2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
37 #include <linux/list.h>
41 /* When transmitting messages in rds_send_xmit, we need to emerge from
42 * time to time and briefly release the CPU. Otherwise the softlock watchdog
44 * Also, it seems fairer to not let one busy connection stall all the
47 * send_batch_count is the number of times we'll loop in send_xmit. Setting
48 * it to 0 will restore the old behavior (where we looped until we had
51 static int send_batch_count
= 64;
52 module_param(send_batch_count
, int, 0444);
53 MODULE_PARM_DESC(send_batch_count
, " batch factor when working the send queue");
55 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
);
58 * Reset the send state. Callers must ensure that this doesn't race with
61 void rds_send_reset(struct rds_connection
*conn
)
63 struct rds_message
*rm
, *tmp
;
66 if (conn
->c_xmit_rm
) {
68 conn
->c_xmit_rm
= NULL
;
69 /* Tell the user the RDMA op is no longer mapped by the
70 * transport. This isn't entirely true (it's flushed out
71 * independently) but as the connection is down, there's
72 * no ongoing RDMA to/from that memory */
73 rds_message_unmapped(rm
);
78 conn
->c_xmit_hdr_off
= 0;
79 conn
->c_xmit_data_off
= 0;
80 conn
->c_xmit_atomic_sent
= 0;
81 conn
->c_xmit_rdma_sent
= 0;
82 conn
->c_xmit_data_sent
= 0;
84 conn
->c_map_queued
= 0;
86 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
87 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
89 /* Mark messages as retransmissions, and move them to the send q */
90 spin_lock_irqsave(&conn
->c_lock
, flags
);
91 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
92 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
93 set_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
);
95 list_splice_init(&conn
->c_retrans
, &conn
->c_send_queue
);
96 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
99 static int acquire_in_xmit(struct rds_connection
*conn
)
101 return test_and_set_bit(RDS_IN_XMIT
, &conn
->c_flags
) == 0;
104 static void release_in_xmit(struct rds_connection
*conn
)
106 clear_bit(RDS_IN_XMIT
, &conn
->c_flags
);
107 smp_mb__after_clear_bit();
109 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
110 * hot path and finding waiters is very rare. We don't want to walk
111 * the system-wide hashed waitqueue buckets in the fast path only to
112 * almost never find waiters.
114 if (waitqueue_active(&conn
->c_waitq
))
115 wake_up_all(&conn
->c_waitq
);
119 * We're making the concious trade-off here to only send one message
120 * down the connection at a time.
122 * - tx queueing is a simple fifo list
123 * - reassembly is optional and easily done by transports per conn
124 * - no per flow rx lookup at all, straight to the socket
125 * - less per-frag memory and wire overhead
127 * - queued acks can be delayed behind large messages
129 * - small message latency is higher behind queued large messages
130 * - large message latency isn't starved by intervening small sends
132 int rds_send_xmit(struct rds_connection
*conn
)
134 struct rds_message
*rm
;
137 struct scatterlist
*sg
;
139 LIST_HEAD(to_be_dropped
);
144 * sendmsg calls here after having queued its message on the send
145 * queue. We only have one task feeding the connection at a time. If
146 * another thread is already feeding the queue then we back off. This
147 * avoids blocking the caller and trading per-connection data between
148 * caches per message.
150 if (!acquire_in_xmit(conn
)) {
151 rds_stats_inc(s_send_lock_contention
);
157 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
158 * we do the opposite to avoid races.
160 if (!rds_conn_up(conn
)) {
161 release_in_xmit(conn
);
166 if (conn
->c_trans
->xmit_prepare
)
167 conn
->c_trans
->xmit_prepare(conn
);
170 * spin trying to push headers and data down the connection until
171 * the connection doesn't make forward progress.
175 rm
= conn
->c_xmit_rm
;
178 * If between sending messages, we can send a pending congestion
181 if (!rm
&& test_and_clear_bit(0, &conn
->c_map_queued
)) {
182 rm
= rds_cong_update_alloc(conn
);
187 rm
->data
.op_active
= 1;
189 conn
->c_xmit_rm
= rm
;
193 * If not already working on one, grab the next message.
195 * c_xmit_rm holds a ref while we're sending this message down
196 * the connction. We can use this ref while holding the
197 * send_sem.. rds_send_reset() is serialized with it.
