irda: fix locking unbalance in irda_sendmsg
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / libfs.c
blobc88eab55aec95f4ab26427da882fd88c8b3ef512
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
17 #include <asm/uaccess.h>
19 static inline int simple_positive(struct dentry *dentry)
21 return dentry->d_inode && !d_unhashed(dentry);
24 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
25 struct kstat *stat)
27 struct inode *inode = dentry->d_inode;
28 generic_fillattr(inode, stat);
29 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
30 return 0;
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
35 buf->f_type = dentry->d_sb->s_magic;
36 buf->f_bsize = PAGE_CACHE_SIZE;
37 buf->f_namelen = NAME_MAX;
38 return 0;
42 * Retaining negative dentries for an in-memory filesystem just wastes
43 * memory and lookup time: arrange for them to be deleted immediately.
45 static int simple_delete_dentry(const struct dentry *dentry)
47 return 1;
51 * Lookup the data. This is trivial - if the dentry didn't already
52 * exist, we know it is negative. Set d_op to delete negative dentries.
54 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
56 static const struct dentry_operations simple_dentry_operations = {
57 .d_delete = simple_delete_dentry,
60 if (dentry->d_name.len > NAME_MAX)
61 return ERR_PTR(-ENAMETOOLONG);
62 d_set_d_op(dentry, &simple_dentry_operations);
63 d_add(dentry, NULL);
64 return NULL;
67 int dcache_dir_open(struct inode *inode, struct file *file)
69 static struct qstr cursor_name = {.len = 1, .name = "."};
71 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
73 return file->private_data ? 0 : -ENOMEM;
76 int dcache_dir_close(struct inode *inode, struct file *file)
78 dput(file->private_data);
79 return 0;
82 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
84 struct dentry *dentry = file->f_path.dentry;
85 mutex_lock(&dentry->d_inode->i_mutex);
86 switch (origin) {
87 case 1:
88 offset += file->f_pos;
89 case 0:
90 if (offset >= 0)
91 break;
92 default:
93 mutex_unlock(&dentry->d_inode->i_mutex);
94 return -EINVAL;
96 if (offset != file->f_pos) {
97 file->f_pos = offset;
98 if (file->f_pos >= 2) {
99 struct list_head *p;
100 struct dentry *cursor = file->private_data;
101 loff_t n = file->f_pos - 2;
103 spin_lock(&dentry->d_lock);
104 /* d_lock not required for cursor */
105 list_del(&cursor->d_u.d_child);
106 p = dentry->d_subdirs.next;
107 while (n && p != &dentry->d_subdirs) {
108 struct dentry *next;
109 next = list_entry(p, struct dentry, d_u.d_child);
110 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
111 if (simple_positive(next))
112 n--;
113 spin_unlock(&next->d_lock);
114 p = p->next;
116 list_add_tail(&cursor->d_u.d_child, p);
117 spin_unlock(&dentry->d_lock);
120 mutex_unlock(&dentry->d_inode->i_mutex);
121 return offset;
124 /* Relationship between i_mode and the DT_xxx types */
125 static inline unsigned char dt_type(struct inode *inode)
127 return (inode->i_mode >> 12) & 15;
131 * Directory is locked and all positive dentries in it are safe, since
132 * for ramfs-type trees they can't go away without unlink() or rmdir(),
133 * both impossible due to the lock on directory.
