sched: Make select_fallback_rq() cpuset friendly
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob9a38c7a24ed7fab79ca55d1cbac136074c6c6017
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_CGROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 struct cgroup_subsys_state css;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
254 #endif
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
260 struct rt_bandwidth rt_bandwidth;
261 #endif
263 struct rcu_head rcu;
264 struct list_head list;
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
271 #define root_task_group init_task_group
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
276 static DEFINE_SPINLOCK(task_group_lock);
278 #ifdef CONFIG_FAIR_GROUP_SCHED
280 #ifdef CONFIG_SMP
281 static int root_task_group_empty(void)
283 return list_empty(&root_task_group.children);
285 #endif
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
297 #define MIN_SHARES 2
298 #define MAX_SHARES (1UL << 18)
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301 #endif
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
306 struct task_group init_task_group;
308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p)
311 struct task_group *tg;
313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
316 #else
317 tg = &init_task_group;
318 #endif
319 return tg;
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
328 #endif
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
333 #endif
336 #else
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p)
341 return NULL;
344 #endif /* CONFIG_CGROUP_SCHED */
346 /* CFS-related fields in a runqueue */
347 struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
351 u64 exec_clock;
352 u64 min_vruntime;
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
357 struct list_head tasks;
358 struct list_head *balance_iterator;
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
364 struct sched_entity *curr, *next, *last;
366 unsigned int nr_spread_over;
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
382 #ifdef CONFIG_SMP
384 * the part of load.weight contributed by tasks
386 unsigned long task_weight;
389 * h_load = weight * f(tg)
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
394 unsigned long h_load;
397 * this cpu's part of tg->shares
399 unsigned long shares;
402 * load.weight at the time we set shares
404 unsigned long rq_weight;
405 #endif
406 #endif
409 /* Real-Time classes' related field in a runqueue: */
410 struct rt_rq {
411 struct rt_prio_array active;
412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 struct {
415 int curr; /* highest queued rt task prio */
416 #ifdef CONFIG_SMP
417 int next; /* next highest */
418 #endif
419 } highest_prio;
420 #endif
421 #ifdef CONFIG_SMP
422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total;
424 int overloaded;
425 struct plist_head pushable_tasks;
426 #endif
427 int rt_throttled;
428 u64 rt_time;
429 u64 rt_runtime;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock;
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted;
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 #endif
442 #ifdef CONFIG_SMP
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
452 struct root_domain {
453 atomic_t refcount;
454 cpumask_var_t span;
455 cpumask_var_t online;
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
461 cpumask_var_t rto_mask;
462 atomic_t rto_count;
463 #ifdef CONFIG_SMP
464 struct cpupri cpupri;
465 #endif
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
472 static struct root_domain def_root_domain;
474 #endif
477 * This is the main, per-CPU runqueue data structure.
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
483 struct rq {
484 /* runqueue lock: */
485 raw_spinlock_t lock;
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
491 unsigned long nr_running;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 #ifdef CONFIG_NO_HZ
495 u64 nohz_stamp;
496 unsigned char in_nohz_recently;
497 #endif
498 unsigned int skip_clock_update;
500 /* capture load from *all* tasks on this cpu: */
501 struct load_weight load;
502 unsigned long nr_load_updates;
503 u64 nr_switches;
505 struct cfs_rq cfs;
506 struct rt_rq rt;
508 #ifdef CONFIG_FAIR_GROUP_SCHED
509 /* list of leaf cfs_rq on this cpu: */
510 struct list_head leaf_cfs_rq_list;
511 #endif
512 #ifdef CONFIG_RT_GROUP_SCHED
513 struct list_head leaf_rt_rq_list;
514 #endif
517 * This is part of a global counter where only the total sum
518 * over all CPUs matters. A task can increase this counter on
519 * one CPU and if it got migrated afterwards it may decrease
520 * it on another CPU. Always updated under the runqueue lock:
522 unsigned long nr_uninterruptible;
524 struct task_struct *curr, *idle;
525 unsigned long next_balance;
526 struct mm_struct *prev_mm;
528 u64 clock;
530 atomic_t nr_iowait;
532 #ifdef CONFIG_SMP
533 struct root_domain *rd;
534 struct sched_domain *sd;
536 unsigned char idle_at_tick;
537 /* For active balancing */
538 int post_schedule;
539 int active_balance;
540 int push_cpu;
541 /* cpu of this runqueue: */
542 int cpu;
543 int online;
545 unsigned long avg_load_per_task;
547 struct task_struct *migration_thread;
548 struct list_head migration_queue;
550 u64 rt_avg;
551 u64 age_stamp;
552 u64 idle_stamp;
553 u64 avg_idle;
554 #endif
556 /* calc_load related fields */
557 unsigned long calc_load_update;
558 long calc_load_active;
560 #ifdef CONFIG_SCHED_HRTICK
561 #ifdef CONFIG_SMP
562 int hrtick_csd_pending;
563 struct call_single_data hrtick_csd;
564 #endif
565 struct hrtimer hrtick_timer;
566 #endif
568 #ifdef CONFIG_SCHEDSTATS
569 /* latency stats */
570 struct sched_info rq_sched_info;
571 unsigned long long rq_cpu_time;
572 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
574 /* sys_sched_yield() stats */
575 unsigned int yld_count;
577 /* schedule() stats */
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
582 /* try_to_wake_up() stats */
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
586 /* BKL stats */
587 unsigned int bkl_count;
588 #endif
591 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
593 static inline
594 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
596 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
599 * A queue event has occurred, and we're going to schedule. In
600 * this case, we can save a useless back to back clock update.
602 if (test_tsk_need_resched(p))
603 rq->skip_clock_update = 1;
606 static inline int cpu_of(struct rq *rq)
608 #ifdef CONFIG_SMP
609 return rq->cpu;
610 #else
611 return 0;
612 #endif
615 #define rcu_dereference_check_sched_domain(p) \
616 rcu_dereference_check((p), \
617 rcu_read_lock_sched_held() || \
618 lockdep_is_held(&sched_domains_mutex))
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622 * See detach_destroy_domains: synchronize_sched for details.
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
627 #define for_each_domain(cpu, __sd) \
628 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
630 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631 #define this_rq() (&__get_cpu_var(runqueues))
632 #define task_rq(p) cpu_rq(task_cpu(p))
633 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
634 #define raw_rq() (&__raw_get_cpu_var(runqueues))
636 inline void update_rq_clock(struct rq *rq)
638 if (!rq->skip_clock_update)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
647 #else
648 # define const_debug static const
649 #endif
652 * runqueue_is_locked
653 * @cpu: the processor in question.
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
659 int runqueue_is_locked(int cpu)
661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
665 * Debugging: various feature bits
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
671 enum {
672 #include "sched_features.h"
675 #undef SCHED_FEAT
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
680 const_debug unsigned int sysctl_sched_features =
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
688 #name ,
690 static __read_mostly char *sched_feat_names[] = {
691 #include "sched_features.h"
692 NULL
695 #undef SCHED_FEAT
697 static int sched_feat_show(struct seq_file *m, void *v)
699 int i;
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
706 seq_puts(m, "\n");
708 return 0;
711 static ssize_t
712 sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
720 if (cnt > 63)
721 cnt = 63;
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
726 buf[cnt] = 0;
728 if (strncmp(buf, "NO_", 3) == 0) {
729 neg = 1;
730 cmp += 3;
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
745 if (!sched_feat_names[i])
746 return -EINVAL;
748 *ppos += cnt;
750 return cnt;
753 static int sched_feat_open(struct inode *inode, struct file *filp)
755 return single_open(filp, sched_feat_show, NULL);
758 static const struct file_operations sched_feat_fops = {
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
766 static __init int sched_init_debug(void)
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
771 return 0;
773 late_initcall(sched_init_debug);
775 #endif
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
783 const_debug unsigned int sysctl_sched_nr_migrate = 32;
786 * ratelimit for updating the group shares.
787 * default: 0.25ms
789 unsigned int sysctl_sched_shares_ratelimit = 250000;
790 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
797 unsigned int sysctl_sched_shares_thresh = 4;
800 * period over which we average the RT time consumption, measured
801 * in ms.
803 * default: 1s
805 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
811 unsigned int sysctl_sched_rt_period = 1000000;
813 static __read_mostly int scheduler_running;
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
819 int sysctl_sched_rt_runtime = 950000;
821 static inline u64 global_rt_period(void)
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
826 static inline u64 global_rt_runtime(void)
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
841 static inline int task_current(struct rq *rq, struct task_struct *p)
843 return rq->curr == p;
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
849 return task_current(rq, p);
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
869 raw_spin_unlock_irq(&rq->lock);
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
884 #ifdef CONFIG_SMP
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq->lock);
894 #else
895 raw_spin_unlock(&rq->lock);
896 #endif
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
901 #ifdef CONFIG_SMP
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
924 static inline int task_is_waking(struct task_struct *p)
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
933 static inline struct rq *__task_rq_lock(struct task_struct *p)
934 __acquires(rq->lock)
936 struct rq *rq;
938 for (;;) {
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p);
942 raw_spin_lock(&rq->lock);
943 if (likely(rq == task_rq(p) && !task_is_waking(p)))
944 return rq;
945 raw_spin_unlock(&rq->lock);
950 * task_rq_lock - lock the runqueue a given task resides on and disable
951 * interrupts. Note the ordering: we can safely lookup the task_rq without
952 * explicitly disabling preemption.
954 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
955 __acquires(rq->lock)
957 struct rq *rq;
959 for (;;) {
960 while (task_is_waking(p))
961 cpu_relax();
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p) && !task_is_waking(p)))
966 return rq;
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
971 void task_rq_unlock_wait(struct task_struct *p)
973 struct rq *rq = task_rq(p);
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976 raw_spin_unlock_wait(&rq->lock);
979 static void __task_rq_unlock(struct rq *rq)
980 __releases(rq->lock)
982 raw_spin_unlock(&rq->lock);
985 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
986 __releases(rq->lock)
988 raw_spin_unlock_irqrestore(&rq->lock, *flags);
992 * this_rq_lock - lock this runqueue and disable interrupts.
994 static struct rq *this_rq_lock(void)
995 __acquires(rq->lock)
997 struct rq *rq;
999 local_irq_disable();
1000 rq = this_rq();
1001 raw_spin_lock(&rq->lock);
1003 return rq;
1006 #ifdef CONFIG_SCHED_HRTICK
1008 * Use HR-timers to deliver accurate preemption points.
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1023 static inline int hrtick_enabled(struct rq *rq)
1025 if (!sched_feat(HRTICK))
1026 return 0;
1027 if (!cpu_active(cpu_of(rq)))
1028 return 0;
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1032 static void hrtick_clear(struct rq *rq)
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1042 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1048 raw_spin_lock(&rq->lock);
1049 update_rq_clock(rq);
1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051 raw_spin_unlock(&rq->lock);
1053 return HRTIMER_NORESTART;
1056 #ifdef CONFIG_SMP
1058 * called from hardirq (IPI) context
1060 static void __hrtick_start(void *arg)
1062 struct rq *rq = arg;
1064 raw_spin_lock(&rq->lock);
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
1067 raw_spin_unlock(&rq->lock);
1071 * Called to set the hrtick timer state.
1073 * called with rq->lock held and irqs disabled
1075 static void hrtick_start(struct rq *rq, u64 delay)
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1080 hrtimer_set_expires(timer, time);
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1086 rq->hrtick_csd_pending = 1;
1090 static int
1091 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1093 int cpu = (int)(long)hcpu;
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
1102 hrtick_clear(cpu_rq(cpu));
1103 return NOTIFY_OK;
1106 return NOTIFY_DONE;
1109 static __init void init_hrtick(void)
1111 hotcpu_notifier(hotplug_hrtick, 0);
1113 #else
1115 * Called to set the hrtick timer state.
1117 * called with rq->lock held and irqs disabled
1119 static void hrtick_start(struct rq *rq, u64 delay)
1121 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1122 HRTIMER_MODE_REL_PINNED, 0);
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SMP */
1130 static void init_rq_hrtick(struct rq *rq)
1132 #ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138 #endif
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1143 #else /* CONFIG_SCHED_HRTICK */
1144 static inline void hrtick_clear(struct rq *rq)
1148 static inline void init_rq_hrtick(struct rq *rq)
1152 static inline void init_hrtick(void)
1155 #endif /* CONFIG_SCHED_HRTICK */
1158 * resched_task - mark a task 'to be rescheduled now'.
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1162 * the target CPU.
1164 #ifdef CONFIG_SMP
1166 #ifndef tsk_is_polling
1167 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168 #endif
1170 static void resched_task(struct task_struct *p)
1172 int cpu;
1174 assert_raw_spin_locked(&task_rq(p)->lock);
1176 if (test_tsk_need_resched(p))
1177 return;
1179 set_tsk_need_resched(p);
1181 cpu = task_cpu(p);
1182 if (cpu == smp_processor_id())
1183 return;
1185 /* NEED_RESCHED must be visible before we test polling */
1186 smp_mb();
1187 if (!tsk_is_polling(p))
1188 smp_send_reschedule(cpu);
1191 static void resched_cpu(int cpu)
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long flags;
1196 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1197 return;
1198 resched_task(cpu_curr(cpu));
1199 raw_spin_unlock_irqrestore(&rq->lock, flags);
1202 #ifdef CONFIG_NO_HZ
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1213 void wake_up_idle_cpu(int cpu)
1215 struct rq *rq = cpu_rq(cpu);
1217 if (cpu == smp_processor_id())
1218 return;
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1227 if (rq->curr != rq->idle)
1228 return;
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1235 set_tsk_need_resched(rq->idle);
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1243 int nohz_ratelimit(int cpu)
1245 struct rq *rq = cpu_rq(cpu);
1246 u64 diff = rq->clock - rq->nohz_stamp;
1248 rq->nohz_stamp = rq->clock;
1250 return diff < (NSEC_PER_SEC / HZ) >> 1;
1253 #endif /* CONFIG_NO_HZ */
1255 static u64 sched_avg_period(void)
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260 static void sched_avg_update(struct rq *rq)
1262 s64 period = sched_avg_period();
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
1265 rq->age_stamp += period;
1266 rq->rt_avg /= 2;
1270 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272 rq->rt_avg += rt_delta;
1273 sched_avg_update(rq);
1276 #else /* !CONFIG_SMP */
1277 static void resched_task(struct task_struct *p)
1279 assert_raw_spin_locked(&task_rq(p)->lock);
1280 set_tsk_need_resched(p);
1283 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1286 #endif /* CONFIG_SMP */
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1294 #define WMULT_SHIFT 32
1297 * Shift right and round:
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302 * delta *= weight / lw
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1308 u64 tmp;
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1318 tmp = (u64)delta_exec * weight;
1320 * Check whether we'd overflow the 64-bit multiplication:
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1396 /* Time spent by the tasks of the cpu accounting group executing in ... */
1397 enum cpuacct_stat_index {
1398 CPUACCT_STAT_USER, /* ... user mode */
1399 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1401 CPUACCT_STAT_NSTATS,
1404 #ifdef CONFIG_CGROUP_CPUACCT
1405 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1406 static void cpuacct_update_stats(struct task_struct *tsk,
1407 enum cpuacct_stat_index idx, cputime_t val);
1408 #else
1409 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1410 static inline void cpuacct_update_stats(struct task_struct *tsk,
1411 enum cpuacct_stat_index idx, cputime_t val) {}
1412 #endif
1414 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1416 update_load_add(&rq->load, load);
1419 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1421 update_load_sub(&rq->load, load);
1424 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1425 typedef int (*tg_visitor)(struct task_group *, void *);
1428 * Iterate the full tree, calling @down when first entering a node and @up when
1429 * leaving it for the final time.
1431 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1433 struct task_group *parent, *child;
1434 int ret;
1436 rcu_read_lock();
1437 parent = &root_task_group;
1438 down:
1439 ret = (*down)(parent, data);
1440 if (ret)
1441 goto out_unlock;
1442 list_for_each_entry_rcu(child, &parent->children, siblings) {
1443 parent = child;
1444 goto down;
1447 continue;
1449 ret = (*up)(parent, data);
1450 if (ret)
1451 goto out_unlock;
1453 child = parent;
1454 parent = parent->parent;
1455 if (parent)
1456 goto up;
1457 out_unlock:
1458 rcu_read_unlock();
1460 return ret;
1463 static int tg_nop(struct task_group *tg, void *data)
1465 return 0;
1467 #endif
1469 #ifdef CONFIG_SMP
1470 /* Used instead of source_load when we know the type == 0 */
1471 static unsigned long weighted_cpuload(const int cpu)
1473 return cpu_rq(cpu)->load.weight;
1477 * Return a low guess at the load of a migration-source cpu weighted
1478 * according to the scheduling class and "nice" value.
1480 * We want to under-estimate the load of migration sources, to
1481 * balance conservatively.
1483 static unsigned long source_load(int cpu, int type)
1485 struct rq *rq = cpu_rq(cpu);
1486 unsigned long total = weighted_cpuload(cpu);
1488 if (type == 0 || !sched_feat(LB_BIAS))
1489 return total;
1491 return min(rq->cpu_load[type-1], total);
1495 * Return a high guess at the load of a migration-target cpu weighted
1496 * according to the scheduling class and "nice" value.
1498 static unsigned long target_load(int cpu, int type)
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1503 if (type == 0 || !sched_feat(LB_BIAS))
1504 return total;
1506 return max(rq->cpu_load[type-1], total);
1509 static struct sched_group *group_of(int cpu)
1511 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1513 if (!sd)
1514 return NULL;
1516 return sd->groups;
1519 static unsigned long power_of(int cpu)
1521 struct sched_group *group = group_of(cpu);
1523 if (!group)
1524 return SCHED_LOAD_SCALE;
1526 return group->cpu_power;
1529 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1531 static unsigned long cpu_avg_load_per_task(int cpu)
1533 struct rq *rq = cpu_rq(cpu);
1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1536 if (nr_running)
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
1538 else
1539 rq->avg_load_per_task = 0;
1541 return rq->avg_load_per_task;
1544 #ifdef CONFIG_FAIR_GROUP_SCHED
1546 static __read_mostly unsigned long __percpu *update_shares_data;
1548 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1551 * Calculate and set the cpu's group shares.
1553 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
1556 unsigned long *usd_rq_weight)
1558 unsigned long shares, rq_weight;
1559 int boost = 0;
1561 rq_weight = usd_rq_weight[cpu];
1562 if (!rq_weight) {
1563 boost = 1;
1564 rq_weight = NICE_0_LOAD;
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
1580 raw_spin_lock_irqsave(&rq->lock, flags);
1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1583 __set_se_shares(tg->se[cpu], shares);
1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
1593 static int tg_shares_up(struct task_group *tg, void *data)
1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1596 unsigned long *usd_rq_weight;
1597 struct sched_domain *sd = data;
1598 unsigned long flags;
1599 int i;
1601 if (!tg->se[0])
1602 return 0;
1604 local_irq_save(flags);
1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1607 for_each_cpu(i, sched_domain_span(sd)) {
1608 weight = tg->cfs_rq[i]->load.weight;
1609 usd_rq_weight[i] = weight;
1611 rq_weight += weight;
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1617 if (!weight)
1618 weight = NICE_0_LOAD;
1620 sum_weight += weight;
1621 shares += tg->cfs_rq[i]->shares;
1624 if (!rq_weight)
1625 rq_weight = sum_weight;
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
1633 for_each_cpu(i, sched_domain_span(sd))
1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1636 local_irq_restore(flags);
1638 return 0;
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
1646 static int tg_load_down(struct task_group *tg, void *data)
1648 unsigned long load;
1649 long cpu = (long)data;
1651 if (!tg->parent) {
1652 load = cpu_rq(cpu)->load.weight;
1653 } else {
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1659 tg->cfs_rq[cpu]->h_load = load;
1661 return 0;
1664 static void update_shares(struct sched_domain *sd)
1666 s64 elapsed;
1667 u64 now;
1669 if (root_task_group_empty())
1670 return;
1672 now = cpu_clock(raw_smp_processor_id());
1673 elapsed = now - sd->last_update;
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
1681 static void update_h_load(long cpu)
1683 if (root_task_group_empty())
1684 return;
1686 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1689 #else
1691 static inline void update_shares(struct sched_domain *sd)
1695 #endif
1697 #ifdef CONFIG_PREEMPT
1699 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1702 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1703 * way at the expense of forcing extra atomic operations in all
1704 * invocations. This assures that the double_lock is acquired using the
1705 * same underlying policy as the spinlock_t on this architecture, which
1706 * reduces latency compared to the unfair variant below. However, it
1707 * also adds more overhead and therefore may reduce throughput.
1709 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1710 __releases(this_rq->lock)
1711 __acquires(busiest->lock)
1712 __acquires(this_rq->lock)
1714 raw_spin_unlock(&this_rq->lock);
1715 double_rq_lock(this_rq, busiest);
1717 return 1;
1720 #else
1722 * Unfair double_lock_balance: Optimizes throughput at the expense of
1723 * latency by eliminating extra atomic operations when the locks are
1724 * already in proper order on entry. This favors lower cpu-ids and will
1725 * grant the double lock to lower cpus over higher ids under contention,
1726 * regardless of entry order into the function.
1728 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729 __releases(this_rq->lock)
1730 __acquires(busiest->lock)
1731 __acquires(this_rq->lock)
1733 int ret = 0;
1735 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1736 if (busiest < this_rq) {
1737 raw_spin_unlock(&this_rq->lock);
1738 raw_spin_lock(&busiest->lock);
1739 raw_spin_lock_nested(&this_rq->lock,
1740 SINGLE_DEPTH_NESTING);
1741 ret = 1;
1742 } else
1743 raw_spin_lock_nested(&busiest->lock,
1744 SINGLE_DEPTH_NESTING);
1746 return ret;
1749 #endif /* CONFIG_PREEMPT */
1752 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1754 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1756 if (unlikely(!irqs_disabled())) {
1757 /* printk() doesn't work good under rq->lock */
1758 raw_spin_unlock(&this_rq->lock);
1759 BUG_ON(1);
1762 return _double_lock_balance(this_rq, busiest);
1765 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(busiest->lock)
1768 raw_spin_unlock(&busiest->lock);
1769 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1773 * double_rq_lock - safely lock two runqueues
1775 * Note this does not disable interrupts like task_rq_lock,
1776 * you need to do so manually before calling.
1778 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1779 __acquires(rq1->lock)
1780 __acquires(rq2->lock)
1782 BUG_ON(!irqs_disabled());
1783 if (rq1 == rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 __acquire(rq2->lock); /* Fake it out ;) */
1786 } else {
1787 if (rq1 < rq2) {
1788 raw_spin_lock(&rq1->lock);
1789 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1790 } else {
1791 raw_spin_lock(&rq2->lock);
1792 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1798 * double_rq_unlock - safely unlock two runqueues
1800 * Note this does not restore interrupts like task_rq_unlock,
1801 * you need to do so manually after calling.
1803 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1804 __releases(rq1->lock)
1805 __releases(rq2->lock)
1807 raw_spin_unlock(&rq1->lock);
1808 if (rq1 != rq2)
1809 raw_spin_unlock(&rq2->lock);
1810 else
1811 __release(rq2->lock);
1814 #endif
1816 #ifdef CONFIG_FAIR_GROUP_SCHED
1817 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1819 #ifdef CONFIG_SMP
1820 cfs_rq->shares = shares;
1821 #endif
1823 #endif
1825 static void calc_load_account_active(struct rq *this_rq);
1826 static void update_sysctl(void);
1827 static int get_update_sysctl_factor(void);
1829 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1831 set_task_rq(p, cpu);
1832 #ifdef CONFIG_SMP
1834 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1835 * successfuly executed on another CPU. We must ensure that updates of
1836 * per-task data have been completed by this moment.
1838 smp_wmb();
1839 task_thread_info(p)->cpu = cpu;
1840 #endif
1843 static const struct sched_class rt_sched_class;
1845 #define sched_class_highest (&rt_sched_class)
1846 #define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
1849 #include "sched_stats.h"
1851 static void inc_nr_running(struct rq *rq)
1853 rq->nr_running++;
1856 static void dec_nr_running(struct rq *rq)
1858 rq->nr_running--;
1861 static void set_load_weight(struct task_struct *p)
1863 if (task_has_rt_policy(p)) {
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1870 * SCHED_IDLE tasks get minimal weight:
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1882 static void update_avg(u64 *avg, u64 sample)
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1888 static void
1889 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1891 update_rq_clock(rq);
1892 sched_info_queued(p);
1893 p->sched_class->enqueue_task(rq, p, wakeup, head);
1894 p->se.on_rq = 1;
1897 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1899 update_rq_clock(rq);
1900 sched_info_dequeued(p);
1901 p->sched_class->dequeue_task(rq, p, sleep);
1902 p->se.on_rq = 0;
1906 * activate_task - move a task to the runqueue.
1908 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1910 if (task_contributes_to_load(p))
1911 rq->nr_uninterruptible--;
1913 enqueue_task(rq, p, wakeup, false);
1914 inc_nr_running(rq);
1918 * deactivate_task - remove a task from the runqueue.
1920 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1922 if (task_contributes_to_load(p))
1923 rq->nr_uninterruptible++;
1925 dequeue_task(rq, p, sleep);
1926 dec_nr_running(rq);
1929 #include "sched_idletask.c"
1930 #include "sched_fair.c"
1931 #include "sched_rt.c"
1932 #ifdef CONFIG_SCHED_DEBUG
1933 # include "sched_debug.c"
1934 #endif
1937 * __normal_prio - return the priority that is based on the static prio
1939 static inline int __normal_prio(struct task_struct *p)
1941 return p->static_prio;
1945 * Calculate the expected normal priority: i.e. priority
1946 * without taking RT-inheritance into account. Might be
1947 * boosted by interactivity modifiers. Changes upon fork,
1948 * setprio syscalls, and whenever the interactivity
1949 * estimator recalculates.
