net: Remove unused netdev arg from some NAPI interfaces.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / natsemi.c
blob478edb92bca35581509f80a7709354c00a2f3d17
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h> /* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
60 #define RX_OFFSET 2
62 /* Updated to recommendations in pci-skeleton v2.03. */
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72 static int debug = -1;
74 static int mtu;
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78 static const int multicast_filter_limit = 100;
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
84 static int dspcfg_workaround = 1;
86 /* Used to pass the media type, etc.
87 Both 'options[]' and 'full_duplex[]' should exist for driver
88 interoperability.
89 The media type is usually passed in 'options[]'.
91 #define MAX_UNITS 8 /* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
95 /* Operational parameters that are set at compile time. */
97 /* Keep the ring sizes a power of two for compile efficiency.
98 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99 Making the Tx ring too large decreases the effectiveness of channel
100 bonding and packet priority.
101 There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE 16
103 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE 32
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT (2*HZ)
110 #define NATSEMI_HW_TIMEOUT 400
111 #define NATSEMI_TIMER_FREQ 5*HZ
112 #define NATSEMI_PG0_NREGS 64
113 #define NATSEMI_RFDR_NREGS 8
114 #define NATSEMI_PG1_NREGS 4
115 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
120 /* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
124 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
127 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
129 /* These identify the driver base version and may not be removed. */
130 static char version[] __devinitdata =
131 KERN_INFO DRV_NAME " dp8381x driver, version "
132 DRV_VERSION ", " DRV_RELDATE "\n"
133 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
134 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 1);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 "DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
156 Theory of Operation
158 I. Board Compatibility
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
163 II. Board-specific settings
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
168 III. Driver operation
170 IIIa. Ring buffers
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
178 IIIb/c. Transmit/Receive Structure
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack. Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames. New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets. When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine. Copying also preloads the cache, which is
196 most useful with small frames.
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing. On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
203 IIId. Synchronization
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 recieve and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
209 IVb. References
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
216 IVc. Errata
218 None characterised.
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
228 #define PHYID_AM79C874 0x0022561b
230 enum {
231 MII_MCTRL = 0x15, /* mode control register */
232 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
233 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
236 enum {
237 NATSEMI_FLAG_IGNORE_PHY = 0x1,
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 const char *name;
243 unsigned long flags;
244 unsigned int eeprom_size;
245 } natsemi_pci_info[] __devinitdata = {
246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 { "NatSemi DP8381[56]", 0, 24 },
250 static struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
251 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
252 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 { } /* terminate list */
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
257 /* Offsets to the device registers.
258 Unlike software-only systems, device drivers interact with complex hardware.
259 It's not useful to define symbolic names for every register bit in the
260 device.
262 enum register_offsets {
263 ChipCmd = 0x00,
264 ChipConfig = 0x04,
265 EECtrl = 0x08,
266 PCIBusCfg = 0x0C,
267 IntrStatus = 0x10,
268 IntrMask = 0x14,
269 IntrEnable = 0x18,
270 IntrHoldoff = 0x1C, /* DP83816 only */
271 TxRingPtr = 0x20,
272 TxConfig = 0x24,
273 RxRingPtr = 0x30,
274 RxConfig = 0x34,
275 ClkRun = 0x3C,
276 WOLCmd = 0x40,
277 PauseCmd = 0x44,
278 RxFilterAddr = 0x48,
279 RxFilterData = 0x4C,
280 BootRomAddr = 0x50,
281 BootRomData = 0x54,
282 SiliconRev = 0x58,
283 StatsCtrl = 0x5C,
284 StatsData = 0x60,
285 RxPktErrs = 0x60,
286 RxMissed = 0x68,
287 RxCRCErrs = 0x64,
288 BasicControl = 0x80,
289 BasicStatus = 0x84,
290 AnegAdv = 0x90,
291 AnegPeer = 0x94,
292 PhyStatus = 0xC0,
293 MIntrCtrl = 0xC4,
294 MIntrStatus = 0xC8,
295 PhyCtrl = 0xE4,
297 /* These are from the spec, around page 78... on a separate table.
298 * The meaning of these registers depend on the value of PGSEL. */
299 PGSEL = 0xCC,
300 PMDCSR = 0xE4,
301 TSTDAT = 0xFC,
302 DSPCFG = 0xF4,
303 SDCFG = 0xF8
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL 0x0
308 #define DSPCFG_VAL 0x5040
309 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 PCIPM = 0x44,
319 enum ChipCmd_bits {
320 ChipReset = 0x100,
321 RxReset = 0x20,
322 TxReset = 0x10,
323 RxOff = 0x08,
324 RxOn = 0x04,
325 TxOff = 0x02,
326 TxOn = 0x01,
329 enum ChipConfig_bits {
330 CfgPhyDis = 0x200,
331 CfgPhyRst = 0x400,
332 CfgExtPhy = 0x1000,
333 CfgAnegEnable = 0x2000,
334 CfgAneg100 = 0x4000,
335 CfgAnegFull = 0x8000,
336 CfgAnegDone = 0x8000000,
337 CfgFullDuplex = 0x20000000,
338 CfgSpeed100 = 0x40000000,
339 CfgLink = 0x80000000,
342 enum EECtrl_bits {
343 EE_ShiftClk = 0x04,
344 EE_DataIn = 0x01,
345 EE_ChipSelect = 0x08,
346 EE_DataOut = 0x02,
347 MII_Data = 0x10,
348 MII_Write = 0x20,
349 MII_ShiftClk = 0x40,
352 enum PCIBusCfg_bits {
353 EepromReload = 0x4,
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 IntrRxDone = 0x0001,
359 IntrRxIntr = 0x0002,
360 IntrRxErr = 0x0004,
361 IntrRxEarly = 0x0008,
362 IntrRxIdle = 0x0010,
363 IntrRxOverrun = 0x0020,
364 IntrTxDone = 0x0040,
365 IntrTxIntr = 0x0080,
366 IntrTxErr = 0x0100,
367 IntrTxIdle = 0x0200,
368 IntrTxUnderrun = 0x0400,
369 StatsMax = 0x0800,
370 SWInt = 0x1000,
371 WOLPkt = 0x2000,
372 LinkChange = 0x4000,
373 IntrHighBits = 0x8000,
374 RxStatusFIFOOver = 0x10000,
375 IntrPCIErr = 0xf00000,
376 RxResetDone = 0x1000000,
377 TxResetDone = 0x2000000,
378 IntrAbnormalSummary = 0xCD20,
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
390 #define DEFAULT_INTR 0x00f1cd65
392 enum TxConfig_bits {
393 TxDrthMask = 0x3f,
394 TxFlthMask = 0x3f00,
395 TxMxdmaMask = 0x700000,
396 TxMxdma_512 = 0x0,
397 TxMxdma_4 = 0x100000,
398 TxMxdma_8 = 0x200000,
399 TxMxdma_16 = 0x300000,
400 TxMxdma_32 = 0x400000,
401 TxMxdma_64 = 0x500000,
402 TxMxdma_128 = 0x600000,
403 TxMxdma_256 = 0x700000,
404 TxCollRetry = 0x800000,
405 TxAutoPad = 0x10000000,
406 TxMacLoop = 0x20000000,
407 TxHeartIgn = 0x40000000,
408 TxCarrierIgn = 0x80000000
412 * Tx Configuration:
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 * when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 * threshold and the drain threshold must be less than 2016 bytes.
422 #define TX_FLTH_VAL ((512/32) << 8)
423 #define TX_DRTH_VAL_START (64/32)
424 #define TX_DRTH_VAL_INC 2
425 #define TX_DRTH_VAL_LIMIT (1472/32)
427 enum RxConfig_bits {
428 RxDrthMask = 0x3e,
429 RxMxdmaMask = 0x700000,
430 RxMxdma_512 = 0x0,
431 RxMxdma_4 = 0x100000,
432 RxMxdma_8 = 0x200000,
433 RxMxdma_16 = 0x300000,
434 RxMxdma_32 = 0x400000,
435 RxMxdma_64 = 0x500000,
436 RxMxdma_128 = 0x600000,
437 RxMxdma_256 = 0x700000,
438 RxAcceptLong = 0x8000000,
439 RxAcceptTx = 0x10000000,
440 RxAcceptRunt = 0x40000000,
441 RxAcceptErr = 0x80000000
443 #define RX_DRTH_VAL (128/8)
445 enum ClkRun_bits {
446 PMEEnable = 0x100,
447 PMEStatus = 0x8000,
450 enum WolCmd_bits {
451 WakePhy = 0x1,
452 WakeUnicast = 0x2,
453 WakeMulticast = 0x4,
454 WakeBroadcast = 0x8,
455 WakeArp = 0x10,
456 WakePMatch0 = 0x20,
457 WakePMatch1 = 0x40,
458 WakePMatch2 = 0x80,
459 WakePMatch3 = 0x100,
460 WakeMagic = 0x200,
461 WakeMagicSecure = 0x400,
462 SecureHack = 0x100000,
463 WokePhy = 0x400000,
464 WokeUnicast = 0x800000,
465 WokeMulticast = 0x1000000,
466 WokeBroadcast = 0x2000000,
467 WokeArp = 0x4000000,
468 WokePMatch0 = 0x8000000,
469 WokePMatch1 = 0x10000000,
470 WokePMatch2 = 0x20000000,
471 WokePMatch3 = 0x40000000,
472 WokeMagic = 0x80000000,
473 WakeOptsSummary = 0x7ff
476 enum RxFilterAddr_bits {
477 RFCRAddressMask = 0x3ff,
478 AcceptMulticast = 0x00200000,
479 AcceptMyPhys = 0x08000000,
480 AcceptAllPhys = 0x10000000,
481 AcceptAllMulticast = 0x20000000,
482 AcceptBroadcast = 0x40000000,
483 RxFilterEnable = 0x80000000
486 enum StatsCtrl_bits {
487 StatsWarn = 0x1,
488 StatsFreeze = 0x2,
489 StatsClear = 0x4,
490 StatsStrobe = 0x8,
493 enum MIntrCtrl_bits {
494 MICRIntEn = 0x2,
497 enum PhyCtrl_bits {
498 PhyAddrMask = 0x1f,
501 #define PHY_ADDR_NONE 32
502 #define PHY_ADDR_INTERNAL 1
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C 0x0302
506 #define SRR_DP83815_D 0x0403
507 #define SRR_DP83816_A4 0x0504
508 #define SRR_DP83816_A5 0x0505
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512 architectures. */
513 struct netdev_desc {
514 __le32 next_desc;
515 __le32 cmd_status;
516 __le32 addr;
517 __le32 software_use;
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 DescSizeMask=0xfff,
526 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
531 DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 DescRxDest=0x01800000, DescRxLong=0x00400000,
533 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 DescRxLoop=0x00020000, DesRxColl=0x00010000,
538 struct netdev_private {
539 /* Descriptor rings first for alignment */
540 dma_addr_t ring_dma;
541 struct netdev_desc *rx_ring;
542 struct netdev_desc *tx_ring;
543 /* The addresses of receive-in-place skbuffs */
544 struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 dma_addr_t rx_dma[RX_RING_SIZE];
546 /* address of a sent-in-place packet/buffer, for later free() */
547 struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 dma_addr_t tx_dma[TX_RING_SIZE];
549 struct net_device *dev;
550 struct napi_struct napi;
551 struct net_device_stats stats;
552 /* Media monitoring timer */
553 struct timer_list timer;
554 /* Frequently used values: keep some adjacent for cache effect */
555 struct pci_dev *pci_dev;
556 struct netdev_desc *rx_head_desc;
557 /* Producer/consumer ring indices */
558 unsigned int cur_rx, dirty_rx;
559 unsigned int cur_tx, dirty_tx;
560 /* Based on MTU+slack. */
561 unsigned int rx_buf_sz;
562 int oom;
563 /* Interrupt status */
564 u32 intr_status;
565 /* Do not touch the nic registers */
566 int hands_off;
567 /* Don't pay attention to the reported link state. */
568 int ignore_phy;
569 /* external phy that is used: only valid if dev->if_port != PORT_TP */
570 int mii;
571 int phy_addr_external;
572 unsigned int full_duplex;
573 /* Rx filter */
574 u32 cur_rx_mode;
575 u32 rx_filter[16];
576 /* FIFO and PCI burst thresholds */
577 u32 tx_config, rx_config;
578 /* original contents of ClkRun register */
579 u32 SavedClkRun;
580 /* silicon revision */
581 u32 srr;
582 /* expected DSPCFG value */
583 u16 dspcfg;
584 int dspcfg_workaround;
585 /* parms saved in ethtool format */
586 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
587 u8 duplex; /* Duplex, half or full */
588 u8 autoneg; /* Autonegotiation enabled */
589 /* MII transceiver section */
590 u16 advertising;
591 unsigned int iosize;
592 spinlock_t lock;
593 u32 msg_enable;
594 /* EEPROM data */
595 int eeprom_size;
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(unsigned long data);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static int start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645 static void enable_wol_mode(struct net_device *dev, int enable_intr);
646 static int netdev_close(struct net_device *dev);
647 static int netdev_get_regs(struct net_device *dev, u8 *buf);
648 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
649 static const struct ethtool_ops ethtool_ops;
651 #define NATSEMI_ATTR(_name) \
652 static ssize_t natsemi_show_##_name(struct device *dev, \
653 struct device_attribute *attr, char *buf); \
654 static ssize_t natsemi_set_##_name(struct device *dev, \
655 struct device_attribute *attr, \
656 const char *buf, size_t count); \
657 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
659 #define NATSEMI_CREATE_FILE(_dev, _name) \
660 device_create_file(&_dev->dev, &dev_attr_##_name)
661 #define NATSEMI_REMOVE_FILE(_dev, _name) \
662 device_remove_file(&_dev->dev, &dev_attr_##_name)
664 NATSEMI_ATTR(dspcfg_workaround);
666 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
667 struct device_attribute *attr,
668 char *buf)
670 struct netdev_private *np = netdev_priv(to_net_dev(dev));
672 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
675 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
676 struct device_attribute *attr,
677 const char *buf, size_t count)
679 struct netdev_private *np = netdev_priv(to_net_dev(dev));
680 int new_setting;
681 unsigned long flags;
683 /* Find out the new setting */
684 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
685 new_setting = 1;
686 else if (!strncmp("off", buf, count - 1)
687 || !strncmp("0", buf, count - 1))
688 new_setting = 0;
689 else
690 return count;
692 spin_lock_irqsave(&np->lock, flags);
694 np->dspcfg_workaround = new_setting;
696 spin_unlock_irqrestore(&np->lock, flags);
698 return count;
701 static inline void __iomem *ns_ioaddr(struct net_device *dev)
703 return (void __iomem *) dev->base_addr;
706 static inline void natsemi_irq_enable(struct net_device *dev)
708 writel(1, ns_ioaddr(dev) + IntrEnable);
709 readl(ns_ioaddr(dev) + IntrEnable);
712 static inline void natsemi_irq_disable(struct net_device *dev)
714 writel(0, ns_ioaddr(dev) + IntrEnable);
715 readl(ns_ioaddr(dev) + IntrEnable);
718 static void move_int_phy(struct net_device *dev, int addr)
720 struct netdev_private *np = netdev_priv(dev);
721 void __iomem *ioaddr = ns_ioaddr(dev);
722 int target = 31;
725 * The internal phy is visible on the external mii bus. Therefore we must
726 * move it away before we can send commands to an external phy.
