2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
19 #include <asm/addrspace.h>
20 #include <asm/byteorder.h>
22 #include <asm/cpu-features.h>
23 #include <asm-generic/iomap.h>
25 #include <asm/pgtable-bits.h>
26 #include <asm/processor.h>
27 #include <asm/string.h>
30 #include <mangle-port.h>
33 * Slowdown I/O port space accesses for antique hardware.
35 #undef CONF_SLOWDOWN_IO
38 * Raw operations are never swapped in software. OTOH values that raw
39 * operations are working on may or may not have been swapped by the bus
40 * hardware. An example use would be for flash memory that's used for
43 # define __raw_ioswabb(a, x) (x)
44 # define __raw_ioswabw(a, x) (x)
45 # define __raw_ioswabl(a, x) (x)
46 # define __raw_ioswabq(a, x) (x)
47 # define ____raw_ioswabq(a, x) (x)
49 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
51 #define IO_SPACE_LIMIT 0xffff
54 * On MIPS I/O ports are memory mapped, so we access them using normal
55 * load/store instructions. mips_io_port_base is the virtual address to
56 * which all ports are being mapped. For sake of efficiency some code
57 * assumes that this is an address that can be loaded with a single lui
58 * instruction, so the lower 16 bits must be zero. Should be true on
59 * on any sane architecture; generic code does not use this assumption.
61 extern const unsigned long mips_io_port_base
;
64 * Gcc will generate code to load the value of mips_io_port_base after each
65 * function call which may be fairly wasteful in some cases. So we don't
66 * play quite by the book. We tell gcc mips_io_port_base is a long variable
67 * which solves the code generation issue. Now we need to violate the
68 * aliasing rules a little to make initialization possible and finally we
69 * will need the barrier() to fight side effects of the aliasing chat.
70 * This trickery will eventually collapse under gcc's optimizer. Oh well.
72 static inline void set_io_port_base(unsigned long base
)
74 * (unsigned long *) &mips_io_port_base
= base
;
79 * Thanks to James van Artsdalen for a better timing-fix than
80 * the two short jumps: using outb's to a nonexistent port seems
81 * to guarantee better timings even on fast machines.
83 * On the other hand, I'd like to be sure of a non-existent port:
84 * I feel a bit unsafe about using 0x80 (should be safe, though)
90 #define __SLOW_DOWN_IO \
91 __asm__ __volatile__( \
93 : : "r" (mips_io_port_base));
95 #ifdef CONF_SLOWDOWN_IO
97 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
99 #define SLOW_DOWN_IO __SLOW_DOWN_IO
106 * virt_to_phys - map virtual addresses to physical
107 * @address: address to remap
109 * The returned physical address is the physical (CPU) mapping for
110 * the memory address given. It is only valid to use this function on
111 * addresses directly mapped or allocated via kmalloc.
113 * This function does not give bus mappings for DMA transfers. In
114 * almost all conceivable cases a device driver should not be using
117 static inline unsigned long virt_to_phys(volatile const void *address
)
119 return (unsigned long)address
- PAGE_OFFSET
+ PHYS_OFFSET
;
123 * phys_to_virt - map physical address to virtual
124 * @address: address to remap
126 * The returned virtual address is a current CPU mapping for
127 * the memory address given. It is only valid to use this function on
128 * addresses that have a kernel mapping
130 * This function does not handle bus mappings for DMA transfers. In
131 * almost all conceivable cases a device driver should not be using
134 static inline void * phys_to_virt(unsigned long address
)
136 return (void *)(address
+ PAGE_OFFSET
- PHYS_OFFSET
);
140 * ISA I/O bus memory addresses are 1:1 with the physical address.
142 static inline unsigned long isa_virt_to_bus(volatile void * address
)
144 return (unsigned long)address
- PAGE_OFFSET
;
147 static inline void * isa_bus_to_virt(unsigned long address
)
149 return (void *)(address
+ PAGE_OFFSET
);
152 #define isa_page_to_bus page_to_phys
155 * However PCI ones are not necessarily 1:1 and therefore these interfaces
156 * are forbidden in portable PCI drivers.
158 * Allow them for x86 for legacy drivers, though.
160 #define virt_to_bus virt_to_phys
161 #define bus_to_virt phys_to_virt
164 * Change "struct page" to physical address.
166 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
168 extern void __iomem
* __ioremap(phys_t offset
, phys_t size
, unsigned long flags
);
169 extern void __iounmap(const volatile void __iomem
*addr
);
171 static inline void __iomem
* __ioremap_mode(phys_t offset
, unsigned long size
,
174 void __iomem
*addr
= plat_ioremap(offset
, size
, flags
);
179 #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
181 if (cpu_has_64bit_addresses
) {
182 u64 base
= UNCAC_BASE
;
185 * R10000 supports a 2 bit uncached attribute therefore
186 * UNCAC_BASE may not equal IO_BASE.