202 spin_lock_irqsave(&conn
->c_lock
, flags
);
204 if (!list_empty(&conn
->c_send_queue
)) {
205 rm
= list_entry(conn
->c_send_queue
.next
,
208 rds_message_addref(rm
);
211 * Move the message from the send queue to the retransmit
214 list_move_tail(&rm
->m_conn_item
, &conn
->c_retrans
);
217 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
222 /* Unfortunately, the way Infiniband deals with
223 * RDMA to a bad MR key is by moving the entire
224 * queue pair to error state. We cold possibly
225 * recover from that, but right now we drop the
227 * Therefore, we never retransmit messages with RDMA ops.
229 if (rm
->rdma
.op_active
&&
230 test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
)) {
231 spin_lock_irqsave(&conn
->c_lock
, flags
);
232 if (test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
))
233 list_move(&rm
->m_conn_item
, &to_be_dropped
);
234 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
238 /* Require an ACK every once in a while */
239 len
= ntohl(rm
->m_inc
.i_hdr
.h_len
);
240 if (conn
->c_unacked_packets
== 0 ||
241 conn
->c_unacked_bytes
< len
) {
242 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
244 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
245 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
246 rds_stats_inc(s_send_ack_required
);
248 conn
->c_unacked_bytes
-= len
;
249 conn
->c_unacked_packets
--;
252 conn
->c_xmit_rm
= rm
;
255 /* The transport either sends the whole rdma or none of it */
256 if (rm
->rdma
.op_active
&& !conn
->c_xmit_rdma_sent
) {
257 rm
->m_final_op
= &rm
->rdma
;
258 ret
= conn
->c_trans
->xmit_rdma(conn
, &rm
->rdma
);
261 conn
->c_xmit_rdma_sent
= 1;
263 /* The transport owns the mapped memory for now.
264 * You can't unmap it while it's on the send queue */
265 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
268 if (rm
->atomic
.op_active
&& !conn
->c_xmit_atomic_sent
) {
269 rm
->m_final_op
= &rm
->atomic
;
270 ret
= conn
->c_trans
->xmit_atomic(conn
, &rm
->atomic
);
273 conn
->c_xmit_atomic_sent
= 1;
275 /* The transport owns the mapped memory for now.
276 * You can't unmap it while it's on the send queue */
277 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
281 * A number of cases require an RDS header to be sent
282 * even if there is no data.
283 * We permit 0-byte sends; rds-ping depends on this.
284 * However, if there are exclusively attached silent ops,
285 * we skip the hdr/data send, to enable silent operation.
287 if (rm
->data
.op_nents
== 0) {
289 int all_ops_are_silent
= 1;
291 ops_present
= (rm
->atomic
.op_active
|| rm
->rdma
.op_active
);
292 if (rm
->atomic
.op_active
&& !rm
->atomic
.op_silent
)
293 all_ops_are_silent
= 0;
294 if (rm
->rdma
.op_active
&& !rm
->rdma
.op_silent
)
295 all_ops_are_silent
= 0;
297 if (ops_present
&& all_ops_are_silent
298 && !rm
->m_rdma_cookie
)
299 rm
->data
.op_active
= 0;
302 if (rm
->data
.op_active
&& !conn
->c_xmit_data_sent
) {
303 rm
->m_final_op
= &rm
->data
;
304 ret
= conn
->c_trans
->xmit(conn
, rm
,
305 conn
->c_xmit_hdr_off
,
307 conn
->c_xmit_data_off
);
311 if (conn
->c_xmit_hdr_off
< sizeof(struct rds_header
)) {
312 tmp
= min_t(int, ret
,
313 sizeof(struct rds_header
) -
314 conn
->c_xmit_hdr_off
);
315 conn
->c_xmit_hdr_off
+= tmp
;
319 sg
= &rm
->data
.op_sg
[conn
->c_xmit_sg
];
321 tmp
= min_t(int, ret
, sg
->length
-
322 conn
->c_xmit_data_off
);
323 conn
->c_xmit_data_off
+= tmp
;
325 if (conn
->c_xmit_data_off
== sg
->length
) {
326 conn
->c_xmit_data_off
= 0;
330 conn
->c_xmit_sg
== rm
->data
.op_nents
);
334 if (conn
->c_xmit_hdr_off
== sizeof(struct rds_header
) &&
335 (conn
->c_xmit_sg
== rm
->data
.op_nents
))
336 conn
->c_xmit_data_sent
= 1;
340 * A rm will only take multiple times through this loop
341 * if there is a data op. Thus, if the data is sent (or there was
342 * none), then we're done with the rm.
