1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
28 #include "workarounds.h"
30 /* Hardware control for SFC4000 (aka Falcon). */
32 static const unsigned int
33 /* "Large" EEPROM device: Atmel AT25640 or similar
34 * 8 KB, 16-bit address, 32 B write block */
35 large_eeprom_type
= ((13 << SPI_DEV_TYPE_SIZE_LBN
)
36 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
37 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
)),
38 /* Default flash device: Atmel AT25F1024
39 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
40 default_flash_type
= ((17 << SPI_DEV_TYPE_SIZE_LBN
)
41 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
42 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN
)
43 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN
)
44 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
));
46 /**************************************************************************
48 * I2C bus - this is a bit-bashing interface using GPIO pins
49 * Note that it uses the output enables to tristate the outputs
50 * SDA is the data pin and SCL is the clock
52 **************************************************************************
54 static void falcon_setsda(void *data
, int state
)
56 struct efx_nic
*efx
= (struct efx_nic
*)data
;
59 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
60 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO3_OEN
, !state
);
61 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
64 static void falcon_setscl(void *data
, int state
)
66 struct efx_nic
*efx
= (struct efx_nic
*)data
;
69 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
70 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO0_OEN
, !state
);
71 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
74 static int falcon_getsda(void *data
)
76 struct efx_nic
*efx
= (struct efx_nic
*)data
;
79 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
80 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO3_IN
);
83 static int falcon_getscl(void *data
)
85 struct efx_nic
*efx
= (struct efx_nic
*)data
;
88 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
89 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO0_IN
);
92 static struct i2c_algo_bit_data falcon_i2c_bit_operations
= {
93 .setsda
= falcon_setsda
,
94 .setscl
= falcon_setscl
,
95 .getsda
= falcon_getsda
,
96 .getscl
= falcon_getscl
,
98 /* Wait up to 50 ms for slave to let us pull SCL high */
99 .timeout
= DIV_ROUND_UP(HZ
, 20),
102 static void falcon_push_irq_moderation(struct efx_channel
*channel
)
104 efx_dword_t timer_cmd
;
105 struct efx_nic
*efx
= channel
->efx
;
107 /* Set timer register */
108 if (channel
->irq_moderation
) {
109 EFX_POPULATE_DWORD_2(timer_cmd
,
110 FRF_AB_TC_TIMER_MODE
,
111 FFE_BB_TIMER_MODE_INT_HLDOFF
,
113 channel
->irq_moderation
- 1);
115 EFX_POPULATE_DWORD_2(timer_cmd
,
116 FRF_AB_TC_TIMER_MODE
,
117 FFE_BB_TIMER_MODE_DIS
,
118 FRF_AB_TC_TIMER_VAL
, 0);
120 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER
!= FR_BZ_TIMER_COMMAND_P0
);
121 efx_writed_page_locked(efx
, &timer_cmd
, FR_BZ_TIMER_COMMAND_P0
,
125 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
);
127 static void falcon_prepare_flush(struct efx_nic
*efx
)
129 falcon_deconfigure_mac_wrapper(efx
);
131 /* Wait for the tx and rx fifo's to get to the next packet boundary
132 * (~1ms without back-pressure), then to drain the remainder of the
133 * fifo's at data path speeds (negligible), with a healthy margin. */
137 /* Acknowledge a legacy interrupt from Falcon
139 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
141 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
142 * BIU. Interrupt acknowledge is read sensitive so must write instead
143 * (then read to ensure the BIU collector is flushed)
145 * NB most hardware supports MSI interrupts
147 inline void falcon_irq_ack_a1(struct efx_nic
*efx
)
151 EFX_POPULATE_DWORD_1(reg
, FRF_AA_INT_ACK_KER_FIELD
, 0xb7eb7e);
152 efx_writed(efx
, ®
, FR_AA_INT_ACK_KER
);
153 efx_readd(efx
, ®
, FR_AA_WORK_AROUND_BROKEN_PCI_READS
);
157 irqreturn_t
falcon_legacy_interrupt_a1(int irq
, void *dev_id
)
159 struct efx_nic
*efx
= dev_id
;
160 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
161 struct efx_channel
*channel
;
165 /* Check to see if this is our interrupt. If it isn't, we
166 * exit without having touched the hardware.
168 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker
))) {
169 EFX_TRACE(efx
, "IRQ %d on CPU %d not for me\n", irq
,
170 raw_smp_processor_id());
173 efx
->last_irq_cpu
= raw_smp_processor_id();
174 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
175 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
177 /* Check to see if we have a serious error condition */
178 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
179 if (unlikely(syserr
))
180 return efx_nic_fatal_interrupt(efx
);
182 /* Determine interrupting queues, clear interrupt status
183 * register and acknowledge the device interrupt.
185 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH
> EFX_MAX_CHANNELS
);
186 queues
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_INT_Q
);
187 EFX_ZERO_OWORD(*int_ker
);
188 wmb(); /* Ensure the vector is cleared before interrupt ack */
189 falcon_irq_ack_a1(efx
);
191 /* Schedule processing of any interrupting queues */
192 channel
= &efx
->channel
[0];
195 efx_schedule_channel(channel
);
202 /**************************************************************************
206 **************************************************************************
209 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
211 static int falcon_spi_poll(struct efx_nic
*efx
)
214 efx_reado(efx
, ®
, FR_AB_EE_SPI_HCMD
);
215 return EFX_OWORD_FIELD(reg
, FRF_AB_EE_SPI_HCMD_CMD_EN
) ? -EBUSY
: 0;
218 /* Wait for SPI command completion */
219 static int falcon_spi_wait(struct efx_nic
*efx
)
221 /* Most commands will finish quickly, so we start polling at
222 * very short intervals. Sometimes the command may have to
223 * wait for VPD or expansion ROM access outside of our
224 * control, so we allow up to 100 ms. */
225 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 10);
228 for (i
= 0; i
< 10; i
++) {
229 if (!falcon_spi_poll(efx
))
235 if (!falcon_spi_poll(efx
))
237 if (time_after_eq(jiffies
, timeout
)) {
238 EFX_ERR(efx
, "timed out waiting for SPI\n");
241 schedule_timeout_uninterruptible(1);
245 int falcon_spi_cmd(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
246 unsigned int command
, int address
,
247 const void *in
, void *out
, size_t len
)
249 bool addressed
= (address
>= 0);
250 bool reading
= (out
!= NULL
);
254 /* Input validation */
255 if (len
> FALCON_SPI_MAX_LEN
)
257 BUG_ON(!mutex_is_locked(&efx
->spi_lock
));
259 /* Check that previous command is not still running */
260 rc
= falcon_spi_poll(efx
);
264 /* Program address register, if we have an address */
266 EFX_POPULATE_OWORD_1(reg
, FRF_AB_EE_SPI_HADR_ADR
, address
);
267 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HADR
);
270 /* Program data register, if we have data */
272 memcpy(®
, in
, len
);
273 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HDATA
);
276 /* Issue read/write command */
277 EFX_POPULATE_OWORD_7(reg
,
278 FRF_AB_EE_SPI_HCMD_CMD_EN