727 * There are two addresses we must avoid:
728 * - the address on the external phy that is used for transmission.
729 * - the address that we want to access. User space can access phys
730 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
731 * phy that is used for transmission.
734 if (target == addr)
735 target--;
736 if (target == np->phy_addr_external)
737 target--;
738 writew(target, ioaddr + PhyCtrl);
739 readw(ioaddr + PhyCtrl);
740 udelay(1);
743 static void __devinit natsemi_init_media (struct net_device *dev)
745 struct netdev_private *np = netdev_priv(dev);
746 u32 tmp;
748 if (np->ignore_phy)
749 netif_carrier_on(dev);
750 else
751 netif_carrier_off(dev);
753 /* get the initial settings from hardware */
754 tmp = mdio_read(dev, MII_BMCR);
755 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
756 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
757 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
758 np->advertising= mdio_read(dev, MII_ADVERTISE);
760 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
761 && netif_msg_probe(np)) {
762 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
763 "10%s %s duplex.\n",
764 pci_name(np->pci_dev),
765 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
766 "enabled, advertise" : "disabled, force",
767 (np->advertising &
768 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
769 "0" : "",
770 (np->advertising &
771 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
772 "full" : "half");
774 if (netif_msg_probe(np))
775 printk(KERN_INFO
776 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
777 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
778 np->advertising);
782 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
783 const struct pci_device_id *ent)
785 struct net_device *dev;
786 struct netdev_private *np;
787 int i, option, irq, chip_idx = ent->driver_data;
788 static int find_cnt = -1;
789 resource_size_t iostart;
790 unsigned long iosize;
791 void __iomem *ioaddr;
792 const int pcibar = 1; /* PCI base address register */
793 int prev_eedata;
794 u32 tmp;
796 /* when built into the kernel, we only print version if device is found */
797 #ifndef MODULE
798 static int printed_version;
799 if (!printed_version++)
800 printk(version);
801 #endif
803 i = pci_enable_device(pdev);
804 if (i) return i;
806 /* natsemi has a non-standard PM control register
807 * in PCI config space. Some boards apparently need
808 * to be brought to D0 in this manner.
810 pci_read_config_dword(pdev, PCIPM, &tmp);
811 if (tmp & PCI_PM_CTRL_STATE_MASK) {
812 /* D0 state, disable PME assertion */
813 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
814 pci_write_config_dword(pdev, PCIPM, newtmp);
817 find_cnt++;
818 iostart = pci_resource_start(pdev, pcibar);
819 iosize = pci_resource_len(pdev, pcibar);
820 irq = pdev->irq;
822 pci_set_master(pdev);
824 dev = alloc_etherdev(sizeof (struct netdev_private));
825 if (!dev)
826 return -ENOMEM;
827 SET_NETDEV_DEV(dev, &pdev->dev);
829 i = pci_request_regions(pdev, DRV_NAME);
830 if (i)
831 goto err_pci_request_regions;
833 ioaddr = ioremap(iostart, iosize);
834 if (!ioaddr) {
835 i = -ENOMEM;
836 goto err_ioremap;
839 /* Work around the dropped serial bit. */
840 prev_eedata = eeprom_read(ioaddr, 6);
841 for (i = 0; i < 3; i++) {
842 int eedata = eeprom_read(ioaddr, i + 7);
843 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
844 dev->dev_addr[i*2+1] = eedata >> 7;
845 prev_eedata = eedata;
848 dev->base_addr = (unsigned long __force) ioaddr;
849 dev->irq = irq;
851 np = netdev_priv(dev);
852 netif_napi_add(dev, &np->napi, natsemi_poll, 64);
853 np->dev = dev;
855 np->pci_dev = pdev;
856 pci_set_drvdata(pdev, dev);
857 np->iosize = iosize;
858 spin_lock_init(&np->lock);
859 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
860 np->hands_off = 0;
861 np->intr_status = 0;
862 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
863 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
864 np->ignore_phy = 1;
865 else
866 np->ignore_phy = 0;
867 np->dspcfg_workaround = dspcfg_workaround;
869 /* Initial port:
870 * - If configured to ignore the PHY set up for external.
871 * - If the nic was configured to use an external phy and if find_mii
872 * finds a phy: use external port, first phy that replies.
873 * - Otherwise: internal port.
874 * Note that the phy address for the internal phy doesn't matter:
875 * The address would be used to access a phy over the mii bus, but
876 * the internal phy is accessed through mapped registers.
878 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
879 dev->if_port = PORT_MII;
880 else
881 dev->if_port = PORT_TP;
882 /* Reset the chip to erase previous misconfiguration. */
883 natsemi_reload_eeprom(dev);
884 natsemi_reset(dev);
886 if (dev->if_port != PORT_TP) {
887 np->phy_addr_external = find_mii(dev);
888 /* If we're ignoring the PHY it doesn't matter if we can't
889 * find one. */
890 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
891 dev->if_port = PORT_TP;
892 np->phy_addr_external = PHY_ADDR_INTERNAL;
894 } else {
895 np->phy_addr_external = PHY_ADDR_INTERNAL;
898 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
899 if (dev->mem_start)
900 option = dev->mem_start;
902 /* The lower four bits are the media type. */
903 if (option) {
904 if (option & 0x200)
905 np->full_duplex = 1;
906 if (option & 15)
907 printk(KERN_INFO
908 "natsemi %s: ignoring user supplied media type %d",
909 pci_name(np->pci_dev), option & 15);
911 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
912 np->full_duplex = 1;
914 /* The chip-specific entries in the device structure. */
915 dev->open = &netdev_open;
916 dev->hard_start_xmit = &start_tx;
917 dev->stop = &netdev_close;
918 dev->get_stats = &get_stats;
919 dev->set_multicast_list = &set_rx_mode;
920 dev->change_mtu = &natsemi_change_mtu;
921 dev->do_ioctl = &netdev_ioctl;
922 dev->tx_timeout = &ns_tx_timeout;
923 dev->watchdog_timeo = TX_TIMEOUT;
925 #ifdef CONFIG_NET_POLL_CONTROLLER
926 dev->poll_controller = &natsemi_poll_controller;
927 #endif
928 SET_ETHTOOL_OPS(dev, &ethtool_ops);
930 if (mtu)
931 dev->mtu = mtu;
933 natsemi_init_media(dev);
935 /* save the silicon revision for later querying */
936 np->srr = readl(ioaddr + SiliconRev);
937 if (netif_msg_hw(np))
938 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
939 pci_name(np->pci_dev), np->srr);
941 i = register_netdev(dev);
942 if (i)
943 goto err_register_netdev;
945 if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
946 goto err_create_file;
948 if (netif_msg_drv(np)) {
949 printk(KERN_INFO "natsemi %s: %s at %#08llx "
950 "(%s), %pM, IRQ %d",
951 dev->name, natsemi_pci_info[chip_idx].name,
952 (unsigned long long)iostart, pci_name(np->pci_dev),
953 dev->dev_addr, irq);
954 if (dev->if_port == PORT_TP)
955 printk(", port TP.\n");
956 else if (np->ignore_phy)
957 printk(", port MII, ignoring PHY\n");
958 else
959 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
961 return 0;
963 err_create_file:
964 unregister_netdev(dev);
966 err_register_netdev:
967 iounmap(ioaddr);
969 err_ioremap:
970 pci_release_regions(pdev);
971 pci_set_drvdata(pdev, NULL);
973 err_pci_request_regions:
974 free_netdev(dev);
975 return i;
979 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
980 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
982 /* Delay between EEPROM clock transitions.
983 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
984 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
985 made udelay() unreliable.
986 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
987 deprecated.
989 #define eeprom_delay(ee_addr) readl(ee_addr)
991 #define EE_Write0 (EE_ChipSelect)
992 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
994 /* The EEPROM commands include the alway-set leading bit. */
995 enum EEPROM_Cmds {
996 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
999 static int eeprom_read(void __iomem *addr, int location)
1001 int i;
1002 int retval = 0;
1003 void __iomem *ee_addr = addr + EECtrl;
1004 int read_cmd = location | EE_ReadCmd;
1006 writel(EE_Write0, ee_addr);
1008 /* Shift the read command bits out. */
1009 for (i = 10; i >= 0; i--) {
1010 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1011 writel(dataval, ee_addr);
1012 eeprom_delay(ee_addr);
1013 writel(dataval | EE_ShiftClk, ee_addr);
1014 eeprom_delay(ee_addr);
1016 writel(EE_ChipSelect, ee_addr);
1017 eeprom_delay(ee_addr);
1019 for (i = 0; i < 16; i++) {
1020 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1021 eeprom_delay(ee_addr);
1022 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1023 writel(EE_ChipSelect, ee_addr);
1024 eeprom_delay(ee_addr);
1027 /* Terminate the EEPROM access. */
1028 writel(EE_Write0, ee_addr);
1029 writel(0, ee_addr);
1030 return retval;
1033 /* MII transceiver control section.
