ALSA: HDA: Cirrus - fix "Surround Speaker" volume control name
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob8b3736076ac6bb4cf979443f3f0453517b1ccf87
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy)
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 return 1;
129 return 0;
132 static inline int task_has_rt_policy(struct task_struct *p)
134 return rt_policy(p->policy);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
153 static struct rt_bandwidth def_rt_bandwidth;
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169 if (!overrun)
170 break;
172 idle = do_sched_rt_period_timer(rt_b, overrun);
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
178 static
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime >= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198 ktime_t now;
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 return;
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
206 raw_spin_lock(&rt_b->rt_runtime_lock);
207 for (;;) {
208 unsigned long delta;
209 ktime_t soft, hard;
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 hrtimer_cancel(&rt_b->rt_period_timer);
231 #endif
234 * sched_domains_mutex serializes calls to init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
243 struct cfs_rq;
245 static LIST_HEAD(task_groups);
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
258 atomic_t load_weight;
259 #endif
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
265 struct rt_bandwidth rt_bandwidth;
266 #endif
268 struct rcu_head rcu;
269 struct list_head list;
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277 #endif
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
295 #define MIN_SHARES (1UL << 1)
296 #define MAX_SHARES (1UL << 18)
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
313 u64 exec_clock;
314 u64 min_vruntime;
315 #ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317 #endif
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
322 struct list_head tasks;
323 struct list_head *balance_iterator;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity *curr, *next, *last, *skip;
331 #ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over;
333 #endif
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
346 int on_list;
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
350 #ifdef CONFIG_SMP
352 * the part of load.weight contributed by tasks
354 unsigned long task_weight;
357 * h_load = weight * f(tg)
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
362 unsigned long h_load;
365 * Maintaining per-cpu shares distribution for group scheduling
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
371 u64 load_avg;
372 u64 load_period;
373 u64 load_stamp, load_last, load_unacc_exec_time;
375 unsigned long load_contribution;
376 #endif
377 #endif
380 /* Real-Time classes' related field in a runqueue: */
381 struct rt_rq {
382 struct rt_prio_array active;
383 unsigned long rt_nr_running;
384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
385 struct {
386 int curr; /* highest queued rt task prio */
387 #ifdef CONFIG_SMP
388 int next; /* next highest */
389 #endif
390 } highest_prio;
391 #endif
392 #ifdef CONFIG_SMP
393 unsigned long rt_nr_migratory;
394 unsigned long rt_nr_total;
395 int overloaded;
396 struct plist_head pushable_tasks;
397 #endif
398 int rt_throttled;
399 u64 rt_time;
400 u64 rt_runtime;
401 /* Nests inside the rq lock: */
402 raw_spinlock_t rt_runtime_lock;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 unsigned long rt_nr_boosted;
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
410 #endif
413 #ifdef CONFIG_SMP
416 * We add the notion of a root-domain which will be used to define per-domain
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
423 struct root_domain {
424 atomic_t refcount;
425 struct rcu_head rcu;
426 cpumask_var_t span;
427 cpumask_var_t online;
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
433 cpumask_var_t rto_mask;
434 atomic_t rto_count;
435 struct cpupri cpupri;
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
442 static struct root_domain def_root_domain;
444 #endif /* CONFIG_SMP */
447 * This is the main, per-CPU runqueue data structure.
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
453 struct rq {
454 /* runqueue lock: */
455 raw_spinlock_t lock;
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
461 unsigned long nr_running;
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
464 unsigned long last_load_update_tick;
465 #ifdef CONFIG_NO_HZ
466 u64 nohz_stamp;
467 unsigned char nohz_balance_kick;
468 #endif
469 int skip_clock_update;
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
473 unsigned long nr_load_updates;
474 u64 nr_switches;
476 struct cfs_rq cfs;
477 struct rt_rq rt;
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
482 #endif
483 #ifdef CONFIG_RT_GROUP_SCHED
484 struct list_head leaf_rt_rq_list;
485 #endif
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
493 unsigned long nr_uninterruptible;
495 struct task_struct *curr, *idle, *stop;
496 unsigned long next_balance;
497 struct mm_struct *prev_mm;
499 u64 clock;
500 u64 clock_task;
502 atomic_t nr_iowait;
504 #ifdef CONFIG_SMP
505 struct root_domain *rd;
506 struct sched_domain *sd;
508 unsigned long cpu_power;
510 unsigned char idle_at_tick;
511 /* For active balancing */
512 int post_schedule;
513 int active_balance;
514 int push_cpu;
515 struct cpu_stop_work active_balance_work;
516 /* cpu of this runqueue: */
517 int cpu;
518 int online;
520 unsigned long avg_load_per_task;
522 u64 rt_avg;
523 u64 age_stamp;
524 u64 idle_stamp;
525 u64 avg_idle;
526 #endif
528 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530 #endif
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
536 #ifdef CONFIG_SCHED_HRTICK
537 #ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540 #endif
541 struct hrtimer hrtick_timer;
542 #endif
544 #ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
550 /* sys_sched_yield() stats */
551 unsigned int yld_count;
553 /* schedule() stats */
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
561 #endif
563 #ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565 #endif
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
571 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
573 static inline int cpu_of(struct rq *rq)
575 #ifdef CONFIG_SMP
576 return rq->cpu;
577 #else
578 return 0;
579 #endif
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_held() || \
585 lockdep_is_held(&sched_domains_mutex))
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
603 #ifdef CONFIG_CGROUP_SCHED
606 * Return the group to which this tasks belongs.
608 * We use task_subsys_state_check() and extend the RCU verification with
609 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
610 * task it moves into the cgroup. Therefore by holding either of those locks,
611 * we pin the task to the current cgroup.
613 static inline struct task_group *task_group(struct task_struct *p)
615 struct task_group *tg;
616 struct cgroup_subsys_state *css;
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
619 lockdep_is_held(&p->pi_lock) ||
620 lockdep_is_held(&task_rq(p)->lock));
621 tg = container_of(css, struct task_group, css);
623 return autogroup_task_group(p, tg);
626 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
627 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
629 #ifdef CONFIG_FAIR_GROUP_SCHED
630 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
631 p->se.parent = task_group(p)->se[cpu];
632 #endif
634 #ifdef CONFIG_RT_GROUP_SCHED
635 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
636 p->rt.parent = task_group(p)->rt_se[cpu];
637 #endif
640 #else /* CONFIG_CGROUP_SCHED */
642 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
643 static inline struct task_group *task_group(struct task_struct *p)
645 return NULL;
648 #endif /* CONFIG_CGROUP_SCHED */
650 static void update_rq_clock_task(struct rq *rq, s64 delta);
652 static void update_rq_clock(struct rq *rq)
654 s64 delta;
656 if (rq->skip_clock_update > 0)
657 return;
659 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
660 rq->clock += delta;
661 update_rq_clock_task(rq, delta);
665 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
667 #ifdef CONFIG_SCHED_DEBUG
668 # define const_debug __read_mostly
669 #else
670 # define const_debug static const
671 #endif
674 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
675 * @cpu: the processor in question.
677 * This interface allows printk to be called with the runqueue lock
678 * held and know whether or not it is OK to wake up the klogd.
680 int runqueue_is_locked(int cpu)
682 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
686 * Debugging: various feature bits
689 #define SCHED_FEAT(name, enabled) \
690 __SCHED_FEAT_##name ,
692 enum {
693 #include "sched_features.h"
696 #undef SCHED_FEAT
698 #define SCHED_FEAT(name, enabled) \
699 (1UL << __SCHED_FEAT_##name) * enabled |
701 const_debug unsigned int sysctl_sched_features =
702 #include "sched_features.h"
705 #undef SCHED_FEAT
707 #ifdef CONFIG_SCHED_DEBUG
708 #define SCHED_FEAT(name, enabled) \
709 #name ,
711 static __read_mostly char *sched_feat_names[] = {
712 #include "sched_features.h"
713 NULL
716 #undef SCHED_FEAT
718 static int sched_feat_show(struct seq_file *m, void *v)
720 int i;
722 for (i = 0; sched_feat_names[i]; i++) {
723 if (!(sysctl_sched_features & (1UL << i)))
724 seq_puts(m, "NO_");
725 seq_printf(m, "%s ", sched_feat_names[i]);
727 seq_puts(m, "\n");
729 return 0;
732 static ssize_t
733 sched_feat_write(struct file *filp, const char __user *ubuf,
734 size_t cnt, loff_t *ppos)
736 char buf[64];
737 char *cmp;
738 int neg = 0;
739 int i;
741 if (cnt > 63)
742 cnt = 63;
744 if (copy_from_user(&buf, ubuf, cnt))
745 return -EFAULT;
747 buf[cnt] = 0;
748 cmp = strstrip(buf);
750 if (strncmp(cmp, "NO_", 3) == 0) {
751 neg = 1;
752 cmp += 3;
755 for (i = 0; sched_feat_names[i]; i++) {
756 if (strcmp(cmp, sched_feat_names[i]) == 0) {
757 if (neg)
758 sysctl_sched_features &= ~(1UL << i);
759 else
760 sysctl_sched_features |= (1UL << i);
761 break;
765 if (!sched_feat_names[i])
766 return -EINVAL;
768 *ppos += cnt;
770 return cnt;
773 static int sched_feat_open(struct inode *inode, struct file *filp)
775 return single_open(filp, sched_feat_show, NULL);
778 static const struct file_operations sched_feat_fops = {
779 .open = sched_feat_open,
780 .write = sched_feat_write,
781 .read = seq_read,
782 .llseek = seq_lseek,
783 .release = single_release,
786 static __init int sched_init_debug(void)
788 debugfs_create_file("sched_features", 0644, NULL, NULL,
789 &sched_feat_fops);
791 return 0;
793 late_initcall(sched_init_debug);
795 #endif
797 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
800 * Number of tasks to iterate in a single balance run.
801 * Limited because this is done with IRQs disabled.
803 const_debug unsigned int sysctl_sched_nr_migrate = 32;
806 * period over which we average the RT time consumption, measured
807 * in ms.
809 * default: 1s
811 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
814 * period over which we measure -rt task cpu usage in us.
815 * default: 1s
817 unsigned int sysctl_sched_rt_period = 1000000;
819 static __read_mostly int scheduler_running;
822 * part of the period that we allow rt tasks to run in us.
823 * default: 0.95s
825 int sysctl_sched_rt_runtime = 950000;
827 static inline u64 global_rt_period(void)
829 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832 static inline u64 global_rt_runtime(void)
834 if (sysctl_sched_rt_runtime < 0)
835 return RUNTIME_INF;
837 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840 #ifndef prepare_arch_switch
841 # define prepare_arch_switch(next) do { } while (0)
842 #endif
843 #ifndef finish_arch_switch
844 # define finish_arch_switch(prev) do { } while (0)
845 #endif
847 static inline int task_current(struct rq *rq, struct task_struct *p)
849 return rq->curr == p;
852 static inline int task_running(struct rq *rq, struct task_struct *p)
854 #ifdef CONFIG_SMP
855 return p->on_cpu;
856 #else
857 return task_current(rq, p);
858 #endif
861 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
862 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
864 #ifdef CONFIG_SMP
866 * We can optimise this out completely for !SMP, because the
867 * SMP rebalancing from interrupt is the only thing that cares
868 * here.
870 next->on_cpu = 1;
871 #endif
874 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
876 #ifdef CONFIG_SMP
878 * After ->on_cpu is cleared, the task can be moved to a different CPU.
879 * We must ensure this doesn't happen until the switch is completely
880 * finished.
882 smp_wmb();
883 prev->on_cpu = 0;
884 #endif
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
896 raw_spin_unlock_irq(&rq->lock);
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
902 #ifdef CONFIG_SMP
904 * We can optimise this out completely for !SMP, because the
905 * SMP rebalancing from interrupt is the only thing that cares
906 * here.
908 next->on_cpu = 1;
909 #endif
910 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 raw_spin_unlock_irq(&rq->lock);
912 #else
913 raw_spin_unlock(&rq->lock);
914 #endif
917 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
919 #ifdef CONFIG_SMP
921 * After ->on_cpu is cleared, the task can be moved to a different CPU.
922 * We must ensure this doesn't happen until the switch is completely
923 * finished.
925 smp_wmb();
926 prev->on_cpu = 0;
927 #endif
928 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 local_irq_enable();
930 #endif
932 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
935 * __task_rq_lock - lock the rq @p resides on.
937 static inline struct rq *__task_rq_lock(struct task_struct *p)
938 __acquires(rq->lock)
940 struct rq *rq;
942 lockdep_assert_held(&p->pi_lock);
944 for (;;) {
945 rq = task_rq(p);
946 raw_spin_lock(&rq->lock);
947 if (likely(rq == task_rq(p)))
948 return rq;
949 raw_spin_unlock(&rq->lock);
954 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
956 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
957 __acquires(p->pi_lock)
958 __acquires(rq->lock)
960 struct rq *rq;
962 for (;;) {
963 raw_spin_lock_irqsave(&p->pi_lock, *flags);
964 rq = task_rq(p);
965 raw_spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 raw_spin_unlock(&rq->lock);
969 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
973 static void __task_rq_unlock(struct rq *rq)
974 __releases(rq->lock)
976 raw_spin_unlock(&rq->lock);
979 static inline void
980 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
981 __releases(rq->lock)
982 __releases(p->pi_lock)
984 raw_spin_unlock(&rq->lock);
985 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
989 * this_rq_lock - lock this runqueue and disable interrupts.
991 static struct rq *this_rq_lock(void)
992 __acquires(rq->lock)
994 struct rq *rq;
996 local_irq_disable();
997 rq = this_rq();
998 raw_spin_lock(&rq->lock);
1000 return rq;
1003 #ifdef CONFIG_SCHED_HRTICK
1005 * Use HR-timers to deliver accurate preemption points.
1007 * Its all a bit involved since we cannot program an hrt while holding the
1008 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1009 * reschedule event.
1011 * When we get rescheduled we reprogram the hrtick_timer outside of the
1012 * rq->lock.
1016 * Use hrtick when:
1017 * - enabled by features
1018 * - hrtimer is actually high res
1020 static inline int hrtick_enabled(struct rq *rq)
1022 if (!sched_feat(HRTICK))
1023 return 0;
1024 if (!cpu_active(cpu_of(rq)))
1025 return 0;
1026 return hrtimer_is_hres_active(&rq->hrtick_timer);
1029 static void hrtick_clear(struct rq *rq)
1031 if (hrtimer_active(&rq->hrtick_timer))
1032 hrtimer_cancel(&rq->hrtick_timer);
1036 * High-resolution timer tick.
1037 * Runs from hardirq context with interrupts disabled.
1039 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1041 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1043 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1045 raw_spin_lock(&rq->lock);
1046 update_rq_clock(rq);
1047 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1048 raw_spin_unlock(&rq->lock);
1050 return HRTIMER_NORESTART;
1053 #ifdef CONFIG_SMP
1055 * called from hardirq (IPI) context
1057 static void __hrtick_start(void *arg)
1059 struct rq *rq = arg;
1061 raw_spin_lock(&rq->lock);
1062 hrtimer_restart(&rq->hrtick_timer);
1063 rq->hrtick_csd_pending = 0;
1064 raw_spin_unlock(&rq->lock);
1068 * Called to set the hrtick timer state.
1070 * called with rq->lock held and irqs disabled
1072 static void hrtick_start(struct rq *rq, u64 delay)
1074 struct hrtimer *timer = &rq->hrtick_timer;
1075 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1077 hrtimer_set_expires(timer, time);
1079 if (rq == this_rq()) {
1080 hrtimer_restart(timer);
1081 } else if (!rq->hrtick_csd_pending) {
1082 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1083 rq->hrtick_csd_pending = 1;
1087 static int
1088 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1090 int cpu = (int)(long)hcpu;
1092 switch (action) {
1093 case CPU_UP_CANCELED:
1094 case CPU_UP_CANCELED_FROZEN:
1095 case CPU_DOWN_PREPARE:
1096 case CPU_DOWN_PREPARE_FROZEN:
1097 case CPU_DEAD:
1098 case CPU_DEAD_FROZEN:
1099 hrtick_clear(cpu_rq(cpu));
1100 return NOTIFY_OK;
1103 return NOTIFY_DONE;
1106 static __init void init_hrtick(void)
1108 hotcpu_notifier(hotplug_hrtick, 0);
1110 #else
1112 * Called to set the hrtick timer state.
1114 * called with rq->lock held and irqs disabled
1116 static void hrtick_start(struct rq *rq, u64 delay)
1118 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1119 HRTIMER_MODE_REL_PINNED, 0);
1122 static inline void init_hrtick(void)
1125 #endif /* CONFIG_SMP */
1127 static void init_rq_hrtick(struct rq *rq)
1129 #ifdef CONFIG_SMP
1130 rq->hrtick_csd_pending = 0;
1132 rq->hrtick_csd.flags = 0;
1133 rq->hrtick_csd.func = __hrtick_start;
1134 rq->hrtick_csd.info = rq;
1135 #endif
1137 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1138 rq->hrtick_timer.function = hrtick;
1140 #else /* CONFIG_SCHED_HRTICK */
1141 static inline void hrtick_clear(struct rq *rq)
1145 static inline void init_rq_hrtick(struct rq *rq)
1149 static inline void init_hrtick(void)
1152 #endif /* CONFIG_SCHED_HRTICK */
1155 * resched_task - mark a task 'to be rescheduled now'.
1157 * On UP this means the setting of the need_resched flag, on SMP it
1158 * might also involve a cross-CPU call to trigger the scheduler on
1159 * the target CPU.
1161 #ifdef CONFIG_SMP
1163 #ifndef tsk_is_polling
1164 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1165 #endif
1167 static void resched_task(struct task_struct *p)
1169 int cpu;
1171 assert_raw_spin_locked(&task_rq(p)->lock);
1173 if (test_tsk_need_resched(p))
1174 return;
1176 set_tsk_need_resched(p);
1178 cpu = task_cpu(p);
1179 if (cpu == smp_processor_id())
1180 return;
1182 /* NEED_RESCHED must be visible before we test polling */
1183 smp_mb();
1184 if (!tsk_is_polling(p))
1185 smp_send_reschedule(cpu);
1188 static void resched_cpu(int cpu)
1190 struct rq *rq = cpu_rq(cpu);
1191 unsigned long flags;
1193 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1194 return;
1195 resched_task(cpu_curr(cpu));
1196 raw_spin_unlock_irqrestore(&rq->lock, flags);
1199 #ifdef CONFIG_NO_HZ
1201 * In the semi idle case, use the nearest busy cpu for migrating timers
1202 * from an idle cpu. This is good for power-savings.
1204 * We don't do similar optimization for completely idle system, as
1205 * selecting an idle cpu will add more delays to the timers than intended
1206 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1208 int get_nohz_timer_target(void)
1210 int cpu = smp_processor_id();
1211 int i;
1212 struct sched_domain *sd;
1214 rcu_read_lock();
1215 for_each_domain(cpu, sd) {
1216 for_each_cpu(i, sched_domain_span(sd)) {
1217 if (!idle_cpu(i)) {
1218 cpu = i;
1219 goto unlock;
1223 unlock:
1224 rcu_read_unlock();
1225 return cpu;
1228 * When add_timer_on() enqueues a timer into the timer wheel of an
1229 * idle CPU then this timer might expire before the next timer event
1230 * which is scheduled to wake up that CPU. In case of a completely
1231 * idle system the next event might even be infinite time into the
1232 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1233 * leaves the inner idle loop so the newly added timer is taken into
1234 * account when the CPU goes back to idle and evaluates the timer
1235 * wheel for the next timer event.
1237 void wake_up_idle_cpu(int cpu)
1239 struct rq *rq = cpu_rq(cpu);
1241 if (cpu == smp_processor_id())
1242 return;
1245 * This is safe, as this function is called with the timer
1246 * wheel base lock of (cpu) held. When the CPU is on the way
1247 * to idle and has not yet set rq->curr to idle then it will
1248 * be serialized on the timer wheel base lock and take the new
1249 * timer into account automatically.
1251 if (rq->curr != rq->idle)
1252 return;
1255 * We can set TIF_RESCHED on the idle task of the other CPU
1256 * lockless. The worst case is that the other CPU runs the
1257 * idle task through an additional NOOP schedule()
1259 set_tsk_need_resched(rq->idle);
1261 /* NEED_RESCHED must be visible before we test polling */
1262 smp_mb();
1263 if (!tsk_is_polling(rq->idle))
1264 smp_send_reschedule(cpu);
1267 #endif /* CONFIG_NO_HZ */
1269 static u64 sched_avg_period(void)
1271 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1274 static void sched_avg_update(struct rq *rq)
1276 s64 period = sched_avg_period();
1278 while ((s64)(rq->clock - rq->age_stamp) > period) {
1280 * Inline assembly required to prevent the compiler
1281 * optimising this loop into a divmod call.
1282 * See __iter_div_u64_rem() for another example of this.
1284 asm("" : "+rm" (rq->age_stamp));
1285 rq->age_stamp += period;
1286 rq->rt_avg /= 2;
1290 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292 rq->rt_avg += rt_delta;
1293 sched_avg_update(rq);
1296 #else /* !CONFIG_SMP */
1297 static void resched_task(struct task_struct *p)
1299 assert_raw_spin_locked(&task_rq(p)->lock);
1300 set_tsk_need_resched(p);
1303 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1307 static void sched_avg_update(struct rq *rq)
1310 #endif /* CONFIG_SMP */
1312 #if BITS_PER_LONG == 32
1313 # define WMULT_CONST (~0UL)
1314 #else
1315 # define WMULT_CONST (1UL << 32)
1316 #endif
1318 #define WMULT_SHIFT 32
1321 * Shift right and round:
1323 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1326 * delta *= weight / lw
1328 static unsigned long
1329 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1330 struct load_weight *lw)
1332 u64 tmp;
1335 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1336 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1337 * 2^SCHED_LOAD_RESOLUTION.
1339 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1340 tmp = (u64)delta_exec * scale_load_down(weight);
1341 else
1342 tmp = (u64)delta_exec;
1344 if (!lw->inv_weight) {
1345 unsigned long w = scale_load_down(lw->weight);
1347 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1348 lw->inv_weight = 1;
1349 else if (unlikely(!w))
1350 lw->inv_weight = WMULT_CONST;
1351 else
1352 lw->inv_weight = WMULT_CONST / w;
1356 * Check whether we'd overflow the 64-bit multiplication:
1358 if (unlikely(tmp > WMULT_CONST))
1359 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1360 WMULT_SHIFT/2);
1361 else
1362 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1364 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1367 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1369 lw->weight += inc;
1370 lw->inv_weight = 0;
1373 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1375 lw->weight -= dec;
1376 lw->inv_weight = 0;
1379 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1381 lw->weight = w;
1382 lw->inv_weight = 0;
1386 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1387 * of tasks with abnormal "nice" values across CPUs the contribution that
1388 * each task makes to its run queue's load is weighted according to its
1389 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1390 * scaled version of the new time slice allocation that they receive on time
1391 * slice expiry etc.
1394 #define WEIGHT_IDLEPRIO 3
1395 #define WMULT_IDLEPRIO 1431655765
1398 * Nice levels are multiplicative, with a gentle 10% change for every
1399 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1400 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1401 * that remained on nice 0.
1403 * The "10% effect" is relative and cumulative: from _any_ nice level,
1404 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1405 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1406 * If a task goes up by ~10% and another task goes down by ~10% then
1407 * the relative distance between them is ~25%.)
1409 static const int prio_to_weight[40] = {
1410 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1411 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1412 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1413 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1414 /* 0 */ 1024, 820, 655, 526, 423,
1415 /* 5 */ 335, 272, 215, 172, 137,
1416 /* 10 */ 110, 87, 70, 56, 45,
1417 /* 15 */ 36, 29, 23, 18, 15,
1421 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1423 * In cases where the weight does not change often, we can use the
1424 * precalculated inverse to speed up arithmetics by turning divisions
1425 * into multiplications:
1427 static const u32 prio_to_wmult[40] = {
1428 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1429 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1430 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1431 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1432 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1433 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1434 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1435 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1438 /* Time spent by the tasks of the cpu accounting group executing in ... */
1439 enum cpuacct_stat_index {
1440 CPUACCT_STAT_USER, /* ... user mode */
1441 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1443 CPUACCT_STAT_NSTATS,
1446 #ifdef CONFIG_CGROUP_CPUACCT
1447 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1448 static void cpuacct_update_stats(struct task_struct *tsk,
1449 enum cpuacct_stat_index idx, cputime_t val);
1450 #else
1451 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1452 static inline void cpuacct_update_stats(struct task_struct *tsk,
1453 enum cpuacct_stat_index idx, cputime_t val) {}
1454 #endif
1456 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1458 update_load_add(&rq->load, load);
1461 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1463 update_load_sub(&rq->load, load);
1466 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1467 typedef int (*tg_visitor)(struct task_group *, void *);
1470 * Iterate the full tree, calling @down when first entering a node and @up when
1471 * leaving it for the final time.
1473 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1475 struct task_group *parent, *child;
1476 int ret;
1478 rcu_read_lock();
1479 parent = &root_task_group;
1480 down:
1481 ret = (*down)(parent, data);
1482 if (ret)
1483 goto out_unlock;
1484 list_for_each_entry_rcu(child, &parent->children, siblings) {
1485 parent = child;
1486 goto down;
1489 continue;
1491 ret = (*up)(parent, data);
1492 if (ret)
1493 goto out_unlock;
1495 child = parent;
1496 parent = parent->parent;
1497 if (parent)
1498 goto up;
1499 out_unlock:
1500 rcu_read_unlock();
1502 return ret;
1505 static int tg_nop(struct task_group *tg, void *data)
1507 return 0;
1509 #endif
1511 #ifdef CONFIG_SMP
1512 /* Used instead of source_load when we know the type == 0 */
1513 static unsigned long weighted_cpuload(const int cpu)
1515 return cpu_rq(cpu)->load.weight;
1519 * Return a low guess at the load of a migration-source cpu weighted
1520 * according to the scheduling class and "nice" value.
1522 * We want to under-estimate the load of migration sources, to
1523 * balance conservatively.
1525 static unsigned long source_load(int cpu, int type)
1527 struct rq *rq = cpu_rq(cpu);
1528 unsigned long total = weighted_cpuload(cpu);
1530 if (type == 0 || !sched_feat(LB_BIAS))
1531 return total;
1533 return min(rq->cpu_load[type-1], total);
1537 * Return a high guess at the load of a migration-target cpu weighted
1538 * according to the scheduling class and "nice" value.