, 1,
279 FRF_AB_EE_SPI_HCMD_SF_SEL
, spi
->device_id
,
280 FRF_AB_EE_SPI_HCMD_DABCNT
, len
,
281 FRF_AB_EE_SPI_HCMD_READ
, reading
,
282 FRF_AB_EE_SPI_HCMD_DUBCNT
, 0,
283 FRF_AB_EE_SPI_HCMD_ADBCNT
,
284 (addressed
? spi
->addr_len
: 0),
285 FRF_AB_EE_SPI_HCMD_ENC
, command
);
286 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HCMD
);
288 /* Wait for read/write to complete */
289 rc
= falcon_spi_wait(efx
);
295 efx_reado(efx
, ®
, FR_AB_EE_SPI_HDATA
);
296 memcpy(out
, ®
, len
);
303 falcon_spi_write_limit(const struct efx_spi_device
*spi
, size_t start
)
305 return min(FALCON_SPI_MAX_LEN
,
306 (spi
->block_size
- (start
& (spi
->block_size
- 1))));
310 efx_spi_munge_command(const struct efx_spi_device
*spi
,
311 const u8 command
, const unsigned int address
)
313 return command
| (((address
>> 8) & spi
->munge_address
) << 3);
316 /* Wait up to 10 ms for buffered write completion */
318 falcon_spi_wait_write(struct efx_nic
*efx
, const struct efx_spi_device
*spi
)
320 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 100);
325 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
326 &status
, sizeof(status
));
329 if (!(status
& SPI_STATUS_NRDY
))
331 if (time_after_eq(jiffies
, timeout
)) {
332 EFX_ERR(efx
, "SPI write timeout on device %d"
333 " last status=0x%02x\n",
334 spi
->device_id
, status
);
337 schedule_timeout_uninterruptible(1);
341 int falcon_spi_read(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
342 loff_t start
, size_t len
, size_t *retlen
, u8
*buffer
)
344 size_t block_len
, pos
= 0;
345 unsigned int command
;
349 block_len
= min(len
- pos
, FALCON_SPI_MAX_LEN
);
351 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
352 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
, NULL
,
353 buffer
+ pos
, block_len
);
358 /* Avoid locking up the system */
360 if (signal_pending(current
)) {
372 falcon_spi_write(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
373 loff_t start
, size_t len
, size_t *retlen
, const u8
*buffer
)
375 u8 verify_buffer
[FALCON_SPI_MAX_LEN
];
376 size_t block_len
, pos
= 0;
377 unsigned int command
;
381 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
385 block_len
= min(len
- pos
,
386 falcon_spi_write_limit(spi
, start
+ pos
));
387 command
= efx_spi_munge_command(spi
, SPI_WRITE
, start
+ pos
);
388 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
389 buffer
+ pos
, NULL
, block_len
);
393 rc
= falcon_spi_wait_write(efx
, spi
);
397 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
398 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
399 NULL
, verify_buffer
, block_len
);
400 if (memcmp(verify_buffer
, buffer
+ pos
, block_len
)) {
407 /* Avoid locking up the system */
409 if (signal_pending(current
)) {
420 /**************************************************************************
424 **************************************************************************
427 static void falcon_push_multicast_hash(struct efx_nic
*efx
)
429 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
431 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
433 efx_writeo(efx
, &mc_hash
->oword
[0], FR_AB_MAC_MC_HASH_REG0
);
434 efx_writeo(efx
, &mc_hash
->oword
[1], FR_AB_MAC_MC_HASH_REG1
);
437 static void falcon_reset_macs(struct efx_nic
*efx
)
439 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
440 efx_oword_t reg
, mac_ctrl
;
443 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
444 /* It's not safe to use GLB_CTL_REG to reset the
445 * macs, so instead use the internal MAC resets
447 if (!EFX_IS10G(efx
)) {
448 EFX_POPULATE_OWORD_1(reg
, FRF_AB_GM_SW_RST
, 1);
449 efx_writeo(efx
, ®
, FR_AB_GM_CFG1
);
452 EFX_POPULATE_OWORD_1(reg
, FRF_AB_GM_SW_RST
, 0);
453 efx_writeo(efx
, ®
, FR_AB_GM_CFG1
);
457 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XM_CORE_RST
, 1);
458 efx_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
460 for (count
= 0; count
< 10000; count
++) {
461 efx_reado(efx
, ®
, FR_AB_XM_GLB_CFG
);
462 if (EFX_OWORD_FIELD(reg
, FRF_AB_XM_CORE_RST
) ==
468 EFX_ERR(efx
, "timed out waiting for XMAC core reset\n");
472 /* Mac stats will fail whist the TX fifo is draining */
473 WARN_ON(nic_data
->stats_disable_count
== 0);
475 efx_reado(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
476 EFX_SET_OWORD_FIELD(mac_ctrl
, FRF_BB_TXFIFO_DRAIN_EN
, 1);
477 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
479 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
480 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
, 1);
481 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
, 1);
482 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_EM
, 1);
483 efx_writeo(efx
, ®
, FR_AB_GLB_CTL
);
487 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
488 if (!EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
) &&
489 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
) &&
490 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_EM
)) {
491 EFX_LOG(efx
, "Completed MAC reset after %d loops\n",
496 EFX_ERR(efx
, "MAC reset failed\n");
503 /* Ensure the correct MAC is selected before statistics
504 * are re-enabled by the caller */
505 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
508 void falcon_drain_tx_fifo(struct efx_nic
*efx
)
512 if ((efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) ||
513 (efx
->loopback_mode
!= LOOPBACK_NONE
))
516 efx_reado(efx
, ®
, FR_AB_MAC_CTRL
);
517 /* There is no point in draining more than once */
518 if (EFX_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
))
521 falcon_reset_macs(efx
);
524 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
)
528 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
531 /* Isolate the MAC -> RX */
532 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
533 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 0);
534 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
536 /* Isolate TX -> MAC */
537 falcon_drain_tx_fifo(efx
);
540 void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
)
542 struct efx_link_state
*link_state
= &efx
->link_state
;
546 switch (link_state
->speed
) {
547 case 10000: link_speed
= 3; break;
548 case 1000: link_speed
= 2; break;
549 case 100: link_speed
= 1; break;
550 default: link_speed
= 0; break;
552 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
553 * as advertised. Disable to ensure packets are not
554 * indefinitely held and TX queue can be flushed at any point
555 * while the link is down. */
556 EFX_POPULATE_OWORD_5(reg
,
557 FRF_AB_MAC_XOFF_VAL
, 0xffff /* max pause time */,
558 FRF_AB_MAC_BCAD_ACPT
, 1,
559 FRF_AB_MAC_UC_PROM
, efx
->promiscuous
,
560 FRF_AB_MAC_LINK_STATUS
, 1, /* always set */
561 FRF_AB_MAC_SPEED
, link_speed
);
562 /* On B0, MAC backpressure can be disabled and packets get
564 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
565 EFX_SET_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
,
569 efx_writeo(efx
, ®
, FR_AB_MAC_CTRL
);
571 /* Restore the multicast hash registers. */
572 falcon_push_multicast_hash(efx
);
574 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
575 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
576 * initialisation but it may read back as 0) */