1034 * The 83815 series has an internal transceiver, and we present the
1035 * internal management registers as if they were MII connected.
1036 * External Phy registers are referenced through the MII interface.
1039 /* clock transitions >= 20ns (25MHz)
1040 * One readl should be good to PCI @ 100MHz
1042 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1044 static int mii_getbit (struct net_device *dev)
1046 int data;
1047 void __iomem *ioaddr = ns_ioaddr(dev);
1049 writel(MII_ShiftClk, ioaddr + EECtrl);
1050 data = readl(ioaddr + EECtrl);
1051 writel(0, ioaddr + EECtrl);
1052 mii_delay(ioaddr);
1053 return (data & MII_Data)? 1 : 0;
1056 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1058 u32 i;
1059 void __iomem *ioaddr = ns_ioaddr(dev);
1061 for (i = (1 << (len-1)); i; i >>= 1)
1063 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1064 writel(mdio_val, ioaddr + EECtrl);
1065 mii_delay(ioaddr);
1066 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1067 mii_delay(ioaddr);
1069 writel(0, ioaddr + EECtrl);
1070 mii_delay(ioaddr);
1073 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1075 u32 cmd;
1076 int i;
1077 u32 retval = 0;
1079 /* Ensure sync */
1080 mii_send_bits (dev, 0xffffffff, 32);
1081 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1082 /* ST,OP = 0110'b for read operation */
1083 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1084 mii_send_bits (dev, cmd, 14);
1085 /* Turnaround */
1086 if (mii_getbit (dev))
1087 return 0;
1088 /* Read data */
1089 for (i = 0; i < 16; i++) {
1090 retval <<= 1;
1091 retval |= mii_getbit (dev);
1093 /* End cycle */
1094 mii_getbit (dev);
1095 return retval;
1098 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1100 u32 cmd;
1102 /* Ensure sync */
1103 mii_send_bits (dev, 0xffffffff, 32);
1104 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1105 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1106 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1107 mii_send_bits (dev, cmd, 32);
1108 /* End cycle */
1109 mii_getbit (dev);
1112 static int mdio_read(struct net_device *dev, int reg)
1114 struct netdev_private *np = netdev_priv(dev);
1115 void __iomem *ioaddr = ns_ioaddr(dev);
1117 /* The 83815 series has two ports:
1118 * - an internal transceiver
1119 * - an external mii bus
1121 if (dev->if_port == PORT_TP)
1122 return readw(ioaddr+BasicControl+(reg<<2));
1123 else
1124 return miiport_read(dev, np->phy_addr_external, reg);
1127 static void mdio_write(struct net_device *dev, int reg, u16 data)
1129 struct netdev_private *np = netdev_priv(dev);
1130 void __iomem *ioaddr = ns_ioaddr(dev);
1132 /* The 83815 series has an internal transceiver; handle separately */
1133 if (dev->if_port == PORT_TP)
1134 writew(data, ioaddr+BasicControl+(reg<<2));
1135 else
1136 miiport_write(dev, np->phy_addr_external, reg, data);
1139 static void init_phy_fixup(struct net_device *dev)
1141 struct netdev_private *np = netdev_priv(dev);
1142 void __iomem *ioaddr = ns_ioaddr(dev);
1143 int i;
1144 u32 cfg;
1145 u16 tmp;
1147 /* restore stuff lost when power was out */
1148 tmp = mdio_read(dev, MII_BMCR);
1149 if (np->autoneg == AUTONEG_ENABLE) {
1150 /* renegotiate if something changed */
1151 if ((tmp & BMCR_ANENABLE) == 0
1152 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1154 /* turn on autonegotiation and force negotiation */
1155 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1156 mdio_write(dev, MII_ADVERTISE, np->advertising);
1158 } else {
1159 /* turn off auto negotiation, set speed and duplexity */
1160 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1161 if (np->speed == SPEED_100)
1162 tmp |= BMCR_SPEED100;
1163 if (np->duplex == DUPLEX_FULL)
1164 tmp |= BMCR_FULLDPLX;
1166 * Note: there is no good way to inform the link partner
1167 * that our capabilities changed. The user has to unplug
1168 * and replug the network cable after some changes, e.g.
1169 * after switching from 10HD, autoneg off to 100 HD,
1170 * autoneg off.
1173 mdio_write(dev, MII_BMCR, tmp);
1174 readl(ioaddr + ChipConfig);
1175 udelay(1);
1177 /* find out what phy this is */
1178 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1179 + mdio_read(dev, MII_PHYSID2);
1181 /* handle external phys here */
1182 switch (np->mii) {
1183 case PHYID_AM79C874:
1184 /* phy specific configuration for fibre/tp operation */
1185 tmp = mdio_read(dev, MII_MCTRL);
1186 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1187 if (dev->if_port == PORT_FIBRE)
1188 tmp |= MII_FX_SEL;
1189 else
1190 tmp |= MII_EN_SCRM;
1191 mdio_write(dev, MII_MCTRL, tmp);
1192 break;
1193 default:
1194 break;
1196 cfg = readl(ioaddr + ChipConfig);
1197 if (cfg & CfgExtPhy)
1198 return;
1200 /* On page 78 of the spec, they recommend some settings for "optimum
1201 performance" to be done in sequence. These settings optimize some
1202 of the 100Mbit autodetection circuitry. They say we only want to
1203 do this for rev C of the chip, but engineers at NSC (Bradley
1204 Kennedy) recommends always setting them. If you don't, you get
1205 errors on some autonegotiations that make the device unusable.
1207 It seems that the DSP needs a few usec to reinitialize after
1208 the start of the phy. Just retry writing these values until they
1209 stick.
1211 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1213 int dspcfg;
1214 writew(1, ioaddr + PGSEL);
1215 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1216 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1217 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1218 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1219 writew(np->dspcfg, ioaddr + DSPCFG);
1220 writew(SDCFG_VAL, ioaddr + SDCFG);
1221 writew(0, ioaddr + PGSEL);
1222 readl(ioaddr + ChipConfig);
1223 udelay(10);
1225 writew(1, ioaddr + PGSEL);
1226 dspcfg = readw(ioaddr + DSPCFG);
1227 writew(0, ioaddr + PGSEL);
1228 if (np->dspcfg == dspcfg)
1229 break;
1232 if (netif_msg_link(np)) {
1233 if (i==NATSEMI_HW_TIMEOUT) {
1234 printk(KERN_INFO
1235 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1236 dev->name, i*10);
1237 } else {
1238 printk(KERN_INFO
1239 "%s: DSPCFG accepted after %d usec.\n",
1240 dev->name, i*10);
1244 * Enable PHY Specific event based interrupts. Link state change
1245 * and Auto-Negotiation Completion are among the affected.
1246 * Read the intr status to clear it (needed for wake events).
1248 readw(ioaddr + MIntrStatus);
1249 writew(MICRIntEn, ioaddr + MIntrCtrl);
1252 static int switch_port_external(struct net_device *dev)
1254 struct netdev_private *np = netdev_priv(dev);
1255 void __iomem *ioaddr = ns_ioaddr(dev);
1256 u32 cfg;
1258 cfg = readl(ioaddr + ChipConfig);
1259 if (cfg & CfgExtPhy)
1260 return 0;
1262 if (netif_msg_link(np)) {
1263 printk(KERN_INFO "%s: switching to external transceiver.\n",
1264 dev->name);
1267 /* 1) switch back to external phy */
1268 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1269 readl(ioaddr + ChipConfig);
1270 udelay(1);
1272 /* 2) reset the external phy: */
1273 /* resetting the external PHY has been known to cause a hub supplying
1274 * power over Ethernet to kill the power. We don't want to kill
1275 * power to this computer, so we avoid resetting the phy.
1278 /* 3) reinit the phy fixup, it got lost during power down. */
1279 move_int_phy(dev, np->phy_addr_external);
1280 init_phy_fixup(dev);
1282 return 1;
1285 static int switch_port_internal(struct net_device *dev)
1287 struct netdev_private *np = netdev_priv(dev);
1288 void __iomem *ioaddr = ns_ioaddr(dev);
1289 int i;
1290 u32 cfg;
1291 u16 bmcr;
1293 cfg = readl(ioaddr + ChipConfig);
1294 if (!(cfg &CfgExtPhy))
1295 return 0;
1297 if (netif_msg_link(np)) {
1298 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1299 dev->name);
1301 /* 1) switch back to internal phy: */
1302 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1303 writel(cfg, ioaddr + ChipConfig);
1304 readl(ioaddr + ChipConfig);
1305 udelay(1);
1307 /* 2) reset the internal phy: */
1308 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1309 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1310 readl(ioaddr + ChipConfig);
1311 udelay(10);
1312 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1313 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1314 if (!(bmcr & BMCR_RESET))
1315 break;
1316 udelay(10);
1318 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1319 printk(KERN_INFO
1320 "%s: phy reset did not complete in %d usec.\n",
1321 dev->name, i*10);
1323 /* 3) reinit the phy fixup, it got lost during power down. */
1324 init_phy_fixup(dev);
1326 return 1;
1329 /* Scan for a PHY on the external mii bus.
1330 * There are two tricky points:
1331 * - Do not scan while the internal phy is enabled. The internal phy will
1332 * crash: e.g. reads from the DSPCFG register will return odd values and
1333 * the nasty random phy reset code will reset the nic every few seconds.
1334 * - The internal phy must be moved around, an external phy could
1335 * have the same address as the internal phy.
1337 static int find_mii(struct net_device *dev)
1339 struct netdev_private *np = netdev_priv(dev);
1340 int tmp;
1341 int i;
1342 int did_switch;
1344 /* Switch to external phy */
1345 did_switch = switch_port_external(dev);
1347 /* Scan the possible phy addresses:
1349 * PHY address 0 means that the phy is in isolate mode. Not yet
1350 * supported due to lack of test hardware. User space should
1351 * handle it through ethtool.
1353 for (i = 1; i <= 31; i++) {
1354 move_int_phy(dev, i);
1355 tmp = miiport_read(dev, i, MII_BMSR);
1356 if (tmp != 0xffff && tmp != 0x0000) {
1357 /* found something! */
1358 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1359 + mdio_read(dev, MII_PHYSID2);
1360 if (netif_msg_probe(np)) {
1361 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1362 pci_name(np->pci_dev), np->mii, i);
1364 break;
1367 /* And switch back to internal phy: */
1368 if (did_switch)
1369 switch_port_internal(dev);
1370 return i;
1373 /* CFG bits [13:16] [18:23] */
1374 #define CFG_RESET_SAVE 0xfde000
1375 /* WCSR bits [0:4] [9:10] */
1376 #define WCSR_RESET_SAVE 0x61f
1377 /* RFCR bits [20] [22] [27:31] */
1378 #define RFCR_RESET_SAVE 0xf8500000;
1380 static void natsemi_reset(struct net_device *dev)
1382 int i;
1383 u32 cfg;
1384 u32 wcsr;
1385 u32 rfcr;
1386 u16 pmatch[3];
1387 u16 sopass[3];
1388 struct netdev_private *np = netdev_priv(dev);
1389 void __iomem *ioaddr = ns_ioaddr(dev);
1392 * Resetting the chip causes some registers to be lost.
1393 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1394 * we save the state that would have been loaded from EEPROM
1395 * on a normal power-up (see the spec EEPROM map). This assumes
1396 * whoever calls this will follow up with init_registers() eventually.
