause_time = 0xFFFF;
1092 fc->send_xon = 1;
1093 fc->type = fc->original_type;
1095 /* disable receive for all VFs and wait one second */
1096 if (adapter->vfs_allocated_count) {
1097 int i;
1098 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1099 adapter->vf_data[i].clear_to_send = false;
1101 /* ping all the active vfs to let them know we are going down */
1102 igb_ping_all_vfs(adapter);
1104 /* disable transmits and receives */
1105 wr32(E1000_VFRE, 0);
1106 wr32(E1000_VFTE, 0);
1109 /* Allow time for pending master requests to run */
1110 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1111 wr32(E1000_WUC, 0);
1113 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1114 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1116 igb_update_mng_vlan(adapter);
1118 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1119 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1121 igb_reset_adaptive(&adapter->hw);
1122 igb_get_phy_info(&adapter->hw);
1125 static const struct net_device_ops igb_netdev_ops = {
1126 .ndo_open = igb_open,
1127 .ndo_stop = igb_close,
1128 .ndo_start_xmit = igb_xmit_frame_adv,
1129 .ndo_get_stats = igb_get_stats,
1130 .ndo_set_multicast_list = igb_set_multi,
1131 .ndo_set_mac_address = igb_set_mac,
1132 .ndo_change_mtu = igb_change_mtu,
1133 .ndo_do_ioctl = igb_ioctl,
1134 .ndo_tx_timeout = igb_tx_timeout,
1135 .ndo_validate_addr = eth_validate_addr,
1136 .ndo_vlan_rx_register = igb_vlan_rx_register,
1137 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1138 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1139 #ifdef CONFIG_NET_POLL_CONTROLLER
1140 .ndo_poll_controller = igb_netpoll,
1141 #endif
1145 * igb_probe - Device Initialization Routine
1146 * @pdev: PCI device information struct
1147 * @ent: entry in igb_pci_tbl
1149 * Returns 0 on success, negative on failure
1151 * igb_probe initializes an adapter identified by a pci_dev structure.
1152 * The OS initialization, configuring of the adapter private structure,
1153 * and a hardware reset occur.
1155 static int __devinit igb_probe(struct pci_dev *pdev,
1156 const struct pci_device_id *ent)
1158 struct net_device *netdev;
1159 struct igb_adapter *adapter;
1160 struct e1000_hw *hw;
1161 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1162 unsigned long mmio_start, mmio_len;
1163 int err, pci_using_dac;
1164 u16 eeprom_data = 0;
1165 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1166 u32 part_num;
1168 err = pci_enable_device_mem(pdev);
1169 if (err)
1170 return err;
1172 pci_using_dac = 0;
1173 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1174 if (!err) {
1175 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1176 if (!err)
1177 pci_using_dac = 1;
1178 } else {
1179 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1180 if (err) {
1181 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1182 if (err) {
1183 dev_err(&pdev->dev, "No usable DMA "
1184 "configuration, aborting\n");
1185 goto err_dma;
1190 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1191 IORESOURCE_MEM),
1192 igb_driver_name);
1193 if (err)
1194 goto err_pci_reg;
1196 err = pci_enable_pcie_error_reporting(pdev);
1197 if (err) {
1198 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1199 "0x%x\n", err);
1200 /* non-fatal, continue */
1203 pci_set_master(pdev);
1204 pci_save_state(pdev);
1206 err = -ENOMEM;
1207 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1208 IGB_ABS_MAX_TX_QUEUES);
1209 if (!netdev)
1210 goto err_alloc_etherdev;
1212 SET_NETDEV_DEV(netdev, &pdev->dev);
1214 pci_set_drvdata(pdev, netdev);
1215 adapter = netdev_priv(netdev);
1216 adapter->netdev = netdev;
1217 adapter->pdev = pdev;
1218 hw = &adapter->hw;
1219 hw->back = adapter;
1220 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1222 mmio_start = pci_resource_start(pdev, 0);
1223 mmio_len = pci_resource_len(pdev, 0);
1225 err = -EIO;
1226 hw->hw_addr = ioremap(mmio_start, mmio_len);
1227 if (!hw->hw_addr)
1228 goto err_ioremap;
1230 netdev->netdev_ops = &igb_netdev_ops;
1231 igb_set_ethtool_ops(netdev);
1232 netdev->watchdog_timeo = 5 * HZ;
1234 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1236 netdev->mem_start = mmio_start;
1237 netdev->mem_end = mmio_start + mmio_len;
1239 /* PCI config space info */
1240 hw->vendor_id = pdev->vendor;
1241 hw->device_id = pdev->device;
1242 hw->revision_id = pdev->revision;
1243 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1244 hw->subsystem_device_id = pdev->subsystem_device;
1246 /* setup the private structure */
1247 hw->back = adapter;
1248 /* Copy the default MAC, PHY and NVM function pointers */
1249 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1250 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1251 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1252 /* Initialize skew-specific constants */
1253 err = ei->get_invariants(hw);
1254 if (err)
1255 goto err_sw_init;
1257 #ifdef CONFIG_PCI_IOV
1258 /* since iov functionality isn't critical to base device function we
1259 * can accept failure. If it fails we don't allow iov to be enabled */
1260 if (hw->mac.type == e1000_82576) {
1261 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1262 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1263 int i;
1264 unsigned char mac_addr[ETH_ALEN];
1266 if (num_vfs) {
1267 adapter->vf_data = kcalloc(num_vfs,
1268 sizeof(struct vf_data_storage),
1269 GFP_KERNEL);
1270 if (!adapter->vf_data) {
1271 dev_err(&pdev->dev,
1272 "Could not allocate VF private data - "
1273 "IOV enable failed\n");
1274 } else {
1275 err = pci_enable_sriov(pdev, num_vfs);
1276 if (!err) {
1277 adapter->vfs_allocated_count = num_vfs;
1278 dev_info(&pdev->dev,
1279 "%d vfs allocated\n",
1280 num_vfs);
1281 for (i = 0;
1282 i < adapter->vfs_allocated_count;
1283 i++) {
1284 random_ether_addr(mac_addr);
1285 igb_set_vf_mac(adapter, i,
1286 mac_addr);
1288 } else {
1289 kfree(adapter->vf_data);
1290 adapter->vf_data = NULL;
1296 #endif
1297 /* setup the private structure */
1298 err = igb_sw_init(adapter);
1299 if (err)
1300 goto err_sw_init;
1302 igb_get_bus_info_pcie(hw);
1304 /* set flags */
1305 switch (hw->mac.type) {
1306 case e1000_82575:
1307 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1308 break;
1309 case e1000_82576:
1310 default:
1311 break;
1314 hw->phy.autoneg_wait_to_complete = false;
1315 hw->mac.adaptive_ifs = true;
1317 /* Copper options */
1318 if (hw->phy.media_type == e1000_media_type_copper) {
1319 hw->phy.mdix = AUTO_ALL_MODES;
1320 hw->phy.disable_polarity_correction = false;
1321 hw->phy.ms_type = e1000_ms_hw_default;
1324 if (igb_check_reset_block(hw))
1325 dev_info(&pdev->dev,
1326 "PHY reset is blocked due to SOL/IDER session.\n");
1328 netdev->features = NETIF_F_SG |
1329 NETIF_F_IP_CSUM |
1330 NETIF_F_HW_VLAN_TX |
1331 NETIF_F_HW_VLAN_RX |
1332 NETIF_F_HW_VLAN_FILTER;
1334 netdev->features |= NETIF_F_IPV6_CSUM;
1335 netdev->features |= NETIF_F_TSO;
1336 netdev->features |= NETIF_F_TSO6;
1338 netdev->features |= NETIF_F_GRO;
1340 netdev->vlan_features |= NETIF_F_TSO;
1341 netdev->vlan_features |= NETIF_F_TSO6;
1342 netdev->vlan_features |= NETIF_F_IP_CSUM;
1343 netdev->vlan_features |= NETIF_F_SG;
1345 if (pci_using_dac)
1346 netdev->features |= NETIF_F_HIGHDMA;
1348 if (adapter->hw.mac.type == e1000_82576)
1349 netdev->features |= NETIF_F_SCTP_CSUM;
1351 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1353 /* before reading the NVM, reset the controller to put the device in a
1354 * known good starting state */
1355 hw->mac.ops.reset_hw(hw);
1357 /* make sure the NVM is good */
1358 if (igb_validate_nvm_checksum(hw) < 0) {
1359 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1360 err = -EIO;
1361 goto err_eeprom;
1364 /* copy the MAC address out of the NVM */
1365 if (hw->mac.ops.read_mac_addr(hw))
1366 dev_err(&pdev->dev, "NVM Read Error\n");
1368 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1369 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1371 if (!is_valid_ether_addr(netdev->perm_addr)) {
1372 dev_err(&pdev->dev, "Invalid MAC Address\n");
1373 err = -EIO;
1374 goto err_eeprom;
1377 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1378 (unsigned long) adapter);
1379 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1380 (unsigned long) adapter);
1382 INIT_WORK(&adapter->reset_task, igb_reset_task);
1383 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1385 /* Initialize link properties that are user-changeable */
1386 adapter->fc_autoneg = true;
1387 hw->mac.autoneg = true;
1388 hw->phy.autoneg_advertised = 0x2f;
1390 hw->fc.original_type = e1000_fc_default;
1391 hw->fc.type = e1000_fc_default;
1393 adapter->itr_setting = IGB_DEFAULT_ITR;
1394 adapter->itr = IGB_START_ITR;
1396 igb_validate_mdi_setting(hw);
1398 adapter->rx_csum = 1;
1400 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1401 * enable the ACPI Magic Packet filter
1404 if (hw->bus.func == 0)
1405 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1406 else if (hw->bus.func == 1)
1407 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1409 if (eeprom_data & eeprom_apme_mask)
1410 adapter->eeprom_wol |= E1000_WUFC_MAG;
1412 /* now that we have the eeprom settings, apply the special cases where
1413 * the eeprom may be wrong or the board simply won't support wake on
1414 * lan on a particular port */
1415 switch (pdev->device) {
1416 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1417 adapter->eeprom_wol = 0;
1418 break;
1419 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1420 case E1000_DEV_ID_82576_FIBER:
1421 case E1000_DEV_ID_82576_SERDES:
1422 /* Wake events only supported on port A for dual fiber
1423 * regardless of eeprom setting */
1424 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1425 adapter->eeprom_wol = 0;
1426 break;
1427 case E1000_DEV_ID_82576_QUAD_COPPER:
1428 /* if quad port adapter, disable WoL on all but port A */
1429 if (global_quad_port_a != 0)
1430 adapter->eeprom_wol = 0;
1431 else
1432 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1433 /* Reset for multiple quad port adapters */
1434 if (++global_quad_port_a == 4)
1435 global_quad_port_a = 0;
1436 break;
1439 /* initialize the wol settings based on the eeprom settings */
1440 adapter->wol = adapter->eeprom_wol;
1441 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1443 /* reset the hardware with the new settings */
1444 igb_reset(adapter);
1446 /* let the f/w know that the h/w is now under the control of the
1447 * driver. */
1448 igb_get_hw_control(adapter);
1450 strcpy(netdev->name, "eth%d");
1451 err = register_netdev(netdev);
1452 if (err)
1453 goto err_register;
1455 /* carrier off reporting is important to ethtool even BEFORE open */
1456 netif_carrier_off(netdev);
1458 #ifdef CONFIG_IGB_DCA
1459 if (dca_add_requester(&pdev->dev) == 0) {
1460 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1461 dev_info(&pdev->dev, "DCA enabled\n");
1462 /* Always use CB2 mode, difference is masked
1463 * in the CB driver. */
1464 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
1465 igb_setup_dca(adapter);
1467 #endif
1470 * Initialize hardware timer: we keep it running just in case
1471 * that some program needs it later on.
1473 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1474 adapter->cycles.read = igb_read_clock;
1475 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1476 adapter->cycles.mult = 1;
1477 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1478 wr32(E1000_TIMINCA,
1479 (1<<24) |
1480 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1481 #if 0
1483 * Avoid rollover while we initialize by resetting the time counter.
1485 wr32(E1000_SYSTIML, 0x00000000);
1486 wr32(E1000_SYSTIMH, 0x00000000);
1487 #else
1489 * Set registers so that rollover occurs soon to test this.
1491 wr32(E1000_SYSTIML, 0x00000000);
1492 wr32(E1000_SYSTIMH, 0xFF800000);
1493 #endif
1494 wrfl();
1495 timecounter_init(&adapter->clock,
1496 &adapter->cycles,
1497 ktime_to_ns(ktime_get_real()));
1500 * Synchronize our NIC clock against system wall clock. NIC
1501 * time stamp reading requires ~3us per sample, each sample
1502 * was pretty stable even under load => only require 10
1503 * samples for each offset comparison.
1505 memset(&adapter->compare, 0, sizeof(adapter->compare));
1506 adapter->compare.source = &adapter->clock;
1507 adapter->compare.target = ktime_get_real;
1508 adapter->compare.num_samples = 10;
1509 timecompare_update(&adapter->compare, 0);
1511 #ifdef DEBUG
1513 char buffer[160];
1514 printk(KERN_DEBUG
1515 "igb: %s: hw %p initialized timer\n",
1516 igb_get_time_str(adapter, buffer),
1517 &adapter->hw);
1519 #endif
1521 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1522 /* print bus type/speed/width info */
1523 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1524 netdev->name,
1525 ((hw->bus.speed == e1000_bus_speed_2500)
1526 ? "2.5Gb/s" : "unknown"),
1527 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1528 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1529 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1530 "unknown"),
1531 netdev->dev_addr);
1533 igb_read_part_num(hw, &part_num);
1534 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1535 (part_num >> 8), (part_num & 0xff));
1537 dev_info(&pdev->dev,
1538 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1539 adapter->msix_entries ? "MSI-X" :
1540 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1541 adapter->num_rx_queues, adapter->num_tx_queues);
1543 return 0;
1545 err_register:
1546 igb_release_hw_control(adapter);
1547 err_eeprom:
1548 if (!igb_check_reset_block(hw))
1549 igb_reset_phy(hw);
1551 if (hw->flash_address)
1552 iounmap(hw->flash_address);
1554 igb_free_queues(adapter);
1555 err_sw_init:
1556 iounmap(hw->hw_addr);
1557 err_ioremap:
1558 free_netdev(netdev);
1559 err_alloc_etherdev:
1560 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1561 IORESOURCE_MEM));
1562 err_pci_reg:
1563 err_dma:
1564 pci_disable_device(pdev);
1565 return err;
1569 * igb_remove - Device Removal Routine
1570 * @pdev: PCI device information struct
1572 * igb_remove is called by the PCI subsystem to alert the driver
1573 * that it should release a PCI device. The could be caused by a
1574 * Hot-Plug event, or because the driver is going to be removed from
1575 * memory.