577 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
578 /* Unisolate the MAC -> RX */
579 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
580 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
581 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
584 static void falcon_stats_request(struct efx_nic
*efx
)
586 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
589 WARN_ON(nic_data
->stats_pending
);
590 WARN_ON(nic_data
->stats_disable_count
);
592 if (nic_data
->stats_dma_done
== NULL
)
593 return; /* no mac selected */
595 *nic_data
->stats_dma_done
= FALCON_STATS_NOT_DONE
;
596 nic_data
->stats_pending
= true;
597 wmb(); /* ensure done flag is clear */
599 /* Initiate DMA transfer of stats */
600 EFX_POPULATE_OWORD_2(reg
,
601 FRF_AB_MAC_STAT_DMA_CMD
, 1,
602 FRF_AB_MAC_STAT_DMA_ADR
,
603 efx
->stats_buffer
.dma_addr
);
604 efx_writeo(efx
, ®
, FR_AB_MAC_STAT_DMA
);
606 mod_timer(&nic_data
->stats_timer
, round_jiffies_up(jiffies
+ HZ
/ 2));
609 static void falcon_stats_complete(struct efx_nic
*efx
)
611 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
613 if (!nic_data
->stats_pending
)
616 nic_data
->stats_pending
= 0;
617 if (*nic_data
->stats_dma_done
== FALCON_STATS_DONE
) {
618 rmb(); /* read the done flag before the stats */
619 efx
->mac_op
->update_stats(efx
);
621 EFX_ERR(efx
, "timed out waiting for statistics\n");
625 static void falcon_stats_timer_func(unsigned long context
)
627 struct efx_nic
*efx
= (struct efx_nic
*)context
;
628 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
630 spin_lock(&efx
->stats_lock
);
632 falcon_stats_complete(efx
);
633 if (nic_data
->stats_disable_count
== 0)
634 falcon_stats_request(efx
);
636 spin_unlock(&efx
->stats_lock
);
639 static void falcon_switch_mac(struct efx_nic
*efx
);
641 static bool falcon_loopback_link_poll(struct efx_nic
*efx
)
643 struct efx_link_state old_state
= efx
->link_state
;
645 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
646 WARN_ON(!LOOPBACK_INTERNAL(efx
));
648 efx
->link_state
.fd
= true;
649 efx
->link_state
.fc
= efx
->wanted_fc
;
650 efx
->link_state
.up
= true;
652 if (efx
->loopback_mode
== LOOPBACK_GMAC
)
653 efx
->link_state
.speed
= 1000;
655 efx
->link_state
.speed
= 10000;
657 return !efx_link_state_equal(&efx
->link_state
, &old_state
);
660 static int falcon_reconfigure_port(struct efx_nic
*efx
)
664 WARN_ON(efx_nic_rev(efx
) > EFX_REV_FALCON_B0
);
666 /* Poll the PHY link state *before* reconfiguring it. This means we
667 * will pick up the correct speed (in loopback) to select the correct
670 if (LOOPBACK_INTERNAL(efx
))
671 falcon_loopback_link_poll(efx
);
673 efx
->phy_op
->poll(efx
);
675 falcon_stop_nic_stats(efx
);
676 falcon_deconfigure_mac_wrapper(efx
);
678 falcon_switch_mac(efx
);
680 efx
->phy_op
->reconfigure(efx
);
681 rc
= efx
->mac_op
->reconfigure(efx
);
684 falcon_start_nic_stats(efx
);
686 /* Synchronise efx->link_state with the kernel */
687 efx_link_status_changed(efx
);
692 /**************************************************************************
694 * PHY access via GMII
696 **************************************************************************
699 /* Wait for GMII access to complete */
700 static int falcon_gmii_wait(struct efx_nic
*efx
)
705 /* wait upto 50ms - taken max from datasheet */
706 for (count
= 0; count
< 5000; count
++) {
707 efx_reado(efx
, &md_stat
, FR_AB_MD_STAT
);
708 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSY
) == 0) {
709 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_LNFL
) != 0 ||
710 EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSERR
) != 0) {
711 EFX_ERR(efx
, "error from GMII access "
713 EFX_OWORD_VAL(md_stat
));
720 EFX_ERR(efx
, "timed out waiting for GMII\n");
724 /* Write an MDIO register of a PHY connected to Falcon. */
725 static int falcon_mdio_write(struct net_device
*net_dev
,
726 int prtad
, int devad
, u16 addr
, u16 value
)
728 struct efx_nic
*efx
= netdev_priv(net_dev
);
732 EFX_REGDUMP(efx
, "writing MDIO %d register %d.%d with 0x%04x\n",
733 prtad
, devad
, addr
, value
);
735 mutex_lock(&efx
->mdio_lock
);
737 /* Check MDIO not currently being accessed */
738 rc
= falcon_gmii_wait(efx
);
742 /* Write the address/ID register */
743 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
744 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
746 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
747 FRF_AB_MD_DEV_ADR
, devad
);
748 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
751 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_TXD
, value
);
752 efx_writeo(efx
, ®
, FR_AB_MD_TXD
);
754 EFX_POPULATE_OWORD_2(reg
,
757 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
759 /* Wait for data to be written */
760 rc
= falcon_gmii_wait(efx
);
762 /* Abort the write operation */
763 EFX_POPULATE_OWORD_2(reg
,
766 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
771 mutex_unlock(&efx
->mdio_lock
);
775 /* Read an MDIO register of a PHY connected to Falcon. */
776 static int falcon_mdio_read(struct net_device
*net_dev
,
777 int prtad
, int devad
, u16 addr
)
779 struct efx_nic
*efx
= netdev_priv(net_dev
);
783 mutex_lock(&efx
->mdio_lock
);
785 /* Check MDIO not currently being accessed */
786 rc
= falcon_gmii_wait(efx
);
790 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
791 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
793 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
794 FRF_AB_MD_DEV_ADR
, devad
);
795 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
797 /* Request data to be read */
798 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_RDC
, 1, FRF_AB_MD_GC
, 0);
799 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
801 /* Wait for data to become available */
802 rc
= falcon_gmii_wait(efx
);
804 efx_reado(efx
, ®
, FR_AB_MD_RXD
);
805 rc
= EFX_OWORD_FIELD(reg
, FRF_AB_MD_RXD
);
806 EFX_REGDUMP(efx
, "read from MDIO %d register %d.%d, got %04x\n",
807 prtad
, devad
, addr
, rc
);
809 /* Abort the read operation */
810 EFX_POPULATE_OWORD_2(reg
,
813 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
815 EFX_LOG(efx
, "read from MDIO %d register %d.%d, got error %d\n",
816 prtad
, devad
, addr
, rc
);
820 mutex_unlock(&efx
->mdio_lock
);
824 static void falcon_clock_mac(struct efx_nic
*efx
)
827 efx_oword_t nic_stat
;
829 /* Configure the NIC generated MAC clock correctly */
830 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
831 strap_val
= EFX_IS10G(efx
) ? 5 : 3;
832 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
833 EFX_SET_OWORD_FIELD(nic_stat
, FRF_BB_EE_STRAP_EN
, 1);
834 EFX_SET_OWORD_FIELD(nic_stat
, FRF_BB_EE_STRAP
, strap_val
);
835 efx_writeo(efx
, &nic_stat
, FR_AB_NIC_STAT
);
837 /* Falcon A1 does not support 1G/10G speed switching
838 * and must not be used with a PHY that does. */
839 BUG_ON(EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_PINS
) !=
844 static void falcon_switch_mac(struct efx_nic
*efx
)
846 struct efx_mac_operations
*old_mac_op
= efx
->mac_op
;
847 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
848 unsigned int stats_done_offset
;
850 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
851 WARN_ON(nic_data
->stats_disable_count
== 0);
853 efx
->mac_op
= (EFX_IS10G(efx
) ?