1399 /* CFG */
1400 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1401 /* WCSR */
1402 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1403 /* RFCR */
1404 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1405 /* PMATCH */
1406 for (i = 0; i < 3; i++) {
1407 writel(i*2, ioaddr + RxFilterAddr);
1408 pmatch[i] = readw(ioaddr + RxFilterData);
1410 /* SOPAS */
1411 for (i = 0; i < 3; i++) {
1412 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1413 sopass[i] = readw(ioaddr + RxFilterData);
1416 /* now whack the chip */
1417 writel(ChipReset, ioaddr + ChipCmd);
1418 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1419 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1420 break;
1421 udelay(5);
1423 if (i==NATSEMI_HW_TIMEOUT) {
1424 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1425 dev->name, i*5);
1426 } else if (netif_msg_hw(np)) {
1427 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1428 dev->name, i*5);
1431 /* restore CFG */
1432 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1433 /* turn on external phy if it was selected */
1434 if (dev->if_port == PORT_TP)
1435 cfg &= ~(CfgExtPhy | CfgPhyDis);
1436 else
1437 cfg |= (CfgExtPhy | CfgPhyDis);
1438 writel(cfg, ioaddr + ChipConfig);
1439 /* restore WCSR */
1440 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1441 writel(wcsr, ioaddr + WOLCmd);
1442 /* read RFCR */
1443 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1444 /* restore PMATCH */
1445 for (i = 0; i < 3; i++) {
1446 writel(i*2, ioaddr + RxFilterAddr);
1447 writew(pmatch[i], ioaddr + RxFilterData);
1449 for (i = 0; i < 3; i++) {
1450 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1451 writew(sopass[i], ioaddr + RxFilterData);
1453 /* restore RFCR */
1454 writel(rfcr, ioaddr + RxFilterAddr);
1457 static void reset_rx(struct net_device *dev)
1459 int i;
1460 struct netdev_private *np = netdev_priv(dev);
1461 void __iomem *ioaddr = ns_ioaddr(dev);
1463 np->intr_status &= ~RxResetDone;
1465 writel(RxReset, ioaddr + ChipCmd);
1467 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1468 np->intr_status |= readl(ioaddr + IntrStatus);
1469 if (np->intr_status & RxResetDone)
1470 break;
1471 udelay(15);
1473 if (i==NATSEMI_HW_TIMEOUT) {
1474 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1475 dev->name, i*15);
1476 } else if (netif_msg_hw(np)) {
1477 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1478 dev->name, i*15);
1482 static void natsemi_reload_eeprom(struct net_device *dev)
1484 struct netdev_private *np = netdev_priv(dev);
1485 void __iomem *ioaddr = ns_ioaddr(dev);
1486 int i;
1488 writel(EepromReload, ioaddr + PCIBusCfg);
1489 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1490 udelay(50);
1491 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1492 break;
1494 if (i==NATSEMI_HW_TIMEOUT) {
1495 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1496 pci_name(np->pci_dev), i*50);
1497 } else if (netif_msg_hw(np)) {
1498 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1499 pci_name(np->pci_dev), i*50);
1503 static void natsemi_stop_rxtx(struct net_device *dev)
1505 void __iomem * ioaddr = ns_ioaddr(dev);
1506 struct netdev_private *np = netdev_priv(dev);
1507 int i;
1509 writel(RxOff | TxOff, ioaddr + ChipCmd);
1510 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1511 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1512 break;
1513 udelay(5);
1515 if (i==NATSEMI_HW_TIMEOUT) {
1516 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1517 dev->name, i*5);
1518 } else if (netif_msg_hw(np)) {
1519 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1520 dev->name, i*5);
1524 static int netdev_open(struct net_device *dev)
1526 struct netdev_private *np = netdev_priv(dev);
1527 void __iomem * ioaddr = ns_ioaddr(dev);
1528 int i;
1530 /* Reset the chip, just in case. */
1531 natsemi_reset(dev);
1533 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1534 if (i) return i;
1536 if (netif_msg_ifup(np))
1537 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1538 dev->name, dev->irq);
1539 i = alloc_ring(dev);
1540 if (i < 0) {
1541 free_irq(dev->irq, dev);
1542 return i;
1544 napi_enable(&np->napi);
1546 init_ring(dev);
1547 spin_lock_irq(&np->lock);
1548 init_registers(dev);
1549 /* now set the MAC address according to dev->dev_addr */
1550 for (i = 0; i < 3; i++) {
1551 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1553 writel(i*2, ioaddr + RxFilterAddr);
1554 writew(mac, ioaddr + RxFilterData);
1556 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1557 spin_unlock_irq(&np->lock);
1559 netif_start_queue(dev);
1561 if (netif_msg_ifup(np))
1562 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1563 dev->name, (int)readl(ioaddr + ChipCmd));
1565 /* Set the timer to check for link beat. */
1566 init_timer(&np->timer);
1567 np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1568 np->timer.data = (unsigned long)dev;
1569 np->timer.function = &netdev_timer; /* timer handler */
1570 add_timer(&np->timer);
1572 return 0;
1575 static void do_cable_magic(struct net_device *dev)
1577 struct netdev_private *np = netdev_priv(dev);
1578 void __iomem *ioaddr = ns_ioaddr(dev);
1580 if (dev->if_port != PORT_TP)
1581 return;
1583 if (np->srr >= SRR_DP83816_A5)
1584 return;
1587 * 100 MBit links with short cables can trip an issue with the chip.
1588 * The problem manifests as lots of CRC errors and/or flickering
1589 * activity LED while idle. This process is based on instructions
1590 * from engineers at National.
1592 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1593 u16 data;
1595 writew(1, ioaddr + PGSEL);
1597 * coefficient visibility should already be enabled via
1598 * DSPCFG | 0x1000
1600 data = readw(ioaddr + TSTDAT) & 0xff;
1602 * the value must be negative, and within certain values
1603 * (these values all come from National)
1605 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1606 np = netdev_priv(dev);
1608 /* the bug has been triggered - fix the coefficient */
1609 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1610 /* lock the value */
1611 data = readw(ioaddr + DSPCFG);
1612 np->dspcfg = data | DSPCFG_LOCK;
1613 writew(np->dspcfg, ioaddr + DSPCFG);
1615 writew(0, ioaddr + PGSEL);
1619 static void undo_cable_magic(struct net_device *dev)
1621 u16 data;
1622 struct netdev_private *np = netdev_priv(dev);
1623 void __iomem * ioaddr = ns_ioaddr(dev);
1625 if (dev->if_port != PORT_TP)
1626 return;
1628 if (np->srr >= SRR_DP83816_A5)
1629 return;
1631 writew(1, ioaddr + PGSEL);
1632 /* make sure the lock bit is clear */
1633 data = readw(ioaddr + DSPCFG);
1634 np->dspcfg = data & ~DSPCFG_LOCK;
1635 writew(np->dspcfg, ioaddr + DSPCFG);
1636 writew(0, ioaddr + PGSEL);
1639 static void check_link(struct net_device *dev)
1641 struct netdev_private *np = netdev_priv(dev);
1642 void __iomem * ioaddr = ns_ioaddr(dev);
1643 int duplex = np->duplex;
1644 u16 bmsr;
1646 /* If we are ignoring the PHY then don't try reading it. */
1647 if (np->ignore_phy)
1648 goto propagate_state;
1650 /* The link status field is latched: it remains low after a temporary
1651 * link failure until it's read. We need the current link status,
1652 * thus read twice.
1654 mdio_read(dev, MII_BMSR);
1655 bmsr = mdio_read(dev, MII_BMSR);
1657 if (!(bmsr & BMSR_LSTATUS)) {
1658 if (netif_carrier_ok(dev)) {
1659 if (netif_msg_link(np))
1660 printk(KERN_NOTICE "%s: link down.\n",
1661 dev->name);
1662 netif_carrier_off(dev);
1663 undo_cable_magic(dev);
1665 return;
1667 if (!netif_carrier_ok(dev)) {
1668 if (netif_msg_link(np))
1669 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1670 netif_carrier_on(dev);
1671 do_cable_magic(dev);
1674 duplex = np->full_duplex;
1675 if (!duplex) {
1676 if (bmsr & BMSR_ANEGCOMPLETE) {
1677 int tmp = mii_nway_result(
1678 np->advertising & mdio_read(dev, MII_LPA));
1679 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1680 duplex = 1;
1681 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1682 duplex = 1;
1685 propagate_state:
1686 /* if duplex is set then bit 28 must be set, too */
1687 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1688 if (netif_msg_link(np))
1689 printk(KERN_INFO
1690 "%s: Setting %s-duplex based on negotiated "
1691 "link capability.\n", dev->name,
1692 duplex ? "full" : "half");
1693 if (duplex) {
1694 np->rx_config |= RxAcceptTx;
1695 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1696 } else {
1697 np->rx_config &= ~RxAcceptTx;
1698 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1700 writel(np->tx_config, ioaddr + TxConfig);
1701 writel(np->rx_config, ioaddr + RxConfig);
1705 static void init_registers(struct net_device *dev)
1707 struct netdev_private *np = netdev_priv(dev);
1708 void __iomem * ioaddr = ns_ioaddr(dev);
1710 init_phy_fixup(dev);
1712 /* clear any interrupts that are pending, such as wake events */
1713 readl(ioaddr + IntrStatus);
1715 writel(np->ring_dma, ioaddr + RxRingPtr);
1716 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1717 ioaddr + TxRingPtr);
1719 /* Initialize other registers.
1720 * Configure the PCI bus bursts and FIFO thresholds.
1721 * Configure for standard, in-spec Ethernet.
1722 * Start with half-duplex. check_link will update
1723 * to the correct settings.
1726 /* DRTH: 2: start tx if 64 bytes are in the fifo
1727 * FLTH: 0x10: refill with next packet if 512 bytes are free
1728 * MXDMA: 0: up to 256 byte bursts.
1729 * MXDMA must be <= FLTH
1730 * ECRETRY=1
1731 * ATP=1
1733 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1734 TX_FLTH_VAL | TX_DRTH_VAL_START;
1735 writel(np->tx_config, ioaddr + TxConfig);
1737 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1738 * MXDMA 0: up to 256 byte bursts
1740 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1741 /* if receive ring now has bigger buffers than normal, enable jumbo */
1742 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1743 np->rx_config |= RxAcceptLong;
1745 writel(np->rx_config, ioaddr + RxConfig);
1747 /* Disable PME:
1748 * The PME bit is initialized from the EEPROM contents.
1749 * PCI cards probably have PME disabled, but motherboard
1750 * implementations may have PME set to enable WakeOnLan.
1751 * With PME set the chip will scan incoming packets but
1752 * nothing will be written to memory. */
1753 np->SavedClkRun = readl(ioaddr + ClkRun);
1754 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1755 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1756 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1757 dev->name, readl(ioaddr + WOLCmd));
1760 check_link(dev);
1761 __set_rx_mode(dev);
1763 /* Enable interrupts by setting the interrupt mask. */
1764 writel(DEFAULT_INTR, ioaddr + IntrMask);
1765 natsemi_irq_enable(dev);
1767 writel(RxOn | TxOn, ioaddr + ChipCmd);
1768 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1772 * netdev_timer:
1773 * Purpose:
1774 * 1) check for link changes. Usually they are handled by the MII interrupt
1775 * but it doesn't hurt to check twice.
1776 * 2) check for sudden death of the NIC:
1777 * It seems that a reference set for this chip went out with incorrect info,
1778 * and there exist boards that aren't quite right. An unexpected voltage
1779 * drop can cause the PHY to get itself in a weird state (basically reset).
1780 * NOTE: this only seems to affect revC chips. The user can disable
1781 * this check via dspcfg_workaround sysfs option.
1782 * 3) check of death of the RX path due to OOM
1784 static void netdev_timer(unsigned long data)
1786 struct net_device *dev = (struct net_device *)data;
1787 struct netdev_private *np = netdev_priv(dev);
1788 void __iomem * ioaddr = ns_ioaddr(dev);
1789 int next_tick = NATSEMI_TIMER_FREQ;
1791 if (netif_msg_timer(np)) {
1792 /* DO NOT read the IntrStatus register,
1793 * a read clears any pending interrupts.