1951 static inline int normal_prio(struct task_struct *p)
1953 int prio;
1955 if (task_has_rt_policy(p))
1956 prio = MAX_RT_PRIO-1 - p->rt_priority;
1957 else
1958 prio = __normal_prio(p);
1959 return prio;
1963 * Calculate the current priority, i.e. the priority
1964 * taken into account by the scheduler. This value might
1965 * be boosted by RT tasks, or might be boosted by
1966 * interactivity modifiers. Will be RT if the task got
1967 * RT-boosted. If not then it returns p->normal_prio.
1969 static int effective_prio(struct task_struct *p)
1971 p->normal_prio = normal_prio(p);
1973 * If we are RT tasks or we were boosted to RT priority,
1974 * keep the priority unchanged. Otherwise, update priority
1975 * to the normal priority:
1977 if (!rt_prio(p->prio))
1978 return p->normal_prio;
1979 return p->prio;
1983 * task_curr - is this task currently executing on a CPU?
1984 * @p: the task in question.
1986 inline int task_curr(const struct task_struct *p)
1988 return cpu_curr(task_cpu(p)) == p;
1991 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2003 #ifdef CONFIG_SMP
2005 * Is this task likely cache-hot:
2007 static int
2008 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2010 s64 delta;
2012 if (p->sched_class != &fair_sched_class)
2013 return 0;
2016 * Buddy candidates are cache hot:
2018 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2019 (&p->se == cfs_rq_of(&p->se)->next ||
2020 &p->se == cfs_rq_of(&p->se)->last))
2021 return 1;
2023 if (sysctl_sched_migration_cost == -1)
2024 return 1;
2025 if (sysctl_sched_migration_cost == 0)
2026 return 0;
2028 delta = now - p->se.exec_start;
2030 return delta < (s64)sysctl_sched_migration_cost;
2033 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2035 #ifdef CONFIG_SCHED_DEBUG
2037 * We should never call set_task_cpu() on a blocked task,
2038 * ttwu() will sort out the placement.
2040 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2041 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2042 #endif
2044 trace_sched_migrate_task(p, new_cpu);
2046 if (task_cpu(p) != new_cpu) {
2047 p->se.nr_migrations++;
2048 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2051 __set_task_cpu(p, new_cpu);
2054 struct migration_req {
2055 struct list_head list;
2057 struct task_struct *task;
2058 int dest_cpu;
2060 struct completion done;
2064 * The task's runqueue lock must be held.
2065 * Returns true if you have to wait for migration thread.
2067 static int
2068 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2070 struct rq *rq = task_rq(p);
2073 * If the task is not on a runqueue (and not running), then
2074 * the next wake-up will properly place the task.
2076 if (!p->se.on_rq && !task_running(rq, p))
2077 return 0;
2079 init_completion(&req->done);
2080 req->task = p;
2081 req->dest_cpu = dest_cpu;
2082 list_add(&req->list, &rq->migration_queue);
2084 return 1;
2088 * wait_task_context_switch - wait for a thread to complete at least one
2089 * context switch.
2091 * @p must not be current.
2093 void wait_task_context_switch(struct task_struct *p)
2095 unsigned long nvcsw, nivcsw, flags;
2096 int running;
2097 struct rq *rq;
2099 nvcsw = p->nvcsw;
2100 nivcsw = p->nivcsw;
2101 for (;;) {
2103 * The runqueue is assigned before the actual context
2104 * switch. We need to take the runqueue lock.
2106 * We could check initially without the lock but it is
2107 * very likely that we need to take the lock in every
2108 * iteration.
2110 rq = task_rq_lock(p, &flags);
2111 running = task_running(rq, p);
2112 task_rq_unlock(rq, &flags);
2114 if (likely(!running))
2115 break;
2117 * The switch count is incremented before the actual
2118 * context switch. We thus wait for two switches to be
2119 * sure at least one completed.
2121 if ((p->nvcsw - nvcsw) > 1)
2122 break;
2123 if ((p->nivcsw - nivcsw) > 1)
2124 break;
2126 cpu_relax();
2131 * wait_task_inactive - wait for a thread to unschedule.
2133 * If @match_state is nonzero, it's the @p->state value just checked and
2134 * not expected to change. If it changes, i.e. @p might have woken up,
2135 * then return zero. When we succeed in waiting for @p to be off its CPU,
2136 * we return a positive number (its total switch count). If a second call
2137 * a short while later returns the same number, the caller can be sure that
2138 * @p has remained unscheduled the whole time.
2140 * The caller must ensure that the task *will* unschedule sometime soon,
2141 * else this function might spin for a *long* time. This function can't
2142 * be called with interrupts off, or it may introduce deadlock with
2143 * smp_call_function() if an IPI is sent by the same process we are
2144 * waiting to become inactive.
2146 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2148 unsigned long flags;
2149 int running, on_rq;
2150 unsigned long ncsw;
2151 struct rq *rq;
2153 for (;;) {
2155 * We do the initial early heuristics without holding
2156 * any task-queue locks at all. We'll only try to get
2157 * the runqueue lock when things look like they will
2158 * work out!
2160 rq = task_rq(p);
2163 * If the task is actively running on another CPU
2164 * still, just relax and busy-wait without holding
2165 * any locks.
2167 * NOTE! Since we don't hold any locks, it's not
2168 * even sure that "rq" stays as the right runqueue!
2169 * But we don't care, since "task_running()" will
2170 * return false if the runqueue has changed and p
2171 * is actually now running somewhere else!
2173 while (task_running(rq, p)) {
2174 if (match_state && unlikely(p->state != match_state))
2175 return 0;
2176 cpu_relax();
2180 * Ok, time to look more closely! We need the rq
2181 * lock now, to be *sure*. If we're wrong, we'll
2182 * just go back and repeat.
2184 rq = task_rq_lock(p, &flags);
2185 trace_sched_wait_task(rq, p);
2186 running = task_running(rq, p);
2187 on_rq = p->se.on_rq;
2188 ncsw = 0;
2189 if (!match_state || p->state == match_state)
2190 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2191 task_rq_unlock(rq, &flags);
2194 * If it changed from the expected state, bail out now.
2196 if (unlikely(!ncsw))
2197 break;
2200 * Was it really running after all now that we
2201 * checked with the proper locks actually held?
2203 * Oops. Go back and try again..
2205 if (unlikely(running)) {
2206 cpu_relax();
2207 continue;
2211 * It's not enough that it's not actively running,
2212 * it must be off the runqueue _entirely_, and not
2213 * preempted!
2215 * So if it was still runnable (but just not actively
2216 * running right now), it's preempted, and we should
2217 * yield - it could be a while.
2219 if (unlikely(on_rq)) {
2220 schedule_timeout_uninterruptible(1);
2221 continue;
2225 * Ahh, all good. It wasn't running, and it wasn't
2226 * runnable, which means that it will never become
2227 * running in the future either. We're all done!
2229 break;
2232 return ncsw;
2235 /***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2242 * NOTE: this function doesnt have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2248 void kick_process(struct task_struct *p)
2250 int cpu;
2252 preempt_disable();
2253 cpu = task_cpu(p);
2254 if ((cpu != smp_processor_id()) && task_curr(p))
2255 smp_send_reschedule(cpu);
2256 preempt_enable();
2258 EXPORT_SYMBOL_GPL(kick_process);
2259 #endif /* CONFIG_SMP */
2262 * task_oncpu_function_call - call a function on the cpu on which a task runs
2263 * @p: the task to evaluate
2264 * @func: the function to be called
2265 * @info: the function call argument
2267 * Calls the function @func when the task is currently running. This might
2268 * be on the current CPU, which just calls the function directly
2270 void task_oncpu_function_call(struct task_struct *p,
2271 void (*func) (void *info), void *info)
2273 int cpu;
2275 preempt_disable();
2276 cpu = task_cpu(p);
2277 if (task_curr(p))
2278 smp_call_function_single(cpu, func, info, 1);
2279 preempt_enable();
2282 #ifdef CONFIG_SMP
2284 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2286 static int select_fallback_rq(int cpu, struct task_struct *p)
2288 int dest_cpu;
2289 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2291 /* Look for allowed, online CPU in same node. */
2292 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2293 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2294 return dest_cpu;
2296 /* Any allowed, online CPU? */
2297 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2298 if (dest_cpu < nr_cpu_ids)
2299 return dest_cpu;
2301 /* No more Mr. Nice Guy. */
2302 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2303 dest_cpu = cpuset_cpus_allowed_fallback(p);
2305 * Don't tell them about moving exiting tasks or
2306 * kernel threads (both mm NULL), since they never
2307 * leave kernel.
2309 if (p->mm && printk_ratelimit()) {
2310 printk(KERN_INFO "process %d (%s) no "
2311 "longer affine to cpu%d\n",
2312 task_pid_nr(p), p->comm, cpu);
2316 return dest_cpu;
2320 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2322 static inline
2323 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2325 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2328 * In order not to call set_task_cpu() on a blocking task we need
2329 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2330 * cpu.
2332 * Since this is common to all placement strategies, this lives here.
2334 * [ this allows ->select_task() to simply return task_cpu(p) and
2335 * not worry about this generic constraint ]
2337 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2338 !cpu_online(cpu)))
2339 cpu = select_fallback_rq(task_cpu(p), p);
2341 return cpu;
2343 #endif
2345 /***
2346 * try_to_wake_up - wake up a thread
2347 * @p: the to-be-woken-up thread
2348 * @state: the mask of task states that can be woken
2349 * @sync: do a synchronous wakeup?
2351 * Put it on the run-queue if it's not already there. The "current"
2352 * thread is always on the run-queue (except when the actual
2353 * re-schedule is in progress), and as such you're allowed to do
2354 * the simpler "current->state = TASK_RUNNING" to mark yourself
2355 * runnable without the overhead of this.
2357 * returns failure only if the task is already active.
2359 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2360 int wake_flags)
2362 int cpu, orig_cpu, this_cpu, success = 0;
2363 unsigned long flags;
2364 struct rq *rq;
2366 this_cpu = get_cpu();
2368 smp_wmb();
2369 rq = task_rq_lock(p, &flags);
2370 if (!(p->state & state))
2371 goto out;
2373 if (p->se.on_rq)
2374 goto out_running;
2376 cpu = task_cpu(p);
2377 orig_cpu = cpu;
2379 #ifdef CONFIG_SMP
2380 if (unlikely(task_running(rq, p)))
2381 goto out_activate;
2384 * In order to handle concurrent wakeups and release the rq->lock
2385 * we put the task in TASK_WAKING state.
2387 * First fix up the nr_uninterruptible count:
2389 if (task_contributes_to_load(p))
2390 rq->nr_uninterruptible--;
2391 p->state = TASK_WAKING;
2393 if (p->sched_class->task_waking)
2394 p->sched_class->task_waking(rq, p);
2396 __task_rq_unlock(rq);
2398 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2399 if (cpu != orig_cpu) {
2401 * Since we migrate the task without holding any rq->lock,
2402 * we need to be careful with task_rq_lock(), since that
2403 * might end up locking an invalid rq.
2405 set_task_cpu(p, cpu);
2408 rq = cpu_rq(cpu);
2409 raw_spin_lock(&rq->lock);
2412 * We migrated the task without holding either rq->lock, however
2413 * since the task is not on the task list itself, nobody else
2414 * will try and migrate the task, hence the rq should match the
2415 * cpu we just moved it to.
2417 WARN_ON(task_cpu(p) != cpu);
2418 WARN_ON(p->state != TASK_WAKING);
2420 #ifdef CONFIG_SCHEDSTATS
2421 schedstat_inc(rq, ttwu_count);
2422 if (cpu == this_cpu)
2423 schedstat_inc(rq, ttwu_local);
2424 else {
2425 struct sched_domain *sd;
2426 for_each_domain(this_cpu, sd) {
2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2433 #endif /* CONFIG_SCHEDSTATS */
2435 out_activate:
2436 #endif /* CONFIG_SMP */
2437 schedstat_inc(p, se.statistics.nr_wakeups);
2438 if (wake_flags & WF_SYNC)
2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2440 if (orig_cpu != cpu)
2441 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2442 if (cpu == this_cpu)
2443 schedstat_inc(p, se.statistics.nr_wakeups_local);
2444 else
2445 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2446 activate_task(rq, p, 1);
2447 success = 1;
2449 out_running:
2450 trace_sched_wakeup(rq, p, success);
2451 check_preempt_curr(rq, p, wake_flags);
2453 p->state = TASK_RUNNING;
2454 #ifdef CONFIG_SMP
2455 if (p->sched_class->task_woken)
2456 p->sched_class->task_woken(rq, p);
2458 if (unlikely(rq->idle_stamp)) {
2459 u64 delta = rq->clock - rq->idle_stamp;
2460 u64 max = 2*sysctl_sched_migration_cost;
2462 if (delta > max)
2463 rq->avg_idle = max;
2464 else
2465 update_avg(&rq->avg_idle, delta);
2466 rq->idle_stamp = 0;
2468 #endif
2469 out:
2470 task_rq_unlock(rq, &flags);
2471 put_cpu();
2473 return success;
2477 * wake_up_process - Wake up a specific process
2478 * @p: The process to be woken up.
2480 * Attempt to wake up the nominated process and move it to the set of runnable
2481 * processes. Returns 1 if the process was woken up, 0 if it was already
2482 * running.
2484 * It may be assumed that this function implies a write memory barrier before
2485 * changing the task state if and only if any tasks are woken up.
2487 int wake_up_process(struct task_struct *p)
2489 return try_to_wake_up(p, TASK_ALL, 0);
2491 EXPORT_SYMBOL(wake_up_process);
2493 int wake_up_state(struct task_struct *p, unsigned int state)
2495 return try_to_wake_up(p, state, 0);
2499 * Perform scheduler related setup for a newly forked process p.
2500 * p is forked by current.
2502 * __sched_fork() is basic setup used by init_idle() too:
2504 static void __sched_fork(struct task_struct *p)
2506 p->se.exec_start = 0;
2507 p->se.sum_exec_runtime = 0;
2508 p->se.prev_sum_exec_runtime = 0;
2509 p->se.nr_migrations = 0;
2511 #ifdef CONFIG_SCHEDSTATS
2512 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2513 #endif
2515 INIT_LIST_HEAD(&p->rt.run_list);
2516 p->se.on_rq = 0;
2517 INIT_LIST_HEAD(&p->se.group_node);
2519 #ifdef CONFIG_PREEMPT_NOTIFIERS
2520 INIT_HLIST_HEAD(&p->preempt_notifiers);
2521 #endif
2525 * fork()/clone()-time setup:
2527 void sched_fork(struct task_struct *p, int clone_flags)
2529 int cpu = get_cpu();
2531 __sched_fork(p);
2533 * We mark the process as waking here. This guarantees that
2534 * nobody will actually run it, and a signal or other external
2535 * event cannot wake it up and insert it on the runqueue either.
2537 p->state = TASK_WAKING;
2540 * Revert to default priority/policy on fork if requested.
2542 if (unlikely(p->sched_reset_on_fork)) {
2543 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2544 p->policy = SCHED_NORMAL;
2545 p->normal_prio = p->static_prio;
2548 if (PRIO_TO_NICE(p->static_prio) < 0) {
2549 p->static_prio = NICE_TO_PRIO(0);
2550 p->normal_prio = p->static_prio;
2551 set_load_weight(p);
2555 * We don't need the reset flag anymore after the fork. It has
2556 * fulfilled its duty:
2558 p->sched_reset_on_fork = 0;
2562 * Make sure we do not leak PI boosting priority to the child.
2564 p->prio = current->normal_prio;
2566 if (!rt_prio(p->prio))
2567 p->sched_class = &fair_sched_class;
2569 if (p->sched_class->task_fork)
2570 p->sched_class->task_fork(p);
2572 set_task_cpu(p, cpu);
2574 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2575 if (likely(sched_info_on()))
2576 memset(&p->sched_info, 0, sizeof(p->sched_info));
2577 #endif
2578 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2579 p->oncpu = 0;
2580 #endif
2581 #ifdef CONFIG_PREEMPT
2582 /* Want to start with kernel preemption disabled. */
2583 task_thread_info(p)->preempt_count = 1;
2584 #endif
2585 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2587 put_cpu();
2591 * wake_up_new_task - wake up a newly created task for the first time.
2593 * This function will do some initial scheduler statistics housekeeping
2594 * that must be done for every newly created context, then puts the task
2595 * on the runqueue and wakes it.
2597 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2599 unsigned long flags;
2600 struct rq *rq;
2601 int cpu __maybe_unused = get_cpu();
2603 #ifdef CONFIG_SMP
2605 * Fork balancing, do it here and not earlier because:
2606 * - cpus_allowed can change in the fork path
2607 * - any previously selected cpu might disappear through hotplug
2609 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2610 * ->cpus_allowed is stable, we have preemption disabled, meaning
2611 * cpu_online_mask is stable.
2613 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2614 set_task_cpu(p, cpu);
2615 #endif
2618 * Since the task is not on the rq and we still have TASK_WAKING set
2619 * nobody else will migrate this task.
2621 rq = cpu_rq(cpu);
2622 raw_spin_lock_irqsave(&rq->lock, flags);
2624 BUG_ON(p->state != TASK_WAKING);
2625 p->state = TASK_RUNNING;
2626 activate_task(rq, p, 0);
2627 trace_sched_wakeup_new(rq, p, 1);
2628 check_preempt_curr(rq, p, WF_FORK);
2629 #ifdef CONFIG_SMP
2630 if (p->sched_class->task_woken)
2631 p->sched_class->task_woken(rq, p);
2632 #endif
2633 task_rq_unlock(rq, &flags);
2634 put_cpu();
2637 #ifdef CONFIG_PREEMPT_NOTIFIERS
2640 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2641 * @notifier: notifier struct to register
2643 void preempt_notifier_register(struct preempt_notifier *notifier)
2645 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2647 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2650 * preempt_notifier_unregister - no longer interested in preemption notifications
2651 * @notifier: notifier struct to unregister
2653 * This is safe to call from within a preemption notifier.
2655 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2657 hlist_del(&notifier->link);
2659 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2661 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2663 struct preempt_notifier *notifier;
2664 struct hlist_node *node;
2666 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2667 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2670 static void
2671 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2674 struct preempt_notifier *notifier;
2675 struct hlist_node *node;
2677 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2678 notifier->ops->sched_out(notifier, next);
2681 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2683 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2687 static void
2688 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2689 struct task_struct *next)
2693 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2696 * prepare_task_switch - prepare to switch tasks
2697 * @rq: the runqueue preparing to switch
2698 * @prev: the current task that is being switched out
2699 * @next: the task we are going to switch to.
2701 * This is called with the rq lock held and interrupts off. It must
2702 * be paired with a subsequent finish_task_switch after the context
2703 * switch.
2705 * prepare_task_switch sets up locking and calls architecture specific
2706 * hooks.
2708 static inline void
2709 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2710 struct task_struct *next)
2712 fire_sched_out_preempt_notifiers(prev, next);
2713 prepare_lock_switch(rq, next);
2714 prepare_arch_switch(next);
2718 * finish_task_switch - clean up after a task-switch
2719 * @rq: runqueue associated with task-switch
2720 * @prev: the thread we just switched away from.
2722 * finish_task_switch must be called after the context switch, paired
2723 * with a prepare_task_switch call before the context switch.
2724 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2725 * and do any other architecture-specific cleanup actions.
2727 * Note that we may have delayed dropping an mm in context_switch(). If
2728 * so, we finish that here outside of the runqueue lock. (Doing it
2729 * with the lock held can cause deadlocks; see schedule() for
2730 * details.)
2732 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2733 __releases(rq->lock)
2735 struct mm_struct *mm = rq->prev_mm;
2736 long prev_state;
2738 rq->prev_mm = NULL;
2741 * A task struct has one reference for the use as "current".
2742 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2743 * schedule one last time. The schedule call will never return, and
2744 * the scheduled task must drop that reference.
2745 * The test for TASK_DEAD must occur while the runqueue locks are
2746 * still held, otherwise prev could be scheduled on another cpu, die
2747 * there before we look at prev->state, and then the reference would
2748 * be dropped twice.
2749 * Manfred Spraul <manfred@colorfullife.com>
2751 prev_state = prev->state;
2752 finish_arch_switch(prev);
2753 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2754 local_irq_disable();
2755 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2756 perf_event_task_sched_in(current);
2757 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2758 local_irq_enable();
2759 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2760 finish_lock_switch(rq, prev);
2762 fire_sched_in_preempt_notifiers(current);
2763 if (mm)
2764 mmdrop(mm);
2765 if (unlikely(prev_state == TASK_DEAD)) {
2767 * Remove function-return probe instances associated with this
2768 * task and put them back on the free list.
2770 kprobe_flush_task(prev);
2771 put_task_struct(prev);
2775 #ifdef CONFIG_SMP
2777 /* assumes rq->lock is held */
2778 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2780 if (prev->sched_class->pre_schedule)
2781 prev->sched_class->pre_schedule(rq, prev);
2784 /* rq->lock is NOT held, but preemption is disabled */
2785 static inline void post_schedule(struct rq *rq)
2787 if (rq->post_schedule) {
2788 unsigned long flags;
2790 raw_spin_lock_irqsave(&rq->lock, flags);
2791 if (rq->curr->sched_class->post_schedule)
2792 rq->curr->sched_class->post_schedule(rq);
2793 raw_spin_unlock_irqrestore(&rq->lock, flags);
2795 rq->post_schedule = 0;
2799 #else
2801 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2805 static inline void post_schedule(struct rq *rq)
2809 #endif
2812 * schedule_tail - first thing a freshly forked thread must call.
2813 * @prev: the thread we just switched away from.
2815 asmlinkage void schedule_tail(struct task_struct *prev)
2816 __releases(rq->lock)
2818 struct rq *rq = this_rq();
2820 finish_task_switch(rq, prev);
2823 * FIXME: do we need to worry about rq being invalidated by the
2824 * task_switch?
2826 post_schedule(rq);
2828 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2829 /* In this case, finish_task_switch does not reenable preemption */
2830 preempt_enable();
2831 #endif
2832 if (current->set_child_tid)
2833 put_user(task_pid_vnr(current), current->set_child_tid);
2837 * context_switch - switch to the new MM and the new
2838 * thread's register state.
2840 static inline void
2841 context_switch(struct rq *rq, struct task_struct *prev,
2842 struct task_struct *next)
2844 struct mm_struct *mm, *oldmm;
2846 prepare_task_switch(rq, prev, next);
2847 trace_sched_switch(rq, prev, next);
2848 mm = next->mm;
2849 oldmm = prev->active_mm;
2851 * For paravirt, this is coupled with an exit in switch_to to
2852 * combine the page table reload and the switch backend into
2853 * one hypercall.
2855 arch_start_context_switch(prev);
2857 if (likely(!mm)) {
2858 next->active_mm = oldmm;
2859 atomic_inc(&oldmm->mm_count);
2860 enter_lazy_tlb(oldmm, next);
2861 } else
2862 switch_mm(oldmm, mm, next);
2864 if (likely(!prev->mm)) {
2865 prev->active_mm = NULL;
2866 rq->prev_mm = oldmm;
2869 * Since the runqueue lock will be released by the next
2870 * task (which is an invalid locking op but in the case
2871 * of the scheduler it's an obvious special-case), so we
2872 * do an early lockdep release here:
2874 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2876 #endif
2878 /* Here we just switch the register state and the stack. */
2879 switch_to(prev, next, prev);
2881 barrier();
2883 * this_rq must be evaluated again because prev may have moved
2884 * CPUs since it called schedule(), thus the 'rq' on its stack
2885 * frame will be invalid.
2887 finish_task_switch(this_rq(), prev);
2891 * nr_running, nr_uninterruptible and nr_context_switches:
2893 * externally visible scheduler statistics: current number of runnable
2894 * threads, current number of uninterruptible-sleeping threads, total
2895 * number of context switches performed since bootup.
2897 unsigned long nr_running(void)
2899 unsigned long i, sum = 0;
2901 for_each_online_cpu(i)
2902 sum += cpu_rq(i)->nr_running;
2904 return sum;
2907 unsigned long nr_uninterruptible(void)
2909 unsigned long i, sum = 0;
2911 for_each_possible_cpu(i)
2912 sum += cpu_rq(i)->nr_uninterruptible;
2915 * Since we read the counters lockless, it might be slightly
2916 * inaccurate. Do not allow it to go below zero though:
2918 if (unlikely((long)sum < 0))
2919 sum = 0;
2921 return sum;
2924 unsigned long long nr_context_switches(void)
2926 int i;
2927 unsigned long long sum = 0;
2929 for_each_possible_cpu(i)
2930 sum += cpu_rq(i)->nr_switches;
2932 return sum;
2935 unsigned long nr_iowait(void)
2937 unsigned long i, sum = 0;
2939 for_each_possible_cpu(i)
2940 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2942 return sum;
2945 unsigned long nr_iowait_cpu(void)
2947 struct rq *this = this_rq();
2948 return atomic_read(&this->nr_iowait);
2951 unsigned long this_cpu_load(void)
2953 struct rq *this = this_rq();
2954 return this->cpu_load[0];
2958 /* Variables and functions for calc_load */
2959 static atomic_long_t calc_load_tasks;
2960 static unsigned long calc_load_update;
2961 unsigned long avenrun[3];
2962 EXPORT_SYMBOL(avenrun);
2965 * get_avenrun - get the load average array
2966 * @loads: pointer to dest load array
2967 * @offset: offset to add
2968 * @shift: shift count to shift the result left
2970 * These values are estimates at best, so no need for locking.
2972 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2974 loads[0] = (avenrun[0] + offset) << shift;
2975 loads[1] = (avenrun[1] + offset) << shift;
2976 loads[2] = (avenrun[2] + offset) << shift;
2979 static unsigned long
2980 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2982 load *= exp;
2983 load += active * (FIXED_1 - exp);
2984 return load >> FSHIFT;
2988 * calc_load - update the avenrun load estimates 10 ticks after the
2989 * CPUs have updated calc_load_tasks.