1577 static void __devexit igb_remove(struct pci_dev *pdev)
1579 struct net_device *netdev = pci_get_drvdata(pdev);
1580 struct igb_adapter *adapter = netdev_priv(netdev);
1581 struct e1000_hw *hw = &adapter->hw;
1582 int err;
1584 /* flush_scheduled work may reschedule our watchdog task, so
1585 * explicitly disable watchdog tasks from being rescheduled */
1586 set_bit(__IGB_DOWN, &adapter->state);
1587 del_timer_sync(&adapter->watchdog_timer);
1588 del_timer_sync(&adapter->phy_info_timer);
1590 flush_scheduled_work();
1592 #ifdef CONFIG_IGB_DCA
1593 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1594 dev_info(&pdev->dev, "DCA disabled\n");
1595 dca_remove_requester(&pdev->dev);
1596 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1597 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1599 #endif
1601 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1602 * would have already happened in close and is redundant. */
1603 igb_release_hw_control(adapter);
1605 unregister_netdev(netdev);
1607 if (!igb_check_reset_block(&adapter->hw))
1608 igb_reset_phy(&adapter->hw);
1610 igb_reset_interrupt_capability(adapter);
1612 igb_free_queues(adapter);
1614 #ifdef CONFIG_PCI_IOV
1615 /* reclaim resources allocated to VFs */
1616 if (adapter->vf_data) {
1617 /* disable iov and allow time for transactions to clear */
1618 pci_disable_sriov(pdev);
1619 msleep(500);
1621 kfree(adapter->vf_data);
1622 adapter->vf_data = NULL;
1623 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1624 msleep(100);
1625 dev_info(&pdev->dev, "IOV Disabled\n");
1627 #endif
1628 iounmap(hw->hw_addr);
1629 if (hw->flash_address)
1630 iounmap(hw->flash_address);
1631 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1632 IORESOURCE_MEM));
1634 free_netdev(netdev);
1636 err = pci_disable_pcie_error_reporting(pdev);
1637 if (err)
1638 dev_err(&pdev->dev,
1639 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1641 pci_disable_device(pdev);
1645 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1646 * @adapter: board private structure to initialize
1648 * igb_sw_init initializes the Adapter private data structure.
1649 * Fields are initialized based on PCI device information and
1650 * OS network device settings (MTU size).
1652 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1654 struct e1000_hw *hw = &adapter->hw;
1655 struct net_device *netdev = adapter->netdev;
1656 struct pci_dev *pdev = adapter->pdev;
1658 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1660 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1661 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1662 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1663 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1664 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1665 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1667 /* This call may decrease the number of queues depending on
1668 * interrupt mode. */
1669 igb_set_interrupt_capability(adapter);
1671 if (igb_alloc_queues(adapter)) {
1672 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1673 return -ENOMEM;
1676 /* Explicitly disable IRQ since the NIC can be in any state. */
1677 igb_irq_disable(adapter);
1679 set_bit(__IGB_DOWN, &adapter->state);
1680 return 0;
1684 * igb_open - Called when a network interface is made active
1685 * @netdev: network interface device structure
1687 * Returns 0 on success, negative value on failure
1689 * The open entry point is called when a network interface is made
1690 * active by the system (IFF_UP). At this point all resources needed
1691 * for transmit and receive operations are allocated, the interrupt
1692 * handler is registered with the OS, the watchdog timer is started,
1693 * and the stack is notified that the interface is ready.
1695 static int igb_open(struct net_device *netdev)
1697 struct igb_adapter *adapter = netdev_priv(netdev);
1698 struct e1000_hw *hw = &adapter->hw;
1699 int err;
1700 int i;
1702 /* disallow open during test */
1703 if (test_bit(__IGB_TESTING, &adapter->state))
1704 return -EBUSY;
1706 netif_carrier_off(netdev);
1708 /* allocate transmit descriptors */
1709 err = igb_setup_all_tx_resources(adapter);
1710 if (err)
1711 goto err_setup_tx;
1713 /* allocate receive descriptors */
1714 err = igb_setup_all_rx_resources(adapter);
1715 if (err)
1716 goto err_setup_rx;
1718 /* e1000_power_up_phy(adapter); */
1720 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1721 if ((adapter->hw.mng_cookie.status &
1722 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1723 igb_update_mng_vlan(adapter);
1725 /* before we allocate an interrupt, we must be ready to handle it.
1726 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1727 * as soon as we call pci_request_irq, so we have to setup our
1728 * clean_rx handler before we do so. */
1729 igb_configure(adapter);
1731 igb_vmm_control(adapter);
1732 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1733 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1735 err = igb_request_irq(adapter);
1736 if (err)
1737 goto err_req_irq;
1739 /* From here on the code is the same as igb_up() */
1740 clear_bit(__IGB_DOWN, &adapter->state);
1742 for (i = 0; i < adapter->num_rx_queues; i++)
1743 napi_enable(&adapter->rx_ring[i].napi);
1745 /* Clear any pending interrupts. */
1746 rd32(E1000_ICR);
1748 igb_irq_enable(adapter);
1750 netif_tx_start_all_queues(netdev);
1752 /* Fire a link status change interrupt to start the watchdog. */
1753 wr32(E1000_ICS, E1000_ICS_LSC);
1755 return 0;
1757 err_req_irq:
1758 igb_release_hw_control(adapter);
1759 /* e1000_power_down_phy(adapter); */
1760 igb_free_all_rx_resources(adapter);
1761 err_setup_rx:
1762 igb_free_all_tx_resources(adapter);
1763 err_setup_tx:
1764 igb_reset(adapter);
1766 return err;
1770 * igb_close - Disables a network interface
1771 * @netdev: network interface device structure
1773 * Returns 0, this is not allowed to fail
1775 * The close entry point is called when an interface is de-activated
1776 * by the OS. The hardware is still under the driver's control, but
1777 * needs to be disabled. A global MAC reset is issued to stop the
1778 * hardware, and all transmit and receive resources are freed.
1780 static int igb_close(struct net_device *netdev)
1782 struct igb_adapter *adapter = netdev_priv(netdev);
1784 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1785 igb_down(adapter);
1787 igb_free_irq(adapter);
1789 igb_free_all_tx_resources(adapter);
1790 igb_free_all_rx_resources(adapter);
1792 /* kill manageability vlan ID if supported, but not if a vlan with
1793 * the same ID is registered on the host OS (let 8021q kill it) */
1794 if ((adapter->hw.mng_cookie.status &
1795 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1796 !(adapter->vlgrp &&
1797 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1798 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1800 return 0;
1804 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1805 * @adapter: board private structure
1806 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1808 * Return 0 on success, negative on failure
1810 int igb_setup_tx_resources(struct igb_adapter *adapter,
1811 struct igb_ring *tx_ring)
1813 struct pci_dev *pdev = adapter->pdev;
1814 int size;
1816 size = sizeof(struct igb_buffer) * tx_ring->count;
1817 tx_ring->buffer_info = vmalloc(size);
1818 if (!tx_ring->buffer_info)
1819 goto err;
1820 memset(tx_ring->buffer_info, 0, size);
1822 /* round up to nearest 4K */
1823 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1824 tx_ring->size = ALIGN(tx_ring->size, 4096);
1826 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1827 &tx_ring->dma);
1829 if (!tx_ring->desc)
1830 goto err;
1832 tx_ring->adapter = adapter;
1833 tx_ring->next_to_use = 0;
1834 tx_ring->next_to_clean = 0;
1835 return 0;
1837 err:
1838 vfree(tx_ring->buffer_info);
1839 dev_err(&adapter->pdev->dev,
1840 "Unable to allocate memory for the transmit descriptor ring\n");
1841 return -ENOMEM;
1845 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1846 * (Descriptors) for all queues
1847 * @adapter: board private structure
1849 * Return 0 on success, negative on failure
1851 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1853 int i, err = 0;
1854 int r_idx;
1856 for (i = 0; i < adapter->num_tx_queues; i++) {
1857 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1858 if (err) {
1859 dev_err(&adapter->pdev->dev,
1860 "Allocation for Tx Queue %u failed\n", i);
1861 for (i--; i >= 0; i--)
1862 igb_free_tx_resources(&adapter->tx_ring[i]);
1863 break;
1867 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1868 r_idx = i % adapter->num_tx_queues;
1869 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1871 return err;
1875 * igb_configure_tx - Configure transmit Unit after Reset
1876 * @adapter: board private structure
1878 * Configure the Tx unit of the MAC after a reset.
1880 static void igb_configure_tx(struct igb_adapter *adapter)
1882 u64 tdba;
1883 struct e1000_hw *hw = &adapter->hw;
1884 u32 tctl;
1885 u32 txdctl, txctrl;
1886 int i, j;
1888 for (i = 0; i < adapter->num_tx_queues; i++) {
1889 struct igb_ring *ring = &adapter->tx_ring[i];
1890 j = ring->reg_idx;
1891 wr32(E1000_TDLEN(j),
1892 ring->count * sizeof(union e1000_adv_tx_desc));
1893 tdba = ring->dma;
1894 wr32(E1000_TDBAL(j),
1895 tdba & 0x00000000ffffffffULL);
1896 wr32(E1000_TDBAH(j), tdba >> 32);
1898 ring->head = E1000_TDH(j);
1899 ring->tail = E1000_TDT(j);
1900 writel(0, hw->hw_addr + ring->tail);
1901 writel(0, hw->hw_addr + ring->head);
1902 txdctl = rd32(E1000_TXDCTL(j));
1903 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1904 wr32(E1000_TXDCTL(j), txdctl);
1906 /* Turn off Relaxed Ordering on head write-backs. The
1907 * writebacks MUST be delivered in order or it will
1908 * completely screw up our bookeeping.
1910 txctrl = rd32(E1000_DCA_TXCTRL(j));
1911 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1912 wr32(E1000_DCA_TXCTRL(j), txctrl);
1915 /* disable queue 0 to prevent tail bump w/o re-configuration */
1916 if (adapter->vfs_allocated_count)
1917 wr32(E1000_TXDCTL(0), 0);
1919 /* Program the Transmit Control Register */
1920 tctl = rd32(E1000_TCTL);
1921 tctl &= ~E1000_TCTL_CT;
1922 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1923 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1925 igb_config_collision_dist(hw);
1927 /* Setup Transmit Descriptor Settings for eop descriptor */
1928 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1930 /* Enable transmits */
1931 tctl |= E1000_TCTL_EN;
1933 wr32(E1000_TCTL, tctl);
1937 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1938 * @adapter: board private structure
1939 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1941 * Returns 0 on success, negative on failure
1943 int igb_setup_rx_resources(struct igb_adapter *adapter,
1944 struct igb_ring *rx_ring)
1946 struct pci_dev *pdev = adapter->pdev;
1947 int size, desc_len;
1949 size = sizeof(struct igb_buffer) * rx_ring->count;
1950 rx_ring->buffer_info = vmalloc(size);
1951 if (!rx_ring->buffer_info)
1952 goto err;
1953 memset(rx_ring->buffer_info, 0, size);
1955 desc_len = sizeof(union e1000_adv_rx_desc);
1957 /* Round up to nearest 4K */
1958 rx_ring->size = rx_ring->count * desc_len;
1959 rx_ring->size = ALIGN(rx_ring->size, 4096);
1961 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1962 &rx_ring->dma);
1964 if (!rx_ring->desc)
1965 goto err;
1967 rx_ring->next_to_clean = 0;
1968 rx_ring->next_to_use = 0;
1970 rx_ring->adapter = adapter;
1972 return 0;
1974 err:
1975 vfree(rx_ring->buffer_info);
1976 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1977 "the receive descriptor ring\n");
1978 return -ENOMEM;
1982 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1983 * (Descriptors) for all queues
1984 * @adapter: board private structure
1986 * Return 0 on success, negative on failure
1988 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1990 int i, err = 0;
1992 for (i = 0; i < adapter->num_rx_queues; i++) {
1993 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1994 if (err) {
1995 dev_err(&adapter->pdev->dev,
1996 "Allocation for Rx Queue %u failed\n", i);
1997 for (i--; i >= 0; i--)
1998 igb_free_rx_resources(&adapter->rx_ring[i]);
1999 break;
2003 return err;
2007 * igb_setup_rctl - configure the receive control registers
2008 * @adapter: Board private structure
2010 static void igb_setup_rctl(struct igb_adapter *adapter)
2012 struct e1000_hw *hw = &adapter->hw;
2013 u32 rctl;
2014 u32 srrctl = 0;
2015 int i, j;
2017 rctl = rd32(E1000_RCTL);
2019 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2020 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2022 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2023 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2026 * enable stripping of CRC. It's unlikely this will break BMC
2027 * redirection as it did with e1000. Newer features require
2028 * that the HW strips the CRC.
2030 rctl |= E1000_RCTL_SECRC;
2033 * disable store bad packets and clear size bits.
2035 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2037 /* enable LPE when to prevent packets larger than max_frame_size */
2038 rctl |= E1000_RCTL_LPE;
2040 /* Setup buffer sizes */
2041 switch (adapter->rx_buffer_len) {
2042 case IGB_RXBUFFER_256:
2043 rctl |= E1000_RCTL_SZ_256;
2044 break;
2045 case IGB_RXBUFFER_512:
2046 rctl |= E1000_RCTL_SZ_512;
2047 break;
2048 default:
2049 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2050 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2051 break;
2054 /* 82575 and greater support packet-split where the protocol
2055 * header is placed in skb->data and the packet data is
2056 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2057 * In the case of a non-split, skb->data is linearly filled,
2058 * followed by the page buffers. Therefore, skb->data is
2059 * sized to hold the largest protocol header.
2061 /* allocations using alloc_page take too long for regular MTU
2062 * so only enable packet split for jumbo frames */
2063 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2064 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2065 srrctl |= adapter->rx_ps_hdr_size <<
2066 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2067 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2068 } else {
2069 adapter->rx_ps_hdr_size = 0;
2070 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2073 /* Attention!!! For SR-IOV PF driver operations you must enable
2074 * queue drop for all VF and PF queues to prevent head of line blocking
2075 * if an un-trusted VF does not provide descriptors to hardware.
2077 if (adapter->vfs_allocated_count) {
2078 u32 vmolr;
2080 j = adapter->rx_ring[0].reg_idx;
2082 /* set all queue drop enable bits */
2083 wr32(E1000_QDE, ALL_QUEUES);
2084 srrctl |= E1000_SRRCTL_DROP_EN;
2086 /* disable queue 0 to prevent tail write w/o re-config */
2087 wr32(E1000_RXDCTL(0), 0);
2089 vmolr = rd32(E1000_VMOLR(j));
2090 if (rctl & E1000_RCTL_LPE)
2091 vmolr |= E1000_VMOLR_LPE;
2092 if (adapter->num_rx_queues > 0)
2093 vmolr |= E1000_VMOLR_RSSE;
2094 wr32(E1000_VMOLR(j), vmolr);
2097 for (i = 0; i < adapter->num_rx_queues; i++) {
2098 j = adapter->rx_ring[i].reg_idx;
2099 wr32(E1000_SRRCTL(j), srrctl);
2102 wr32(E1000_RCTL, rctl);
2106 * igb_rlpml_set - set maximum receive packet size
2107 * @adapter: board private structure
2109 * Configure maximum receivable packet size.
2111 static void igb_rlpml_set(struct igb_adapter *adapter)
2113 u32 max_frame_size = adapter->max_frame_size;
2114 struct e1000_hw *hw = &adapter->hw;
2115 u16 pf_id = adapter->vfs_allocated_count;
2117 if (adapter->vlgrp)
2118 max_frame_size += VLAN_TAG_SIZE;
2120 /* if vfs are enabled we set RLPML to the largest possible request
2121 * size and set the VMOLR RLPML to the size we need */
2122 if (pf_id) {
2123 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2124 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2127 wr32(E1000_RLPML, max_frame_size);
2131 * igb_configure_vt_default_pool - Configure VT default pool
2132 * @adapter: board private structure
2134 * Configure the default pool
2136 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2138 struct e1000_hw *hw = &adapter->hw;
2139 u16 pf_id = adapter->vfs_allocated_count;
2140 u32 vtctl;
2142 /* not in sr-iov mode - do nothing */
2143 if (!pf_id)
2144 return;
2146 vtctl = rd32(E1000_VT_CTL);
2147 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2148 E1000_VT_CTL_DISABLE_DEF_POOL);
2149 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2150 wr32(E1000_VT_CTL, vtctl);
2154 * igb_configure_rx - Configure receive Unit after Reset
2155 * @adapter: board private structure
2157 * Configure the Rx unit of the MAC after a reset.