854 &falcon_xmac_operations
: &falcon_gmac_operations
);
857 stats_done_offset
= XgDmaDone_offset
;
859 stats_done_offset
= GDmaDone_offset
;
860 nic_data
->stats_dma_done
= efx
->stats_buffer
.addr
+ stats_done_offset
;
862 if (old_mac_op
== efx
->mac_op
)
865 falcon_clock_mac(efx
);
867 EFX_LOG(efx
, "selected %cMAC\n", EFX_IS10G(efx
) ? 'X' : 'G');
868 /* Not all macs support a mac-level link state */
869 efx
->xmac_poll_required
= false;
870 falcon_reset_macs(efx
);
873 /* This call is responsible for hooking in the MAC and PHY operations */
874 static int falcon_probe_port(struct efx_nic
*efx
)
878 switch (efx
->phy_type
) {
879 case PHY_TYPE_SFX7101
:
880 efx
->phy_op
= &falcon_sfx7101_phy_ops
;
882 case PHY_TYPE_SFT9001A
:
883 case PHY_TYPE_SFT9001B
:
884 efx
->phy_op
= &falcon_sft9001_phy_ops
;
886 case PHY_TYPE_QT2022C2
:
887 case PHY_TYPE_QT2025C
:
888 efx
->phy_op
= &falcon_qt202x_phy_ops
;
891 EFX_ERR(efx
, "Unknown PHY type %d\n",
896 /* Fill out MDIO structure and loopback modes */
897 efx
->mdio
.mdio_read
= falcon_mdio_read
;
898 efx
->mdio
.mdio_write
= falcon_mdio_write
;
899 rc
= efx
->phy_op
->probe(efx
);
903 /* Initial assumption */
904 efx
->link_state
.speed
= 10000;
905 efx
->link_state
.fd
= true;
907 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
908 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
909 efx
->wanted_fc
= EFX_FC_RX
| EFX_FC_TX
;
911 efx
->wanted_fc
= EFX_FC_RX
;
913 /* Allocate buffer for stats */
914 rc
= efx_nic_alloc_buffer(efx
, &efx
->stats_buffer
,
915 FALCON_MAC_STATS_SIZE
);
918 EFX_LOG(efx
, "stats buffer at %llx (virt %p phys %llx)\n",
919 (u64
)efx
->stats_buffer
.dma_addr
,
920 efx
->stats_buffer
.addr
,
921 (u64
)virt_to_phys(efx
->stats_buffer
.addr
));
926 static void falcon_remove_port(struct efx_nic
*efx
)
928 efx_nic_free_buffer(efx
, &efx
->stats_buffer
);
931 /**************************************************************************
935 **************************************************************************/
938 falcon_read_nvram(struct efx_nic
*efx
, struct falcon_nvconfig
*nvconfig_out
)
940 struct falcon_nvconfig
*nvconfig
;
941 struct efx_spi_device
*spi
;
943 int rc
, magic_num
, struct_ver
;
944 __le16
*word
, *limit
;
947 spi
= efx
->spi_flash
? efx
->spi_flash
: efx
->spi_eeprom
;
951 region
= kmalloc(FALCON_NVCONFIG_END
, GFP_KERNEL
);
954 nvconfig
= region
+ FALCON_NVCONFIG_OFFSET
;
956 mutex_lock(&efx
->spi_lock
);
957 rc
= falcon_spi_read(efx
, spi
, 0, FALCON_NVCONFIG_END
, NULL
, region
);
958 mutex_unlock(&efx
->spi_lock
);
960 EFX_ERR(efx
, "Failed to read %s\n",
961 efx
->spi_flash
? "flash" : "EEPROM");
966 magic_num
= le16_to_cpu(nvconfig
->board_magic_num
);
967 struct_ver
= le16_to_cpu(nvconfig
->board_struct_ver
);
970 if (magic_num
!= FALCON_NVCONFIG_BOARD_MAGIC_NUM
) {
971 EFX_ERR(efx
, "NVRAM bad magic 0x%x\n", magic_num
);
974 if (struct_ver
< 2) {
975 EFX_ERR(efx
, "NVRAM has ancient version 0x%x\n", struct_ver
);
977 } else if (struct_ver
< 4) {
978 word
= &nvconfig
->board_magic_num
;
979 limit
= (__le16
*) (nvconfig
+ 1);
982 limit
= region
+ FALCON_NVCONFIG_END
;
984 for (csum
= 0; word
< limit
; ++word
)
985 csum
+= le16_to_cpu(*word
);
987 if (~csum
& 0xffff) {
988 EFX_ERR(efx
, "NVRAM has incorrect checksum\n");
994 memcpy(nvconfig_out
, nvconfig
, sizeof(*nvconfig
));
1001 static int falcon_test_nvram(struct efx_nic
*efx
)
1003 return falcon_read_nvram(efx
, NULL
);
1006 static const struct efx_nic_register_test falcon_b0_register_tests
[] = {
1008 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
1010 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1012 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1013 { FR_AZ_TX_RESERVED
,
1014 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1016 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1017 { FR_AZ_SRM_TX_DC_CFG
,
1018 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1020 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1021 { FR_AZ_RX_DC_PF_WM
,
1022 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1024 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1026 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1028 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1030 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1032 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1034 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1035 { FR_AB_XM_RX_PARAM
,
1036 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1038 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1040 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1042 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1045 static int falcon_b0_test_registers(struct efx_nic
*efx
)
1047 return efx_nic_test_registers(efx
, falcon_b0_register_tests
,
1048 ARRAY_SIZE(falcon_b0_register_tests
));
1051 /**************************************************************************
1055 **************************************************************************
1058 /* Resets NIC to known state. This routine must be called in process
1059 * context and is allowed to sleep. */
1060 static int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