2991 void calc_global_load(void)
2993 unsigned long upd = calc_load_update + 10;
2994 long active;
2996 if (time_before(jiffies, upd))
2997 return;
2999 active = atomic_long_read(&calc_load_tasks);
3000 active = active > 0 ? active * FIXED_1 : 0;
3002 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3003 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3004 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3006 calc_load_update += LOAD_FREQ;
3010 * Either called from update_cpu_load() or from a cpu going idle
3012 static void calc_load_account_active(struct rq *this_rq)
3014 long nr_active, delta;
3016 nr_active = this_rq->nr_running;
3017 nr_active += (long) this_rq->nr_uninterruptible;
3019 if (nr_active != this_rq->calc_load_active) {
3020 delta = nr_active - this_rq->calc_load_active;
3021 this_rq->calc_load_active = nr_active;
3022 atomic_long_add(delta, &calc_load_tasks);
3027 * Update rq->cpu_load[] statistics. This function is usually called every
3028 * scheduler tick (TICK_NSEC).
3030 static void update_cpu_load(struct rq *this_rq)
3032 unsigned long this_load = this_rq->load.weight;
3033 int i, scale;
3035 this_rq->nr_load_updates++;
3037 /* Update our load: */
3038 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3039 unsigned long old_load, new_load;
3041 /* scale is effectively 1 << i now, and >> i divides by scale */
3043 old_load = this_rq->cpu_load[i];
3044 new_load = this_load;
3046 * Round up the averaging division if load is increasing. This
3047 * prevents us from getting stuck on 9 if the load is 10, for
3048 * example.
3050 if (new_load > old_load)
3051 new_load += scale-1;
3052 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3055 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3056 this_rq->calc_load_update += LOAD_FREQ;
3057 calc_load_account_active(this_rq);
3061 #ifdef CONFIG_SMP
3064 * sched_exec - execve() is a valuable balancing opportunity, because at
3065 * this point the task has the smallest effective memory and cache footprint.
3067 void sched_exec(void)
3069 struct task_struct *p = current;
3070 struct migration_req req;
3071 int dest_cpu, this_cpu;
3072 unsigned long flags;
3073 struct rq *rq;
3075 this_cpu = get_cpu();
3076 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3077 if (dest_cpu == this_cpu) {
3078 put_cpu();
3079 return;
3082 rq = task_rq_lock(p, &flags);
3083 put_cpu();
3085 * select_task_rq() can race against ->cpus_allowed
3087 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3088 likely(cpu_active(dest_cpu)) &&
3089 migrate_task(p, dest_cpu, &req)) {
3090 /* Need to wait for migration thread (might exit: take ref). */
3091 struct task_struct *mt = rq->migration_thread;
3093 get_task_struct(mt);
3094 task_rq_unlock(rq, &flags);
3095 wake_up_process(mt);
3096 put_task_struct(mt);
3097 wait_for_completion(&req.done);
3099 return;
3101 task_rq_unlock(rq, &flags);
3104 #endif
3106 DEFINE_PER_CPU(struct kernel_stat, kstat);
3108 EXPORT_PER_CPU_SYMBOL(kstat);
3111 * Return any ns on the sched_clock that have not yet been accounted in
3112 * @p in case that task is currently running.
3114 * Called with task_rq_lock() held on @rq.
3116 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3118 u64 ns = 0;
3120 if (task_current(rq, p)) {
3121 update_rq_clock(rq);
3122 ns = rq->clock - p->se.exec_start;
3123 if ((s64)ns < 0)
3124 ns = 0;
3127 return ns;
3130 unsigned long long task_delta_exec(struct task_struct *p)
3132 unsigned long flags;
3133 struct rq *rq;
3134 u64 ns = 0;
3136 rq = task_rq_lock(p, &flags);
3137 ns = do_task_delta_exec(p, rq);
3138 task_rq_unlock(rq, &flags);
3140 return ns;
3144 * Return accounted runtime for the task.
3145 * In case the task is currently running, return the runtime plus current's
3146 * pending runtime that have not been accounted yet.
3148 unsigned long long task_sched_runtime(struct task_struct *p)
3150 unsigned long flags;
3151 struct rq *rq;
3152 u64 ns = 0;
3154 rq = task_rq_lock(p, &flags);
3155 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3156 task_rq_unlock(rq, &flags);
3158 return ns;
3162 * Return sum_exec_runtime for the thread group.
3163 * In case the task is currently running, return the sum plus current's
3164 * pending runtime that have not been accounted yet.
3166 * Note that the thread group might have other running tasks as well,
3167 * so the return value not includes other pending runtime that other
3168 * running tasks might have.
3170 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3172 struct task_cputime totals;
3173 unsigned long flags;
3174 struct rq *rq;
3175 u64 ns;
3177 rq = task_rq_lock(p, &flags);
3178 thread_group_cputime(p, &totals);
3179 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3180 task_rq_unlock(rq, &flags);
3182 return ns;
3186 * Account user cpu time to a process.
3187 * @p: the process that the cpu time gets accounted to
3188 * @cputime: the cpu time spent in user space since the last update
3189 * @cputime_scaled: cputime scaled by cpu frequency
3191 void account_user_time(struct task_struct *p, cputime_t cputime,
3192 cputime_t cputime_scaled)
3194 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3195 cputime64_t tmp;
3197 /* Add user time to process. */
3198 p->utime = cputime_add(p->utime, cputime);
3199 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3200 account_group_user_time(p, cputime);
3202 /* Add user time to cpustat. */
3203 tmp = cputime_to_cputime64(cputime);
3204 if (TASK_NICE(p) > 0)
3205 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3206 else
3207 cpustat->user = cputime64_add(cpustat->user, tmp);
3209 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3210 /* Account for user time used */
3211 acct_update_integrals(p);
3215 * Account guest cpu time to a process.
3216 * @p: the process that the cpu time gets accounted to
3217 * @cputime: the cpu time spent in virtual machine since the last update
3218 * @cputime_scaled: cputime scaled by cpu frequency
3220 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3221 cputime_t cputime_scaled)
3223 cputime64_t tmp;
3224 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3226 tmp = cputime_to_cputime64(cputime);
3228 /* Add guest time to process. */
3229 p->utime = cputime_add(p->utime, cputime);
3230 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3231 account_group_user_time(p, cputime);
3232 p->gtime = cputime_add(p->gtime, cputime);
3234 /* Add guest time to cpustat. */
3235 if (TASK_NICE(p) > 0) {
3236 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3237 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3238 } else {
3239 cpustat->user = cputime64_add(cpustat->user, tmp);
3240 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3245 * Account system cpu time to a process.
3246 * @p: the process that the cpu time gets accounted to
3247 * @hardirq_offset: the offset to subtract from hardirq_count()
3248 * @cputime: the cpu time spent in kernel space since the last update
3249 * @cputime_scaled: cputime scaled by cpu frequency
3251 void account_system_time(struct task_struct *p, int hardirq_offset,
3252 cputime_t cputime, cputime_t cputime_scaled)
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3255 cputime64_t tmp;
3257 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3258 account_guest_time(p, cputime, cputime_scaled);
3259 return;
3262 /* Add system time to process. */
3263 p->stime = cputime_add(p->stime, cputime);
3264 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3265 account_group_system_time(p, cputime);
3267 /* Add system time to cpustat. */
3268 tmp = cputime_to_cputime64(cputime);
3269 if (hardirq_count() - hardirq_offset)
3270 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3271 else if (softirq_count())
3272 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3273 else
3274 cpustat->system = cputime64_add(cpustat->system, tmp);
3276 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3278 /* Account for system time used */
3279 acct_update_integrals(p);
3283 * Account for involuntary wait time.
3284 * @steal: the cpu time spent in involuntary wait
3286 void account_steal_time(cputime_t cputime)
3288 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3289 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3291 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3295 * Account for idle time.
3296 * @cputime: the cpu time spent in idle wait
3298 void account_idle_time(cputime_t cputime)
3300 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3301 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3302 struct rq *rq = this_rq();
3304 if (atomic_read(&rq->nr_iowait) > 0)
3305 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3306 else
3307 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3310 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3313 * Account a single tick of cpu time.
3314 * @p: the process that the cpu time gets accounted to
3315 * @user_tick: indicates if the tick is a user or a system tick
3317 void account_process_tick(struct task_struct *p, int user_tick)
3319 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3320 struct rq *rq = this_rq();
3322 if (user_tick)
3323 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3324 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3325 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3326 one_jiffy_scaled);
3327 else
3328 account_idle_time(cputime_one_jiffy);
3332 * Account multiple ticks of steal time.
3333 * @p: the process from which the cpu time has been stolen
3334 * @ticks: number of stolen ticks
3336 void account_steal_ticks(unsigned long ticks)
3338 account_steal_time(jiffies_to_cputime(ticks));
3342 * Account multiple ticks of idle time.
3343 * @ticks: number of stolen ticks
3345 void account_idle_ticks(unsigned long ticks)
3347 account_idle_time(jiffies_to_cputime(ticks));
3350 #endif
3353 * Use precise platform statistics if available:
3355 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3356 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3358 *ut = p->utime;
3359 *st = p->stime;
3362 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3364 struct task_cputime cputime;
3366 thread_group_cputime(p, &cputime);
3368 *ut = cputime.utime;
3369 *st = cputime.stime;
3371 #else
3373 #ifndef nsecs_to_cputime
3374 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3375 #endif
3377 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3379 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3382 * Use CFS's precise accounting:
3384 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3386 if (total) {
3387 u64 temp;
3389 temp = (u64)(rtime * utime);
3390 do_div(temp, total);
3391 utime = (cputime_t)temp;
3392 } else
3393 utime = rtime;
3396 * Compare with previous values, to keep monotonicity:
3398 p->prev_utime = max(p->prev_utime, utime);
3399 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3401 *ut = p->prev_utime;
3402 *st = p->prev_stime;
3406 * Must be called with siglock held.
3408 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3410 struct signal_struct *sig = p->signal;
3411 struct task_cputime cputime;
3412 cputime_t rtime, utime, total;
3414 thread_group_cputime(p, &cputime);
3416 total = cputime_add(cputime.utime, cputime.stime);
3417 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3419 if (total) {
3420 u64 temp;
3422 temp = (u64)(rtime * cputime.utime);
3423 do_div(temp, total);
3424 utime = (cputime_t)temp;
3425 } else
3426 utime = rtime;
3428 sig->prev_utime = max(sig->prev_utime, utime);
3429 sig->prev_stime = max(sig->prev_stime,
3430 cputime_sub(rtime, sig->prev_utime));
3432 *ut = sig->prev_utime;
3433 *st = sig->prev_stime;
3435 #endif
3438 * This function gets called by the timer code, with HZ frequency.
3439 * We call it with interrupts disabled.
3441 * It also gets called by the fork code, when changing the parent's
3442 * timeslices.
3444 void scheduler_tick(void)
3446 int cpu = smp_processor_id();
3447 struct rq *rq = cpu_rq(cpu);
3448 struct task_struct *curr = rq->curr;
3450 sched_clock_tick();
3452 raw_spin_lock(&rq->lock);
3453 update_rq_clock(rq);
3454 update_cpu_load(rq);
3455 curr->sched_class->task_tick(rq, curr, 0);
3456 raw_spin_unlock(&rq->lock);
3458 perf_event_task_tick(curr);
3460 #ifdef CONFIG_SMP
3461 rq->idle_at_tick = idle_cpu(cpu);
3462 trigger_load_balance(rq, cpu);
3463 #endif
3466 notrace unsigned long get_parent_ip(unsigned long addr)
3468 if (in_lock_functions(addr)) {
3469 addr = CALLER_ADDR2;
3470 if (in_lock_functions(addr))
3471 addr = CALLER_ADDR3;
3473 return addr;
3476 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3477 defined(CONFIG_PREEMPT_TRACER))
3479 void __kprobes add_preempt_count(int val)
3481 #ifdef CONFIG_DEBUG_PREEMPT
3483 * Underflow?
3485 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3486 return;
3487 #endif
3488 preempt_count() += val;
3489 #ifdef CONFIG_DEBUG_PREEMPT
3491 * Spinlock count overflowing soon?
3493 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3494 PREEMPT_MASK - 10);
3495 #endif
3496 if (preempt_count() == val)
3497 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3499 EXPORT_SYMBOL(add_preempt_count);
3501 void __kprobes sub_preempt_count(int val)
3503 #ifdef CONFIG_DEBUG_PREEMPT
3505 * Underflow?
3507 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3508 return;
3510 * Is the spinlock portion underflowing?
3512 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3513 !(preempt_count() & PREEMPT_MASK)))
3514 return;
3515 #endif
3517 if (preempt_count() == val)
3518 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3519 preempt_count() -= val;
3521 EXPORT_SYMBOL(sub_preempt_count);
3523 #endif
3526 * Print scheduling while atomic bug:
3528 static noinline void __schedule_bug(struct task_struct *prev)
3530 struct pt_regs *regs = get_irq_regs();
3532 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3533 prev->comm, prev->pid, preempt_count());
3535 debug_show_held_locks(prev);
3536 print_modules();
3537 if (irqs_disabled())
3538 print_irqtrace_events(prev);
3540 if (regs)
3541 show_regs(regs);
3542 else
3543 dump_stack();
3547 * Various schedule()-time debugging checks and statistics:
3549 static inline void schedule_debug(struct task_struct *prev)
3552 * Test if we are atomic. Since do_exit() needs to call into
3553 * schedule() atomically, we ignore that path for now.
3554 * Otherwise, whine if we are scheduling when we should not be.
3556 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3557 __schedule_bug(prev);
3559 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3561 schedstat_inc(this_rq(), sched_count);
3562 #ifdef CONFIG_SCHEDSTATS
3563 if (unlikely(prev->lock_depth >= 0)) {
3564 schedstat_inc(this_rq(), bkl_count);
3565 schedstat_inc(prev, sched_info.bkl_count);
3567 #endif
3570 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3572 if (prev->se.on_rq)
3573 update_rq_clock(rq);
3574 rq->skip_clock_update = 0;
3575 prev->sched_class->put_prev_task(rq, prev);
3579 * Pick up the highest-prio task:
3581 static inline struct task_struct *
3582 pick_next_task(struct rq *rq)
3584 const struct sched_class *class;
3585 struct task_struct *p;
3588 * Optimization: we know that if all tasks are in
3589 * the fair class we can call that function directly:
3591 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3592 p = fair_sched_class.pick_next_task(rq);
3593 if (likely(p))
3594 return p;
3597 class = sched_class_highest;
3598 for ( ; ; ) {
3599 p = class->pick_next_task(rq);
3600 if (p)
3601 return p;
3603 * Will never be NULL as the idle class always
3604 * returns a non-NULL p:
3606 class = class->next;
3611 * schedule() is the main scheduler function.
3613 asmlinkage void __sched schedule(void)
3615 struct task_struct *prev, *next;
3616 unsigned long *switch_count;
3617 struct rq *rq;
3618 int cpu;
3620 need_resched:
3621 preempt_disable();
3622 cpu = smp_processor_id();
3623 rq = cpu_rq(cpu);
3624 rcu_sched_qs(cpu);
3625 prev = rq->curr;
3626 switch_count = &prev->nivcsw;
3628 release_kernel_lock(prev);
3629 need_resched_nonpreemptible:
3631 schedule_debug(prev);
3633 if (sched_feat(HRTICK))
3634 hrtick_clear(rq);
3636 raw_spin_lock_irq(&rq->lock);
3637 clear_tsk_need_resched(prev);
3639 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3640 if (unlikely(signal_pending_state(prev->state, prev)))
3641 prev->state = TASK_RUNNING;
3642 else
3643 deactivate_task(rq, prev, 1);
3644 switch_count = &prev->nvcsw;
3647 pre_schedule(rq, prev);
3649 if (unlikely(!rq->nr_running))
3650 idle_balance(cpu, rq);
3652 put_prev_task(rq, prev);
3653 next = pick_next_task(rq);
3655 if (likely(prev != next)) {
3656 sched_info_switch(prev, next);
3657 perf_event_task_sched_out(prev, next);
3659 rq->nr_switches++;
3660 rq->curr = next;
3661 ++*switch_count;
3663 context_switch(rq, prev, next); /* unlocks the rq */
3665 * the context switch might have flipped the stack from under
3666 * us, hence refresh the local variables.
3668 cpu = smp_processor_id();
3669 rq = cpu_rq(cpu);
3670 } else
3671 raw_spin_unlock_irq(&rq->lock);
3673 post_schedule(rq);
3675 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3676 prev = rq->curr;
3677 switch_count = &prev->nivcsw;
3678 goto need_resched_nonpreemptible;
3681 preempt_enable_no_resched();
3682 if (need_resched())
3683 goto need_resched;
3685 EXPORT_SYMBOL(schedule);
3687 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3689 * Look out! "owner" is an entirely speculative pointer
3690 * access and not reliable.
3692 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3694 unsigned int cpu;
3695 struct rq *rq;
3697 if (!sched_feat(OWNER_SPIN))
3698 return 0;
3700 #ifdef CONFIG_DEBUG_PAGEALLOC
3702 * Need to access the cpu field knowing that
3703 * DEBUG_PAGEALLOC could have unmapped it if
3704 * the mutex owner just released it and exited.
3706 if (probe_kernel_address(&owner->cpu, cpu))
3707 goto out;
3708 #else
3709 cpu = owner->cpu;
3710 #endif
3713 * Even if the access succeeded (likely case),
3714 * the cpu field may no longer be valid.
3716 if (cpu >= nr_cpumask_bits)
3717 goto out;
3720 * We need to validate that we can do a
3721 * get_cpu() and that we have the percpu area.
3723 if (!cpu_online(cpu))
3724 goto out;
3726 rq = cpu_rq(cpu);
3728 for (;;) {
3730 * Owner changed, break to re-assess state.
3732 if (lock->owner != owner)
3733 break;
3736 * Is that owner really running on that cpu?
3738 if (task_thread_info(rq->curr) != owner || need_resched())
3739 return 0;
3741 cpu_relax();
3743 out:
3744 return 1;
3746 #endif
3748 #ifdef CONFIG_PREEMPT
3750 * this is the entry point to schedule() from in-kernel preemption
3751 * off of preempt_enable. Kernel preemptions off return from interrupt
3752 * occur there and call schedule directly.
3754 asmlinkage void __sched preempt_schedule(void)
3756 struct thread_info *ti = current_thread_info();
3759 * If there is a non-zero preempt_count or interrupts are disabled,
3760 * we do not want to preempt the current task. Just return..
3762 if (likely(ti->preempt_count || irqs_disabled()))
3763 return;
3765 do {
3766 add_preempt_count(PREEMPT_ACTIVE);
3767 schedule();
3768 sub_preempt_count(PREEMPT_ACTIVE);
3771 * Check again in case we missed a preemption opportunity
3772 * between schedule and now.
3774 barrier();
3775 } while (need_resched());
3777 EXPORT_SYMBOL(preempt_schedule);
3780 * this is the entry point to schedule() from kernel preemption
3781 * off of irq context.
3782 * Note, that this is called and return with irqs disabled. This will
3783 * protect us against recursive calling from irq.
3785 asmlinkage void __sched preempt_schedule_irq(void)
3787 struct thread_info *ti = current_thread_info();
3789 /* Catch callers which need to be fixed */
3790 BUG_ON(ti->preempt_count || !irqs_disabled());
3792 do {
3793 add_preempt_count(PREEMPT_ACTIVE);
3794 local_irq_enable();
3795 schedule();
3796 local_irq_disable();
3797 sub_preempt_count(PREEMPT_ACTIVE);
3800 * Check again in case we missed a preemption opportunity
3801 * between schedule and now.
3803 barrier();
3804 } while (need_resched());
3807 #endif /* CONFIG_PREEMPT */
3809 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3810 void *key)
3812 return try_to_wake_up(curr->private, mode, wake_flags);
3814 EXPORT_SYMBOL(default_wake_function);
3817 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3818 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3819 * number) then we wake all the non-exclusive tasks and one exclusive task.
3821 * There are circumstances in which we can try to wake a task which has already
3822 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3823 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3825 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3826 int nr_exclusive, int wake_flags, void *key)
3828 wait_queue_t *curr, *next;
3830 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3831 unsigned flags = curr->flags;
3833 if (curr->func(curr, mode, wake_flags, key) &&
3834 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3835 break;
3840 * __wake_up - wake up threads blocked on a waitqueue.
3841 * @q: the waitqueue
3842 * @mode: which threads
3843 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3844 * @key: is directly passed to the wakeup function
3846 * It may be assumed that this function implies a write memory barrier before
3847 * changing the task state if and only if any tasks are woken up.
3849 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3850 int nr_exclusive, void *key)
3852 unsigned long flags;
3854 spin_lock_irqsave(&q->lock, flags);
3855 __wake_up_common(q, mode, nr_exclusive, 0, key);
3856 spin_unlock_irqrestore(&q->lock, flags);
3858 EXPORT_SYMBOL(__wake_up);
3861 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3863 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3865 __wake_up_common(q, mode, 1, 0, NULL);
3868 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3870 __wake_up_common(q, mode, 1, 0, key);
3874 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3875 * @q: the waitqueue
3876 * @mode: which threads
3877 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3878 * @key: opaque value to be passed to wakeup targets
3880 * The sync wakeup differs that the waker knows that it will schedule
3881 * away soon, so while the target thread will be woken up, it will not
3882 * be migrated to another CPU - ie. the two threads are 'synchronized'
3883 * with each other. This can prevent needless bouncing between CPUs.
3885 * On UP it can prevent extra preemption.
3887 * It may be assumed that this function implies a write memory barrier before
3888 * changing the task state if and only if any tasks are woken up.
3890 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3891 int nr_exclusive, void *key)
3893 unsigned long flags;
3894 int wake_flags = WF_SYNC;
3896 if (unlikely(!q))
3897 return;
3899 if (unlikely(!nr_exclusive))
3900 wake_flags = 0;
3902 spin_lock_irqsave(&q->lock, flags);
3903 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3904 spin_unlock_irqrestore(&q->lock, flags);
3906 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3909 * __wake_up_sync - see __wake_up_sync_key()
3911 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3913 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3915 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3918 * complete: - signals a single thread waiting on this completion
3919 * @x: holds the state of this particular completion
3921 * This will wake up a single thread waiting on this completion. Threads will be
3922 * awakened in the same order in which they were queued.
3924 * See also complete_all(), wait_for_completion() and related routines.
3926 * It may be assumed that this function implies a write memory barrier before
3927 * changing the task state if and only if any tasks are woken up.
3929 void complete(struct completion *x)
3931 unsigned long flags;
3933 spin_lock_irqsave(&x->wait.lock, flags);
3934 x->done++;
3935 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3936 spin_unlock_irqrestore(&x->wait.lock, flags);
3938 EXPORT_SYMBOL(complete);
3941 * complete_all: - signals all threads waiting on this completion
3942 * @x: holds the state of this particular completion
3944 * This will wake up all threads waiting on this particular completion event.
3946 * It may be assumed that this function implies a write memory barrier before
3947 * changing the task state if and only if any tasks are woken up.
3949 void complete_all(struct completion *x)
3951 unsigned long flags;
3953 spin_lock_irqsave(&x->wait.lock, flags);
3954 x->done += UINT_MAX/2;
3955 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3956 spin_unlock_irqrestore(&x->wait.lock, flags);
3958 EXPORT_SYMBOL(complete_all);
3960 static inline long __sched
3961 do_wait_for_common(struct completion *x, long timeout, int state)
3963 if (!x->done) {
3964 DECLARE_WAITQUEUE(wait, current);
3966 wait.flags |= WQ_FLAG_EXCLUSIVE;
3967 __add_wait_queue_tail(&x->wait, &wait);
3968 do {
3969 if (signal_pending_state(state, current)) {
3970 timeout = -ERESTARTSYS;
3971 break;
3973 __set_current_state(state);
3974 spin_unlock_irq(&x->wait.lock);
3975 timeout = schedule_timeout(timeout);
3976 spin_lock_irq(&x->wait.lock);
3977 } while (!x->done && timeout);
3978 __remove_wait_queue(&x->wait, &wait);
3979 if (!x->done)
3980 return timeout;
3982 x->done--;
3983 return timeout ?: 1;
3986 static long __sched
3987 wait_for_common(struct completion *x, long timeout, int state)
3989 might_sleep();
3991 spin_lock_irq(&x->wait.lock);
3992 timeout = do_wait_for_common(x, timeout, state);
3993 spin_unlock_irq(&x->wait.lock);
3994 return timeout;
3998 * wait_for_completion: - waits for completion of a task
3999 * @x: holds the state of this particular completion
4001 * This waits to be signaled for completion of a specific task. It is NOT
4002 * interruptible and there is no timeout.
4004 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4005 * and interrupt capability. Also see complete().
4007 void __sched wait_for_completion(struct completion *x)
4009 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4011 EXPORT_SYMBOL(wait_for_completion);
4014 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4015 * @x: holds the state of this particular completion
4016 * @timeout: timeout value in jiffies
4018 * This waits for either a completion of a specific task to be signaled or for a
4019 * specified timeout to expire. The timeout is in jiffies. It is not
4020 * interruptible.
4022 unsigned long __sched
4023 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4025 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4027 EXPORT_SYMBOL(wait_for_completion_timeout);
4030 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4031 * @x: holds the state of this particular completion
4033 * This waits for completion of a specific task to be signaled. It is
4034 * interruptible.
4036 int __sched wait_for_completion_interruptible(struct completion *x)
4038 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4039 if (t == -ERESTARTSYS)
4040 return t;
4041 return 0;
4043 EXPORT_SYMBOL(wait_for_completion_interruptible);
4046 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4047 * @x: holds the state of this particular completion
4048 * @timeout: timeout value in jiffies
4050 * This waits for either a completion of a specific task to be signaled or for a
4051 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4053 unsigned long __sched
4054 wait_for_completion_interruptible_timeout(struct completion *x,
4055 unsigned long timeout)
4057 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4059 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4062 * wait_for_completion_killable: - waits for completion of a task (killable)
4063 * @x: holds the state of this particular completion
4065 * This waits to be signaled for completion of a specific task. It can be
4066 * interrupted by a kill signal.
4068 int __sched wait_for_completion_killable(struct completion *x)
4070 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4071 if (t == -ERESTARTSYS)
4072 return t;
4073 return 0;
4075 EXPORT_SYMBOL(wait_for_completion_killable);
4078 * try_wait_for_completion - try to decrement a completion without blocking
4079 * @x: completion structure
4081 * Returns: 0 if a decrement cannot be done without blocking
4082 * 1 if a decrement succeeded.