136 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
138 struct dentry *dentry = filp->f_path.dentry;
139 struct dentry *cursor = filp->private_data;
140 struct list_head *p, *q = &cursor->d_u.d_child;
141 ino_t ino;
142 int i = filp->f_pos;
144 switch (i) {
145 case 0:
146 ino = dentry->d_inode->i_ino;
147 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
148 break;
149 filp->f_pos++;
150 i++;
151 /* fallthrough */
152 case 1:
153 ino = parent_ino(dentry);
154 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
155 break;
156 filp->f_pos++;
157 i++;
158 /* fallthrough */
159 default:
160 spin_lock(&dentry->d_lock);
161 if (filp->f_pos == 2)
162 list_move(q, &dentry->d_subdirs);
164 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
165 struct dentry *next;
166 next = list_entry(p, struct dentry, d_u.d_child);
167 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
168 if (!simple_positive(next)) {
169 spin_unlock(&next->d_lock);
170 continue;
173 spin_unlock(&next->d_lock);
174 spin_unlock(&dentry->d_lock);
175 if (filldir(dirent, next->d_name.name,
176 next->d_name.len, filp->f_pos,
177 next->d_inode->i_ino,
178 dt_type(next->d_inode)) < 0)
179 return 0;
180 spin_lock(&dentry->d_lock);
181 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
182 /* next is still alive */
183 list_move(q, p);
184 spin_unlock(&next->d_lock);
185 p = q;
186 filp->f_pos++;
188 spin_unlock(&dentry->d_lock);
190 return 0;
193 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
195 return -EISDIR;
198 const struct file_operations simple_dir_operations = {
199 .open = dcache_dir_open,
200 .release = dcache_dir_close,
201 .llseek = dcache_dir_lseek,
202 .read = generic_read_dir,
203 .readdir = dcache_readdir,
204 .fsync = noop_fsync,
207 const struct inode_operations simple_dir_inode_operations = {
208 .lookup = simple_lookup,
211 static const struct super_operations simple_super_operations = {
212 .statfs = simple_statfs,
216 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
217 * will never be mountable)
219 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
220 const struct super_operations *ops,
221 const struct dentry_operations *dops, unsigned long magic)
223 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
224 struct dentry *dentry;
225 struct inode *root;
226 struct qstr d_name = {.name = name, .len = strlen(name)};
228 if (IS_ERR(s))
229 return ERR_CAST(s);
231 s->s_flags = MS_NOUSER;
232 s->s_maxbytes = MAX_LFS_FILESIZE;
233 s->s_blocksize = PAGE_SIZE;
234 s->s_blocksize_bits = PAGE_SHIFT;
235 s->s_magic = magic;
236 s->s_op = ops ? ops : &simple_super_operations;
237 s->s_time_gran = 1;
238 root = new_inode(s);
239 if (!root)
240 goto Enomem;
242 * since this is the first inode, make it number 1. New inodes created
243 * after this must take care not to collide with it (by passing
244 * max_reserved of 1 to iunique).
246 root->i_ino = 1;
247 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
248 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
249 dentry = d_alloc(NULL, &d_name);
250 if (!dentry) {
251 iput(root);
252 goto Enomem;
254 dentry->d_sb = s;
255 dentry->d_parent = dentry;
256 d_instantiate(dentry, root);
257 s->s_root = dentry;
258 s->s_d_op = dops;
259 s->s_flags |= MS_ACTIVE;
260 return dget(s->s_root);
262 Enomem:
263 deactivate_locked_super(s);
264 return ERR_PTR(-ENOMEM);
267 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
269 struct inode *inode = old_dentry->d_inode;
271 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
272 inc_nlink(inode);
273 ihold(inode);
274 dget(dentry);
275 d_instantiate(dentry, inode);
276 return 0;
279 int simple_empty(struct dentry *dentry)
281 struct dentry *child;
282 int ret = 0;
284 spin_lock(&dentry->d_lock);
285 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
286 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
287 if (simple_positive(child)) {
288 spin_unlock(&child->d_lock);
289 goto out;
291 spin_unlock(&child->d_lock);
293 ret = 1;
294 out:
295 spin_unlock(&dentry->d_lock);
296 return ret;
299 int simple_unlink(struct inode *dir, struct dentry *dentry)
301 struct inode *inode = dentry->d_inode;
303 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
304 drop_nlink(inode);
305 dput(dentry);
306 return 0;
309 int simple_rmdir(struct inode *dir, struct dentry *dentry)
311 if (!simple_empty(dentry))
312 return -ENOTEMPTY;
314 drop_nlink(dentry->d_inode);
315 simple_unlink(dir, dentry);
316 drop_nlink(dir);
317 return 0;
320 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
321 struct inode *new_dir, struct dentry *new_dentry)
323 struct inode *inode = old_dentry->d_inode;
324 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
326 if (!simple_empty(new_dentry))
327 return -ENOTEMPTY;
329 if (new_dentry->d_inode) {
330 simple_unlink(new_dir, new_dentry);
331 if (they_are_dirs)
332 drop_nlink(old_dir);
333 } else if (they_are_dirs) {
334 drop_nlink(old_dir);
335 inc_nlink(new_dir);
338 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
339 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
341 return 0;
345 * simple_setattr - setattr for simple filesystem
346 * @dentry: dentry
347 * @iattr: iattr structure
349 * Returns 0 on success, -error on failure.