1540 static unsigned long target_load(int cpu, int type)
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long total = weighted_cpuload(cpu);
1545 if (type == 0 || !sched_feat(LB_BIAS))
1546 return total;
1548 return max(rq->cpu_load[type-1], total);
1551 static unsigned long power_of(int cpu)
1553 return cpu_rq(cpu)->cpu_power;
1556 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1558 static unsigned long cpu_avg_load_per_task(int cpu)
1560 struct rq *rq = cpu_rq(cpu);
1561 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1563 if (nr_running)
1564 rq->avg_load_per_task = rq->load.weight / nr_running;
1565 else
1566 rq->avg_load_per_task = 0;
1568 return rq->avg_load_per_task;
1571 #ifdef CONFIG_FAIR_GROUP_SCHED
1574 * Compute the cpu's hierarchical load factor for each task group.
1575 * This needs to be done in a top-down fashion because the load of a child
1576 * group is a fraction of its parents load.
1578 static int tg_load_down(struct task_group *tg, void *data)
1580 unsigned long load;
1581 long cpu = (long)data;
1583 if (!tg->parent) {
1584 load = cpu_rq(cpu)->load.weight;
1585 } else {
1586 load = tg->parent->cfs_rq[cpu]->h_load;
1587 load *= tg->se[cpu]->load.weight;
1588 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1591 tg->cfs_rq[cpu]->h_load = load;
1593 return 0;
1596 static void update_h_load(long cpu)
1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1601 #endif
1603 #ifdef CONFIG_PREEMPT
1605 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1608 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1609 * way at the expense of forcing extra atomic operations in all
1610 * invocations. This assures that the double_lock is acquired using the
1611 * same underlying policy as the spinlock_t on this architecture, which
1612 * reduces latency compared to the unfair variant below. However, it
1613 * also adds more overhead and therefore may reduce throughput.
1615 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1616 __releases(this_rq->lock)
1617 __acquires(busiest->lock)
1618 __acquires(this_rq->lock)
1620 raw_spin_unlock(&this_rq->lock);
1621 double_rq_lock(this_rq, busiest);
1623 return 1;
1626 #else
1628 * Unfair double_lock_balance: Optimizes throughput at the expense of
1629 * latency by eliminating extra atomic operations when the locks are
1630 * already in proper order on entry. This favors lower cpu-ids and will
1631 * grant the double lock to lower cpus over higher ids under contention,
1632 * regardless of entry order into the function.
1634 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1635 __releases(this_rq->lock)
1636 __acquires(busiest->lock)
1637 __acquires(this_rq->lock)
1639 int ret = 0;
1641 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1642 if (busiest < this_rq) {
1643 raw_spin_unlock(&this_rq->lock);
1644 raw_spin_lock(&busiest->lock);
1645 raw_spin_lock_nested(&this_rq->lock,
1646 SINGLE_DEPTH_NESTING);
1647 ret = 1;
1648 } else
1649 raw_spin_lock_nested(&busiest->lock,
1650 SINGLE_DEPTH_NESTING);
1652 return ret;
1655 #endif /* CONFIG_PREEMPT */
1658 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1660 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 if (unlikely(!irqs_disabled())) {
1663 /* printk() doesn't work good under rq->lock */
1664 raw_spin_unlock(&this_rq->lock);
1665 BUG_ON(1);
1668 return _double_lock_balance(this_rq, busiest);
1671 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1672 __releases(busiest->lock)
1674 raw_spin_unlock(&busiest->lock);
1675 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1679 * double_rq_lock - safely lock two runqueues
1681 * Note this does not disable interrupts like task_rq_lock,
1682 * you need to do so manually before calling.
1684 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1685 __acquires(rq1->lock)
1686 __acquires(rq2->lock)
1688 BUG_ON(!irqs_disabled());
1689 if (rq1 == rq2) {
1690 raw_spin_lock(&rq1->lock);
1691 __acquire(rq2->lock); /* Fake it out ;) */
1692 } else {
1693 if (rq1 < rq2) {
1694 raw_spin_lock(&rq1->lock);
1695 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1696 } else {
1697 raw_spin_lock(&rq2->lock);
1698 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1704 * double_rq_unlock - safely unlock two runqueues
1706 * Note this does not restore interrupts like task_rq_unlock,
1707 * you need to do so manually after calling.
1709 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1710 __releases(rq1->lock)
1711 __releases(rq2->lock)
1713 raw_spin_unlock(&rq1->lock);
1714 if (rq1 != rq2)
1715 raw_spin_unlock(&rq2->lock);
1716 else
1717 __release(rq2->lock);
1720 #else /* CONFIG_SMP */
1723 * double_rq_lock - safely lock two runqueues
1725 * Note this does not disable interrupts like task_rq_lock,
1726 * you need to do so manually before calling.
1728 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1729 __acquires(rq1->lock)
1730 __acquires(rq2->lock)
1732 BUG_ON(!irqs_disabled());
1733 BUG_ON(rq1 != rq2);
1734 raw_spin_lock(&rq1->lock);
1735 __acquire(rq2->lock); /* Fake it out ;) */
1739 * double_rq_unlock - safely unlock two runqueues
1741 * Note this does not restore interrupts like task_rq_unlock,
1742 * you need to do so manually after calling.
1744 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1745 __releases(rq1->lock)
1746 __releases(rq2->lock)
1748 BUG_ON(rq1 != rq2);
1749 raw_spin_unlock(&rq1->lock);
1750 __release(rq2->lock);
1753 #endif
1755 static void calc_load_account_idle(struct rq *this_rq);
1756 static void update_sysctl(void);
1757 static int get_update_sysctl_factor(void);
1758 static void update_cpu_load(struct rq *this_rq);
1760 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1762 set_task_rq(p, cpu);
1763 #ifdef CONFIG_SMP
1765 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1766 * successfuly executed on another CPU. We must ensure that updates of
1767 * per-task data have been completed by this moment.
1769 smp_wmb();
1770 task_thread_info(p)->cpu = cpu;
1771 #endif
1774 static const struct sched_class rt_sched_class;
1776 #define sched_class_highest (&stop_sched_class)
1777 #define for_each_class(class) \
1778 for (class = sched_class_highest; class; class = class->next)
1780 #include "sched_stats.h"
1782 static void inc_nr_running(struct rq *rq)
1784 rq->nr_running++;
1787 static void dec_nr_running(struct rq *rq)
1789 rq->nr_running--;
1792 static void set_load_weight(struct task_struct *p)
1794 int prio = p->static_prio - MAX_RT_PRIO;
1795 struct load_weight *load = &p->se.load;
1798 * SCHED_IDLE tasks get minimal weight:
1800 if (p->policy == SCHED_IDLE) {
1801 load->weight = scale_load(WEIGHT_IDLEPRIO);
1802 load->inv_weight = WMULT_IDLEPRIO;
1803 return;
1806 load->weight = scale_load(prio_to_weight[prio]);
1807 load->inv_weight = prio_to_wmult[prio];
1810 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1812 update_rq_clock(rq);
1813 sched_info_queued(p);
1814 p->sched_class->enqueue_task(rq, p, flags);
1817 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1819 update_rq_clock(rq);
1820 sched_info_dequeued(p);
1821 p->sched_class->dequeue_task(rq, p, flags);
1825 * activate_task - move a task to the runqueue.
1827 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1829 if (task_contributes_to_load(p))
1830 rq->nr_uninterruptible--;
1832 enqueue_task(rq, p, flags);
1833 inc_nr_running(rq);
1837 * deactivate_task - remove a task from the runqueue.
1839 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1841 if (task_contributes_to_load(p))
1842 rq->nr_uninterruptible++;
1844 dequeue_task(rq, p, flags);
1845 dec_nr_running(rq);
1848 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1851 * There are no locks covering percpu hardirq/softirq time.
1852 * They are only modified in account_system_vtime, on corresponding CPU
1853 * with interrupts disabled. So, writes are safe.
1854 * They are read and saved off onto struct rq in update_rq_clock().
1855 * This may result in other CPU reading this CPU's irq time and can
1856 * race with irq/account_system_vtime on this CPU. We would either get old
1857 * or new value with a side effect of accounting a slice of irq time to wrong
1858 * task when irq is in progress while we read rq->clock. That is a worthy
1859 * compromise in place of having locks on each irq in account_system_time.
1861 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1862 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1864 static DEFINE_PER_CPU(u64, irq_start_time);
1865 static int sched_clock_irqtime;
1867 void enable_sched_clock_irqtime(void)
1869 sched_clock_irqtime = 1;
1872 void disable_sched_clock_irqtime(void)
1874 sched_clock_irqtime = 0;
1877 #ifndef CONFIG_64BIT
1878 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1880 static inline void irq_time_write_begin(void)
1882 __this_cpu_inc(irq_time_seq.sequence);
1883 smp_wmb();
1886 static inline void irq_time_write_end(void)
1888 smp_wmb();
1889 __this_cpu_inc(irq_time_seq.sequence);
1892 static inline u64 irq_time_read(int cpu)
1894 u64 irq_time;
1895 unsigned seq;
1897 do {
1898 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1899 irq_time = per_cpu(cpu_softirq_time, cpu) +
1900 per_cpu(cpu_hardirq_time, cpu);
1901 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1903 return irq_time;
1905 #else /* CONFIG_64BIT */
1906 static inline void irq_time_write_begin(void)
1910 static inline void irq_time_write_end(void)
1914 static inline u64 irq_time_read(int cpu)
1916 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1918 #endif /* CONFIG_64BIT */
1921 * Called before incrementing preempt_count on {soft,}irq_enter
1922 * and before decrementing preempt_count on {soft,}irq_exit.
1924 void account_system_vtime(struct task_struct *curr)
1926 unsigned long flags;
1927 s64 delta;
1928 int cpu;
1930 if (!sched_clock_irqtime)
1931 return;
1933 local_irq_save(flags);
1935 cpu = smp_processor_id();
1936 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1937 __this_cpu_add(irq_start_time, delta);
1939 irq_time_write_begin();
1941 * We do not account for softirq time from ksoftirqd here.
1942 * We want to continue accounting softirq time to ksoftirqd thread
1943 * in that case, so as not to confuse scheduler with a special task
1944 * that do not consume any time, but still wants to run.
1946 if (hardirq_count())
1947 __this_cpu_add(cpu_hardirq_time, delta);
1948 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1949 __this_cpu_add(cpu_softirq_time, delta);
1951 irq_time_write_end();
1952 local_irq_restore(flags);
1954 EXPORT_SYMBOL_GPL(account_system_vtime);
1956 static void update_rq_clock_task(struct rq *rq, s64 delta)
1958 s64 irq_delta;
1960 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1963 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1964 * this case when a previous update_rq_clock() happened inside a
1965 * {soft,}irq region.
1967 * When this happens, we stop ->clock_task and only update the
1968 * prev_irq_time stamp to account for the part that fit, so that a next
1969 * update will consume the rest. This ensures ->clock_task is
1970 * monotonic.
1972 * It does however cause some slight miss-attribution of {soft,}irq
1973 * time, a more accurate solution would be to update the irq_time using
1974 * the current rq->clock timestamp, except that would require using
1975 * atomic ops.
1977 if (irq_delta > delta)
1978 irq_delta = delta;
1980 rq->prev_irq_time += irq_delta;
1981 delta -= irq_delta;
1982 rq->clock_task += delta;
1984 if (irq_delta && sched_feat(NONIRQ_POWER))
1985 sched_rt_avg_update(rq, irq_delta);
1988 static int irqtime_account_hi_update(void)
1990 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1991 unsigned long flags;
1992 u64 latest_ns;
1993 int ret = 0;
1995 local_irq_save(flags);
1996 latest_ns = this_cpu_read(cpu_hardirq_time);
1997 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1998 ret = 1;
1999 local_irq_restore(flags);
2000 return ret;
2003 static int irqtime_account_si_update(void)
2005 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2006 unsigned long flags;
2007 u64 latest_ns;
2008 int ret = 0;
2010 local_irq_save(flags);
2011 latest_ns = this_cpu_read(cpu_softirq_time);
2012 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2013 ret = 1;
2014 local_irq_restore(flags);
2015 return ret;
2018 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2020 #define sched_clock_irqtime (0)
2022 static void update_rq_clock_task(struct rq *rq, s64 delta)
2024 rq->clock_task += delta;
2027 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2029 #include "sched_idletask.c"
2030 #include "sched_fair.c"
2031 #include "sched_rt.c"
2032 #include "sched_autogroup.c"
2033 #include "sched_stoptask.c"
2034 #ifdef CONFIG_SCHED_DEBUG
2035 # include "sched_debug.c"
2036 #endif
2038 void sched_set_stop_task(int cpu, struct task_struct *stop)
2040 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2041 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2043 if (stop) {
2045 * Make it appear like a SCHED_FIFO task, its something
2046 * userspace knows about and won't get confused about.
2048 * Also, it will make PI more or less work without too
2049 * much confusion -- but then, stop work should not
2050 * rely on PI working anyway.
2052 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2054 stop->sched_class = &stop_sched_class;
2057 cpu_rq(cpu)->stop = stop;
2059 if (old_stop) {
2061 * Reset it back to a normal scheduling class so that
2062 * it can die in pieces.
2064 old_stop->sched_class = &rt_sched_class;
2069 * __normal_prio - return the priority that is based on the static prio
2071 static inline int __normal_prio(struct task_struct *p)
2073 return p->static_prio;
2077 * Calculate the expected normal priority: i.e. priority
2078 * without taking RT-inheritance into account. Might be
2079 * boosted by interactivity modifiers. Changes upon fork,
2080 * setprio syscalls, and whenever the interactivity
2081 * estimator recalculates.
2083 static inline int normal_prio(struct task_struct *p)
2085 int prio;
2087 if (task_has_rt_policy(p))
2088 prio = MAX_RT_PRIO-1 - p->rt_priority;
2089 else
2090 prio = __normal_prio(p);
2091 return prio;
2095 * Calculate the current priority, i.e. the priority
2096 * taken into account by the scheduler. This value might
2097 * be boosted by RT tasks, or might be boosted by
2098 * interactivity modifiers. Will be RT if the task got
2099 * RT-boosted. If not then it returns p->normal_prio.
2101 static int effective_prio(struct task_struct *p)
2103 p->normal_prio = normal_prio(p);
2105 * If we are RT tasks or we were boosted to RT priority,
2106 * keep the priority unchanged. Otherwise, update priority
2107 * to the normal priority:
2109 if (!rt_prio(p->prio))
2110 return p->normal_prio;
2111 return p->prio;
2115 * task_curr - is this task currently executing on a CPU?
2116 * @p: the task in question.
2118 inline int task_curr(const struct task_struct *p)
2120 return cpu_curr(task_cpu(p)) == p;
2123 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2124 const struct sched_class *prev_class,
2125 int oldprio)
2127 if (prev_class != p->sched_class) {
2128 if (prev_class->switched_from)
2129 prev_class->switched_from(rq, p);
2130 p->sched_class->switched_to(rq, p);
2131 } else if (oldprio != p->prio)
2132 p->sched_class->prio_changed(rq, p, oldprio);
2135 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2137 const struct sched_class *class;
2139 if (p->sched_class == rq->curr->sched_class) {
2140 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2141 } else {
2142 for_each_class(class) {
2143 if (class == rq->curr->sched_class)
2144 break;
2145 if (class == p->sched_class) {
2146 resched_task(rq->curr);
2147 break;
2153 * A queue event has occurred, and we're going to schedule. In
2154 * this case, we can save a useless back to back clock update.
2156 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2157 rq->skip_clock_update = 1;
2160 #ifdef CONFIG_SMP
2162 * Is this task likely cache-hot:
2164 static int
2165 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2167 s64 delta;
2169 if (p->sched_class != &fair_sched_class)
2170 return 0;
2172 if (unlikely(p->policy == SCHED_IDLE))
2173 return 0;
2176 * Buddy candidates are cache hot:
2178 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2179 (&p->se == cfs_rq_of(&p->se)->next ||
2180 &p->se == cfs_rq_of(&p->se)->last))
2181 return 1;
2183 if (sysctl_sched_migration_cost == -1)
2184 return 1;
2185 if (sysctl_sched_migration_cost == 0)
2186 return 0;
2188 delta = now - p->se.exec_start;
2190 return delta < (s64)sysctl_sched_migration_cost;
2193 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2195 #ifdef CONFIG_SCHED_DEBUG
2197 * We should never call set_task_cpu() on a blocked task,
2198 * ttwu() will sort out the placement.
2200 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2201 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2203 #ifdef CONFIG_LOCKDEP
2205 * The caller should hold either p->pi_lock or rq->lock, when changing
2206 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2208 * sched_move_task() holds both and thus holding either pins the cgroup,
2209 * see set_task_rq().
2211 * Furthermore, all task_rq users should acquire both locks, see
2212 * task_rq_lock().
2214 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2215 lockdep_is_held(&task_rq(p)->lock)));
2216 #endif
2217 #endif
2219 trace_sched_migrate_task(p, new_cpu);
2221 if (task_cpu(p) != new_cpu) {
2222 p->se.nr_migrations++;
2223 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2226 __set_task_cpu(p, new_cpu);
2229 struct migration_arg {
2230 struct task_struct *task;
2231 int dest_cpu;
2234 static int migration_cpu_stop(void *data);
2237 * wait_task_inactive - wait for a thread to unschedule.
2239 * If @match_state is nonzero, it's the @p->state value just checked and
2240 * not expected to change. If it changes, i.e. @p might have woken up,
2241 * then return zero. When we succeed in waiting for @p to be off its CPU,
2242 * we return a positive number (its total switch count). If a second call
2243 * a short while later returns the same number, the caller can be sure that
2244 * @p has remained unscheduled the whole time.
2246 * The caller must ensure that the task *will* unschedule sometime soon,
2247 * else this function might spin for a *long* time. This function can't
2248 * be called with interrupts off, or it may introduce deadlock with
2249 * smp_call_function() if an IPI is sent by the same process we are
2250 * waiting to become inactive.
2252 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2254 unsigned long flags;
2255 int running, on_rq;
2256 unsigned long ncsw;
2257 struct rq *rq;
2259 for (;;) {
2261 * We do the initial early heuristics without holding
2262 * any task-queue locks at all. We'll only try to get
2263 * the runqueue lock when things look like they will
2264 * work out!
2266 rq = task_rq(p);
2269 * If the task is actively running on another CPU
2270 * still, just relax and busy-wait without holding
2271 * any locks.
2273 * NOTE! Since we don't hold any locks, it's not
2274 * even sure that "rq" stays as the right runqueue!
2275 * But we don't care, since "task_running()" will
2276 * return false if the runqueue has changed and p
2277 * is actually now running somewhere else!
2279 while (task_running(rq, p)) {
2280 if (match_state && unlikely(p->state != match_state))
2281 return 0;
2282 cpu_relax();
2286 * Ok, time to look more closely! We need the rq
2287 * lock now, to be *sure*. If we're wrong, we'll
2288 * just go back and repeat.
2290 rq = task_rq_lock(p, &flags);
2291 trace_sched_wait_task(p);
2292 running = task_running(rq, p);
2293 on_rq = p->on_rq;
2294 ncsw = 0;
2295 if (!match_state || p->state == match_state)
2296 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2297 task_rq_unlock(rq, p, &flags);
2300 * If it changed from the expected state, bail out now.
2302 if (unlikely(!ncsw))
2303 break;
2306 * Was it really running after all now that we
2307 * checked with the proper locks actually held?
2309 * Oops. Go back and try again..
2311 if (unlikely(running)) {
2312 cpu_relax();
2313 continue;
2317 * It's not enough that it's not actively running,
2318 * it must be off the runqueue _entirely_, and not
2319 * preempted!
2321 * So if it was still runnable (but just not actively
2322 * running right now), it's preempted, and we should
2323 * yield - it could be a while.
2325 if (unlikely(on_rq)) {
2326 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2328 set_current_state(TASK_UNINTERRUPTIBLE);
2329 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2330 continue;
2334 * Ahh, all good. It wasn't running, and it wasn't
2335 * runnable, which means that it will never become
2336 * running in the future either. We're all done!
2338 break;
2341 return ncsw;
2344 /***
2345 * kick_process - kick a running thread to enter/exit the kernel
2346 * @p: the to-be-kicked thread
2348 * Cause a process which is running on another CPU to enter
2349 * kernel-mode, without any delay. (to get signals handled.)
2351 * NOTE: this function doesn't have to take the runqueue lock,
2352 * because all it wants to ensure is that the remote task enters
2353 * the kernel. If the IPI races and the task has been migrated
2354 * to another CPU then no harm is done and the purpose has been
2355 * achieved as well.
2357 void kick_process(struct task_struct *p)
2359 int cpu;
2361 preempt_disable();
2362 cpu = task_cpu(p);
2363 if ((cpu != smp_processor_id()) && task_curr(p))
2364 smp_send_reschedule(cpu);
2365 preempt_enable();
2367 EXPORT_SYMBOL_GPL(kick_process);
2368 #endif /* CONFIG_SMP */
2370 #ifdef CONFIG_SMP
2372 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2374 static int select_fallback_rq(int cpu, struct task_struct *p)
2376 int dest_cpu;
2377 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2379 /* Look for allowed, online CPU in same node. */
2380 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2381 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2382 return dest_cpu;
2384 /* Any allowed, online CPU? */
2385 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2386 if (dest_cpu < nr_cpu_ids)
2387 return dest_cpu;
2389 /* No more Mr. Nice Guy. */
2390 dest_cpu = cpuset_cpus_allowed_fallback(p);
2392 * Don't tell them about moving exiting tasks or
2393 * kernel threads (both mm NULL), since they never
2394 * leave kernel.
2396 if (p->mm && printk_ratelimit()) {
2397 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2398 task_pid_nr(p), p->comm, cpu);
2401 return dest_cpu;
2405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2407 static inline
2408 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2410 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2413 * In order not to call set_task_cpu() on a blocking task we need
2414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2415 * cpu.
2417 * Since this is common to all placement strategies, this lives here.
2419 * [ this allows ->select_task() to simply return task_cpu(p) and
2420 * not worry about this generic constraint ]
2422 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2423 !cpu_online(cpu)))
2424 cpu = select_fallback_rq(task_cpu(p), p);
2426 return cpu;
2429 static void update_avg(u64 *avg, u64 sample)
2431 s64 diff = sample - *avg;
2432 *avg += diff >> 3;
2434 #endif
2436 static void
2437 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2439 #ifdef CONFIG_SCHEDSTATS
2440 struct rq *rq = this_rq();
2442 #ifdef CONFIG_SMP
2443 int this_cpu = smp_processor_id();
2445 if (cpu == this_cpu) {
2446 schedstat_inc(rq, ttwu_local);
2447 schedstat_inc(p, se.statistics.nr_wakeups_local);
2448 } else {
2449 struct sched_domain *sd;
2451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2452 rcu_read_lock();
2453 for_each_domain(this_cpu, sd) {
2454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2455 schedstat_inc(sd, ttwu_wake_remote);
2456 break;
2459 rcu_read_unlock();
2462 if (wake_flags & WF_MIGRATED)
2463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2465 #endif /* CONFIG_SMP */
2467 schedstat_inc(rq, ttwu_count);
2468 schedstat_inc(p, se.statistics.nr_wakeups);
2470 if (wake_flags & WF_SYNC)
2471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2473 #endif /* CONFIG_SCHEDSTATS */
2476 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2478 activate_task(rq, p, en_flags);
2479 p->on_rq = 1;
2481 /* if a worker is waking up, notify workqueue */
2482 if (p->flags & PF_WQ_WORKER)
2483 wq_worker_waking_up(p, cpu_of(rq));
2487 * Mark the task runnable and perform wakeup-preemption.
2489 static void
2490 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2492 trace_sched_wakeup(p, true);
2493 check_preempt_curr(rq, p, wake_flags);
2495 p->state = TASK_RUNNING;
2496 #ifdef CONFIG_SMP
2497 if (p->sched_class->task_woken)
2498 p->sched_class->task_woken(rq, p);
2500 if (unlikely(rq->idle_stamp)) {
2501 u64 delta = rq->clock - rq->idle_stamp;
2502 u64 max = 2*sysctl_sched_migration_cost;
2504 if (delta > max)
2505 rq->avg_idle = max;
2506 else
2507 update_avg(&rq->avg_idle, delta);
2508 rq->idle_stamp = 0;
2510 #endif
2513 static void
2514 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2516 #ifdef CONFIG_SMP
2517 if (p->sched_contributes_to_load)
2518 rq->nr_uninterruptible--;
2519 #endif
2521 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2522 ttwu_do_wakeup(rq, p, wake_flags);
2526 * Called in case the task @p isn't fully descheduled from its runqueue,
2527 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2528 * since all we need to do is flip p->state to TASK_RUNNING, since
2529 * the task is still ->on_rq.
2531 static int ttwu_remote(struct task_struct *p, int wake_flags)
2533 struct rq *rq;
2534 int ret = 0;
2536 rq = __task_rq_lock(p);
2537 if (p->on_rq) {
2538 ttwu_do_wakeup(rq, p, wake_flags);
2539 ret = 1;
2541 __task_rq_unlock(rq);
2543 return ret;
2546 #ifdef CONFIG_SMP
2547 static void sched_ttwu_do_pending(struct task_struct *list)
2549 struct rq *rq = this_rq();
2551 raw_spin_lock(&rq->lock);
2553 while (list) {
2554 struct task_struct *p = list;
2555 list = list->wake_entry;
2556 ttwu_do_activate(rq, p, 0);
2559 raw_spin_unlock(&rq->lock);
2562 #ifdef CONFIG_HOTPLUG_CPU
2564 static void sched_ttwu_pending(void)
2566 struct rq *rq = this_rq();
2567 struct task_struct *list = xchg(&rq->wake_list, NULL);
2569 if (!list)
2570 return;
2572 sched_ttwu_do_pending(list);
2575 #endif /* CONFIG_HOTPLUG_CPU */
2577 void scheduler_ipi(void)
2579 struct rq *rq = this_rq();
2580 struct task_struct *list = xchg(&rq->wake_list, NULL);
2582 if (!list)
2583 return;
2586 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2587 * traditionally all their work was done from the interrupt return
2588 * path. Now that we actually do some work, we need to make sure
2589 * we do call them.