4084 * If a completion is being used as a counting completion,
4085 * attempt to decrement the counter without blocking. This
4086 * enables us to avoid waiting if the resource the completion
4087 * is protecting is not available.
4089 bool try_wait_for_completion(struct completion *x)
4091 unsigned long flags;
4092 int ret = 1;
4094 spin_lock_irqsave(&x->wait.lock, flags);
4095 if (!x->done)
4096 ret = 0;
4097 else
4098 x->done--;
4099 spin_unlock_irqrestore(&x->wait.lock, flags);
4100 return ret;
4102 EXPORT_SYMBOL(try_wait_for_completion);
4105 * completion_done - Test to see if a completion has any waiters
4106 * @x: completion structure
4108 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4109 * 1 if there are no waiters.
4112 bool completion_done(struct completion *x)
4114 unsigned long flags;
4115 int ret = 1;
4117 spin_lock_irqsave(&x->wait.lock, flags);
4118 if (!x->done)
4119 ret = 0;
4120 spin_unlock_irqrestore(&x->wait.lock, flags);
4121 return ret;
4123 EXPORT_SYMBOL(completion_done);
4125 static long __sched
4126 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4128 unsigned long flags;
4129 wait_queue_t wait;
4131 init_waitqueue_entry(&wait, current);
4133 __set_current_state(state);
4135 spin_lock_irqsave(&q->lock, flags);
4136 __add_wait_queue(q, &wait);
4137 spin_unlock(&q->lock);
4138 timeout = schedule_timeout(timeout);
4139 spin_lock_irq(&q->lock);
4140 __remove_wait_queue(q, &wait);
4141 spin_unlock_irqrestore(&q->lock, flags);
4143 return timeout;
4146 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4148 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4150 EXPORT_SYMBOL(interruptible_sleep_on);
4152 long __sched
4153 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4155 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4157 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4159 void __sched sleep_on(wait_queue_head_t *q)
4161 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4163 EXPORT_SYMBOL(sleep_on);
4165 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4167 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4169 EXPORT_SYMBOL(sleep_on_timeout);
4171 #ifdef CONFIG_RT_MUTEXES
4174 * rt_mutex_setprio - set the current priority of a task
4175 * @p: task
4176 * @prio: prio value (kernel-internal form)
4178 * This function changes the 'effective' priority of a task. It does
4179 * not touch ->normal_prio like __setscheduler().
4181 * Used by the rt_mutex code to implement priority inheritance logic.
4183 void rt_mutex_setprio(struct task_struct *p, int prio)
4185 unsigned long flags;
4186 int oldprio, on_rq, running;
4187 struct rq *rq;
4188 const struct sched_class *prev_class;
4190 BUG_ON(prio < 0 || prio > MAX_PRIO);
4192 rq = task_rq_lock(p, &flags);
4194 oldprio = p->prio;
4195 prev_class = p->sched_class;
4196 on_rq = p->se.on_rq;
4197 running = task_current(rq, p);
4198 if (on_rq)
4199 dequeue_task(rq, p, 0);
4200 if (running)
4201 p->sched_class->put_prev_task(rq, p);
4203 if (rt_prio(prio))
4204 p->sched_class = &rt_sched_class;
4205 else
4206 p->sched_class = &fair_sched_class;
4208 p->prio = prio;
4210 if (running)
4211 p->sched_class->set_curr_task(rq);
4212 if (on_rq) {
4213 enqueue_task(rq, p, 0, oldprio < prio);
4215 check_class_changed(rq, p, prev_class, oldprio, running);
4217 task_rq_unlock(rq, &flags);
4220 #endif
4222 void set_user_nice(struct task_struct *p, long nice)
4224 int old_prio, delta, on_rq;
4225 unsigned long flags;
4226 struct rq *rq;
4228 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4229 return;
4231 * We have to be careful, if called from sys_setpriority(),
4232 * the task might be in the middle of scheduling on another CPU.
4234 rq = task_rq_lock(p, &flags);
4236 * The RT priorities are set via sched_setscheduler(), but we still
4237 * allow the 'normal' nice value to be set - but as expected
4238 * it wont have any effect on scheduling until the task is
4239 * SCHED_FIFO/SCHED_RR:
4241 if (task_has_rt_policy(p)) {
4242 p->static_prio = NICE_TO_PRIO(nice);
4243 goto out_unlock;
4245 on_rq = p->se.on_rq;
4246 if (on_rq)
4247 dequeue_task(rq, p, 0);
4249 p->static_prio = NICE_TO_PRIO(nice);
4250 set_load_weight(p);
4251 old_prio = p->prio;
4252 p->prio = effective_prio(p);
4253 delta = p->prio - old_prio;
4255 if (on_rq) {
4256 enqueue_task(rq, p, 0, false);
4258 * If the task increased its priority or is running and
4259 * lowered its priority, then reschedule its CPU:
4261 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4262 resched_task(rq->curr);
4264 out_unlock:
4265 task_rq_unlock(rq, &flags);
4267 EXPORT_SYMBOL(set_user_nice);
4270 * can_nice - check if a task can reduce its nice value
4271 * @p: task
4272 * @nice: nice value
4274 int can_nice(const struct task_struct *p, const int nice)
4276 /* convert nice value [19,-20] to rlimit style value [1,40] */
4277 int nice_rlim = 20 - nice;
4279 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4280 capable(CAP_SYS_NICE));
4283 #ifdef __ARCH_WANT_SYS_NICE
4286 * sys_nice - change the priority of the current process.
4287 * @increment: priority increment
4289 * sys_setpriority is a more generic, but much slower function that
4290 * does similar things.
4292 SYSCALL_DEFINE1(nice, int, increment)
4294 long nice, retval;
4297 * Setpriority might change our priority at the same moment.
4298 * We don't have to worry. Conceptually one call occurs first
4299 * and we have a single winner.
4301 if (increment < -40)
4302 increment = -40;
4303 if (increment > 40)
4304 increment = 40;
4306 nice = TASK_NICE(current) + increment;
4307 if (nice < -20)
4308 nice = -20;
4309 if (nice > 19)
4310 nice = 19;
4312 if (increment < 0 && !can_nice(current, nice))
4313 return -EPERM;
4315 retval = security_task_setnice(current, nice);
4316 if (retval)
4317 return retval;
4319 set_user_nice(current, nice);
4320 return 0;
4323 #endif
4326 * task_prio - return the priority value of a given task.
4327 * @p: the task in question.
4329 * This is the priority value as seen by users in /proc.
4330 * RT tasks are offset by -200. Normal tasks are centered
4331 * around 0, value goes from -16 to +15.
4333 int task_prio(const struct task_struct *p)
4335 return p->prio - MAX_RT_PRIO;
4339 * task_nice - return the nice value of a given task.
4340 * @p: the task in question.
4342 int task_nice(const struct task_struct *p)
4344 return TASK_NICE(p);
4346 EXPORT_SYMBOL(task_nice);
4349 * idle_cpu - is a given cpu idle currently?
4350 * @cpu: the processor in question.
4352 int idle_cpu(int cpu)
4354 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4358 * idle_task - return the idle task for a given cpu.
4359 * @cpu: the processor in question.
4361 struct task_struct *idle_task(int cpu)
4363 return cpu_rq(cpu)->idle;
4367 * find_process_by_pid - find a process with a matching PID value.
4368 * @pid: the pid in question.
4370 static struct task_struct *find_process_by_pid(pid_t pid)
4372 return pid ? find_task_by_vpid(pid) : current;
4375 /* Actually do priority change: must hold rq lock. */
4376 static void
4377 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4379 BUG_ON(p->se.on_rq);
4381 p->policy = policy;
4382 p->rt_priority = prio;
4383 p->normal_prio = normal_prio(p);
4384 /* we are holding p->pi_lock already */
4385 p->prio = rt_mutex_getprio(p);
4386 if (rt_prio(p->prio))
4387 p->sched_class = &rt_sched_class;
4388 else
4389 p->sched_class = &fair_sched_class;
4390 set_load_weight(p);
4394 * check the target process has a UID that matches the current process's
4396 static bool check_same_owner(struct task_struct *p)
4398 const struct cred *cred = current_cred(), *pcred;
4399 bool match;
4401 rcu_read_lock();
4402 pcred = __task_cred(p);
4403 match = (cred->euid == pcred->euid ||
4404 cred->euid == pcred->uid);
4405 rcu_read_unlock();
4406 return match;
4409 static int __sched_setscheduler(struct task_struct *p, int policy,
4410 struct sched_param *param, bool user)
4412 int retval, oldprio, oldpolicy = -1, on_rq, running;
4413 unsigned long flags;
4414 const struct sched_class *prev_class;
4415 struct rq *rq;
4416 int reset_on_fork;
4418 /* may grab non-irq protected spin_locks */
4419 BUG_ON(in_interrupt());
4420 recheck:
4421 /* double check policy once rq lock held */
4422 if (policy < 0) {
4423 reset_on_fork = p->sched_reset_on_fork;
4424 policy = oldpolicy = p->policy;
4425 } else {
4426 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4427 policy &= ~SCHED_RESET_ON_FORK;
4429 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4430 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4431 policy != SCHED_IDLE)
4432 return -EINVAL;
4436 * Valid priorities for SCHED_FIFO and SCHED_RR are
4437 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4438 * SCHED_BATCH and SCHED_IDLE is 0.
4440 if (param->sched_priority < 0 ||
4441 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4442 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4443 return -EINVAL;
4444 if (rt_policy(policy) != (param->sched_priority != 0))
4445 return -EINVAL;
4448 * Allow unprivileged RT tasks to decrease priority:
4450 if (user && !capable(CAP_SYS_NICE)) {
4451 if (rt_policy(policy)) {
4452 unsigned long rlim_rtprio;
4454 if (!lock_task_sighand(p, &flags))
4455 return -ESRCH;
4456 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4457 unlock_task_sighand(p, &flags);
4459 /* can't set/change the rt policy */
4460 if (policy != p->policy && !rlim_rtprio)
4461 return -EPERM;
4463 /* can't increase priority */
4464 if (param->sched_priority > p->rt_priority &&
4465 param->sched_priority > rlim_rtprio)
4466 return -EPERM;
4469 * Like positive nice levels, dont allow tasks to
4470 * move out of SCHED_IDLE either:
4472 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4473 return -EPERM;
4475 /* can't change other user's priorities */
4476 if (!check_same_owner(p))
4477 return -EPERM;
4479 /* Normal users shall not reset the sched_reset_on_fork flag */
4480 if (p->sched_reset_on_fork && !reset_on_fork)
4481 return -EPERM;
4484 if (user) {
4485 #ifdef CONFIG_RT_GROUP_SCHED
4487 * Do not allow realtime tasks into groups that have no runtime
4488 * assigned.
4490 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4491 task_group(p)->rt_bandwidth.rt_runtime == 0)
4492 return -EPERM;
4493 #endif
4495 retval = security_task_setscheduler(p, policy, param);
4496 if (retval)
4497 return retval;
4501 * make sure no PI-waiters arrive (or leave) while we are
4502 * changing the priority of the task:
4504 raw_spin_lock_irqsave(&p->pi_lock, flags);
4506 * To be able to change p->policy safely, the apropriate
4507 * runqueue lock must be held.
4509 rq = __task_rq_lock(p);
4510 /* recheck policy now with rq lock held */
4511 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4512 policy = oldpolicy = -1;
4513 __task_rq_unlock(rq);
4514 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4515 goto recheck;
4517 on_rq = p->se.on_rq;
4518 running = task_current(rq, p);
4519 if (on_rq)
4520 deactivate_task(rq, p, 0);
4521 if (running)
4522 p->sched_class->put_prev_task(rq, p);
4524 p->sched_reset_on_fork = reset_on_fork;
4526 oldprio = p->prio;
4527 prev_class = p->sched_class;
4528 __setscheduler(rq, p, policy, param->sched_priority);
4530 if (running)
4531 p->sched_class->set_curr_task(rq);
4532 if (on_rq) {
4533 activate_task(rq, p, 0);
4535 check_class_changed(rq, p, prev_class, oldprio, running);
4537 __task_rq_unlock(rq);
4538 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4540 rt_mutex_adjust_pi(p);
4542 return 0;
4546 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4547 * @p: the task in question.
4548 * @policy: new policy.
4549 * @param: structure containing the new RT priority.
4551 * NOTE that the task may be already dead.
4553 int sched_setscheduler(struct task_struct *p, int policy,
4554 struct sched_param *param)
4556 return __sched_setscheduler(p, policy, param, true);
4558 EXPORT_SYMBOL_GPL(sched_setscheduler);
4561 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4562 * @p: the task in question.
4563 * @policy: new policy.
4564 * @param: structure containing the new RT priority.
4566 * Just like sched_setscheduler, only don't bother checking if the
4567 * current context has permission. For example, this is needed in
4568 * stop_machine(): we create temporary high priority worker threads,
4569 * but our caller might not have that capability.
4571 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4572 struct sched_param *param)
4574 return __sched_setscheduler(p, policy, param, false);
4577 static int
4578 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4580 struct sched_param lparam;
4581 struct task_struct *p;
4582 int retval;
4584 if (!param || pid < 0)
4585 return -EINVAL;
4586 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4587 return -EFAULT;
4589 rcu_read_lock();
4590 retval = -ESRCH;
4591 p = find_process_by_pid(pid);
4592 if (p != NULL)
4593 retval = sched_setscheduler(p, policy, &lparam);
4594 rcu_read_unlock();
4596 return retval;
4600 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4601 * @pid: the pid in question.
4602 * @policy: new policy.
4603 * @param: structure containing the new RT priority.
4605 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4606 struct sched_param __user *, param)
4608 /* negative values for policy are not valid */
4609 if (policy < 0)
4610 return -EINVAL;
4612 return do_sched_setscheduler(pid, policy, param);
4616 * sys_sched_setparam - set/change the RT priority of a thread
4617 * @pid: the pid in question.
4618 * @param: structure containing the new RT priority.
4620 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4622 return do_sched_setscheduler(pid, -1, param);
4626 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4627 * @pid: the pid in question.
4629 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4631 struct task_struct *p;
4632 int retval;
4634 if (pid < 0)
4635 return -EINVAL;
4637 retval = -ESRCH;
4638 rcu_read_lock();
4639 p = find_process_by_pid(pid);
4640 if (p) {
4641 retval = security_task_getscheduler(p);
4642 if (!retval)
4643 retval = p->policy
4644 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4646 rcu_read_unlock();
4647 return retval;
4651 * sys_sched_getparam - get the RT priority of a thread
4652 * @pid: the pid in question.
4653 * @param: structure containing the RT priority.
4655 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4657 struct sched_param lp;
4658 struct task_struct *p;
4659 int retval;
4661 if (!param || pid < 0)
4662 return -EINVAL;
4664 rcu_read_lock();
4665 p = find_process_by_pid(pid);
4666 retval = -ESRCH;
4667 if (!p)
4668 goto out_unlock;
4670 retval = security_task_getscheduler(p);
4671 if (retval)
4672 goto out_unlock;
4674 lp.sched_priority = p->rt_priority;
4675 rcu_read_unlock();
4678 * This one might sleep, we cannot do it with a spinlock held ...
4680 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4682 return retval;
4684 out_unlock:
4685 rcu_read_unlock();
4686 return retval;
4689 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4691 cpumask_var_t cpus_allowed, new_mask;
4692 struct task_struct *p;
4693 int retval;
4695 get_online_cpus();
4696 rcu_read_lock();
4698 p = find_process_by_pid(pid);
4699 if (!p) {
4700 rcu_read_unlock();
4701 put_online_cpus();
4702 return -ESRCH;
4705 /* Prevent p going away */
4706 get_task_struct(p);
4707 rcu_read_unlock();
4709 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4710 retval = -ENOMEM;
4711 goto out_put_task;
4713 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4714 retval = -ENOMEM;
4715 goto out_free_cpus_allowed;
4717 retval = -EPERM;
4718 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4719 goto out_unlock;
4721 retval = security_task_setscheduler(p, 0, NULL);
4722 if (retval)
4723 goto out_unlock;
4725 cpuset_cpus_allowed(p, cpus_allowed);
4726 cpumask_and(new_mask, in_mask, cpus_allowed);
4727 again:
4728 retval = set_cpus_allowed_ptr(p, new_mask);
4730 if (!retval) {
4731 cpuset_cpus_allowed(p, cpus_allowed);
4732 if (!cpumask_subset(new_mask, cpus_allowed)) {
4734 * We must have raced with a concurrent cpuset
4735 * update. Just reset the cpus_allowed to the
4736 * cpuset's cpus_allowed
4738 cpumask_copy(new_mask, cpus_allowed);
4739 goto again;
4742 out_unlock:
4743 free_cpumask_var(new_mask);
4744 out_free_cpus_allowed:
4745 free_cpumask_var(cpus_allowed);
4746 out_put_task:
4747 put_task_struct(p);
4748 put_online_cpus();
4749 return retval;
4752 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4753 struct cpumask *new_mask)
4755 if (len < cpumask_size())
4756 cpumask_clear(new_mask);
4757 else if (len > cpumask_size())
4758 len = cpumask_size();
4760 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4764 * sys_sched_setaffinity - set the cpu affinity of a process
4765 * @pid: pid of the process
4766 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4767 * @user_mask_ptr: user-space pointer to the new cpu mask
4769 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4770 unsigned long __user *, user_mask_ptr)
4772 cpumask_var_t new_mask;
4773 int retval;
4775 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4776 return -ENOMEM;
4778 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4779 if (retval == 0)
4780 retval = sched_setaffinity(pid, new_mask);
4781 free_cpumask_var(new_mask);
4782 return retval;
4785 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4787 struct task_struct *p;
4788 unsigned long flags;
4789 struct rq *rq;
4790 int retval;
4792 get_online_cpus();
4793 rcu_read_lock();
4795 retval = -ESRCH;
4796 p = find_process_by_pid(pid);
4797 if (!p)
4798 goto out_unlock;
4800 retval = security_task_getscheduler(p);
4801 if (retval)
4802 goto out_unlock;
4804 rq = task_rq_lock(p, &flags);
4805 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4806 task_rq_unlock(rq, &flags);
4808 out_unlock:
4809 rcu_read_unlock();
4810 put_online_cpus();
4812 return retval;
4816 * sys_sched_getaffinity - get the cpu affinity of a process
4817 * @pid: pid of the process
4818 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4819 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4821 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4822 unsigned long __user *, user_mask_ptr)
4824 int ret;
4825 cpumask_var_t mask;
4827 if (len < nr_cpu_ids)
4828 return -EINVAL;
4829 if (len & (sizeof(unsigned long)-1))
4830 return -EINVAL;
4832 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4833 return -ENOMEM;
4835 ret = sched_getaffinity(pid, mask);
4836 if (ret == 0) {
4837 size_t retlen = min_t(size_t, len, cpumask_size());
4839 if (copy_to_user(user_mask_ptr, mask, retlen))
4840 ret = -EFAULT;
4841 else
4842 ret = retlen;
4844 free_cpumask_var(mask);
4846 return ret;
4850 * sys_sched_yield - yield the current processor to other threads.
4852 * This function yields the current CPU to other tasks. If there are no
4853 * other threads running on this CPU then this function will return.
4855 SYSCALL_DEFINE0(sched_yield)
4857 struct rq *rq = this_rq_lock();
4859 schedstat_inc(rq, yld_count);
4860 current->sched_class->yield_task(rq);
4863 * Since we are going to call schedule() anyway, there's
4864 * no need to preempt or enable interrupts:
4866 __release(rq->lock);
4867 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4868 do_raw_spin_unlock(&rq->lock);
4869 preempt_enable_no_resched();
4871 schedule();
4873 return 0;
4876 static inline int should_resched(void)
4878 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4881 static void __cond_resched(void)
4883 add_preempt_count(PREEMPT_ACTIVE);
4884 schedule();
4885 sub_preempt_count(PREEMPT_ACTIVE);
4888 int __sched _cond_resched(void)
4890 if (should_resched()) {
4891 __cond_resched();
4892 return 1;
4894 return 0;
4896 EXPORT_SYMBOL(_cond_resched);
4899 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4900 * call schedule, and on return reacquire the lock.
4902 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4903 * operations here to prevent schedule() from being called twice (once via
4904 * spin_unlock(), once by hand).
4906 int __cond_resched_lock(spinlock_t *lock)
4908 int resched = should_resched();
4909 int ret = 0;
4911 lockdep_assert_held(lock);
4913 if (spin_needbreak(lock) || resched) {
4914 spin_unlock(lock);
4915 if (resched)
4916 __cond_resched();
4917 else
4918 cpu_relax();
4919 ret = 1;
4920 spin_lock(lock);
4922 return ret;
4924 EXPORT_SYMBOL(__cond_resched_lock);
4926 int __sched __cond_resched_softirq(void)
4928 BUG_ON(!in_softirq());
4930 if (should_resched()) {
4931 local_bh_enable();
4932 __cond_resched();
4933 local_bh_disable();
4934 return 1;
4936 return 0;
4938 EXPORT_SYMBOL(__cond_resched_softirq);
4941 * yield - yield the current processor to other threads.
4943 * This is a shortcut for kernel-space yielding - it marks the
4944 * thread runnable and calls sys_sched_yield().
4946 void __sched yield(void)
4948 set_current_state(TASK_RUNNING);
4949 sys_sched_yield();
4951 EXPORT_SYMBOL(yield);
4954 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4955 * that process accounting knows that this is a task in IO wait state.
4957 void __sched io_schedule(void)
4959 struct rq *rq = raw_rq();
4961 delayacct_blkio_start();
4962 atomic_inc(&rq->nr_iowait);
4963 current->in_iowait = 1;
4964 schedule();
4965 current->in_iowait = 0;
4966 atomic_dec(&rq->nr_iowait);
4967 delayacct_blkio_end();
4969 EXPORT_SYMBOL(io_schedule);
4971 long __sched io_schedule_timeout(long timeout)
4973 struct rq *rq = raw_rq();
4974 long ret;
4976 delayacct_blkio_start();
4977 atomic_inc(&rq->nr_iowait);
4978 current->in_iowait = 1;
4979 ret = schedule_timeout(timeout);
4980 current->in_iowait = 0;
4981 atomic_dec(&rq->nr_iowait);
4982 delayacct_blkio_end();
4983 return ret;
4987 * sys_sched_get_priority_max - return maximum RT priority.
4988 * @policy: scheduling class.
4990 * this syscall returns the maximum rt_priority that can be used
4991 * by a given scheduling class.
4993 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4995 int ret = -EINVAL;
4997 switch (policy) {
4998 case SCHED_FIFO:
4999 case SCHED_RR:
5000 ret = MAX_USER_RT_PRIO-1;
5001 break;
5002 case SCHED_NORMAL:
5003 case SCHED_BATCH:
5004 case SCHED_IDLE:
5005 ret = 0;
5006 break;
5008 return ret;
5012 * sys_sched_get_priority_min - return minimum RT priority.
5013 * @policy: scheduling class.
5015 * this syscall returns the minimum rt_priority that can be used
5016 * by a given scheduling class.
5018 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5020 int ret = -EINVAL;
5022 switch (policy) {
5023 case SCHED_FIFO:
5024 case SCHED_RR:
5025 ret = 1;
5026 break;
5027 case SCHED_NORMAL:
5028 case SCHED_BATCH:
5029 case SCHED_IDLE:
5030 ret = 0;
5032 return ret;
5036 * sys_sched_rr_get_interval - return the default timeslice of a process.
5037 * @pid: pid of the process.
5038 * @interval: userspace pointer to the timeslice value.
5040 * this syscall writes the default timeslice value of a given process
5041 * into the user-space timespec buffer. A value of '0' means infinity.
5043 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5044 struct timespec __user *, interval)
5046 struct task_struct *p;
5047 unsigned int time_slice;
5048 unsigned long flags;
5049 struct rq *rq;
5050 int retval;
5051 struct timespec t;
5053 if (pid < 0)
5054 return -EINVAL;
5056 retval = -ESRCH;
5057 rcu_read_lock();
5058 p = find_process_by_pid(pid);
5059 if (!p)
5060 goto out_unlock;
5062 retval = security_task_getscheduler(p);
5063 if (retval)
5064 goto out_unlock;
5066 rq = task_rq_lock(p, &flags);
5067 time_slice = p->sched_class->get_rr_interval(rq, p);
5068 task_rq_unlock(rq, &flags);
5070 rcu_read_unlock();
5071 jiffies_to_timespec(time_slice, &t);
5072 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5073 return retval;
5075 out_unlock:
5076 rcu_read_unlock();
5077 return retval;
5080 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5082 void sched_show_task(struct task_struct *p)
5084 unsigned long free = 0;
5085 unsigned state;
5087 state = p->state ? __ffs(p->state) + 1 : 0;
5088 printk(KERN_INFO "%-13.13s %c", p->comm,
5089 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5090 #if BITS_PER_LONG == 32
5091 if (state == TASK_RUNNING)
5092 printk(KERN_CONT " running ");
5093 else
5094 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5095 #else
5096 if (state == TASK_RUNNING)
5097 printk(KERN_CONT " running task ");
5098 else
5099 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5100 #endif
5101 #ifdef CONFIG_DEBUG_STACK_USAGE
5102 free = stack_not_used(p);
5103 #endif
5104 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5105 task_pid_nr(p), task_pid_nr(p->real_parent),
5106 (unsigned long)task_thread_info(p)->flags);
5108 show_stack(p, NULL);
5111 void show_state_filter(unsigned long state_filter)
5113 struct task_struct *g, *p;
5115 #if BITS_PER_LONG == 32
5116 printk(KERN_INFO
5117 " task PC stack pid father\n");
5118 #else
5119 printk(KERN_INFO
5120 " task PC stack pid father\n");
5121 #endif
5122 read_lock(&tasklist_lock);
5123 do_each_thread(g, p) {
5125 * reset the NMI-timeout, listing all files on a slow
5126 * console might take alot of time:
5128 touch_nmi_watchdog();
5129 if (!state_filter || (p->state & state_filter))
5130 sched_show_task(p);
5131 } while_each_thread(g, p);
5133 touch_all_softlockup_watchdogs();
5135 #ifdef CONFIG_SCHED_DEBUG
5136 sysrq_sched_debug_show();
5137 #endif
5138 read_unlock(&tasklist_lock);
5140 * Only show locks if all tasks are dumped:
5142 if (!state_filter)
5143 debug_show_all_locks();
5146 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5148 idle->sched_class = &idle_sched_class;
5152 * init_idle - set up an idle thread for a given CPU
5153 * @idle: task in question
5154 * @cpu: cpu the idle task belongs to
5156 * NOTE: this function does not set the idle thread's NEED_RESCHED
5157 * flag, to make booting more robust.