2159 static void igb_configure_rx(struct igb_adapter *adapter)
2161 u64 rdba;
2162 struct e1000_hw *hw = &adapter->hw;
2163 u32 rctl, rxcsum;
2164 u32 rxdctl;
2165 int i;
2167 /* disable receives while setting up the descriptors */
2168 rctl = rd32(E1000_RCTL);
2169 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2170 wrfl();
2171 mdelay(10);
2173 if (adapter->itr_setting > 3)
2174 wr32(E1000_ITR, adapter->itr);
2176 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2177 * the Base and Length of the Rx Descriptor Ring */
2178 for (i = 0; i < adapter->num_rx_queues; i++) {
2179 struct igb_ring *ring = &adapter->rx_ring[i];
2180 int j = ring->reg_idx;
2181 rdba = ring->dma;
2182 wr32(E1000_RDBAL(j),
2183 rdba & 0x00000000ffffffffULL);
2184 wr32(E1000_RDBAH(j), rdba >> 32);
2185 wr32(E1000_RDLEN(j),
2186 ring->count * sizeof(union e1000_adv_rx_desc));
2188 ring->head = E1000_RDH(j);
2189 ring->tail = E1000_RDT(j);
2190 writel(0, hw->hw_addr + ring->tail);
2191 writel(0, hw->hw_addr + ring->head);
2193 rxdctl = rd32(E1000_RXDCTL(j));
2194 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2195 rxdctl &= 0xFFF00000;
2196 rxdctl |= IGB_RX_PTHRESH;
2197 rxdctl |= IGB_RX_HTHRESH << 8;
2198 rxdctl |= IGB_RX_WTHRESH << 16;
2199 wr32(E1000_RXDCTL(j), rxdctl);
2202 if (adapter->num_rx_queues > 1) {
2203 u32 random[10];
2204 u32 mrqc;
2205 u32 j, shift;
2206 union e1000_reta {
2207 u32 dword;
2208 u8 bytes[4];
2209 } reta;
2211 get_random_bytes(&random[0], 40);
2213 if (hw->mac.type >= e1000_82576)
2214 shift = 0;
2215 else
2216 shift = 6;
2217 for (j = 0; j < (32 * 4); j++) {
2218 reta.bytes[j & 3] =
2219 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2220 if ((j & 3) == 3)
2221 writel(reta.dword,
2222 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2224 if (adapter->vfs_allocated_count)
2225 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2226 else
2227 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2229 /* Fill out hash function seeds */
2230 for (j = 0; j < 10; j++)
2231 array_wr32(E1000_RSSRK(0), j, random[j]);
2233 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2234 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2235 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2236 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2237 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2238 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2239 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2240 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2242 wr32(E1000_MRQC, mrqc);
2243 } else if (adapter->vfs_allocated_count) {
2244 /* Enable multi-queue for sr-iov */
2245 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2248 /* Enable Receive Checksum Offload for TCP and UDP */
2249 rxcsum = rd32(E1000_RXCSUM);
2250 /* Disable raw packet checksumming */
2251 rxcsum |= E1000_RXCSUM_PCSD;
2252 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2253 if (!adapter->rx_csum)
2254 rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL);
2255 else if (adapter->hw.mac.type == e1000_82576)
2256 /* Enable Receive Checksum Offload for SCTP */
2257 rxcsum |= E1000_RXCSUM_CRCOFL;
2259 wr32(E1000_RXCSUM, rxcsum);
2261 /* Set the default pool for the PF's first queue */
2262 igb_configure_vt_default_pool(adapter);
2264 igb_rlpml_set(adapter);
2266 /* Enable Receives */
2267 wr32(E1000_RCTL, rctl);
2271 * igb_free_tx_resources - Free Tx Resources per Queue
2272 * @tx_ring: Tx descriptor ring for a specific queue
2274 * Free all transmit software resources
2276 void igb_free_tx_resources(struct igb_ring *tx_ring)
2278 struct pci_dev *pdev = tx_ring->adapter->pdev;
2280 igb_clean_tx_ring(tx_ring);
2282 vfree(tx_ring->buffer_info);
2283 tx_ring->buffer_info = NULL;
2285 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2287 tx_ring->desc = NULL;
2291 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2292 * @adapter: board private structure
2294 * Free all transmit software resources
2296 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2298 int i;
2300 for (i = 0; i < adapter->num_tx_queues; i++)
2301 igb_free_tx_resources(&adapter->tx_ring[i]);
2304 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2305 struct igb_buffer *buffer_info)
2307 buffer_info->dma = 0;
2308 if (buffer_info->skb) {
2309 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2310 DMA_TO_DEVICE);
2311 dev_kfree_skb_any(buffer_info->skb);
2312 buffer_info->skb = NULL;
2314 buffer_info->time_stamp = 0;
2315 /* buffer_info must be completely set up in the transmit path */
2319 * igb_clean_tx_ring - Free Tx Buffers
2320 * @tx_ring: ring to be cleaned
2322 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2324 struct igb_adapter *adapter = tx_ring->adapter;
2325 struct igb_buffer *buffer_info;
2326 unsigned long size;
2327 unsigned int i;
2329 if (!tx_ring->buffer_info)
2330 return;
2331 /* Free all the Tx ring sk_buffs */
2333 for (i = 0; i < tx_ring->count; i++) {
2334 buffer_info = &tx_ring->buffer_info[i];
2335 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2338 size = sizeof(struct igb_buffer) * tx_ring->count;
2339 memset(tx_ring->buffer_info, 0, size);
2341 /* Zero out the descriptor ring */
2343 memset(tx_ring->desc, 0, tx_ring->size);
2345 tx_ring->next_to_use = 0;
2346 tx_ring->next_to_clean = 0;
2348 writel(0, adapter->hw.hw_addr + tx_ring->head);
2349 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2353 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2354 * @adapter: board private structure
2356 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2358 int i;
2360 for (i = 0; i < adapter->num_tx_queues; i++)
2361 igb_clean_tx_ring(&adapter->tx_ring[i]);
2365 * igb_free_rx_resources - Free Rx Resources
2366 * @rx_ring: ring to clean the resources from
2368 * Free all receive software resources
2370 void igb_free_rx_resources(struct igb_ring *rx_ring)
2372 struct pci_dev *pdev = rx_ring->adapter->pdev;
2374 igb_clean_rx_ring(rx_ring);
2376 vfree(rx_ring->buffer_info);
2377 rx_ring->buffer_info = NULL;
2379 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2381 rx_ring->desc = NULL;
2385 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2386 * @adapter: board private structure
2388 * Free all receive software resources
2390 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2392 int i;
2394 for (i = 0; i < adapter->num_rx_queues; i++)
2395 igb_free_rx_resources(&adapter->rx_ring[i]);
2399 * igb_clean_rx_ring - Free Rx Buffers per Queue
2400 * @rx_ring: ring to free buffers from
2402 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2404 struct igb_adapter *adapter = rx_ring->adapter;
2405 struct igb_buffer *buffer_info;
2406 struct pci_dev *pdev = adapter->pdev;
2407 unsigned long size;
2408 unsigned int i;
2410 if (!rx_ring->buffer_info)
2411 return;
2412 /* Free all the Rx ring sk_buffs */
2413 for (i = 0; i < rx_ring->count; i++) {
2414 buffer_info = &rx_ring->buffer_info[i];
2415 if (buffer_info->dma) {
2416 if (adapter->rx_ps_hdr_size)
2417 pci_unmap_single(pdev, buffer_info->dma,
2418 adapter->rx_ps_hdr_size,
2419 PCI_DMA_FROMDEVICE);
2420 else
2421 pci_unmap_single(pdev, buffer_info->dma,
2422 adapter->rx_buffer_len,
2423 PCI_DMA_FROMDEVICE);
2424 buffer_info->dma = 0;
2427 if (buffer_info->skb) {
2428 dev_kfree_skb(buffer_info->skb);
2429 buffer_info->skb = NULL;
2431 if (buffer_info->page) {
2432 if (buffer_info->page_dma)
2433 pci_unmap_page(pdev, buffer_info->page_dma,
2434 PAGE_SIZE / 2,
2435 PCI_DMA_FROMDEVICE);
2436 put_page(buffer_info->page);
2437 buffer_info->page = NULL;
2438 buffer_info->page_dma = 0;
2439 buffer_info->page_offset = 0;
2443 size = sizeof(struct igb_buffer) * rx_ring->count;
2444 memset(rx_ring->buffer_info, 0, size);
2446 /* Zero out the descriptor ring */
2447 memset(rx_ring->desc, 0, rx_ring->size);
2449 rx_ring->next_to_clean = 0;
2450 rx_ring->next_to_use = 0;
2452 writel(0, adapter->hw.hw_addr + rx_ring->head);
2453 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2457 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2458 * @adapter: board private structure
2460 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2462 int i;
2464 for (i = 0; i < adapter->num_rx_queues; i++)
2465 igb_clean_rx_ring(&adapter->rx_ring[i]);
2469 * igb_set_mac - Change the Ethernet Address of the NIC
2470 * @netdev: network interface device structure
2471 * @p: pointer to an address structure
2473 * Returns 0 on success, negative on failure
2475 static int igb_set_mac(struct net_device *netdev, void *p)
2477 struct igb_adapter *adapter = netdev_priv(netdev);
2478 struct e1000_hw *hw = &adapter->hw;
2479 struct sockaddr *addr = p;
2481 if (!is_valid_ether_addr(addr->sa_data))
2482 return -EADDRNOTAVAIL;
2484 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2485 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2487 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2489 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2491 return 0;
2495 * igb_set_multi - Multicast and Promiscuous mode set
2496 * @netdev: network interface device structure
2498 * The set_multi entry point is called whenever the multicast address
2499 * list or the network interface flags are updated. This routine is
2500 * responsible for configuring the hardware for proper multicast,
2501 * promiscuous mode, and all-multi behavior.
2503 static void igb_set_multi(struct net_device *netdev)
2505 struct igb_adapter *adapter = netdev_priv(netdev);
2506 struct e1000_hw *hw = &adapter->hw;
2507 struct e1000_mac_info *mac = &hw->mac;
2508 struct dev_mc_list *mc_ptr;
2509 u8 *mta_list = NULL;
2510 u32 rctl;
2511 int i;
2513 /* Check for Promiscuous and All Multicast modes */
2515 rctl = rd32(E1000_RCTL);
2517 if (netdev->flags & IFF_PROMISC) {
2518 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2519 rctl &= ~E1000_RCTL_VFE;
2520 } else {
2521 if (netdev->flags & IFF_ALLMULTI) {
2522 rctl |= E1000_RCTL_MPE;
2523 rctl &= ~E1000_RCTL_UPE;
2524 } else
2525 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2526 rctl |= E1000_RCTL_VFE;
2528 wr32(E1000_RCTL, rctl);
2530 if (netdev->mc_count) {
2531 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2532 if (!mta_list) {
2533 dev_err(&adapter->pdev->dev,
2534 "failed to allocate multicast filter list\n");
2535 return;
2539 /* The shared function expects a packed array of only addresses. */
2540 mc_ptr = netdev->mc_list;
2542 for (i = 0; i < netdev->mc_count; i++) {
2543 if (!mc_ptr)
2544 break;
2545 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2546 mc_ptr = mc_ptr->next;
2548 igb_update_mc_addr_list(hw, mta_list, i,
2549 adapter->vfs_allocated_count + 1,
2550 mac->rar_entry_count);
2552 igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
2553 igb_restore_vf_multicasts(adapter);
2555 kfree(mta_list);
2558 /* Need to wait a few seconds after link up to get diagnostic information from
2559 * the phy */
2560 static void igb_update_phy_info(unsigned long data)
2562 struct igb_adapter *adapter = (struct igb_adapter *) data;
2563 igb_get_phy_info(&adapter->hw);
2567 * igb_has_link - check shared code for link and determine up/down
2568 * @adapter: pointer to driver private info
2570 static bool igb_has_link(struct igb_adapter *adapter)
2572 struct e1000_hw *hw = &adapter->hw;
2573 bool link_active = false;
2574 s32 ret_val = 0;
2576 /* get_link_status is set on LSC (link status) interrupt or
2577 * rx sequence error interrupt. get_link_status will stay
2578 * false until the e1000_check_for_link establishes link
2579 * for copper adapters ONLY
2581 switch (hw->phy.media_type) {
2582 case e1000_media_type_copper:
2583 if (hw->mac.get_link_status) {
2584 ret_val = hw->mac.ops.check_for_link(hw);
2585 link_active = !hw->mac.get_link_status;
2586 } else {
2587 link_active = true;
2589 break;
2590 case e1000_media_type_fiber:
2591 ret_val = hw->mac.ops.check_for_link(hw);
2592 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2593 break;
2594 case e1000_media_type_internal_serdes:
2595 ret_val = hw->mac.ops.check_for_link(hw);
2596 link_active = hw->mac.serdes_has_link;
2597 break;
2598 default:
2599 case e1000_media_type_unknown:
2600 break;
2603 return link_active;
2607 * igb_watchdog - Timer Call-back
2608 * @data: pointer to adapter cast into an unsigned long
2610 static void igb_watchdog(unsigned long data)
2612 struct igb_adapter *adapter = (struct igb_adapter *)data;
2613 /* Do the rest outside of interrupt context */
2614 schedule_work(&adapter->watchdog_task);
2617 static void igb_watchdog_task(struct work_struct *work)
2619 struct igb_adapter *adapter = container_of(work,
2620 struct igb_adapter, watchdog_task);
2621 struct e1000_hw *hw = &adapter->hw;
2622 struct net_device *netdev = adapter->netdev;
2623 struct igb_ring *tx_ring = adapter->tx_ring;
2624 u32 link;
2625 u32 eics = 0;
2626 int i;
2628 link = igb_has_link(adapter);
2629 if ((netif_carrier_ok(netdev)) && link)
2630 goto link_up;
2632 if (link) {
2633 if (!netif_carrier_ok(netdev)) {
2634 u32 ctrl;
2635 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2636 &adapter->link_speed,
2637 &adapter->link_duplex);
2639 ctrl = rd32(E1000_CTRL);
2640 /* Links status message must follow this format */
2641 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2642 "Flow Control: %s\n",
2643 netdev->name,
2644 adapter->link_speed,
2645 adapter->link_duplex == FULL_DUPLEX ?
2646 "Full Duplex" : "Half Duplex",
2647 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2648 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2649 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2650 E1000_CTRL_TFCE) ? "TX" : "None")));
2652 /* tweak tx_queue_len according to speed/duplex and
2653 * adjust the timeout factor */
2654 netdev->tx_queue_len = adapter->tx_queue_len;
2655 adapter->tx_timeout_factor = 1;
2656 switch (adapter->link_speed) {
2657 case SPEED_10:
2658 netdev->tx_queue_len = 10;
2659 adapter->tx_timeout_factor = 14;
2660 break;
2661 case SPEED_100:
2662 netdev->tx_queue_len = 100;
2663 /* maybe add some timeout factor ? */
2664 break;
2667 netif_carrier_on(netdev);
2669 igb_ping_all_vfs(adapter);
2671 /* link state has changed, schedule phy info update */
2672 if (!test_bit(__IGB_DOWN, &adapter->state))
2673 mod_timer(&adapter->phy_info_timer,
2674 round_jiffies(jiffies + 2 * HZ));
2676 } else {
2677 if (netif_carrier_ok(netdev)) {
2678 adapter->link_speed = 0;
2679 adapter->link_duplex = 0;
2680 /* Links status message must follow this format */
2681 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2682 netdev->name);
2683 netif_carrier_off(netdev);
2685 igb_ping_all_vfs(adapter);
2687 /* link state has changed, schedule phy info update */
2688 if (!test_bit(__IGB_DOWN, &adapter->state))
2689 mod_timer(&adapter->phy_info_timer,
2690 round_jiffies(jiffies + 2 * HZ));
2694 link_up:
2695 igb_update_stats(adapter);
2697 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2698 adapter->tpt_old = adapter->stats.tpt;
2699 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2700 adapter->colc_old = adapter->stats.colc;
2702 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2703 adapter->gorc_old = adapter->stats.gorc;
2704 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2705 adapter->gotc_old = adapter->stats.gotc;
2707 igb_update_adaptive(&adapter->hw);
2709 if (!netif_carrier_ok(netdev)) {
2710 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2711 /* We've lost link, so the controller stops DMA,
2712 * but we've got queued Tx work that's never going
2713 * to get done, so reset controller to flush Tx.