2591 * Some archs already do call them, luckily irq_enter/exit nest
2592 * properly.
2594 * Arguably we should visit all archs and update all handlers,
2595 * however a fair share of IPIs are still resched only so this would
2596 * somewhat pessimize the simple resched case.
2598 irq_enter();
2599 sched_ttwu_do_pending(list);
2600 irq_exit();
2603 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2605 struct rq *rq = cpu_rq(cpu);
2606 struct task_struct *next = rq->wake_list;
2608 for (;;) {
2609 struct task_struct *old = next;
2611 p->wake_entry = next;
2612 next = cmpxchg(&rq->wake_list, old, p);
2613 if (next == old)
2614 break;
2617 if (!next)
2618 smp_send_reschedule(cpu);
2621 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2622 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2624 struct rq *rq;
2625 int ret = 0;
2627 rq = __task_rq_lock(p);
2628 if (p->on_cpu) {
2629 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2630 ttwu_do_wakeup(rq, p, wake_flags);
2631 ret = 1;
2633 __task_rq_unlock(rq);
2635 return ret;
2638 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2639 #endif /* CONFIG_SMP */
2641 static void ttwu_queue(struct task_struct *p, int cpu)
2643 struct rq *rq = cpu_rq(cpu);
2645 #if defined(CONFIG_SMP)
2646 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2647 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2648 ttwu_queue_remote(p, cpu);
2649 return;
2651 #endif
2653 raw_spin_lock(&rq->lock);
2654 ttwu_do_activate(rq, p, 0);
2655 raw_spin_unlock(&rq->lock);
2659 * try_to_wake_up - wake up a thread
2660 * @p: the thread to be awakened
2661 * @state: the mask of task states that can be woken
2662 * @wake_flags: wake modifier flags (WF_*)
2664 * Put it on the run-queue if it's not already there. The "current"
2665 * thread is always on the run-queue (except when the actual
2666 * re-schedule is in progress), and as such you're allowed to do
2667 * the simpler "current->state = TASK_RUNNING" to mark yourself
2668 * runnable without the overhead of this.
2670 * Returns %true if @p was woken up, %false if it was already running
2671 * or @state didn't match @p's state.
2673 static int
2674 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2676 unsigned long flags;
2677 int cpu, success = 0;
2679 smp_wmb();
2680 raw_spin_lock_irqsave(&p->pi_lock, flags);
2681 if (!(p->state & state))
2682 goto out;
2684 success = 1; /* we're going to change ->state */
2685 cpu = task_cpu(p);
2687 if (p->on_rq && ttwu_remote(p, wake_flags))
2688 goto stat;
2690 #ifdef CONFIG_SMP
2692 * If the owning (remote) cpu is still in the middle of schedule() with
2693 * this task as prev, wait until its done referencing the task.
2695 while (p->on_cpu) {
2696 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2698 * In case the architecture enables interrupts in
2699 * context_switch(), we cannot busy wait, since that
2700 * would lead to deadlocks when an interrupt hits and
2701 * tries to wake up @prev. So bail and do a complete
2702 * remote wakeup.
2704 if (ttwu_activate_remote(p, wake_flags))
2705 goto stat;
2706 #else
2707 cpu_relax();
2708 #endif
2711 * Pairs with the smp_wmb() in finish_lock_switch().
2713 smp_rmb();
2715 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2716 p->state = TASK_WAKING;
2718 if (p->sched_class->task_waking)
2719 p->sched_class->task_waking(p);
2721 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2722 if (task_cpu(p) != cpu) {
2723 wake_flags |= WF_MIGRATED;
2724 set_task_cpu(p, cpu);
2726 #endif /* CONFIG_SMP */
2728 ttwu_queue(p, cpu);
2729 stat:
2730 ttwu_stat(p, cpu, wake_flags);
2731 out:
2732 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2734 return success;
2738 * try_to_wake_up_local - try to wake up a local task with rq lock held
2739 * @p: the thread to be awakened
2741 * Put @p on the run-queue if it's not already there. The caller must
2742 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2743 * the current task.
2745 static void try_to_wake_up_local(struct task_struct *p)
2747 struct rq *rq = task_rq(p);
2749 BUG_ON(rq != this_rq());
2750 BUG_ON(p == current);
2751 lockdep_assert_held(&rq->lock);
2753 if (!raw_spin_trylock(&p->pi_lock)) {
2754 raw_spin_unlock(&rq->lock);
2755 raw_spin_lock(&p->pi_lock);
2756 raw_spin_lock(&rq->lock);
2759 if (!(p->state & TASK_NORMAL))
2760 goto out;
2762 if (!p->on_rq)
2763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2765 ttwu_do_wakeup(rq, p, 0);
2766 ttwu_stat(p, smp_processor_id(), 0);
2767 out:
2768 raw_spin_unlock(&p->pi_lock);
2772 * wake_up_process - Wake up a specific process
2773 * @p: The process to be woken up.
2775 * Attempt to wake up the nominated process and move it to the set of runnable
2776 * processes. Returns 1 if the process was woken up, 0 if it was already
2777 * running.
2779 * It may be assumed that this function implies a write memory barrier before
2780 * changing the task state if and only if any tasks are woken up.
2782 int wake_up_process(struct task_struct *p)
2784 return try_to_wake_up(p, TASK_ALL, 0);
2786 EXPORT_SYMBOL(wake_up_process);
2788 int wake_up_state(struct task_struct *p, unsigned int state)
2790 return try_to_wake_up(p, state, 0);
2794 * Perform scheduler related setup for a newly forked process p.
2795 * p is forked by current.
2797 * __sched_fork() is basic setup used by init_idle() too:
2799 static void __sched_fork(struct task_struct *p)
2801 p->on_rq = 0;
2803 p->se.on_rq = 0;
2804 p->se.exec_start = 0;
2805 p->se.sum_exec_runtime = 0;
2806 p->se.prev_sum_exec_runtime = 0;
2807 p->se.nr_migrations = 0;
2808 p->se.vruntime = 0;
2809 INIT_LIST_HEAD(&p->se.group_node);
2811 #ifdef CONFIG_SCHEDSTATS
2812 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2813 #endif
2815 INIT_LIST_HEAD(&p->rt.run_list);
2817 #ifdef CONFIG_PREEMPT_NOTIFIERS
2818 INIT_HLIST_HEAD(&p->preempt_notifiers);
2819 #endif
2823 * fork()/clone()-time setup:
2825 void sched_fork(struct task_struct *p)
2827 unsigned long flags;
2828 int cpu = get_cpu();
2830 __sched_fork(p);
2832 * We mark the process as running here. This guarantees that
2833 * nobody will actually run it, and a signal or other external
2834 * event cannot wake it up and insert it on the runqueue either.
2836 p->state = TASK_RUNNING;
2839 * Revert to default priority/policy on fork if requested.
2841 if (unlikely(p->sched_reset_on_fork)) {
2842 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2843 p->policy = SCHED_NORMAL;
2844 p->normal_prio = p->static_prio;
2847 if (PRIO_TO_NICE(p->static_prio) < 0) {
2848 p->static_prio = NICE_TO_PRIO(0);
2849 p->normal_prio = p->static_prio;
2850 set_load_weight(p);
2854 * We don't need the reset flag anymore after the fork. It has
2855 * fulfilled its duty:
2857 p->sched_reset_on_fork = 0;
2861 * Make sure we do not leak PI boosting priority to the child.
2863 p->prio = current->normal_prio;
2865 if (!rt_prio(p->prio))
2866 p->sched_class = &fair_sched_class;
2868 if (p->sched_class->task_fork)
2869 p->sched_class->task_fork(p);
2872 * The child is not yet in the pid-hash so no cgroup attach races,
2873 * and the cgroup is pinned to this child due to cgroup_fork()
2874 * is ran before sched_fork().
2876 * Silence PROVE_RCU.
2878 raw_spin_lock_irqsave(&p->pi_lock, flags);
2879 set_task_cpu(p, cpu);
2880 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2882 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2883 if (likely(sched_info_on()))
2884 memset(&p->sched_info, 0, sizeof(p->sched_info));
2885 #endif
2886 #if defined(CONFIG_SMP)
2887 p->on_cpu = 0;
2888 #endif
2889 #ifdef CONFIG_PREEMPT
2890 /* Want to start with kernel preemption disabled. */
2891 task_thread_info(p)->preempt_count = 1;
2892 #endif
2893 #ifdef CONFIG_SMP
2894 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2895 #endif
2897 put_cpu();
2901 * wake_up_new_task - wake up a newly created task for the first time.
2903 * This function will do some initial scheduler statistics housekeeping
2904 * that must be done for every newly created context, then puts the task
2905 * on the runqueue and wakes it.
2907 void wake_up_new_task(struct task_struct *p)
2909 unsigned long flags;
2910 struct rq *rq;
2912 raw_spin_lock_irqsave(&p->pi_lock, flags);
2913 #ifdef CONFIG_SMP
2915 * Fork balancing, do it here and not earlier because:
2916 * - cpus_allowed can change in the fork path
2917 * - any previously selected cpu might disappear through hotplug
2919 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2920 #endif
2922 rq = __task_rq_lock(p);
2923 activate_task(rq, p, 0);
2924 p->on_rq = 1;
2925 trace_sched_wakeup_new(p, true);
2926 check_preempt_curr(rq, p, WF_FORK);
2927 #ifdef CONFIG_SMP
2928 if (p->sched_class->task_woken)
2929 p->sched_class->task_woken(rq, p);
2930 #endif
2931 task_rq_unlock(rq, p, &flags);
2934 #ifdef CONFIG_PREEMPT_NOTIFIERS
2937 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2938 * @notifier: notifier struct to register
2940 void preempt_notifier_register(struct preempt_notifier *notifier)
2942 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2944 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2947 * preempt_notifier_unregister - no longer interested in preemption notifications
2948 * @notifier: notifier struct to unregister
2950 * This is safe to call from within a preemption notifier.
2952 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2954 hlist_del(&notifier->link);
2956 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2958 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2960 struct preempt_notifier *notifier;
2961 struct hlist_node *node;
2963 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2964 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2967 static void
2968 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2969 struct task_struct *next)
2971 struct preempt_notifier *notifier;
2972 struct hlist_node *node;
2974 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2975 notifier->ops->sched_out(notifier, next);
2978 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2980 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2984 static void
2985 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2986 struct task_struct *next)
2990 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2993 * prepare_task_switch - prepare to switch tasks
2994 * @rq: the runqueue preparing to switch
2995 * @prev: the current task that is being switched out
2996 * @next: the task we are going to switch to.
2998 * This is called with the rq lock held and interrupts off. It must
2999 * be paired with a subsequent finish_task_switch after the context
3000 * switch.
3002 * prepare_task_switch sets up locking and calls architecture specific
3003 * hooks.
3005 static inline void
3006 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3007 struct task_struct *next)
3009 sched_info_switch(prev, next);
3010 perf_event_task_sched_out(prev, next);
3011 fire_sched_out_preempt_notifiers(prev, next);
3012 prepare_lock_switch(rq, next);
3013 prepare_arch_switch(next);
3014 trace_sched_switch(prev, next);
3018 * finish_task_switch - clean up after a task-switch
3019 * @rq: runqueue associated with task-switch
3020 * @prev: the thread we just switched away from.
3022 * finish_task_switch must be called after the context switch, paired
3023 * with a prepare_task_switch call before the context switch.
3024 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3025 * and do any other architecture-specific cleanup actions.
3027 * Note that we may have delayed dropping an mm in context_switch(). If
3028 * so, we finish that here outside of the runqueue lock. (Doing it
3029 * with the lock held can cause deadlocks; see schedule() for
3030 * details.)
3032 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3033 __releases(rq->lock)
3035 struct mm_struct *mm = rq->prev_mm;
3036 long prev_state;
3038 rq->prev_mm = NULL;
3041 * A task struct has one reference for the use as "current".
3042 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3043 * schedule one last time. The schedule call will never return, and
3044 * the scheduled task must drop that reference.
3045 * The test for TASK_DEAD must occur while the runqueue locks are
3046 * still held, otherwise prev could be scheduled on another cpu, die
3047 * there before we look at prev->state, and then the reference would
3048 * be dropped twice.
3049 * Manfred Spraul <manfred@colorfullife.com>
3051 prev_state = prev->state;
3052 finish_arch_switch(prev);
3053 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3054 local_irq_disable();
3055 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3056 perf_event_task_sched_in(current);
3057 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3058 local_irq_enable();
3059 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3060 finish_lock_switch(rq, prev);
3062 fire_sched_in_preempt_notifiers(current);
3063 if (mm)
3064 mmdrop(mm);
3065 if (unlikely(prev_state == TASK_DEAD)) {
3067 * Remove function-return probe instances associated with this
3068 * task and put them back on the free list.
3070 kprobe_flush_task(prev);
3071 put_task_struct(prev);
3075 #ifdef CONFIG_SMP
3077 /* assumes rq->lock is held */
3078 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3080 if (prev->sched_class->pre_schedule)
3081 prev->sched_class->pre_schedule(rq, prev);
3084 /* rq->lock is NOT held, but preemption is disabled */
3085 static inline void post_schedule(struct rq *rq)
3087 if (rq->post_schedule) {
3088 unsigned long flags;
3090 raw_spin_lock_irqsave(&rq->lock, flags);
3091 if (rq->curr->sched_class->post_schedule)
3092 rq->curr->sched_class->post_schedule(rq);
3093 raw_spin_unlock_irqrestore(&rq->lock, flags);
3095 rq->post_schedule = 0;
3099 #else
3101 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3105 static inline void post_schedule(struct rq *rq)
3109 #endif
3112 * schedule_tail - first thing a freshly forked thread must call.
3113 * @prev: the thread we just switched away from.
3115 asmlinkage void schedule_tail(struct task_struct *prev)
3116 __releases(rq->lock)
3118 struct rq *rq = this_rq();
3120 finish_task_switch(rq, prev);
3123 * FIXME: do we need to worry about rq being invalidated by the
3124 * task_switch?
3126 post_schedule(rq);
3128 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3129 /* In this case, finish_task_switch does not reenable preemption */
3130 preempt_enable();
3131 #endif
3132 if (current->set_child_tid)
3133 put_user(task_pid_vnr(current), current->set_child_tid);
3137 * context_switch - switch to the new MM and the new
3138 * thread's register state.
3140 static inline void
3141 context_switch(struct rq *rq, struct task_struct *prev,
3142 struct task_struct *next)
3144 struct mm_struct *mm, *oldmm;
3146 prepare_task_switch(rq, prev, next);
3148 mm = next->mm;
3149 oldmm = prev->active_mm;
3151 * For paravirt, this is coupled with an exit in switch_to to
3152 * combine the page table reload and the switch backend into
3153 * one hypercall.
3155 arch_start_context_switch(prev);
3157 if (!mm) {
3158 next->active_mm = oldmm;
3159 atomic_inc(&oldmm->mm_count);
3160 enter_lazy_tlb(oldmm, next);
3161 } else
3162 switch_mm(oldmm, mm, next);
3164 if (!prev->mm) {
3165 prev->active_mm = NULL;
3166 rq->prev_mm = oldmm;
3169 * Since the runqueue lock will be released by the next
3170 * task (which is an invalid locking op but in the case
3171 * of the scheduler it's an obvious special-case), so we
3172 * do an early lockdep release here:
3174 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3175 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3176 #endif
3178 /* Here we just switch the register state and the stack. */
3179 switch_to(prev, next, prev);
3181 barrier();
3183 * this_rq must be evaluated again because prev may have moved
3184 * CPUs since it called schedule(), thus the 'rq' on its stack
3185 * frame will be invalid.
3187 finish_task_switch(this_rq(), prev);
3191 * nr_running, nr_uninterruptible and nr_context_switches:
3193 * externally visible scheduler statistics: current number of runnable
3194 * threads, current number of uninterruptible-sleeping threads, total
3195 * number of context switches performed since bootup.
3197 unsigned long nr_running(void)
3199 unsigned long i, sum = 0;
3201 for_each_online_cpu(i)
3202 sum += cpu_rq(i)->nr_running;
3204 return sum;
3207 unsigned long nr_uninterruptible(void)
3209 unsigned long i, sum = 0;
3211 for_each_possible_cpu(i)
3212 sum += cpu_rq(i)->nr_uninterruptible;
3215 * Since we read the counters lockless, it might be slightly
3216 * inaccurate. Do not allow it to go below zero though:
3218 if (unlikely((long)sum < 0))
3219 sum = 0;
3221 return sum;
3224 unsigned long long nr_context_switches(void)
3226 int i;
3227 unsigned long long sum = 0;
3229 for_each_possible_cpu(i)
3230 sum += cpu_rq(i)->nr_switches;
3232 return sum;
3235 unsigned long nr_iowait(void)
3237 unsigned long i, sum = 0;
3239 for_each_possible_cpu(i)
3240 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3242 return sum;
3245 unsigned long nr_iowait_cpu(int cpu)
3247 struct rq *this = cpu_rq(cpu);
3248 return atomic_read(&this->nr_iowait);
3251 unsigned long this_cpu_load(void)
3253 struct rq *this = this_rq();
3254 return this->cpu_load[0];
3258 /* Variables and functions for calc_load */
3259 static atomic_long_t calc_load_tasks;
3260 static unsigned long calc_load_update;
3261 unsigned long avenrun[3];
3262 EXPORT_SYMBOL(avenrun);
3264 static long calc_load_fold_active(struct rq *this_rq)
3266 long nr_active, delta = 0;
3268 nr_active = this_rq->nr_running;
3269 nr_active += (long) this_rq->nr_uninterruptible;
3271 if (nr_active != this_rq->calc_load_active) {
3272 delta = nr_active - this_rq->calc_load_active;
3273 this_rq->calc_load_active = nr_active;
3276 return delta;
3279 static unsigned long
3280 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3282 load *= exp;
3283 load += active * (FIXED_1 - exp);
3284 load += 1UL << (FSHIFT - 1);
3285 return load >> FSHIFT;
3288 #ifdef CONFIG_NO_HZ
3290 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3292 * When making the ILB scale, we should try to pull this in as well.
3294 static atomic_long_t calc_load_tasks_idle;
3296 static void calc_load_account_idle(struct rq *this_rq)
3298 long delta;
3300 delta = calc_load_fold_active(this_rq);
3301 if (delta)
3302 atomic_long_add(delta, &calc_load_tasks_idle);
3305 static long calc_load_fold_idle(void)
3307 long delta = 0;
3310 * Its got a race, we don't care...
3312 if (atomic_long_read(&calc_load_tasks_idle))
3313 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3315 return delta;
3319 * fixed_power_int - compute: x^n, in O(log n) time
3321 * @x: base of the power
3322 * @frac_bits: fractional bits of @x
3323 * @n: power to raise @x to.
3325 * By exploiting the relation between the definition of the natural power
3326 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3327 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3328 * (where: n_i \elem {0, 1}, the binary vector representing n),
3329 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3330 * of course trivially computable in O(log_2 n), the length of our binary
3331 * vector.
3333 static unsigned long
3334 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3336 unsigned long result = 1UL << frac_bits;
3338 if (n) for (;;) {
3339 if (n & 1) {
3340 result *= x;
3341 result += 1UL << (frac_bits - 1);
3342 result >>= frac_bits;
3344 n >>= 1;
3345 if (!n)
3346 break;
3347 x *= x;
3348 x += 1UL << (frac_bits - 1);
3349 x >>= frac_bits;
3352 return result;
3356 * a1 = a0 * e + a * (1 - e)
3358 * a2 = a1 * e + a * (1 - e)
3359 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3360 * = a0 * e^2 + a * (1 - e) * (1 + e)
3362 * a3 = a2 * e + a * (1 - e)
3363 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3364 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3366 * ...
3368 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3369 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3370 * = a0 * e^n + a * (1 - e^n)
3372 * [1] application of the geometric series:
3374 * n 1 - x^(n+1)
3375 * S_n := \Sum x^i = -------------
3376 * i=0 1 - x
3378 static unsigned long
3379 calc_load_n(unsigned long load, unsigned long exp,
3380 unsigned long active, unsigned int n)
3383 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3387 * NO_HZ can leave us missing all per-cpu ticks calling
3388 * calc_load_account_active(), but since an idle CPU folds its delta into
3389 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3390 * in the pending idle delta if our idle period crossed a load cycle boundary.
3392 * Once we've updated the global active value, we need to apply the exponential
3393 * weights adjusted to the number of cycles missed.
3395 static void calc_global_nohz(unsigned long ticks)
3397 long delta, active, n;
3399 if (time_before(jiffies, calc_load_update))
3400 return;
3403 * If we crossed a calc_load_update boundary, make sure to fold
3404 * any pending idle changes, the respective CPUs might have
3405 * missed the tick driven calc_load_account_active() update
3406 * due to NO_HZ.
3408 delta = calc_load_fold_idle();
3409 if (delta)
3410 atomic_long_add(delta, &calc_load_tasks);
3413 * If we were idle for multiple load cycles, apply them.
3415 if (ticks >= LOAD_FREQ) {
3416 n = ticks / LOAD_FREQ;
3418 active = atomic_long_read(&calc_load_tasks);
3419 active = active > 0 ? active * FIXED_1 : 0;
3421 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3422 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3423 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3425 calc_load_update += n * LOAD_FREQ;
3429 * Its possible the remainder of the above division also crosses
3430 * a LOAD_FREQ period, the regular check in calc_global_load()
3431 * which comes after this will take care of that.
3433 * Consider us being 11 ticks before a cycle completion, and us
3434 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3435 * age us 4 cycles, and the test in calc_global_load() will
3436 * pick up the final one.
3439 #else
3440 static void calc_load_account_idle(struct rq *this_rq)
3444 static inline long calc_load_fold_idle(void)
3446 return 0;
3449 static void calc_global_nohz(unsigned long ticks)
3452 #endif
3455 * get_avenrun - get the load average array
3456 * @loads: pointer to dest load array
3457 * @offset: offset to add
3458 * @shift: shift count to shift the result left
3460 * These values are estimates at best, so no need for locking.
3462 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3464 loads[0] = (avenrun[0] + offset) << shift;
3465 loads[1] = (avenrun[1] + offset) << shift;
3466 loads[2] = (avenrun[2] + offset) << shift;
3470 * calc_load - update the avenrun load estimates 10 ticks after the
3471 * CPUs have updated calc_load_tasks.
3473 void calc_global_load(unsigned long ticks)
3475 long active;
3477 calc_global_nohz(ticks);
3479 if (time_before(jiffies, calc_load_update + 10))
3480 return;
3482 active = atomic_long_read(&calc_load_tasks);
3483 active = active > 0 ? active * FIXED_1 : 0;
3485 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3486 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3487 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3489 calc_load_update += LOAD_FREQ;
3493 * Called from update_cpu_load() to periodically update this CPU's
3494 * active count.
3496 static void calc_load_account_active(struct rq *this_rq)
3498 long delta;
3500 if (time_before(jiffies, this_rq->calc_load_update))
3501 return;
3503 delta = calc_load_fold_active(this_rq);
3504 delta += calc_load_fold_idle();
3505 if (delta)
3506 atomic_long_add(delta, &calc_load_tasks);
3508 this_rq->calc_load_update += LOAD_FREQ;
3512 * The exact cpuload at various idx values, calculated at every tick would be
3513 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3515 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3516 * on nth tick when cpu may be busy, then we have:
3517 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3518 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3520 * decay_load_missed() below does efficient calculation of
3521 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3522 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3524 * The calculation is approximated on a 128 point scale.
3525 * degrade_zero_ticks is the number of ticks after which load at any
3526 * particular idx is approximated to be zero.
3527 * degrade_factor is a precomputed table, a row for each load idx.
3528 * Each column corresponds to degradation factor for a power of two ticks,
3529 * based on 128 point scale.
3530 * Example:
3531 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3532 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3534 * With this power of 2 load factors, we can degrade the load n times
3535 * by looking at 1 bits in n and doing as many mult/shift instead of
3536 * n mult/shifts needed by the exact degradation.
3538 #define DEGRADE_SHIFT 7
3539 static const unsigned char
3540 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3541 static const unsigned char
3542 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3543 {0, 0, 0, 0, 0, 0, 0, 0},
3544 {64, 32, 8, 0, 0, 0, 0, 0},
3545 {96, 72, 40, 12, 1, 0, 0},
3546 {112, 98, 75, 43, 15, 1, 0},
3547 {120, 112, 98, 76, 45, 16, 2} };
3550 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3551 * would be when CPU is idle and so we just decay the old load without
3552 * adding any new load.
3554 static unsigned long
3555 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3557 int j = 0;
3559 if (!missed_updates)
3560 return load;
3562 if (missed_updates >= degrade_zero_ticks[idx])
3563 return 0;
3565 if (idx == 1)
3566 return load >> missed_updates;
3568 while (missed_updates) {
3569 if (missed_updates % 2)
3570 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3572 missed_updates >>= 1;
3573 j++;
3575 return load;
3579 * Update rq->cpu_load[] statistics. This function is usually called every
3580 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3581 * every tick. We fix it up based on jiffies.
3583 static void update_cpu_load(struct rq *this_rq)
3585 unsigned long this_load = this_rq->load.weight;
3586 unsigned long curr_jiffies = jiffies;
3587 unsigned long pending_updates;
3588 int i, scale;
3590 this_rq->nr_load_updates++;
3592 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3593 if (curr_jiffies == this_rq->last_load_update_tick)
3594 return;
3596 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3597 this_rq->last_load_update_tick = curr_jiffies;
3599 /* Update our load: */
3600 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3601 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3602 unsigned long old_load, new_load;
3604 /* scale is effectively 1 << i now, and >> i divides by scale */
3606 old_load = this_rq->cpu_load[i];
3607 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3608 new_load = this_load;
3610 * Round up the averaging division if load is increasing. This
3611 * prevents us from getting stuck on 9 if the load is 10, for
3612 * example.
3614 if (new_load > old_load)
3615 new_load += scale - 1;
3617 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3620 sched_avg_update(this_rq);
3623 static void update_cpu_load_active(struct rq *this_rq)
3625 update_cpu_load(this_rq);
3627 calc_load_account_active(this_rq);
3630 #ifdef CONFIG_SMP
3633 * sched_exec - execve() is a valuable balancing opportunity, because at
3634 * this point the task has the smallest effective memory and cache footprint.