1795 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1796 dev->name);
1799 if (dev->if_port == PORT_TP) {
1800 u16 dspcfg;
1802 spin_lock_irq(&np->lock);
1803 /* check for a nasty random phy-reset - use dspcfg as a flag */
1804 writew(1, ioaddr+PGSEL);
1805 dspcfg = readw(ioaddr+DSPCFG);
1806 writew(0, ioaddr+PGSEL);
1807 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1808 if (!netif_queue_stopped(dev)) {
1809 spin_unlock_irq(&np->lock);
1810 if (netif_msg_drv(np))
1811 printk(KERN_NOTICE "%s: possible phy reset: "
1812 "re-initializing\n", dev->name);
1813 disable_irq(dev->irq);
1814 spin_lock_irq(&np->lock);
1815 natsemi_stop_rxtx(dev);
1816 dump_ring(dev);
1817 reinit_ring(dev);
1818 init_registers(dev);
1819 spin_unlock_irq(&np->lock);
1820 enable_irq(dev->irq);
1821 } else {
1822 /* hurry back */
1823 next_tick = HZ;
1824 spin_unlock_irq(&np->lock);
1826 } else {
1827 /* init_registers() calls check_link() for the above case */
1828 check_link(dev);
1829 spin_unlock_irq(&np->lock);
1831 } else {
1832 spin_lock_irq(&np->lock);
1833 check_link(dev);
1834 spin_unlock_irq(&np->lock);
1836 if (np->oom) {
1837 disable_irq(dev->irq);
1838 np->oom = 0;
1839 refill_rx(dev);
1840 enable_irq(dev->irq);
1841 if (!np->oom) {
1842 writel(RxOn, ioaddr + ChipCmd);
1843 } else {
1844 next_tick = 1;
1848 if (next_tick > 1)
1849 mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1850 else
1851 mod_timer(&np->timer, jiffies + next_tick);
1854 static void dump_ring(struct net_device *dev)
1856 struct netdev_private *np = netdev_priv(dev);
1858 if (netif_msg_pktdata(np)) {
1859 int i;
1860 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1861 for (i = 0; i < TX_RING_SIZE; i++) {
1862 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1863 i, np->tx_ring[i].next_desc,
1864 np->tx_ring[i].cmd_status,
1865 np->tx_ring[i].addr);
1867 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1868 for (i = 0; i < RX_RING_SIZE; i++) {
1869 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870 i, np->rx_ring[i].next_desc,
1871 np->rx_ring[i].cmd_status,
1872 np->rx_ring[i].addr);
1877 static void ns_tx_timeout(struct net_device *dev)
1879 struct netdev_private *np = netdev_priv(dev);
1880 void __iomem * ioaddr = ns_ioaddr(dev);
1882 disable_irq(dev->irq);
1883 spin_lock_irq(&np->lock);
1884 if (!np->hands_off) {
1885 if (netif_msg_tx_err(np))
1886 printk(KERN_WARNING
1887 "%s: Transmit timed out, status %#08x,"
1888 " resetting...\n",
1889 dev->name, readl(ioaddr + IntrStatus));
1890 dump_ring(dev);
1892 natsemi_reset(dev);
1893 reinit_ring(dev);
1894 init_registers(dev);
1895 } else {
1896 printk(KERN_WARNING
1897 "%s: tx_timeout while in hands_off state?\n",
1898 dev->name);
1900 spin_unlock_irq(&np->lock);
1901 enable_irq(dev->irq);
1903 dev->trans_start = jiffies;
1904 np->stats.tx_errors++;
1905 netif_wake_queue(dev);
1908 static int alloc_ring(struct net_device *dev)
1910 struct netdev_private *np = netdev_priv(dev);
1911 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1912 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1913 &np->ring_dma);
1914 if (!np->rx_ring)
1915 return -ENOMEM;
1916 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1917 return 0;
1920 static void refill_rx(struct net_device *dev)
1922 struct netdev_private *np = netdev_priv(dev);
1924 /* Refill the Rx ring buffers. */
1925 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1926 struct sk_buff *skb;
1927 int entry = np->dirty_rx % RX_RING_SIZE;
1928 if (np->rx_skbuff[entry] == NULL) {
1929 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1930 skb = dev_alloc_skb(buflen);
1931 np->rx_skbuff[entry] = skb;
1932 if (skb == NULL)
1933 break; /* Better luck next round. */
1934 skb->dev = dev; /* Mark as being used by this device. */
1935 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1936 skb->data, buflen, PCI_DMA_FROMDEVICE);
1937 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1939 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1941 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1942 if (netif_msg_rx_err(np))
1943 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1944 np->oom = 1;
1948 static void set_bufsize(struct net_device *dev)
1950 struct netdev_private *np = netdev_priv(dev);
1951 if (dev->mtu <= ETH_DATA_LEN)
1952 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1953 else
1954 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1957 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1958 static void init_ring(struct net_device *dev)
1960 struct netdev_private *np = netdev_priv(dev);
1961 int i;
1963 /* 1) TX ring */
1964 np->dirty_tx = np->cur_tx = 0;
1965 for (i = 0; i < TX_RING_SIZE; i++) {
1966 np->tx_skbuff[i] = NULL;
1967 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1968 +sizeof(struct netdev_desc)
1969 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1970 np->tx_ring[i].cmd_status = 0;
1973 /* 2) RX ring */
1974 np->dirty_rx = 0;
1975 np->cur_rx = RX_RING_SIZE;
1976 np->oom = 0;
1977 set_bufsize(dev);
1979 np->rx_head_desc = &np->rx_ring[0];
1981 /* Please be carefull before changing this loop - at least gcc-2.95.1
1982 * miscompiles it otherwise.
1984 /* Initialize all Rx descriptors. */
1985 for (i = 0; i < RX_RING_SIZE; i++) {
1986 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1987 +sizeof(struct netdev_desc)
1988 *((i+1)%RX_RING_SIZE));
1989 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1990 np->rx_skbuff[i] = NULL;
1992 refill_rx(dev);
1993 dump_ring(dev);
1996 static void drain_tx(struct net_device *dev)
1998 struct netdev_private *np = netdev_priv(dev);
1999 int i;
2001 for (i = 0; i < TX_RING_SIZE; i++) {
2002 if (np->tx_skbuff[i]) {
2003 pci_unmap_single(np->pci_dev,
2004 np->tx_dma[i], np->tx_skbuff[i]->len,
2005 PCI_DMA_TODEVICE);
2006 dev_kfree_skb(np->tx_skbuff[i]);
2007 np->stats.tx_dropped++;
2009 np->tx_skbuff[i] = NULL;
2013 static void drain_rx(struct net_device *dev)
2015 struct netdev_private *np = netdev_priv(dev);
2016 unsigned int buflen = np->rx_buf_sz;
2017 int i;
2019 /* Free all the skbuffs in the Rx queue. */
2020 for (i = 0; i < RX_RING_SIZE; i++) {
2021 np->rx_ring[i].cmd_status = 0;
2022 np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2023 if (np->rx_skbuff[i]) {
2024 pci_unmap_single(np->pci_dev,
2025 np->rx_dma[i], buflen,
2026 PCI_DMA_FROMDEVICE);
2027 dev_kfree_skb(np->rx_skbuff[i]);
2029 np->rx_skbuff[i] = NULL;
2033 static void drain_ring(struct net_device *dev)
2035 drain_rx(dev);
2036 drain_tx(dev);
2039 static void free_ring(struct net_device *dev)
2041 struct netdev_private *np = netdev_priv(dev);
2042 pci_free_consistent(np->pci_dev,
2043 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2044 np->rx_ring, np->ring_dma);
2047 static void reinit_rx(struct net_device *dev)
2049 struct netdev_private *np = netdev_priv(dev);
2050 int i;
2052 /* RX Ring */
2053 np->dirty_rx = 0;
2054 np->cur_rx = RX_RING_SIZE;
2055 np->rx_head_desc = &np->rx_ring[0];
2056 /* Initialize all Rx descriptors. */
2057 for (i = 0; i < RX_RING_SIZE; i++)
2058 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2060 refill_rx(dev);
2063 static void reinit_ring(struct net_device *dev)
2065 struct netdev_private *np = netdev_priv(dev);
2066 int i;
2068 /* drain TX ring */
2069 drain_tx(dev);
2070 np->dirty_tx = np->cur_tx = 0;
2071 for (i=0;i<TX_RING_SIZE;i++)
2072 np->tx_ring[i].cmd_status = 0;
2074 reinit_rx(dev);
2077 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2079 struct netdev_private *np = netdev_priv(dev);
2080 void __iomem * ioaddr = ns_ioaddr(dev);
2081 unsigned entry;
2082 unsigned long flags;
2084 /* Note: Ordering is important here, set the field with the
2085 "ownership" bit last, and only then increment cur_tx. */
2087 /* Calculate the next Tx descriptor entry. */
2088 entry = np->cur_tx % TX_RING_SIZE;
2090 np->tx_skbuff[entry] = skb;
2091 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2092 skb->data,skb->len, PCI_DMA_TODEVICE);
2094 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2096 spin_lock_irqsave(&np->lock, flags);
2098 if (!np->hands_off) {
2099 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2100 /* StrongARM: Explicitly cache flush np->tx_ring and
2101 * skb->data,skb->len. */
2102 wmb();
2103 np->cur_tx++;
2104 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2105 netdev_tx_done(dev);
2106 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2107 netif_stop_queue(dev);
2109 /* Wake the potentially-idle transmit channel. */
2110 writel(TxOn, ioaddr + ChipCmd);
2111 } else {
2112 dev_kfree_skb_irq(skb);
2113 np->stats.tx_dropped++;
2115 spin_unlock_irqrestore(&np->lock, flags);
2117 dev->trans_start = jiffies;
2119 if (netif_msg_tx_queued(np)) {
2120 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2121 dev->name, np->cur_tx, entry);
2123 return 0;
2126 static void netdev_tx_done(struct net_device *dev)
2128 struct netdev_private *np = netdev_priv(dev);
2130 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2131 int entry = np->dirty_tx % TX_RING_SIZE;
2132 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2133 break;
2134 if (netif_msg_tx_done(np))
2135 printk(KERN_DEBUG
2136 "%s: tx frame #%d finished, status %#08x.\n",
2137 dev->name, np->dirty_tx,
2138 le32_to_cpu(np->tx_ring[entry].cmd_status));
2139 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2140 np->stats.tx_packets++;
2141 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2142 } else { /* Various Tx errors */
2143 int tx_status =
2144 le32_to_cpu(np->tx_ring[entry].cmd_status);
2145 if (tx_status & (DescTxAbort|DescTxExcColl))
2146 np->stats.tx_aborted_errors++;
2147 if (tx_status & DescTxFIFO)
2148 np->stats.tx_fifo_errors++;
2149 if (tx_status & DescTxCarrier)
2150 np->stats.tx_carrier_errors++;
2151 if (tx_status & DescTxOOWCol)
2152 np->stats.tx_window_errors++;
2153 np->stats.tx_errors++;
2155 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2156 np->tx_skbuff[entry]->len,
2157 PCI_DMA_TODEVICE);
2158 /* Free the original skb. */
2159 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2160 np->tx_skbuff[entry] = NULL;
2162 if (netif_queue_stopped(dev)
2163 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2164 /* The ring is no longer full, wake queue. */
2165 netif_wake_queue(dev);
2169 /* The interrupt handler doesn't actually handle interrupts itself, it
2170 * schedules a NAPI poll if there is anything to do. */
2171 static irqreturn_t intr_handler(int irq, void *dev_instance)
2173 struct net_device *dev = dev_instance;
2174 struct netdev_private *np = netdev_priv(dev);
2175 void __iomem * ioaddr = ns_ioaddr(dev);
2177 /* Reading IntrStatus automatically acknowledges so don't do
2178 * that while interrupts are disabled, (for example, while a
2179 * poll is scheduled). */
2180 if (np->hands_off || !readl(ioaddr + IntrEnable))
2181 return IRQ_NONE;
2183 np->intr_status = readl(ioaddr + IntrStatus);
2185 if (!np->intr_status)
2186 return IRQ_NONE;
2188 if (netif_msg_intr(np))
2189 printk(KERN_DEBUG
2190 "%s: Interrupt, status %#08x, mask %#08x.\n",
2191 dev->name, np->intr_status,
2192 readl(ioaddr + IntrMask));
2194 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2196 if (netif_rx_schedule_prep(&np->napi)) {
2197 /* Disable interrupts and register for poll */
2198 natsemi_irq_disable(dev);
2199 __netif_rx_schedule(&np->napi);
2200 } else
2201 printk(KERN_WARNING
2202 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2203 dev->name, np->intr_status,
2204 readl(ioaddr + IntrMask));
2206 return IRQ_HANDLED;
2209 /* This is the NAPI poll routine. As well as the standard RX handling
2210 * it also handles all other interrupts that the chip might raise.