5159 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5161 struct rq *rq = cpu_rq(cpu);
5162 unsigned long flags;
5164 raw_spin_lock_irqsave(&rq->lock, flags);
5166 __sched_fork(idle);
5167 idle->state = TASK_RUNNING;
5168 idle->se.exec_start = sched_clock();
5170 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5171 __set_task_cpu(idle, cpu);
5173 rq->curr = rq->idle = idle;
5174 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5175 idle->oncpu = 1;
5176 #endif
5177 raw_spin_unlock_irqrestore(&rq->lock, flags);
5179 /* Set the preempt count _outside_ the spinlocks! */
5180 #if defined(CONFIG_PREEMPT)
5181 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5182 #else
5183 task_thread_info(idle)->preempt_count = 0;
5184 #endif
5186 * The idle tasks have their own, simple scheduling class:
5188 idle->sched_class = &idle_sched_class;
5189 ftrace_graph_init_task(idle);
5193 * In a system that switches off the HZ timer nohz_cpu_mask
5194 * indicates which cpus entered this state. This is used
5195 * in the rcu update to wait only for active cpus. For system
5196 * which do not switch off the HZ timer nohz_cpu_mask should
5197 * always be CPU_BITS_NONE.
5199 cpumask_var_t nohz_cpu_mask;
5202 * Increase the granularity value when there are more CPUs,
5203 * because with more CPUs the 'effective latency' as visible
5204 * to users decreases. But the relationship is not linear,
5205 * so pick a second-best guess by going with the log2 of the
5206 * number of CPUs.
5208 * This idea comes from the SD scheduler of Con Kolivas:
5210 static int get_update_sysctl_factor(void)
5212 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5213 unsigned int factor;
5215 switch (sysctl_sched_tunable_scaling) {
5216 case SCHED_TUNABLESCALING_NONE:
5217 factor = 1;
5218 break;
5219 case SCHED_TUNABLESCALING_LINEAR:
5220 factor = cpus;
5221 break;
5222 case SCHED_TUNABLESCALING_LOG:
5223 default:
5224 factor = 1 + ilog2(cpus);
5225 break;
5228 return factor;
5231 static void update_sysctl(void)
5233 unsigned int factor = get_update_sysctl_factor();
5235 #define SET_SYSCTL(name) \
5236 (sysctl_##name = (factor) * normalized_sysctl_##name)
5237 SET_SYSCTL(sched_min_granularity);
5238 SET_SYSCTL(sched_latency);
5239 SET_SYSCTL(sched_wakeup_granularity);
5240 SET_SYSCTL(sched_shares_ratelimit);
5241 #undef SET_SYSCTL
5244 static inline void sched_init_granularity(void)
5246 update_sysctl();
5249 #ifdef CONFIG_SMP
5251 * This is how migration works:
5253 * 1) we queue a struct migration_req structure in the source CPU's
5254 * runqueue and wake up that CPU's migration thread.
5255 * 2) we down() the locked semaphore => thread blocks.
5256 * 3) migration thread wakes up (implicitly it forces the migrated
5257 * thread off the CPU)
5258 * 4) it gets the migration request and checks whether the migrated
5259 * task is still in the wrong runqueue.
5260 * 5) if it's in the wrong runqueue then the migration thread removes
5261 * it and puts it into the right queue.
5262 * 6) migration thread up()s the semaphore.
5263 * 7) we wake up and the migration is done.
5267 * Change a given task's CPU affinity. Migrate the thread to a
5268 * proper CPU and schedule it away if the CPU it's executing on
5269 * is removed from the allowed bitmask.
5271 * NOTE: the caller must have a valid reference to the task, the
5272 * task must not exit() & deallocate itself prematurely. The
5273 * call is not atomic; no spinlocks may be held.
5275 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5277 struct migration_req req;
5278 unsigned long flags;
5279 struct rq *rq;
5280 int ret = 0;
5282 rq = task_rq_lock(p, &flags);
5284 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5285 ret = -EINVAL;
5286 goto out;
5289 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5290 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5291 ret = -EINVAL;
5292 goto out;
5295 if (p->sched_class->set_cpus_allowed)
5296 p->sched_class->set_cpus_allowed(p, new_mask);
5297 else {
5298 cpumask_copy(&p->cpus_allowed, new_mask);
5299 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5302 /* Can the task run on the task's current CPU? If so, we're done */
5303 if (cpumask_test_cpu(task_cpu(p), new_mask))
5304 goto out;
5306 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5307 /* Need help from migration thread: drop lock and wait. */
5308 struct task_struct *mt = rq->migration_thread;
5310 get_task_struct(mt);
5311 task_rq_unlock(rq, &flags);
5312 wake_up_process(rq->migration_thread);
5313 put_task_struct(mt);
5314 wait_for_completion(&req.done);
5315 tlb_migrate_finish(p->mm);
5316 return 0;
5318 out:
5319 task_rq_unlock(rq, &flags);
5321 return ret;
5323 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5326 * Move (not current) task off this cpu, onto dest cpu. We're doing
5327 * this because either it can't run here any more (set_cpus_allowed()
5328 * away from this CPU, or CPU going down), or because we're
5329 * attempting to rebalance this task on exec (sched_exec).
5331 * So we race with normal scheduler movements, but that's OK, as long
5332 * as the task is no longer on this CPU.
5334 * Returns non-zero if task was successfully migrated.
5336 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5338 struct rq *rq_dest, *rq_src;
5339 int ret = 0;
5341 if (unlikely(!cpu_active(dest_cpu)))
5342 return ret;
5344 rq_src = cpu_rq(src_cpu);
5345 rq_dest = cpu_rq(dest_cpu);
5347 double_rq_lock(rq_src, rq_dest);
5348 /* Already moved. */
5349 if (task_cpu(p) != src_cpu)
5350 goto done;
5351 /* Affinity changed (again). */
5352 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5353 goto fail;
5356 * If we're not on a rq, the next wake-up will ensure we're
5357 * placed properly.
5359 if (p->se.on_rq) {
5360 deactivate_task(rq_src, p, 0);
5361 set_task_cpu(p, dest_cpu);
5362 activate_task(rq_dest, p, 0);
5363 check_preempt_curr(rq_dest, p, 0);
5365 done:
5366 ret = 1;
5367 fail:
5368 double_rq_unlock(rq_src, rq_dest);
5369 return ret;
5372 #define RCU_MIGRATION_IDLE 0
5373 #define RCU_MIGRATION_NEED_QS 1
5374 #define RCU_MIGRATION_GOT_QS 2
5375 #define RCU_MIGRATION_MUST_SYNC 3
5378 * migration_thread - this is a highprio system thread that performs
5379 * thread migration by bumping thread off CPU then 'pushing' onto
5380 * another runqueue.
5382 static int migration_thread(void *data)
5384 int badcpu;
5385 int cpu = (long)data;
5386 struct rq *rq;
5388 rq = cpu_rq(cpu);
5389 BUG_ON(rq->migration_thread != current);
5391 set_current_state(TASK_INTERRUPTIBLE);
5392 while (!kthread_should_stop()) {
5393 struct migration_req *req;
5394 struct list_head *head;
5396 raw_spin_lock_irq(&rq->lock);
5398 if (cpu_is_offline(cpu)) {
5399 raw_spin_unlock_irq(&rq->lock);
5400 break;
5403 if (rq->active_balance) {
5404 active_load_balance(rq, cpu);
5405 rq->active_balance = 0;
5408 head = &rq->migration_queue;
5410 if (list_empty(head)) {
5411 raw_spin_unlock_irq(&rq->lock);
5412 schedule();
5413 set_current_state(TASK_INTERRUPTIBLE);
5414 continue;
5416 req = list_entry(head->next, struct migration_req, list);
5417 list_del_init(head->next);
5419 if (req->task != NULL) {
5420 raw_spin_unlock(&rq->lock);
5421 __migrate_task(req->task, cpu, req->dest_cpu);
5422 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5423 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5424 raw_spin_unlock(&rq->lock);
5425 } else {
5426 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5427 raw_spin_unlock(&rq->lock);
5428 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5430 local_irq_enable();
5432 complete(&req->done);
5434 __set_current_state(TASK_RUNNING);
5436 return 0;
5439 #ifdef CONFIG_HOTPLUG_CPU
5441 * Figure out where task on dead CPU should go, use force if necessary.
5443 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5445 struct rq *rq = cpu_rq(dead_cpu);
5446 int needs_cpu, uninitialized_var(dest_cpu);
5447 unsigned long flags;
5449 local_irq_save(flags);
5451 raw_spin_lock(&rq->lock);
5452 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5453 if (needs_cpu)
5454 dest_cpu = select_fallback_rq(dead_cpu, p);
5455 raw_spin_unlock(&rq->lock);
5457 * It can only fail if we race with set_cpus_allowed(),
5458 * in the racer should migrate the task anyway.
5460 if (needs_cpu)
5461 __migrate_task(p, dead_cpu, dest_cpu);
5462 local_irq_restore(flags);
5466 * While a dead CPU has no uninterruptible tasks queued at this point,
5467 * it might still have a nonzero ->nr_uninterruptible counter, because
5468 * for performance reasons the counter is not stricly tracking tasks to
5469 * their home CPUs. So we just add the counter to another CPU's counter,
5470 * to keep the global sum constant after CPU-down:
5472 static void migrate_nr_uninterruptible(struct rq *rq_src)
5474 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5475 unsigned long flags;
5477 local_irq_save(flags);
5478 double_rq_lock(rq_src, rq_dest);
5479 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5480 rq_src->nr_uninterruptible = 0;
5481 double_rq_unlock(rq_src, rq_dest);
5482 local_irq_restore(flags);
5485 /* Run through task list and migrate tasks from the dead cpu. */
5486 static void migrate_live_tasks(int src_cpu)
5488 struct task_struct *p, *t;
5490 read_lock(&tasklist_lock);
5492 do_each_thread(t, p) {
5493 if (p == current)
5494 continue;
5496 if (task_cpu(p) == src_cpu)
5497 move_task_off_dead_cpu(src_cpu, p);
5498 } while_each_thread(t, p);
5500 read_unlock(&tasklist_lock);
5504 * Schedules idle task to be the next runnable task on current CPU.
5505 * It does so by boosting its priority to highest possible.
5506 * Used by CPU offline code.
5508 void sched_idle_next(void)
5510 int this_cpu = smp_processor_id();
5511 struct rq *rq = cpu_rq(this_cpu);
5512 struct task_struct *p = rq->idle;
5513 unsigned long flags;
5515 /* cpu has to be offline */
5516 BUG_ON(cpu_online(this_cpu));
5519 * Strictly not necessary since rest of the CPUs are stopped by now
5520 * and interrupts disabled on the current cpu.
5522 raw_spin_lock_irqsave(&rq->lock, flags);
5524 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5526 activate_task(rq, p, 0);
5528 raw_spin_unlock_irqrestore(&rq->lock, flags);
5532 * Ensures that the idle task is using init_mm right before its cpu goes
5533 * offline.
5535 void idle_task_exit(void)
5537 struct mm_struct *mm = current->active_mm;
5539 BUG_ON(cpu_online(smp_processor_id()));
5541 if (mm != &init_mm)
5542 switch_mm(mm, &init_mm, current);
5543 mmdrop(mm);
5546 /* called under rq->lock with disabled interrupts */
5547 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5549 struct rq *rq = cpu_rq(dead_cpu);
5551 /* Must be exiting, otherwise would be on tasklist. */
5552 BUG_ON(!p->exit_state);
5554 /* Cannot have done final schedule yet: would have vanished. */
5555 BUG_ON(p->state == TASK_DEAD);
5557 get_task_struct(p);
5560 * Drop lock around migration; if someone else moves it,
5561 * that's OK. No task can be added to this CPU, so iteration is
5562 * fine.
5564 raw_spin_unlock_irq(&rq->lock);
5565 move_task_off_dead_cpu(dead_cpu, p);
5566 raw_spin_lock_irq(&rq->lock);
5568 put_task_struct(p);
5571 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5572 static void migrate_dead_tasks(unsigned int dead_cpu)
5574 struct rq *rq = cpu_rq(dead_cpu);
5575 struct task_struct *next;
5577 for ( ; ; ) {
5578 if (!rq->nr_running)
5579 break;
5580 next = pick_next_task(rq);
5581 if (!next)
5582 break;
5583 next->sched_class->put_prev_task(rq, next);
5584 migrate_dead(dead_cpu, next);
5590 * remove the tasks which were accounted by rq from calc_load_tasks.
5592 static void calc_global_load_remove(struct rq *rq)
5594 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5595 rq->calc_load_active = 0;
5597 #endif /* CONFIG_HOTPLUG_CPU */
5599 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5601 static struct ctl_table sd_ctl_dir[] = {
5603 .procname = "sched_domain",
5604 .mode = 0555,
5609 static struct ctl_table sd_ctl_root[] = {
5611 .procname = "kernel",
5612 .mode = 0555,
5613 .child = sd_ctl_dir,
5618 static struct ctl_table *sd_alloc_ctl_entry(int n)
5620 struct ctl_table *entry =
5621 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5623 return entry;
5626 static void sd_free_ctl_entry(struct ctl_table **tablep)
5628 struct ctl_table *entry;
5631 * In the intermediate directories, both the child directory and
5632 * procname are dynamically allocated and could fail but the mode
5633 * will always be set. In the lowest directory the names are
5634 * static strings and all have proc handlers.
5636 for (entry = *tablep; entry->mode; entry++) {
5637 if (entry->child)
5638 sd_free_ctl_entry(&entry->child);
5639 if (entry->proc_handler == NULL)
5640 kfree(entry->procname);
5643 kfree(*tablep);
5644 *tablep = NULL;
5647 static void
5648 set_table_entry(struct ctl_table *entry,
5649 const char *procname, void *data, int maxlen,
5650 mode_t mode, proc_handler *proc_handler)
5652 entry->procname = procname;
5653 entry->data = data;
5654 entry->maxlen = maxlen;
5655 entry->mode = mode;
5656 entry->proc_handler = proc_handler;
5659 static struct ctl_table *
5660 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5662 struct ctl_table *table = sd_alloc_ctl_entry(13);
5664 if (table == NULL)
5665 return NULL;
5667 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5668 sizeof(long), 0644, proc_doulongvec_minmax);
5669 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5670 sizeof(long), 0644, proc_doulongvec_minmax);
5671 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5672 sizeof(int), 0644, proc_dointvec_minmax);
5673 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5674 sizeof(int), 0644, proc_dointvec_minmax);
5675 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5676 sizeof(int), 0644, proc_dointvec_minmax);
5677 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5678 sizeof(int), 0644, proc_dointvec_minmax);
5679 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5680 sizeof(int), 0644, proc_dointvec_minmax);
5681 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5682 sizeof(int), 0644, proc_dointvec_minmax);
5683 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5684 sizeof(int), 0644, proc_dointvec_minmax);
5685 set_table_entry(&table[9], "cache_nice_tries",
5686 &sd->cache_nice_tries,
5687 sizeof(int), 0644, proc_dointvec_minmax);
5688 set_table_entry(&table[10], "flags", &sd->flags,
5689 sizeof(int), 0644, proc_dointvec_minmax);
5690 set_table_entry(&table[11], "name", sd->name,
5691 CORENAME_MAX_SIZE, 0444, proc_dostring);
5692 /* &table[12] is terminator */
5694 return table;
5697 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5699 struct ctl_table *entry, *table;
5700 struct sched_domain *sd;
5701 int domain_num = 0, i;
5702 char buf[32];
5704 for_each_domain(cpu, sd)
5705 domain_num++;
5706 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5707 if (table == NULL)
5708 return NULL;
5710 i = 0;
5711 for_each_domain(cpu, sd) {
5712 snprintf(buf, 32, "domain%d", i);
5713 entry->procname = kstrdup(buf, GFP_KERNEL);
5714 entry->mode = 0555;
5715 entry->child = sd_alloc_ctl_domain_table(sd);
5716 entry++;
5717 i++;
5719 return table;
5722 static struct ctl_table_header *sd_sysctl_header;
5723 static void register_sched_domain_sysctl(void)
5725 int i, cpu_num = num_possible_cpus();
5726 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5727 char buf[32];
5729 WARN_ON(sd_ctl_dir[0].child);
5730 sd_ctl_dir[0].child = entry;
5732 if (entry == NULL)
5733 return;
5735 for_each_possible_cpu(i) {
5736 snprintf(buf, 32, "cpu%d", i);
5737 entry->procname = kstrdup(buf, GFP_KERNEL);
5738 entry->mode = 0555;
5739 entry->child = sd_alloc_ctl_cpu_table(i);
5740 entry++;
5743 WARN_ON(sd_sysctl_header);
5744 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5747 /* may be called multiple times per register */
5748 static void unregister_sched_domain_sysctl(void)
5750 if (sd_sysctl_header)
5751 unregister_sysctl_table(sd_sysctl_header);
5752 sd_sysctl_header = NULL;
5753 if (sd_ctl_dir[0].child)
5754 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5756 #else
5757 static void register_sched_domain_sysctl(void)
5760 static void unregister_sched_domain_sysctl(void)
5763 #endif
5765 static void set_rq_online(struct rq *rq)
5767 if (!rq->online) {
5768 const struct sched_class *class;
5770 cpumask_set_cpu(rq->cpu, rq->rd->online);
5771 rq->online = 1;
5773 for_each_class(class) {
5774 if (class->rq_online)
5775 class->rq_online(rq);
5780 static void set_rq_offline(struct rq *rq)
5782 if (rq->online) {
5783 const struct sched_class *class;
5785 for_each_class(class) {
5786 if (class->rq_offline)
5787 class->rq_offline(rq);
5790 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5791 rq->online = 0;
5796 * migration_call - callback that gets triggered when a CPU is added.
5797 * Here we can start up the necessary migration thread for the new CPU.
5799 static int __cpuinit
5800 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5802 struct task_struct *p;
5803 int cpu = (long)hcpu;
5804 unsigned long flags;
5805 struct rq *rq;
5807 switch (action) {
5809 case CPU_UP_PREPARE:
5810 case CPU_UP_PREPARE_FROZEN:
5811 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5812 if (IS_ERR(p))
5813 return NOTIFY_BAD;
5814 kthread_bind(p, cpu);
5815 /* Must be high prio: stop_machine expects to yield to it. */
5816 rq = task_rq_lock(p, &flags);
5817 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5818 task_rq_unlock(rq, &flags);
5819 get_task_struct(p);
5820 cpu_rq(cpu)->migration_thread = p;
5821 rq->calc_load_update = calc_load_update;
5822 break;
5824 case CPU_ONLINE:
5825 case CPU_ONLINE_FROZEN:
5826 /* Strictly unnecessary, as first user will wake it. */
5827 wake_up_process(cpu_rq(cpu)->migration_thread);
5829 /* Update our root-domain */
5830 rq = cpu_rq(cpu);
5831 raw_spin_lock_irqsave(&rq->lock, flags);
5832 if (rq->rd) {
5833 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5835 set_rq_online(rq);
5837 raw_spin_unlock_irqrestore(&rq->lock, flags);
5838 break;
5840 #ifdef CONFIG_HOTPLUG_CPU
5841 case CPU_UP_CANCELED:
5842 case CPU_UP_CANCELED_FROZEN:
5843 if (!cpu_rq(cpu)->migration_thread)
5844 break;
5845 /* Unbind it from offline cpu so it can run. Fall thru. */
5846 kthread_bind(cpu_rq(cpu)->migration_thread,
5847 cpumask_any(cpu_online_mask));
5848 kthread_stop(cpu_rq(cpu)->migration_thread);
5849 put_task_struct(cpu_rq(cpu)->migration_thread);
5850 cpu_rq(cpu)->migration_thread = NULL;
5851 break;
5853 case CPU_DEAD:
5854 case CPU_DEAD_FROZEN:
5855 migrate_live_tasks(cpu);
5856 rq = cpu_rq(cpu);
5857 kthread_stop(rq->migration_thread);
5858 put_task_struct(rq->migration_thread);
5859 rq->migration_thread = NULL;
5860 /* Idle task back to normal (off runqueue, low prio) */
5861 raw_spin_lock_irq(&rq->lock);
5862 deactivate_task(rq, rq->idle, 0);
5863 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5864 rq->idle->sched_class = &idle_sched_class;
5865 migrate_dead_tasks(cpu);
5866 raw_spin_unlock_irq(&rq->lock);
5867 migrate_nr_uninterruptible(rq);
5868 BUG_ON(rq->nr_running != 0);
5869 calc_global_load_remove(rq);
5871 * No need to migrate the tasks: it was best-effort if
5872 * they didn't take sched_hotcpu_mutex. Just wake up
5873 * the requestors.
5875 raw_spin_lock_irq(&rq->lock);
5876 while (!list_empty(&rq->migration_queue)) {
5877 struct migration_req *req;
5879 req = list_entry(rq->migration_queue.next,
5880 struct migration_req, list);
5881 list_del_init(&req->list);
5882 raw_spin_unlock_irq(&rq->lock);
5883 complete(&req->done);
5884 raw_spin_lock_irq(&rq->lock);
5886 raw_spin_unlock_irq(&rq->lock);
5887 break;
5889 case CPU_DYING:
5890 case CPU_DYING_FROZEN:
5891 /* Update our root-domain */
5892 rq = cpu_rq(cpu);
5893 raw_spin_lock_irqsave(&rq->lock, flags);
5894 if (rq->rd) {
5895 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5896 set_rq_offline(rq);
5898 raw_spin_unlock_irqrestore(&rq->lock, flags);
5899 break;
5900 #endif
5902 return NOTIFY_OK;
5906 * Register at high priority so that task migration (migrate_all_tasks)
5907 * happens before everything else. This has to be lower priority than
5908 * the notifier in the perf_event subsystem, though.
5910 static struct notifier_block __cpuinitdata migration_notifier = {
5911 .notifier_call = migration_call,
5912 .priority = 10
5915 static int __init migration_init(void)
5917 void *cpu = (void *)(long)smp_processor_id();
5918 int err;
5920 /* Start one for the boot CPU: */
5921 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5922 BUG_ON(err == NOTIFY_BAD);
5923 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5924 register_cpu_notifier(&migration_notifier);
5926 return 0;
5928 early_initcall(migration_init);
5929 #endif
5931 #ifdef CONFIG_SMP
5933 #ifdef CONFIG_SCHED_DEBUG
5935 static __read_mostly int sched_domain_debug_enabled;
5937 static int __init sched_domain_debug_setup(char *str)
5939 sched_domain_debug_enabled = 1;
5941 return 0;
5943 early_param("sched_debug", sched_domain_debug_setup);
5945 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5946 struct cpumask *groupmask)
5948 struct sched_group *group = sd->groups;
5949 char str[256];
5951 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5952 cpumask_clear(groupmask);
5954 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5956 if (!(sd->flags & SD_LOAD_BALANCE)) {
5957 printk("does not load-balance\n");
5958 if (sd->parent)
5959 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5960 " has parent");
5961 return -1;
5964 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5966 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5967 printk(KERN_ERR "ERROR: domain->span does not contain "
5968 "CPU%d\n", cpu);
5970 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5971 printk(KERN_ERR "ERROR: domain->groups does not contain"
5972 " CPU%d\n", cpu);
5975 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5976 do {
5977 if (!group) {
5978 printk("\n");
5979 printk(KERN_ERR "ERROR: group is NULL\n");
5980 break;
5983 if (!group->cpu_power) {
5984 printk(KERN_CONT "\n");
5985 printk(KERN_ERR "ERROR: domain->cpu_power not "
5986 "set\n");
5987 break;
5990 if (!cpumask_weight(sched_group_cpus(group))) {
5991 printk(KERN_CONT "\n");
5992 printk(KERN_ERR "ERROR: empty group\n");
5993 break;
5996 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5997 printk(KERN_CONT "\n");
5998 printk(KERN_ERR "ERROR: repeated CPUs\n");
5999 break;
6002 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6004 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6006 printk(KERN_CONT " %s", str);
6007 if (group->cpu_power != SCHED_LOAD_SCALE) {
6008 printk(KERN_CONT " (cpu_power = %d)",
6009 group->cpu_power);
6012 group = group->next;
6013 } while (group != sd->groups);
6014 printk(KERN_CONT "\n");
6016 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6017 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6019 if (sd->parent &&
6020 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6021 printk(KERN_ERR "ERROR: parent span is not a superset "
6022 "of domain->span\n");
6023 return 0;
6026 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6028 cpumask_var_t groupmask;
6029 int level = 0;
6031 if (!sched_domain_debug_enabled)
6032 return;
6034 if (!sd) {
6035 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6036 return;
6039 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6041 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6042 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6043 return;
6046 for (;;) {
6047 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6048 break;
6049 level++;
6050 sd = sd->parent;
6051 if (!sd)
6052 break;
6054 free_cpumask_var(groupmask);
6056 #else /* !CONFIG_SCHED_DEBUG */
6057 # define sched_domain_debug(sd, cpu) do { } while (0)
6058 #endif /* CONFIG_SCHED_DEBUG */
6060 static int sd_degenerate(struct sched_domain *sd)
6062 if (cpumask_weight(sched_domain_span(sd)) == 1)
6063 return 1;
6065 /* Following flags need at least 2 groups */
6066 if (sd->flags & (SD_LOAD_BALANCE |
6067 SD_BALANCE_NEWIDLE |
6068 SD_BALANCE_FORK |
6069 SD_BALANCE_EXEC |
6070 SD_SHARE_CPUPOWER |
6071 SD_SHARE_PKG_RESOURCES)) {
6072 if (sd->groups != sd->groups->next)
6073 return 0;
6076 /* Following flags don't use groups */
6077 if (sd->flags & (SD_WAKE_AFFINE))
6078 return 0;
6080 return 1;
6083 static int
6084 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6086 unsigned long cflags = sd->flags, pflags = parent->flags;
6088 if (sd_degenerate(parent))
6089 return 1;
6091 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6092 return 0;
6094 /* Flags needing groups don't count if only 1 group in parent */
6095 if (parent->groups == parent->groups->next) {
6096 pflags &= ~(SD_LOAD_BALANCE |
6097 SD_BALANCE_NEWIDLE |
6098 SD_BALANCE_FORK |
6099 SD_BALANCE_EXEC |
6100 SD_SHARE_CPUPOWER |
6101 SD_SHARE_PKG_RESOURCES);
6102 if (nr_node_ids == 1)
6103 pflags &= ~SD_SERIALIZE;
6105 if (~cflags & pflags)
6106 return 0;
6108 return 1;
6111 static void free_rootdomain(struct root_domain *rd)
6113 synchronize_sched();
6115 cpupri_cleanup(&rd->cpupri);
6117 free_cpumask_var(rd->rto_mask);
6118 free_cpumask_var(rd->online);
6119 free_cpumask_var(rd->span);
6120 kfree(rd);
6123 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6125 struct root_domain *old_rd = NULL;
6126 unsigned long flags;
6128 raw_spin_lock_irqsave(&rq->lock, flags);
6130 if (rq->rd) {
6131 old_rd = rq->rd;
6133 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6134 set_rq_offline(rq);
6136 cpumask_clear_cpu(rq->cpu, old_rd->span);
6139 * If we dont want to free the old_rt yet then
6140 * set old_rd to NULL to skip the freeing later
6141 * in this function:
6143 if (!atomic_dec_and_test(&old_rd->refcount))
6144 old_rd = NULL;
6147 atomic_inc(&rd->refcount);
6148 rq->rd = rd;
6150 cpumask_set_cpu(rq->cpu, rd->span);
6151 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6152 set_rq_online(rq);
6154 raw_spin_unlock_irqrestore(&rq->lock, flags);
6156 if (old_rd)
6157 free_rootdomain(old_rd);
6160 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6162 gfp_t gfp = GFP_KERNEL;
6164 memset(rd, 0, sizeof(*rd));
6166 if (bootmem)
6167 gfp = GFP_NOWAIT;
6169 if (!alloc_cpumask_var(&rd->span, gfp))
6170 goto out;
6171 if (!alloc_cpumask_var(&rd->online, gfp))
6172 goto free_span;
6173 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6174 goto free_online;
6176 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6177 goto free_rto_mask;
6178 return 0;
6180 free_rto_mask:
6181 free_cpumask_var(rd->rto_mask);
6182 free_online:
6183 free_cpumask_var(rd->online);
6184 free_span:
6185 free_cpumask_var(rd->span);
6186 out:
6187 return -ENOMEM;
6190 static void init_defrootdomain(void)
6192 init_rootdomain(&def_root_domain, true);
6194 atomic_set(&def_root_domain.refcount, 1);
6197 static struct root_domain *alloc_rootdomain(void)
6199 struct root_domain *rd;
6201 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6202 if (!rd)
6203 return NULL;
6205 if (init_rootdomain(rd, false) != 0) {
6206 kfree(rd);
6207 return NULL;
6210 return rd;
6214 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6215 * hold the hotplug lock.