3636 void sched_exec(void)
3638 struct task_struct *p = current;
3639 unsigned long flags;
3640 int dest_cpu;
3642 raw_spin_lock_irqsave(&p->pi_lock, flags);
3643 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3644 if (dest_cpu == smp_processor_id())
3645 goto unlock;
3647 if (likely(cpu_active(dest_cpu))) {
3648 struct migration_arg arg = { p, dest_cpu };
3650 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3651 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3652 return;
3654 unlock:
3655 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3658 #endif
3660 DEFINE_PER_CPU(struct kernel_stat, kstat);
3662 EXPORT_PER_CPU_SYMBOL(kstat);
3665 * Return any ns on the sched_clock that have not yet been accounted in
3666 * @p in case that task is currently running.
3668 * Called with task_rq_lock() held on @rq.
3670 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3672 u64 ns = 0;
3674 if (task_current(rq, p)) {
3675 update_rq_clock(rq);
3676 ns = rq->clock_task - p->se.exec_start;
3677 if ((s64)ns < 0)
3678 ns = 0;
3681 return ns;
3684 unsigned long long task_delta_exec(struct task_struct *p)
3686 unsigned long flags;
3687 struct rq *rq;
3688 u64 ns = 0;
3690 rq = task_rq_lock(p, &flags);
3691 ns = do_task_delta_exec(p, rq);
3692 task_rq_unlock(rq, p, &flags);
3694 return ns;
3698 * Return accounted runtime for the task.
3699 * In case the task is currently running, return the runtime plus current's
3700 * pending runtime that have not been accounted yet.
3702 unsigned long long task_sched_runtime(struct task_struct *p)
3704 unsigned long flags;
3705 struct rq *rq;
3706 u64 ns = 0;
3708 rq = task_rq_lock(p, &flags);
3709 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3710 task_rq_unlock(rq, p, &flags);
3712 return ns;
3716 * Return sum_exec_runtime for the thread group.
3717 * In case the task is currently running, return the sum plus current's
3718 * pending runtime that have not been accounted yet.
3720 * Note that the thread group might have other running tasks as well,
3721 * so the return value not includes other pending runtime that other
3722 * running tasks might have.
3724 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3726 struct task_cputime totals;
3727 unsigned long flags;
3728 struct rq *rq;
3729 u64 ns;
3731 rq = task_rq_lock(p, &flags);
3732 thread_group_cputime(p, &totals);
3733 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3734 task_rq_unlock(rq, p, &flags);
3736 return ns;
3740 * Account user cpu time to a process.
3741 * @p: the process that the cpu time gets accounted to
3742 * @cputime: the cpu time spent in user space since the last update
3743 * @cputime_scaled: cputime scaled by cpu frequency
3745 void account_user_time(struct task_struct *p, cputime_t cputime,
3746 cputime_t cputime_scaled)
3748 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3749 cputime64_t tmp;
3751 /* Add user time to process. */
3752 p->utime = cputime_add(p->utime, cputime);
3753 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3754 account_group_user_time(p, cputime);
3756 /* Add user time to cpustat. */
3757 tmp = cputime_to_cputime64(cputime);
3758 if (TASK_NICE(p) > 0)
3759 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3760 else
3761 cpustat->user = cputime64_add(cpustat->user, tmp);
3763 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3764 /* Account for user time used */
3765 acct_update_integrals(p);
3769 * Account guest cpu time to a process.
3770 * @p: the process that the cpu time gets accounted to
3771 * @cputime: the cpu time spent in virtual machine since the last update
3772 * @cputime_scaled: cputime scaled by cpu frequency
3774 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3775 cputime_t cputime_scaled)
3777 cputime64_t tmp;
3778 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3780 tmp = cputime_to_cputime64(cputime);
3782 /* Add guest time to process. */
3783 p->utime = cputime_add(p->utime, cputime);
3784 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3785 account_group_user_time(p, cputime);
3786 p->gtime = cputime_add(p->gtime, cputime);
3788 /* Add guest time to cpustat. */
3789 if (TASK_NICE(p) > 0) {
3790 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3791 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3792 } else {
3793 cpustat->user = cputime64_add(cpustat->user, tmp);
3794 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3799 * Account system cpu time to a process and desired cpustat field
3800 * @p: the process that the cpu time gets accounted to
3801 * @cputime: the cpu time spent in kernel space since the last update
3802 * @cputime_scaled: cputime scaled by cpu frequency
3803 * @target_cputime64: pointer to cpustat field that has to be updated
3805 static inline
3806 void __account_system_time(struct task_struct *p, cputime_t cputime,
3807 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3809 cputime64_t tmp = cputime_to_cputime64(cputime);
3811 /* Add system time to process. */
3812 p->stime = cputime_add(p->stime, cputime);
3813 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3814 account_group_system_time(p, cputime);
3816 /* Add system time to cpustat. */
3817 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3818 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3820 /* Account for system time used */
3821 acct_update_integrals(p);
3825 * Account system cpu time to a process.
3826 * @p: the process that the cpu time gets accounted to
3827 * @hardirq_offset: the offset to subtract from hardirq_count()
3828 * @cputime: the cpu time spent in kernel space since the last update
3829 * @cputime_scaled: cputime scaled by cpu frequency
3831 void account_system_time(struct task_struct *p, int hardirq_offset,
3832 cputime_t cputime, cputime_t cputime_scaled)
3834 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3835 cputime64_t *target_cputime64;
3837 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3838 account_guest_time(p, cputime, cputime_scaled);
3839 return;
3842 if (hardirq_count() - hardirq_offset)
3843 target_cputime64 = &cpustat->irq;
3844 else if (in_serving_softirq())
3845 target_cputime64 = &cpustat->softirq;
3846 else
3847 target_cputime64 = &cpustat->system;
3849 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3853 * Account for involuntary wait time.
3854 * @cputime: the cpu time spent in involuntary wait
3856 void account_steal_time(cputime_t cputime)
3858 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3859 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3861 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3865 * Account for idle time.
3866 * @cputime: the cpu time spent in idle wait
3868 void account_idle_time(cputime_t cputime)
3870 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3871 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3872 struct rq *rq = this_rq();
3874 if (atomic_read(&rq->nr_iowait) > 0)
3875 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3876 else
3877 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3880 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3882 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3884 * Account a tick to a process and cpustat
3885 * @p: the process that the cpu time gets accounted to
3886 * @user_tick: is the tick from userspace
3887 * @rq: the pointer to rq
3889 * Tick demultiplexing follows the order
3890 * - pending hardirq update
3891 * - pending softirq update
3892 * - user_time
3893 * - idle_time
3894 * - system time
3895 * - check for guest_time
3896 * - else account as system_time
3898 * Check for hardirq is done both for system and user time as there is
3899 * no timer going off while we are on hardirq and hence we may never get an
3900 * opportunity to update it solely in system time.
3901 * p->stime and friends are only updated on system time and not on irq
3902 * softirq as those do not count in task exec_runtime any more.
3904 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3905 struct rq *rq)
3907 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3908 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3909 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3911 if (irqtime_account_hi_update()) {
3912 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3913 } else if (irqtime_account_si_update()) {
3914 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3915 } else if (this_cpu_ksoftirqd() == p) {
3917 * ksoftirqd time do not get accounted in cpu_softirq_time.
3918 * So, we have to handle it separately here.
3919 * Also, p->stime needs to be updated for ksoftirqd.
3921 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3922 &cpustat->softirq);
3923 } else if (user_tick) {
3924 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3925 } else if (p == rq->idle) {
3926 account_idle_time(cputime_one_jiffy);
3927 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3928 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3929 } else {
3930 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3931 &cpustat->system);
3935 static void irqtime_account_idle_ticks(int ticks)
3937 int i;
3938 struct rq *rq = this_rq();
3940 for (i = 0; i < ticks; i++)
3941 irqtime_account_process_tick(current, 0, rq);
3943 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3944 static void irqtime_account_idle_ticks(int ticks) {}
3945 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3946 struct rq *rq) {}
3947 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3950 * Account a single tick of cpu time.
3951 * @p: the process that the cpu time gets accounted to
3952 * @user_tick: indicates if the tick is a user or a system tick
3954 void account_process_tick(struct task_struct *p, int user_tick)
3956 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3957 struct rq *rq = this_rq();
3959 if (sched_clock_irqtime) {
3960 irqtime_account_process_tick(p, user_tick, rq);
3961 return;
3964 if (user_tick)
3965 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3966 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3967 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3968 one_jiffy_scaled);
3969 else
3970 account_idle_time(cputime_one_jiffy);
3974 * Account multiple ticks of steal time.
3975 * @p: the process from which the cpu time has been stolen
3976 * @ticks: number of stolen ticks
3978 void account_steal_ticks(unsigned long ticks)
3980 account_steal_time(jiffies_to_cputime(ticks));
3984 * Account multiple ticks of idle time.
3985 * @ticks: number of stolen ticks
3987 void account_idle_ticks(unsigned long ticks)
3990 if (sched_clock_irqtime) {
3991 irqtime_account_idle_ticks(ticks);
3992 return;
3995 account_idle_time(jiffies_to_cputime(ticks));
3998 #endif
4001 * Use precise platform statistics if available:
4003 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4004 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4006 *ut = p->utime;
4007 *st = p->stime;
4010 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4012 struct task_cputime cputime;
4014 thread_group_cputime(p, &cputime);
4016 *ut = cputime.utime;
4017 *st = cputime.stime;
4019 #else
4021 #ifndef nsecs_to_cputime
4022 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4023 #endif
4025 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4027 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4030 * Use CFS's precise accounting:
4032 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4034 if (total) {
4035 u64 temp = rtime;
4037 temp *= utime;
4038 do_div(temp, total);
4039 utime = (cputime_t)temp;
4040 } else
4041 utime = rtime;
4044 * Compare with previous values, to keep monotonicity:
4046 p->prev_utime = max(p->prev_utime, utime);
4047 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4049 *ut = p->prev_utime;
4050 *st = p->prev_stime;
4054 * Must be called with siglock held.
4056 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4058 struct signal_struct *sig = p->signal;
4059 struct task_cputime cputime;
4060 cputime_t rtime, utime, total;
4062 thread_group_cputime(p, &cputime);
4064 total = cputime_add(cputime.utime, cputime.stime);
4065 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4067 if (total) {
4068 u64 temp = rtime;
4070 temp *= cputime.utime;
4071 do_div(temp, total);
4072 utime = (cputime_t)temp;
4073 } else
4074 utime = rtime;
4076 sig->prev_utime = max(sig->prev_utime, utime);
4077 sig->prev_stime = max(sig->prev_stime,
4078 cputime_sub(rtime, sig->prev_utime));
4080 *ut = sig->prev_utime;
4081 *st = sig->prev_stime;
4083 #endif
4086 * This function gets called by the timer code, with HZ frequency.
4087 * We call it with interrupts disabled.
4089 void scheduler_tick(void)
4091 int cpu = smp_processor_id();
4092 struct rq *rq = cpu_rq(cpu);
4093 struct task_struct *curr = rq->curr;
4095 sched_clock_tick();
4097 raw_spin_lock(&rq->lock);
4098 update_rq_clock(rq);
4099 update_cpu_load_active(rq);
4100 curr->sched_class->task_tick(rq, curr, 0);
4101 raw_spin_unlock(&rq->lock);
4103 perf_event_task_tick();
4105 #ifdef CONFIG_SMP
4106 rq->idle_at_tick = idle_cpu(cpu);
4107 trigger_load_balance(rq, cpu);
4108 #endif
4111 notrace unsigned long get_parent_ip(unsigned long addr)
4113 if (in_lock_functions(addr)) {
4114 addr = CALLER_ADDR2;
4115 if (in_lock_functions(addr))
4116 addr = CALLER_ADDR3;
4118 return addr;
4121 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4122 defined(CONFIG_PREEMPT_TRACER))
4124 void __kprobes add_preempt_count(int val)
4126 #ifdef CONFIG_DEBUG_PREEMPT
4128 * Underflow?
4130 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4131 return;
4132 #endif
4133 preempt_count() += val;
4134 #ifdef CONFIG_DEBUG_PREEMPT
4136 * Spinlock count overflowing soon?
4138 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4139 PREEMPT_MASK - 10);
4140 #endif
4141 if (preempt_count() == val)
4142 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4144 EXPORT_SYMBOL(add_preempt_count);
4146 void __kprobes sub_preempt_count(int val)
4148 #ifdef CONFIG_DEBUG_PREEMPT
4150 * Underflow?
4152 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4153 return;
4155 * Is the spinlock portion underflowing?
4157 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4158 !(preempt_count() & PREEMPT_MASK)))
4159 return;
4160 #endif
4162 if (preempt_count() == val)
4163 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4164 preempt_count() -= val;
4166 EXPORT_SYMBOL(sub_preempt_count);
4168 #endif
4171 * Print scheduling while atomic bug:
4173 static noinline void __schedule_bug(struct task_struct *prev)
4175 struct pt_regs *regs = get_irq_regs();
4177 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4178 prev->comm, prev->pid, preempt_count());
4180 debug_show_held_locks(prev);
4181 print_modules();
4182 if (irqs_disabled())
4183 print_irqtrace_events(prev);
4185 if (regs)
4186 show_regs(regs);
4187 else
4188 dump_stack();
4192 * Various schedule()-time debugging checks and statistics:
4194 static inline void schedule_debug(struct task_struct *prev)
4197 * Test if we are atomic. Since do_exit() needs to call into
4198 * schedule() atomically, we ignore that path for now.
4199 * Otherwise, whine if we are scheduling when we should not be.
4201 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4202 __schedule_bug(prev);
4204 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4206 schedstat_inc(this_rq(), sched_count);
4209 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4211 if (prev->on_rq || rq->skip_clock_update < 0)
4212 update_rq_clock(rq);
4213 prev->sched_class->put_prev_task(rq, prev);
4217 * Pick up the highest-prio task:
4219 static inline struct task_struct *
4220 pick_next_task(struct rq *rq)
4222 const struct sched_class *class;
4223 struct task_struct *p;
4226 * Optimization: we know that if all tasks are in
4227 * the fair class we can call that function directly:
4229 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4230 p = fair_sched_class.pick_next_task(rq);
4231 if (likely(p))
4232 return p;
4235 for_each_class(class) {
4236 p = class->pick_next_task(rq);
4237 if (p)
4238 return p;
4241 BUG(); /* the idle class will always have a runnable task */
4245 * __schedule() is the main scheduler function.
4247 static void __sched __schedule(void)
4249 struct task_struct *prev, *next;
4250 unsigned long *switch_count;
4251 struct rq *rq;
4252 int cpu;
4254 need_resched:
4255 preempt_disable();
4256 cpu = smp_processor_id();
4257 rq = cpu_rq(cpu);
4258 rcu_note_context_switch(cpu);
4259 prev = rq->curr;
4261 schedule_debug(prev);
4263 if (sched_feat(HRTICK))
4264 hrtick_clear(rq);
4266 raw_spin_lock_irq(&rq->lock);
4268 switch_count = &prev->nivcsw;
4269 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4270 if (unlikely(signal_pending_state(prev->state, prev))) {
4271 prev->state = TASK_RUNNING;
4272 } else {
4273 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4274 prev->on_rq = 0;
4277 * If a worker went to sleep, notify and ask workqueue
4278 * whether it wants to wake up a task to maintain
4279 * concurrency.
4281 if (prev->flags & PF_WQ_WORKER) {
4282 struct task_struct *to_wakeup;
4284 to_wakeup = wq_worker_sleeping(prev, cpu);
4285 if (to_wakeup)
4286 try_to_wake_up_local(to_wakeup);
4289 switch_count = &prev->nvcsw;
4292 pre_schedule(rq, prev);
4294 if (unlikely(!rq->nr_running))
4295 idle_balance(cpu, rq);
4297 put_prev_task(rq, prev);
4298 next = pick_next_task(rq);
4299 clear_tsk_need_resched(prev);
4300 rq->skip_clock_update = 0;
4302 if (likely(prev != next)) {
4303 rq->nr_switches++;
4304 rq->curr = next;
4305 ++*switch_count;
4307 context_switch(rq, prev, next); /* unlocks the rq */
4309 * The context switch have flipped the stack from under us
4310 * and restored the local variables which were saved when
4311 * this task called schedule() in the past. prev == current
4312 * is still correct, but it can be moved to another cpu/rq.
4314 cpu = smp_processor_id();
4315 rq = cpu_rq(cpu);
4316 } else
4317 raw_spin_unlock_irq(&rq->lock);
4319 post_schedule(rq);
4321 preempt_enable_no_resched();
4322 if (need_resched())
4323 goto need_resched;
4326 static inline void sched_submit_work(struct task_struct *tsk)
4328 if (!tsk->state)
4329 return;
4331 * If we are going to sleep and we have plugged IO queued,
4332 * make sure to submit it to avoid deadlocks.
4334 if (blk_needs_flush_plug(tsk))
4335 blk_schedule_flush_plug(tsk);
4338 asmlinkage void schedule(void)
4340 struct task_struct *tsk = current;
4342 sched_submit_work(tsk);
4343 __schedule();
4345 EXPORT_SYMBOL(schedule);
4347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4349 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4351 bool ret = false;
4353 rcu_read_lock();
4354 if (lock->owner != owner)
4355 goto fail;
4358 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4359 * lock->owner still matches owner, if that fails, owner might
4360 * point to free()d memory, if it still matches, the rcu_read_lock()
4361 * ensures the memory stays valid.
4363 barrier();
4365 ret = owner->on_cpu;
4366 fail:
4367 rcu_read_unlock();
4369 return ret;
4373 * Look out! "owner" is an entirely speculative pointer
4374 * access and not reliable.
4376 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4378 if (!sched_feat(OWNER_SPIN))
4379 return 0;
4381 while (owner_running(lock, owner)) {
4382 if (need_resched())
4383 return 0;
4385 arch_mutex_cpu_relax();
4389 * If the owner changed to another task there is likely
4390 * heavy contention, stop spinning.
4392 if (lock->owner)
4393 return 0;
4395 return 1;
4397 #endif
4399 #ifdef CONFIG_PREEMPT
4401 * this is the entry point to schedule() from in-kernel preemption
4402 * off of preempt_enable. Kernel preemptions off return from interrupt
4403 * occur there and call schedule directly.
4405 asmlinkage void __sched notrace preempt_schedule(void)
4407 struct thread_info *ti = current_thread_info();
4410 * If there is a non-zero preempt_count or interrupts are disabled,
4411 * we do not want to preempt the current task. Just return..
4413 if (likely(ti->preempt_count || irqs_disabled()))
4414 return;
4416 do {
4417 add_preempt_count_notrace(PREEMPT_ACTIVE);
4418 __schedule();
4419 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4422 * Check again in case we missed a preemption opportunity
4423 * between schedule and now.
4425 barrier();
4426 } while (need_resched());
4428 EXPORT_SYMBOL(preempt_schedule);
4431 * this is the entry point to schedule() from kernel preemption
4432 * off of irq context.
4433 * Note, that this is called and return with irqs disabled. This will
4434 * protect us against recursive calling from irq.
4436 asmlinkage void __sched preempt_schedule_irq(void)
4438 struct thread_info *ti = current_thread_info();
4440 /* Catch callers which need to be fixed */
4441 BUG_ON(ti->preempt_count || !irqs_disabled());
4443 do {
4444 add_preempt_count(PREEMPT_ACTIVE);
4445 local_irq_enable();
4446 __schedule();
4447 local_irq_disable();
4448 sub_preempt_count(PREEMPT_ACTIVE);
4451 * Check again in case we missed a preemption opportunity
4452 * between schedule and now.
4454 barrier();
4455 } while (need_resched());
4458 #endif /* CONFIG_PREEMPT */
4460 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4461 void *key)
4463 return try_to_wake_up(curr->private, mode, wake_flags);
4465 EXPORT_SYMBOL(default_wake_function);
4468 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4469 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4470 * number) then we wake all the non-exclusive tasks and one exclusive task.
4472 * There are circumstances in which we can try to wake a task which has already
4473 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4474 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4476 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4477 int nr_exclusive, int wake_flags, void *key)
4479 wait_queue_t *curr, *next;
4481 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4482 unsigned flags = curr->flags;
4484 if (curr->func(curr, mode, wake_flags, key) &&
4485 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4486 break;
4491 * __wake_up - wake up threads blocked on a waitqueue.
4492 * @q: the waitqueue
4493 * @mode: which threads
4494 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4495 * @key: is directly passed to the wakeup function
4497 * It may be assumed that this function implies a write memory barrier before
4498 * changing the task state if and only if any tasks are woken up.
4500 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4501 int nr_exclusive, void *key)
4503 unsigned long flags;
4505 spin_lock_irqsave(&q->lock, flags);
4506 __wake_up_common(q, mode, nr_exclusive, 0, key);
4507 spin_unlock_irqrestore(&q->lock, flags);
4509 EXPORT_SYMBOL(__wake_up);
4512 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4514 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4516 __wake_up_common(q, mode, 1, 0, NULL);
4518 EXPORT_SYMBOL_GPL(__wake_up_locked);
4520 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4522 __wake_up_common(q, mode, 1, 0, key);
4524 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4527 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4528 * @q: the waitqueue
4529 * @mode: which threads
4530 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4531 * @key: opaque value to be passed to wakeup targets
4533 * The sync wakeup differs that the waker knows that it will schedule
4534 * away soon, so while the target thread will be woken up, it will not
4535 * be migrated to another CPU - ie. the two threads are 'synchronized'
4536 * with each other. This can prevent needless bouncing between CPUs.
4538 * On UP it can prevent extra preemption.
4540 * It may be assumed that this function implies a write memory barrier before
4541 * changing the task state if and only if any tasks are woken up.
4543 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4544 int nr_exclusive, void *key)
4546 unsigned long flags;
4547 int wake_flags = WF_SYNC;
4549 if (unlikely(!q))
4550 return;
4552 if (unlikely(!nr_exclusive))
4553 wake_flags = 0;
4555 spin_lock_irqsave(&q->lock, flags);
4556 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4557 spin_unlock_irqrestore(&q->lock, flags);
4559 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4562 * __wake_up_sync - see __wake_up_sync_key()
4564 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4566 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4568 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4571 * complete: - signals a single thread waiting on this completion
4572 * @x: holds the state of this particular completion
4574 * This will wake up a single thread waiting on this completion. Threads will be
4575 * awakened in the same order in which they were queued.
4577 * See also complete_all(), wait_for_completion() and related routines.
4579 * It may be assumed that this function implies a write memory barrier before
4580 * changing the task state if and only if any tasks are woken up.
4582 void complete(struct completion *x)
4584 unsigned long flags;
4586 spin_lock_irqsave(&x->wait.lock, flags);
4587 x->done++;
4588 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4589 spin_unlock_irqrestore(&x->wait.lock, flags);
4591 EXPORT_SYMBOL(complete);
4594 * complete_all: - signals all threads waiting on this completion
4595 * @x: holds the state of this particular completion
4597 * This will wake up all threads waiting on this particular completion event.
4599 * It may be assumed that this function implies a write memory barrier before
4600 * changing the task state if and only if any tasks are woken up.
4602 void complete_all(struct completion *x)
4604 unsigned long flags;
4606 spin_lock_irqsave(&x->wait.lock, flags);
4607 x->done += UINT_MAX/2;
4608 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4609 spin_unlock_irqrestore(&x->wait.lock, flags);
4611 EXPORT_SYMBOL(complete_all);
4613 static inline long __sched
4614 do_wait_for_common(struct completion *x, long timeout, int state)
4616 if (!x->done) {
4617 DECLARE_WAITQUEUE(wait, current);
4619 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4620 do {
4621 if (signal_pending_state(state, current)) {
4622 timeout = -ERESTARTSYS;
4623 break;
4625 __set_current_state(state);
4626 spin_unlock_irq(&x->wait.lock);
4627 timeout = schedule_timeout(timeout);
4628 spin_lock_irq(&x->wait.lock);
4629 } while (!x->done && timeout);
4630 __remove_wait_queue(&x->wait, &wait);
4631 if (!x->done)
4632 return timeout;
4634 x->done--;
4635 return timeout ?: 1;
4638 static long __sched
4639 wait_for_common(struct completion *x, long timeout, int state)
4641 might_sleep();
4643 spin_lock_irq(&x->wait.lock);
4644 timeout = do_wait_for_common(x, timeout, state);
4645 spin_unlock_irq(&x->wait.lock);
4646 return timeout;
4650 * wait_for_completion: - waits for completion of a task
4651 * @x: holds the state of this particular completion
4653 * This waits to be signaled for completion of a specific task. It is NOT
4654 * interruptible and there is no timeout.
4656 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4657 * and interrupt capability. Also see complete().
4659 void __sched wait_for_completion(struct completion *x)
4661 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4663 EXPORT_SYMBOL(wait_for_completion);
4666 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4667 * @x: holds the state of this particular completion
4668 * @timeout: timeout value in jiffies
4670 * This waits for either a completion of a specific task to be signaled or for a
4671 * specified timeout to expire. The timeout is in jiffies. It is not
4672 * interruptible.
4674 unsigned long __sched
4675 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4677 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4679 EXPORT_SYMBOL(wait_for_completion_timeout);
4682 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4683 * @x: holds the state of this particular completion
4685 * This waits for completion of a specific task to be signaled. It is
4686 * interruptible.
4688 int __sched wait_for_completion_interruptible(struct completion *x)
4690 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4691 if (t == -ERESTARTSYS)
4692 return t;
4693 return 0;
4695 EXPORT_SYMBOL(wait_for_completion_interruptible);
4698 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4699 * @x: holds the state of this particular completion
4700 * @timeout: timeout value in jiffies
4702 * This waits for either a completion of a specific task to be signaled or for a
4703 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4705 long __sched
4706 wait_for_completion_interruptible_timeout(struct completion *x,
4707 unsigned long timeout)
4709 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4711 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4714 * wait_for_completion_killable: - waits for completion of a task (killable)
4715 * @x: holds the state of this particular completion
4717 * This waits to be signaled for completion of a specific task. It can be
4718 * interrupted by a kill signal.
4720 int __sched wait_for_completion_killable(struct completion *x)
4722 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4723 if (t == -ERESTARTSYS)
4724 return t;
4725 return 0;
4727 EXPORT_SYMBOL(wait_for_completion_killable);
4730 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4731 * @x: holds the state of this particular completion
4732 * @timeout: timeout value in jiffies
4734 * This waits for either a completion of a specific task to be
4735 * signaled or for a specified timeout to expire. It can be
4736 * interrupted by a kill signal. The timeout is in jiffies.