344 if (!rm
->data
.op_active
|| conn
->c_xmit_data_sent
) {
345 conn
->c_xmit_rm
= NULL
;
347 conn
->c_xmit_hdr_off
= 0;
348 conn
->c_xmit_data_off
= 0;
349 conn
->c_xmit_rdma_sent
= 0;
350 conn
->c_xmit_atomic_sent
= 0;
351 conn
->c_xmit_data_sent
= 0;
357 if (conn
->c_trans
->xmit_complete
)
358 conn
->c_trans
->xmit_complete(conn
);
360 release_in_xmit(conn
);
362 /* Nuke any messages we decided not to retransmit. */
363 if (!list_empty(&to_be_dropped
)) {
364 /* irqs on here, so we can put(), unlike above */
365 list_for_each_entry(rm
, &to_be_dropped
, m_conn_item
)
367 rds_send_remove_from_sock(&to_be_dropped
, RDS_RDMA_DROPPED
);
371 * Other senders can queue a message after we last test the send queue
372 * but before we clear RDS_IN_XMIT. In that case they'd back off and
373 * not try and send their newly queued message. We need to check the
374 * send queue after having cleared RDS_IN_XMIT so that their message
375 * doesn't get stuck on the send queue.
377 * If the transport cannot continue (i.e ret != 0), then it must
378 * call us when more room is available, such as from the tx
379 * completion handler.
383 if (!list_empty(&conn
->c_send_queue
)) {
384 rds_stats_inc(s_send_lock_queue_raced
);
392 static void rds_send_sndbuf_remove(struct rds_sock
*rs
, struct rds_message
*rm
)
394 u32 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
396 assert_spin_locked(&rs
->rs_lock
);
398 BUG_ON(rs
->rs_snd_bytes
< len
);
399 rs
->rs_snd_bytes
-= len
;
401 if (rs
->rs_snd_bytes
== 0)
402 rds_stats_inc(s_send_queue_empty
);
405 static inline int rds_send_is_acked(struct rds_message
*rm
, u64 ack
,
406 is_acked_func is_acked
)
409 return is_acked(rm
, ack
);
410 return be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
) <= ack
;
414 * This is pretty similar to what happens below in the ACK
415 * handling code - except that we call here as soon as we get
416 * the IB send completion on the RDMA op and the accompanying
419 void rds_rdma_send_complete(struct rds_message
*rm
, int status
)
421 struct rds_sock
*rs
= NULL
;
422 struct rm_rdma_op
*ro
;
423 struct rds_notifier
*notifier
;
426 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
429 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
) &&
430 ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
431 notifier
= ro
->op_notifier
;
433 sock_hold(rds_rs_to_sk(rs
));
435 notifier
->n_status
= status
;
436 spin_lock(&rs
->rs_lock
);
437 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
438 spin_unlock(&rs
->rs_lock
);
440 ro
->op_notifier
= NULL
;
443 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
446 rds_wake_sk_sleep(rs
);
447 sock_put(rds_rs_to_sk(rs
));
450 EXPORT_SYMBOL_GPL(rds_rdma_send_complete
);
453 * Just like above, except looks at atomic op
455 void rds_atomic_send_complete(struct rds_message
*rm
, int status
)
457 struct rds_sock
*rs
= NULL
;
458 struct rm_atomic_op
*ao
;
459 struct rds_notifier
*notifier
;
462 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
465 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)
466 && ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
467 notifier
= ao
->op_notifier
;
469 sock_hold(rds_rs_to_sk(rs
));
471 notifier
->n_status
= status
;
472 spin_lock(&rs
->rs_lock
);
473 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
474 spin_unlock(&rs
->rs_lock
);
476 ao
->op_notifier
= NULL
;
479 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
482 rds_wake_sk_sleep(rs
);
483 sock_put(rds_rs_to_sk(rs
));
486 EXPORT_SYMBOL_GPL(rds_atomic_send_complete
);
489 * This is the same as rds_rdma_send_complete except we
490 * don't do any locking - we have all the ingredients (message,
491 * socket, socket lock) and can just move the notifier.