351 * simple_setattr is a simple ->setattr implementation without a proper
352 * implementation of size changes.
354 * It can either be used for in-memory filesystems or special files
355 * on simple regular filesystems. Anything that needs to change on-disk
356 * or wire state on size changes needs its own setattr method.
358 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
360 struct inode *inode = dentry->d_inode;
361 int error;
363 WARN_ON_ONCE(inode->i_op->truncate);
365 error = inode_change_ok(inode, iattr);
366 if (error)
367 return error;
369 if (iattr->ia_valid & ATTR_SIZE)
370 truncate_setsize(inode, iattr->ia_size);
371 setattr_copy(inode, iattr);
372 mark_inode_dirty(inode);
373 return 0;
375 EXPORT_SYMBOL(simple_setattr);
377 int simple_readpage(struct file *file, struct page *page)
379 clear_highpage(page);
380 flush_dcache_page(page);
381 SetPageUptodate(page);
382 unlock_page(page);
383 return 0;
386 int simple_write_begin(struct file *file, struct address_space *mapping,
387 loff_t pos, unsigned len, unsigned flags,
388 struct page **pagep, void **fsdata)
390 struct page *page;
391 pgoff_t index;
393 index = pos >> PAGE_CACHE_SHIFT;
395 page = grab_cache_page_write_begin(mapping, index, flags);
396 if (!page)
397 return -ENOMEM;
399 *pagep = page;
401 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
402 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
404 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
406 return 0;
410 * simple_write_end - .write_end helper for non-block-device FSes
411 * @available: See .write_end of address_space_operations
412 * @file: "
413 * @mapping: "
414 * @pos: "
415 * @len: "
416 * @copied: "
417 * @page: "
418 * @fsdata: "
420 * simple_write_end does the minimum needed for updating a page after writing is
421 * done. It has the same API signature as the .write_end of
422 * address_space_operations vector. So it can just be set onto .write_end for
423 * FSes that don't need any other processing. i_mutex is assumed to be held.
424 * Block based filesystems should use generic_write_end().
425 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
426 * is not called, so a filesystem that actually does store data in .write_inode
427 * should extend on what's done here with a call to mark_inode_dirty() in the
428 * case that i_size has changed.
430 int simple_write_end(struct file *file, struct address_space *mapping,
431 loff_t pos, unsigned len, unsigned copied,
432 struct page *page, void *fsdata)
434 struct inode *inode = page->mapping->host;
435 loff_t last_pos = pos + copied;
437 /* zero the stale part of the page if we did a short copy */
438 if (copied < len) {
439 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
441 zero_user(page, from + copied, len - copied);
444 if (!PageUptodate(page))
445 SetPageUptodate(page);
447 * No need to use i_size_read() here, the i_size
448 * cannot change under us because we hold the i_mutex.