2714 * (Do the reset outside of interrupt context). */
2715 adapter->tx_timeout_count++;
2716 schedule_work(&adapter->reset_task);
2720 /* Cause software interrupt to ensure rx ring is cleaned */
2721 if (adapter->msix_entries) {
2722 for (i = 0; i < adapter->num_rx_queues; i++)
2723 eics |= adapter->rx_ring[i].eims_value;
2724 wr32(E1000_EICS, eics);
2725 } else {
2726 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2729 /* Force detection of hung controller every watchdog period */
2730 tx_ring->detect_tx_hung = true;
2732 /* Reset the timer */
2733 if (!test_bit(__IGB_DOWN, &adapter->state))
2734 mod_timer(&adapter->watchdog_timer,
2735 round_jiffies(jiffies + 2 * HZ));
2738 enum latency_range {
2739 lowest_latency = 0,
2740 low_latency = 1,
2741 bulk_latency = 2,
2742 latency_invalid = 255
2747 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2749 * Stores a new ITR value based on strictly on packet size. This
2750 * algorithm is less sophisticated than that used in igb_update_itr,
2751 * due to the difficulty of synchronizing statistics across multiple
2752 * receive rings. The divisors and thresholds used by this fuction
2753 * were determined based on theoretical maximum wire speed and testing
2754 * data, in order to minimize response time while increasing bulk
2755 * throughput.
2756 * This functionality is controlled by the InterruptThrottleRate module
2757 * parameter (see igb_param.c)
2758 * NOTE: This function is called only when operating in a multiqueue
2759 * receive environment.
2760 * @rx_ring: pointer to ring
2762 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2764 int new_val = rx_ring->itr_val;
2765 int avg_wire_size = 0;
2766 struct igb_adapter *adapter = rx_ring->adapter;
2768 if (!rx_ring->total_packets)
2769 goto clear_counts; /* no packets, so don't do anything */
2771 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2772 * ints/sec - ITR timer value of 120 ticks.
2774 if (adapter->link_speed != SPEED_1000) {
2775 new_val = 120;
2776 goto set_itr_val;
2778 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2780 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2781 avg_wire_size += 24;
2783 /* Don't starve jumbo frames */
2784 avg_wire_size = min(avg_wire_size, 3000);
2786 /* Give a little boost to mid-size frames */
2787 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2788 new_val = avg_wire_size / 3;
2789 else
2790 new_val = avg_wire_size / 2;
2792 set_itr_val:
2793 if (new_val != rx_ring->itr_val) {
2794 rx_ring->itr_val = new_val;
2795 rx_ring->set_itr = 1;
2797 clear_counts:
2798 rx_ring->total_bytes = 0;
2799 rx_ring->total_packets = 0;
2803 * igb_update_itr - update the dynamic ITR value based on statistics
2804 * Stores a new ITR value based on packets and byte
2805 * counts during the last interrupt. The advantage of per interrupt
2806 * computation is faster updates and more accurate ITR for the current
2807 * traffic pattern. Constants in this function were computed
2808 * based on theoretical maximum wire speed and thresholds were set based
2809 * on testing data as well as attempting to minimize response time
2810 * while increasing bulk throughput.
2811 * this functionality is controlled by the InterruptThrottleRate module
2812 * parameter (see igb_param.c)
2813 * NOTE: These calculations are only valid when operating in a single-
2814 * queue environment.
2815 * @adapter: pointer to adapter
2816 * @itr_setting: current adapter->itr
2817 * @packets: the number of packets during this measurement interval
2818 * @bytes: the number of bytes during this measurement interval
2820 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2821 int packets, int bytes)
2823 unsigned int retval = itr_setting;
2825 if (packets == 0)
2826 goto update_itr_done;
2828 switch (itr_setting) {
2829 case lowest_latency:
2830 /* handle TSO and jumbo frames */
2831 if (bytes/packets > 8000)
2832 retval = bulk_latency;
2833 else if ((packets < 5) && (bytes > 512))
2834 retval = low_latency;
2835 break;
2836 case low_latency: /* 50 usec aka 20000 ints/s */
2837 if (bytes > 10000) {
2838 /* this if handles the TSO accounting */
2839 if (bytes/packets > 8000) {
2840 retval = bulk_latency;
2841 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2842 retval = bulk_latency;
2843 } else if ((packets > 35)) {
2844 retval = lowest_latency;
2846 } else if (bytes/packets > 2000) {
2847 retval = bulk_latency;
2848 } else if (packets <= 2 && bytes < 512) {
2849 retval = lowest_latency;
2851 break;
2852 case bulk_latency: /* 250 usec aka 4000 ints/s */
2853 if (bytes > 25000) {
2854 if (packets > 35)
2855 retval = low_latency;
2856 } else if (bytes < 1500) {
2857 retval = low_latency;
2859 break;
2862 update_itr_done:
2863 return retval;
2866 static void igb_set_itr(struct igb_adapter *adapter)
2868 u16 current_itr;
2869 u32 new_itr = adapter->itr;
2871 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2872 if (adapter->link_speed != SPEED_1000) {
2873 current_itr = 0;
2874 new_itr = 4000;
2875 goto set_itr_now;
2878 adapter->rx_itr = igb_update_itr(adapter,
2879 adapter->rx_itr,
2880 adapter->rx_ring->total_packets,
2881 adapter->rx_ring->total_bytes);
2883 if (adapter->rx_ring->buddy) {
2884 adapter->tx_itr = igb_update_itr(adapter,
2885 adapter->tx_itr,
2886 adapter->tx_ring->total_packets,
2887 adapter->tx_ring->total_bytes);
2888 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2889 } else {
2890 current_itr = adapter->rx_itr;
2893 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2894 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2895 current_itr = low_latency;
2897 switch (current_itr) {
2898 /* counts and packets in update_itr are dependent on these numbers */
2899 case lowest_latency:
2900 new_itr = 56; /* aka 70,000 ints/sec */
2901 break;
2902 case low_latency:
2903 new_itr = 196; /* aka 20,000 ints/sec */
2904 break;
2905 case bulk_latency:
2906 new_itr = 980; /* aka 4,000 ints/sec */
2907 break;
2908 default:
2909 break;
2912 set_itr_now:
2913 adapter->rx_ring->total_bytes = 0;
2914 adapter->rx_ring->total_packets = 0;
2915 if (adapter->rx_ring->buddy) {
2916 adapter->rx_ring->buddy->total_bytes = 0;
2917 adapter->rx_ring->buddy->total_packets = 0;
2920 if (new_itr != adapter->itr) {
2921 /* this attempts to bias the interrupt rate towards Bulk
2922 * by adding intermediate steps when interrupt rate is
2923 * increasing */
2924 new_itr = new_itr > adapter->itr ?
2925 max((new_itr * adapter->itr) /
2926 (new_itr + (adapter->itr >> 2)), new_itr) :
2927 new_itr;
2928 /* Don't write the value here; it resets the adapter's
2929 * internal timer, and causes us to delay far longer than
2930 * we should between interrupts. Instead, we write the ITR
2931 * value at the beginning of the next interrupt so the timing
2932 * ends up being correct.
2934 adapter->itr = new_itr;
2935 adapter->rx_ring->itr_val = new_itr;
2936 adapter->rx_ring->set_itr = 1;
2939 return;
2943 #define IGB_TX_FLAGS_CSUM 0x00000001
2944 #define IGB_TX_FLAGS_VLAN 0x00000002
2945 #define IGB_TX_FLAGS_TSO 0x00000004
2946 #define IGB_TX_FLAGS_IPV4 0x00000008
2947 #define IGB_TX_FLAGS_TSTAMP 0x00000010
2948 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2949 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2951 static inline int igb_tso_adv(struct igb_adapter *adapter,
2952 struct igb_ring *tx_ring,
2953 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2955 struct e1000_adv_tx_context_desc *context_desc;
2956 unsigned int i;
2957 int err;
2958 struct igb_buffer *buffer_info;
2959 u32 info = 0, tu_cmd = 0;
2960 u32 mss_l4len_idx, l4len;
2961 *hdr_len = 0;
2963 if (skb_header_cloned(skb)) {
2964 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2965 if (err)
2966 return err;
2969 l4len = tcp_hdrlen(skb);
2970 *hdr_len += l4len;
2972 if (skb->protocol == htons(ETH_P_IP)) {
2973 struct iphdr *iph = ip_hdr(skb);
2974 iph->tot_len = 0;
2975 iph->check = 0;
2976 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2977 iph->daddr, 0,
2978 IPPROTO_TCP,
2980 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2981 ipv6_hdr(skb)->payload_len = 0;
2982 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2983 &ipv6_hdr(skb)->daddr,
2984 0, IPPROTO_TCP, 0);
2987 i = tx_ring->next_to_use;
2989 buffer_info = &tx_ring->buffer_info[i];
2990 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2991 /* VLAN MACLEN IPLEN */
2992 if (tx_flags & IGB_TX_FLAGS_VLAN)
2993 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2994 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2995 *hdr_len += skb_network_offset(skb);
2996 info |= skb_network_header_len(skb);
2997 *hdr_len += skb_network_header_len(skb);
2998 context_desc->vlan_macip_lens = cpu_to_le32(info);
3000 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3001 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3003 if (skb->protocol == htons(ETH_P_IP))
3004 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3005 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3007 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3009 /* MSS L4LEN IDX */
3010 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3011 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3013 /* For 82575, context index must be unique per ring. */
3014 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3015 mss_l4len_idx |= tx_ring->queue_index << 4;
3017 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3018 context_desc->seqnum_seed = 0;
3020 buffer_info->time_stamp = jiffies;
3021 buffer_info->next_to_watch = i;
3022 buffer_info->dma = 0;
3023 i++;
3024 if (i == tx_ring->count)
3025 i = 0;
3027 tx_ring->next_to_use = i;
3029 return true;
3032 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3033 struct igb_ring *tx_ring,
3034 struct sk_buff *skb, u32 tx_flags)
3036 struct e1000_adv_tx_context_desc *context_desc;
3037 unsigned int i;
3038 struct igb_buffer *buffer_info;
3039 u32 info = 0, tu_cmd = 0;
3041 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3042 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3043 i = tx_ring->next_to_use;
3044 buffer_info = &tx_ring->buffer_info[i];
3045 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3047 if (tx_flags & IGB_TX_FLAGS_VLAN)
3048 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3049 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3050 if (skb->ip_summed == CHECKSUM_PARTIAL)
3051 info |= skb_network_header_len(skb);
3053 context_desc->vlan_macip_lens = cpu_to_le32(info);
3055 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3057 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3058 __be16 protocol;
3060 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3061 const struct vlan_ethhdr *vhdr =
3062 (const struct vlan_ethhdr*)skb->data;
3064 protocol = vhdr->h_vlan_encapsulated_proto;
3065 } else {
3066 protocol = skb->protocol;
3069 switch (protocol) {
3070 case cpu_to_be16(ETH_P_IP):
3071 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3072 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3073 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3074 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3075 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3076 break;
3077 case cpu_to_be16(ETH_P_IPV6):
3078 /* XXX what about other V6 headers?? */
3079 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3080 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3081 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3082 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3083 break;
3084 default:
3085 if (unlikely(net_ratelimit()))
3086 dev_warn(&adapter->pdev->dev,
3087 "partial checksum but proto=%x!\n",
3088 skb->protocol);
3089 break;
3093 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3094 context_desc->seqnum_seed = 0;
3095 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3096 context_desc->mss_l4len_idx =
3097 cpu_to_le32(tx_ring->queue_index << 4);
3098 else
3099 context_desc->mss_l4len_idx = 0;
3101 buffer_info->time_stamp = jiffies;
3102 buffer_info->next_to_watch = i;
3103 buffer_info->dma = 0;
3105 i++;
3106 if (i == tx_ring->count)
3107 i = 0;
3108 tx_ring->next_to_use = i;
3110 return true;
3112 return false;
3115 #define IGB_MAX_TXD_PWR 16
3116 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3118 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3119 struct igb_ring *tx_ring, struct sk_buff *skb,
3120 unsigned int first)
3122 struct igb_buffer *buffer_info;
3123 unsigned int len = skb_headlen(skb);
3124 unsigned int count = 0, i;
3125 unsigned int f;
3126 dma_addr_t *map;
3128 i = tx_ring->next_to_use;
3130 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3131 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3132 return 0;
3135 map = skb_shinfo(skb)->dma_maps;
3137 buffer_info = &tx_ring->buffer_info[i];
3138 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3139 buffer_info->length = len;
3140 /* set time_stamp *before* dma to help avoid a possible race */
3141 buffer_info->time_stamp = jiffies;
3142 buffer_info->next_to_watch = i;
3143 buffer_info->dma = map[count];
3144 count++;
3146 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3147 struct skb_frag_struct *frag;
3149 i++;
3150 if (i == tx_ring->count)
3151 i = 0;
3153 frag = &skb_shinfo(skb)->frags[f];
3154 len = frag->size;
3156 buffer_info = &tx_ring->buffer_info[i];
3157 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3158 buffer_info->length = len;
3159 buffer_info->time_stamp = jiffies;
3160 buffer_info->next_to_watch = i;
3161 buffer_info->dma = map[count];
3162 count++;
3165 tx_ring->buffer_info[i].skb = skb;
3166 tx_ring->buffer_info[first].next_to_watch = i;
3168 return count;
3171 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3172 struct igb_ring *tx_ring,
3173 int tx_flags, int count, u32 paylen,
3174 u8 hdr_len)
3176 union e1000_adv_tx_desc *tx_desc = NULL;
3177 struct igb_buffer *buffer_info;
3178 u32 olinfo_status = 0, cmd_type_len;
3179 unsigned int i;
3181 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3182 E1000_ADVTXD_DCMD_DEXT);
3184 if (tx_flags & IGB_TX_FLAGS_VLAN)
3185 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3187 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3188 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3190 if (tx_flags & IGB_TX_FLAGS_TSO) {
3191 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3193 /* insert tcp checksum */
3194 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3196 /* insert ip checksum */
3197 if (tx_flags & IGB_TX_FLAGS_IPV4)
3198 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3200 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3201 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3204 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3205 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3206 IGB_TX_FLAGS_VLAN)))
3207 olinfo_status |= tx_ring->queue_index << 4;
3209 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3211 i = tx_ring->next_to_use;
3212 while (count--) {
3213 buffer_info = &tx_ring->buffer_info[i];
3214 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3215 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3216 tx_desc->read.cmd_type_len =
3217 cpu_to_le32(cmd_type_len | buffer_info->length);
3218 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3219 i++;
3220 if (i == tx_ring->count)
3221 i = 0;
3224 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3225 /* Force memory writes to complete before letting h/w
3226 * know there are new descriptors to fetch. (Only
3227 * applicable for weak-ordered memory model archs,
3228 * such as IA-64). */
3229 wmb();
3231 tx_ring->next_to_use = i;
3232 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3233 /* we need this if more than one processor can write to our tail
3234 * at a time, it syncronizes IO on IA64/Altix systems */
3235 mmiowb();
3238 static int __igb_maybe_stop_tx(struct net_device *netdev,
3239 struct igb_ring *tx_ring, int size)
3241 struct igb_adapter *adapter = netdev_priv(netdev);
3243 netif_stop_subqueue(netdev, tx_ring->queue_index);
3245 /* Herbert's original patch had:
3246 * smp_mb__after_netif_stop_queue();
3247 * but since that doesn't exist yet, just open code it. */
3248 smp_mb();
3250 /* We need to check again in a case another CPU has just
3251 * made room available. */
3252 if (igb_desc_unused(tx_ring) < size)
3253 return -EBUSY;
3255 /* A reprieve! */
3256 netif_wake_subqueue(netdev, tx_ring->queue_index);
3257 ++adapter->restart_queue;
3258 return 0;
3261 static int igb_maybe_stop_tx(struct net_device *netdev,
3262 struct igb_ring *tx_ring, int size)
3264 if (igb_desc_unused(tx_ring) >= size)
3265 return 0;
3266 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3269 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3270 struct net_device *netdev,
3271 struct igb_ring *tx_ring)
3273 struct igb_adapter *adapter = netdev_priv(netdev);
3274 unsigned int first;
3275 unsigned int tx_flags = 0;
3276 u8 hdr_len = 0;
3277 int count = 0;
3278 int tso = 0;
3279 union skb_shared_tx *shtx;
3281 if (test_bit(__IGB_DOWN, &adapter->state)) {
3282 dev_kfree_skb_any(skb);
3283 return NETDEV_TX_OK;
3286 if (skb->len <= 0) {
3287 dev_kfree_skb_any(skb);
3288 return NETDEV_TX_OK;
3291 /* need: 1 descriptor per page,
3292 * + 2 desc gap to keep tail from touching head,
3293 * + 1 desc for skb->data,
3294 * + 1 desc for context descriptor,
3295 * otherwise try next time */
3296 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3297 /* this is a hard error */
3298 return NETDEV_TX_BUSY;
3302 * TODO: check that there currently is no other packet with
3303 * time stamping in the queue
3305 * When doing time stamping, keep the connection to the socket
3306 * a while longer: it is still needed by skb_hwtstamp_tx(),
3307 * called either in igb_tx_hwtstamp() or by our caller when
3308 * doing software time stamping.