494 __rds_send_complete(struct rds_sock
*rs
, struct rds_message
*rm
, int status
)
496 struct rm_rdma_op
*ro
;
497 struct rm_atomic_op
*ao
;
500 if (ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
501 ro
->op_notifier
->n_status
= status
;
502 list_add_tail(&ro
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
503 ro
->op_notifier
= NULL
;
507 if (ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
508 ao
->op_notifier
->n_status
= status
;
509 list_add_tail(&ao
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
510 ao
->op_notifier
= NULL
;
513 /* No need to wake the app - caller does this */
517 * This is called from the IB send completion when we detect
518 * a RDMA operation that failed with remote access error.
519 * So speed is not an issue here.
521 struct rds_message
*rds_send_get_message(struct rds_connection
*conn
,
522 struct rm_rdma_op
*op
)
524 struct rds_message
*rm
, *tmp
, *found
= NULL
;
527 spin_lock_irqsave(&conn
->c_lock
, flags
);
529 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
530 if (&rm
->rdma
== op
) {
531 atomic_inc(&rm
->m_refcount
);
537 list_for_each_entry_safe(rm
, tmp
, &conn
->c_send_queue
, m_conn_item
) {
538 if (&rm
->rdma
== op
) {
539 atomic_inc(&rm
->m_refcount
);
546 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
550 EXPORT_SYMBOL_GPL(rds_send_get_message
);
553 * This removes messages from the socket's list if they're on it. The list
554 * argument must be private to the caller, we must be able to modify it
555 * without locks. The messages must have a reference held for their
556 * position on the list. This function will drop that reference after
557 * removing the messages from the 'messages' list regardless of if it found
558 * the messages on the socket list or not.
560 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
)
563 struct rds_sock
*rs
= NULL
;
564 struct rds_message
*rm
;
566 while (!list_empty(messages
)) {
569 rm
= list_entry(messages
->next
, struct rds_message
,
571 list_del_init(&rm
->m_conn_item
);
574 * If we see this flag cleared then we're *sure* that someone
575 * else beat us to removing it from the sock. If we race
576 * with their flag update we'll get the lock and then really
577 * see that the flag has been cleared.
579 * The message spinlock makes sure nobody clears rm->m_rs
580 * while we're messing with it. It does not prevent the
581 * message from being removed from the socket, though.
583 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
584 if (!test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
))
585 goto unlock_and_drop
;
587 if (rs
!= rm
->m_rs
) {
589 rds_wake_sk_sleep(rs
);
590 sock_put(rds_rs_to_sk(rs
));
593 sock_hold(rds_rs_to_sk(rs
));
595 spin_lock(&rs
->rs_lock
);
597 if (test_and_clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)) {
598 struct rm_rdma_op
*ro
= &rm
->rdma
;
599 struct rds_notifier
*notifier
;
601 list_del_init(&rm
->m_sock_item
);
602 rds_send_sndbuf_remove(rs
, rm
);
604 if (ro
->op_active
&& ro
->op_notifier
&&
605 (ro
->op_notify
|| (ro
->op_recverr
&& status
))) {
606 notifier
= ro
->op_notifier
;
607 list_add_tail(¬ifier
->n_list
,
608 &rs
->rs_notify_queue
);
609 if (!notifier
->n_status
)
610 notifier
->n_status
= status
;
611 rm
->rdma
.op_notifier
= NULL
;
616 spin_unlock(&rs
->rs_lock
);
619 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
626 rds_wake_sk_sleep(rs
);
627 sock_put(rds_rs_to_sk(rs
));
632 * Transports call here when they've determined that the receiver queued
633 * messages up to, and including, the given sequence number. Messages are
634 * moved to the retrans queue when rds_send_xmit picks them off the send
635 * queue. This means that in the TCP case, the message may not have been
636 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
637 * checks the RDS_MSG_HAS_ACK_SEQ bit.
639 * XXX It's not clear to me how this is safely serialized with socket
640 * destruction. Maybe it should bail if it sees SOCK_DEAD.