6217 static void
6218 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6220 struct rq *rq = cpu_rq(cpu);
6221 struct sched_domain *tmp;
6223 /* Remove the sched domains which do not contribute to scheduling. */
6224 for (tmp = sd; tmp; ) {
6225 struct sched_domain *parent = tmp->parent;
6226 if (!parent)
6227 break;
6229 if (sd_parent_degenerate(tmp, parent)) {
6230 tmp->parent = parent->parent;
6231 if (parent->parent)
6232 parent->parent->child = tmp;
6233 } else
6234 tmp = tmp->parent;
6237 if (sd && sd_degenerate(sd)) {
6238 sd = sd->parent;
6239 if (sd)
6240 sd->child = NULL;
6243 sched_domain_debug(sd, cpu);
6245 rq_attach_root(rq, rd);
6246 rcu_assign_pointer(rq->sd, sd);
6249 /* cpus with isolated domains */
6250 static cpumask_var_t cpu_isolated_map;
6252 /* Setup the mask of cpus configured for isolated domains */
6253 static int __init isolated_cpu_setup(char *str)
6255 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6256 cpulist_parse(str, cpu_isolated_map);
6257 return 1;
6260 __setup("isolcpus=", isolated_cpu_setup);
6263 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6264 * to a function which identifies what group(along with sched group) a CPU
6265 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6266 * (due to the fact that we keep track of groups covered with a struct cpumask).
6268 * init_sched_build_groups will build a circular linked list of the groups
6269 * covered by the given span, and will set each group's ->cpumask correctly,
6270 * and ->cpu_power to 0.
6272 static void
6273 init_sched_build_groups(const struct cpumask *span,
6274 const struct cpumask *cpu_map,
6275 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6276 struct sched_group **sg,
6277 struct cpumask *tmpmask),
6278 struct cpumask *covered, struct cpumask *tmpmask)
6280 struct sched_group *first = NULL, *last = NULL;
6281 int i;
6283 cpumask_clear(covered);
6285 for_each_cpu(i, span) {
6286 struct sched_group *sg;
6287 int group = group_fn(i, cpu_map, &sg, tmpmask);
6288 int j;
6290 if (cpumask_test_cpu(i, covered))
6291 continue;
6293 cpumask_clear(sched_group_cpus(sg));
6294 sg->cpu_power = 0;
6296 for_each_cpu(j, span) {
6297 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6298 continue;
6300 cpumask_set_cpu(j, covered);
6301 cpumask_set_cpu(j, sched_group_cpus(sg));
6303 if (!first)
6304 first = sg;
6305 if (last)
6306 last->next = sg;
6307 last = sg;
6309 last->next = first;
6312 #define SD_NODES_PER_DOMAIN 16
6314 #ifdef CONFIG_NUMA
6317 * find_next_best_node - find the next node to include in a sched_domain
6318 * @node: node whose sched_domain we're building
6319 * @used_nodes: nodes already in the sched_domain
6321 * Find the next node to include in a given scheduling domain. Simply
6322 * finds the closest node not already in the @used_nodes map.
6324 * Should use nodemask_t.
6326 static int find_next_best_node(int node, nodemask_t *used_nodes)
6328 int i, n, val, min_val, best_node = 0;
6330 min_val = INT_MAX;
6332 for (i = 0; i < nr_node_ids; i++) {
6333 /* Start at @node */
6334 n = (node + i) % nr_node_ids;
6336 if (!nr_cpus_node(n))
6337 continue;
6339 /* Skip already used nodes */
6340 if (node_isset(n, *used_nodes))
6341 continue;
6343 /* Simple min distance search */
6344 val = node_distance(node, n);
6346 if (val < min_val) {
6347 min_val = val;
6348 best_node = n;
6352 node_set(best_node, *used_nodes);
6353 return best_node;
6357 * sched_domain_node_span - get a cpumask for a node's sched_domain
6358 * @node: node whose cpumask we're constructing
6359 * @span: resulting cpumask
6361 * Given a node, construct a good cpumask for its sched_domain to span. It
6362 * should be one that prevents unnecessary balancing, but also spreads tasks
6363 * out optimally.
6365 static void sched_domain_node_span(int node, struct cpumask *span)
6367 nodemask_t used_nodes;
6368 int i;
6370 cpumask_clear(span);
6371 nodes_clear(used_nodes);
6373 cpumask_or(span, span, cpumask_of_node(node));
6374 node_set(node, used_nodes);
6376 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6377 int next_node = find_next_best_node(node, &used_nodes);
6379 cpumask_or(span, span, cpumask_of_node(next_node));
6382 #endif /* CONFIG_NUMA */
6384 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6387 * The cpus mask in sched_group and sched_domain hangs off the end.
6389 * ( See the the comments in include/linux/sched.h:struct sched_group
6390 * and struct sched_domain. )
6392 struct static_sched_group {
6393 struct sched_group sg;
6394 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6397 struct static_sched_domain {
6398 struct sched_domain sd;
6399 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6402 struct s_data {
6403 #ifdef CONFIG_NUMA
6404 int sd_allnodes;
6405 cpumask_var_t domainspan;
6406 cpumask_var_t covered;
6407 cpumask_var_t notcovered;
6408 #endif
6409 cpumask_var_t nodemask;
6410 cpumask_var_t this_sibling_map;
6411 cpumask_var_t this_core_map;
6412 cpumask_var_t send_covered;
6413 cpumask_var_t tmpmask;
6414 struct sched_group **sched_group_nodes;
6415 struct root_domain *rd;
6418 enum s_alloc {
6419 sa_sched_groups = 0,
6420 sa_rootdomain,
6421 sa_tmpmask,
6422 sa_send_covered,
6423 sa_this_core_map,
6424 sa_this_sibling_map,
6425 sa_nodemask,
6426 sa_sched_group_nodes,
6427 #ifdef CONFIG_NUMA
6428 sa_notcovered,
6429 sa_covered,
6430 sa_domainspan,
6431 #endif
6432 sa_none,
6436 * SMT sched-domains:
6438 #ifdef CONFIG_SCHED_SMT
6439 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6440 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6442 static int
6443 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6444 struct sched_group **sg, struct cpumask *unused)
6446 if (sg)
6447 *sg = &per_cpu(sched_groups, cpu).sg;
6448 return cpu;
6450 #endif /* CONFIG_SCHED_SMT */
6453 * multi-core sched-domains:
6455 #ifdef CONFIG_SCHED_MC
6456 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6457 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6458 #endif /* CONFIG_SCHED_MC */
6460 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6461 static int
6462 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6463 struct sched_group **sg, struct cpumask *mask)
6465 int group;
6467 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6468 group = cpumask_first(mask);
6469 if (sg)
6470 *sg = &per_cpu(sched_group_core, group).sg;
6471 return group;
6473 #elif defined(CONFIG_SCHED_MC)
6474 static int
6475 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6476 struct sched_group **sg, struct cpumask *unused)
6478 if (sg)
6479 *sg = &per_cpu(sched_group_core, cpu).sg;
6480 return cpu;
6482 #endif
6484 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6485 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6487 static int
6488 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6489 struct sched_group **sg, struct cpumask *mask)
6491 int group;
6492 #ifdef CONFIG_SCHED_MC
6493 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6494 group = cpumask_first(mask);
6495 #elif defined(CONFIG_SCHED_SMT)
6496 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6497 group = cpumask_first(mask);
6498 #else
6499 group = cpu;
6500 #endif
6501 if (sg)
6502 *sg = &per_cpu(sched_group_phys, group).sg;
6503 return group;
6506 #ifdef CONFIG_NUMA
6508 * The init_sched_build_groups can't handle what we want to do with node
6509 * groups, so roll our own. Now each node has its own list of groups which
6510 * gets dynamically allocated.
6512 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6513 static struct sched_group ***sched_group_nodes_bycpu;
6515 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6516 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6518 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6519 struct sched_group **sg,
6520 struct cpumask *nodemask)
6522 int group;
6524 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6525 group = cpumask_first(nodemask);
6527 if (sg)
6528 *sg = &per_cpu(sched_group_allnodes, group).sg;
6529 return group;
6532 static void init_numa_sched_groups_power(struct sched_group *group_head)
6534 struct sched_group *sg = group_head;
6535 int j;
6537 if (!sg)
6538 return;
6539 do {
6540 for_each_cpu(j, sched_group_cpus(sg)) {
6541 struct sched_domain *sd;
6543 sd = &per_cpu(phys_domains, j).sd;
6544 if (j != group_first_cpu(sd->groups)) {
6546 * Only add "power" once for each
6547 * physical package.
6549 continue;
6552 sg->cpu_power += sd->groups->cpu_power;
6554 sg = sg->next;
6555 } while (sg != group_head);
6558 static int build_numa_sched_groups(struct s_data *d,
6559 const struct cpumask *cpu_map, int num)
6561 struct sched_domain *sd;
6562 struct sched_group *sg, *prev;
6563 int n, j;
6565 cpumask_clear(d->covered);
6566 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6567 if (cpumask_empty(d->nodemask)) {
6568 d->sched_group_nodes[num] = NULL;
6569 goto out;
6572 sched_domain_node_span(num, d->domainspan);
6573 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6575 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6576 GFP_KERNEL, num);
6577 if (!sg) {
6578 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6579 num);
6580 return -ENOMEM;
6582 d->sched_group_nodes[num] = sg;
6584 for_each_cpu(j, d->nodemask) {
6585 sd = &per_cpu(node_domains, j).sd;
6586 sd->groups = sg;
6589 sg->cpu_power = 0;
6590 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6591 sg->next = sg;
6592 cpumask_or(d->covered, d->covered, d->nodemask);
6594 prev = sg;
6595 for (j = 0; j < nr_node_ids; j++) {
6596 n = (num + j) % nr_node_ids;
6597 cpumask_complement(d->notcovered, d->covered);
6598 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6599 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6600 if (cpumask_empty(d->tmpmask))
6601 break;
6602 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6603 if (cpumask_empty(d->tmpmask))
6604 continue;
6605 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6606 GFP_KERNEL, num);
6607 if (!sg) {
6608 printk(KERN_WARNING
6609 "Can not alloc domain group for node %d\n", j);
6610 return -ENOMEM;
6612 sg->cpu_power = 0;
6613 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6614 sg->next = prev->next;
6615 cpumask_or(d->covered, d->covered, d->tmpmask);
6616 prev->next = sg;
6617 prev = sg;
6619 out:
6620 return 0;
6622 #endif /* CONFIG_NUMA */
6624 #ifdef CONFIG_NUMA
6625 /* Free memory allocated for various sched_group structures */
6626 static void free_sched_groups(const struct cpumask *cpu_map,
6627 struct cpumask *nodemask)
6629 int cpu, i;
6631 for_each_cpu(cpu, cpu_map) {
6632 struct sched_group **sched_group_nodes
6633 = sched_group_nodes_bycpu[cpu];
6635 if (!sched_group_nodes)
6636 continue;
6638 for (i = 0; i < nr_node_ids; i++) {
6639 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6641 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6642 if (cpumask_empty(nodemask))
6643 continue;
6645 if (sg == NULL)
6646 continue;
6647 sg = sg->next;
6648 next_sg:
6649 oldsg = sg;
6650 sg = sg->next;
6651 kfree(oldsg);
6652 if (oldsg != sched_group_nodes[i])
6653 goto next_sg;
6655 kfree(sched_group_nodes);
6656 sched_group_nodes_bycpu[cpu] = NULL;
6659 #else /* !CONFIG_NUMA */
6660 static void free_sched_groups(const struct cpumask *cpu_map,
6661 struct cpumask *nodemask)
6664 #endif /* CONFIG_NUMA */
6667 * Initialize sched groups cpu_power.
6669 * cpu_power indicates the capacity of sched group, which is used while
6670 * distributing the load between different sched groups in a sched domain.
6671 * Typically cpu_power for all the groups in a sched domain will be same unless
6672 * there are asymmetries in the topology. If there are asymmetries, group
6673 * having more cpu_power will pickup more load compared to the group having
6674 * less cpu_power.
6676 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6678 struct sched_domain *child;
6679 struct sched_group *group;
6680 long power;
6681 int weight;
6683 WARN_ON(!sd || !sd->groups);
6685 if (cpu != group_first_cpu(sd->groups))
6686 return;
6688 child = sd->child;
6690 sd->groups->cpu_power = 0;
6692 if (!child) {
6693 power = SCHED_LOAD_SCALE;
6694 weight = cpumask_weight(sched_domain_span(sd));
6696 * SMT siblings share the power of a single core.
6697 * Usually multiple threads get a better yield out of
6698 * that one core than a single thread would have,
6699 * reflect that in sd->smt_gain.
6701 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6702 power *= sd->smt_gain;
6703 power /= weight;
6704 power >>= SCHED_LOAD_SHIFT;
6706 sd->groups->cpu_power += power;
6707 return;
6711 * Add cpu_power of each child group to this groups cpu_power.
6713 group = child->groups;
6714 do {
6715 sd->groups->cpu_power += group->cpu_power;
6716 group = group->next;
6717 } while (group != child->groups);
6721 * Initializers for schedule domains
6722 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6725 #ifdef CONFIG_SCHED_DEBUG
6726 # define SD_INIT_NAME(sd, type) sd->name = #type
6727 #else
6728 # define SD_INIT_NAME(sd, type) do { } while (0)
6729 #endif
6731 #define SD_INIT(sd, type) sd_init_##type(sd)
6733 #define SD_INIT_FUNC(type) \
6734 static noinline void sd_init_##type(struct sched_domain *sd) \
6736 memset(sd, 0, sizeof(*sd)); \
6737 *sd = SD_##type##_INIT; \
6738 sd->level = SD_LV_##type; \
6739 SD_INIT_NAME(sd, type); \
6742 SD_INIT_FUNC(CPU)
6743 #ifdef CONFIG_NUMA
6744 SD_INIT_FUNC(ALLNODES)
6745 SD_INIT_FUNC(NODE)
6746 #endif
6747 #ifdef CONFIG_SCHED_SMT
6748 SD_INIT_FUNC(SIBLING)
6749 #endif
6750 #ifdef CONFIG_SCHED_MC
6751 SD_INIT_FUNC(MC)
6752 #endif
6754 static int default_relax_domain_level = -1;
6756 static int __init setup_relax_domain_level(char *str)
6758 unsigned long val;
6760 val = simple_strtoul(str, NULL, 0);
6761 if (val < SD_LV_MAX)
6762 default_relax_domain_level = val;
6764 return 1;
6766 __setup("relax_domain_level=", setup_relax_domain_level);
6768 static void set_domain_attribute(struct sched_domain *sd,
6769 struct sched_domain_attr *attr)
6771 int request;
6773 if (!attr || attr->relax_domain_level < 0) {
6774 if (default_relax_domain_level < 0)
6775 return;
6776 else
6777 request = default_relax_domain_level;
6778 } else
6779 request = attr->relax_domain_level;
6780 if (request < sd->level) {
6781 /* turn off idle balance on this domain */
6782 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6783 } else {
6784 /* turn on idle balance on this domain */
6785 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6789 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6790 const struct cpumask *cpu_map)
6792 switch (what) {
6793 case sa_sched_groups:
6794 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6795 d->sched_group_nodes = NULL;
6796 case sa_rootdomain:
6797 free_rootdomain(d->rd); /* fall through */
6798 case sa_tmpmask:
6799 free_cpumask_var(d->tmpmask); /* fall through */
6800 case sa_send_covered:
6801 free_cpumask_var(d->send_covered); /* fall through */
6802 case sa_this_core_map:
6803 free_cpumask_var(d->this_core_map); /* fall through */
6804 case sa_this_sibling_map:
6805 free_cpumask_var(d->this_sibling_map); /* fall through */
6806 case sa_nodemask:
6807 free_cpumask_var(d->nodemask); /* fall through */
6808 case sa_sched_group_nodes:
6809 #ifdef CONFIG_NUMA
6810 kfree(d->sched_group_nodes); /* fall through */
6811 case sa_notcovered:
6812 free_cpumask_var(d->notcovered); /* fall through */
6813 case sa_covered:
6814 free_cpumask_var(d->covered); /* fall through */
6815 case sa_domainspan:
6816 free_cpumask_var(d->domainspan); /* fall through */
6817 #endif
6818 case sa_none:
6819 break;
6823 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6824 const struct cpumask *cpu_map)
6826 #ifdef CONFIG_NUMA
6827 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6828 return sa_none;
6829 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6830 return sa_domainspan;
6831 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6832 return sa_covered;
6833 /* Allocate the per-node list of sched groups */
6834 d->sched_group_nodes = kcalloc(nr_node_ids,
6835 sizeof(struct sched_group *), GFP_KERNEL);
6836 if (!d->sched_group_nodes) {
6837 printk(KERN_WARNING "Can not alloc sched group node list\n");
6838 return sa_notcovered;
6840 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6841 #endif
6842 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6843 return sa_sched_group_nodes;
6844 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6845 return sa_nodemask;
6846 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6847 return sa_this_sibling_map;
6848 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6849 return sa_this_core_map;
6850 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6851 return sa_send_covered;
6852 d->rd = alloc_rootdomain();
6853 if (!d->rd) {
6854 printk(KERN_WARNING "Cannot alloc root domain\n");
6855 return sa_tmpmask;
6857 return sa_rootdomain;
6860 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6861 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6863 struct sched_domain *sd = NULL;
6864 #ifdef CONFIG_NUMA
6865 struct sched_domain *parent;
6867 d->sd_allnodes = 0;
6868 if (cpumask_weight(cpu_map) >
6869 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6870 sd = &per_cpu(allnodes_domains, i).sd;
6871 SD_INIT(sd, ALLNODES);
6872 set_domain_attribute(sd, attr);
6873 cpumask_copy(sched_domain_span(sd), cpu_map);
6874 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6875 d->sd_allnodes = 1;
6877 parent = sd;
6879 sd = &per_cpu(node_domains, i).sd;
6880 SD_INIT(sd, NODE);
6881 set_domain_attribute(sd, attr);
6882 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6883 sd->parent = parent;
6884 if (parent)
6885 parent->child = sd;
6886 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6887 #endif
6888 return sd;
6891 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6892 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6893 struct sched_domain *parent, int i)
6895 struct sched_domain *sd;
6896 sd = &per_cpu(phys_domains, i).sd;
6897 SD_INIT(sd, CPU);
6898 set_domain_attribute(sd, attr);
6899 cpumask_copy(sched_domain_span(sd), d->nodemask);
6900 sd->parent = parent;
6901 if (parent)
6902 parent->child = sd;
6903 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6904 return sd;
6907 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6908 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6909 struct sched_domain *parent, int i)
6911 struct sched_domain *sd = parent;
6912 #ifdef CONFIG_SCHED_MC
6913 sd = &per_cpu(core_domains, i).sd;
6914 SD_INIT(sd, MC);
6915 set_domain_attribute(sd, attr);
6916 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6917 sd->parent = parent;
6918 parent->child = sd;
6919 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6920 #endif
6921 return sd;
6924 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6925 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6926 struct sched_domain *parent, int i)
6928 struct sched_domain *sd = parent;
6929 #ifdef CONFIG_SCHED_SMT
6930 sd = &per_cpu(cpu_domains, i).sd;
6931 SD_INIT(sd, SIBLING);
6932 set_domain_attribute(sd, attr);
6933 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6934 sd->parent = parent;
6935 parent->child = sd;
6936 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6937 #endif
6938 return sd;
6941 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6942 const struct cpumask *cpu_map, int cpu)
6944 switch (l) {
6945 #ifdef CONFIG_SCHED_SMT
6946 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6947 cpumask_and(d->this_sibling_map, cpu_map,
6948 topology_thread_cpumask(cpu));
6949 if (cpu == cpumask_first(d->this_sibling_map))
6950 init_sched_build_groups(d->this_sibling_map, cpu_map,
6951 &cpu_to_cpu_group,
6952 d->send_covered, d->tmpmask);
6953 break;
6954 #endif
6955 #ifdef CONFIG_SCHED_MC
6956 case SD_LV_MC: /* set up multi-core groups */
6957 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6958 if (cpu == cpumask_first(d->this_core_map))
6959 init_sched_build_groups(d->this_core_map, cpu_map,
6960 &cpu_to_core_group,
6961 d->send_covered, d->tmpmask);
6962 break;
6963 #endif
6964 case SD_LV_CPU: /* set up physical groups */
6965 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6966 if (!cpumask_empty(d->nodemask))
6967 init_sched_build_groups(d->nodemask, cpu_map,
6968 &cpu_to_phys_group,
6969 d->send_covered, d->tmpmask);
6970 break;
6971 #ifdef CONFIG_NUMA
6972 case SD_LV_ALLNODES:
6973 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6974 d->send_covered, d->tmpmask);
6975 break;
6976 #endif
6977 default:
6978 break;
6983 * Build sched domains for a given set of cpus and attach the sched domains
6984 * to the individual cpus
6986 static int __build_sched_domains(const struct cpumask *cpu_map,
6987 struct sched_domain_attr *attr)
6989 enum s_alloc alloc_state = sa_none;
6990 struct s_data d;
6991 struct sched_domain *sd;
6992 int i;
6993 #ifdef CONFIG_NUMA
6994 d.sd_allnodes = 0;
6995 #endif
6997 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6998 if (alloc_state != sa_rootdomain)
6999 goto error;
7000 alloc_state = sa_sched_groups;
7003 * Set up domains for cpus specified by the cpu_map.
7005 for_each_cpu(i, cpu_map) {
7006 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7007 cpu_map);
7009 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7010 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7011 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7012 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7015 for_each_cpu(i, cpu_map) {
7016 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7017 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7020 /* Set up physical groups */
7021 for (i = 0; i < nr_node_ids; i++)
7022 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7024 #ifdef CONFIG_NUMA
7025 /* Set up node groups */
7026 if (d.sd_allnodes)
7027 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7029 for (i = 0; i < nr_node_ids; i++)
7030 if (build_numa_sched_groups(&d, cpu_map, i))
7031 goto error;
7032 #endif
7034 /* Calculate CPU power for physical packages and nodes */
7035 #ifdef CONFIG_SCHED_SMT
7036 for_each_cpu(i, cpu_map) {
7037 sd = &per_cpu(cpu_domains, i).sd;
7038 init_sched_groups_power(i, sd);
7040 #endif
7041 #ifdef CONFIG_SCHED_MC
7042 for_each_cpu(i, cpu_map) {
7043 sd = &per_cpu(core_domains, i).sd;
7044 init_sched_groups_power(i, sd);
7046 #endif
7048 for_each_cpu(i, cpu_map) {
7049 sd = &per_cpu(phys_domains, i).sd;
7050 init_sched_groups_power(i, sd);
7053 #ifdef CONFIG_NUMA
7054 for (i = 0; i < nr_node_ids; i++)
7055 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7057 if (d.sd_allnodes) {
7058 struct sched_group *sg;
7060 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7061 d.tmpmask);
7062 init_numa_sched_groups_power(sg);
7064 #endif
7066 /* Attach the domains */
7067 for_each_cpu(i, cpu_map) {
7068 #ifdef CONFIG_SCHED_SMT
7069 sd = &per_cpu(cpu_domains, i).sd;
7070 #elif defined(CONFIG_SCHED_MC)
7071 sd = &per_cpu(core_domains, i).sd;
7072 #else
7073 sd = &per_cpu(phys_domains, i).sd;
7074 #endif
7075 cpu_attach_domain(sd, d.rd, i);
7078 d.sched_group_nodes = NULL; /* don't free this we still need it */
7079 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7080 return 0;
7082 error:
7083 __free_domain_allocs(&d, alloc_state, cpu_map);
7084 return -ENOMEM;
7087 static int build_sched_domains(const struct cpumask *cpu_map)
7089 return __build_sched_domains(cpu_map, NULL);
7092 static cpumask_var_t *doms_cur; /* current sched domains */
7093 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7094 static struct sched_domain_attr *dattr_cur;
7095 /* attribues of custom domains in 'doms_cur' */
7098 * Special case: If a kmalloc of a doms_cur partition (array of
7099 * cpumask) fails, then fallback to a single sched domain,
7100 * as determined by the single cpumask fallback_doms.