2212 static int natsemi_poll(struct napi_struct *napi, int budget)
2214 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2215 struct net_device *dev = np->dev;
2216 void __iomem * ioaddr = ns_ioaddr(dev);
2217 int work_done = 0;
2219 do {
2220 if (netif_msg_intr(np))
2221 printk(KERN_DEBUG
2222 "%s: Poll, status %#08x, mask %#08x.\n",
2223 dev->name, np->intr_status,
2224 readl(ioaddr + IntrMask));
2226 /* netdev_rx() may read IntrStatus again if the RX state
2227 * machine falls over so do it first. */
2228 if (np->intr_status &
2229 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2230 IntrRxErr | IntrRxOverrun)) {
2231 netdev_rx(dev, &work_done, budget);
2234 if (np->intr_status &
2235 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2236 spin_lock(&np->lock);
2237 netdev_tx_done(dev);
2238 spin_unlock(&np->lock);
2241 /* Abnormal error summary/uncommon events handlers. */
2242 if (np->intr_status & IntrAbnormalSummary)
2243 netdev_error(dev, np->intr_status);
2245 if (work_done >= budget)
2246 return work_done;
2248 np->intr_status = readl(ioaddr + IntrStatus);
2249 } while (np->intr_status);
2251 netif_rx_complete(napi);
2253 /* Reenable interrupts providing nothing is trying to shut
2254 * the chip down. */
2255 spin_lock(&np->lock);
2256 if (!np->hands_off)
2257 natsemi_irq_enable(dev);
2258 spin_unlock(&np->lock);
2260 return work_done;
2263 /* This routine is logically part of the interrupt handler, but separated
2264 for clarity and better register allocation. */
2265 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2267 struct netdev_private *np = netdev_priv(dev);
2268 int entry = np->cur_rx % RX_RING_SIZE;
2269 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2270 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2271 unsigned int buflen = np->rx_buf_sz;
2272 void __iomem * ioaddr = ns_ioaddr(dev);
2274 /* If the driver owns the next entry it's a new packet. Send it up. */
2275 while (desc_status < 0) { /* e.g. & DescOwn */
2276 int pkt_len;
2277 if (netif_msg_rx_status(np))
2278 printk(KERN_DEBUG
2279 " netdev_rx() entry %d status was %#08x.\n",
2280 entry, desc_status);
2281 if (--boguscnt < 0)
2282 break;
2284 if (*work_done >= work_to_do)
2285 break;
2287 (*work_done)++;
2289 pkt_len = (desc_status & DescSizeMask) - 4;
2290 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2291 if (desc_status & DescMore) {
2292 unsigned long flags;
2294 if (netif_msg_rx_err(np))
2295 printk(KERN_WARNING
2296 "%s: Oversized(?) Ethernet "
2297 "frame spanned multiple "
2298 "buffers, entry %#08x "
2299 "status %#08x.\n", dev->name,
2300 np->cur_rx, desc_status);
2301 np->stats.rx_length_errors++;
2303 /* The RX state machine has probably
2304 * locked up beneath us. Follow the
2305 * reset procedure documented in
2306 * AN-1287. */
2308 spin_lock_irqsave(&np->lock, flags);
2309 reset_rx(dev);
2310 reinit_rx(dev);
2311 writel(np->ring_dma, ioaddr + RxRingPtr);
2312 check_link(dev);
2313 spin_unlock_irqrestore(&np->lock, flags);
2315 /* We'll enable RX on exit from this
2316 * function. */
2317 break;
2319 } else {
2320 /* There was an error. */
2321 np->stats.rx_errors++;
2322 if (desc_status & (DescRxAbort|DescRxOver))
2323 np->stats.rx_over_errors++;
2324 if (desc_status & (DescRxLong|DescRxRunt))
2325 np->stats.rx_length_errors++;
2326 if (desc_status & (DescRxInvalid|DescRxAlign))
2327 np->stats.rx_frame_errors++;
2328 if (desc_status & DescRxCRC)
2329 np->stats.rx_crc_errors++;
2331 } else if (pkt_len > np->rx_buf_sz) {
2332 /* if this is the tail of a double buffer
2333 * packet, we've already counted the error
2334 * on the first part. Ignore the second half.
2336 } else {
2337 struct sk_buff *skb;
2338 /* Omit CRC size. */
2339 /* Check if the packet is long enough to accept
2340 * without copying to a minimally-sized skbuff. */
2341 if (pkt_len < rx_copybreak
2342 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2343 /* 16 byte align the IP header */
2344 skb_reserve(skb, RX_OFFSET);
2345 pci_dma_sync_single_for_cpu(np->pci_dev,
2346 np->rx_dma[entry],
2347 buflen,
2348 PCI_DMA_FROMDEVICE);
2349 skb_copy_to_linear_data(skb,
2350 np->rx_skbuff[entry]->data, pkt_len);
2351 skb_put(skb, pkt_len);
2352 pci_dma_sync_single_for_device(np->pci_dev,
2353 np->rx_dma[entry],
2354 buflen,
2355 PCI_DMA_FROMDEVICE);
2356 } else {
2357 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2358 buflen, PCI_DMA_FROMDEVICE);
2359 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2360 np->rx_skbuff[entry] = NULL;
2362 skb->protocol = eth_type_trans(skb, dev);
2363 netif_receive_skb(skb);
2364 np->stats.rx_packets++;
2365 np->stats.rx_bytes += pkt_len;
2367 entry = (++np->cur_rx) % RX_RING_SIZE;
2368 np->rx_head_desc = &np->rx_ring[entry];
2369 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2371 refill_rx(dev);
2373 /* Restart Rx engine if stopped. */
2374 if (np->oom)
2375 mod_timer(&np->timer, jiffies + 1);
2376 else
2377 writel(RxOn, ioaddr + ChipCmd);
2380 static void netdev_error(struct net_device *dev, int intr_status)
2382 struct netdev_private *np = netdev_priv(dev);
2383 void __iomem * ioaddr = ns_ioaddr(dev);
2385 spin_lock(&np->lock);
2386 if (intr_status & LinkChange) {
2387 u16 lpa = mdio_read(dev, MII_LPA);
2388 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2389 && netif_msg_link(np)) {
2390 printk(KERN_INFO
2391 "%s: Autonegotiation advertising"
2392 " %#04x partner %#04x.\n", dev->name,
2393 np->advertising, lpa);
2396 /* read MII int status to clear the flag */
2397 readw(ioaddr + MIntrStatus);
2398 check_link(dev);
2400 if (intr_status & StatsMax) {
2401 __get_stats(dev);
2403 if (intr_status & IntrTxUnderrun) {
2404 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2405 np->tx_config += TX_DRTH_VAL_INC;
2406 if (netif_msg_tx_err(np))
2407 printk(KERN_NOTICE
2408 "%s: increased tx threshold, txcfg %#08x.\n",
2409 dev->name, np->tx_config);
2410 } else {
2411 if (netif_msg_tx_err(np))
2412 printk(KERN_NOTICE
2413 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2414 dev->name, np->tx_config);
2416 writel(np->tx_config, ioaddr + TxConfig);
2418 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2419 int wol_status = readl(ioaddr + WOLCmd);
2420 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2421 dev->name, wol_status);
2423 if (intr_status & RxStatusFIFOOver) {
2424 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2425 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2426 dev->name);
2428 np->stats.rx_fifo_errors++;
2429 np->stats.rx_errors++;
2431 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2432 if (intr_status & IntrPCIErr) {
2433 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2434 intr_status & IntrPCIErr);
2435 np->stats.tx_fifo_errors++;
2436 np->stats.tx_errors++;
2437 np->stats.rx_fifo_errors++;
2438 np->stats.rx_errors++;
2440 spin_unlock(&np->lock);
2443 static void __get_stats(struct net_device *dev)
2445 void __iomem * ioaddr = ns_ioaddr(dev);
2446 struct netdev_private *np = netdev_priv(dev);
2448 /* The chip only need report frame silently dropped. */
2449 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2450 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2453 static struct net_device_stats *get_stats(struct net_device *dev)
2455 struct netdev_private *np = netdev_priv(dev);
2457 /* The chip only need report frame silently dropped. */
2458 spin_lock_irq(&np->lock);
2459 if (netif_running(dev) && !np->hands_off)
2460 __get_stats(dev);
2461 spin_unlock_irq(&np->lock);
2463 return &np->stats;
2466 #ifdef CONFIG_NET_POLL_CONTROLLER
2467 static void natsemi_poll_controller(struct net_device *dev)
2469 disable_irq(dev->irq);
2470 intr_handler(dev->irq, dev);
2471 enable_irq(dev->irq);
2473 #endif
2475 #define HASH_TABLE 0x200
2476 static void __set_rx_mode(struct net_device *dev)
2478 void __iomem * ioaddr = ns_ioaddr(dev);
2479 struct netdev_private *np = netdev_priv(dev);
2480 u8 mc_filter[64]; /* Multicast hash filter */
2481 u32 rx_mode;
2483 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2484 rx_mode = RxFilterEnable | AcceptBroadcast
2485 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2486 } else if ((dev->mc_count > multicast_filter_limit)
2487 || (dev->flags & IFF_ALLMULTI)) {
2488 rx_mode = RxFilterEnable | AcceptBroadcast
2489 | AcceptAllMulticast | AcceptMyPhys;
2490 } else {
2491 struct dev_mc_list *mclist;
2492 int i;
2493 memset(mc_filter, 0, sizeof(mc_filter));
2494 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2495 i++, mclist = mclist->next) {
2496 int b = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2497 mc_filter[b/8] |= (1 << (b & 0x07));
2499 rx_mode = RxFilterEnable | AcceptBroadcast
2500 | AcceptMulticast | AcceptMyPhys;
2501 for (i = 0; i < 64; i += 2) {
2502 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2503 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2504 ioaddr + RxFilterData);
2507 writel(rx_mode, ioaddr + RxFilterAddr);
2508 np->cur_rx_mode = rx_mode;
2511 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2513 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2514 return -EINVAL;
2516 dev->mtu = new_mtu;
2518 /* synchronized against open : rtnl_lock() held by caller */
2519 if (netif_running(dev)) {
2520 struct netdev_private *np = netdev_priv(dev);
2521 void __iomem * ioaddr = ns_ioaddr(dev);
2523 disable_irq(dev->irq);
2524 spin_lock(&np->lock);
2525 /* stop engines */
2526 natsemi_stop_rxtx(dev);
2527 /* drain rx queue */
2528 drain_rx(dev);
2529 /* change buffers */
2530 set_bufsize(dev);
2531 reinit_rx(dev);
2532 writel(np->ring_dma, ioaddr + RxRingPtr);
2533 /* restart engines */
2534 writel(RxOn | TxOn, ioaddr + ChipCmd);
2535 spin_unlock(&np->lock);
2536 enable_irq(dev->irq);
2538 return 0;
2541 static void set_rx_mode(struct net_device *dev)
2543 struct netdev_private *np = netdev_priv(dev);
2544 spin_lock_irq(&np->lock);
2545 if (!np->hands_off)
2546 __set_rx_mode(dev);
2547 spin_unlock_irq(&np->lock);
2550 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2552 struct netdev_private *np = netdev_priv(dev);
2553 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2554 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2555 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2558 static int get_regs_len(struct net_device *dev)
2560 return NATSEMI_REGS_SIZE;
2563 static int get_eeprom_len(struct net_device *dev)