1062 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1063 efx_oword_t glb_ctl_reg_ker
;
1066 EFX_LOG(efx
, "performing %s hardware reset\n", RESET_TYPE(method
));
1068 /* Initiate device reset */
1069 if (method
== RESET_TYPE_WORLD
) {
1070 rc
= pci_save_state(efx
->pci_dev
);
1072 EFX_ERR(efx
, "failed to backup PCI state of primary "
1073 "function prior to hardware reset\n");
1076 if (efx_nic_is_dual_func(efx
)) {
1077 rc
= pci_save_state(nic_data
->pci_dev2
);
1079 EFX_ERR(efx
, "failed to backup PCI state of "
1080 "secondary function prior to "
1081 "hardware reset\n");
1086 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker
,
1087 FRF_AB_EXT_PHY_RST_DUR
,
1088 FFE_AB_EXT_PHY_RST_DUR_10240US
,
1091 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker
,
1092 /* exclude PHY from "invisible" reset */
1093 FRF_AB_EXT_PHY_RST_CTL
,
1094 method
== RESET_TYPE_INVISIBLE
,
1095 /* exclude EEPROM/flash and PCIe */
1096 FRF_AB_PCIE_CORE_RST_CTL
, 1,
1097 FRF_AB_PCIE_NSTKY_RST_CTL
, 1,
1098 FRF_AB_PCIE_SD_RST_CTL
, 1,
1099 FRF_AB_EE_RST_CTL
, 1,
1100 FRF_AB_EXT_PHY_RST_DUR
,
1101 FFE_AB_EXT_PHY_RST_DUR_10240US
,
1104 efx_writeo(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
1106 EFX_LOG(efx
, "waiting for hardware reset\n");
1107 schedule_timeout_uninterruptible(HZ
/ 20);
1109 /* Restore PCI configuration if needed */
1110 if (method
== RESET_TYPE_WORLD
) {
1111 if (efx_nic_is_dual_func(efx
)) {
1112 rc
= pci_restore_state(nic_data
->pci_dev2
);
1114 EFX_ERR(efx
, "failed to restore PCI config for "
1115 "the secondary function\n");
1119 rc
= pci_restore_state(efx
->pci_dev
);
1121 EFX_ERR(efx
, "failed to restore PCI config for the "
1122 "primary function\n");
1125 EFX_LOG(efx
, "successfully restored PCI config\n");
1128 /* Assert that reset complete */
1129 efx_reado(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
1130 if (EFX_OWORD_FIELD(glb_ctl_reg_ker
, FRF_AB_SWRST
) != 0) {
1132 EFX_ERR(efx
, "timed out waiting for hardware reset\n");
1135 EFX_LOG(efx
, "hardware reset complete\n");
1139 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1142 pci_restore_state(efx
->pci_dev
);
1149 static void falcon_monitor(struct efx_nic
*efx
)
1154 BUG_ON(!mutex_is_locked(&efx
->mac_lock
));
1156 rc
= falcon_board(efx
)->type
->monitor(efx
);
1158 EFX_ERR(efx
, "Board sensor %s; shutting down PHY\n",
1159 (rc
== -ERANGE
) ? "reported fault" : "failed");
1160 efx
->phy_mode
|= PHY_MODE_LOW_POWER
;
1161 rc
= __efx_reconfigure_port(efx
);
1165 if (LOOPBACK_INTERNAL(efx
))
1166 link_changed
= falcon_loopback_link_poll(efx
);
1168 link_changed
= efx
->phy_op
->poll(efx
);
1171 falcon_stop_nic_stats(efx
);
1172 falcon_deconfigure_mac_wrapper(efx
);
1174 falcon_switch_mac(efx
);
1175 rc
= efx
->mac_op
->reconfigure(efx
);
1178 falcon_start_nic_stats(efx
);
1180 efx_link_status_changed(efx
);
1184 falcon_poll_xmac(efx
);
1187 /* Zeroes out the SRAM contents. This routine must be called in
1188 * process context and is allowed to sleep.
1190 static int falcon_reset_sram(struct efx_nic
*efx
)
1192 efx_oword_t srm_cfg_reg_ker
, gpio_cfg_reg_ker
;
1195 /* Set the SRAM wake/sleep GPIO appropriately. */
1196 efx_reado(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
1197 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OEN
, 1);
1198 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OUT
, 1);
1199 efx_writeo(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
1201 /* Initiate SRAM reset */
1202 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker
,
1203 FRF_AZ_SRM_INIT_EN
, 1,
1204 FRF_AZ_SRM_NB_SZ
, 0);
1205 efx_writeo(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
1207 /* Wait for SRAM reset to complete */
1210 EFX_LOG(efx
, "waiting for SRAM reset (attempt %d)...\n", count
);
1212 /* SRAM reset is slow; expect around 16ms */
1213 schedule_timeout_uninterruptible(HZ
/ 50);
1215 /* Check for reset complete */
1216 efx_reado(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
1217 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker
, FRF_AZ_SRM_INIT_EN
)) {
1218 EFX_LOG(efx
, "SRAM reset complete\n");
1222 } while (++count
< 20); /* wait upto 0.4 sec */
1224 EFX_ERR(efx
, "timed out waiting for SRAM reset\n");
1228 static int falcon_spi_device_init(struct efx_nic
*efx
,
1229 struct efx_spi_device
**spi_device_ret
,
1230 unsigned int device_id
, u32 device_type
)
1232 struct efx_spi_device
*spi_device
;
1234 if (device_type
!= 0) {
1235 spi_device
= kzalloc(sizeof(*spi_device
), GFP_KERNEL
);
1238 spi_device
->device_id
= device_id
;
1240 1 << SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_SIZE
);
1241 spi_device
->addr_len
=
1242 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ADDR_LEN
);
1243 spi_device
->munge_address
= (spi_device
->size
== 1 << 9 &&
1244 spi_device
->addr_len
== 1);
1245 spi_device
->erase_command
=
1246 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ERASE_CMD
);
1247 spi_device
->erase_size
=
1248 1 << SPI_DEV_TYPE_FIELD(device_type
,
1249 SPI_DEV_TYPE_ERASE_SIZE
);
1250 spi_device
->block_size
=
1251 1 << SPI_DEV_TYPE_FIELD(device_type
,
1252 SPI_DEV_TYPE_BLOCK_SIZE
);
1257 kfree(*spi_device_ret
);
1258 *spi_device_ret