4738 long __sched
4739 wait_for_completion_killable_timeout(struct completion *x,
4740 unsigned long timeout)
4742 return wait_for_common(x, timeout, TASK_KILLABLE);
4744 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4747 * try_wait_for_completion - try to decrement a completion without blocking
4748 * @x: completion structure
4750 * Returns: 0 if a decrement cannot be done without blocking
4751 * 1 if a decrement succeeded.
4753 * If a completion is being used as a counting completion,
4754 * attempt to decrement the counter without blocking. This
4755 * enables us to avoid waiting if the resource the completion
4756 * is protecting is not available.
4758 bool try_wait_for_completion(struct completion *x)
4760 unsigned long flags;
4761 int ret = 1;
4763 spin_lock_irqsave(&x->wait.lock, flags);
4764 if (!x->done)
4765 ret = 0;
4766 else
4767 x->done--;
4768 spin_unlock_irqrestore(&x->wait.lock, flags);
4769 return ret;
4771 EXPORT_SYMBOL(try_wait_for_completion);
4774 * completion_done - Test to see if a completion has any waiters
4775 * @x: completion structure
4777 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4778 * 1 if there are no waiters.
4781 bool completion_done(struct completion *x)
4783 unsigned long flags;
4784 int ret = 1;
4786 spin_lock_irqsave(&x->wait.lock, flags);
4787 if (!x->done)
4788 ret = 0;
4789 spin_unlock_irqrestore(&x->wait.lock, flags);
4790 return ret;
4792 EXPORT_SYMBOL(completion_done);
4794 static long __sched
4795 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4797 unsigned long flags;
4798 wait_queue_t wait;
4800 init_waitqueue_entry(&wait, current);
4802 __set_current_state(state);
4804 spin_lock_irqsave(&q->lock, flags);
4805 __add_wait_queue(q, &wait);
4806 spin_unlock(&q->lock);
4807 timeout = schedule_timeout(timeout);
4808 spin_lock_irq(&q->lock);
4809 __remove_wait_queue(q, &wait);
4810 spin_unlock_irqrestore(&q->lock, flags);
4812 return timeout;
4815 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4817 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4819 EXPORT_SYMBOL(interruptible_sleep_on);
4821 long __sched
4822 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4824 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4826 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4828 void __sched sleep_on(wait_queue_head_t *q)
4830 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4832 EXPORT_SYMBOL(sleep_on);
4834 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4836 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4838 EXPORT_SYMBOL(sleep_on_timeout);
4840 #ifdef CONFIG_RT_MUTEXES
4843 * rt_mutex_setprio - set the current priority of a task
4844 * @p: task
4845 * @prio: prio value (kernel-internal form)
4847 * This function changes the 'effective' priority of a task. It does
4848 * not touch ->normal_prio like __setscheduler().
4850 * Used by the rt_mutex code to implement priority inheritance logic.
4852 void rt_mutex_setprio(struct task_struct *p, int prio)
4854 int oldprio, on_rq, running;
4855 struct rq *rq;
4856 const struct sched_class *prev_class;
4858 BUG_ON(prio < 0 || prio > MAX_PRIO);
4860 rq = __task_rq_lock(p);
4862 trace_sched_pi_setprio(p, prio);
4863 oldprio = p->prio;
4864 prev_class = p->sched_class;
4865 on_rq = p->on_rq;
4866 running = task_current(rq, p);
4867 if (on_rq)
4868 dequeue_task(rq, p, 0);
4869 if (running)
4870 p->sched_class->put_prev_task(rq, p);
4872 if (rt_prio(prio))
4873 p->sched_class = &rt_sched_class;
4874 else
4875 p->sched_class = &fair_sched_class;
4877 p->prio = prio;
4879 if (running)
4880 p->sched_class->set_curr_task(rq);
4881 if (on_rq)
4882 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4884 check_class_changed(rq, p, prev_class, oldprio);
4885 __task_rq_unlock(rq);
4888 #endif
4890 void set_user_nice(struct task_struct *p, long nice)
4892 int old_prio, delta, on_rq;
4893 unsigned long flags;
4894 struct rq *rq;
4896 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4897 return;
4899 * We have to be careful, if called from sys_setpriority(),
4900 * the task might be in the middle of scheduling on another CPU.
4902 rq = task_rq_lock(p, &flags);
4904 * The RT priorities are set via sched_setscheduler(), but we still
4905 * allow the 'normal' nice value to be set - but as expected
4906 * it wont have any effect on scheduling until the task is
4907 * SCHED_FIFO/SCHED_RR:
4909 if (task_has_rt_policy(p)) {
4910 p->static_prio = NICE_TO_PRIO(nice);
4911 goto out_unlock;
4913 on_rq = p->on_rq;
4914 if (on_rq)
4915 dequeue_task(rq, p, 0);
4917 p->static_prio = NICE_TO_PRIO(nice);
4918 set_load_weight(p);
4919 old_prio = p->prio;
4920 p->prio = effective_prio(p);
4921 delta = p->prio - old_prio;
4923 if (on_rq) {
4924 enqueue_task(rq, p, 0);
4926 * If the task increased its priority or is running and
4927 * lowered its priority, then reschedule its CPU:
4929 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4930 resched_task(rq->curr);
4932 out_unlock:
4933 task_rq_unlock(rq, p, &flags);
4935 EXPORT_SYMBOL(set_user_nice);
4938 * can_nice - check if a task can reduce its nice value
4939 * @p: task
4940 * @nice: nice value
4942 int can_nice(const struct task_struct *p, const int nice)
4944 /* convert nice value [19,-20] to rlimit style value [1,40] */
4945 int nice_rlim = 20 - nice;
4947 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4948 capable(CAP_SYS_NICE));
4951 #ifdef __ARCH_WANT_SYS_NICE
4954 * sys_nice - change the priority of the current process.
4955 * @increment: priority increment
4957 * sys_setpriority is a more generic, but much slower function that
4958 * does similar things.
4960 SYSCALL_DEFINE1(nice, int, increment)
4962 long nice, retval;
4965 * Setpriority might change our priority at the same moment.
4966 * We don't have to worry. Conceptually one call occurs first
4967 * and we have a single winner.
4969 if (increment < -40)
4970 increment = -40;
4971 if (increment > 40)
4972 increment = 40;
4974 nice = TASK_NICE(current) + increment;
4975 if (nice < -20)
4976 nice = -20;
4977 if (nice > 19)
4978 nice = 19;
4980 if (increment < 0 && !can_nice(current, nice))
4981 return -EPERM;
4983 retval = security_task_setnice(current, nice);
4984 if (retval)
4985 return retval;
4987 set_user_nice(current, nice);
4988 return 0;
4991 #endif
4994 * task_prio - return the priority value of a given task.
4995 * @p: the task in question.
4997 * This is the priority value as seen by users in /proc.
4998 * RT tasks are offset by -200. Normal tasks are centered
4999 * around 0, value goes from -16 to +15.
5001 int task_prio(const struct task_struct *p)
5003 return p->prio - MAX_RT_PRIO;
5007 * task_nice - return the nice value of a given task.
5008 * @p: the task in question.
5010 int task_nice(const struct task_struct *p)
5012 return TASK_NICE(p);
5014 EXPORT_SYMBOL(task_nice);
5017 * idle_cpu - is a given cpu idle currently?
5018 * @cpu: the processor in question.
5020 int idle_cpu(int cpu)
5022 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5026 * idle_task - return the idle task for a given cpu.
5027 * @cpu: the processor in question.
5029 struct task_struct *idle_task(int cpu)
5031 return cpu_rq(cpu)->idle;
5035 * find_process_by_pid - find a process with a matching PID value.
5036 * @pid: the pid in question.
5038 static struct task_struct *find_process_by_pid(pid_t pid)
5040 return pid ? find_task_by_vpid(pid) : current;
5043 /* Actually do priority change: must hold rq lock. */
5044 static void
5045 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5047 p->policy = policy;
5048 p->rt_priority = prio;
5049 p->normal_prio = normal_prio(p);
5050 /* we are holding p->pi_lock already */
5051 p->prio = rt_mutex_getprio(p);
5052 if (rt_prio(p->prio))
5053 p->sched_class = &rt_sched_class;
5054 else
5055 p->sched_class = &fair_sched_class;
5056 set_load_weight(p);
5060 * check the target process has a UID that matches the current process's
5062 static bool check_same_owner(struct task_struct *p)
5064 const struct cred *cred = current_cred(), *pcred;
5065 bool match;
5067 rcu_read_lock();
5068 pcred = __task_cred(p);
5069 if (cred->user->user_ns == pcred->user->user_ns)
5070 match = (cred->euid == pcred->euid ||
5071 cred->euid == pcred->uid);
5072 else
5073 match = false;
5074 rcu_read_unlock();
5075 return match;
5078 static int __sched_setscheduler(struct task_struct *p, int policy,
5079 const struct sched_param *param, bool user)
5081 int retval, oldprio, oldpolicy = -1, on_rq, running;
5082 unsigned long flags;
5083 const struct sched_class *prev_class;
5084 struct rq *rq;
5085 int reset_on_fork;
5087 /* may grab non-irq protected spin_locks */
5088 BUG_ON(in_interrupt());
5089 recheck:
5090 /* double check policy once rq lock held */
5091 if (policy < 0) {
5092 reset_on_fork = p->sched_reset_on_fork;
5093 policy = oldpolicy = p->policy;
5094 } else {
5095 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5096 policy &= ~SCHED_RESET_ON_FORK;
5098 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5099 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5100 policy != SCHED_IDLE)
5101 return -EINVAL;
5105 * Valid priorities for SCHED_FIFO and SCHED_RR are
5106 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5107 * SCHED_BATCH and SCHED_IDLE is 0.
5109 if (param->sched_priority < 0 ||
5110 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5111 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5112 return -EINVAL;
5113 if (rt_policy(policy) != (param->sched_priority != 0))
5114 return -EINVAL;
5117 * Allow unprivileged RT tasks to decrease priority:
5119 if (user && !capable(CAP_SYS_NICE)) {
5120 if (rt_policy(policy)) {
5121 unsigned long rlim_rtprio =
5122 task_rlimit(p, RLIMIT_RTPRIO);
5124 /* can't set/change the rt policy */
5125 if (policy != p->policy && !rlim_rtprio)
5126 return -EPERM;
5128 /* can't increase priority */
5129 if (param->sched_priority > p->rt_priority &&
5130 param->sched_priority > rlim_rtprio)
5131 return -EPERM;
5135 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5136 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5138 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5139 if (!can_nice(p, TASK_NICE(p)))
5140 return -EPERM;
5143 /* can't change other user's priorities */
5144 if (!check_same_owner(p))
5145 return -EPERM;
5147 /* Normal users shall not reset the sched_reset_on_fork flag */
5148 if (p->sched_reset_on_fork && !reset_on_fork)
5149 return -EPERM;
5152 if (user) {
5153 retval = security_task_setscheduler(p);
5154 if (retval)
5155 return retval;
5159 * make sure no PI-waiters arrive (or leave) while we are
5160 * changing the priority of the task:
5162 * To be able to change p->policy safely, the appropriate
5163 * runqueue lock must be held.
5165 rq = task_rq_lock(p, &flags);
5168 * Changing the policy of the stop threads its a very bad idea
5170 if (p == rq->stop) {
5171 task_rq_unlock(rq, p, &flags);
5172 return -EINVAL;
5176 * If not changing anything there's no need to proceed further:
5178 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5179 param->sched_priority == p->rt_priority))) {
5181 __task_rq_unlock(rq);
5182 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5183 return 0;
5186 #ifdef CONFIG_RT_GROUP_SCHED
5187 if (user) {
5189 * Do not allow realtime tasks into groups that have no runtime
5190 * assigned.
5192 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5193 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5194 !task_group_is_autogroup(task_group(p))) {
5195 task_rq_unlock(rq, p, &flags);
5196 return -EPERM;
5199 #endif
5201 /* recheck policy now with rq lock held */
5202 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5203 policy = oldpolicy = -1;
5204 task_rq_unlock(rq, p, &flags);
5205 goto recheck;
5207 on_rq = p->on_rq;
5208 running = task_current(rq, p);
5209 if (on_rq)
5210 deactivate_task(rq, p, 0);
5211 if (running)
5212 p->sched_class->put_prev_task(rq, p);
5214 p->sched_reset_on_fork = reset_on_fork;
5216 oldprio = p->prio;
5217 prev_class = p->sched_class;
5218 __setscheduler(rq, p, policy, param->sched_priority);
5220 if (running)
5221 p->sched_class->set_curr_task(rq);
5222 if (on_rq)
5223 activate_task(rq, p, 0);
5225 check_class_changed(rq, p, prev_class, oldprio);
5226 task_rq_unlock(rq, p, &flags);
5228 rt_mutex_adjust_pi(p);
5230 return 0;
5234 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5235 * @p: the task in question.
5236 * @policy: new policy.
5237 * @param: structure containing the new RT priority.
5239 * NOTE that the task may be already dead.
5241 int sched_setscheduler(struct task_struct *p, int policy,
5242 const struct sched_param *param)
5244 return __sched_setscheduler(p, policy, param, true);
5246 EXPORT_SYMBOL_GPL(sched_setscheduler);
5249 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5250 * @p: the task in question.
5251 * @policy: new policy.
5252 * @param: structure containing the new RT priority.
5254 * Just like sched_setscheduler, only don't bother checking if the
5255 * current context has permission. For example, this is needed in
5256 * stop_machine(): we create temporary high priority worker threads,
5257 * but our caller might not have that capability.
5259 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5260 const struct sched_param *param)
5262 return __sched_setscheduler(p, policy, param, false);
5265 static int
5266 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5268 struct sched_param lparam;
5269 struct task_struct *p;
5270 int retval;
5272 if (!param || pid < 0)
5273 return -EINVAL;
5274 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5275 return -EFAULT;
5277 rcu_read_lock();
5278 retval = -ESRCH;
5279 p = find_process_by_pid(pid);
5280 if (p != NULL)
5281 retval = sched_setscheduler(p, policy, &lparam);
5282 rcu_read_unlock();
5284 return retval;
5288 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5289 * @pid: the pid in question.
5290 * @policy: new policy.
5291 * @param: structure containing the new RT priority.
5293 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5294 struct sched_param __user *, param)
5296 /* negative values for policy are not valid */
5297 if (policy < 0)
5298 return -EINVAL;
5300 return do_sched_setscheduler(pid, policy, param);
5304 * sys_sched_setparam - set/change the RT priority of a thread
5305 * @pid: the pid in question.
5306 * @param: structure containing the new RT priority.
5308 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5310 return do_sched_setscheduler(pid, -1, param);
5314 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5315 * @pid: the pid in question.
5317 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5319 struct task_struct *p;
5320 int retval;
5322 if (pid < 0)
5323 return -EINVAL;
5325 retval = -ESRCH;
5326 rcu_read_lock();
5327 p = find_process_by_pid(pid);
5328 if (p) {
5329 retval = security_task_getscheduler(p);
5330 if (!retval)
5331 retval = p->policy
5332 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5334 rcu_read_unlock();
5335 return retval;
5339 * sys_sched_getparam - get the RT priority of a thread
5340 * @pid: the pid in question.
5341 * @param: structure containing the RT priority.
5343 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5345 struct sched_param lp;
5346 struct task_struct *p;
5347 int retval;
5349 if (!param || pid < 0)
5350 return -EINVAL;
5352 rcu_read_lock();
5353 p = find_process_by_pid(pid);
5354 retval = -ESRCH;
5355 if (!p)
5356 goto out_unlock;
5358 retval = security_task_getscheduler(p);
5359 if (retval)
5360 goto out_unlock;
5362 lp.sched_priority = p->rt_priority;
5363 rcu_read_unlock();
5366 * This one might sleep, we cannot do it with a spinlock held ...
5368 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5370 return retval;
5372 out_unlock:
5373 rcu_read_unlock();
5374 return retval;
5377 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5379 cpumask_var_t cpus_allowed, new_mask;
5380 struct task_struct *p;
5381 int retval;
5383 get_online_cpus();
5384 rcu_read_lock();
5386 p = find_process_by_pid(pid);
5387 if (!p) {
5388 rcu_read_unlock();
5389 put_online_cpus();
5390 return -ESRCH;
5393 /* Prevent p going away */
5394 get_task_struct(p);
5395 rcu_read_unlock();
5397 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5398 retval = -ENOMEM;
5399 goto out_put_task;
5401 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5402 retval = -ENOMEM;
5403 goto out_free_cpus_allowed;
5405 retval = -EPERM;
5406 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5407 goto out_unlock;
5409 retval = security_task_setscheduler(p);
5410 if (retval)
5411 goto out_unlock;
5413 cpuset_cpus_allowed(p, cpus_allowed);
5414 cpumask_and(new_mask, in_mask, cpus_allowed);
5415 again:
5416 retval = set_cpus_allowed_ptr(p, new_mask);
5418 if (!retval) {
5419 cpuset_cpus_allowed(p, cpus_allowed);
5420 if (!cpumask_subset(new_mask, cpus_allowed)) {
5422 * We must have raced with a concurrent cpuset
5423 * update. Just reset the cpus_allowed to the
5424 * cpuset's cpus_allowed
5426 cpumask_copy(new_mask, cpus_allowed);
5427 goto again;
5430 out_unlock:
5431 free_cpumask_var(new_mask);
5432 out_free_cpus_allowed:
5433 free_cpumask_var(cpus_allowed);
5434 out_put_task:
5435 put_task_struct(p);
5436 put_online_cpus();
5437 return retval;
5440 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5441 struct cpumask *new_mask)
5443 if (len < cpumask_size())
5444 cpumask_clear(new_mask);
5445 else if (len > cpumask_size())
5446 len = cpumask_size();
5448 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5452 * sys_sched_setaffinity - set the cpu affinity of a process
5453 * @pid: pid of the process
5454 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5455 * @user_mask_ptr: user-space pointer to the new cpu mask
5457 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5458 unsigned long __user *, user_mask_ptr)
5460 cpumask_var_t new_mask;
5461 int retval;
5463 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5464 return -ENOMEM;
5466 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5467 if (retval == 0)
5468 retval = sched_setaffinity(pid, new_mask);
5469 free_cpumask_var(new_mask);
5470 return retval;
5473 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5475 struct task_struct *p;
5476 unsigned long flags;
5477 int retval;
5479 get_online_cpus();
5480 rcu_read_lock();
5482 retval = -ESRCH;
5483 p = find_process_by_pid(pid);
5484 if (!p)
5485 goto out_unlock;
5487 retval = security_task_getscheduler(p);
5488 if (retval)
5489 goto out_unlock;
5491 raw_spin_lock_irqsave(&p->pi_lock, flags);
5492 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5493 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5495 out_unlock:
5496 rcu_read_unlock();
5497 put_online_cpus();
5499 return retval;
5503 * sys_sched_getaffinity - get the cpu affinity of a process
5504 * @pid: pid of the process
5505 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5506 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5508 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5509 unsigned long __user *, user_mask_ptr)
5511 int ret;
5512 cpumask_var_t mask;
5514 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5515 return -EINVAL;
5516 if (len & (sizeof(unsigned long)-1))
5517 return -EINVAL;
5519 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5520 return -ENOMEM;
5522 ret = sched_getaffinity(pid, mask);
5523 if (ret == 0) {
5524 size_t retlen = min_t(size_t, len, cpumask_size());
5526 if (copy_to_user(user_mask_ptr, mask, retlen))
5527 ret = -EFAULT;
5528 else
5529 ret = retlen;
5531 free_cpumask_var(mask);
5533 return ret;
5537 * sys_sched_yield - yield the current processor to other threads.
5539 * This function yields the current CPU to other tasks. If there are no
5540 * other threads running on this CPU then this function will return.
5542 SYSCALL_DEFINE0(sched_yield)
5544 struct rq *rq = this_rq_lock();
5546 schedstat_inc(rq, yld_count);
5547 current->sched_class->yield_task(rq);
5550 * Since we are going to call schedule() anyway, there's
5551 * no need to preempt or enable interrupts:
5553 __release(rq->lock);
5554 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5555 do_raw_spin_unlock(&rq->lock);
5556 preempt_enable_no_resched();
5558 schedule();
5560 return 0;
5563 static inline int should_resched(void)
5565 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5568 static void __cond_resched(void)
5570 add_preempt_count(PREEMPT_ACTIVE);
5571 __schedule();
5572 sub_preempt_count(PREEMPT_ACTIVE);
5575 int __sched _cond_resched(void)
5577 if (should_resched()) {
5578 __cond_resched();
5579 return 1;
5581 return 0;
5583 EXPORT_SYMBOL(_cond_resched);
5586 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5587 * call schedule, and on return reacquire the lock.
5589 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5590 * operations here to prevent schedule() from being called twice (once via
5591 * spin_unlock(), once by hand).
5593 int __cond_resched_lock(spinlock_t *lock)
5595 int resched = should_resched();
5596 int ret = 0;
5598 lockdep_assert_held(lock);
5600 if (spin_needbreak(lock) || resched) {
5601 spin_unlock(lock);
5602 if (resched)
5603 __cond_resched();
5604 else
5605 cpu_relax();
5606 ret = 1;
5607 spin_lock(lock);
5609 return ret;
5611 EXPORT_SYMBOL(__cond_resched_lock);
5613 int __sched __cond_resched_softirq(void)
5615 BUG_ON(!in_softirq());
5617 if (should_resched()) {
5618 local_bh_enable();
5619 __cond_resched();
5620 local_bh_disable();
5621 return 1;
5623 return 0;
5625 EXPORT_SYMBOL(__cond_resched_softirq);
5628 * yield - yield the current processor to other threads.
5630 * This is a shortcut for kernel-space yielding - it marks the
5631 * thread runnable and calls sys_sched_yield().
5633 void __sched yield(void)
5635 set_current_state(TASK_RUNNING);
5636 sys_sched_yield();
5638 EXPORT_SYMBOL(yield);
5641 * yield_to - yield the current processor to another thread in
5642 * your thread group, or accelerate that thread toward the
5643 * processor it's on.
5644 * @p: target task
5645 * @preempt: whether task preemption is allowed or not
5647 * It's the caller's job to ensure that the target task struct
5648 * can't go away on us before we can do any checks.
5650 * Returns true if we indeed boosted the target task.
5652 bool __sched yield_to(struct task_struct *p, bool preempt)
5654 struct task_struct *curr = current;
5655 struct rq *rq, *p_rq;
5656 unsigned long flags;
5657 bool yielded = 0;
5659 local_irq_save(flags);
5660 rq = this_rq();
5662 again:
5663 p_rq = task_rq(p);
5664 double_rq_lock(rq, p_rq);
5665 while (task_rq(p) != p_rq) {
5666 double_rq_unlock(rq, p_rq);
5667 goto again;
5670 if (!curr->sched_class->yield_to_task)
5671 goto out;
5673 if (curr->sched_class != p->sched_class)
5674 goto out;
5676 if (task_running(p_rq, p) || p->state)
5677 goto out;
5679 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5680 if (yielded) {
5681 schedstat_inc(rq, yld_count);
5683 * Make p's CPU reschedule; pick_next_entity takes care of
5684 * fairness.
5686 if (preempt && rq != p_rq)
5687 resched_task(p_rq->curr);
5690 out:
5691 double_rq_unlock(rq, p_rq);
5692 local_irq_restore(flags);
5694 if (yielded)
5695 schedule();
5697 return yielded;
5699 EXPORT_SYMBOL_GPL(yield_to);
5702 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5703 * that process accounting knows that this is a task in IO wait state.
5705 void __sched io_schedule(void)
5707 struct rq *rq = raw_rq();
5709 delayacct_blkio_start();
5710 atomic_inc(&rq->nr_iowait);
5711 blk_flush_plug(current);
5712 current->in_iowait = 1;
5713 schedule();
5714 current->in_iowait = 0;
5715 atomic_dec(&rq->nr_iowait);
5716 delayacct_blkio_end();
5718 EXPORT_SYMBOL(io_schedule);
5720 long __sched io_schedule_timeout(long timeout)
5722 struct rq *rq = raw_rq();
5723 long ret;
5725 delayacct_blkio_start();
5726 atomic_inc(&rq->nr_iowait);
5727 blk_flush_plug(current);
5728 current->in_iowait = 1;
5729 ret = schedule_timeout(timeout);
5730 current->in_iowait = 0;
5731 atomic_dec(&rq->nr_iowait);
5732 delayacct_blkio_end();
5733 return ret;
5737 * sys_sched_get_priority_max - return maximum RT priority.
5738 * @policy: scheduling class.
5740 * this syscall returns the maximum rt_priority that can be used
5741 * by a given scheduling class.
5743 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5745 int ret = -EINVAL;
5747 switch (policy) {
5748 case SCHED_FIFO:
5749 case SCHED_RR:
5750 ret = MAX_USER_RT_PRIO-1;
5751 break;
5752 case SCHED_NORMAL:
5753 case SCHED_BATCH:
5754 case SCHED_IDLE:
5755 ret = 0;
5756 break;
5758 return ret;
5762 * sys_sched_get_priority_min - return minimum RT priority.
5763 * @policy: scheduling class.
5765 * this syscall returns the minimum rt_priority that can be used
5766 * by a given scheduling class.
5768 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5770 int ret = -EINVAL;
5772 switch (policy) {
5773 case SCHED_FIFO:
5774 case SCHED_RR:
5775 ret = 1;
5776 break;
5777 case SCHED_NORMAL:
5778 case SCHED_BATCH:
5779 case SCHED_IDLE:
5780 ret = 0;
5782 return ret;
5786 * sys_sched_rr_get_interval - return the default timeslice of a process.
5787 * @pid: pid of the process.
5788 * @interval: userspace pointer to the timeslice value.
5790 * this syscall writes the default timeslice value of a given process
5791 * into the user-space timespec buffer. A value of '0' means infinity.