188 if (flags
== _CACHE_UNCACHED
)
189 base
= (u64
) IO_BASE
;
190 return (void __iomem
*) (unsigned long) (base
+ offset
);
191 } else if (__builtin_constant_p(offset
) &&
192 __builtin_constant_p(size
) && __builtin_constant_p(flags
)) {
193 phys_t phys_addr
, last_addr
;
195 phys_addr
= fixup_bigphys_addr(offset
, size
);
197 /* Don't allow wraparound or zero size. */
198 last_addr
= phys_addr
+ size
- 1;
199 if (!size
|| last_addr
< phys_addr
)
203 * Map uncached objects in the low 512MB of address
206 if (__IS_LOW512(phys_addr
) && __IS_LOW512(last_addr
) &&
207 flags
== _CACHE_UNCACHED
)
208 return (void __iomem
*)
209 (unsigned long)CKSEG1ADDR(phys_addr
);
212 return __ioremap(offset
, size
, flags
);
218 * ioremap - map bus memory into CPU space
219 * @offset: bus address of the memory
220 * @size: size of the resource to map
222 * ioremap performs a platform specific sequence of operations to
223 * make bus memory CPU accessible via the readb/readw/readl/writeb/
224 * writew/writel functions and the other mmio helpers. The returned
225 * address is not guaranteed to be usable directly as a virtual
228 #define ioremap(offset, size) \
229 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
232 * ioremap_nocache - map bus memory into CPU space
233 * @offset: bus address of the memory
234 * @size: size of the resource to map
236 * ioremap_nocache performs a platform specific sequence of operations to
237 * make bus memory CPU accessible via the readb/readw/readl/writeb/
238 * writew/writel functions and the other mmio helpers. The returned
239 * address is not guaranteed to be usable directly as a virtual
242 * This version of ioremap ensures that the memory is marked uncachable
243 * on the CPU as well as honouring existing caching rules from things like
244 * the PCI bus. Note that there are other caches and buffers on many
245 * busses. In paticular driver authors should read up on PCI writes
247 * It's useful if some control registers are in such an area and
248 * write combining or read caching is not desirable:
250 #define ioremap_nocache(offset, size) \
251 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
254 * ioremap_cachable - map bus memory into CPU space
255 * @offset: bus address of the memory
256 * @size: size of the resource to map
258 * ioremap_nocache performs a platform specific sequence of operations to
259 * make bus memory CPU accessible via the readb/readw/readl/writeb/
260 * writew/writel functions and the other mmio helpers. The returned
261 * address is not guaranteed to be usable directly as a virtual
264 * This version of ioremap ensures that the memory is marked cachable by
265 * the CPU. Also enables full write-combining. Useful for some
266 * memory-like regions on I/O busses.
268 #define ioremap_cachable(offset, size) \
269 __ioremap_mode((offset), (size), _page_cachable_default)
272 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
273 * requests a cachable mapping, ioremap_uncached_accelerated requests a
274 * mapping using the uncached accelerated mode which isn't supported on
277 #define ioremap_cacheable_cow(offset, size) \
278 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
279 #define ioremap_uncached_accelerated(offset, size) \
280 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
282 static inline void iounmap(const volatile void __iomem
*addr
)
284 if (plat_iounmap(addr
))
287 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
289 if (cpu_has_64bit_addresses
||
290 (__builtin_constant_p(addr
) && __IS_KSEG1(addr
)))
298 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
300 static inline void pfx##write##bwlq(type val, \
301 volatile void __iomem *mem) \
303 volatile type *__mem; \
306 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
308 __val = pfx##ioswab##bwlq(__mem, val); \
310 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
312 else if (cpu_has_64bits) { \
313 unsigned long __flags; \
317 local_irq_save(__flags); \
318 __asm__ __volatile__( \
319 ".set mips3" "\t\t# __writeq""\n\t" \
320 "dsll32 %L0, %L0, 0" "\n\t" \
321 "dsrl32 %L0, %L0, 0" "\n\t" \
322 "dsll32 %M0, %M0, 0" "\n\t" \
323 "or %L0, %L0, %M0" "\n\t" \
324 "sd %L0, %2" "\n\t" \
327 : "0" (__val), "m" (*__mem)); \
329 local_irq_restore(__flags); \
334 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
336 volatile type *__mem; \
339 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
341 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
343 else if (cpu_has_64bits) { \
344 unsigned long __flags; \
347 local_irq_save(__flags); \
348 __asm__ __volatile__( \
349 ".set mips3" "\t\t# __readq" "\n\t" \
350 "ld %L0, %1" "\n\t" \
351 "dsra32 %M0, %L0, 0" "\n\t" \
352 "sll %L0, %L0, 0" "\n\t" \
357 local_irq_restore(__flags); \
363 return pfx##ioswab##bwlq(__mem, __val); \
366 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
368 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
370 volatile type *__addr; \
373 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
375 __val = pfx##ioswab##bwlq(__addr, val); \
377 /* Really, we want this to be atomic */ \
378 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