450 if (last_pos > inode->i_size)
451 i_size_write(inode, last_pos);
453 set_page_dirty(page);
454 unlock_page(page);
455 page_cache_release(page);
457 return copied;
461 * the inodes created here are not hashed. If you use iunique to generate
462 * unique inode values later for this filesystem, then you must take care
463 * to pass it an appropriate max_reserved value to avoid collisions.
465 int simple_fill_super(struct super_block *s, unsigned long magic,
466 struct tree_descr *files)
468 struct inode *inode;
469 struct dentry *root;
470 struct dentry *dentry;
471 int i;
473 s->s_blocksize = PAGE_CACHE_SIZE;
474 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
475 s->s_magic = magic;
476 s->s_op = &simple_super_operations;
477 s->s_time_gran = 1;
479 inode = new_inode(s);
480 if (!inode)
481 return -ENOMEM;
483 * because the root inode is 1, the files array must not contain an
484 * entry at index 1
486 inode->i_ino = 1;
487 inode->i_mode = S_IFDIR | 0755;
488 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
489 inode->i_op = &simple_dir_inode_operations;
490 inode->i_fop = &simple_dir_operations;
491 inode->i_nlink = 2;
492 root = d_alloc_root(inode);
493 if (!root) {
494 iput(inode);
495 return -ENOMEM;
497 for (i = 0; !files->name || files->name[0]; i++, files++) {
498 if (!files->name)
499 continue;
501 /* warn if it tries to conflict with the root inode */
502 if (unlikely(i == 1))
503 printk(KERN_WARNING "%s: %s passed in a files array"
504 "with an index of 1!\n", __func__,
505 s->s_type->name);
507 dentry = d_alloc_name(root, files->name);
508 if (!dentry)
509 goto out;
510 inode = new_inode(s);
511 if (!inode)
512 goto out;
513 inode->i_mode = S_IFREG | files->mode;
514 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
515 inode->i_fop = files->ops;
516 inode->i_ino = i;
517 d_add(dentry, inode);
519 s->s_root = root;
520 return 0;
521 out:
522 d_genocide(root);
523 dput(root);
524 return -ENOMEM;
527 static DEFINE_SPINLOCK(pin_fs_lock);
529 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
531 struct vfsmount *mnt = NULL;
532 spin_lock(&pin_fs_lock);
533 if (unlikely(!*mount)) {
534 spin_unlock(&pin_fs_lock);
535 mnt = vfs_kern_mount(type, 0, type->name, NULL);
536 if (IS_ERR(mnt))
537 return PTR_ERR(mnt);
538 spin_lock(&pin_fs_lock);
539 if (!*mount)
540 *mount = mnt;
542 mntget(*mount);
543 ++*count;
544 spin_unlock(&pin_fs_lock);
545 mntput(mnt);
546 return 0;
549 void simple_release_fs(struct vfsmount **mount, int *count)
551 struct vfsmount *mnt;
552 spin_lock(&pin_fs_lock);
553 mnt = *mount;
554 if (!--*count)
555 *mount = NULL;
556 spin_unlock(&pin_fs_lock);
557 mntput(mnt);
561 * simple_read_from_buffer - copy data from the buffer to user space
562 * @to: the user space buffer to read to
563 * @count: the maximum number of bytes to read
564 * @ppos: the current position in the buffer
565 * @from: the buffer to read from
566 * @available: the size of the buffer
568 * The simple_read_from_buffer() function reads up to @count bytes from the
569 * buffer @from at offset @ppos into the user space address starting at @to.
571 * On success, the number of bytes read is returned and the offset @ppos is
572 * advanced by this number, or negative value is returned on error.
574 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
575 const void *from, size_t available)
577 loff_t pos = *ppos;
578 size_t ret;
580 if (pos < 0)
581 return -EINVAL;
582 if (pos >= available || !count)
583 return 0;
584 if (count > available - pos)
585 count = available - pos;
586 ret = copy_to_user(to, from + pos, count);
587 if (ret == count)
588 return -EFAULT;
589 count -= ret;
590 *ppos = pos + count;
591 return count;
595 * simple_write_to_buffer - copy data from user space to the buffer
596 * @to: the buffer to write to
597 * @available: the size of the buffer
598 * @ppos: the current position in the buffer
599 * @from: the user space buffer to read from
600 * @count: the maximum number of bytes to read
602 * The simple_write_to_buffer() function reads up to @count bytes from the user
603 * space address starting at @from into the buffer @to at offset @ppos.