5793 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5794 struct timespec __user *, interval)
5796 struct task_struct *p;
5797 unsigned int time_slice;
5798 unsigned long flags;
5799 struct rq *rq;
5800 int retval;
5801 struct timespec t;
5803 if (pid < 0)
5804 return -EINVAL;
5806 retval = -ESRCH;
5807 rcu_read_lock();
5808 p = find_process_by_pid(pid);
5809 if (!p)
5810 goto out_unlock;
5812 retval = security_task_getscheduler(p);
5813 if (retval)
5814 goto out_unlock;
5816 rq = task_rq_lock(p, &flags);
5817 time_slice = p->sched_class->get_rr_interval(rq, p);
5818 task_rq_unlock(rq, p, &flags);
5820 rcu_read_unlock();
5821 jiffies_to_timespec(time_slice, &t);
5822 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5823 return retval;
5825 out_unlock:
5826 rcu_read_unlock();
5827 return retval;
5830 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5832 void sched_show_task(struct task_struct *p)
5834 unsigned long free = 0;
5835 unsigned state;
5837 state = p->state ? __ffs(p->state) + 1 : 0;
5838 printk(KERN_INFO "%-15.15s %c", p->comm,
5839 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5840 #if BITS_PER_LONG == 32
5841 if (state == TASK_RUNNING)
5842 printk(KERN_CONT " running ");
5843 else
5844 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5845 #else
5846 if (state == TASK_RUNNING)
5847 printk(KERN_CONT " running task ");
5848 else
5849 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5850 #endif
5851 #ifdef CONFIG_DEBUG_STACK_USAGE
5852 free = stack_not_used(p);
5853 #endif
5854 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5855 task_pid_nr(p), task_pid_nr(p->real_parent),
5856 (unsigned long)task_thread_info(p)->flags);
5858 show_stack(p, NULL);
5861 void show_state_filter(unsigned long state_filter)
5863 struct task_struct *g, *p;
5865 #if BITS_PER_LONG == 32
5866 printk(KERN_INFO
5867 " task PC stack pid father\n");
5868 #else
5869 printk(KERN_INFO
5870 " task PC stack pid father\n");
5871 #endif
5872 read_lock(&tasklist_lock);
5873 do_each_thread(g, p) {
5875 * reset the NMI-timeout, listing all files on a slow
5876 * console might take a lot of time:
5878 touch_nmi_watchdog();
5879 if (!state_filter || (p->state & state_filter))
5880 sched_show_task(p);
5881 } while_each_thread(g, p);
5883 touch_all_softlockup_watchdogs();
5885 #ifdef CONFIG_SCHED_DEBUG
5886 sysrq_sched_debug_show();
5887 #endif
5888 read_unlock(&tasklist_lock);
5890 * Only show locks if all tasks are dumped:
5892 if (!state_filter)
5893 debug_show_all_locks();
5896 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5898 idle->sched_class = &idle_sched_class;
5902 * init_idle - set up an idle thread for a given CPU
5903 * @idle: task in question
5904 * @cpu: cpu the idle task belongs to
5906 * NOTE: this function does not set the idle thread's NEED_RESCHED
5907 * flag, to make booting more robust.
5909 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5911 struct rq *rq = cpu_rq(cpu);
5912 unsigned long flags;
5914 raw_spin_lock_irqsave(&rq->lock, flags);
5916 __sched_fork(idle);
5917 idle->state = TASK_RUNNING;
5918 idle->se.exec_start = sched_clock();
5920 do_set_cpus_allowed(idle, cpumask_of(cpu));
5922 * We're having a chicken and egg problem, even though we are
5923 * holding rq->lock, the cpu isn't yet set to this cpu so the
5924 * lockdep check in task_group() will fail.
5926 * Similar case to sched_fork(). / Alternatively we could
5927 * use task_rq_lock() here and obtain the other rq->lock.
5929 * Silence PROVE_RCU
5931 rcu_read_lock();
5932 __set_task_cpu(idle, cpu);
5933 rcu_read_unlock();
5935 rq->curr = rq->idle = idle;
5936 #if defined(CONFIG_SMP)
5937 idle->on_cpu = 1;
5938 #endif
5939 raw_spin_unlock_irqrestore(&rq->lock, flags);
5941 /* Set the preempt count _outside_ the spinlocks! */
5942 task_thread_info(idle)->preempt_count = 0;
5945 * The idle tasks have their own, simple scheduling class:
5947 idle->sched_class = &idle_sched_class;
5948 ftrace_graph_init_idle_task(idle, cpu);
5952 * In a system that switches off the HZ timer nohz_cpu_mask
5953 * indicates which cpus entered this state. This is used
5954 * in the rcu update to wait only for active cpus. For system
5955 * which do not switch off the HZ timer nohz_cpu_mask should
5956 * always be CPU_BITS_NONE.
5958 cpumask_var_t nohz_cpu_mask;
5961 * Increase the granularity value when there are more CPUs,
5962 * because with more CPUs the 'effective latency' as visible
5963 * to users decreases. But the relationship is not linear,
5964 * so pick a second-best guess by going with the log2 of the
5965 * number of CPUs.
5967 * This idea comes from the SD scheduler of Con Kolivas:
5969 static int get_update_sysctl_factor(void)
5971 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5972 unsigned int factor;
5974 switch (sysctl_sched_tunable_scaling) {
5975 case SCHED_TUNABLESCALING_NONE:
5976 factor = 1;
5977 break;
5978 case SCHED_TUNABLESCALING_LINEAR:
5979 factor = cpus;
5980 break;
5981 case SCHED_TUNABLESCALING_LOG:
5982 default:
5983 factor = 1 + ilog2(cpus);
5984 break;
5987 return factor;
5990 static void update_sysctl(void)
5992 unsigned int factor = get_update_sysctl_factor();
5994 #define SET_SYSCTL(name) \
5995 (sysctl_##name = (factor) * normalized_sysctl_##name)
5996 SET_SYSCTL(sched_min_granularity);
5997 SET_SYSCTL(sched_latency);
5998 SET_SYSCTL(sched_wakeup_granularity);
5999 #undef SET_SYSCTL
6002 static inline void sched_init_granularity(void)
6004 update_sysctl();
6007 #ifdef CONFIG_SMP
6008 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6010 if (p->sched_class && p->sched_class->set_cpus_allowed)
6011 p->sched_class->set_cpus_allowed(p, new_mask);
6012 else {
6013 cpumask_copy(&p->cpus_allowed, new_mask);
6014 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6019 * This is how migration works:
6021 * 1) we invoke migration_cpu_stop() on the target CPU using
6022 * stop_one_cpu().
6023 * 2) stopper starts to run (implicitly forcing the migrated thread
6024 * off the CPU)
6025 * 3) it checks whether the migrated task is still in the wrong runqueue.
6026 * 4) if it's in the wrong runqueue then the migration thread removes
6027 * it and puts it into the right queue.
6028 * 5) stopper completes and stop_one_cpu() returns and the migration
6029 * is done.
6033 * Change a given task's CPU affinity. Migrate the thread to a
6034 * proper CPU and schedule it away if the CPU it's executing on
6035 * is removed from the allowed bitmask.
6037 * NOTE: the caller must have a valid reference to the task, the
6038 * task must not exit() & deallocate itself prematurely. The
6039 * call is not atomic; no spinlocks may be held.
6041 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6043 unsigned long flags;
6044 struct rq *rq;
6045 unsigned int dest_cpu;
6046 int ret = 0;
6048 rq = task_rq_lock(p, &flags);
6050 if (cpumask_equal(&p->cpus_allowed, new_mask))
6051 goto out;
6053 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6054 ret = -EINVAL;
6055 goto out;
6058 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6059 ret = -EINVAL;
6060 goto out;
6063 do_set_cpus_allowed(p, new_mask);
6065 /* Can the task run on the task's current CPU? If so, we're done */
6066 if (cpumask_test_cpu(task_cpu(p), new_mask))
6067 goto out;
6069 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6070 if (p->on_rq) {
6071 struct migration_arg arg = { p, dest_cpu };
6072 /* Need help from migration thread: drop lock and wait. */
6073 task_rq_unlock(rq, p, &flags);
6074 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6075 tlb_migrate_finish(p->mm);
6076 return 0;
6078 out:
6079 task_rq_unlock(rq, p, &flags);
6081 return ret;
6083 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6086 * Move (not current) task off this cpu, onto dest cpu. We're doing
6087 * this because either it can't run here any more (set_cpus_allowed()
6088 * away from this CPU, or CPU going down), or because we're
6089 * attempting to rebalance this task on exec (sched_exec).
6091 * So we race with normal scheduler movements, but that's OK, as long
6092 * as the task is no longer on this CPU.
6094 * Returns non-zero if task was successfully migrated.
6096 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6098 struct rq *rq_dest, *rq_src;
6099 int ret = 0;
6101 if (unlikely(!cpu_active(dest_cpu)))
6102 return ret;
6104 rq_src = cpu_rq(src_cpu);
6105 rq_dest = cpu_rq(dest_cpu);
6107 raw_spin_lock(&p->pi_lock);
6108 double_rq_lock(rq_src, rq_dest);
6109 /* Already moved. */
6110 if (task_cpu(p) != src_cpu)
6111 goto done;
6112 /* Affinity changed (again). */
6113 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6114 goto fail;
6117 * If we're not on a rq, the next wake-up will ensure we're
6118 * placed properly.
6120 if (p->on_rq) {
6121 deactivate_task(rq_src, p, 0);
6122 set_task_cpu(p, dest_cpu);
6123 activate_task(rq_dest, p, 0);
6124 check_preempt_curr(rq_dest, p, 0);
6126 done:
6127 ret = 1;
6128 fail:
6129 double_rq_unlock(rq_src, rq_dest);
6130 raw_spin_unlock(&p->pi_lock);
6131 return ret;
6135 * migration_cpu_stop - this will be executed by a highprio stopper thread
6136 * and performs thread migration by bumping thread off CPU then
6137 * 'pushing' onto another runqueue.
6139 static int migration_cpu_stop(void *data)
6141 struct migration_arg *arg = data;
6144 * The original target cpu might have gone down and we might
6145 * be on another cpu but it doesn't matter.
6147 local_irq_disable();
6148 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6149 local_irq_enable();
6150 return 0;
6153 #ifdef CONFIG_HOTPLUG_CPU
6156 * Ensures that the idle task is using init_mm right before its cpu goes
6157 * offline.
6159 void idle_task_exit(void)
6161 struct mm_struct *mm = current->active_mm;
6163 BUG_ON(cpu_online(smp_processor_id()));
6165 if (mm != &init_mm)
6166 switch_mm(mm, &init_mm, current);
6167 mmdrop(mm);
6171 * While a dead CPU has no uninterruptible tasks queued at this point,
6172 * it might still have a nonzero ->nr_uninterruptible counter, because
6173 * for performance reasons the counter is not stricly tracking tasks to
6174 * their home CPUs. So we just add the counter to another CPU's counter,
6175 * to keep the global sum constant after CPU-down:
6177 static void migrate_nr_uninterruptible(struct rq *rq_src)
6179 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6181 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6182 rq_src->nr_uninterruptible = 0;
6186 * remove the tasks which were accounted by rq from calc_load_tasks.
6188 static void calc_global_load_remove(struct rq *rq)
6190 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6191 rq->calc_load_active = 0;
6195 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6196 * try_to_wake_up()->select_task_rq().
6198 * Called with rq->lock held even though we'er in stop_machine() and
6199 * there's no concurrency possible, we hold the required locks anyway
6200 * because of lock validation efforts.
6202 static void migrate_tasks(unsigned int dead_cpu)
6204 struct rq *rq = cpu_rq(dead_cpu);
6205 struct task_struct *next, *stop = rq->stop;
6206 int dest_cpu;
6209 * Fudge the rq selection such that the below task selection loop
6210 * doesn't get stuck on the currently eligible stop task.
6212 * We're currently inside stop_machine() and the rq is either stuck
6213 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6214 * either way we should never end up calling schedule() until we're
6215 * done here.
6217 rq->stop = NULL;
6219 for ( ; ; ) {
6221 * There's this thread running, bail when that's the only
6222 * remaining thread.
6224 if (rq->nr_running == 1)
6225 break;
6227 next = pick_next_task(rq);
6228 BUG_ON(!next);
6229 next->sched_class->put_prev_task(rq, next);
6231 /* Find suitable destination for @next, with force if needed. */
6232 dest_cpu = select_fallback_rq(dead_cpu, next);
6233 raw_spin_unlock(&rq->lock);
6235 __migrate_task(next, dead_cpu, dest_cpu);
6237 raw_spin_lock(&rq->lock);
6240 rq->stop = stop;
6243 #endif /* CONFIG_HOTPLUG_CPU */
6245 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6247 static struct ctl_table sd_ctl_dir[] = {
6249 .procname = "sched_domain",
6250 .mode = 0555,
6255 static struct ctl_table sd_ctl_root[] = {
6257 .procname = "kernel",
6258 .mode = 0555,
6259 .child = sd_ctl_dir,
6264 static struct ctl_table *sd_alloc_ctl_entry(int n)
6266 struct ctl_table *entry =
6267 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6269 return entry;
6272 static void sd_free_ctl_entry(struct ctl_table **tablep)
6274 struct ctl_table *entry;
6277 * In the intermediate directories, both the child directory and
6278 * procname are dynamically allocated and could fail but the mode
6279 * will always be set. In the lowest directory the names are
6280 * static strings and all have proc handlers.
6282 for (entry = *tablep; entry->mode; entry++) {
6283 if (entry->child)
6284 sd_free_ctl_entry(&entry->child);
6285 if (entry->proc_handler == NULL)
6286 kfree(entry->procname);
6289 kfree(*tablep);
6290 *tablep = NULL;
6293 static void
6294 set_table_entry(struct ctl_table *entry,
6295 const char *procname, void *data, int maxlen,
6296 mode_t mode, proc_handler *proc_handler)
6298 entry->procname = procname;
6299 entry->data = data;
6300 entry->maxlen = maxlen;
6301 entry->mode = mode;
6302 entry->proc_handler = proc_handler;
6305 static struct ctl_table *
6306 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6308 struct ctl_table *table = sd_alloc_ctl_entry(13);
6310 if (table == NULL)
6311 return NULL;
6313 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6314 sizeof(long), 0644, proc_doulongvec_minmax);
6315 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6316 sizeof(long), 0644, proc_doulongvec_minmax);
6317 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6318 sizeof(int), 0644, proc_dointvec_minmax);
6319 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6320 sizeof(int), 0644, proc_dointvec_minmax);
6321 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6322 sizeof(int), 0644, proc_dointvec_minmax);
6323 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6324 sizeof(int), 0644, proc_dointvec_minmax);
6325 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6326 sizeof(int), 0644, proc_dointvec_minmax);
6327 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6328 sizeof(int), 0644, proc_dointvec_minmax);
6329 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6330 sizeof(int), 0644, proc_dointvec_minmax);
6331 set_table_entry(&table[9], "cache_nice_tries",
6332 &sd->cache_nice_tries,
6333 sizeof(int), 0644, proc_dointvec_minmax);
6334 set_table_entry(&table[10], "flags", &sd->flags,
6335 sizeof(int), 0644, proc_dointvec_minmax);
6336 set_table_entry(&table[11], "name", sd->name,
6337 CORENAME_MAX_SIZE, 0444, proc_dostring);
6338 /* &table[12] is terminator */
6340 return table;
6343 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6345 struct ctl_table *entry, *table;
6346 struct sched_domain *sd;
6347 int domain_num = 0, i;
6348 char buf[32];
6350 for_each_domain(cpu, sd)
6351 domain_num++;
6352 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6353 if (table == NULL)
6354 return NULL;
6356 i = 0;
6357 for_each_domain(cpu, sd) {
6358 snprintf(buf, 32, "domain%d", i);
6359 entry->procname = kstrdup(buf, GFP_KERNEL);
6360 entry->mode = 0555;
6361 entry->child = sd_alloc_ctl_domain_table(sd);
6362 entry++;
6363 i++;
6365 return table;
6368 static struct ctl_table_header *sd_sysctl_header;
6369 static void register_sched_domain_sysctl(void)
6371 int i, cpu_num = num_possible_cpus();
6372 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6373 char buf[32];
6375 WARN_ON(sd_ctl_dir[0].child);
6376 sd_ctl_dir[0].child = entry;
6378 if (entry == NULL)
6379 return;
6381 for_each_possible_cpu(i) {
6382 snprintf(buf, 32, "cpu%d", i);
6383 entry->procname = kstrdup(buf, GFP_KERNEL);
6384 entry->mode = 0555;
6385 entry->child = sd_alloc_ctl_cpu_table(i);
6386 entry++;
6389 WARN_ON(sd_sysctl_header);
6390 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6393 /* may be called multiple times per register */
6394 static void unregister_sched_domain_sysctl(void)
6396 if (sd_sysctl_header)
6397 unregister_sysctl_table(sd_sysctl_header);
6398 sd_sysctl_header = NULL;
6399 if (sd_ctl_dir[0].child)
6400 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6402 #else
6403 static void register_sched_domain_sysctl(void)
6406 static void unregister_sched_domain_sysctl(void)
6409 #endif
6411 static void set_rq_online(struct rq *rq)
6413 if (!rq->online) {
6414 const struct sched_class *class;
6416 cpumask_set_cpu(rq->cpu, rq->rd->online);
6417 rq->online = 1;
6419 for_each_class(class) {
6420 if (class->rq_online)
6421 class->rq_online(rq);
6426 static void set_rq_offline(struct rq *rq)
6428 if (rq->online) {
6429 const struct sched_class *class;
6431 for_each_class(class) {
6432 if (class->rq_offline)
6433 class->rq_offline(rq);
6436 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6437 rq->online = 0;
6442 * migration_call - callback that gets triggered when a CPU is added.
6443 * Here we can start up the necessary migration thread for the new CPU.
6445 static int __cpuinit
6446 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6448 int cpu = (long)hcpu;
6449 unsigned long flags;
6450 struct rq *rq = cpu_rq(cpu);
6452 switch (action & ~CPU_TASKS_FROZEN) {
6454 case CPU_UP_PREPARE:
6455 rq->calc_load_update = calc_load_update;
6456 break;
6458 case CPU_ONLINE:
6459 /* Update our root-domain */
6460 raw_spin_lock_irqsave(&rq->lock, flags);
6461 if (rq->rd) {
6462 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6464 set_rq_online(rq);
6466 raw_spin_unlock_irqrestore(&rq->lock, flags);
6467 break;
6469 #ifdef CONFIG_HOTPLUG_CPU
6470 case CPU_DYING:
6471 sched_ttwu_pending();
6472 /* Update our root-domain */
6473 raw_spin_lock_irqsave(&rq->lock, flags);
6474 if (rq->rd) {
6475 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6476 set_rq_offline(rq);
6478 migrate_tasks(cpu);
6479 BUG_ON(rq->nr_running != 1); /* the migration thread */
6480 raw_spin_unlock_irqrestore(&rq->lock, flags);
6482 migrate_nr_uninterruptible(rq);
6483 calc_global_load_remove(rq);
6484 break;
6485 #endif
6488 update_max_interval();
6490 return NOTIFY_OK;
6494 * Register at high priority so that task migration (migrate_all_tasks)
6495 * happens before everything else. This has to be lower priority than
6496 * the notifier in the perf_event subsystem, though.
6498 static struct notifier_block __cpuinitdata migration_notifier = {
6499 .notifier_call = migration_call,
6500 .priority = CPU_PRI_MIGRATION,
6503 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6504 unsigned long action, void *hcpu)
6506 switch (action & ~CPU_TASKS_FROZEN) {
6507 case CPU_ONLINE:
6508 case CPU_DOWN_FAILED:
6509 set_cpu_active((long)hcpu, true);
6510 return NOTIFY_OK;
6511 default:
6512 return NOTIFY_DONE;
6516 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6517 unsigned long action, void *hcpu)
6519 switch (action & ~CPU_TASKS_FROZEN) {
6520 case CPU_DOWN_PREPARE:
6521 set_cpu_active((long)hcpu, false);
6522 return NOTIFY_OK;
6523 default:
6524 return NOTIFY_DONE;
6528 static int __init migration_init(void)
6530 void *cpu = (void *)(long)smp_processor_id();
6531 int err;
6533 /* Initialize migration for the boot CPU */
6534 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6535 BUG_ON(err == NOTIFY_BAD);
6536 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6537 register_cpu_notifier(&migration_notifier);
6539 /* Register cpu active notifiers */
6540 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6541 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6543 return 0;
6545 early_initcall(migration_init);
6546 #endif
6548 #ifdef CONFIG_SMP
6550 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6552 #ifdef CONFIG_SCHED_DEBUG
6554 static __read_mostly int sched_domain_debug_enabled;
6556 static int __init sched_domain_debug_setup(char *str)
6558 sched_domain_debug_enabled = 1;
6560 return 0;
6562 early_param("sched_debug", sched_domain_debug_setup);
6564 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6565 struct cpumask *groupmask)
6567 struct sched_group *group = sd->groups;
6568 char str[256];
6570 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6571 cpumask_clear(groupmask);
6573 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6575 if (!(sd->flags & SD_LOAD_BALANCE)) {
6576 printk("does not load-balance\n");
6577 if (sd->parent)
6578 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6579 " has parent");
6580 return -1;
6583 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6585 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6586 printk(KERN_ERR "ERROR: domain->span does not contain "
6587 "CPU%d\n", cpu);
6589 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6590 printk(KERN_ERR "ERROR: domain->groups does not contain"
6591 " CPU%d\n", cpu);
6594 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6595 do {
6596 if (!group) {
6597 printk("\n");
6598 printk(KERN_ERR "ERROR: group is NULL\n");
6599 break;
6602 if (!group->sgp->power) {
6603 printk(KERN_CONT "\n");
6604 printk(KERN_ERR "ERROR: domain->cpu_power not "
6605 "set\n");
6606 break;
6609 if (!cpumask_weight(sched_group_cpus(group))) {
6610 printk(KERN_CONT "\n");
6611 printk(KERN_ERR "ERROR: empty group\n");
6612 break;
6615 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6616 printk(KERN_CONT "\n");
6617 printk(KERN_ERR "ERROR: repeated CPUs\n");
6618 break;
6621 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6623 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6625 printk(KERN_CONT " %s", str);
6626 if (group->sgp->power != SCHED_POWER_SCALE) {
6627 printk(KERN_CONT " (cpu_power = %d)",
6628 group->sgp->power);
6631 group = group->next;
6632 } while (group != sd->groups);
6633 printk(KERN_CONT "\n");
6635 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6636 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6638 if (sd->parent &&
6639 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6640 printk(KERN_ERR "ERROR: parent span is not a superset "
6641 "of domain->span\n");
6642 return 0;
6645 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6647 int level = 0;
6649 if (!sched_domain_debug_enabled)
6650 return;
6652 if (!sd) {
6653 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6654 return;
6657 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6659 for (;;) {
6660 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6661 break;
6662 level++;
6663 sd = sd->parent;
6664 if (!sd)
6665 break;
6668 #else /* !CONFIG_SCHED_DEBUG */
6669 # define sched_domain_debug(sd, cpu) do { } while (0)
6670 #endif /* CONFIG_SCHED_DEBUG */
6672 static int sd_degenerate(struct sched_domain *sd)
6674 if (cpumask_weight(sched_domain_span(sd)) == 1)
6675 return 1;
6677 /* Following flags need at least 2 groups */
6678 if (sd->flags & (SD_LOAD_BALANCE |
6679 SD_BALANCE_NEWIDLE |
6680 SD_BALANCE_FORK |
6681 SD_BALANCE_EXEC |
6682 SD_SHARE_CPUPOWER |
6683 SD_SHARE_PKG_RESOURCES)) {
6684 if (sd->groups != sd->groups->next)
6685 return 0;
6688 /* Following flags don't use groups */
6689 if (sd->flags & (SD_WAKE_AFFINE))
6690 return 0;
6692 return 1;
6695 static int
6696 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6698 unsigned long cflags = sd->flags, pflags = parent->flags;
6700 if (sd_degenerate(parent))
6701 return 1;
6703 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6704 return 0;
6706 /* Flags needing groups don't count if only 1 group in parent */
6707 if (parent->groups == parent->groups->next) {
6708 pflags &= ~(SD_LOAD_BALANCE |
6709 SD_BALANCE_NEWIDLE |
6710 SD_BALANCE_FORK |
6711 SD_BALANCE_EXEC |
6712 SD_SHARE_CPUPOWER |
6713 SD_SHARE_PKG_RESOURCES);
6714 if (nr_node_ids == 1)
6715 pflags &= ~SD_SERIALIZE;
6717 if (~cflags & pflags)
6718 return 0;
6720 return 1;
6723 static void free_rootdomain(struct rcu_head *rcu)
6725 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6727 cpupri_cleanup(&rd->cpupri);
6728 free_cpumask_var(rd->rto_mask);
6729 free_cpumask_var(rd->online);
6730 free_cpumask_var(rd->span);
6731 kfree(rd);
6734 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6736 struct root_domain *old_rd = NULL;
6737 unsigned long flags;
6739 raw_spin_lock_irqsave(&rq->lock, flags);
6741 if (rq->rd) {
6742 old_rd = rq->rd;
6744 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6745 set_rq_offline(rq);
6747 cpumask_clear_cpu(rq->cpu, old_rd->span);
6750 * If we dont want to free the old_rt yet then
6751 * set old_rd to NULL to skip the freeing later
6752 * in this function:
6754 if (!atomic_dec_and_test(&old_rd->refcount))
6755 old_rd = NULL;
6758 atomic_inc(&rd->refcount);
6759 rq->rd = rd;
6761 cpumask_set_cpu(rq->cpu, rd->span);
6762 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6763 set_rq_online(rq);
6765 raw_spin_unlock_irqrestore(&rq->lock, flags);
6767 if (old_rd)
6768 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6771 static int init_rootdomain(struct root_domain *rd)
6773 memset(rd, 0, sizeof(*rd));
6775 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6776 goto out;
6777 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6778 goto free_span;
6779 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6780 goto free_online;
6782 if (cpupri_init(&rd->cpupri) != 0)
6783 goto free_rto_mask;
6784 return 0;
6786 free_rto_mask:
6787 free_cpumask_var(rd->rto_mask);
6788 free_online:
6789 free_cpumask_var(rd->online);
6790 free_span:
6791 free_cpumask_var(rd->span);
6792 out:
6793 return -ENOMEM;
6796 static void init_defrootdomain(void)
6798 init_rootdomain(&def_root_domain);
6800 atomic_set(&def_root_domain.refcount, 1);
6803 static struct root_domain *alloc_rootdomain(void)
6805 struct root_domain *rd;
6807 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6808 if (!rd)
6809 return NULL;
6811 if (init_rootdomain(rd) != 0) {
6812 kfree(rd);
6813 return NULL;
6816 return rd;
6819 static void free_sched_groups(struct sched_group *sg, int free_sgp)
6821 struct sched_group *tmp, *first;
6823 if (!sg)
6824 return;
6826 first = sg;
6827 do {
6828 tmp = sg->next;
6830 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6831 kfree(sg->sgp);
6833 kfree(sg);
6834 sg = tmp;
6835 } while (sg != first);
6838 static void free_sched_domain(struct rcu_head *rcu)
6840 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6843 * If its an overlapping domain it has private groups, iterate and
6844 * nuke them all.