642 void rds_send_drop_acked(struct rds_connection
*conn
, u64 ack
,
643 is_acked_func is_acked
)
645 struct rds_message
*rm
, *tmp
;
649 spin_lock_irqsave(&conn
->c_lock
, flags
);
651 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
652 if (!rds_send_is_acked(rm
, ack
, is_acked
))
655 list_move(&rm
->m_conn_item
, &list
);
656 clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
659 /* order flag updates with spin locks */
660 if (!list_empty(&list
))
661 smp_mb__after_clear_bit();
663 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
665 /* now remove the messages from the sock list as needed */
666 rds_send_remove_from_sock(&list
, RDS_RDMA_SUCCESS
);
668 EXPORT_SYMBOL_GPL(rds_send_drop_acked
);
670 void rds_send_drop_to(struct rds_sock
*rs
, struct sockaddr_in
*dest
)
672 struct rds_message
*rm
, *tmp
;
673 struct rds_connection
*conn
;
677 /* get all the messages we're dropping under the rs lock */
678 spin_lock_irqsave(&rs
->rs_lock
, flags
);
680 list_for_each_entry_safe(rm
, tmp
, &rs
->rs_send_queue
, m_sock_item
) {
681 if (dest
&& (dest
->sin_addr
.s_addr
!= rm
->m_daddr
||
682 dest
->sin_port
!= rm
->m_inc
.i_hdr
.h_dport
))
685 list_move(&rm
->m_sock_item
, &list
);
686 rds_send_sndbuf_remove(rs
, rm
);
687 clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
690 /* order flag updates with the rs lock */
691 smp_mb__after_clear_bit();
693 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
695 if (list_empty(&list
))
698 /* Remove the messages from the conn */
699 list_for_each_entry(rm
, &list
, m_sock_item
) {
701 conn
= rm
->m_inc
.i_conn
;
703 spin_lock_irqsave(&conn
->c_lock
, flags
);
705 * Maybe someone else beat us to removing rm from the conn.
706 * If we race with their flag update we'll get the lock and
707 * then really see that the flag has been cleared.
709 if (!test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
)) {
710 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
713 list_del_init(&rm
->m_conn_item
);
714 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
717 * Couldn't grab m_rs_lock in top loop (lock ordering),
720 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
722 spin_lock(&rs
->rs_lock
);
723 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
724 spin_unlock(&rs
->rs_lock
);
727 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
732 rds_wake_sk_sleep(rs
);
734 while (!list_empty(&list
)) {
735 rm
= list_entry(list
.next
, struct rds_message
, m_sock_item
);
736 list_del_init(&rm
->m_sock_item
);
738 rds_message_wait(rm
);
744 * we only want this to fire once so we use the callers 'queued'. It's
745 * possible that another thread can race with us and remove the
746 * message from the flow with RDS_CANCEL_SENT_TO.
748 static int rds_send_queue_rm(struct rds_sock
*rs
, struct rds_connection
*conn
,
749 struct rds_message
*rm
, __be16 sport
,
750 __be16 dport
, int *queued
)
758 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
760 /* this is the only place which holds both the socket's rs_lock
761 * and the connection's c_lock */
762 spin_lock_irqsave(&rs
->rs_lock
, flags
);
765 * If there is a little space in sndbuf, we don't queue anything,
766 * and userspace gets -EAGAIN. But poll() indicates there's send
767 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
768 * freed up by incoming acks. So we check the *old* value of
769 * rs_snd_bytes here to allow the last msg to exceed the buffer,
770 * and poll() now knows no more data can be sent.
772 if (rs
->rs_snd_bytes
< rds_sk_sndbuf(rs
)) {
773 rs
->rs_snd_bytes
+= len
;
775 /* let recv side know we are close to send space exhaustion.
776 * This is probably not the optimal way to do it, as this
777 * means we set the flag on *all* messages as soon as our
778 * throughput hits a certain threshold.
780 if (rs
->rs_snd_bytes
>= rds_sk_sndbuf(rs
) / 2)
781 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
783 list_add_tail(&rm
->m_sock_item
, &rs
->rs_send_queue
);
784 set_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
785 rds_message_addref(rm
);
788 /* The code ordering is a little weird, but we're
789 trying to minimize the time we hold c_lock */
790 rds_message_populate_header(&rm
->m_inc
.i_hdr
, sport
, dport
, 0);
791 rm
->m_inc
.i_conn
= conn
;
792 rds_message_addref(rm
);
794 spin_lock(&conn
->c_lock
);
795 rm
->m_inc
.i_hdr
.h_sequence
= cpu_to_be64(conn
->c_next_tx_seq
++);
796 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
797 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
798 spin_unlock(&conn
->c_lock
);
800 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
801 rm
, len
, rs
, rs
->rs_snd_bytes
,
802 (unsigned long long)be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
));
807 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
813 * rds_message is getting to be quite complicated, and we'd like to allocate
814 * it all in one go. This figures out how big it needs to be up front.