3310 shtx = skb_tx(skb);
3311 if (unlikely(shtx->hardware)) {
3312 shtx->in_progress = 1;
3313 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3316 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3317 tx_flags |= IGB_TX_FLAGS_VLAN;
3318 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3321 if (skb->protocol == htons(ETH_P_IP))
3322 tx_flags |= IGB_TX_FLAGS_IPV4;
3324 first = tx_ring->next_to_use;
3325 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3326 &hdr_len) : 0;
3328 if (tso < 0) {
3329 dev_kfree_skb_any(skb);
3330 return NETDEV_TX_OK;
3333 if (tso)
3334 tx_flags |= IGB_TX_FLAGS_TSO;
3335 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3336 (skb->ip_summed == CHECKSUM_PARTIAL))
3337 tx_flags |= IGB_TX_FLAGS_CSUM;
3340 * count reflects descriptors mapped, if 0 then mapping error
3341 * has occured and we need to rewind the descriptor queue
3343 count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3345 if (count) {
3346 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3347 skb->len, hdr_len);
3348 netdev->trans_start = jiffies;
3349 /* Make sure there is space in the ring for the next send. */
3350 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3351 } else {
3352 dev_kfree_skb_any(skb);
3353 tx_ring->buffer_info[first].time_stamp = 0;
3354 tx_ring->next_to_use = first;
3357 return NETDEV_TX_OK;
3360 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3362 struct igb_adapter *adapter = netdev_priv(netdev);
3363 struct igb_ring *tx_ring;
3365 int r_idx = 0;
3366 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3367 tx_ring = adapter->multi_tx_table[r_idx];
3369 /* This goes back to the question of how to logically map a tx queue
3370 * to a flow. Right now, performance is impacted slightly negatively
3371 * if using multiple tx queues. If the stack breaks away from a
3372 * single qdisc implementation, we can look at this again. */
3373 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3377 * igb_tx_timeout - Respond to a Tx Hang
3378 * @netdev: network interface device structure
3380 static void igb_tx_timeout(struct net_device *netdev)
3382 struct igb_adapter *adapter = netdev_priv(netdev);
3383 struct e1000_hw *hw = &adapter->hw;
3385 /* Do the reset outside of interrupt context */
3386 adapter->tx_timeout_count++;
3387 schedule_work(&adapter->reset_task);
3388 wr32(E1000_EICS,
3389 (adapter->eims_enable_mask & ~adapter->eims_other));
3392 static void igb_reset_task(struct work_struct *work)
3394 struct igb_adapter *adapter;
3395 adapter = container_of(work, struct igb_adapter, reset_task);
3397 igb_reinit_locked(adapter);
3401 * igb_get_stats - Get System Network Statistics
3402 * @netdev: network interface device structure
3404 * Returns the address of the device statistics structure.
3405 * The statistics are actually updated from the timer callback.
3407 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3409 struct igb_adapter *adapter = netdev_priv(netdev);
3411 /* only return the current stats */
3412 return &adapter->net_stats;
3416 * igb_change_mtu - Change the Maximum Transfer Unit
3417 * @netdev: network interface device structure
3418 * @new_mtu: new value for maximum frame size
3420 * Returns 0 on success, negative on failure
3422 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3424 struct igb_adapter *adapter = netdev_priv(netdev);
3425 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3427 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3428 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3429 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3430 return -EINVAL;
3433 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3434 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3435 return -EINVAL;
3438 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3439 msleep(1);
3441 /* igb_down has a dependency on max_frame_size */
3442 adapter->max_frame_size = max_frame;
3443 if (netif_running(netdev))
3444 igb_down(adapter);
3446 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3447 * means we reserve 2 more, this pushes us to allocate from the next
3448 * larger slab size.
3449 * i.e. RXBUFFER_2048 --> size-4096 slab
3452 if (max_frame <= IGB_RXBUFFER_256)
3453 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3454 else if (max_frame <= IGB_RXBUFFER_512)
3455 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3456 else if (max_frame <= IGB_RXBUFFER_1024)
3457 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3458 else if (max_frame <= IGB_RXBUFFER_2048)
3459 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3460 else
3461 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3462 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3463 #else
3464 adapter->rx_buffer_len = PAGE_SIZE / 2;
3465 #endif
3467 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3468 if (adapter->vfs_allocated_count &&
3469 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3470 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3472 /* adjust allocation if LPE protects us, and we aren't using SBP */
3473 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3474 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3475 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3477 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3478 netdev->mtu, new_mtu);
3479 netdev->mtu = new_mtu;
3481 if (netif_running(netdev))
3482 igb_up(adapter);
3483 else
3484 igb_reset(adapter);
3486 clear_bit(__IGB_RESETTING, &adapter->state);
3488 return 0;
3492 * igb_update_stats - Update the board statistics counters
3493 * @adapter: board private structure
3496 void igb_update_stats(struct igb_adapter *adapter)
3498 struct e1000_hw *hw = &adapter->hw;
3499 struct pci_dev *pdev = adapter->pdev;
3500 u16 phy_tmp;
3502 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3505 * Prevent stats update while adapter is being reset, or if the pci
3506 * connection is down.
3508 if (adapter->link_speed == 0)
3509 return;
3510 if (pci_channel_offline(pdev))
3511 return;
3513 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3514 adapter->stats.gprc += rd32(E1000_GPRC);
3515 adapter->stats.gorc += rd32(E1000_GORCL);
3516 rd32(E1000_GORCH); /* clear GORCL */
3517 adapter->stats.bprc += rd32(E1000_BPRC);
3518 adapter->stats.mprc += rd32(E1000_MPRC);
3519 adapter->stats.roc += rd32(E1000_ROC);
3521 adapter->stats.prc64 += rd32(E1000_PRC64);
3522 adapter->stats.prc127 += rd32(E1000_PRC127);
3523 adapter->stats.prc255 += rd32(E1000_PRC255);
3524 adapter->stats.prc511 += rd32(E1000_PRC511);
3525 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3526 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3527 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3528 adapter->stats.sec += rd32(E1000_SEC);
3530 adapter->stats.mpc += rd32(E1000_MPC);
3531 adapter->stats.scc += rd32(E1000_SCC);
3532 adapter->stats.ecol += rd32(E1000_ECOL);
3533 adapter->stats.mcc += rd32(E1000_MCC);
3534 adapter->stats.latecol += rd32(E1000_LATECOL);
3535 adapter->stats.dc += rd32(E1000_DC);
3536 adapter->stats.rlec += rd32(E1000_RLEC);
3537 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3538 adapter->stats.xontxc += rd32(E1000_XONTXC);
3539 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3540 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3541 adapter->stats.fcruc += rd32(E1000_FCRUC);
3542 adapter->stats.gptc += rd32(E1000_GPTC);
3543 adapter->stats.gotc += rd32(E1000_GOTCL);
3544 rd32(E1000_GOTCH); /* clear GOTCL */
3545 adapter->stats.rnbc += rd32(E1000_RNBC);
3546 adapter->stats.ruc += rd32(E1000_RUC);
3547 adapter->stats.rfc += rd32(E1000_RFC);
3548 adapter->stats.rjc += rd32(E1000_RJC);
3549 adapter->stats.tor += rd32(E1000_TORH);
3550 adapter->stats.tot += rd32(E1000_TOTH);
3551 adapter->stats.tpr += rd32(E1000_TPR);
3553 adapter->stats.ptc64 += rd32(E1000_PTC64);
3554 adapter->stats.ptc127 += rd32(E1000_PTC127);
3555 adapter->stats.ptc255 += rd32(E1000_PTC255);
3556 adapter->stats.ptc511 += rd32(E1000_PTC511);
3557 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3558 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3560 adapter->stats.mptc += rd32(E1000_MPTC);
3561 adapter->stats.bptc += rd32(E1000_BPTC);
3563 /* used for adaptive IFS */
3565 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3566 adapter->stats.tpt += hw->mac.tx_packet_delta;
3567 hw->mac.collision_delta = rd32(E1000_COLC);
3568 adapter->stats.colc += hw->mac.collision_delta;
3570 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3571 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3572 adapter->stats.tncrs += rd32(E1000_TNCRS);
3573 adapter->stats.tsctc += rd32(E1000_TSCTC);
3574 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3576 adapter->stats.iac += rd32(E1000_IAC);
3577 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3578 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3579 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3580 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3581 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3582 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3583 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3584 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3586 /* Fill out the OS statistics structure */
3587 adapter->net_stats.multicast = adapter->stats.mprc;
3588 adapter->net_stats.collisions = adapter->stats.colc;
3590 /* Rx Errors */
3592 /* RLEC on some newer hardware can be incorrect so build
3593 * our own version based on RUC and ROC */
3594 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3595 adapter->stats.crcerrs + adapter->stats.algnerrc +
3596 adapter->stats.ruc + adapter->stats.roc +
3597 adapter->stats.cexterr;
3598 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3599 adapter->stats.roc;
3600 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3601 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3602 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3604 /* Tx Errors */
3605 adapter->net_stats.tx_errors = adapter->stats.ecol +
3606 adapter->stats.latecol;
3607 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3608 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3609 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3611 /* Tx Dropped needs to be maintained elsewhere */
3613 /* Phy Stats */
3614 if (hw->phy.media_type == e1000_media_type_copper) {
3615 if ((adapter->link_speed == SPEED_1000) &&
3616 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3617 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3618 adapter->phy_stats.idle_errors += phy_tmp;
3622 /* Management Stats */
3623 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3624 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3625 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3628 static irqreturn_t igb_msix_other(int irq, void *data)
3630 struct net_device *netdev = data;
3631 struct igb_adapter *adapter = netdev_priv(netdev);
3632 struct e1000_hw *hw = &adapter->hw;
3633 u32 icr = rd32(E1000_ICR);
3635 /* reading ICR causes bit 31 of EICR to be cleared */
3637 if(icr & E1000_ICR_DOUTSYNC) {
3638 /* HW is reporting DMA is out of sync */
3639 adapter->stats.doosync++;
3642 /* Check for a mailbox event */
3643 if (icr & E1000_ICR_VMMB)
3644 igb_msg_task(adapter);
3646 if (icr & E1000_ICR_LSC) {
3647 hw->mac.get_link_status = 1;
3648 /* guard against interrupt when we're going down */
3649 if (!test_bit(__IGB_DOWN, &adapter->state))
3650 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3653 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3654 wr32(E1000_EIMS, adapter->eims_other);
3656 return IRQ_HANDLED;
3659 static irqreturn_t igb_msix_tx(int irq, void *data)
3661 struct igb_ring *tx_ring = data;
3662 struct igb_adapter *adapter = tx_ring->adapter;
3663 struct e1000_hw *hw = &adapter->hw;
3665 #ifdef CONFIG_IGB_DCA
3666 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3667 igb_update_tx_dca(tx_ring);
3668 #endif
3670 tx_ring->total_bytes = 0;
3671 tx_ring->total_packets = 0;
3673 /* auto mask will automatically reenable the interrupt when we write
3674 * EICS */
3675 if (!igb_clean_tx_irq(tx_ring))
3676 /* Ring was not completely cleaned, so fire another interrupt */
3677 wr32(E1000_EICS, tx_ring->eims_value);
3678 else
3679 wr32(E1000_EIMS, tx_ring->eims_value);
3681 return IRQ_HANDLED;
3684 static void igb_write_itr(struct igb_ring *ring)
3686 struct e1000_hw *hw = &ring->adapter->hw;
3687 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3688 switch (hw->mac.type) {
3689 case e1000_82576:
3690 wr32(ring->itr_register, ring->itr_val |
3691 0x80000000);
3692 break;
3693 default:
3694 wr32(ring->itr_register, ring->itr_val |
3695 (ring->itr_val << 16));
3696 break;
3698 ring->set_itr = 0;
3702 static irqreturn_t igb_msix_rx(int irq, void *data)
3704 struct igb_ring *rx_ring = data;
3706 /* Write the ITR value calculated at the end of the
3707 * previous interrupt.