2565 struct netdev_private *np = netdev_priv(dev);
2566 return np->eeprom_size;
2569 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2571 struct netdev_private *np = netdev_priv(dev);
2572 spin_lock_irq(&np->lock);
2573 netdev_get_ecmd(dev, ecmd);
2574 spin_unlock_irq(&np->lock);
2575 return 0;
2578 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2580 struct netdev_private *np = netdev_priv(dev);
2581 int res;
2582 spin_lock_irq(&np->lock);
2583 res = netdev_set_ecmd(dev, ecmd);
2584 spin_unlock_irq(&np->lock);
2585 return res;
2588 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2590 struct netdev_private *np = netdev_priv(dev);
2591 spin_lock_irq(&np->lock);
2592 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2593 netdev_get_sopass(dev, wol->sopass);
2594 spin_unlock_irq(&np->lock);
2597 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2599 struct netdev_private *np = netdev_priv(dev);
2600 int res;
2601 spin_lock_irq(&np->lock);
2602 netdev_set_wol(dev, wol->wolopts);
2603 res = netdev_set_sopass(dev, wol->sopass);
2604 spin_unlock_irq(&np->lock);
2605 return res;
2608 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2610 struct netdev_private *np = netdev_priv(dev);
2611 regs->version = NATSEMI_REGS_VER;
2612 spin_lock_irq(&np->lock);
2613 netdev_get_regs(dev, buf);
2614 spin_unlock_irq(&np->lock);
2617 static u32 get_msglevel(struct net_device *dev)
2619 struct netdev_private *np = netdev_priv(dev);
2620 return np->msg_enable;
2623 static void set_msglevel(struct net_device *dev, u32 val)
2625 struct netdev_private *np = netdev_priv(dev);
2626 np->msg_enable = val;
2629 static int nway_reset(struct net_device *dev)
2631 int tmp;
2632 int r = -EINVAL;
2633 /* if autoneg is off, it's an error */
2634 tmp = mdio_read(dev, MII_BMCR);
2635 if (tmp & BMCR_ANENABLE) {
2636 tmp |= (BMCR_ANRESTART);
2637 mdio_write(dev, MII_BMCR, tmp);
2638 r = 0;
2640 return r;
2643 static u32 get_link(struct net_device *dev)
2645 /* LSTATUS is latched low until a read - so read twice */
2646 mdio_read(dev, MII_BMSR);
2647 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2650 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2652 struct netdev_private *np = netdev_priv(dev);
2653 u8 *eebuf;
2654 int res;
2656 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2657 if (!eebuf)
2658 return -ENOMEM;
2660 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2661 spin_lock_irq(&np->lock);
2662 res = netdev_get_eeprom(dev, eebuf);
2663 spin_unlock_irq(&np->lock);
2664 if (!res)
2665 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2666 kfree(eebuf);
2667 return res;
2670 static const struct ethtool_ops ethtool_ops = {
2671 .get_drvinfo = get_drvinfo,
2672 .get_regs_len = get_regs_len,
2673 .get_eeprom_len = get_eeprom_len,
2674 .get_settings = get_settings,
2675 .set_settings = set_settings,
2676 .get_wol = get_wol,
2677 .set_wol = set_wol,
2678 .get_regs = get_regs,
2679 .get_msglevel = get_msglevel,
2680 .set_msglevel = set_msglevel,
2681 .nway_reset = nway_reset,
2682 .get_link = get_link,
2683 .get_eeprom = get_eeprom,
2686 static int netdev_set_wol(struct net_device *dev, u32 newval)
2688 struct netdev_private *np = netdev_priv(dev);
2689 void __iomem * ioaddr = ns_ioaddr(dev);
2690 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2692 /* translate to bitmasks this chip understands */
2693 if (newval & WAKE_PHY)
2694 data |= WakePhy;
2695 if (newval & WAKE_UCAST)
2696 data |= WakeUnicast;
2697 if (newval & WAKE_MCAST)
2698 data |= WakeMulticast;
2699 if (newval & WAKE_BCAST)
2700 data |= WakeBroadcast;
2701 if (newval & WAKE_ARP)
2702 data |= WakeArp;
2703 if (newval & WAKE_MAGIC)
2704 data |= WakeMagic;
2705 if (np->srr >= SRR_DP83815_D) {
2706 if (newval & WAKE_MAGICSECURE) {
2707 data |= WakeMagicSecure;
2711 writel(data, ioaddr + WOLCmd);
2713 return 0;
2716 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2718 struct netdev_private *np = netdev_priv(dev);
2719 void __iomem * ioaddr = ns_ioaddr(dev);
2720 u32 regval = readl(ioaddr + WOLCmd);
2722 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2723 | WAKE_ARP | WAKE_MAGIC);
2725 if (np->srr >= SRR_DP83815_D) {
2726 /* SOPASS works on revD and higher */
2727 *supported |= WAKE_MAGICSECURE;
2729 *cur = 0;
2731 /* translate from chip bitmasks */
2732 if (regval & WakePhy)
2733 *cur |= WAKE_PHY;
2734 if (regval & WakeUnicast)
2735 *cur |= WAKE_UCAST;
2736 if (regval & WakeMulticast)
2737 *cur |= WAKE_MCAST;
2738 if (regval & WakeBroadcast)
2739 *cur |= WAKE_BCAST;
2740 if (regval & WakeArp)
2741 *cur |= WAKE_ARP;
2742 if (regval & WakeMagic)
2743 *cur |= WAKE_MAGIC;
2744 if (regval & WakeMagicSecure) {
2745 /* this can be on in revC, but it's broken */
2746 *cur |= WAKE_MAGICSECURE;
2749 return 0;
2752 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2754 struct netdev_private *np = netdev_priv(dev);
2755 void __iomem * ioaddr = ns_ioaddr(dev);
2756 u16 *sval = (u16 *)newval;
2757 u32 addr;
2759 if (np->srr < SRR_DP83815_D) {
2760 return 0;
2763 /* enable writing to these registers by disabling the RX filter */
2764 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2765 addr &= ~RxFilterEnable;
2766 writel(addr, ioaddr + RxFilterAddr);
2768 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2769 writel(addr | 0xa, ioaddr + RxFilterAddr);
2770 writew(sval[0], ioaddr + RxFilterData);
2772 writel(addr | 0xc, ioaddr + RxFilterAddr);
2773 writew(sval[1], ioaddr + RxFilterData);
2775 writel(addr | 0xe, ioaddr + RxFilterAddr);
2776 writew(sval[2], ioaddr + RxFilterData);
2778 /* re-enable the RX filter */
2779 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2781 return 0;
2784 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2786 struct netdev_private *np = netdev_priv(dev);
2787 void __iomem * ioaddr = ns_ioaddr(dev);
2788 u16 *sval = (u16 *)data;
2789 u32 addr;
2791 if (np->srr < SRR_DP83815_D) {
2792 sval[0] = sval[1] = sval[2] = 0;
2793 return 0;
2796 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2797 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2799 writel(addr | 0xa, ioaddr + RxFilterAddr);
2800 sval[0] = readw(ioaddr + RxFilterData);
2802 writel(addr | 0xc, ioaddr + RxFilterAddr);
2803 sval[1] = readw(ioaddr + RxFilterData);
2805 writel(addr | 0xe, ioaddr + RxFilterAddr);
2806 sval[2] = readw(ioaddr + RxFilterData);
2808 writel(addr, ioaddr + RxFilterAddr);
2810 return 0;
2813 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2815 struct netdev_private *np = netdev_priv(dev);
2816 u32 tmp;
2818 ecmd->port = dev->if_port;
2819 ecmd->speed = np->speed;
2820 ecmd->duplex = np->duplex;
2821 ecmd->autoneg = np->autoneg;
2822 ecmd->advertising = 0;
2823 if (np->advertising & ADVERTISE_10HALF)
2824 ecmd->advertising |= ADVERTISED_10baseT_Half;
2825 if (np->advertising & ADVERTISE_10FULL)
2826 ecmd->advertising |= ADVERTISED_10baseT_Full;
2827 if (np->advertising & ADVERTISE_100HALF)
2828 ecmd->advertising |= ADVERTISED_100baseT_Half;
2829 if (np->advertising & ADVERTISE_100FULL)
2830 ecmd->advertising |= ADVERTISED_100baseT_Full;
2831 ecmd->supported = (SUPPORTED_Autoneg |
2832 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2833 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2834 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2835 ecmd->phy_address = np->phy_addr_external;
2837 * We intentionally report the phy address of the external
2838 * phy, even if the internal phy is used. This is necessary
2839 * to work around a deficiency of the ethtool interface:
2840 * It's only possible to query the settings of the active
2841 * port. Therefore
2842 * # ethtool -s ethX port mii
2843 * actually sends an ioctl to switch to port mii with the
2844 * settings that are used for the current active port.
2845 * If we would report a different phy address in this
2846 * command, then
2847 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2848 * would unintentionally change the phy address.
2850 * Fortunately the phy address doesn't matter with the
2851 * internal phy...
2854 /* set information based on active port type */
2855 switch (ecmd->port) {
2856 default:
2857 case PORT_TP:
2858 ecmd->advertising |= ADVERTISED_TP;
2859 ecmd->transceiver = XCVR_INTERNAL;
2860 break;
2861 case PORT_MII:
2862 ecmd->advertising |= ADVERTISED_MII;
2863 ecmd->transceiver = XCVR_EXTERNAL;
2864 break;
2865 case PORT_FIBRE:
2866 ecmd->advertising |= ADVERTISED_FIBRE;
2867 ecmd->transceiver = XCVR_EXTERNAL;
2868 break;
2871 /* if autonegotiation is on, try to return the active speed/duplex */
2872 if (ecmd->autoneg == AUTONEG_ENABLE) {
2873 ecmd->advertising |= ADVERTISED_Autoneg;
2874 tmp = mii_nway_result(
2875 np->advertising & mdio_read(dev, MII_LPA));
2876 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2877 ecmd->speed = SPEED_100;
2878 else
2879 ecmd->speed = SPEED_10;
2880 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2881 ecmd->duplex = DUPLEX_FULL;
2882 else
2883 ecmd->duplex = DUPLEX_HALF;
2886 /* ignore maxtxpkt, maxrxpkt for now */
2888 return 0;
2891 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2893 struct netdev_private *np = netdev_priv(dev);
2895 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2896 return -EINVAL;
2897 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2898 return -EINVAL;
2899 if (ecmd->autoneg == AUTONEG_ENABLE) {
2900 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2901 ADVERTISED_10baseT_Full |
2902 ADVERTISED_100baseT_Half |
2903 ADVERTISED_100baseT_Full)) == 0) {
2904 return -EINVAL;
2906 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2907 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2908 return -EINVAL;
2909 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2910 return -EINVAL;
2911 } else {
2912 return -EINVAL;
2916 * If we're ignoring the PHY then autoneg and the internal
2917 * transciever are really not going to work so don't let the
2918 * user select them.
2920 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2921 ecmd->port == PORT_TP))
2922 return -EINVAL;
2925 * maxtxpkt, maxrxpkt: ignored for now.
2927 * transceiver:
2928 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2929 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2930 * selects based on ecmd->port.
2932 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2933 * phys that are connected to the mii bus. It's used to apply fibre
2934 * specific updates.