816 static int rds_rm_size(struct msghdr
*msg
, int data_len
)
818 struct cmsghdr
*cmsg
;
823 for (cmsg
= CMSG_FIRSTHDR(msg
); cmsg
; cmsg
= CMSG_NXTHDR(msg
, cmsg
)) {
824 if (!CMSG_OK(msg
, cmsg
))
827 if (cmsg
->cmsg_level
!= SOL_RDS
)
830 switch (cmsg
->cmsg_type
) {
831 case RDS_CMSG_RDMA_ARGS
:
833 retval
= rds_rdma_extra_size(CMSG_DATA(cmsg
));
840 case RDS_CMSG_RDMA_DEST
:
841 case RDS_CMSG_RDMA_MAP
:
843 /* these are valid but do no add any size */
846 case RDS_CMSG_ATOMIC_CSWP
:
847 case RDS_CMSG_ATOMIC_FADD
:
848 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
849 case RDS_CMSG_MASKED_ATOMIC_FADD
:
851 size
+= sizeof(struct scatterlist
);
860 size
+= ceil(data_len
, PAGE_SIZE
) * sizeof(struct scatterlist
);
862 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
863 if (cmsg_groups
== 3)
869 static int rds_cmsg_send(struct rds_sock
*rs
, struct rds_message
*rm
,
870 struct msghdr
*msg
, int *allocated_mr
)
872 struct cmsghdr
*cmsg
;
875 for (cmsg
= CMSG_FIRSTHDR(msg
); cmsg
; cmsg
= CMSG_NXTHDR(msg
, cmsg
)) {
876 if (!CMSG_OK(msg
, cmsg
))
879 if (cmsg
->cmsg_level
!= SOL_RDS
)
882 /* As a side effect, RDMA_DEST and RDMA_MAP will set
883 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
885 switch (cmsg
->cmsg_type
) {
886 case RDS_CMSG_RDMA_ARGS
:
887 ret
= rds_cmsg_rdma_args(rs
, rm
, cmsg
);
890 case RDS_CMSG_RDMA_DEST
:
891 ret
= rds_cmsg_rdma_dest(rs
, rm
, cmsg
);
894 case RDS_CMSG_RDMA_MAP
:
895 ret
= rds_cmsg_rdma_map(rs
, rm
, cmsg
);
899 case RDS_CMSG_ATOMIC_CSWP
:
900 case RDS_CMSG_ATOMIC_FADD
:
901 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
902 case RDS_CMSG_MASKED_ATOMIC_FADD
:
903 ret
= rds_cmsg_atomic(rs
, rm
, cmsg
);
917 int rds_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*msg
,
920 struct sock
*sk
= sock
->sk
;
921 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
922 struct sockaddr_in
*usin
= (struct sockaddr_in
*)msg
->msg_name
;
925 struct rds_message
*rm
= NULL
;
926 struct rds_connection
*conn
;
928 int queued
= 0, allocated_mr
= 0;
929 int nonblock
= msg
->msg_flags
& MSG_DONTWAIT
;
930 long timeo
= sock_sndtimeo(sk
, nonblock
);
932 /* Mirror Linux UDP mirror of BSD error message compatibility */
933 /* XXX: Perhaps MSG_MORE someday */
934 if (msg
->msg_flags
& ~(MSG_DONTWAIT
| MSG_CMSG_COMPAT
)) {
935 printk(KERN_INFO
"msg_flags 0x%08X\n", msg
->msg_flags
);
940 if (msg
->msg_namelen
) {
941 /* XXX fail non-unicast destination IPs? */
942 if (msg
->msg_namelen
< sizeof(*usin
) || usin
->sin_family
!= AF_INET
) {
946 daddr
= usin
->sin_addr
.s_addr
;
947 dport
= usin
->sin_port
;
949 /* We only care about consistency with ->connect() */
951 daddr
= rs
->rs_conn_addr
;
952 dport
= rs
->rs_conn_port
;
956 /* racing with another thread binding seems ok here */
957 if (daddr
== 0 || rs
->rs_bound_addr
== 0) {
958 ret
= -ENOTCONN
; /* XXX not a great errno */
962 /* size of rm including all sgs */
963 ret
= rds_rm_size(msg
, payload_len
);
967 rm
= rds_message_alloc(ret
, GFP_KERNEL
);
973 /* Attach data to the rm */
975 rm
->data
.op_sg
= rds_message_alloc_sgs(rm
, ceil(payload_len
, PAGE_SIZE
));
976 ret
= rds_message_copy_from_user(rm
, msg
->msg_iov
, payload_len
);
980 rm
->data
.op_active
= 1;
984 /* rds_conn_create has a spinlock that runs with IRQ off.