605 * On success, the number of bytes written is returned and the offset @ppos is
606 * advanced by this number, or negative value is returned on error.
608 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
609 const void __user *from, size_t count)
611 loff_t pos = *ppos;
612 size_t res;
614 if (pos < 0)
615 return -EINVAL;
616 if (pos >= available || !count)
617 return 0;
618 if (count > available - pos)
619 count = available - pos;
620 res = copy_from_user(to + pos, from, count);
621 if (res == count)
622 return -EFAULT;
623 count -= res;
624 *ppos = pos + count;
625 return count;
629 * memory_read_from_buffer - copy data from the buffer
630 * @to: the kernel space buffer to read to
631 * @count: the maximum number of bytes to read
632 * @ppos: the current position in the buffer
633 * @from: the buffer to read from
634 * @available: the size of the buffer
636 * The memory_read_from_buffer() function reads up to @count bytes from the
637 * buffer @from at offset @ppos into the kernel space address starting at @to.
639 * On success, the number of bytes read is returned and the offset @ppos is
640 * advanced by this number, or negative value is returned on error.
642 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
643 const void *from, size_t available)
645 loff_t pos = *ppos;
647 if (pos < 0)
648 return -EINVAL;
649 if (pos >= available)
650 return 0;
651 if (count > available - pos)
652 count = available - pos;
653 memcpy(to, from + pos, count);
654 *ppos = pos + count;
656 return count;
660 * Transaction based IO.
661 * The file expects a single write which triggers the transaction, and then
662 * possibly a read which collects the result - which is stored in a
663 * file-local buffer.
666 void simple_transaction_set(struct file *file, size_t n)
668 struct simple_transaction_argresp *ar = file->private_data;
670 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
673 * The barrier ensures that ar->size will really remain zero until
674 * ar->data is ready for reading.
676 smp_mb();
677 ar->size = n;
680 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
682 struct simple_transaction_argresp *ar;
683 static DEFINE_SPINLOCK(simple_transaction_lock);
685 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
686 return ERR_PTR(-EFBIG);
688 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
689 if (!ar)
690 return ERR_PTR(-ENOMEM);
692 spin_lock(&simple_transaction_lock);
694 /* only one write allowed per open */
695 if (file->private_data) {
696 spin_unlock(&simple_transaction_lock);
697 free_page((unsigned long)ar);
698 return ERR_PTR(-EBUSY);
701 file->private_data = ar;
703 spin_unlock(&simple_transaction_lock);
705 if (copy_from_user(ar->data, buf, size))
706 return ERR_PTR(-EFAULT);
708 return ar->data;
711 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
713 struct simple_transaction_argresp *ar = file->private_data;
715 if (!ar)
716 return 0;
717 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
720 int simple_transaction_release(struct inode *inode, struct file *file)
722 free_page((unsigned long)file->private_data);
723 return 0;
726 /* Simple attribute files */
728 struct simple_attr {
729 int (*get)(void *, u64 *);
730 int (*set)(void *, u64);
731 char get_buf[24]; /* enough to store a u64 and "\n\0" */
732 char set_buf[24];
733 void *data;
734 const char *fmt; /* format for read operation */
735 struct mutex mutex; /* protects access to these buffers */
738 /* simple_attr_open is called by an actual attribute open file operation
739 * to set the attribute specific access operations. */
740 int simple_attr_open(struct inode *inode, struct file *file,