6846 if (sd->flags & SD_OVERLAP) {
6847 free_sched_groups(sd->groups, 1);
6848 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6849 kfree(sd->groups->sgp);
6850 kfree(sd->groups);
6852 kfree(sd);
6855 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6857 call_rcu(&sd->rcu, free_sched_domain);
6860 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6862 for (; sd; sd = sd->parent)
6863 destroy_sched_domain(sd, cpu);
6867 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6868 * hold the hotplug lock.
6870 static void
6871 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6873 struct rq *rq = cpu_rq(cpu);
6874 struct sched_domain *tmp;
6876 /* Remove the sched domains which do not contribute to scheduling. */
6877 for (tmp = sd; tmp; ) {
6878 struct sched_domain *parent = tmp->parent;
6879 if (!parent)
6880 break;
6882 if (sd_parent_degenerate(tmp, parent)) {
6883 tmp->parent = parent->parent;
6884 if (parent->parent)
6885 parent->parent->child = tmp;
6886 destroy_sched_domain(parent, cpu);
6887 } else
6888 tmp = tmp->parent;
6891 if (sd && sd_degenerate(sd)) {
6892 tmp = sd;
6893 sd = sd->parent;
6894 destroy_sched_domain(tmp, cpu);
6895 if (sd)
6896 sd->child = NULL;
6899 sched_domain_debug(sd, cpu);
6901 rq_attach_root(rq, rd);
6902 tmp = rq->sd;
6903 rcu_assign_pointer(rq->sd, sd);
6904 destroy_sched_domains(tmp, cpu);
6907 /* cpus with isolated domains */
6908 static cpumask_var_t cpu_isolated_map;
6910 /* Setup the mask of cpus configured for isolated domains */
6911 static int __init isolated_cpu_setup(char *str)
6913 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6914 cpulist_parse(str, cpu_isolated_map);
6915 return 1;
6918 __setup("isolcpus=", isolated_cpu_setup);
6920 #define SD_NODES_PER_DOMAIN 16
6922 #ifdef CONFIG_NUMA
6925 * find_next_best_node - find the next node to include in a sched_domain
6926 * @node: node whose sched_domain we're building
6927 * @used_nodes: nodes already in the sched_domain
6929 * Find the next node to include in a given scheduling domain. Simply
6930 * finds the closest node not already in the @used_nodes map.
6932 * Should use nodemask_t.
6934 static int find_next_best_node(int node, nodemask_t *used_nodes)
6936 int i, n, val, min_val, best_node = -1;
6938 min_val = INT_MAX;
6940 for (i = 0; i < nr_node_ids; i++) {
6941 /* Start at @node */
6942 n = (node + i) % nr_node_ids;
6944 if (!nr_cpus_node(n))
6945 continue;
6947 /* Skip already used nodes */
6948 if (node_isset(n, *used_nodes))
6949 continue;
6951 /* Simple min distance search */
6952 val = node_distance(node, n);
6954 if (val < min_val) {
6955 min_val = val;
6956 best_node = n;
6960 if (best_node != -1)
6961 node_set(best_node, *used_nodes);
6962 return best_node;
6966 * sched_domain_node_span - get a cpumask for a node's sched_domain
6967 * @node: node whose cpumask we're constructing
6968 * @span: resulting cpumask
6970 * Given a node, construct a good cpumask for its sched_domain to span. It
6971 * should be one that prevents unnecessary balancing, but also spreads tasks
6972 * out optimally.
6974 static void sched_domain_node_span(int node, struct cpumask *span)
6976 nodemask_t used_nodes;
6977 int i;
6979 cpumask_clear(span);
6980 nodes_clear(used_nodes);
6982 cpumask_or(span, span, cpumask_of_node(node));
6983 node_set(node, used_nodes);
6985 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6986 int next_node = find_next_best_node(node, &used_nodes);
6987 if (next_node < 0)
6988 break;
6989 cpumask_or(span, span, cpumask_of_node(next_node));
6993 static const struct cpumask *cpu_node_mask(int cpu)
6995 lockdep_assert_held(&sched_domains_mutex);
6997 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6999 return sched_domains_tmpmask;
7002 static const struct cpumask *cpu_allnodes_mask(int cpu)
7004 return cpu_possible_mask;
7006 #endif /* CONFIG_NUMA */
7008 static const struct cpumask *cpu_cpu_mask(int cpu)
7010 return cpumask_of_node(cpu_to_node(cpu));
7013 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7015 struct sd_data {
7016 struct sched_domain **__percpu sd;
7017 struct sched_group **__percpu sg;
7018 struct sched_group_power **__percpu sgp;
7021 struct s_data {
7022 struct sched_domain ** __percpu sd;
7023 struct root_domain *rd;
7026 enum s_alloc {
7027 sa_rootdomain,
7028 sa_sd,
7029 sa_sd_storage,
7030 sa_none,
7033 struct sched_domain_topology_level;
7035 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7036 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7038 #define SDTL_OVERLAP 0x01
7040 struct sched_domain_topology_level {
7041 sched_domain_init_f init;
7042 sched_domain_mask_f mask;
7043 int flags;
7044 struct sd_data data;
7047 static int
7048 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7050 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7051 const struct cpumask *span = sched_domain_span(sd);
7052 struct cpumask *covered = sched_domains_tmpmask;
7053 struct sd_data *sdd = sd->private;
7054 struct sched_domain *child;
7055 int i;
7057 cpumask_clear(covered);
7059 for_each_cpu(i, span) {
7060 struct cpumask *sg_span;
7062 if (cpumask_test_cpu(i, covered))
7063 continue;
7065 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7066 GFP_KERNEL, cpu_to_node(i));
7068 if (!sg)
7069 goto fail;
7071 sg_span = sched_group_cpus(sg);
7073 child = *per_cpu_ptr(sdd->sd, i);
7074 if (child->child) {
7075 child = child->child;
7076 cpumask_copy(sg_span, sched_domain_span(child));
7077 } else
7078 cpumask_set_cpu(i, sg_span);
7080 cpumask_or(covered, covered, sg_span);
7082 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7083 atomic_inc(&sg->sgp->ref);
7085 if (cpumask_test_cpu(cpu, sg_span))
7086 groups = sg;
7088 if (!first)
7089 first = sg;
7090 if (last)
7091 last->next = sg;
7092 last = sg;
7093 last->next = first;
7095 sd->groups = groups;
7097 return 0;
7099 fail:
7100 free_sched_groups(first, 0);
7102 return -ENOMEM;
7105 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7107 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7108 struct sched_domain *child = sd->child;
7110 if (child)
7111 cpu = cpumask_first(sched_domain_span(child));
7113 if (sg) {
7114 *sg = *per_cpu_ptr(sdd->sg, cpu);
7115 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7116 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7119 return cpu;
7123 * build_sched_groups will build a circular linked list of the groups
7124 * covered by the given span, and will set each group's ->cpumask correctly,
7125 * and ->cpu_power to 0.
7127 * Assumes the sched_domain tree is fully constructed
7129 static int
7130 build_sched_groups(struct sched_domain *sd, int cpu)
7132 struct sched_group *first = NULL, *last = NULL;
7133 struct sd_data *sdd = sd->private;
7134 const struct cpumask *span = sched_domain_span(sd);
7135 struct cpumask *covered;
7136 int i;
7138 get_group(cpu, sdd, &sd->groups);
7139 atomic_inc(&sd->groups->ref);
7141 if (cpu != cpumask_first(sched_domain_span(sd)))
7142 return 0;
7144 lockdep_assert_held(&sched_domains_mutex);
7145 covered = sched_domains_tmpmask;
7147 cpumask_clear(covered);
7149 for_each_cpu(i, span) {
7150 struct sched_group *sg;
7151 int group = get_group(i, sdd, &sg);
7152 int j;
7154 if (cpumask_test_cpu(i, covered))
7155 continue;
7157 cpumask_clear(sched_group_cpus(sg));
7158 sg->sgp->power = 0;
7160 for_each_cpu(j, span) {
7161 if (get_group(j, sdd, NULL) != group)
7162 continue;
7164 cpumask_set_cpu(j, covered);
7165 cpumask_set_cpu(j, sched_group_cpus(sg));
7168 if (!first)
7169 first = sg;
7170 if (last)
7171 last->next = sg;
7172 last = sg;
7174 last->next = first;
7176 return 0;
7180 * Initialize sched groups cpu_power.
7182 * cpu_power indicates the capacity of sched group, which is used while
7183 * distributing the load between different sched groups in a sched domain.
7184 * Typically cpu_power for all the groups in a sched domain will be same unless
7185 * there are asymmetries in the topology. If there are asymmetries, group
7186 * having more cpu_power will pickup more load compared to the group having
7187 * less cpu_power.
7189 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7191 struct sched_group *sg = sd->groups;
7193 WARN_ON(!sd || !sg);
7195 do {
7196 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7197 sg = sg->next;
7198 } while (sg != sd->groups);
7200 if (cpu != group_first_cpu(sg))
7201 return;
7203 update_group_power(sd, cpu);
7207 * Initializers for schedule domains
7208 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7211 #ifdef CONFIG_SCHED_DEBUG
7212 # define SD_INIT_NAME(sd, type) sd->name = #type
7213 #else
7214 # define SD_INIT_NAME(sd, type) do { } while (0)
7215 #endif
7217 #define SD_INIT_FUNC(type) \
7218 static noinline struct sched_domain * \
7219 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7221 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7222 *sd = SD_##type##_INIT; \
7223 SD_INIT_NAME(sd, type); \
7224 sd->private = &tl->data; \
7225 return sd; \
7228 SD_INIT_FUNC(CPU)
7229 #ifdef CONFIG_NUMA
7230 SD_INIT_FUNC(ALLNODES)
7231 SD_INIT_FUNC(NODE)
7232 #endif
7233 #ifdef CONFIG_SCHED_SMT
7234 SD_INIT_FUNC(SIBLING)
7235 #endif
7236 #ifdef CONFIG_SCHED_MC
7237 SD_INIT_FUNC(MC)
7238 #endif
7239 #ifdef CONFIG_SCHED_BOOK
7240 SD_INIT_FUNC(BOOK)
7241 #endif
7243 static int default_relax_domain_level = -1;
7244 int sched_domain_level_max;
7246 static int __init setup_relax_domain_level(char *str)
7248 unsigned long val;
7250 val = simple_strtoul(str, NULL, 0);
7251 if (val < sched_domain_level_max)
7252 default_relax_domain_level = val;
7254 return 1;
7256 __setup("relax_domain_level=", setup_relax_domain_level);
7258 static void set_domain_attribute(struct sched_domain *sd,
7259 struct sched_domain_attr *attr)
7261 int request;
7263 if (!attr || attr->relax_domain_level < 0) {
7264 if (default_relax_domain_level < 0)
7265 return;
7266 else
7267 request = default_relax_domain_level;
7268 } else
7269 request = attr->relax_domain_level;
7270 if (request < sd->level) {
7271 /* turn off idle balance on this domain */
7272 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7273 } else {
7274 /* turn on idle balance on this domain */
7275 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7279 static void __sdt_free(const struct cpumask *cpu_map);
7280 static int __sdt_alloc(const struct cpumask *cpu_map);
7282 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7283 const struct cpumask *cpu_map)
7285 switch (what) {
7286 case sa_rootdomain:
7287 if (!atomic_read(&d->rd->refcount))
7288 free_rootdomain(&d->rd->rcu); /* fall through */
7289 case sa_sd:
7290 free_percpu(d->sd); /* fall through */
7291 case sa_sd_storage:
7292 __sdt_free(cpu_map); /* fall through */
7293 case sa_none:
7294 break;
7298 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7299 const struct cpumask *cpu_map)
7301 memset(d, 0, sizeof(*d));
7303 if (__sdt_alloc(cpu_map))
7304 return sa_sd_storage;
7305 d->sd = alloc_percpu(struct sched_domain *);
7306 if (!d->sd)
7307 return sa_sd_storage;
7308 d->rd = alloc_rootdomain();
7309 if (!d->rd)
7310 return sa_sd;
7311 return sa_rootdomain;
7315 * NULL the sd_data elements we've used to build the sched_domain and
7316 * sched_group structure so that the subsequent __free_domain_allocs()
7317 * will not free the data we're using.
7319 static void claim_allocations(int cpu, struct sched_domain *sd)
7321 struct sd_data *sdd = sd->private;
7323 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7324 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7326 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7327 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7329 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7330 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7333 #ifdef CONFIG_SCHED_SMT
7334 static const struct cpumask *cpu_smt_mask(int cpu)
7336 return topology_thread_cpumask(cpu);
7338 #endif
7341 * Topology list, bottom-up.
7343 static struct sched_domain_topology_level default_topology[] = {
7344 #ifdef CONFIG_SCHED_SMT
7345 { sd_init_SIBLING, cpu_smt_mask, },
7346 #endif
7347 #ifdef CONFIG_SCHED_MC
7348 { sd_init_MC, cpu_coregroup_mask, },
7349 #endif
7350 #ifdef CONFIG_SCHED_BOOK
7351 { sd_init_BOOK, cpu_book_mask, },
7352 #endif
7353 { sd_init_CPU, cpu_cpu_mask, },
7354 #ifdef CONFIG_NUMA
7355 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7356 { sd_init_ALLNODES, cpu_allnodes_mask, },
7357 #endif
7358 { NULL, },
7361 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7363 static int __sdt_alloc(const struct cpumask *cpu_map)
7365 struct sched_domain_topology_level *tl;
7366 int j;
7368 for (tl = sched_domain_topology; tl->init; tl++) {
7369 struct sd_data *sdd = &tl->data;
7371 sdd->sd = alloc_percpu(struct sched_domain *);
7372 if (!sdd->sd)
7373 return -ENOMEM;
7375 sdd->sg = alloc_percpu(struct sched_group *);
7376 if (!sdd->sg)
7377 return -ENOMEM;
7379 sdd->sgp = alloc_percpu(struct sched_group_power *);
7380 if (!sdd->sgp)
7381 return -ENOMEM;
7383 for_each_cpu(j, cpu_map) {
7384 struct sched_domain *sd;
7385 struct sched_group *sg;
7386 struct sched_group_power *sgp;
7388 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7389 GFP_KERNEL, cpu_to_node(j));
7390 if (!sd)
7391 return -ENOMEM;
7393 *per_cpu_ptr(sdd->sd, j) = sd;
7395 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7396 GFP_KERNEL, cpu_to_node(j));
7397 if (!sg)
7398 return -ENOMEM;
7400 *per_cpu_ptr(sdd->sg, j) = sg;
7402 sgp = kzalloc_node(sizeof(struct sched_group_power),
7403 GFP_KERNEL, cpu_to_node(j));
7404 if (!sgp)
7405 return -ENOMEM;
7407 *per_cpu_ptr(sdd->sgp, j) = sgp;
7411 return 0;
7414 static void __sdt_free(const struct cpumask *cpu_map)
7416 struct sched_domain_topology_level *tl;
7417 int j;
7419 for (tl = sched_domain_topology; tl->init; tl++) {
7420 struct sd_data *sdd = &tl->data;
7422 for_each_cpu(j, cpu_map) {
7423 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7424 if (sd && (sd->flags & SD_OVERLAP))
7425 free_sched_groups(sd->groups, 0);
7426 kfree(*per_cpu_ptr(sdd->sd, j));
7427 kfree(*per_cpu_ptr(sdd->sg, j));
7428 kfree(*per_cpu_ptr(sdd->sgp, j));
7430 free_percpu(sdd->sd);
7431 free_percpu(sdd->sg);
7432 free_percpu(sdd->sgp);
7436 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7437 struct s_data *d, const struct cpumask *cpu_map,
7438 struct sched_domain_attr *attr, struct sched_domain *child,
7439 int cpu)
7441 struct sched_domain *sd = tl->init(tl, cpu);
7442 if (!sd)
7443 return child;
7445 set_domain_attribute(sd, attr);
7446 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7447 if (child) {
7448 sd->level = child->level + 1;
7449 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7450 child->parent = sd;
7452 sd->child = child;
7454 return sd;
7458 * Build sched domains for a given set of cpus and attach the sched domains
7459 * to the individual cpus
7461 static int build_sched_domains(const struct cpumask *cpu_map,
7462 struct sched_domain_attr *attr)
7464 enum s_alloc alloc_state = sa_none;
7465 struct sched_domain *sd;
7466 struct s_data d;
7467 int i, ret = -ENOMEM;
7469 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7470 if (alloc_state != sa_rootdomain)
7471 goto error;
7473 /* Set up domains for cpus specified by the cpu_map. */
7474 for_each_cpu(i, cpu_map) {
7475 struct sched_domain_topology_level *tl;
7477 sd = NULL;
7478 for (tl = sched_domain_topology; tl->init; tl++) {
7479 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7480 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7481 sd->flags |= SD_OVERLAP;
7482 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7483 break;
7486 while (sd->child)
7487 sd = sd->child;
7489 *per_cpu_ptr(d.sd, i) = sd;
7492 /* Build the groups for the domains */
7493 for_each_cpu(i, cpu_map) {
7494 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7495 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7496 if (sd->flags & SD_OVERLAP) {
7497 if (build_overlap_sched_groups(sd, i))
7498 goto error;
7499 } else {
7500 if (build_sched_groups(sd, i))
7501 goto error;
7506 /* Calculate CPU power for physical packages and nodes */
7507 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7508 if (!cpumask_test_cpu(i, cpu_map))
7509 continue;
7511 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7512 claim_allocations(i, sd);
7513 init_sched_groups_power(i, sd);
7517 /* Attach the domains */
7518 rcu_read_lock();
7519 for_each_cpu(i, cpu_map) {
7520 sd = *per_cpu_ptr(d.sd, i);
7521 cpu_attach_domain(sd, d.rd, i);
7523 rcu_read_unlock();
7525 ret = 0;
7526 error:
7527 __free_domain_allocs(&d, alloc_state, cpu_map);
7528 return ret;
7531 static cpumask_var_t *doms_cur; /* current sched domains */
7532 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7533 static struct sched_domain_attr *dattr_cur;
7534 /* attribues of custom domains in 'doms_cur' */
7537 * Special case: If a kmalloc of a doms_cur partition (array of
7538 * cpumask) fails, then fallback to a single sched domain,
7539 * as determined by the single cpumask fallback_doms.
7541 static cpumask_var_t fallback_doms;
7544 * arch_update_cpu_topology lets virtualized architectures update the
7545 * cpu core maps. It is supposed to return 1 if the topology changed
7546 * or 0 if it stayed the same.
7548 int __attribute__((weak)) arch_update_cpu_topology(void)
7550 return 0;
7553 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7555 int i;
7556 cpumask_var_t *doms;
7558 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7559 if (!doms)
7560 return NULL;
7561 for (i = 0; i < ndoms; i++) {
7562 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7563 free_sched_domains(doms, i);
7564 return NULL;
7567 return doms;
7570 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7572 unsigned int i;
7573 for (i = 0; i < ndoms; i++)
7574 free_cpumask_var(doms[i]);
7575 kfree(doms);
7579 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7580 * For now this just excludes isolated cpus, but could be used to
7581 * exclude other special cases in the future.
7583 static int init_sched_domains(const struct cpumask *cpu_map)
7585 int err;
7587 arch_update_cpu_topology();
7588 ndoms_cur = 1;
7589 doms_cur = alloc_sched_domains(ndoms_cur);
7590 if (!doms_cur)
7591 doms_cur = &fallback_doms;
7592 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7593 dattr_cur = NULL;
7594 err = build_sched_domains(doms_cur[0], NULL);
7595 register_sched_domain_sysctl();
7597 return err;
7601 * Detach sched domains from a group of cpus specified in cpu_map
7602 * These cpus will now be attached to the NULL domain
7604 static void detach_destroy_domains(const struct cpumask *cpu_map)
7606 int i;
7608 rcu_read_lock();
7609 for_each_cpu(i, cpu_map)
7610 cpu_attach_domain(NULL, &def_root_domain, i);
7611 rcu_read_unlock();
7614 /* handle null as "default" */
7615 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7616 struct sched_domain_attr *new, int idx_new)
7618 struct sched_domain_attr tmp;
7620 /* fast path */
7621 if (!new && !cur)
7622 return 1;
7624 tmp = SD_ATTR_INIT;
7625 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7626 new ? (new + idx_new) : &tmp,
7627 sizeof(struct sched_domain_attr));
7631 * Partition sched domains as specified by the 'ndoms_new'
7632 * cpumasks in the array doms_new[] of cpumasks. This compares
7633 * doms_new[] to the current sched domain partitioning, doms_cur[].
7634 * It destroys each deleted domain and builds each new domain.
7636 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7637 * The masks don't intersect (don't overlap.) We should setup one
7638 * sched domain for each mask. CPUs not in any of the cpumasks will
7639 * not be load balanced. If the same cpumask appears both in the
7640 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7641 * it as it is.
7643 * The passed in 'doms_new' should be allocated using
7644 * alloc_sched_domains. This routine takes ownership of it and will
7645 * free_sched_domains it when done with it. If the caller failed the
7646 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7647 * and partition_sched_domains() will fallback to the single partition
7648 * 'fallback_doms', it also forces the domains to be rebuilt.
7650 * If doms_new == NULL it will be replaced with cpu_online_mask.
7651 * ndoms_new == 0 is a special case for destroying existing domains,
7652 * and it will not create the default domain.
7654 * Call with hotplug lock held
7656 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7657 struct sched_domain_attr *dattr_new)
7659 int i, j, n;
7660 int new_topology;
7662 mutex_lock(&sched_domains_mutex);
7664 /* always unregister in case we don't destroy any domains */
7665 unregister_sched_domain_sysctl();
7667 /* Let architecture update cpu core mappings. */
7668 new_topology = arch_update_cpu_topology();
7670 n = doms_new ? ndoms_new : 0;
7672 /* Destroy deleted domains */
7673 for (i = 0; i < ndoms_cur; i++) {
7674 for (j = 0; j < n && !new_topology; j++) {
7675 if (cpumask_equal(doms_cur[i], doms_new[j])
7676 && dattrs_equal(dattr_cur, i, dattr_new, j))
7677 goto match1;
7679 /* no match - a current sched domain not in new doms_new[] */
7680 detach_destroy_domains(doms_cur[i]);
7681 match1:
7685 if (doms_new == NULL) {
7686 ndoms_cur = 0;
7687 doms_new = &fallback_doms;
7688 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7689 WARN_ON_ONCE(dattr_new);
7692 /* Build new domains */
7693 for (i = 0; i < ndoms_new; i++) {
7694 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7695 if (cpumask_equal(doms_new[i], doms_cur[j])
7696 && dattrs_equal(dattr_new, i, dattr_cur, j))
7697 goto match2;
7699 /* no match - add a new doms_new */
7700 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7701 match2:
7705 /* Remember the new sched domains */
7706 if (doms_cur != &fallback_doms)
7707 free_sched_domains(doms_cur, ndoms_cur);
7708 kfree(dattr_cur); /* kfree(NULL) is safe */
7709 doms_cur = doms_new;
7710 dattr_cur = dattr_new;
7711 ndoms_cur = ndoms_new;
7713 register_sched_domain_sysctl();
7715 mutex_unlock(&sched_domains_mutex);
7718 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7719 static void reinit_sched_domains(void)
7721 get_online_cpus();
7723 /* Destroy domains first to force the rebuild */
7724 partition_sched_domains(0, NULL, NULL);
7726 rebuild_sched_domains();
7727 put_online_cpus();
7730 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7732 unsigned int level = 0;
7734 if (sscanf(buf, "%u", &level) != 1)
7735 return -EINVAL;
7738 * level is always be positive so don't check for
7739 * level < POWERSAVINGS_BALANCE_NONE which is 0
7740 * What happens on 0 or 1 byte write,
7741 * need to check for count as well?
7744 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7745 return -EINVAL;
7747 if (smt)
7748 sched_smt_power_savings = level;
7749 else
7750 sched_mc_power_savings = level;
7752 reinit_sched_domains();
7754 return count;
7757 #ifdef CONFIG_SCHED_MC
7758 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7759 struct sysdev_class_attribute *attr,
7760 char *page)
7762 return sprintf(page, "%u\n", sched_mc_power_savings);
7764 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7765 struct sysdev_class_attribute *attr,
7766 const char *buf, size_t count)
7768 return sched_power_savings_store(buf, count, 0);
7770 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7771 sched_mc_power_savings_show,
7772 sched_mc_power_savings_store);
7773 #endif
7775 #ifdef CONFIG_SCHED_SMT
7776 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7777 struct sysdev_class_attribute *attr,
7778 char *page)
7780 return sprintf(page, "%u\n", sched_smt_power_savings);
7782 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7783 struct sysdev_class_attribute *attr,
7784 const char *buf, size_t count)
7786 return sched_power_savings_store(buf, count, 1);
7788 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7789 sched_smt_power_savings_show,
7790 sched_smt_power_savings_store);
7791 #endif
7793 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7795 int err = 0;
7797 #ifdef CONFIG_SCHED_SMT
7798 if (smt_capable())
7799 err = sysfs_create_file(&cls->kset.kobj,
7800 &attr_sched_smt_power_savings.attr);
7801 #endif
7802 #ifdef CONFIG_SCHED_MC
7803 if (!err && mc_capable())
7804 err = sysfs_create_file(&cls->kset.kobj,
7805 &attr_sched_mc_power_savings.attr);
7806 #endif
7807 return err;
7809 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7812 * Update cpusets according to cpu_active mask. If cpusets are
7813 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7814 * around partition_sched_domains().