985 * Caching the conn in the socket helps a lot. */
986 if (rs
->rs_conn
&& rs
->rs_conn
->c_faddr
== daddr
)
989 conn
= rds_conn_create_outgoing(rs
->rs_bound_addr
, daddr
,
991 sock
->sk
->sk_allocation
);
999 /* Parse any control messages the user may have included. */
1000 ret
= rds_cmsg_send(rs
, rm
, msg
, &allocated_mr
);
1004 if (rm
->rdma
.op_active
&& !conn
->c_trans
->xmit_rdma
) {
1005 if (printk_ratelimit())
1006 printk(KERN_NOTICE
"rdma_op %p conn xmit_rdma %p\n",
1007 &rm
->rdma
, conn
->c_trans
->xmit_rdma
);
1012 if (rm
->atomic
.op_active
&& !conn
->c_trans
->xmit_atomic
) {
1013 if (printk_ratelimit())
1014 printk(KERN_NOTICE
"atomic_op %p conn xmit_atomic %p\n",
1015 &rm
->atomic
, conn
->c_trans
->xmit_atomic
);
1020 rds_conn_connect_if_down(conn
);
1022 ret
= rds_cong_wait(conn
->c_fcong
, dport
, nonblock
, rs
);
1024 rs
->rs_seen_congestion
= 1;
1028 while (!rds_send_queue_rm(rs
, conn
, rm
, rs
->rs_bound_port
,
1030 rds_stats_inc(s_send_queue_full
);
1031 /* XXX make sure this is reasonable */
1032 if (payload_len
> rds_sk_sndbuf(rs
)) {
1041 timeo
= wait_event_interruptible_timeout(*sk_sleep(sk
),
1042 rds_send_queue_rm(rs
, conn
, rm
,
1047 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued
, timeo
);
1048 if (timeo
> 0 || timeo
== MAX_SCHEDULE_TIMEOUT
)
1058 * By now we've committed to the send. We reuse rds_send_worker()
1059 * to retry sends in the rds thread if the transport asks us to.
1061 rds_stats_inc(s_send_queued
);
1063 if (!test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
1064 rds_send_xmit(conn
);
1066 rds_message_put(rm
);
1070 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1071 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1072 * or in any other way, we need to destroy the MR again */
1074 rds_rdma_unuse(rs
, rds_rdma_cookie_key(rm
->m_rdma_cookie
), 1);
1077 rds_message_put(rm
);
1082 * Reply to a ping packet.
1085 rds_send_pong(struct rds_connection
*conn
, __be16 dport
)
1087 struct rds_message
*rm
;
1088 unsigned long flags
;
1091 rm
= rds_message_alloc(0, GFP_ATOMIC
);
1097 rm
->m_daddr
= conn
->c_faddr
;
1098 rm
->data
.op_active
= 1;
1100 rds_conn_connect_if_down(conn
);
1102 ret
= rds_cong_wait(conn
->c_fcong
, dport
, 1, NULL
);
1106 spin_lock_irqsave(&conn
->c_lock
, flags
);
1107 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
1108 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
1109 rds_message_addref(rm
);
1110 rm
->m_inc
.i_conn
= conn
;
1112 rds_message_populate_header(&rm
->m_inc
.i_hdr
, 0, dport
,
1113 conn
->c_next_tx_seq
);
1114 conn
->c_next_tx_seq
++;
1115 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
1117 rds_stats_inc(s_send_queued
);
1118 rds_stats_inc(s_send_pong
);
1120 if (!test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
1121 rds_send_xmit(conn
);
1123 rds_message_put(rm
);
1128 rds_message_put(rm
);