3710 igb_write_itr(rx_ring);
3712 if (napi_schedule_prep(&rx_ring->napi))
3713 __napi_schedule(&rx_ring->napi);
3715 #ifdef CONFIG_IGB_DCA
3716 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3717 igb_update_rx_dca(rx_ring);
3718 #endif
3719 return IRQ_HANDLED;
3722 #ifdef CONFIG_IGB_DCA
3723 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3725 u32 dca_rxctrl;
3726 struct igb_adapter *adapter = rx_ring->adapter;
3727 struct e1000_hw *hw = &adapter->hw;
3728 int cpu = get_cpu();
3729 int q = rx_ring->reg_idx;
3731 if (rx_ring->cpu != cpu) {
3732 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3733 if (hw->mac.type == e1000_82576) {
3734 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3735 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3736 E1000_DCA_RXCTRL_CPUID_SHIFT;
3737 } else {
3738 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3739 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3741 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3742 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3743 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3744 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3745 rx_ring->cpu = cpu;
3747 put_cpu();
3750 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3752 u32 dca_txctrl;
3753 struct igb_adapter *adapter = tx_ring->adapter;
3754 struct e1000_hw *hw = &adapter->hw;
3755 int cpu = get_cpu();
3756 int q = tx_ring->reg_idx;
3758 if (tx_ring->cpu != cpu) {
3759 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3760 if (hw->mac.type == e1000_82576) {
3761 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3762 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3763 E1000_DCA_TXCTRL_CPUID_SHIFT;
3764 } else {
3765 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3766 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3768 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3769 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3770 tx_ring->cpu = cpu;
3772 put_cpu();
3775 static void igb_setup_dca(struct igb_adapter *adapter)
3777 int i;
3779 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3780 return;
3782 for (i = 0; i < adapter->num_tx_queues; i++) {
3783 adapter->tx_ring[i].cpu = -1;
3784 igb_update_tx_dca(&adapter->tx_ring[i]);
3786 for (i = 0; i < adapter->num_rx_queues; i++) {
3787 adapter->rx_ring[i].cpu = -1;
3788 igb_update_rx_dca(&adapter->rx_ring[i]);
3792 static int __igb_notify_dca(struct device *dev, void *data)
3794 struct net_device *netdev = dev_get_drvdata(dev);
3795 struct igb_adapter *adapter = netdev_priv(netdev);
3796 struct e1000_hw *hw = &adapter->hw;
3797 unsigned long event = *(unsigned long *)data;
3799 switch (event) {
3800 case DCA_PROVIDER_ADD:
3801 /* if already enabled, don't do it again */
3802 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3803 break;
3804 /* Always use CB2 mode, difference is masked
3805 * in the CB driver. */
3806 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3807 if (dca_add_requester(dev) == 0) {
3808 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3809 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3810 igb_setup_dca(adapter);
3811 break;
3813 /* Fall Through since DCA is disabled. */
3814 case DCA_PROVIDER_REMOVE:
3815 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3816 /* without this a class_device is left
3817 * hanging around in the sysfs model */
3818 dca_remove_requester(dev);
3819 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3820 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3821 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3823 break;
3826 return 0;
3829 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3830 void *p)
3832 int ret_val;
3834 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3835 __igb_notify_dca);
3837 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3839 #endif /* CONFIG_IGB_DCA */
3841 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3843 struct e1000_hw *hw = &adapter->hw;
3844 u32 ping;
3845 int i;
3847 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3848 ping = E1000_PF_CONTROL_MSG;
3849 if (adapter->vf_data[i].clear_to_send)
3850 ping |= E1000_VT_MSGTYPE_CTS;
3851 igb_write_mbx(hw, &ping, 1, i);
3855 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3856 u32 *msgbuf, u32 vf)
3858 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3859 u16 *hash_list = (u16 *)&msgbuf[1];
3860 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3861 int i;
3863 /* only up to 30 hash values supported */
3864 if (n > 30)
3865 n = 30;
3867 /* salt away the number of multi cast addresses assigned
3868 * to this VF for later use to restore when the PF multi cast
3869 * list changes
3871 vf_data->num_vf_mc_hashes = n;
3873 /* VFs are limited to using the MTA hash table for their multicast
3874 * addresses */
3875 for (i = 0; i < n; i++)
3876 vf_data->vf_mc_hashes[i] = hash_list[i];;
3878 /* Flush and reset the mta with the new values */
3879 igb_set_multi(adapter->netdev);
3881 return 0;
3884 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3886 struct e1000_hw *hw = &adapter->hw;
3887 struct vf_data_storage *vf_data;
3888 int i, j;
3890 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3891 vf_data = &adapter->vf_data[i];
3892 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3893 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3897 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3899 struct e1000_hw *hw = &adapter->hw;
3900 u32 pool_mask, reg, vid;
3901 int i;
3903 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3905 /* Find the vlan filter for this id */
3906 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3907 reg = rd32(E1000_VLVF(i));
3909 /* remove the vf from the pool */
3910 reg &= ~pool_mask;
3912 /* if pool is empty then remove entry from vfta */
3913 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3914 (reg & E1000_VLVF_VLANID_ENABLE)) {
3915 reg = 0;
3916 vid = reg & E1000_VLVF_VLANID_MASK;
3917 igb_vfta_set(hw, vid, false);
3920 wr32(E1000_VLVF(i), reg);
3924 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3926 struct e1000_hw *hw = &adapter->hw;
3927 u32 reg, i;
3929 /* It is an error to call this function when VFs are not enabled */
3930 if (!adapter->vfs_allocated_count)
3931 return -1;
3933 /* Find the vlan filter for this id */
3934 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3935 reg = rd32(E1000_VLVF(i));
3936 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3937 vid == (reg & E1000_VLVF_VLANID_MASK))
3938 break;
3941 if (add) {
3942 if (i == E1000_VLVF_ARRAY_SIZE) {
3943 /* Did not find a matching VLAN ID entry that was
3944 * enabled. Search for a free filter entry, i.e.
3945 * one without the enable bit set
3947 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3948 reg = rd32(E1000_VLVF(i));
3949 if (!(reg & E1000_VLVF_VLANID_ENABLE))
3950 break;
3953 if (i < E1000_VLVF_ARRAY_SIZE) {
3954 /* Found an enabled/available entry */
3955 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3957 /* if !enabled we need to set this up in vfta */
3958 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
3959 /* add VID to filter table, if bit already set
3960 * PF must have added it outside of table */
3961 if (igb_vfta_set(hw, vid, true))
3962 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
3963 adapter->vfs_allocated_count);
3964 reg |= E1000_VLVF_VLANID_ENABLE;
3966 reg &= ~E1000_VLVF_VLANID_MASK;
3967 reg |= vid;
3969 wr32(E1000_VLVF(i), reg);
3970 return 0;
3972 } else {
3973 if (i < E1000_VLVF_ARRAY_SIZE) {
3974 /* remove vf from the pool */
3975 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
3976 /* if pool is empty then remove entry from vfta */
3977 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
3978 reg = 0;
3979 igb_vfta_set(hw, vid, false);
3981 wr32(E1000_VLVF(i), reg);
3982 return 0;
3985 return -1;
3988 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
3990 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3991 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
3993 return igb_vlvf_set(adapter, vid, add, vf);
3996 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
3998 struct e1000_hw *hw = &adapter->hw;
4000 /* disable mailbox functionality for vf */
4001 adapter->vf_data[vf].clear_to_send = false;
4003 /* reset offloads to defaults */
4004 igb_set_vmolr(hw, vf);
4006 /* reset vlans for device */
4007 igb_clear_vf_vfta(adapter, vf);
4009 /* reset multicast table array for vf */
4010 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4012 /* Flush and reset the mta with the new values */
4013 igb_set_multi(adapter->netdev);
4016 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4018 struct e1000_hw *hw = &adapter->hw;
4019 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4020 u32 reg, msgbuf[3];
4021 u8 *addr = (u8 *)(&msgbuf[1]);
4023 /* process all the same items cleared in a function level reset */
4024 igb_vf_reset_event(adapter, vf);
4026 /* set vf mac address */
4027 igb_rar_set(hw, vf_mac, vf + 1);
4028 igb_set_rah_pool(hw, vf, vf + 1);
4030 /* enable transmit and receive for vf */
4031 reg = rd32(E1000_VFTE);
4032 wr32(E1000_VFTE, reg | (1 << vf));
4033 reg = rd32(E1000_VFRE);
4034 wr32(E1000_VFRE, reg | (1 << vf));
4036 /* enable mailbox functionality for vf */
4037 adapter->vf_data[vf].clear_to_send = true;
4039 /* reply to reset with ack and vf mac address */
4040 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4041 memcpy(addr, vf_mac, 6);
4042 igb_write_mbx(hw, msgbuf, 3, vf);
4045 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4047 unsigned char *addr = (char *)&msg[1];
4048 int err = -1;
4050 if (is_valid_ether_addr(addr))
4051 err = igb_set_vf_mac(adapter, vf, addr);
4053 return err;
4057 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4059 struct e1000_hw *hw = &adapter->hw;
4060 u32 msg = E1000_VT_MSGTYPE_NACK;
4062 /* if device isn't clear to send it shouldn't be reading either */
4063 if (!adapter->vf_data[vf].clear_to_send)
4064 igb_write_mbx(hw, &msg, 1, vf);
4068 static void igb_msg_task(struct igb_adapter *adapter)
4070 struct e1000_hw *hw = &adapter->hw;
4071 u32 vf;
4073 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4074 /* process any reset requests */
4075 if (!igb_check_for_rst(hw, vf)) {
4076 adapter->vf_data[vf].clear_to_send = false;
4077 igb_vf_reset_event(adapter, vf);
4080 /* process any messages pending */
4081 if (!igb_check_for_msg(hw, vf))
4082 igb_rcv_msg_from_vf(adapter, vf);
4084 /* process any acks */
4085 if (!igb_check_for_ack(hw, vf))
4086 igb_rcv_ack_from_vf(adapter, vf);
4091 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4093 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4094 u32 msgbuf[mbx_size];
4095 struct e1000_hw *hw = &adapter->hw;
4096 s32 retval;
4098 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4100 if (retval)
4101 dev_err(&adapter->pdev->dev,
4102 "Error receiving message from VF\n");
4104 /* this is a message we already processed, do nothing */
4105 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4106 return retval;
4109 * until the vf completes a reset it should not be
4110 * allowed to start any configuration.
4113 if (msgbuf[0] == E1000_VF_RESET) {
4114 igb_vf_reset_msg(adapter, vf);
4116 return retval;
4119 if (!adapter->vf_data[vf].clear_to_send) {
4120 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4121 igb_write_mbx(hw, msgbuf, 1, vf);
4122 return retval;
4125 switch ((msgbuf[0] & 0xFFFF)) {
4126 case E1000_VF_SET_MAC_ADDR:
4127 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4128 break;
4129 case E1000_VF_SET_MULTICAST:
4130 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4131 break;
4132 case E1000_VF_SET_LPE:
4133 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4134 break;
4135 case E1000_VF_SET_VLAN:
4136 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4137 break;
4138 default:
4139 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4140 retval = -1;
4141 break;
4144 /* notify the VF of the results of what it sent us */
4145 if (retval)
4146 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4147 else
4148 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4150 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4152 igb_write_mbx(hw, msgbuf, 1, vf);
4154 return retval;
4158 * igb_intr_msi - Interrupt Handler
4159 * @irq: interrupt number
4160 * @data: pointer to a network interface device structure
4162 static irqreturn_t igb_intr_msi(int irq, void *data)
4164 struct net_device *netdev = data;
4165 struct igb_adapter *adapter = netdev_priv(netdev);
4166 struct e1000_hw *hw = &adapter->hw;
4167 /* read ICR disables interrupts using IAM */
4168 u32 icr = rd32(E1000_ICR);
4170 igb_write_itr(adapter->rx_ring);
4172 if(icr & E1000_ICR_DOUTSYNC) {
4173 /* HW is reporting DMA is out of sync */
4174 adapter->stats.doosync++;
4177 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4178 hw->mac.get_link_status = 1;
4179 if (!test_bit(__IGB_DOWN, &adapter->state))
4180 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4183 napi_schedule(&adapter->rx_ring[0].napi);
4185 return IRQ_HANDLED;
4189 * igb_intr - Legacy Interrupt Handler
4190 * @irq: interrupt number
4191 * @data: pointer to a network interface device structure
4193 static irqreturn_t igb_intr(int irq, void *data)
4195 struct net_device *netdev = data;
4196 struct igb_adapter *adapter = netdev_priv(netdev);
4197 struct e1000_hw *hw = &adapter->hw;
4198 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4199 * need for the IMC write */
4200 u32 icr = rd32(E1000_ICR);
4201 if (!icr)
4202 return IRQ_NONE; /* Not our interrupt */
4204 igb_write_itr(adapter->rx_ring);
4206 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4207 * not set, then the adapter didn't send an interrupt */
4208 if (!(icr & E1000_ICR_INT_ASSERTED))
4209 return IRQ_NONE;
4211 if(icr & E1000_ICR_DOUTSYNC) {
4212 /* HW is reporting DMA is out of sync */
4213 adapter->stats.doosync++;
4216 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4217 hw->mac.get_link_status = 1;
4218 /* guard against interrupt when we're going down */
4219 if (!test_bit(__IGB_DOWN, &adapter->state))
4220 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4223 napi_schedule(&adapter->rx_ring[0].napi);
4225 return IRQ_HANDLED;
4228 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4230 struct igb_adapter *adapter = rx_ring->adapter;
4231 struct e1000_hw *hw = &adapter->hw;
4233 if (adapter->itr_setting & 3) {
4234 if (adapter->num_rx_queues == 1)
4235 igb_set_itr(adapter);
4236 else
4237 igb_update_ring_itr(rx_ring);
4240 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4241 if (adapter->msix_entries)
4242 wr32(E1000_EIMS, rx_ring->eims_value);
4243 else
4244 igb_irq_enable(adapter);
4249 * igb_poll - NAPI Rx polling callback
4250 * @napi: napi polling structure
4251 * @budget: count of how many packets we should handle
4253 static int igb_poll(struct napi_struct *napi, int budget)
4255 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4256 int work_done = 0;
4258 #ifdef CONFIG_IGB_DCA
4259 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4260 igb_update_rx_dca(rx_ring);
4261 #endif
4262 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4264 if (rx_ring->buddy) {
4265 #ifdef CONFIG_IGB_DCA
4266 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4267 igb_update_tx_dca(rx_ring->buddy);
4268 #endif
4269 if (!igb_clean_tx_irq(rx_ring->buddy))
4270 work_done = budget;
4273 /* If not enough Rx work done, exit the polling mode */
4274 if (work_done < budget) {
4275 napi_complete(napi);
4276 igb_rx_irq_enable(rx_ring);
4279 return work_done;
4283 * igb_hwtstamp - utility function which checks for TX time stamp
4284 * @adapter: board private structure
4285 * @skb: packet that was just sent
4287 * If we were asked to do hardware stamping and such a time stamp is
4288 * available, then it must have been for this skb here because we only
4289 * allow only one such packet into the queue.
4291 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4293 union skb_shared_tx *shtx = skb_tx(skb);
4294 struct e1000_hw *hw = &adapter->hw;
4296 if (unlikely(shtx->hardware)) {
4297 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4298 if (valid) {
4299 u64 regval = rd32(E1000_TXSTMPL);
4300 u64 ns;
4301 struct skb_shared_hwtstamps shhwtstamps;
4303 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4304 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4305 ns = timecounter_cyc2time(&adapter->clock,
4306 regval);
4307 timecompare_update(&adapter->compare, ns);
4308 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4309 shhwtstamps.syststamp =
4310 timecompare_transform(&adapter->compare, ns);
4311 skb_tstamp_tx(skb, &shhwtstamps);
4317 * igb_clean_tx_irq - Reclaim resources after transmit completes
4318 * @adapter: board private structure
4319 * returns true if ring is completely cleaned
4321 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4323 struct igb_adapter *adapter = tx_ring->adapter;
4324 struct net_device *netdev = adapter->netdev;
4325 struct e1000_hw *hw = &adapter->hw;
4326 struct igb_buffer *buffer_info;
4327 struct sk_buff *skb;
4328 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4329 unsigned int total_bytes = 0, total_packets = 0;
4330 unsigned int i, eop, count = 0;
4331 bool cleaned = false;
4333 i = tx_ring->next_to_clean;
4334 eop = tx_ring->buffer_info[i].next_to_watch;
4335 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4337 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4338 (count < tx_ring->count)) {
4339 for (cleaned = false; !cleaned; count++) {
4340 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4341 buffer_info = &tx_ring->buffer_info[i];
4342 cleaned = (i == eop);
4343 skb = buffer_info->skb;
4345 if (skb) {
4346 unsigned int segs, bytecount;
4347 /* gso_segs is currently only valid for tcp */
4348 segs = skb_shinfo(skb)->gso_segs ?: 1;
4349 /* multiply data chunks by size of headers */
4350 bytecount = ((segs - 1) * skb_headlen(skb)) +
4351 skb->len;
4352 total_packets += segs;
4353 total_bytes += bytecount;
4355 igb_tx_hwtstamp(adapter, skb);
4358 igb_unmap_and_free_tx_resource(adapter, buffer_info);
4359 tx_desc->wb.status = 0;
4361 i++;
4362 if (i == tx_ring->count)
4363 i = 0;
4365 eop = tx_ring->buffer_info[i].next_to_watch;
4366 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4369 tx_ring->next_to_clean = i;
4371 if (unlikely(count &&
4372 netif_carrier_ok(netdev) &&
4373 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4374 /* Make sure that anybody stopping the queue after this
4375 * sees the new next_to_clean.