7102 static cpumask_var_t fallback_doms;
7105 * arch_update_cpu_topology lets virtualized architectures update the
7106 * cpu core maps. It is supposed to return 1 if the topology changed
7107 * or 0 if it stayed the same.
7109 int __attribute__((weak)) arch_update_cpu_topology(void)
7111 return 0;
7114 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7116 int i;
7117 cpumask_var_t *doms;
7119 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7120 if (!doms)
7121 return NULL;
7122 for (i = 0; i < ndoms; i++) {
7123 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7124 free_sched_domains(doms, i);
7125 return NULL;
7128 return doms;
7131 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7133 unsigned int i;
7134 for (i = 0; i < ndoms; i++)
7135 free_cpumask_var(doms[i]);
7136 kfree(doms);
7140 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7141 * For now this just excludes isolated cpus, but could be used to
7142 * exclude other special cases in the future.
7144 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7146 int err;
7148 arch_update_cpu_topology();
7149 ndoms_cur = 1;
7150 doms_cur = alloc_sched_domains(ndoms_cur);
7151 if (!doms_cur)
7152 doms_cur = &fallback_doms;
7153 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7154 dattr_cur = NULL;
7155 err = build_sched_domains(doms_cur[0]);
7156 register_sched_domain_sysctl();
7158 return err;
7161 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7162 struct cpumask *tmpmask)
7164 free_sched_groups(cpu_map, tmpmask);
7168 * Detach sched domains from a group of cpus specified in cpu_map
7169 * These cpus will now be attached to the NULL domain
7171 static void detach_destroy_domains(const struct cpumask *cpu_map)
7173 /* Save because hotplug lock held. */
7174 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7175 int i;
7177 for_each_cpu(i, cpu_map)
7178 cpu_attach_domain(NULL, &def_root_domain, i);
7179 synchronize_sched();
7180 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7183 /* handle null as "default" */
7184 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7185 struct sched_domain_attr *new, int idx_new)
7187 struct sched_domain_attr tmp;
7189 /* fast path */
7190 if (!new && !cur)
7191 return 1;
7193 tmp = SD_ATTR_INIT;
7194 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7195 new ? (new + idx_new) : &tmp,
7196 sizeof(struct sched_domain_attr));
7200 * Partition sched domains as specified by the 'ndoms_new'
7201 * cpumasks in the array doms_new[] of cpumasks. This compares
7202 * doms_new[] to the current sched domain partitioning, doms_cur[].
7203 * It destroys each deleted domain and builds each new domain.
7205 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7206 * The masks don't intersect (don't overlap.) We should setup one
7207 * sched domain for each mask. CPUs not in any of the cpumasks will
7208 * not be load balanced. If the same cpumask appears both in the
7209 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7210 * it as it is.
7212 * The passed in 'doms_new' should be allocated using
7213 * alloc_sched_domains. This routine takes ownership of it and will
7214 * free_sched_domains it when done with it. If the caller failed the
7215 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7216 * and partition_sched_domains() will fallback to the single partition
7217 * 'fallback_doms', it also forces the domains to be rebuilt.
7219 * If doms_new == NULL it will be replaced with cpu_online_mask.
7220 * ndoms_new == 0 is a special case for destroying existing domains,
7221 * and it will not create the default domain.
7223 * Call with hotplug lock held
7225 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7226 struct sched_domain_attr *dattr_new)
7228 int i, j, n;
7229 int new_topology;
7231 mutex_lock(&sched_domains_mutex);
7233 /* always unregister in case we don't destroy any domains */
7234 unregister_sched_domain_sysctl();
7236 /* Let architecture update cpu core mappings. */
7237 new_topology = arch_update_cpu_topology();
7239 n = doms_new ? ndoms_new : 0;
7241 /* Destroy deleted domains */
7242 for (i = 0; i < ndoms_cur; i++) {
7243 for (j = 0; j < n && !new_topology; j++) {
7244 if (cpumask_equal(doms_cur[i], doms_new[j])
7245 && dattrs_equal(dattr_cur, i, dattr_new, j))
7246 goto match1;
7248 /* no match - a current sched domain not in new doms_new[] */
7249 detach_destroy_domains(doms_cur[i]);
7250 match1:
7254 if (doms_new == NULL) {
7255 ndoms_cur = 0;
7256 doms_new = &fallback_doms;
7257 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7258 WARN_ON_ONCE(dattr_new);
7261 /* Build new domains */
7262 for (i = 0; i < ndoms_new; i++) {
7263 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7264 if (cpumask_equal(doms_new[i], doms_cur[j])
7265 && dattrs_equal(dattr_new, i, dattr_cur, j))
7266 goto match2;
7268 /* no match - add a new doms_new */
7269 __build_sched_domains(doms_new[i],
7270 dattr_new ? dattr_new + i : NULL);
7271 match2:
7275 /* Remember the new sched domains */
7276 if (doms_cur != &fallback_doms)
7277 free_sched_domains(doms_cur, ndoms_cur);
7278 kfree(dattr_cur); /* kfree(NULL) is safe */
7279 doms_cur = doms_new;
7280 dattr_cur = dattr_new;
7281 ndoms_cur = ndoms_new;
7283 register_sched_domain_sysctl();
7285 mutex_unlock(&sched_domains_mutex);
7288 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7289 static void arch_reinit_sched_domains(void)
7291 get_online_cpus();
7293 /* Destroy domains first to force the rebuild */
7294 partition_sched_domains(0, NULL, NULL);
7296 rebuild_sched_domains();
7297 put_online_cpus();
7300 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7302 unsigned int level = 0;
7304 if (sscanf(buf, "%u", &level) != 1)
7305 return -EINVAL;
7308 * level is always be positive so don't check for
7309 * level < POWERSAVINGS_BALANCE_NONE which is 0
7310 * What happens on 0 or 1 byte write,
7311 * need to check for count as well?
7314 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7315 return -EINVAL;
7317 if (smt)
7318 sched_smt_power_savings = level;
7319 else
7320 sched_mc_power_savings = level;
7322 arch_reinit_sched_domains();
7324 return count;
7327 #ifdef CONFIG_SCHED_MC
7328 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7329 struct sysdev_class_attribute *attr,
7330 char *page)
7332 return sprintf(page, "%u\n", sched_mc_power_savings);
7334 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7335 struct sysdev_class_attribute *attr,
7336 const char *buf, size_t count)
7338 return sched_power_savings_store(buf, count, 0);
7340 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7341 sched_mc_power_savings_show,
7342 sched_mc_power_savings_store);
7343 #endif
7345 #ifdef CONFIG_SCHED_SMT
7346 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7347 struct sysdev_class_attribute *attr,
7348 char *page)
7350 return sprintf(page, "%u\n", sched_smt_power_savings);
7352 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7353 struct sysdev_class_attribute *attr,
7354 const char *buf, size_t count)
7356 return sched_power_savings_store(buf, count, 1);
7358 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7359 sched_smt_power_savings_show,
7360 sched_smt_power_savings_store);
7361 #endif
7363 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7365 int err = 0;
7367 #ifdef CONFIG_SCHED_SMT
7368 if (smt_capable())
7369 err = sysfs_create_file(&cls->kset.kobj,
7370 &attr_sched_smt_power_savings.attr);
7371 #endif
7372 #ifdef CONFIG_SCHED_MC
7373 if (!err && mc_capable())
7374 err = sysfs_create_file(&cls->kset.kobj,
7375 &attr_sched_mc_power_savings.attr);
7376 #endif
7377 return err;
7379 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7381 #ifndef CONFIG_CPUSETS
7383 * Add online and remove offline CPUs from the scheduler domains.
7384 * When cpusets are enabled they take over this function.
7386 static int update_sched_domains(struct notifier_block *nfb,
7387 unsigned long action, void *hcpu)
7389 switch (action) {
7390 case CPU_ONLINE:
7391 case CPU_ONLINE_FROZEN:
7392 case CPU_DOWN_PREPARE:
7393 case CPU_DOWN_PREPARE_FROZEN:
7394 case CPU_DOWN_FAILED:
7395 case CPU_DOWN_FAILED_FROZEN:
7396 partition_sched_domains(1, NULL, NULL);
7397 return NOTIFY_OK;
7399 default:
7400 return NOTIFY_DONE;
7403 #endif
7405 static int update_runtime(struct notifier_block *nfb,
7406 unsigned long action, void *hcpu)
7408 int cpu = (int)(long)hcpu;
7410 switch (action) {
7411 case CPU_DOWN_PREPARE:
7412 case CPU_DOWN_PREPARE_FROZEN:
7413 disable_runtime(cpu_rq(cpu));
7414 return NOTIFY_OK;
7416 case CPU_DOWN_FAILED:
7417 case CPU_DOWN_FAILED_FROZEN:
7418 case CPU_ONLINE:
7419 case CPU_ONLINE_FROZEN:
7420 enable_runtime(cpu_rq(cpu));
7421 return NOTIFY_OK;
7423 default:
7424 return NOTIFY_DONE;
7428 void __init sched_init_smp(void)
7430 cpumask_var_t non_isolated_cpus;
7432 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7433 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7435 #if defined(CONFIG_NUMA)
7436 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7437 GFP_KERNEL);
7438 BUG_ON(sched_group_nodes_bycpu == NULL);
7439 #endif
7440 get_online_cpus();
7441 mutex_lock(&sched_domains_mutex);
7442 arch_init_sched_domains(cpu_active_mask);
7443 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7444 if (cpumask_empty(non_isolated_cpus))
7445 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7446 mutex_unlock(&sched_domains_mutex);
7447 put_online_cpus();
7449 #ifndef CONFIG_CPUSETS
7450 /* XXX: Theoretical race here - CPU may be hotplugged now */
7451 hotcpu_notifier(update_sched_domains, 0);
7452 #endif
7454 /* RT runtime code needs to handle some hotplug events */
7455 hotcpu_notifier(update_runtime, 0);
7457 init_hrtick();
7459 /* Move init over to a non-isolated CPU */
7460 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7461 BUG();
7462 sched_init_granularity();
7463 free_cpumask_var(non_isolated_cpus);
7465 init_sched_rt_class();
7467 #else
7468 void __init sched_init_smp(void)
7470 sched_init_granularity();
7472 #endif /* CONFIG_SMP */
7474 const_debug unsigned int sysctl_timer_migration = 1;
7476 int in_sched_functions(unsigned long addr)
7478 return in_lock_functions(addr) ||
7479 (addr >= (unsigned long)__sched_text_start
7480 && addr < (unsigned long)__sched_text_end);
7483 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7485 cfs_rq->tasks_timeline = RB_ROOT;
7486 INIT_LIST_HEAD(&cfs_rq->tasks);
7487 #ifdef CONFIG_FAIR_GROUP_SCHED
7488 cfs_rq->rq = rq;
7489 #endif
7490 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7493 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7495 struct rt_prio_array *array;
7496 int i;
7498 array = &rt_rq->active;
7499 for (i = 0; i < MAX_RT_PRIO; i++) {
7500 INIT_LIST_HEAD(array->queue + i);
7501 __clear_bit(i, array->bitmap);
7503 /* delimiter for bitsearch: */
7504 __set_bit(MAX_RT_PRIO, array->bitmap);
7506 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7507 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7508 #ifdef CONFIG_SMP
7509 rt_rq->highest_prio.next = MAX_RT_PRIO;
7510 #endif
7511 #endif
7512 #ifdef CONFIG_SMP
7513 rt_rq->rt_nr_migratory = 0;
7514 rt_rq->overloaded = 0;
7515 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7516 #endif
7518 rt_rq->rt_time = 0;
7519 rt_rq->rt_throttled = 0;
7520 rt_rq->rt_runtime = 0;
7521 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7523 #ifdef CONFIG_RT_GROUP_SCHED
7524 rt_rq->rt_nr_boosted = 0;
7525 rt_rq->rq = rq;
7526 #endif
7529 #ifdef CONFIG_FAIR_GROUP_SCHED
7530 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7531 struct sched_entity *se, int cpu, int add,
7532 struct sched_entity *parent)
7534 struct rq *rq = cpu_rq(cpu);
7535 tg->cfs_rq[cpu] = cfs_rq;
7536 init_cfs_rq(cfs_rq, rq);
7537 cfs_rq->tg = tg;
7538 if (add)
7539 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7541 tg->se[cpu] = se;
7542 /* se could be NULL for init_task_group */
7543 if (!se)
7544 return;
7546 if (!parent)
7547 se->cfs_rq = &rq->cfs;
7548 else
7549 se->cfs_rq = parent->my_q;
7551 se->my_q = cfs_rq;
7552 se->load.weight = tg->shares;
7553 se->load.inv_weight = 0;
7554 se->parent = parent;
7556 #endif
7558 #ifdef CONFIG_RT_GROUP_SCHED
7559 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7560 struct sched_rt_entity *rt_se, int cpu, int add,
7561 struct sched_rt_entity *parent)
7563 struct rq *rq = cpu_rq(cpu);
7565 tg->rt_rq[cpu] = rt_rq;
7566 init_rt_rq(rt_rq, rq);
7567 rt_rq->tg = tg;
7568 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7569 if (add)
7570 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7572 tg->rt_se[cpu] = rt_se;
7573 if (!rt_se)
7574 return;
7576 if (!parent)
7577 rt_se->rt_rq = &rq->rt;
7578 else
7579 rt_se->rt_rq = parent->my_q;
7581 rt_se->my_q = rt_rq;
7582 rt_se->parent = parent;
7583 INIT_LIST_HEAD(&rt_se->run_list);
7585 #endif
7587 void __init sched_init(void)
7589 int i, j;
7590 unsigned long alloc_size = 0, ptr;
7592 #ifdef CONFIG_FAIR_GROUP_SCHED
7593 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7594 #endif
7595 #ifdef CONFIG_RT_GROUP_SCHED
7596 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7597 #endif
7598 #ifdef CONFIG_CPUMASK_OFFSTACK
7599 alloc_size += num_possible_cpus() * cpumask_size();
7600 #endif
7601 if (alloc_size) {
7602 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7604 #ifdef CONFIG_FAIR_GROUP_SCHED
7605 init_task_group.se = (struct sched_entity **)ptr;
7606 ptr += nr_cpu_ids * sizeof(void **);
7608 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7609 ptr += nr_cpu_ids * sizeof(void **);
7611 #endif /* CONFIG_FAIR_GROUP_SCHED */
7612 #ifdef CONFIG_RT_GROUP_SCHED
7613 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7614 ptr += nr_cpu_ids * sizeof(void **);
7616 init_task_group.rt_rq = (struct rt_rq **)ptr;
7617 ptr += nr_cpu_ids * sizeof(void **);
7619 #endif /* CONFIG_RT_GROUP_SCHED */
7620 #ifdef CONFIG_CPUMASK_OFFSTACK
7621 for_each_possible_cpu(i) {
7622 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7623 ptr += cpumask_size();
7625 #endif /* CONFIG_CPUMASK_OFFSTACK */
7628 #ifdef CONFIG_SMP
7629 init_defrootdomain();
7630 #endif
7632 init_rt_bandwidth(&def_rt_bandwidth,
7633 global_rt_period(), global_rt_runtime());
7635 #ifdef CONFIG_RT_GROUP_SCHED
7636 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7637 global_rt_period(), global_rt_runtime());
7638 #endif /* CONFIG_RT_GROUP_SCHED */
7640 #ifdef CONFIG_CGROUP_SCHED
7641 list_add(&init_task_group.list, &task_groups);
7642 INIT_LIST_HEAD(&init_task_group.children);
7644 #endif /* CONFIG_CGROUP_SCHED */
7646 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7647 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7648 __alignof__(unsigned long));
7649 #endif
7650 for_each_possible_cpu(i) {
7651 struct rq *rq;
7653 rq = cpu_rq(i);
7654 raw_spin_lock_init(&rq->lock);
7655 rq->nr_running = 0;
7656 rq->calc_load_active = 0;
7657 rq->calc_load_update = jiffies + LOAD_FREQ;
7658 init_cfs_rq(&rq->cfs, rq);
7659 init_rt_rq(&rq->rt, rq);
7660 #ifdef CONFIG_FAIR_GROUP_SCHED
7661 init_task_group.shares = init_task_group_load;
7662 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7663 #ifdef CONFIG_CGROUP_SCHED
7665 * How much cpu bandwidth does init_task_group get?
7667 * In case of task-groups formed thr' the cgroup filesystem, it
7668 * gets 100% of the cpu resources in the system. This overall
7669 * system cpu resource is divided among the tasks of
7670 * init_task_group and its child task-groups in a fair manner,
7671 * based on each entity's (task or task-group's) weight
7672 * (se->load.weight).
7674 * In other words, if init_task_group has 10 tasks of weight
7675 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7676 * then A0's share of the cpu resource is:
7678 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7680 * We achieve this by letting init_task_group's tasks sit
7681 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7683 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7684 #endif
7685 #endif /* CONFIG_FAIR_GROUP_SCHED */
7687 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7688 #ifdef CONFIG_RT_GROUP_SCHED
7689 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7690 #ifdef CONFIG_CGROUP_SCHED
7691 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7692 #endif
7693 #endif
7695 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7696 rq->cpu_load[j] = 0;
7697 #ifdef CONFIG_SMP
7698 rq->sd = NULL;
7699 rq->rd = NULL;
7700 rq->post_schedule = 0;
7701 rq->active_balance = 0;
7702 rq->next_balance = jiffies;
7703 rq->push_cpu = 0;
7704 rq->cpu = i;
7705 rq->online = 0;
7706 rq->migration_thread = NULL;
7707 rq->idle_stamp = 0;
7708 rq->avg_idle = 2*sysctl_sched_migration_cost;
7709 INIT_LIST_HEAD(&rq->migration_queue);
7710 rq_attach_root(rq, &def_root_domain);
7711 #endif
7712 init_rq_hrtick(rq);
7713 atomic_set(&rq->nr_iowait, 0);
7716 set_load_weight(&init_task);
7718 #ifdef CONFIG_PREEMPT_NOTIFIERS
7719 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7720 #endif
7722 #ifdef CONFIG_SMP
7723 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7724 #endif
7726 #ifdef CONFIG_RT_MUTEXES
7727 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7728 #endif
7731 * The boot idle thread does lazy MMU switching as well:
7733 atomic_inc(&init_mm.mm_count);
7734 enter_lazy_tlb(&init_mm, current);
7737 * Make us the idle thread. Technically, schedule() should not be
7738 * called from this thread, however somewhere below it might be,
7739 * but because we are the idle thread, we just pick up running again
7740 * when this runqueue becomes "idle".
7742 init_idle(current, smp_processor_id());
7744 calc_load_update = jiffies + LOAD_FREQ;
7747 * During early bootup we pretend to be a normal task:
7749 current->sched_class = &fair_sched_class;
7751 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7752 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7753 #ifdef CONFIG_SMP
7754 #ifdef CONFIG_NO_HZ
7755 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7756 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7757 #endif
7758 /* May be allocated at isolcpus cmdline parse time */
7759 if (cpu_isolated_map == NULL)
7760 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7761 #endif /* SMP */
7763 perf_event_init();
7765 scheduler_running = 1;
7768 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7769 static inline int preempt_count_equals(int preempt_offset)
7771 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7773 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7776 void __might_sleep(const char *file, int line, int preempt_offset)
7778 #ifdef in_atomic
7779 static unsigned long prev_jiffy; /* ratelimiting */
7781 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7782 system_state != SYSTEM_RUNNING || oops_in_progress)
7783 return;
7784 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7785 return;
7786 prev_jiffy = jiffies;
7788 printk(KERN_ERR
7789 "BUG: sleeping function called from invalid context at %s:%d\n",
7790 file, line);
7791 printk(KERN_ERR
7792 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7793 in_atomic(), irqs_disabled(),
7794 current->pid, current->comm);
7796 debug_show_held_locks(current);
7797 if (irqs_disabled())
7798 print_irqtrace_events(current);
7799 dump_stack();
7800 #endif
7802 EXPORT_SYMBOL(__might_sleep);
7803 #endif
7805 #ifdef CONFIG_MAGIC_SYSRQ
7806 static void normalize_task(struct rq *rq, struct task_struct *p)
7808 int on_rq;
7810 on_rq = p->se.on_rq;
7811 if (on_rq)
7812 deactivate_task(rq, p, 0);
7813 __setscheduler(rq, p, SCHED_NORMAL, 0);
7814 if (on_rq) {
7815 activate_task(rq, p, 0);
7816 resched_task(rq->curr);
7820 void normalize_rt_tasks(void)
7822 struct task_struct *g, *p;
7823 unsigned long flags;
7824 struct rq *rq;
7826 read_lock_irqsave(&tasklist_lock, flags);
7827 do_each_thread(g, p) {
7829 * Only normalize user tasks:
7831 if (!p->mm)
7832 continue;
7834 p->se.exec_start = 0;
7835 #ifdef CONFIG_SCHEDSTATS
7836 p->se.statistics.wait_start = 0;
7837 p->se.statistics.sleep_start = 0;
7838 p->se.statistics.block_start = 0;
7839 #endif
7841 if (!rt_task(p)) {
7843 * Renice negative nice level userspace
7844 * tasks back to 0:
7846 if (TASK_NICE(p) < 0 && p->mm)
7847 set_user_nice(p, 0);
7848 continue;
7851 raw_spin_lock(&p->pi_lock);
7852 rq = __task_rq_lock(p);
7854 normalize_task(rq, p);
7856 __task_rq_unlock(rq);
7857 raw_spin_unlock(&p->pi_lock);
7858 } while_each_thread(g, p);
7860 read_unlock_irqrestore(&tasklist_lock, flags);
7863 #endif /* CONFIG_MAGIC_SYSRQ */
7865 #ifdef CONFIG_IA64
7867 * These functions are only useful for the IA64 MCA handling.
7869 * They can only be called when the whole system has been
7870 * stopped - every CPU needs to be quiescent, and no scheduling
7871 * activity can take place. Using them for anything else would
7872 * be a serious bug, and as a result, they aren't even visible
7873 * under any other configuration.
7877 * curr_task - return the current task for a given cpu.
7878 * @cpu: the processor in question.
7880 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7882 struct task_struct *curr_task(int cpu)
7884 return cpu_curr(cpu);
7888 * set_curr_task - set the current task for a given cpu.
7889 * @cpu: the processor in question.
7890 * @p: the task pointer to set.
7892 * Description: This function must only be used when non-maskable interrupts
7893 * are serviced on a separate stack. It allows the architecture to switch the
7894 * notion of the current task on a cpu in a non-blocking manner. This function
7895 * must be called with all CPU's synchronized, and interrupts disabled, the
7896 * and caller must save the original value of the current task (see
7897 * curr_task() above) and restore that value before reenabling interrupts and
7898 * re-starting the system.