741 int (*get)(void *, u64 *), int (*set)(void *, u64),
742 const char *fmt)
744 struct simple_attr *attr;
746 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
747 if (!attr)
748 return -ENOMEM;
750 attr->get = get;
751 attr->set = set;
752 attr->data = inode->i_private;
753 attr->fmt = fmt;
754 mutex_init(&attr->mutex);
756 file->private_data = attr;
758 return nonseekable_open(inode, file);
761 int simple_attr_release(struct inode *inode, struct file *file)
763 kfree(file->private_data);
764 return 0;
767 /* read from the buffer that is filled with the get function */
768 ssize_t simple_attr_read(struct file *file, char __user *buf,
769 size_t len, loff_t *ppos)
771 struct simple_attr *attr;
772 size_t size;
773 ssize_t ret;
775 attr = file->private_data;
777 if (!attr->get)
778 return -EACCES;
780 ret = mutex_lock_interruptible(&attr->mutex);
781 if (ret)
782 return ret;
784 if (*ppos) { /* continued read */
785 size = strlen(attr->get_buf);
786 } else { /* first read */
787 u64 val;
788 ret = attr->get(attr->data, &val);
789 if (ret)
790 goto out;
792 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
793 attr->fmt, (unsigned long long)val);
796 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
797 out:
798 mutex_unlock(&attr->mutex);
799 return ret;
802 /* interpret the buffer as a number to call the set function with */
803 ssize_t simple_attr_write(struct file *file, const char __user *buf,
804 size_t len, loff_t *ppos)
806 struct simple_attr *attr;
807 u64 val;
808 size_t size;
809 ssize_t ret;
811 attr = file->private_data;
812 if (!attr->set)
813 return -EACCES;
815 ret = mutex_lock_interruptible(&attr->mutex);
816 if (ret)
817 return ret;
819 ret = -EFAULT;
820 size = min(sizeof(attr->set_buf) - 1, len);
821 if (copy_from_user(attr->set_buf, buf, size))
822 goto out;
824 attr->set_buf[size] = '\0';
825 val = simple_strtol(attr->set_buf, NULL, 0);
826 ret = attr->set(attr->data, val);
827 if (ret == 0)
828 ret = len; /* on success, claim we got the whole input */
829 out:
830 mutex_unlock(&attr->mutex);
831 return ret;
835 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
836 * @sb: filesystem to do the file handle conversion on
837 * @fid: file handle to convert
838 * @fh_len: length of the file handle in bytes
839 * @fh_type: type of file handle
840 * @get_inode: filesystem callback to retrieve inode
842 * This function decodes @fid as long as it has one of the well-known
843 * Linux filehandle types and calls @get_inode on it to retrieve the
844 * inode for the object specified in the file handle.
846 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
847 int fh_len, int fh_type, struct inode *(*get_inode)
848 (struct super_block *sb, u64 ino, u32 gen))
850 struct inode *inode = NULL;
852 if (fh_len < 2)
853 return NULL;
855 switch (fh_type) {
856 case FILEID_INO32_GEN:
857 case FILEID_INO32_GEN_PARENT:
858 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
859 break;
862 return d_obtain_alias(inode);
864 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
867 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
868 * @sb: filesystem to do the file handle conversion on
869 * @fid: file handle to convert
870 * @fh_len: length of the file handle in bytes
871 * @fh_type: type of file handle
872 * @get_inode: filesystem callback to retrieve inode
874 * This function decodes @fid as long as it has one of the well-known
875 * Linux filehandle types and calls @get_inode on it to retrieve the
876 * inode for the _parent_ object specified in the file handle if it
877 * is specified in the file handle, or NULL otherwise.