= spi_device
;
1262 static void falcon_remove_spi_devices(struct efx_nic
*efx
)
1264 kfree(efx
->spi_eeprom
);
1265 efx
->spi_eeprom
= NULL
;
1266 kfree(efx
->spi_flash
);
1267 efx
->spi_flash
= NULL
;
1270 /* Extract non-volatile configuration */
1271 static int falcon_probe_nvconfig(struct efx_nic
*efx
)
1273 struct falcon_nvconfig
*nvconfig
;
1277 nvconfig
= kmalloc(sizeof(*nvconfig
), GFP_KERNEL
);
1281 rc
= falcon_read_nvram(efx
, nvconfig
);
1282 if (rc
== -EINVAL
) {
1283 EFX_ERR(efx
, "NVRAM is invalid therefore using defaults\n");
1284 efx
->phy_type
= PHY_TYPE_NONE
;
1285 efx
->mdio
.prtad
= MDIO_PRTAD_NONE
;
1291 struct falcon_nvconfig_board_v2
*v2
= &nvconfig
->board_v2
;
1292 struct falcon_nvconfig_board_v3
*v3
= &nvconfig
->board_v3
;
1294 efx
->phy_type
= v2
->port0_phy_type
;
1295 efx
->mdio
.prtad
= v2
->port0_phy_addr
;
1296 board_rev
= le16_to_cpu(v2
->board_revision
);
1298 if (le16_to_cpu(nvconfig
->board_struct_ver
) >= 3) {
1299 rc
= falcon_spi_device_init(
1300 efx
, &efx
->spi_flash
, FFE_AB_SPI_DEVICE_FLASH
,
1301 le32_to_cpu(v3
->spi_device_type
1302 [FFE_AB_SPI_DEVICE_FLASH
]));
1305 rc
= falcon_spi_device_init(
1306 efx
, &efx
->spi_eeprom
, FFE_AB_SPI_DEVICE_EEPROM
,
1307 le32_to_cpu(v3
->spi_device_type
1308 [FFE_AB_SPI_DEVICE_EEPROM
]));
1314 /* Read the MAC addresses */
1315 memcpy(efx
->mac_address
, nvconfig
->mac_address
[0], ETH_ALEN
);
1317 EFX_LOG(efx
, "PHY is %d phy_id %d\n", efx
->phy_type
, efx
->mdio
.prtad
);
1319 falcon_probe_board(efx
, board_rev
);
1325 falcon_remove_spi_devices(efx
);
1331 /* Probe all SPI devices on the NIC */
1332 static void falcon_probe_spi_devices(struct efx_nic
*efx
)
1334 efx_oword_t nic_stat
, gpio_ctl
, ee_vpd_cfg
;
1337 efx_reado(efx
, &gpio_ctl
, FR_AB_GPIO_CTL
);
1338 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
1339 efx_reado(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
1341 if (EFX_OWORD_FIELD(gpio_ctl
, FRF_AB_GPIO3_PWRUP_VALUE
)) {
1342 boot_dev
= (EFX_OWORD_FIELD(nic_stat
, FRF_AB_SF_PRST
) ?
1343 FFE_AB_SPI_DEVICE_FLASH
: FFE_AB_SPI_DEVICE_EEPROM
);
1344 EFX_LOG(efx
, "Booted from %s\n",
1345 boot_dev
== FFE_AB_SPI_DEVICE_FLASH
? "flash" : "EEPROM");
1347 /* Disable VPD and set clock dividers to safe
1348 * values for initial programming. */
1350 EFX_LOG(efx
, "Booted from internal ASIC settings;"
1351 " setting SPI config\n");
1352 EFX_POPULATE_OWORD_3(ee_vpd_cfg
, FRF_AB_EE_VPD_EN
, 0,
1353 /* 125 MHz / 7 ~= 20 MHz */
1354 FRF_AB_EE_SF_CLOCK_DIV
, 7,
1355 /* 125 MHz / 63 ~= 2 MHz */
1356 FRF_AB_EE_EE_CLOCK_DIV
, 63);
1357 efx_writeo(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
1360 if (boot_dev
== FFE_AB_SPI_DEVICE_FLASH
)
1361 falcon_spi_device_init(efx
, &efx
->spi_flash
,
1362 FFE_AB_SPI_DEVICE_FLASH
,
1363 default_flash_type
);
1364 if (boot_dev
== FFE_AB_SPI_DEVICE_EEPROM
)
1365 falcon_spi_device_init(efx
, &efx
->spi_eeprom
,
1366 FFE_AB_SPI_DEVICE_EEPROM
,
1370 static int falcon_probe_nic(struct efx_nic
*efx
)
1372 struct falcon_nic_data
*nic_data
;
1373 struct falcon_board
*board
;
1376 /* Allocate storage for hardware specific data */
1377 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
1380 efx
->nic_data
= nic_data
;
1384 if (efx_nic_fpga_ver(efx
) != 0) {
1385 EFX_ERR(efx
, "Falcon FPGA not supported\n");
1389 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
1390 efx_oword_t nic_stat
;
1391 struct pci_dev
*dev
;
1392 u8 pci_rev
= efx
->pci_dev
->revision
;
1394 if ((pci_rev
== 0xff) || (pci_rev
== 0)) {
1395 EFX_ERR(efx
, "Falcon rev A0 not supported\n");
1398 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
1399 if (EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_10G
) == 0) {
1400 EFX_ERR(efx
, "Falcon rev A1 1G not supported\n");
1403 if (EFX_OWORD_FIELD(nic_stat
, FRF_AA_STRAP_PCIE
) == 0) {
1404 EFX_ERR(efx
, "Falcon rev A1 PCI-X not supported\n");
1408 dev
= pci_dev_get(efx
->pci_dev
);
1409 while ((dev
= pci_get_device(EFX_VENDID_SFC
, FALCON_A_S_DEVID
,
1411 if (dev
->bus
== efx
->pci_dev
->bus
&&
1412 dev
->devfn
== efx
->pci_dev
->devfn
+ 1) {
1413 nic_data
->pci_dev2
= dev
;
1417 if (!nic_data
->pci_dev2
) {
1418 EFX_ERR(efx
, "failed to find secondary function\n");
1424 /* Now we can reset the NIC */
1425 rc
= falcon_reset_hw(efx
, RESET_TYPE_ALL
);
1427 EFX_ERR(efx
, "failed to reset NIC\n");
1431 /* Allocate memory for INT_KER */
1432 rc
= efx_nic_alloc_buffer(efx
, &efx
->irq_status
, sizeof(efx_oword_t
));
1435 BUG_ON(efx
->irq_status
.dma_addr
& 0x0f);
1437 EFX_LOG(efx
, "INT_KER at %llx (virt %p phys %llx)\n",
1438 (u64
)efx
->irq_status
.dma_addr
,
1439 efx
->irq_status
.addr
, (u64
)virt_to_phys(efx
->irq_status
.addr
));
1441 falcon_probe_spi_devices(efx
);
1443 /* Read in the non-volatile configuration */
1444 rc
= falcon_probe_nvconfig(efx
);
1448 /* Initialise I2C adapter */
1449 board
= falcon_board(efx
);
1450 board
->i2c_adap
.owner
= THIS_MODULE
;
1451 board
->i2c_data
= falcon_i2c_bit_operations
;
1452 board
->i2c_data
.data
= efx
;
1453 board
->i2c_adap
.algo_data
= &board
->i2c_data
;
1454 board
->i2c_adap
.dev
.parent
= &efx
->pci_dev
->dev
;
1455 strlcpy(board
->i2c_adap
.name
, "SFC4000 GPIO",
1456 sizeof(board