4377 smp_mb();
4378 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4379 !(test_bit(__IGB_DOWN, &adapter->state))) {
4380 netif_wake_subqueue(netdev, tx_ring->queue_index);
4381 ++adapter->restart_queue;
4385 if (tx_ring->detect_tx_hung) {
4386 /* Detect a transmit hang in hardware, this serializes the
4387 * check with the clearing of time_stamp and movement of i */
4388 tx_ring->detect_tx_hung = false;
4389 if (tx_ring->buffer_info[i].time_stamp &&
4390 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4391 (adapter->tx_timeout_factor * HZ))
4392 && !(rd32(E1000_STATUS) &
4393 E1000_STATUS_TXOFF)) {
4395 /* detected Tx unit hang */
4396 dev_err(&adapter->pdev->dev,
4397 "Detected Tx Unit Hang\n"
4398 " Tx Queue <%d>\n"
4399 " TDH <%x>\n"
4400 " TDT <%x>\n"
4401 " next_to_use <%x>\n"
4402 " next_to_clean <%x>\n"
4403 "buffer_info[next_to_clean]\n"
4404 " time_stamp <%lx>\n"
4405 " next_to_watch <%x>\n"
4406 " jiffies <%lx>\n"
4407 " desc.status <%x>\n",
4408 tx_ring->queue_index,
4409 readl(adapter->hw.hw_addr + tx_ring->head),
4410 readl(adapter->hw.hw_addr + tx_ring->tail),
4411 tx_ring->next_to_use,
4412 tx_ring->next_to_clean,
4413 tx_ring->buffer_info[i].time_stamp,
4414 eop,
4415 jiffies,
4416 eop_desc->wb.status);
4417 netif_stop_subqueue(netdev, tx_ring->queue_index);
4420 tx_ring->total_bytes += total_bytes;
4421 tx_ring->total_packets += total_packets;
4422 tx_ring->tx_stats.bytes += total_bytes;
4423 tx_ring->tx_stats.packets += total_packets;
4424 adapter->net_stats.tx_bytes += total_bytes;
4425 adapter->net_stats.tx_packets += total_packets;
4426 return (count < tx_ring->count);
4430 * igb_receive_skb - helper function to handle rx indications
4431 * @ring: pointer to receive ring receving this packet
4432 * @status: descriptor status field as written by hardware
4433 * @rx_desc: receive descriptor containing vlan and type information.
4434 * @skb: pointer to sk_buff to be indicated to stack
4436 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4437 union e1000_adv_rx_desc * rx_desc,
4438 struct sk_buff *skb)
4440 struct igb_adapter * adapter = ring->adapter;
4441 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4443 skb_record_rx_queue(skb, ring->queue_index);
4444 if (vlan_extracted)
4445 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4446 le16_to_cpu(rx_desc->wb.upper.vlan),
4447 skb);
4448 else
4449 napi_gro_receive(&ring->napi, skb);
4452 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4453 u32 status_err, struct sk_buff *skb)
4455 skb->ip_summed = CHECKSUM_NONE;
4457 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4458 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
4459 return;
4460 /* TCP/UDP checksum error bit is set */
4461 if (status_err &
4462 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4464 * work around errata with sctp packets where the TCPE aka
4465 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4466 * packets, (aka let the stack check the crc32c)
4468 if (!((adapter->hw.mac.type == e1000_82576) &&
4469 (skb->len == 60)))
4470 adapter->hw_csum_err++;
4471 /* let the stack verify checksum errors */
4472 return;
4474 /* It must be a TCP or UDP packet with a valid checksum */
4475 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4476 skb->ip_summed = CHECKSUM_UNNECESSARY;
4478 dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4479 adapter->hw_csum_good++;
4482 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4483 int *work_done, int budget)
4485 struct igb_adapter *adapter = rx_ring->adapter;
4486 struct net_device *netdev = adapter->netdev;
4487 struct e1000_hw *hw = &adapter->hw;
4488 struct pci_dev *pdev = adapter->pdev;
4489 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4490 struct igb_buffer *buffer_info , *next_buffer;
4491 struct sk_buff *skb;
4492 bool cleaned = false;
4493 int cleaned_count = 0;
4494 unsigned int total_bytes = 0, total_packets = 0;
4495 unsigned int i;
4496 u32 length, hlen, staterr;
4498 i = rx_ring->next_to_clean;
4499 buffer_info = &rx_ring->buffer_info[i];
4500 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4501 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4503 while (staterr & E1000_RXD_STAT_DD) {
4504 if (*work_done >= budget)
4505 break;
4506 (*work_done)++;
4508 skb = buffer_info->skb;
4509 prefetch(skb->data - NET_IP_ALIGN);
4510 buffer_info->skb = NULL;
4512 i++;
4513 if (i == rx_ring->count)
4514 i = 0;
4515 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4516 prefetch(next_rxd);
4517 next_buffer = &rx_ring->buffer_info[i];
4519 length = le16_to_cpu(rx_desc->wb.upper.length);
4520 cleaned = true;
4521 cleaned_count++;
4523 if (!adapter->rx_ps_hdr_size) {
4524 pci_unmap_single(pdev, buffer_info->dma,
4525 adapter->rx_buffer_len +
4526 NET_IP_ALIGN,
4527 PCI_DMA_FROMDEVICE);
4528 skb_put(skb, length);
4529 goto send_up;
4532 /* HW will not DMA in data larger than the given buffer, even
4533 * if it parses the (NFS, of course) header to be larger. In
4534 * that case, it fills the header buffer and spills the rest
4535 * into the page.
4537 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4538 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4539 if (hlen > adapter->rx_ps_hdr_size)
4540 hlen = adapter->rx_ps_hdr_size;
4542 if (!skb_shinfo(skb)->nr_frags) {
4543 pci_unmap_single(pdev, buffer_info->dma,
4544 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
4545 PCI_DMA_FROMDEVICE);
4546 skb_put(skb, hlen);
4549 if (length) {
4550 pci_unmap_page(pdev, buffer_info->page_dma,
4551 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4552 buffer_info->page_dma = 0;
4554 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4555 buffer_info->page,
4556 buffer_info->page_offset,
4557 length);
4559 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4560 (page_count(buffer_info->page) != 1))
4561 buffer_info->page = NULL;
4562 else
4563 get_page(buffer_info->page);
4565 skb->len += length;
4566 skb->data_len += length;
4568 skb->truesize += length;
4571 if (!(staterr & E1000_RXD_STAT_EOP)) {
4572 buffer_info->skb = next_buffer->skb;
4573 buffer_info->dma = next_buffer->dma;
4574 next_buffer->skb = skb;
4575 next_buffer->dma = 0;
4576 goto next_desc;
4578 send_up:
4580 * If this bit is set, then the RX registers contain
4581 * the time stamp. No other packet will be time
4582 * stamped until we read these registers, so read the
4583 * registers to make them available again. Because
4584 * only one packet can be time stamped at a time, we
4585 * know that the register values must belong to this
4586 * one here and therefore we don't need to compare
4587 * any of the additional attributes stored for it.
4589 * If nothing went wrong, then it should have a
4590 * skb_shared_tx that we can turn into a
4591 * skb_shared_hwtstamps.
4593 * TODO: can time stamping be triggered (thus locking
4594 * the registers) without the packet reaching this point
4595 * here? In that case RX time stamping would get stuck.
4597 * TODO: in "time stamp all packets" mode this bit is
4598 * not set. Need a global flag for this mode and then
4599 * always read the registers. Cannot be done without
4600 * a race condition.
4602 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4603 u64 regval;
4604 u64 ns;
4605 struct skb_shared_hwtstamps *shhwtstamps =
4606 skb_hwtstamps(skb);
4608 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4609 "igb: no RX time stamp available for time stamped packet");
4610 regval = rd32(E1000_RXSTMPL);
4611 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4612 ns = timecounter_cyc2time(&adapter->clock, regval);
4613 timecompare_update(&adapter->compare, ns);
4614 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4615 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4616 shhwtstamps->syststamp =
4617 timecompare_transform(&adapter->compare, ns);
4620 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4621 dev_kfree_skb_irq(skb);
4622 goto next_desc;
4625 total_bytes += skb->len;
4626 total_packets++;
4628 igb_rx_checksum_adv(adapter, staterr, skb);
4630 skb->protocol = eth_type_trans(skb, netdev);
4632 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4634 next_desc:
4635 rx_desc->wb.upper.status_error = 0;
4637 /* return some buffers to hardware, one at a time is too slow */
4638 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4639 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4640 cleaned_count = 0;
4643 /* use prefetched values */
4644 rx_desc = next_rxd;
4645 buffer_info = next_buffer;
4646 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4649 rx_ring->next_to_clean = i;
4650 cleaned_count = igb_desc_unused(rx_ring);
4652 if (cleaned_count)
4653 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4655 rx_ring->total_packets += total_packets;
4656 rx_ring->total_bytes += total_bytes;
4657 rx_ring->rx_stats.packets += total_packets;
4658 rx_ring->rx_stats.bytes += total_bytes;
4659 adapter->net_stats.rx_bytes += total_bytes;
4660 adapter->net_stats.rx_packets += total_packets;
4661 return cleaned;
4665 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4666 * @adapter: address of board private structure
4668 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4669 int cleaned_count)
4671 struct igb_adapter *adapter = rx_ring->adapter;
4672 struct net_device *netdev = adapter->netdev;
4673 struct pci_dev *pdev = adapter->pdev;
4674 union e1000_adv_rx_desc *rx_desc;
4675 struct igb_buffer *buffer_info;
4676 struct sk_buff *skb;
4677 unsigned int i;
4678 int bufsz;
4680 i = rx_ring->next_to_use;
4681 buffer_info = &rx_ring->buffer_info[i];
4683 if (adapter->rx_ps_hdr_size)
4684 bufsz = adapter->rx_ps_hdr_size;
4685 else
4686 bufsz = adapter->rx_buffer_len;
4687 bufsz += NET_IP_ALIGN;
4689 while (cleaned_count--) {
4690 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4692 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4693 if (!buffer_info->page) {
4694 buffer_info->page = alloc_page(GFP_ATOMIC);
4695 if (!buffer_info->page) {
4696 adapter->alloc_rx_buff_failed++;
4697 goto no_buffers;
4699 buffer_info->page_offset = 0;
4700 } else {
4701 buffer_info->page_offset ^= PAGE_SIZE / 2;
4703 buffer_info->page_dma =
4704 pci_map_page(pdev, buffer_info->page,
4705 buffer_info->page_offset,
4706 PAGE_SIZE / 2,
4707 PCI_DMA_FROMDEVICE);
4710 if (!buffer_info->skb) {
4711 skb = netdev_alloc_skb(netdev, bufsz);
4712 if (!skb) {
4713 adapter->alloc_rx_buff_failed++;
4714 goto no_buffers;
4717 /* Make buffer alignment 2 beyond a 16 byte boundary
4718 * this will result in a 16 byte aligned IP header after
4719 * the 14 byte MAC header is removed
4721 skb_reserve(skb, NET_IP_ALIGN);
4723 buffer_info->skb = skb;
4724 buffer_info->dma = pci_map_single(pdev, skb->data,
4725 bufsz,
4726 PCI_DMA_FROMDEVICE);
4728 /* Refresh the desc even if buffer_addrs didn't change because
4729 * each write-back erases this info. */
4730 if (adapter->rx_ps_hdr_size) {
4731 rx_desc->read.pkt_addr =
4732 cpu_to_le64(buffer_info->page_dma);
4733 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4734 } else {
4735 rx_desc->read.pkt_addr =
4736 cpu_to_le64(buffer_info->dma);
4737 rx_desc->read.hdr_addr = 0;
4740 i++;
4741 if (i == rx_ring->count)
4742 i = 0;
4743 buffer_info = &rx_ring->buffer_info[i];
4746 no_buffers:
4747 if (rx_ring->next_to_use != i) {
4748 rx_ring->next_to_use = i;
4749 if (i == 0)
4750 i = (rx_ring->count - 1);
4751 else
4752 i--;
4754 /* Force memory writes to complete before letting h/w
4755 * know there are new descriptors to fetch. (Only
4756 * applicable for weak-ordered memory model archs,
4757 * such as IA-64). */
4758 wmb();
4759 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4764 * igb_mii_ioctl -
4765 * @netdev:
4766 * @ifreq:
4767 * @cmd:
4769 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4771 struct igb_adapter *adapter = netdev_priv(netdev);
4772 struct mii_ioctl_data *data = if_mii(ifr);
4774 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4775 return -EOPNOTSUPP;
4777 switch (cmd) {
4778 case SIOCGMIIPHY:
4779 data->phy_id = adapter->hw.phy.addr;
4780 break;
4781 case SIOCGMIIREG:
4782 if (!capable(CAP_NET_ADMIN))
4783 return -EPERM;
4784 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4785 &data->val_out))
4786 return -EIO;
4787 break;
4788 case SIOCSMIIREG:
4789 default:
4790 return -EOPNOTSUPP;
4792 return 0;
4796 * igb_hwtstamp_ioctl - control hardware time stamping
4797 * @netdev:
4798 * @ifreq:
4799 * @cmd:
4801 * Outgoing time stamping can be enabled and disabled. Play nice and
4802 * disable it when requested, although it shouldn't case any overhead
4803 * when no packet needs it. At most one packet in the queue may be
4804 * marked for time stamping, otherwise it would be impossible to tell
4805 * for sure to which packet the hardware time stamp belongs.
4807 * Incoming time stamping has to be configured via the hardware
4808 * filters. Not all combinations are supported, in particular event
4809 * type has to be specified. Matching the kind of event packet is
4810 * not supported, with the exception of "all V2 events regardless of
4811 * level 2 or 4".
4814 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4815 struct ifreq *ifr, int cmd)
4817 struct igb_adapter *adapter = netdev_priv(netdev);
4818 struct e1000_hw *hw = &adapter->hw;
4819 struct hwtstamp_config config;
4820 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4821 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4822 u32 tsync_rx_ctl_type = 0;
4823 u32 tsync_rx_cfg = 0;
4824 int is_l4 = 0;
4825 int is_l2 = 0;
4826 short port = 319; /* PTP */
4827 u32 regval;
4829 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4830 return -EFAULT;
4832 /* reserved for future extensions */
4833 if (config.flags)
4834 return -EINVAL;
4836 switch (config.tx_type) {
4837 case HWTSTAMP_TX_OFF:
4838 tsync_tx_ctl_bit = 0;
4839 break;
4840 case HWTSTAMP_TX_ON:
4841 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4842 break;
4843 default:
4844 return -ERANGE;
4847 switch (config.rx_filter) {
4848 case HWTSTAMP_FILTER_NONE:
4849 tsync_rx_ctl_bit = 0;
4850 break;
4851 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4852 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4853 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4854 case HWTSTAMP_FILTER_ALL:
4856 * register TSYNCRXCFG must be set, therefore it is not
4857 * possible to time stamp both Sync and Delay_Req messages
4858 * => fall back to time stamping all packets
4860 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4861 config.rx_filter = HWTSTAMP_FILTER_ALL;
4862 break;
4863 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4864 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4865 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4866 is_l4 = 1;
4867 break;
4868 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4869 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4870 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4871 is_l4 = 1;
4872 break;
4873 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4874 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4875 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4876 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4877 is_l2 = 1;
4878 is_l4 = 1;
4879 config.rx_filter = HWTSTAMP_FILTER_SOME;
4880 break;
4881 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4882 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4883 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4884 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4885 is_l2 = 1;
4886 is_l4 = 1;
4887 config.rx_filter = HWTSTAMP_FILTER_SOME;
4888 break;
4889 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4890 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4891 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4892 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4893 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4894 is_l2 = 1;
4895 break;
4896 default:
4897 return -ERANGE;
4900 /* enable/disable TX */
4901 regval = rd32(E1000_TSYNCTXCTL);
4902 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4903 wr32(E1000_TSYNCTXCTL, regval);
4905 /* enable/disable RX, define which PTP packets are time stamped */
4906 regval = rd32(E1000_TSYNCRXCTL);
4907 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4908 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4909 wr32(E1000_TSYNCRXCTL, regval);
4910 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4913 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4914 * (Ethertype to filter on)
4915 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4916 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4918 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4920 /* L4 Queue Filter[0]: only filter by source and destination port */
4921 wr32(E1000_SPQF0, htons(port));
4922 wr32(E1000_IMIREXT(0), is_l4 ?