879 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
880 int fh_len, int fh_type, struct inode *(*get_inode)
881 (struct super_block *sb, u64 ino, u32 gen))
883 struct inode *inode = NULL;
885 if (fh_len <= 2)
886 return NULL;
888 switch (fh_type) {
889 case FILEID_INO32_GEN_PARENT:
890 inode = get_inode(sb, fid->i32.parent_ino,
891 (fh_len > 3 ? fid->i32.parent_gen : 0));
892 break;
895 return d_obtain_alias(inode);
897 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
900 * generic_file_fsync - generic fsync implementation for simple filesystems
901 * @file: file to synchronize
902 * @datasync: only synchronize essential metadata if true
904 * This is a generic implementation of the fsync method for simple
905 * filesystems which track all non-inode metadata in the buffers list
906 * hanging off the address_space structure.
908 int generic_file_fsync(struct file *file, int datasync)
910 struct inode *inode = file->f_mapping->host;
911 int err;
912 int ret;
914 ret = sync_mapping_buffers(inode->i_mapping);
915 if (!(inode->i_state & I_DIRTY))
916 return ret;
917 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
918 return ret;
920 err = sync_inode_metadata(inode, 1);
921 if (ret == 0)
922 ret = err;
923 return ret;
925 EXPORT_SYMBOL(generic_file_fsync);
928 * generic_check_addressable - Check addressability of file system
929 * @blocksize_bits: log of file system block size
930 * @num_blocks: number of blocks in file system
932 * Determine whether a file system with @num_blocks blocks (and a
933 * block size of 2**@blocksize_bits) is addressable by the sector_t
934 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
936 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
938 u64 last_fs_block = num_blocks - 1;
939 u64 last_fs_page =
940 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
942 if (unlikely(num_blocks == 0))
943 return 0;
945 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
946 return -EINVAL;
948 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
949 (last_fs_page > (pgoff_t)(~0ULL))) {
950 return -EFBIG;
952 return 0;
954 EXPORT_SYMBOL(generic_check_addressable);
957 * No-op implementation of ->fsync for in-memory filesystems.
959 int noop_fsync(struct file *file, int datasync)
961 return 0;
964 EXPORT_SYMBOL(dcache_dir_close);
965 EXPORT_SYMBOL(dcache_dir_lseek);
966 EXPORT_SYMBOL(dcache_dir_open);
967 EXPORT_SYMBOL(dcache_readdir);
968 EXPORT_SYMBOL(generic_read_dir);
969 EXPORT_SYMBOL(mount_pseudo);
970 EXPORT_SYMBOL(simple_write_begin);
971 EXPORT_SYMBOL(simple_write_end);
972 EXPORT_SYMBOL(simple_dir_inode_operations);
973 EXPORT_SYMBOL(simple_dir_operations);
974 EXPORT_SYMBOL(simple_empty);
975 EXPORT_SYMBOL(simple_fill_super);
976 EXPORT_SYMBOL(simple_getattr);
977 EXPORT_SYMBOL(simple_link);
978 EXPORT_SYMBOL(simple_lookup);
979 EXPORT_SYMBOL(simple_pin_fs);
980 EXPORT_SYMBOL(simple_readpage);
981 EXPORT_SYMBOL(simple_release_fs);
982 EXPORT_SYMBOL(simple_rename);
983 EXPORT_SYMBOL(simple_rmdir);
984 EXPORT_SYMBOL(simple_statfs);
985 EXPORT_SYMBOL(noop_fsync);
986 EXPORT_SYMBOL(simple_unlink);
987 EXPORT_SYMBOL(simple_read_from_buffer);
988 EXPORT_SYMBOL(simple_write_to_buffer);
989 EXPORT_SYMBOL(memory_read_from_buffer);
990 EXPORT_SYMBOL(simple_transaction_set);
991 EXPORT_SYMBOL(simple_transaction_get);
992 EXPORT_SYMBOL(simple_transaction_read);
993 EXPORT_SYMBOL(simple_transaction_release);
994 EXPORT_SYMBOL_GPL(simple_attr_open);
995 EXPORT_SYMBOL_GPL(simple_attr_release);
996 EXPORT_SYMBOL_GPL(simple_attr_read);
997 EXPORT_SYMBOL_GPL(simple_attr_write);