->i2c_adap
.name
));
1457 rc
= i2c_bit_add_bus(&board
->i2c_adap
);
1461 rc
= falcon_board(efx
)->type
->init(efx
);
1463 EFX_ERR(efx
, "failed to initialise board\n");
1467 nic_data
->stats_disable_count
= 1;
1468 setup_timer(&nic_data
->stats_timer
, &falcon_stats_timer_func
,
1469 (unsigned long)efx
);
1474 BUG_ON(i2c_del_adapter(&board
->i2c_adap
));
1475 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
1477 falcon_remove_spi_devices(efx
);
1478 efx_nic_free_buffer(efx
, &efx
->irq_status
);
1481 if (nic_data
->pci_dev2
) {
1482 pci_dev_put(nic_data
->pci_dev2
);
1483 nic_data
->pci_dev2
= NULL
;
1487 kfree(efx
->nic_data
);
1491 static void falcon_init_rx_cfg(struct efx_nic
*efx
)
1493 /* Prior to Siena the RX DMA engine will split each frame at
1494 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1495 * be so large that that never happens. */
1496 const unsigned huge_buf_size
= (3 * 4096) >> 5;
1497 /* RX control FIFO thresholds (32 entries) */
1498 const unsigned ctrl_xon_thr
= 20;
1499 const unsigned ctrl_xoff_thr
= 25;
1500 /* RX data FIFO thresholds (256-byte units; size varies) */
1501 int data_xon_thr
= efx_nic_rx_xon_thresh
>> 8;
1502 int data_xoff_thr
= efx_nic_rx_xoff_thresh
>> 8;
1505 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
1506 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
1507 /* Data FIFO size is 5.5K */
1508 if (data_xon_thr
< 0)
1509 data_xon_thr
= 512 >> 8;
1510 if (data_xoff_thr
< 0)
1511 data_xoff_thr
= 2048 >> 8;
1512 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_DESC_PUSH_EN
, 0);
1513 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_USR_BUF_SIZE
,
1515 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_MAC_TH
, data_xon_thr
);
1516 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_MAC_TH
, data_xoff_thr
);
1517 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_TX_TH
, ctrl_xon_thr
);
1518 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
1520 /* Data FIFO size is 80K; register fields moved */
1521 if (data_xon_thr
< 0)
1522 data_xon_thr
= 27648 >> 8; /* ~3*max MTU */
1523 if (data_xoff_thr
< 0)
1524 data_xoff_thr
= 54272 >> 8; /* ~80Kb - 3*max MTU */
1525 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_DESC_PUSH_EN
, 0);
1526 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_USR_BUF_SIZE
,
1528 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_MAC_TH
, data_xon_thr
);
1529 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_MAC_TH
, data_xoff_thr
);
1530 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_TX_TH
, ctrl_xon_thr
);
1531 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
1532 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
1534 /* Always enable XOFF signal from RX FIFO. We enable
1535 * or disable transmission of pause frames at the MAC. */
1536 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
1537 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1540 /* This call performs hardware-specific global initialisation, such as
1541 * defining the descriptor cache sizes and number of RSS channels.
1542 * It does not set up any buffers, descriptor rings or event queues.
1544 static int falcon_init_nic(struct efx_nic
*efx
)
1549 /* Use on-chip SRAM */
1550 efx_reado(efx
, &temp
, FR_AB_NIC_STAT
);
1551 EFX_SET_OWORD_FIELD(temp
, FRF_AB_ONCHIP_SRAM
, 1);
1552 efx_writeo(efx
, &temp
, FR_AB_NIC_STAT
);
1554 /* Set the source of the GMAC clock */
1555 if (efx_nic_rev(efx
) == EFX_REV_FALCON_B0
) {
1556 efx_reado(efx
, &temp
, FR_AB_GPIO_CTL
);
1557 EFX_SET_OWORD_FIELD(temp
, FRF_AB_USE_NIC_CLK
, true);
1558 efx_writeo(efx
, &temp
, FR_AB_GPIO_CTL
);
1561 /* Select the correct MAC */
1562 falcon_clock_mac(efx
);
1564 rc
= falcon_reset_sram(efx
);
1568 /* Clear the parity enables on the TX data fifos as
1569 * they produce false parity errors because of timing issues
1571 if (EFX_WORKAROUND_5129(efx
)) {
1572 efx_reado(efx
, &temp
, FR_AZ_CSR_SPARE
);
1573 EFX_SET_OWORD_FIELD(temp
, FRF_AB_MEM_PERR_EN_TX_DATA
, 0);
1574 efx_writeo(efx
, &temp
, FR_AZ_CSR_SPARE
);
1577 if (EFX_WORKAROUND_7244(efx
)) {
1578 efx_reado(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
1579 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_FULL_SRCH_LIMIT
, 8);
1580 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_WILD_SRCH_LIMIT
, 8);
1581 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_FULL_SRCH_LIMIT
, 8);
1582 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_WILD_SRCH_LIMIT
, 8);
1583 efx_writeo(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
1586 /* XXX This is documented only for Falcon A0/A1 */
1587 /* Setup RX. Wait for descriptor is broken and must
1588 * be disabled. RXDP recovery shouldn't be needed, but is.
1590 efx_reado(efx
, &temp
, FR_AA_RX_SELF_RST
);
1591 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_NODESC_WAIT_DIS
, 1);
1592 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_SELF_RST_EN
, 1);
1593 if (EFX_WORKAROUND_5583(efx
))
1594 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_ISCSI_DIS
, 1);
1595 efx_writeo(efx
, &temp
, FR_AA_RX_SELF_RST
);
1597 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1598 * descriptors (which is bad).