384 static inline type pfx##in##bwlq##p(unsigned long port) \
386 volatile type *__addr; \
389 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
391 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
396 return pfx##ioswab##bwlq(__addr, __val); \
399 #define __BUILD_MEMORY_PFX(bus, bwlq, type) \
401 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
403 #define BUILDIO_MEM(bwlq, type) \
405 __BUILD_MEMORY_PFX(__raw_, bwlq, type) \
406 __BUILD_MEMORY_PFX(, bwlq, type) \
407 __BUILD_MEMORY_PFX(__mem_, bwlq, type) \
414 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
415 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
416 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
418 #define BUILDIO_IOPORT(bwlq, type) \
419 __BUILD_IOPORT_PFX(, bwlq, type) \
420 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
422 BUILDIO_IOPORT(b
, u8
)
423 BUILDIO_IOPORT(w
, u16
)
424 BUILDIO_IOPORT(l
, u32
)
426 BUILDIO_IOPORT(q
, u64
)
429 #define __BUILDIO(bwlq, type) \
431 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
435 #define readb_relaxed readb
436 #define readw_relaxed readw
437 #define readl_relaxed readl
438 #define readq_relaxed readq
441 * Some code tests for these symbols
444 #define writeq writeq
446 #define __BUILD_MEMORY_STRING(bwlq, type) \
448 static inline void writes##bwlq(volatile void __iomem *mem, \
449 const void *addr, unsigned int count) \
451 const volatile type *__addr = addr; \
454 __mem_write##bwlq(*__addr, mem); \
459 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
460 unsigned int count) \
462 volatile type *__addr = addr; \
465 *__addr = __mem_read##bwlq(mem); \
470 #define __BUILD_IOPORT_STRING(bwlq, type) \
472 static inline void outs##bwlq(unsigned long port, const void *addr, \
473 unsigned int count) \
475 const volatile type *__addr = addr; \
478 __mem_out##bwlq(*__addr, port); \
483 static inline void ins##bwlq(unsigned long port, void *addr, \
484 unsigned int count) \
486 volatile type *__addr = addr; \
489 *__addr = __mem_in##bwlq(port); \
494 #define BUILDSTRING(bwlq, type) \
496 __BUILD_MEMORY_STRING(bwlq, type) \
497 __BUILD_IOPORT_STRING(bwlq, type)
507 /* Depends on MIPS II instruction set */
508 #define mmiowb() asm volatile ("sync" ::: "memory")
510 static inline void memset_io(volatile void __iomem
*addr
, unsigned char val
, int count
)
512 memset((void __force
*) addr
, val
, count
);
514 static inline void memcpy_fromio(void *dst
, const volatile void __iomem
*src
, int count
)
516 memcpy(dst
, (void __force
*) src
, count
);
518 static inline void memcpy_toio(volatile void __iomem
*dst
, const void *src
, int count
)
520 memcpy((void __force
*) dst
, src
, count
);
524 * The caches on some architectures aren't dma-coherent and have need to
525 * handle this in software. There are three types of operations that
526 * can be applied to dma buffers.
528 * - dma_cache_wback_inv(start, size) makes caches and coherent by
529 * writing the content of the caches back to memory, if necessary.
530 * The function also invalidates the affected part of the caches as
531 * necessary before DMA transfers from outside to memory.
532 * - dma_cache_wback(start, size) makes caches and coherent by
533 * writing the content of the caches back to memory, if necessary.
534 * The function also invalidates the affected part of the caches as
535 * necessary before DMA transfers from outside to memory.
536 * - dma_cache_inv(start, size) invalidates the affected parts of the
537 * caches. Dirty lines of the caches may be written back or simply
538 * be discarded. This operation is necessary before dma operations
541 * This API used to be exported; it now is for arch code internal use only.
543 #ifdef CONFIG_DMA_NONCOHERENT
545 extern void (*_dma_cache_wback_inv
)(unsigned long start
, unsigned long size
);
546 extern void (*_dma_cache_wback
)(unsigned long start
, unsigned long size
);
547 extern void (*_dma_cache_inv
)(unsigned long start
, unsigned long size
);
549 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
550 #define dma_cache_wback(start, size) _dma_cache_wback(start, size)
551 #define dma_cache_inv(start, size) _dma_cache_inv(start, size)
553 #else /* Sane hardware */
555 #define dma_cache_wback_inv(start,size) \
556 do { (void) (start); (void) (size); } while (0)
557 #define dma_cache_wback(start,size) \
558 do { (void) (start); (void) (size); } while (0)
559 #define dma_cache_inv(start,size) \
560 do { (void) (start); (void) (size); } while (0)
562 #endif /* CONFIG_DMA_NONCOHERENT */
565 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
566 * Avoid interrupt mucking, just adjust the address for 4-byte access.
567 * Assume the addresses are 8-byte aligned.
570 #define __CSR_32_ADJUST 4
572 #define __CSR_32_ADJUST 0
575 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
576 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
579 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
582 #define xlate_dev_mem_ptr(p) __va(p)
585 * Convert a virtual cached pointer to an uncached pointer
587 #define xlate_dev_kmem_ptr(p) p
589 #endif /* _ASM_IO_H */