2937 /* WHEW! now lets bang some bits */
2939 /* save the parms */
2940 dev->if_port = ecmd->port;
2941 np->autoneg = ecmd->autoneg;
2942 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2943 if (np->autoneg == AUTONEG_ENABLE) {
2944 /* advertise only what has been requested */
2945 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2946 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2947 np->advertising |= ADVERTISE_10HALF;
2948 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2949 np->advertising |= ADVERTISE_10FULL;
2950 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2951 np->advertising |= ADVERTISE_100HALF;
2952 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2953 np->advertising |= ADVERTISE_100FULL;
2954 } else {
2955 np->speed = ecmd->speed;
2956 np->duplex = ecmd->duplex;
2957 /* user overriding the initial full duplex parm? */
2958 if (np->duplex == DUPLEX_HALF)
2959 np->full_duplex = 0;
2962 /* get the right phy enabled */
2963 if (ecmd->port == PORT_TP)
2964 switch_port_internal(dev);
2965 else
2966 switch_port_external(dev);
2968 /* set parms and see how this affected our link status */
2969 init_phy_fixup(dev);
2970 check_link(dev);
2971 return 0;
2974 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2976 int i;
2977 int j;
2978 u32 rfcr;
2979 u32 *rbuf = (u32 *)buf;
2980 void __iomem * ioaddr = ns_ioaddr(dev);
2982 /* read non-mii page 0 of registers */
2983 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2984 rbuf[i] = readl(ioaddr + i*4);
2987 /* read current mii registers */
2988 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2989 rbuf[i] = mdio_read(dev, i & 0x1f);
2991 /* read only the 'magic' registers from page 1 */
2992 writew(1, ioaddr + PGSEL);
2993 rbuf[i++] = readw(ioaddr + PMDCSR);
2994 rbuf[i++] = readw(ioaddr + TSTDAT);
2995 rbuf[i++] = readw(ioaddr + DSPCFG);
2996 rbuf[i++] = readw(ioaddr + SDCFG);
2997 writew(0, ioaddr + PGSEL);
2999 /* read RFCR indexed registers */
3000 rfcr = readl(ioaddr + RxFilterAddr);
3001 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3002 writel(j*2, ioaddr + RxFilterAddr);
3003 rbuf[i++] = readw(ioaddr + RxFilterData);
3005 writel(rfcr, ioaddr + RxFilterAddr);
3007 /* the interrupt status is clear-on-read - see if we missed any */
3008 if (rbuf[4] & rbuf[5]) {
3009 printk(KERN_WARNING
3010 "%s: shoot, we dropped an interrupt (%#08x)\n",
3011 dev->name, rbuf[4] & rbuf[5]);
3014 return 0;
3017 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3018 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3019 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3020 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3021 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3022 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3023 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3024 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3026 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3028 int i;
3029 u16 *ebuf = (u16 *)buf;
3030 void __iomem * ioaddr = ns_ioaddr(dev);
3031 struct netdev_private *np = netdev_priv(dev);
3033 /* eeprom_read reads 16 bits, and indexes by 16 bits */
3034 for (i = 0; i < np->eeprom_size/2; i++) {
3035 ebuf[i] = eeprom_read(ioaddr, i);
3036 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3037 * reads it back "sanely". So we swap it back here in order to
3038 * present it to userland as it is stored. */
3039 ebuf[i] = SWAP_BITS(ebuf[i]);
3041 return 0;
3044 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3046 struct mii_ioctl_data *data = if_mii(rq);
3047 struct netdev_private *np = netdev_priv(dev);
3049 switch(cmd) {
3050 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
3051 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
3052 data->phy_id = np->phy_addr_external;
3053 /* Fall Through */
3055 case SIOCGMIIREG: /* Read MII PHY register. */
3056 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
3057 /* The phy_id is not enough to uniquely identify
3058 * the intended target. Therefore the command is sent to
3059 * the given mii on the current port.
3061 if (dev->if_port == PORT_TP) {
3062 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3063 data->val_out = mdio_read(dev,
3064 data->reg_num & 0x1f);
3065 else
3066 data->val_out = 0;
3067 } else {
3068 move_int_phy(dev, data->phy_id & 0x1f);
3069 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3070 data->reg_num & 0x1f);
3072 return 0;
3074 case SIOCSMIIREG: /* Write MII PHY register. */
3075 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3076 if (!capable(CAP_NET_ADMIN))
3077 return -EPERM;
3078 if (dev->if_port == PORT_TP) {
3079 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3080 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3081 np->advertising = data->val_in;
3082 mdio_write(dev, data->reg_num & 0x1f,
3083 data->val_in);
3085 } else {
3086 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3087 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3088 np->advertising = data->val_in;
3090 move_int_phy(dev, data->phy_id & 0x1f);
3091 miiport_write(dev, data->phy_id & 0x1f,
3092 data->reg_num & 0x1f,
3093 data->val_in);
3095 return 0;
3096 default:
3097 return -EOPNOTSUPP;
3101 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3103 void __iomem * ioaddr = ns_ioaddr(dev);
3104 struct netdev_private *np = netdev_priv(dev);
3106 if (netif_msg_wol(np))
3107 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3108 dev->name);
3110 /* For WOL we must restart the rx process in silent mode.
3111 * Write NULL to the RxRingPtr. Only possible if
3112 * rx process is stopped
3114 writel(0, ioaddr + RxRingPtr);
3116 /* read WoL status to clear */
3117 readl(ioaddr + WOLCmd);
3119 /* PME on, clear status */
3120 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3122 /* and restart the rx process */
3123 writel(RxOn, ioaddr + ChipCmd);
3125 if (enable_intr) {
3126 /* enable the WOL interrupt.
3127 * Could be used to send a netlink message.
3129 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3130 natsemi_irq_enable(dev);
3134 static int netdev_close(struct net_device *dev)
3136 void __iomem * ioaddr = ns_ioaddr(dev);
3137 struct netdev_private *np = netdev_priv(dev);
3139 if (netif_msg_ifdown(np))
3140 printk(KERN_DEBUG
3141 "%s: Shutting down ethercard, status was %#04x.\n",
3142 dev->name, (int)readl(ioaddr + ChipCmd));
3143 if (netif_msg_pktdata(np))
3144 printk(KERN_DEBUG
3145 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3146 dev->name, np->cur_tx, np->dirty_tx,
3147 np->cur_rx, np->dirty_rx);
3149 napi_disable(&np->napi);
3152 * FIXME: what if someone tries to close a device
3153 * that is suspended?
3154 * Should we reenable the nic to switch to
3155 * the final WOL settings?
3158 del_timer_sync(&np->timer);
3159 disable_irq(dev->irq);
3160 spin_lock_irq(&np->lock);
3161 natsemi_irq_disable(dev);
3162 np->hands_off = 1;
3163 spin_unlock_irq(&np->lock);
3164 enable_irq(dev->irq);
3166 free_irq(dev->irq, dev);
3168 /* Interrupt disabled, interrupt handler released,
3169 * queue stopped, timer deleted, rtnl_lock held
3170 * All async codepaths that access the driver are disabled.
3172 spin_lock_irq(&np->lock);
3173 np->hands_off = 0;
3174 readl(ioaddr + IntrMask);
3175 readw(ioaddr + MIntrStatus);
3177 /* Freeze Stats */
3178 writel(StatsFreeze, ioaddr + StatsCtrl);
3180 /* Stop the chip's Tx and Rx processes. */
3181 natsemi_stop_rxtx(dev);
3183 __get_stats(dev);
3184 spin_unlock_irq(&np->lock);
3186 /* clear the carrier last - an interrupt could reenable it otherwise */
3187 netif_carrier_off(dev);
3188 netif_stop_queue(dev);
3190 dump_ring(dev);
3191 drain_ring(dev);
3192 free_ring(dev);
3195 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3196 if (wol) {
3197 /* restart the NIC in WOL mode.
3198 * The nic must be stopped for this.
3200 enable_wol_mode(dev, 0);
3201 } else {
3202 /* Restore PME enable bit unmolested */
3203 writel(np->SavedClkRun, ioaddr + ClkRun);
3206 return 0;
3210 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3212 struct net_device *dev = pci_get_drvdata(pdev);
3213 void __iomem * ioaddr = ns_ioaddr(dev);
3215 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3216 unregister_netdev (dev);
3217 pci_release_regions (pdev);
3218 iounmap(ioaddr);
3219 free_netdev (dev);
3220 pci_set_drvdata(pdev, NULL);
3223 #ifdef CONFIG_PM
3226 * The ns83815 chip doesn't have explicit RxStop bits.
3227 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3228 * of the nic, thus this function must be very careful:
3230 * suspend/resume synchronization:
3231 * entry points:
3232 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3233 * start_tx, ns_tx_timeout
3235 * No function accesses the hardware without checking np->hands_off.
3236 * the check occurs under spin_lock_irq(&np->lock);
3237 * exceptions:
3238 * * netdev_ioctl: noncritical access.
3239 * * netdev_open: cannot happen due to the device_detach
3240 * * netdev_close: doesn't hurt.
3241 * * netdev_timer: timer stopped by natsemi_suspend.
3242 * * intr_handler: doesn't acquire the spinlock. suspend calls
3243 * disable_irq() to enforce synchronization.
3244 * * natsemi_poll: checks before reenabling interrupts. suspend
3245 * sets hands_off, disables interrupts and then waits with
3246 * napi_disable().
3248 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3251 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3253 struct net_device *dev = pci_get_drvdata (pdev);
3254 struct netdev_private *np = netdev_priv(dev);
3255 void __iomem * ioaddr = ns_ioaddr(dev);
3257 rtnl_lock();
3258 if (netif_running (dev)) {
3259 del_timer_sync(&np->timer);
3261 disable_irq(dev->irq);
3262 spin_lock_irq(&np->lock);
3264 natsemi_irq_disable(dev);
3265 np->hands_off = 1;
3266 natsemi_stop_rxtx(dev);
3267 netif_stop_queue(dev);
3269 spin_unlock_irq(&np->lock);
3270 enable_irq(dev->irq);
3272 napi_disable(&np->napi);
3274 /* Update the error counts. */
3275 __get_stats(dev);
3277 /* pci_power_off(pdev, -1); */
3278 drain_ring(dev);
3280 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3281 /* Restore PME enable bit */
3282 if (wol) {
3283 /* restart the NIC in WOL mode.
3284 * The nic must be stopped for this.
3285 * FIXME: use the WOL interrupt
3287 enable_wol_mode(dev, 0);
3288 } else {
3289 /* Restore PME enable bit unmolested */
3290 writel(np->SavedClkRun, ioaddr + ClkRun);
3294 netif_device_detach(dev);
3295 rtnl_unlock();
3296 return 0;
3300 static int natsemi_resume (struct pci_dev *pdev)
3302 struct net_device *dev = pci_get_drvdata (pdev);
3303 struct netdev_private *np = netdev_priv(dev);
3304 int ret = 0;
3306 rtnl_lock();
3307 if (netif_device_present(dev))
3308 goto out;
3309 if (netif_running(dev)) {
3310 BUG_ON(!np->hands_off);
3311 ret = pci_enable_device(pdev);
3312 if (ret < 0) {
3313 dev_err(&pdev->dev,
3314 "pci_enable_device() failed: %d\n", ret);
3315 goto out;
3317 /* pci_power_on(pdev); */
3319 napi_enable(&np->napi);
3321 natsemi_reset(dev);
3322 init_ring(dev);
3323 disable_irq(dev->irq);
3324 spin_lock_irq(&np->lock);
3325 np->hands_off = 0;
3326 init_registers(dev);
3327 netif_device_attach(dev);
3328 spin_unlock_irq(&np->lock);
3329 enable_irq(dev->irq);
3331 mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3333 netif_device_attach(dev);
3334 out:
3335 rtnl_unlock();
3336 return ret;
3339 #endif /* CONFIG_PM */
3341 static struct pci_driver natsemi_driver = {
3342 .name = DRV_NAME,
3343 .id_table = natsemi_pci_tbl,
3344 .probe = natsemi_probe1,
3345 .remove = __devexit_p(natsemi_remove1),
3346 #ifdef CONFIG_PM
3347 .suspend = natsemi_suspend,
3348 .resume = natsemi_resume,
3349 #endif
3352 static int __init natsemi_init_mod (void)
3354 /* when a module, this is printed whether or not devices are found in probe */
3355 #ifdef MODULE
3356 printk(version);
3357 #endif
3359 return pci_register_driver(&natsemi_driver);
3362 static void __exit natsemi_exit_mod (void)
3364 pci_unregister_driver (&natsemi_driver);
3367 module_init(natsemi_init_mod);
3368 module_exit(natsemi_exit_mod);