7900 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7902 void set_curr_task(int cpu, struct task_struct *p)
7904 cpu_curr(cpu) = p;
7907 #endif
7909 #ifdef CONFIG_FAIR_GROUP_SCHED
7910 static void free_fair_sched_group(struct task_group *tg)
7912 int i;
7914 for_each_possible_cpu(i) {
7915 if (tg->cfs_rq)
7916 kfree(tg->cfs_rq[i]);
7917 if (tg->se)
7918 kfree(tg->se[i]);
7921 kfree(tg->cfs_rq);
7922 kfree(tg->se);
7925 static
7926 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7928 struct cfs_rq *cfs_rq;
7929 struct sched_entity *se;
7930 struct rq *rq;
7931 int i;
7933 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7934 if (!tg->cfs_rq)
7935 goto err;
7936 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7937 if (!tg->se)
7938 goto err;
7940 tg->shares = NICE_0_LOAD;
7942 for_each_possible_cpu(i) {
7943 rq = cpu_rq(i);
7945 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7946 GFP_KERNEL, cpu_to_node(i));
7947 if (!cfs_rq)
7948 goto err;
7950 se = kzalloc_node(sizeof(struct sched_entity),
7951 GFP_KERNEL, cpu_to_node(i));
7952 if (!se)
7953 goto err_free_rq;
7955 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7958 return 1;
7960 err_free_rq:
7961 kfree(cfs_rq);
7962 err:
7963 return 0;
7966 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7968 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7969 &cpu_rq(cpu)->leaf_cfs_rq_list);
7972 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7974 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7976 #else /* !CONFG_FAIR_GROUP_SCHED */
7977 static inline void free_fair_sched_group(struct task_group *tg)
7981 static inline
7982 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7984 return 1;
7987 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7991 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7994 #endif /* CONFIG_FAIR_GROUP_SCHED */
7996 #ifdef CONFIG_RT_GROUP_SCHED
7997 static void free_rt_sched_group(struct task_group *tg)
7999 int i;
8001 destroy_rt_bandwidth(&tg->rt_bandwidth);
8003 for_each_possible_cpu(i) {
8004 if (tg->rt_rq)
8005 kfree(tg->rt_rq[i]);
8006 if (tg->rt_se)
8007 kfree(tg->rt_se[i]);
8010 kfree(tg->rt_rq);
8011 kfree(tg->rt_se);
8014 static
8015 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8017 struct rt_rq *rt_rq;
8018 struct sched_rt_entity *rt_se;
8019 struct rq *rq;
8020 int i;
8022 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8023 if (!tg->rt_rq)
8024 goto err;
8025 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8026 if (!tg->rt_se)
8027 goto err;
8029 init_rt_bandwidth(&tg->rt_bandwidth,
8030 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8032 for_each_possible_cpu(i) {
8033 rq = cpu_rq(i);
8035 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8036 GFP_KERNEL, cpu_to_node(i));
8037 if (!rt_rq)
8038 goto err;
8040 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8041 GFP_KERNEL, cpu_to_node(i));
8042 if (!rt_se)
8043 goto err_free_rq;
8045 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8048 return 1;
8050 err_free_rq:
8051 kfree(rt_rq);
8052 err:
8053 return 0;
8056 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8058 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8059 &cpu_rq(cpu)->leaf_rt_rq_list);
8062 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8064 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8066 #else /* !CONFIG_RT_GROUP_SCHED */
8067 static inline void free_rt_sched_group(struct task_group *tg)
8071 static inline
8072 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8074 return 1;
8077 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8081 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8084 #endif /* CONFIG_RT_GROUP_SCHED */
8086 #ifdef CONFIG_CGROUP_SCHED
8087 static void free_sched_group(struct task_group *tg)
8089 free_fair_sched_group(tg);
8090 free_rt_sched_group(tg);
8091 kfree(tg);
8094 /* allocate runqueue etc for a new task group */
8095 struct task_group *sched_create_group(struct task_group *parent)
8097 struct task_group *tg;
8098 unsigned long flags;
8099 int i;
8101 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8102 if (!tg)
8103 return ERR_PTR(-ENOMEM);
8105 if (!alloc_fair_sched_group(tg, parent))
8106 goto err;
8108 if (!alloc_rt_sched_group(tg, parent))
8109 goto err;
8111 spin_lock_irqsave(&task_group_lock, flags);
8112 for_each_possible_cpu(i) {
8113 register_fair_sched_group(tg, i);
8114 register_rt_sched_group(tg, i);
8116 list_add_rcu(&tg->list, &task_groups);
8118 WARN_ON(!parent); /* root should already exist */
8120 tg->parent = parent;
8121 INIT_LIST_HEAD(&tg->children);
8122 list_add_rcu(&tg->siblings, &parent->children);
8123 spin_unlock_irqrestore(&task_group_lock, flags);
8125 return tg;
8127 err:
8128 free_sched_group(tg);
8129 return ERR_PTR(-ENOMEM);
8132 /* rcu callback to free various structures associated with a task group */
8133 static void free_sched_group_rcu(struct rcu_head *rhp)
8135 /* now it should be safe to free those cfs_rqs */
8136 free_sched_group(container_of(rhp, struct task_group, rcu));
8139 /* Destroy runqueue etc associated with a task group */
8140 void sched_destroy_group(struct task_group *tg)
8142 unsigned long flags;
8143 int i;
8145 spin_lock_irqsave(&task_group_lock, flags);
8146 for_each_possible_cpu(i) {
8147 unregister_fair_sched_group(tg, i);
8148 unregister_rt_sched_group(tg, i);
8150 list_del_rcu(&tg->list);
8151 list_del_rcu(&tg->siblings);
8152 spin_unlock_irqrestore(&task_group_lock, flags);
8154 /* wait for possible concurrent references to cfs_rqs complete */
8155 call_rcu(&tg->rcu, free_sched_group_rcu);
8158 /* change task's runqueue when it moves between groups.
8159 * The caller of this function should have put the task in its new group
8160 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8161 * reflect its new group.
8163 void sched_move_task(struct task_struct *tsk)
8165 int on_rq, running;
8166 unsigned long flags;
8167 struct rq *rq;
8169 rq = task_rq_lock(tsk, &flags);
8171 running = task_current(rq, tsk);
8172 on_rq = tsk->se.on_rq;
8174 if (on_rq)
8175 dequeue_task(rq, tsk, 0);
8176 if (unlikely(running))
8177 tsk->sched_class->put_prev_task(rq, tsk);
8179 set_task_rq(tsk, task_cpu(tsk));
8181 #ifdef CONFIG_FAIR_GROUP_SCHED
8182 if (tsk->sched_class->moved_group)
8183 tsk->sched_class->moved_group(tsk, on_rq);
8184 #endif
8186 if (unlikely(running))
8187 tsk->sched_class->set_curr_task(rq);
8188 if (on_rq)
8189 enqueue_task(rq, tsk, 0, false);
8191 task_rq_unlock(rq, &flags);
8193 #endif /* CONFIG_CGROUP_SCHED */
8195 #ifdef CONFIG_FAIR_GROUP_SCHED
8196 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8198 struct cfs_rq *cfs_rq = se->cfs_rq;
8199 int on_rq;
8201 on_rq = se->on_rq;
8202 if (on_rq)
8203 dequeue_entity(cfs_rq, se, 0);
8205 se->load.weight = shares;
8206 se->load.inv_weight = 0;
8208 if (on_rq)
8209 enqueue_entity(cfs_rq, se, 0);
8212 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8214 struct cfs_rq *cfs_rq = se->cfs_rq;
8215 struct rq *rq = cfs_rq->rq;
8216 unsigned long flags;
8218 raw_spin_lock_irqsave(&rq->lock, flags);
8219 __set_se_shares(se, shares);
8220 raw_spin_unlock_irqrestore(&rq->lock, flags);
8223 static DEFINE_MUTEX(shares_mutex);
8225 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8227 int i;
8228 unsigned long flags;
8231 * We can't change the weight of the root cgroup.
8233 if (!tg->se[0])
8234 return -EINVAL;
8236 if (shares < MIN_SHARES)
8237 shares = MIN_SHARES;
8238 else if (shares > MAX_SHARES)
8239 shares = MAX_SHARES;
8241 mutex_lock(&shares_mutex);
8242 if (tg->shares == shares)
8243 goto done;
8245 spin_lock_irqsave(&task_group_lock, flags);
8246 for_each_possible_cpu(i)
8247 unregister_fair_sched_group(tg, i);
8248 list_del_rcu(&tg->siblings);
8249 spin_unlock_irqrestore(&task_group_lock, flags);
8251 /* wait for any ongoing reference to this group to finish */
8252 synchronize_sched();
8255 * Now we are free to modify the group's share on each cpu
8256 * w/o tripping rebalance_share or load_balance_fair.
8258 tg->shares = shares;
8259 for_each_possible_cpu(i) {
8261 * force a rebalance
8263 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8264 set_se_shares(tg->se[i], shares);
8268 * Enable load balance activity on this group, by inserting it back on
8269 * each cpu's rq->leaf_cfs_rq_list.
8271 spin_lock_irqsave(&task_group_lock, flags);
8272 for_each_possible_cpu(i)
8273 register_fair_sched_group(tg, i);
8274 list_add_rcu(&tg->siblings, &tg->parent->children);
8275 spin_unlock_irqrestore(&task_group_lock, flags);
8276 done:
8277 mutex_unlock(&shares_mutex);
8278 return 0;
8281 unsigned long sched_group_shares(struct task_group *tg)
8283 return tg->shares;
8285 #endif
8287 #ifdef CONFIG_RT_GROUP_SCHED
8289 * Ensure that the real time constraints are schedulable.
8291 static DEFINE_MUTEX(rt_constraints_mutex);
8293 static unsigned long to_ratio(u64 period, u64 runtime)
8295 if (runtime == RUNTIME_INF)
8296 return 1ULL << 20;
8298 return div64_u64(runtime << 20, period);
8301 /* Must be called with tasklist_lock held */
8302 static inline int tg_has_rt_tasks(struct task_group *tg)
8304 struct task_struct *g, *p;
8306 do_each_thread(g, p) {
8307 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8308 return 1;
8309 } while_each_thread(g, p);
8311 return 0;
8314 struct rt_schedulable_data {
8315 struct task_group *tg;
8316 u64 rt_period;
8317 u64 rt_runtime;
8320 static int tg_schedulable(struct task_group *tg, void *data)
8322 struct rt_schedulable_data *d = data;
8323 struct task_group *child;
8324 unsigned long total, sum = 0;
8325 u64 period, runtime;
8327 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8328 runtime = tg->rt_bandwidth.rt_runtime;
8330 if (tg == d->tg) {
8331 period = d->rt_period;
8332 runtime = d->rt_runtime;
8336 * Cannot have more runtime than the period.
8338 if (runtime > period && runtime != RUNTIME_INF)
8339 return -EINVAL;
8342 * Ensure we don't starve existing RT tasks.
8344 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8345 return -EBUSY;
8347 total = to_ratio(period, runtime);
8350 * Nobody can have more than the global setting allows.
8352 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8353 return -EINVAL;
8356 * The sum of our children's runtime should not exceed our own.
8358 list_for_each_entry_rcu(child, &tg->children, siblings) {
8359 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8360 runtime = child->rt_bandwidth.rt_runtime;
8362 if (child == d->tg) {
8363 period = d->rt_period;
8364 runtime = d->rt_runtime;
8367 sum += to_ratio(period, runtime);
8370 if (sum > total)
8371 return -EINVAL;
8373 return 0;
8376 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8378 struct rt_schedulable_data data = {
8379 .tg = tg,
8380 .rt_period = period,
8381 .rt_runtime = runtime,
8384 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8387 static int tg_set_bandwidth(struct task_group *tg,
8388 u64 rt_period, u64 rt_runtime)
8390 int i, err = 0;
8392 mutex_lock(&rt_constraints_mutex);
8393 read_lock(&tasklist_lock);
8394 err = __rt_schedulable(tg, rt_period, rt_runtime);
8395 if (err)
8396 goto unlock;
8398 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8399 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8400 tg->rt_bandwidth.rt_runtime = rt_runtime;
8402 for_each_possible_cpu(i) {
8403 struct rt_rq *rt_rq = tg->rt_rq[i];
8405 raw_spin_lock(&rt_rq->rt_runtime_lock);
8406 rt_rq->rt_runtime = rt_runtime;
8407 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8409 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8410 unlock:
8411 read_unlock(&tasklist_lock);
8412 mutex_unlock(&rt_constraints_mutex);
8414 return err;
8417 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8419 u64 rt_runtime, rt_period;
8421 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8422 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8423 if (rt_runtime_us < 0)
8424 rt_runtime = RUNTIME_INF;
8426 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8429 long sched_group_rt_runtime(struct task_group *tg)
8431 u64 rt_runtime_us;
8433 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8434 return -1;
8436 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8437 do_div(rt_runtime_us, NSEC_PER_USEC);
8438 return rt_runtime_us;
8441 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8443 u64 rt_runtime, rt_period;
8445 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8446 rt_runtime = tg->rt_bandwidth.rt_runtime;
8448 if (rt_period == 0)
8449 return -EINVAL;
8451 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8454 long sched_group_rt_period(struct task_group *tg)
8456 u64 rt_period_us;
8458 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8459 do_div(rt_period_us, NSEC_PER_USEC);
8460 return rt_period_us;
8463 static int sched_rt_global_constraints(void)
8465 u64 runtime, period;
8466 int ret = 0;
8468 if (sysctl_sched_rt_period <= 0)
8469 return -EINVAL;
8471 runtime = global_rt_runtime();
8472 period = global_rt_period();
8475 * Sanity check on the sysctl variables.
8477 if (runtime > period && runtime != RUNTIME_INF)
8478 return -EINVAL;
8480 mutex_lock(&rt_constraints_mutex);
8481 read_lock(&tasklist_lock);
8482 ret = __rt_schedulable(NULL, 0, 0);
8483 read_unlock(&tasklist_lock);
8484 mutex_unlock(&rt_constraints_mutex);
8486 return ret;
8489 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8491 /* Don't accept realtime tasks when there is no way for them to run */
8492 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8493 return 0;
8495 return 1;
8498 #else /* !CONFIG_RT_GROUP_SCHED */
8499 static int sched_rt_global_constraints(void)
8501 unsigned long flags;
8502 int i;
8504 if (sysctl_sched_rt_period <= 0)
8505 return -EINVAL;
8508 * There's always some RT tasks in the root group
8509 * -- migration, kstopmachine etc..
8511 if (sysctl_sched_rt_runtime == 0)
8512 return -EBUSY;
8514 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8515 for_each_possible_cpu(i) {
8516 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8518 raw_spin_lock(&rt_rq->rt_runtime_lock);
8519 rt_rq->rt_runtime = global_rt_runtime();
8520 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8522 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8524 return 0;
8526 #endif /* CONFIG_RT_GROUP_SCHED */
8528 int sched_rt_handler(struct ctl_table *table, int write,
8529 void __user *buffer, size_t *lenp,
8530 loff_t *ppos)
8532 int ret;
8533 int old_period, old_runtime;
8534 static DEFINE_MUTEX(mutex);
8536 mutex_lock(&mutex);
8537 old_period = sysctl_sched_rt_period;
8538 old_runtime = sysctl_sched_rt_runtime;
8540 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8542 if (!ret && write) {
8543 ret = sched_rt_global_constraints();
8544 if (ret) {
8545 sysctl_sched_rt_period = old_period;
8546 sysctl_sched_rt_runtime = old_runtime;
8547 } else {
8548 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8549 def_rt_bandwidth.rt_period =
8550 ns_to_ktime(global_rt_period());
8553 mutex_unlock(&mutex);
8555 return ret;
8558 #ifdef CONFIG_CGROUP_SCHED
8560 /* return corresponding task_group object of a cgroup */
8561 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8563 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8564 struct task_group, css);
8567 static struct cgroup_subsys_state *
8568 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8570 struct task_group *tg, *parent;
8572 if (!cgrp->parent) {
8573 /* This is early initialization for the top cgroup */
8574 return &init_task_group.css;
8577 parent = cgroup_tg(cgrp->parent);
8578 tg = sched_create_group(parent);
8579 if (IS_ERR(tg))
8580 return ERR_PTR(-ENOMEM);
8582 return &tg->css;
8585 static void
8586 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8588 struct task_group *tg = cgroup_tg(cgrp);
8590 sched_destroy_group(tg);
8593 static int
8594 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8596 #ifdef CONFIG_RT_GROUP_SCHED
8597 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8598 return -EINVAL;
8599 #else
8600 /* We don't support RT-tasks being in separate groups */
8601 if (tsk->sched_class != &fair_sched_class)
8602 return -EINVAL;
8603 #endif
8604 return 0;
8607 static int
8608 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8609 struct task_struct *tsk, bool threadgroup)
8611 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8612 if (retval)
8613 return retval;
8614 if (threadgroup) {
8615 struct task_struct *c;
8616 rcu_read_lock();
8617 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8618 retval = cpu_cgroup_can_attach_task(cgrp, c);
8619 if (retval) {
8620 rcu_read_unlock();
8621 return retval;
8624 rcu_read_unlock();
8626 return 0;
8629 static void
8630 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8631 struct cgroup *old_cont, struct task_struct *tsk,
8632 bool threadgroup)
8634 sched_move_task(tsk);
8635 if (threadgroup) {
8636 struct task_struct *c;
8637 rcu_read_lock();
8638 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8639 sched_move_task(c);
8641 rcu_read_unlock();
8645 #ifdef CONFIG_FAIR_GROUP_SCHED
8646 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8647 u64 shareval)
8649 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8652 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8654 struct task_group *tg = cgroup_tg(cgrp);
8656 return (u64) tg->shares;
8658 #endif /* CONFIG_FAIR_GROUP_SCHED */
8660 #ifdef CONFIG_RT_GROUP_SCHED
8661 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8662 s64 val)
8664 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8667 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8669 return sched_group_rt_runtime(cgroup_tg(cgrp));
8672 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8673 u64 rt_period_us)
8675 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8678 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8680 return sched_group_rt_period(cgroup_tg(cgrp));
8682 #endif /* CONFIG_RT_GROUP_SCHED */
8684 static struct cftype cpu_files[] = {
8685 #ifdef CONFIG_FAIR_GROUP_SCHED
8687 .name = "shares",
8688 .read_u64 = cpu_shares_read_u64,
8689 .write_u64 = cpu_shares_write_u64,
8691 #endif
8692 #ifdef CONFIG_RT_GROUP_SCHED
8694 .name = "rt_runtime_us",
8695 .read_s64 = cpu_rt_runtime_read,
8696 .write_s64 = cpu_rt_runtime_write,
8699 .name = "rt_period_us",
8700 .read_u64 = cpu_rt_period_read_uint,
8701 .write_u64 = cpu_rt_period_write_uint,
8703 #endif
8706 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8708 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8711 struct cgroup_subsys cpu_cgroup_subsys = {
8712 .name = "cpu",
8713 .create = cpu_cgroup_create,
8714 .destroy = cpu_cgroup_destroy,
8715 .can_attach = cpu_cgroup_can_attach,
8716 .attach = cpu_cgroup_attach,
8717 .populate = cpu_cgroup_populate,
8718 .subsys_id = cpu_cgroup_subsys_id,
8719 .early_init = 1,
8722 #endif /* CONFIG_CGROUP_SCHED */
8724 #ifdef CONFIG_CGROUP_CPUACCT
8727 * CPU accounting code for task groups.
8729 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8730 * (balbir@in.ibm.com).
8733 /* track cpu usage of a group of tasks and its child groups */
8734 struct cpuacct {
8735 struct cgroup_subsys_state css;
8736 /* cpuusage holds pointer to a u64-type object on every cpu */
8737 u64 __percpu *cpuusage;
8738 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8739 struct cpuacct *parent;
8742 struct cgroup_subsys cpuacct_subsys;
8744 /* return cpu accounting group corresponding to this container */
8745 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8747 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8748 struct cpuacct, css);
8751 /* return cpu accounting group to which this task belongs */
8752 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8754 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8755 struct cpuacct, css);
8758 /* create a new cpu accounting group */
8759 static struct cgroup_subsys_state *cpuacct_create(
8760 struct cgroup_subsys *ss, struct cgroup *cgrp)
8762 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8763 int i;
8765 if (!ca)
8766 goto out;
8768 ca->cpuusage = alloc_percpu(u64);
8769 if (!ca->cpuusage)
8770 goto out_free_ca;
8772 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8773 if (percpu_counter_init(&ca->cpustat[i], 0))
8774 goto out_free_counters;
8776 if (cgrp->parent)
8777 ca->parent = cgroup_ca(cgrp->parent);
8779 return &ca->css;
8781 out_free_counters:
8782 while (--i >= 0)
8783 percpu_counter_destroy(&ca->cpustat[i]);
8784 free_percpu(ca->cpuusage);
8785 out_free_ca:
8786 kfree(ca);
8787 out:
8788 return ERR_PTR(-ENOMEM);
8791 /* destroy an existing cpu accounting group */
8792 static void
8793 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8795 struct cpuacct *ca = cgroup_ca(cgrp);
8796 int i;
8798 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8799 percpu_counter_destroy(&ca->cpustat[i]);
8800 free_percpu(ca->cpuusage);
8801 kfree(ca);
8804 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8806 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8807 u64 data;
8809 #ifndef CONFIG_64BIT
8811 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8813 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8814 data = *cpuusage;
8815 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8816 #else
8817 data = *cpuusage;
8818 #endif
8820 return data;
8823 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8825 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8827 #ifndef CONFIG_64BIT
8829 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8831 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8832 *cpuusage = val;
8833 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8834 #else
8835 *cpuusage = val;
8836 #endif
8839 /* return total cpu usage (in nanoseconds) of a group */
8840 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8842 struct cpuacct *ca = cgroup_ca(cgrp);
8843 u64 totalcpuusage = 0;
8844 int i;
8846 for_each_present_cpu(i)
8847 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8849 return totalcpuusage;
8852 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8853 u64 reset)
8855 struct cpuacct *ca = cgroup_ca(cgrp);
8856 int err = 0;
8857 int i;
8859 if (reset) {
8860 err = -EINVAL;
8861 goto out;
8864 for_each_present_cpu(i)
8865 cpuacct_cpuusage_write(ca, i, 0);
8867 out:
8868 return err;
8871 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8872 struct seq_file *m)
8874 struct cpuacct *ca = cgroup_ca(cgroup);
8875 u64 percpu;
8876 int i;
8878 for_each_present_cpu(i) {
8879 percpu = cpuacct_cpuusage_read(ca, i);
8880 seq_printf(m, "%llu ", (unsigned long long) percpu);
8882 seq_printf(m, "\n");
8883 return 0;
8886 static const char *cpuacct_stat_desc[] = {
8887 [CPUACCT_STAT_USER] = "user",
8888 [CPUACCT_STAT_SYSTEM] = "system",
8891 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8892 struct cgroup_map_cb *cb)
8894 struct cpuacct *ca = cgroup_ca(cgrp);
8895 int i;
8897 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8898 s64 val = percpu_counter_read(&ca->cpustat[i]);
8899 val = cputime64_to_clock_t(val);
8900 cb->fill(cb, cpuacct_stat_desc[i], val);
8902 return 0;
8905 static struct cftype files[] = {
8907 .name = "usage",
8908 .read_u64 = cpuusage_read,
8909 .write_u64 = cpuusage_write,
8912 .name = "usage_percpu",
8913 .read_seq_string = cpuacct_percpu_seq_read,
8916 .name = "stat",
8917 .read_map = cpuacct_stats_show,
8921 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8923 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8927 * charge this task's execution time to its accounting group.
8929 * called with rq->lock held.
8931 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8933 struct cpuacct *ca;
8934 int cpu;
8936 if (unlikely(!cpuacct_subsys.active))
8937 return;
8939 cpu = task_cpu(tsk);
8941 rcu_read_lock();
8943 ca = task_ca(tsk);
8945 for (; ca; ca = ca->parent) {
8946 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8947 *cpuusage += cputime;
8950 rcu_read_unlock();
8954 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8955 * in cputime_t units. As a result, cpuacct_update_stats calls
8956 * percpu_counter_add with values large enough to always overflow the
8957 * per cpu batch limit causing bad SMP scalability.
8959 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8960 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8961 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8963 #ifdef CONFIG_SMP
8964 #define CPUACCT_BATCH \
8965 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8966 #else
8967 #define CPUACCT_BATCH 0
8968 #endif
8971 * Charge the system/user time to the task's accounting group.
8973 static void cpuacct_update_stats(struct task_struct *tsk,
8974 enum cpuacct_stat_index idx, cputime_t val)
8976 struct cpuacct *ca;
8977 int batch = CPUACCT_BATCH;
8979 if (unlikely(!cpuacct_subsys.active))
8980 return;
8982 rcu_read_lock();
8983 ca = task_ca(tsk);
8985 do {
8986 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8987 ca = ca->parent;
8988 } while (ca);
8989 rcu_read_unlock();
8992 struct cgroup_subsys cpuacct_subsys = {
8993 .name = "cpuacct",
8994 .create = cpuacct_create,
8995 .destroy = cpuacct_destroy,
8996 .populate = cpuacct_populate,
8997 .subsys_id = cpuacct_subsys_id,
8999 #endif /* CONFIG_CGROUP_CPUACCT */
9001 #ifndef CONFIG_SMP
9003 int rcu_expedited_torture_stats(char *page)
9005 return 0;
9007 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9009 void synchronize_sched_expedited(void)
9012 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9014 #else /* #ifndef CONFIG_SMP */
9016 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9017 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9019 #define RCU_EXPEDITED_STATE_POST -2
9020 #define RCU_EXPEDITED_STATE_IDLE -1
9022 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9024 int rcu_expedited_torture_stats(char *page)
9026 int cnt = 0;
9027 int cpu;
9029 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9030 for_each_online_cpu(cpu) {
9031 cnt += sprintf(&page[cnt], " %d:%d",
9032 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9034 cnt += sprintf(&page[cnt], "\n");
9035 return cnt;
9037 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9039 static long synchronize_sched_expedited_count;
9042 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9043 * approach to force grace period to end quickly. This consumes
9044 * significant time on all CPUs, and is thus not recommended for
9045 * any sort of common-case code.
9047 * Note that it is illegal to call this function while holding any
9048 * lock that is acquired by a CPU-hotplug notifier. Failing to
9049 * observe this restriction will result in deadlock.
9051 void synchronize_sched_expedited(void)
9053 int cpu;
9054 unsigned long flags;
9055 bool need_full_sync = 0;
9056 struct rq *rq;
9057 struct migration_req *req;
9058 long snap;
9059 int trycount = 0;
9061 smp_mb(); /* ensure prior mod happens before capturing snap. */
9062 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9063 get_online_cpus();
9064 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9065 put_online_cpus();
9066 if (trycount++ < 10)
9067 udelay(trycount * num_online_cpus());
9068 else {
9069 synchronize_sched();
9070 return;
9072 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9073 smp_mb(); /* ensure test happens before caller kfree */
9074 return;
9076 get_online_cpus();
9078 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9079 for_each_online_cpu(cpu) {
9080 rq = cpu_rq(cpu);
9081 req = &per_cpu(rcu_migration_req, cpu);
9082 init_completion(&req->done);
9083 req->task = NULL;
9084 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9085 raw_spin_lock_irqsave(&rq->lock, flags);
9086 list_add(&req->list, &rq->migration_queue);
9087 raw_spin_unlock_irqrestore(&rq->lock, flags);
9088 wake_up_process(rq->migration_thread);
9090 for_each_online_cpu(cpu) {
9091 rcu_expedited_state = cpu;
9092 req = &per_cpu(rcu_migration_req, cpu);
9093 rq = cpu_rq(cpu);
9094 wait_for_completion(&req->done);
9095 raw_spin_lock_irqsave(&rq->lock, flags);
9096 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9097 need_full_sync = 1;
9098 req->dest_cpu = RCU_MIGRATION_IDLE;
9099 raw_spin_unlock_irqrestore(&rq->lock, flags);
9101 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9102 synchronize_sched_expedited_count++;
9103 mutex_unlock(&rcu_sched_expedited_mutex);
9104 put_online_cpus();
9105 if (need_full_sync)
9106 synchronize_sched();
9108 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9110 #endif /* #else #ifndef CONFIG_SMP */