1600 efx_reado(efx
, &temp
, FR_AZ_TX_CFG
);
1601 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_NO_EOP_DISC_EN
, 0);
1602 efx_writeo(efx
, &temp
, FR_AZ_TX_CFG
);
1604 falcon_init_rx_cfg(efx
);
1606 /* Set destination of both TX and RX Flush events */
1607 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1608 EFX_POPULATE_OWORD_1(temp
, FRF_BZ_FLS_EVQ_ID
, 0);
1609 efx_writeo(efx
, &temp
, FR_BZ_DP_CTRL
);
1612 efx_nic_init_common(efx
);
1617 static void falcon_remove_nic(struct efx_nic
*efx
)
1619 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1620 struct falcon_board
*board
= falcon_board(efx
);
1623 board
->type
->fini(efx
);
1625 /* Remove I2C adapter and clear it in preparation for a retry */
1626 rc
= i2c_del_adapter(&board
->i2c_adap
);
1628 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
1630 falcon_remove_spi_devices(efx
);
1631 efx_nic_free_buffer(efx
, &efx
->irq_status
);
1633 falcon_reset_hw(efx
, RESET_TYPE_ALL
);
1635 /* Release the second function after the reset */
1636 if (nic_data
->pci_dev2
) {
1637 pci_dev_put(nic_data
->pci_dev2
);
1638 nic_data
->pci_dev2
= NULL
;
1641 /* Tear down the private nic state */
1642 kfree(efx
->nic_data
);
1643 efx
->nic_data
= NULL
;
1646 static void falcon_update_nic_stats(struct efx_nic
*efx
)
1648 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1651 if (nic_data
->stats_disable_count
)
1654 efx_reado(efx
, &cnt
, FR_AZ_RX_NODESC_DROP
);
1655 efx
->n_rx_nodesc_drop_cnt
+=
1656 EFX_OWORD_FIELD(cnt
, FRF_AB_RX_NODESC_DROP_CNT
);
1658 if (nic_data
->stats_pending
&&
1659 *nic_data
->stats_dma_done
== FALCON_STATS_DONE
) {
1660 nic_data
->stats_pending
= false;
1661 rmb(); /* read the done flag before the stats */
1662 efx
->mac_op
->update_stats(efx
);
1666 void falcon_start_nic_stats(struct efx_nic
*efx
)
1668 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1670 spin_lock_bh(&efx
->stats_lock
);
1671 if (--nic_data
->stats_disable_count
== 0)
1672 falcon_stats_request(efx
);
1673 spin_unlock_bh(&efx
->stats_lock
);
1676 void falcon_stop_nic_stats(struct efx_nic
*efx
)
1678 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1683 spin_lock_bh(&efx
->stats_lock
);
1684 ++nic_data
->stats_disable_count
;
1685 spin_unlock_bh(&efx
->stats_lock
);
1687 del_timer_sync(&nic_data
->stats_timer
);
1689 /* Wait enough time for the most recent transfer to
1691 for (i
= 0; i
< 4 && nic_data
->stats_pending
; i
++) {
1692 if (*nic_data
->stats_dma_done
== FALCON_STATS_DONE
)
1697 spin_lock_bh(&efx
->stats_lock
);
1698 falcon_stats_complete(efx
);
1699 spin_unlock_bh(&efx
->stats_lock
);
1702 static void falcon_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1704 falcon_board(efx
)->type
->set_id_led(efx
, mode
);
1707 /**************************************************************************
1711 **************************************************************************
1714 static void falcon_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
1718 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1721 static int falcon_set_wol(struct efx_nic
*efx
, u32 type
)
1728 /**************************************************************************
1730 * Revision-dependent attributes used by efx.c
1732 **************************************************************************
1735 struct efx_nic_type falcon_a1_nic_type
= {
1736 .probe
= falcon_probe_nic
,
1737 .remove
= falcon_remove_nic
,
1738 .init
= falcon_init_nic
,
1739 .fini
= efx_port_dummy_op_void
,
1740 .monitor
= falcon_monitor
,
1741 .reset
= falcon_reset_hw
,
1742 .probe_port
= falcon_probe_port
,
1743 .remove_port
= falcon_remove_port
,
1744 .prepare_flush
= falcon_prepare_flush
,
1745 .update_stats
= falcon_update_nic_stats
,
1746 .start_stats
= falcon_start_nic_stats
,
1747 .stop_stats
= falcon_stop_nic_stats
,
1748 .set_id_led
= falcon_set_id_led
,
1749 .push_irq_moderation
= falcon_push_irq_moderation
,
1750 .push_multicast_hash
= falcon_push_multicast_hash
,
1751 .reconfigure_port
= falcon_reconfigure_port
,
1752 .get_wol
= falcon_get_wol
,
1753 .set_wol
= falcon_set_wol
,
1754 .resume_wol
= efx_port_dummy_op_void
,
1755 .test_nvram
= falcon_test_nvram
,
1756 .default_mac_ops
= &falcon_xmac_operations
,
1758 .revision
= EFX_REV_FALCON_A1
,
1759 .mem_map_size
= 0x20000,
1760 .txd_ptr_tbl_base
= FR_AA_TX_DESC_PTR_TBL_KER
,
1761 .rxd_ptr_tbl_base
= FR_AA_RX_DESC_PTR_TBL_KER
,
1762 .buf_tbl_base
= FR_AA_BUF_FULL_TBL_KER
,
1763 .evq_ptr_tbl_base
= FR_AA_EVQ_PTR_TBL_KER
,
1764 .evq_rptr_tbl_base
= FR_AA_EVQ_RPTR_KER
,
1765 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
1766 .rx_buffer_padding
= 0x24,
1767 .max_interrupt_mode
= EFX_INT_MODE_MSI
,
1768 .phys_addr_channels
= 4,
1769 .tx_dc_base
= 0x130000,
1770 .rx_dc_base
= 0x100000,
1771 .offload_features
= NETIF_F_IP_CSUM
,
1772 .reset_world_flags
= ETH_RESET_IRQ
,
1775 struct efx_nic_type falcon_b0_nic_type
= {
1776 .probe
= falcon_probe_nic
,
1777 .remove
= falcon_remove_nic
,
1778 .init
= falcon_init_nic
,
1779 .fini
= efx_port_dummy_op_void
,
1780 .monitor
= falcon_monitor
,
1781 .reset
= falcon_reset_hw
,
1782 .probe_port
= falcon_probe_port
,
1783 .remove_port
= falcon_remove_port
,
1784 .prepare_flush
= falcon_prepare_flush
,
1785 .update_stats
= falcon_update_nic_stats
,
1786 .start_stats
= falcon_start_nic_stats
,
1787 .stop_stats
= falcon_stop_nic_stats
,
1788 .set_id_led
= falcon_set_id_led
,
1789 .push_irq_moderation
= falcon_push_irq_moderation
,
1790 .push_multicast_hash
= falcon_push_multicast_hash
,
1791 .reconfigure_port
= falcon_reconfigure_port
,
1792 .get_wol
= falcon_get_wol
,
1793 .set_wol
= falcon_set_wol
,
1794 .resume_wol
= efx_port_dummy_op_void
,
1795 .test_registers
= falcon_b0_test_registers
,
1796 .test_nvram
= falcon_test_nvram
,
1797 .default_mac_ops
= &falcon_xmac_operations
,
1799 .revision
= EFX_REV_FALCON_B0
,
1800 /* Map everything up to and including the RSS indirection
1801 * table. Don't map MSI-X table, MSI-X PBA since Linux
1802 * requires that they not be mapped. */
1803 .mem_map_size
= (FR_BZ_RX_INDIRECTION_TBL
+
1804 FR_BZ_RX_INDIRECTION_TBL_STEP
*
1805 FR_BZ_RX_INDIRECTION_TBL_ROWS
),
1806 .txd_ptr_tbl_base
= FR_BZ_TX_DESC_PTR_TBL
,
1807 .rxd_ptr_tbl_base
= FR_BZ_RX_DESC_PTR_TBL
,
1808 .buf_tbl_base
= FR_BZ_BUF_FULL_TBL
,
1809 .evq_ptr_tbl_base
= FR_BZ_EVQ_PTR_TBL
,
1810 .evq_rptr_tbl_base
= FR_BZ_EVQ_RPTR
,
1811 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
1812 .rx_buffer_padding
= 0,
1813 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
1814 .phys_addr_channels
= 32, /* Hardware limit is 64, but the legacy
1815 * interrupt handler only supports 32
1817 .tx_dc_base
= 0x130000,
1818 .rx_dc_base
= 0x100000,
1819 .offload_features
= NETIF_F_IP_CSUM
,
1820 .reset_world_flags
= ETH_RESET_IRQ
,