4923 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4924 wr32(E1000_IMIR(0), is_l4 ?
4925 (htons(port)
4926 | (0<<16) /* immediate interrupt disabled */
4927 | 0 /* (1<<17) bit cleared: do not bypass
4928 destination port check */)
4929 : 0);
4930 wr32(E1000_FTQF0, is_l4 ?
4931 (0x11 /* UDP */
4932 | (1<<15) /* VF not compared */
4933 | (1<<27) /* Enable Timestamping */
4934 | (7<<28) /* only source port filter enabled,
4935 source/target address and protocol
4936 masked */)
4937 : ((1<<15) | (15<<28) /* all mask bits set = filter not
4938 enabled */));
4940 wrfl();
4942 adapter->hwtstamp_config = config;
4944 /* clear TX/RX time stamp registers, just to be sure */
4945 regval = rd32(E1000_TXSTMPH);
4946 regval = rd32(E1000_RXSTMPH);
4948 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4949 -EFAULT : 0;
4953 * igb_ioctl -
4954 * @netdev:
4955 * @ifreq:
4956 * @cmd:
4958 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4960 switch (cmd) {
4961 case SIOCGMIIPHY:
4962 case SIOCGMIIREG:
4963 case SIOCSMIIREG:
4964 return igb_mii_ioctl(netdev, ifr, cmd);
4965 case SIOCSHWTSTAMP:
4966 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4967 default:
4968 return -EOPNOTSUPP;
4972 static void igb_vlan_rx_register(struct net_device *netdev,
4973 struct vlan_group *grp)
4975 struct igb_adapter *adapter = netdev_priv(netdev);
4976 struct e1000_hw *hw = &adapter->hw;
4977 u32 ctrl, rctl;
4979 igb_irq_disable(adapter);
4980 adapter->vlgrp = grp;
4982 if (grp) {
4983 /* enable VLAN tag insert/strip */
4984 ctrl = rd32(E1000_CTRL);
4985 ctrl |= E1000_CTRL_VME;
4986 wr32(E1000_CTRL, ctrl);
4988 /* enable VLAN receive filtering */
4989 rctl = rd32(E1000_RCTL);
4990 rctl &= ~E1000_RCTL_CFIEN;
4991 wr32(E1000_RCTL, rctl);
4992 igb_update_mng_vlan(adapter);
4993 } else {
4994 /* disable VLAN tag insert/strip */
4995 ctrl = rd32(E1000_CTRL);
4996 ctrl &= ~E1000_CTRL_VME;
4997 wr32(E1000_CTRL, ctrl);
4999 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5000 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5001 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5005 igb_rlpml_set(adapter);
5007 if (!test_bit(__IGB_DOWN, &adapter->state))
5008 igb_irq_enable(adapter);
5011 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5013 struct igb_adapter *adapter = netdev_priv(netdev);
5014 struct e1000_hw *hw = &adapter->hw;
5015 int pf_id = adapter->vfs_allocated_count;
5017 if ((hw->mng_cookie.status &
5018 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5019 (vid == adapter->mng_vlan_id))
5020 return;
5022 /* add vid to vlvf if sr-iov is enabled,
5023 * if that fails add directly to filter table */
5024 if (igb_vlvf_set(adapter, vid, true, pf_id))
5025 igb_vfta_set(hw, vid, true);
5029 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5031 struct igb_adapter *adapter = netdev_priv(netdev);
5032 struct e1000_hw *hw = &adapter->hw;
5033 int pf_id = adapter->vfs_allocated_count;
5035 igb_irq_disable(adapter);
5036 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5038 if (!test_bit(__IGB_DOWN, &adapter->state))
5039 igb_irq_enable(adapter);
5041 if ((adapter->hw.mng_cookie.status &
5042 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5043 (vid == adapter->mng_vlan_id)) {
5044 /* release control to f/w */
5045 igb_release_hw_control(adapter);
5046 return;
5049 /* remove vid from vlvf if sr-iov is enabled,
5050 * if not in vlvf remove from vfta */
5051 if (igb_vlvf_set(adapter, vid, false, pf_id))
5052 igb_vfta_set(hw, vid, false);
5055 static void igb_restore_vlan(struct igb_adapter *adapter)
5057 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5059 if (adapter->vlgrp) {
5060 u16 vid;
5061 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5062 if (!vlan_group_get_device(adapter->vlgrp, vid))
5063 continue;
5064 igb_vlan_rx_add_vid(adapter->netdev, vid);
5069 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5071 struct e1000_mac_info *mac = &adapter->hw.mac;
5073 mac->autoneg = 0;
5075 /* Fiber NICs only allow 1000 gbps Full duplex */
5076 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5077 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5078 dev_err(&adapter->pdev->dev,
5079 "Unsupported Speed/Duplex configuration\n");
5080 return -EINVAL;
5083 switch (spddplx) {
5084 case SPEED_10 + DUPLEX_HALF:
5085 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5086 break;
5087 case SPEED_10 + DUPLEX_FULL:
5088 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5089 break;
5090 case SPEED_100 + DUPLEX_HALF:
5091 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5092 break;
5093 case SPEED_100 + DUPLEX_FULL:
5094 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5095 break;
5096 case SPEED_1000 + DUPLEX_FULL:
5097 mac->autoneg = 1;
5098 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5099 break;
5100 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5101 default:
5102 dev_err(&adapter->pdev->dev,
5103 "Unsupported Speed/Duplex configuration\n");
5104 return -EINVAL;
5106 return 0;
5109 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5111 struct net_device *netdev = pci_get_drvdata(pdev);
5112 struct igb_adapter *adapter = netdev_priv(netdev);
5113 struct e1000_hw *hw = &adapter->hw;
5114 u32 ctrl, rctl, status;
5115 u32 wufc = adapter->wol;
5116 #ifdef CONFIG_PM
5117 int retval = 0;
5118 #endif
5120 netif_device_detach(netdev);
5122 if (netif_running(netdev))
5123 igb_close(netdev);
5125 igb_reset_interrupt_capability(adapter);
5127 igb_free_queues(adapter);
5129 #ifdef CONFIG_PM
5130 retval = pci_save_state(pdev);
5131 if (retval)
5132 return retval;
5133 #endif
5135 status = rd32(E1000_STATUS);
5136 if (status & E1000_STATUS_LU)
5137 wufc &= ~E1000_WUFC_LNKC;
5139 if (wufc) {
5140 igb_setup_rctl(adapter);
5141 igb_set_multi(netdev);
5143 /* turn on all-multi mode if wake on multicast is enabled */
5144 if (wufc & E1000_WUFC_MC) {
5145 rctl = rd32(E1000_RCTL);
5146 rctl |= E1000_RCTL_MPE;
5147 wr32(E1000_RCTL, rctl);
5150 ctrl = rd32(E1000_CTRL);
5151 /* advertise wake from D3Cold */
5152 #define E1000_CTRL_ADVD3WUC 0x00100000
5153 /* phy power management enable */
5154 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5155 ctrl |= E1000_CTRL_ADVD3WUC;
5156 wr32(E1000_CTRL, ctrl);
5158 /* Allow time for pending master requests to run */
5159 igb_disable_pcie_master(&adapter->hw);
5161 wr32(E1000_WUC, E1000_WUC_PME_EN);
5162 wr32(E1000_WUFC, wufc);
5163 } else {
5164 wr32(E1000_WUC, 0);
5165 wr32(E1000_WUFC, 0);
5168 *enable_wake = wufc || adapter->en_mng_pt;
5169 if (!*enable_wake)
5170 igb_shutdown_fiber_serdes_link_82575(hw);
5172 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5173 * would have already happened in close and is redundant. */
5174 igb_release_hw_control(adapter);
5176 pci_disable_device(pdev);
5178 return 0;
5181 #ifdef CONFIG_PM
5182 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5184 int retval;
5185 bool wake;
5187 retval = __igb_shutdown(pdev, &wake);
5188 if (retval)
5189 return retval;
5191 if (wake) {
5192 pci_prepare_to_sleep(pdev);
5193 } else {
5194 pci_wake_from_d3(pdev, false);
5195 pci_set_power_state(pdev, PCI_D3hot);
5198 return 0;
5201 static int igb_resume(struct pci_dev *pdev)
5203 struct net_device *netdev = pci_get_drvdata(pdev);
5204 struct igb_adapter *adapter = netdev_priv(netdev);
5205 struct e1000_hw *hw = &adapter->hw;
5206 u32 err;
5208 pci_set_power_state(pdev, PCI_D0);
5209 pci_restore_state(pdev);
5211 err = pci_enable_device_mem(pdev);
5212 if (err) {
5213 dev_err(&pdev->dev,
5214 "igb: Cannot enable PCI device from suspend\n");
5215 return err;
5217 pci_set_master(pdev);
5219 pci_enable_wake(pdev, PCI_D3hot, 0);
5220 pci_enable_wake(pdev, PCI_D3cold, 0);
5222 igb_set_interrupt_capability(adapter);
5224 if (igb_alloc_queues(adapter)) {
5225 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5226 return -ENOMEM;
5229 /* e1000_power_up_phy(adapter); */
5231 igb_reset(adapter);
5233 /* let the f/w know that the h/w is now under the control of the
5234 * driver. */
5235 igb_get_hw_control(adapter);
5237 wr32(E1000_WUS, ~0);
5239 if (netif_running(netdev)) {
5240 err = igb_open(netdev);
5241 if (err)
5242 return err;
5245 netif_device_attach(netdev);
5247 return 0;
5249 #endif
5251 static void igb_shutdown(struct pci_dev *pdev)
5253 bool wake;
5255 __igb_shutdown(pdev, &wake);
5257 if (system_state == SYSTEM_POWER_OFF) {
5258 pci_wake_from_d3(pdev, wake);
5259 pci_set_power_state(pdev, PCI_D3hot);
5263 #ifdef CONFIG_NET_POLL_CONTROLLER
5265 * Polling 'interrupt' - used by things like netconsole to send skbs
5266 * without having to re-enable interrupts. It's not called while
5267 * the interrupt routine is executing.
5269 static void igb_netpoll(struct net_device *netdev)
5271 struct igb_adapter *adapter = netdev_priv(netdev);
5272 struct e1000_hw *hw = &adapter->hw;
5273 int i;
5275 if (!adapter->msix_entries) {
5276 igb_irq_disable(adapter);
5277 napi_schedule(&adapter->rx_ring[0].napi);
5278 return;
5281 for (i = 0; i < adapter->num_tx_queues; i++) {
5282 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5283 wr32(E1000_EIMC, tx_ring->eims_value);
5284 igb_clean_tx_irq(tx_ring);
5285 wr32(E1000_EIMS, tx_ring->eims_value);
5288 for (i = 0; i < adapter->num_rx_queues; i++) {
5289 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5290 wr32(E1000_EIMC, rx_ring->eims_value);
5291 napi_schedule(&rx_ring->napi);
5294 #endif /* CONFIG_NET_POLL_CONTROLLER */
5297 * igb_io_error_detected - called when PCI error is detected
5298 * @pdev: Pointer to PCI device
5299 * @state: The current pci connection state
5301 * This function is called after a PCI bus error affecting
5302 * this device has been detected.
5304 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5305 pci_channel_state_t state)
5307 struct net_device *netdev = pci_get_drvdata(pdev);
5308 struct igb_adapter *adapter = netdev_priv(netdev);
5310 netif_device_detach(netdev);
5312 if (netif_running(netdev))
5313 igb_down(adapter);
5314 pci_disable_device(pdev);
5316 /* Request a slot slot reset. */
5317 return PCI_ERS_RESULT_NEED_RESET;
5321 * igb_io_slot_reset - called after the pci bus has been reset.
5322 * @pdev: Pointer to PCI device
5324 * Restart the card from scratch, as if from a cold-boot. Implementation
5325 * resembles the first-half of the igb_resume routine.
5327 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5329 struct net_device *netdev = pci_get_drvdata(pdev);
5330 struct igb_adapter *adapter = netdev_priv(netdev);
5331 struct e1000_hw *hw = &adapter->hw;
5332 pci_ers_result_t result;
5333 int err;
5335 if (pci_enable_device_mem(pdev)) {
5336 dev_err(&pdev->dev,
5337 "Cannot re-enable PCI device after reset.\n");
5338 result = PCI_ERS_RESULT_DISCONNECT;
5339 } else {
5340 pci_set_master(pdev);
5341 pci_restore_state(pdev);
5343 pci_enable_wake(pdev, PCI_D3hot, 0);
5344 pci_enable_wake(pdev, PCI_D3cold, 0);
5346 igb_reset(adapter);
5347 wr32(E1000_WUS, ~0);
5348 result = PCI_ERS_RESULT_RECOVERED;
5351 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5352 if (err) {
5353 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5354 "failed 0x%0x\n", err);
5355 /* non-fatal, continue */
5358 return result;
5362 * igb_io_resume - called when traffic can start flowing again.
5363 * @pdev: Pointer to PCI device
5365 * This callback is called when the error recovery driver tells us that
5366 * its OK to resume normal operation. Implementation resembles the
5367 * second-half of the igb_resume routine.
5369 static void igb_io_resume(struct pci_dev *pdev)
5371 struct net_device *netdev = pci_get_drvdata(pdev);
5372 struct igb_adapter *adapter = netdev_priv(netdev);
5374 if (netif_running(netdev)) {
5375 if (igb_up(adapter)) {
5376 dev_err(&pdev->dev, "igb_up failed after reset\n");
5377 return;
5381 netif_device_attach(netdev);
5383 /* let the f/w know that the h/w is now under the control of the
5384 * driver. */
5385 igb_get_hw_control(adapter);
5388 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
5390 u32 reg_data;
5392 reg_data = rd32(E1000_VMOLR(vfn));
5393 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
5394 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
5395 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
5396 E1000_VMOLR_AUPE | /* Accept untagged packets */
5397 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
5398 wr32(E1000_VMOLR(vfn), reg_data);
5401 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
5402 int vfn)
5404 struct e1000_hw *hw = &adapter->hw;
5405 u32 vmolr;
5407 vmolr = rd32(E1000_VMOLR(vfn));
5408 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5409 vmolr |= size | E1000_VMOLR_LPE;
5410 wr32(E1000_VMOLR(vfn), vmolr);
5412 return 0;
5415 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
5417 u32 reg_data;
5419 reg_data = rd32(E1000_RAH(entry));
5420 reg_data &= ~E1000_RAH_POOL_MASK;
5421 reg_data |= E1000_RAH_POOL_1 << pool;;
5422 wr32(E1000_RAH(entry), reg_data);
5425 static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5426 int entry_count, u16 total_rar_filters)
5428 struct e1000_hw *hw = &adapter->hw;
5429 int i = adapter->vfs_allocated_count + 1;
5431 if ((i + entry_count) < total_rar_filters)
5432 total_rar_filters = i + entry_count;
5434 for (; i < total_rar_filters; i++)
5435 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5438 static int igb_set_vf_mac(struct igb_adapter *adapter,
5439 int vf, unsigned char *mac_addr)
5441 struct e1000_hw *hw = &adapter->hw;
5442 int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5444 igb_rar_set(hw, mac_addr, rar_entry);
5446 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5448 igb_set_rah_pool(hw, vf, rar_entry);
5450 return 0;
5453 static void igb_vmm_control(struct igb_adapter *adapter)
5455 struct e1000_hw *hw = &adapter->hw;
5456 u32 reg_data;
5458 if (!adapter->vfs_allocated_count)
5459 return;
5461 /* VF's need PF reset indication before they
5462 * can send/receive mail */
5463 reg_data = rd32(E1000_CTRL_EXT);
5464 reg_data |= E1000_CTRL_EXT_PFRSTD;
5465 wr32(E1000_CTRL_EXT, reg_data);
5467 igb_vmdq_set_loopback_pf(hw, true);
5468 igb_vmdq_set_replication_pf(hw, true);
5471 /* igb_main.c */