7816 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7817 void *hcpu)
7819 switch (action & ~CPU_TASKS_FROZEN) {
7820 case CPU_ONLINE:
7821 case CPU_DOWN_FAILED:
7822 cpuset_update_active_cpus();
7823 return NOTIFY_OK;
7824 default:
7825 return NOTIFY_DONE;
7829 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7830 void *hcpu)
7832 switch (action & ~CPU_TASKS_FROZEN) {
7833 case CPU_DOWN_PREPARE:
7834 cpuset_update_active_cpus();
7835 return NOTIFY_OK;
7836 default:
7837 return NOTIFY_DONE;
7841 static int update_runtime(struct notifier_block *nfb,
7842 unsigned long action, void *hcpu)
7844 int cpu = (int)(long)hcpu;
7846 switch (action) {
7847 case CPU_DOWN_PREPARE:
7848 case CPU_DOWN_PREPARE_FROZEN:
7849 disable_runtime(cpu_rq(cpu));
7850 return NOTIFY_OK;
7852 case CPU_DOWN_FAILED:
7853 case CPU_DOWN_FAILED_FROZEN:
7854 case CPU_ONLINE:
7855 case CPU_ONLINE_FROZEN:
7856 enable_runtime(cpu_rq(cpu));
7857 return NOTIFY_OK;
7859 default:
7860 return NOTIFY_DONE;
7864 void __init sched_init_smp(void)
7866 cpumask_var_t non_isolated_cpus;
7868 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7869 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7871 get_online_cpus();
7872 mutex_lock(&sched_domains_mutex);
7873 init_sched_domains(cpu_active_mask);
7874 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7875 if (cpumask_empty(non_isolated_cpus))
7876 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7877 mutex_unlock(&sched_domains_mutex);
7878 put_online_cpus();
7880 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7881 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7883 /* RT runtime code needs to handle some hotplug events */
7884 hotcpu_notifier(update_runtime, 0);
7886 init_hrtick();
7888 /* Move init over to a non-isolated CPU */
7889 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7890 BUG();
7891 sched_init_granularity();
7892 free_cpumask_var(non_isolated_cpus);
7894 init_sched_rt_class();
7896 #else
7897 void __init sched_init_smp(void)
7899 sched_init_granularity();
7901 #endif /* CONFIG_SMP */
7903 const_debug unsigned int sysctl_timer_migration = 1;
7905 int in_sched_functions(unsigned long addr)
7907 return in_lock_functions(addr) ||
7908 (addr >= (unsigned long)__sched_text_start
7909 && addr < (unsigned long)__sched_text_end);
7912 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7914 cfs_rq->tasks_timeline = RB_ROOT;
7915 INIT_LIST_HEAD(&cfs_rq->tasks);
7916 #ifdef CONFIG_FAIR_GROUP_SCHED
7917 cfs_rq->rq = rq;
7918 /* allow initial update_cfs_load() to truncate */
7919 #ifdef CONFIG_SMP
7920 cfs_rq->load_stamp = 1;
7921 #endif
7922 #endif
7923 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7924 #ifndef CONFIG_64BIT
7925 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7926 #endif
7929 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7931 struct rt_prio_array *array;
7932 int i;
7934 array = &rt_rq->active;
7935 for (i = 0; i < MAX_RT_PRIO; i++) {
7936 INIT_LIST_HEAD(array->queue + i);
7937 __clear_bit(i, array->bitmap);
7939 /* delimiter for bitsearch: */
7940 __set_bit(MAX_RT_PRIO, array->bitmap);
7942 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7943 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7944 #ifdef CONFIG_SMP
7945 rt_rq->highest_prio.next = MAX_RT_PRIO;
7946 #endif
7947 #endif
7948 #ifdef CONFIG_SMP
7949 rt_rq->rt_nr_migratory = 0;
7950 rt_rq->overloaded = 0;
7951 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7952 #endif
7954 rt_rq->rt_time = 0;
7955 rt_rq->rt_throttled = 0;
7956 rt_rq->rt_runtime = 0;
7957 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7959 #ifdef CONFIG_RT_GROUP_SCHED
7960 rt_rq->rt_nr_boosted = 0;
7961 rt_rq->rq = rq;
7962 #endif
7965 #ifdef CONFIG_FAIR_GROUP_SCHED
7966 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7967 struct sched_entity *se, int cpu,
7968 struct sched_entity *parent)
7970 struct rq *rq = cpu_rq(cpu);
7971 tg->cfs_rq[cpu] = cfs_rq;
7972 init_cfs_rq(cfs_rq, rq);
7973 cfs_rq->tg = tg;
7975 tg->se[cpu] = se;
7976 /* se could be NULL for root_task_group */
7977 if (!se)
7978 return;
7980 if (!parent)
7981 se->cfs_rq = &rq->cfs;
7982 else
7983 se->cfs_rq = parent->my_q;
7985 se->my_q = cfs_rq;
7986 update_load_set(&se->load, 0);
7987 se->parent = parent;
7989 #endif
7991 #ifdef CONFIG_RT_GROUP_SCHED
7992 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7993 struct sched_rt_entity *rt_se, int cpu,
7994 struct sched_rt_entity *parent)
7996 struct rq *rq = cpu_rq(cpu);
7998 tg->rt_rq[cpu] = rt_rq;
7999 init_rt_rq(rt_rq, rq);
8000 rt_rq->tg = tg;
8001 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8003 tg->rt_se[cpu] = rt_se;
8004 if (!rt_se)
8005 return;
8007 if (!parent)
8008 rt_se->rt_rq = &rq->rt;
8009 else
8010 rt_se->rt_rq = parent->my_q;
8012 rt_se->my_q = rt_rq;
8013 rt_se->parent = parent;
8014 INIT_LIST_HEAD(&rt_se->run_list);
8016 #endif
8018 void __init sched_init(void)
8020 int i, j;
8021 unsigned long alloc_size = 0, ptr;
8023 #ifdef CONFIG_FAIR_GROUP_SCHED
8024 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8025 #endif
8026 #ifdef CONFIG_RT_GROUP_SCHED
8027 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8028 #endif
8029 #ifdef CONFIG_CPUMASK_OFFSTACK
8030 alloc_size += num_possible_cpus() * cpumask_size();
8031 #endif
8032 if (alloc_size) {
8033 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8035 #ifdef CONFIG_FAIR_GROUP_SCHED
8036 root_task_group.se = (struct sched_entity **)ptr;
8037 ptr += nr_cpu_ids * sizeof(void **);
8039 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8040 ptr += nr_cpu_ids * sizeof(void **);
8042 #endif /* CONFIG_FAIR_GROUP_SCHED */
8043 #ifdef CONFIG_RT_GROUP_SCHED
8044 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8045 ptr += nr_cpu_ids * sizeof(void **);
8047 root_task_group.rt_rq = (struct rt_rq **)ptr;
8048 ptr += nr_cpu_ids * sizeof(void **);
8050 #endif /* CONFIG_RT_GROUP_SCHED */
8051 #ifdef CONFIG_CPUMASK_OFFSTACK
8052 for_each_possible_cpu(i) {
8053 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8054 ptr += cpumask_size();
8056 #endif /* CONFIG_CPUMASK_OFFSTACK */
8059 #ifdef CONFIG_SMP
8060 init_defrootdomain();
8061 #endif
8063 init_rt_bandwidth(&def_rt_bandwidth,
8064 global_rt_period(), global_rt_runtime());
8066 #ifdef CONFIG_RT_GROUP_SCHED
8067 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8068 global_rt_period(), global_rt_runtime());
8069 #endif /* CONFIG_RT_GROUP_SCHED */
8071 #ifdef CONFIG_CGROUP_SCHED
8072 list_add(&root_task_group.list, &task_groups);
8073 INIT_LIST_HEAD(&root_task_group.children);
8074 autogroup_init(&init_task);
8075 #endif /* CONFIG_CGROUP_SCHED */
8077 for_each_possible_cpu(i) {
8078 struct rq *rq;
8080 rq = cpu_rq(i);
8081 raw_spin_lock_init(&rq->lock);
8082 rq->nr_running = 0;
8083 rq->calc_load_active = 0;
8084 rq->calc_load_update = jiffies + LOAD_FREQ;
8085 init_cfs_rq(&rq->cfs, rq);
8086 init_rt_rq(&rq->rt, rq);
8087 #ifdef CONFIG_FAIR_GROUP_SCHED
8088 root_task_group.shares = root_task_group_load;
8089 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8091 * How much cpu bandwidth does root_task_group get?
8093 * In case of task-groups formed thr' the cgroup filesystem, it
8094 * gets 100% of the cpu resources in the system. This overall
8095 * system cpu resource is divided among the tasks of
8096 * root_task_group and its child task-groups in a fair manner,
8097 * based on each entity's (task or task-group's) weight
8098 * (se->load.weight).
8100 * In other words, if root_task_group has 10 tasks of weight
8101 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8102 * then A0's share of the cpu resource is:
8104 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8106 * We achieve this by letting root_task_group's tasks sit
8107 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8109 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8110 #endif /* CONFIG_FAIR_GROUP_SCHED */
8112 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8113 #ifdef CONFIG_RT_GROUP_SCHED
8114 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8115 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8116 #endif
8118 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8119 rq->cpu_load[j] = 0;
8121 rq->last_load_update_tick = jiffies;
8123 #ifdef CONFIG_SMP
8124 rq->sd = NULL;
8125 rq->rd = NULL;
8126 rq->cpu_power = SCHED_POWER_SCALE;
8127 rq->post_schedule = 0;
8128 rq->active_balance = 0;
8129 rq->next_balance = jiffies;
8130 rq->push_cpu = 0;
8131 rq->cpu = i;
8132 rq->online = 0;
8133 rq->idle_stamp = 0;
8134 rq->avg_idle = 2*sysctl_sched_migration_cost;
8135 rq_attach_root(rq, &def_root_domain);
8136 #ifdef CONFIG_NO_HZ
8137 rq->nohz_balance_kick = 0;
8138 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8139 #endif
8140 #endif
8141 init_rq_hrtick(rq);
8142 atomic_set(&rq->nr_iowait, 0);
8145 set_load_weight(&init_task);
8147 #ifdef CONFIG_PREEMPT_NOTIFIERS
8148 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8149 #endif
8151 #ifdef CONFIG_SMP
8152 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8153 #endif
8155 #ifdef CONFIG_RT_MUTEXES
8156 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8157 #endif
8160 * The boot idle thread does lazy MMU switching as well:
8162 atomic_inc(&init_mm.mm_count);
8163 enter_lazy_tlb(&init_mm, current);
8166 * Make us the idle thread. Technically, schedule() should not be
8167 * called from this thread, however somewhere below it might be,
8168 * but because we are the idle thread, we just pick up running again
8169 * when this runqueue becomes "idle".
8171 init_idle(current, smp_processor_id());
8173 calc_load_update = jiffies + LOAD_FREQ;
8176 * During early bootup we pretend to be a normal task:
8178 current->sched_class = &fair_sched_class;
8180 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8181 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8182 #ifdef CONFIG_SMP
8183 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8184 #ifdef CONFIG_NO_HZ
8185 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8186 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8187 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8188 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8189 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8190 #endif
8191 /* May be allocated at isolcpus cmdline parse time */
8192 if (cpu_isolated_map == NULL)
8193 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8194 #endif /* SMP */
8196 scheduler_running = 1;
8199 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8200 static inline int preempt_count_equals(int preempt_offset)
8202 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8204 return (nested == preempt_offset);
8207 void __might_sleep(const char *file, int line, int preempt_offset)
8209 #ifdef in_atomic
8210 static unsigned long prev_jiffy; /* ratelimiting */
8212 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8213 system_state != SYSTEM_RUNNING || oops_in_progress)
8214 return;
8215 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8216 return;
8217 prev_jiffy = jiffies;
8219 printk(KERN_ERR
8220 "BUG: sleeping function called from invalid context at %s:%d\n",
8221 file, line);
8222 printk(KERN_ERR
8223 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8224 in_atomic(), irqs_disabled(),
8225 current->pid, current->comm);
8227 debug_show_held_locks(current);
8228 if (irqs_disabled())
8229 print_irqtrace_events(current);
8230 dump_stack();
8231 #endif
8233 EXPORT_SYMBOL(__might_sleep);
8234 #endif
8236 #ifdef CONFIG_MAGIC_SYSRQ
8237 static void normalize_task(struct rq *rq, struct task_struct *p)
8239 const struct sched_class *prev_class = p->sched_class;
8240 int old_prio = p->prio;
8241 int on_rq;
8243 on_rq = p->on_rq;
8244 if (on_rq)
8245 deactivate_task(rq, p, 0);
8246 __setscheduler(rq, p, SCHED_NORMAL, 0);
8247 if (on_rq) {
8248 activate_task(rq, p, 0);
8249 resched_task(rq->curr);
8252 check_class_changed(rq, p, prev_class, old_prio);
8255 void normalize_rt_tasks(void)
8257 struct task_struct *g, *p;
8258 unsigned long flags;
8259 struct rq *rq;
8261 read_lock_irqsave(&tasklist_lock, flags);
8262 do_each_thread(g, p) {
8264 * Only normalize user tasks:
8266 if (!p->mm)
8267 continue;
8269 p->se.exec_start = 0;
8270 #ifdef CONFIG_SCHEDSTATS
8271 p->se.statistics.wait_start = 0;
8272 p->se.statistics.sleep_start = 0;
8273 p->se.statistics.block_start = 0;
8274 #endif
8276 if (!rt_task(p)) {
8278 * Renice negative nice level userspace
8279 * tasks back to 0:
8281 if (TASK_NICE(p) < 0 && p->mm)
8282 set_user_nice(p, 0);
8283 continue;
8286 raw_spin_lock(&p->pi_lock);
8287 rq = __task_rq_lock(p);
8289 normalize_task(rq, p);
8291 __task_rq_unlock(rq);
8292 raw_spin_unlock(&p->pi_lock);
8293 } while_each_thread(g, p);
8295 read_unlock_irqrestore(&tasklist_lock, flags);
8298 #endif /* CONFIG_MAGIC_SYSRQ */
8300 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8302 * These functions are only useful for the IA64 MCA handling, or kdb.
8304 * They can only be called when the whole system has been
8305 * stopped - every CPU needs to be quiescent, and no scheduling
8306 * activity can take place. Using them for anything else would
8307 * be a serious bug, and as a result, they aren't even visible
8308 * under any other configuration.
8312 * curr_task - return the current task for a given cpu.
8313 * @cpu: the processor in question.
8315 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8317 struct task_struct *curr_task(int cpu)
8319 return cpu_curr(cpu);
8322 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8324 #ifdef CONFIG_IA64
8326 * set_curr_task - set the current task for a given cpu.
8327 * @cpu: the processor in question.
8328 * @p: the task pointer to set.
8330 * Description: This function must only be used when non-maskable interrupts
8331 * are serviced on a separate stack. It allows the architecture to switch the
8332 * notion of the current task on a cpu in a non-blocking manner. This function
8333 * must be called with all CPU's synchronized, and interrupts disabled, the
8334 * and caller must save the original value of the current task (see
8335 * curr_task() above) and restore that value before reenabling interrupts and
8336 * re-starting the system.
8338 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8340 void set_curr_task(int cpu, struct task_struct *p)
8342 cpu_curr(cpu) = p;
8345 #endif
8347 #ifdef CONFIG_FAIR_GROUP_SCHED
8348 static void free_fair_sched_group(struct task_group *tg)
8350 int i;
8352 for_each_possible_cpu(i) {
8353 if (tg->cfs_rq)
8354 kfree(tg->cfs_rq[i]);
8355 if (tg->se)
8356 kfree(tg->se[i]);
8359 kfree(tg->cfs_rq);
8360 kfree(tg->se);
8363 static
8364 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8366 struct cfs_rq *cfs_rq;
8367 struct sched_entity *se;
8368 int i;
8370 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8371 if (!tg->cfs_rq)
8372 goto err;
8373 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8374 if (!tg->se)
8375 goto err;
8377 tg->shares = NICE_0_LOAD;
8379 for_each_possible_cpu(i) {
8380 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8381 GFP_KERNEL, cpu_to_node(i));
8382 if (!cfs_rq)
8383 goto err;
8385 se = kzalloc_node(sizeof(struct sched_entity),
8386 GFP_KERNEL, cpu_to_node(i));
8387 if (!se)
8388 goto err_free_rq;
8390 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8393 return 1;
8395 err_free_rq:
8396 kfree(cfs_rq);
8397 err:
8398 return 0;
8401 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8403 struct rq *rq = cpu_rq(cpu);
8404 unsigned long flags;
8407 * Only empty task groups can be destroyed; so we can speculatively
8408 * check on_list without danger of it being re-added.
8410 if (!tg->cfs_rq[cpu]->on_list)
8411 return;
8413 raw_spin_lock_irqsave(&rq->lock, flags);
8414 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8415 raw_spin_unlock_irqrestore(&rq->lock, flags);
8417 #else /* !CONFG_FAIR_GROUP_SCHED */
8418 static inline void free_fair_sched_group(struct task_group *tg)
8422 static inline
8423 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8425 return 1;
8428 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8431 #endif /* CONFIG_FAIR_GROUP_SCHED */
8433 #ifdef CONFIG_RT_GROUP_SCHED
8434 static void free_rt_sched_group(struct task_group *tg)
8436 int i;
8438 destroy_rt_bandwidth(&tg->rt_bandwidth);
8440 for_each_possible_cpu(i) {
8441 if (tg->rt_rq)
8442 kfree(tg->rt_rq[i]);
8443 if (tg->rt_se)
8444 kfree(tg->rt_se[i]);
8447 kfree(tg->rt_rq);
8448 kfree(tg->rt_se);
8451 static
8452 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8454 struct rt_rq *rt_rq;
8455 struct sched_rt_entity *rt_se;
8456 int i;
8458 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8459 if (!tg->rt_rq)
8460 goto err;
8461 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8462 if (!tg->rt_se)
8463 goto err;
8465 init_rt_bandwidth(&tg->rt_bandwidth,
8466 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8468 for_each_possible_cpu(i) {
8469 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8470 GFP_KERNEL, cpu_to_node(i));
8471 if (!rt_rq)
8472 goto err;
8474 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8475 GFP_KERNEL, cpu_to_node(i));
8476 if (!rt_se)
8477 goto err_free_rq;
8479 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8482 return 1;
8484 err_free_rq:
8485 kfree(rt_rq);
8486 err:
8487 return 0;
8489 #else /* !CONFIG_RT_GROUP_SCHED */
8490 static inline void free_rt_sched_group(struct task_group *tg)
8494 static inline
8495 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8497 return 1;
8499 #endif /* CONFIG_RT_GROUP_SCHED */
8501 #ifdef CONFIG_CGROUP_SCHED
8502 static void free_sched_group(struct task_group *tg)
8504 free_fair_sched_group(tg);
8505 free_rt_sched_group(tg);
8506 autogroup_free(tg);
8507 kfree(tg);
8510 /* allocate runqueue etc for a new task group */
8511 struct task_group *sched_create_group(struct task_group *parent)
8513 struct task_group *tg;
8514 unsigned long flags;
8516 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8517 if (!tg)
8518 return ERR_PTR(-ENOMEM);
8520 if (!alloc_fair_sched_group(tg, parent))
8521 goto err;
8523 if (!alloc_rt_sched_group(tg, parent))
8524 goto err;
8526 spin_lock_irqsave(&task_group_lock, flags);
8527 list_add_rcu(&tg->list, &task_groups);
8529 WARN_ON(!parent); /* root should already exist */
8531 tg->parent = parent;
8532 INIT_LIST_HEAD(&tg->children);
8533 list_add_rcu(&tg->siblings, &parent->children);
8534 spin_unlock_irqrestore(&task_group_lock, flags);
8536 return tg;
8538 err:
8539 free_sched_group(tg);
8540 return ERR_PTR(-ENOMEM);
8543 /* rcu callback to free various structures associated with a task group */
8544 static void free_sched_group_rcu(struct rcu_head *rhp)
8546 /* now it should be safe to free those cfs_rqs */
8547 free_sched_group(container_of(rhp, struct task_group, rcu));
8550 /* Destroy runqueue etc associated with a task group */
8551 void sched_destroy_group(struct task_group *tg)
8553 unsigned long flags;
8554 int i;
8556 /* end participation in shares distribution */
8557 for_each_possible_cpu(i)
8558 unregister_fair_sched_group(tg, i);
8560 spin_lock_irqsave(&task_group_lock, flags);
8561 list_del_rcu(&tg->list);
8562 list_del_rcu(&tg->siblings);
8563 spin_unlock_irqrestore(&task_group_lock, flags);
8565 /* wait for possible concurrent references to cfs_rqs complete */
8566 call_rcu(&tg->rcu, free_sched_group_rcu);
8569 /* change task's runqueue when it moves between groups.
8570 * The caller of this function should have put the task in its new group
8571 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8572 * reflect its new group.
8574 void sched_move_task(struct task_struct *tsk)
8576 int on_rq, running;
8577 unsigned long flags;
8578 struct rq *rq;
8580 rq = task_rq_lock(tsk, &flags);
8582 running = task_current(rq, tsk);
8583 on_rq = tsk->on_rq;
8585 if (on_rq)
8586 dequeue_task(rq, tsk, 0);
8587 if (unlikely(running))
8588 tsk->sched_class->put_prev_task(rq, tsk);
8590 #ifdef CONFIG_FAIR_GROUP_SCHED
8591 if (tsk->sched_class->task_move_group)
8592 tsk->sched_class->task_move_group(tsk, on_rq);
8593 else
8594 #endif
8595 set_task_rq(tsk, task_cpu(tsk));
8597 if (unlikely(running))
8598 tsk->sched_class->set_curr_task(rq);
8599 if (on_rq)
8600 enqueue_task(rq, tsk, 0);
8602 task_rq_unlock(rq, tsk, &flags);
8604 #endif /* CONFIG_CGROUP_SCHED */
8606 #ifdef CONFIG_FAIR_GROUP_SCHED
8607 static DEFINE_MUTEX(shares_mutex);
8609 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8611 int i;
8612 unsigned long flags;
8615 * We can't change the weight of the root cgroup.
8617 if (!tg->se[0])
8618 return -EINVAL;
8620 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8622 mutex_lock(&shares_mutex);
8623 if (tg->shares == shares)
8624 goto done;
8626 tg->shares = shares;
8627 for_each_possible_cpu(i) {
8628 struct rq *rq = cpu_rq(i);
8629 struct sched_entity *se;
8631 se = tg->se[i];
8632 /* Propagate contribution to hierarchy */
8633 raw_spin_lock_irqsave(&rq->lock, flags);
8634 for_each_sched_entity(se)
8635 update_cfs_shares(group_cfs_rq(se));
8636 raw_spin_unlock_irqrestore(&rq->lock, flags);
8639 done:
8640 mutex_unlock(&shares_mutex);
8641 return 0;
8644 unsigned long sched_group_shares(struct task_group *tg)
8646 return tg->shares;
8648 #endif
8650 #ifdef CONFIG_RT_GROUP_SCHED
8652 * Ensure that the real time constraints are schedulable.
8654 static DEFINE_MUTEX(rt_constraints_mutex);
8656 static unsigned long to_ratio(u64 period, u64 runtime)
8658 if (runtime == RUNTIME_INF)
8659 return 1ULL << 20;
8661 return div64_u64(runtime << 20, period);
8664 /* Must be called with tasklist_lock held */
8665 static inline int tg_has_rt_tasks(struct task_group *tg)
8667 struct task_struct *g, *p;
8669 do_each_thread(g, p) {
8670 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8671 return 1;
8672 } while_each_thread(g, p);
8674 return 0;
8677 struct rt_schedulable_data {
8678 struct task_group *tg;
8679 u64 rt_period;
8680 u64 rt_runtime;
8683 static int tg_schedulable(struct task_group *tg, void *data)
8685 struct rt_schedulable_data *d = data;
8686 struct task_group *child;
8687 unsigned long total, sum = 0;
8688 u64 period, runtime;
8690 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8691 runtime = tg->rt_bandwidth.rt_runtime;
8693 if (tg == d->tg) {
8694 period = d->rt_period;
8695 runtime = d->rt_runtime;
8699 * Cannot have more runtime than the period.
8701 if (runtime > period && runtime != RUNTIME_INF)
8702 return -EINVAL;
8705 * Ensure we don't starve existing RT tasks.
8707 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8708 return -EBUSY;
8710 total = to_ratio(period, runtime);
8713 * Nobody can have more than the global setting allows.
8715 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8716 return -EINVAL;
8719 * The sum of our children's runtime should not exceed our own.
8721 list_for_each_entry_rcu(child, &tg->children, siblings) {
8722 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8723 runtime = child->rt_bandwidth.rt_runtime;
8725 if (child == d->tg) {
8726 period = d->rt_period;
8727 runtime = d->rt_runtime;
8730 sum += to_ratio(period, runtime);
8733 if (sum > total)
8734 return -EINVAL;
8736 return 0;
8739 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8741 struct rt_schedulable_data data = {
8742 .tg = tg,
8743 .rt_period = period,
8744 .rt_runtime = runtime,
8747 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8750 static int tg_set_bandwidth(struct task_group *tg,
8751 u64 rt_period, u64 rt_runtime)
8753 int i, err = 0;
8755 mutex_lock(&rt_constraints_mutex);
8756 read_lock(&tasklist_lock);
8757 err = __rt_schedulable(tg, rt_period, rt_runtime);
8758 if (err)
8759 goto unlock;
8761 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8762 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8763 tg->rt_bandwidth.rt_runtime = rt_runtime;
8765 for_each_possible_cpu(i) {
8766 struct rt_rq *rt_rq = tg->rt_rq[i];
8768 raw_spin_lock(&rt_rq->rt_runtime_lock);
8769 rt_rq->rt_runtime = rt_runtime;
8770 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8772 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8773 unlock:
8774 read_unlock(&tasklist_lock);
8775 mutex_unlock(&rt_constraints_mutex);
8777 return err;
8780 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8782 u64 rt_runtime, rt_period;
8784 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8785 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8786 if (rt_runtime_us < 0)
8787 rt_runtime = RUNTIME_INF;
8789 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8792 long sched_group_rt_runtime(struct task_group *tg)
8794 u64 rt_runtime_us;
8796 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8797 return -1;
8799 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8800 do_div(rt_runtime_us, NSEC_PER_USEC);
8801 return rt_runtime_us;
8804 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8806 u64 rt_runtime, rt_period;
8808 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8809 rt_runtime = tg->rt_bandwidth.rt_runtime;
8811 if (rt_period == 0)
8812 return -EINVAL;
8814 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8817 long sched_group_rt_period(struct task_group *tg)
8819 u64 rt_period_us;
8821 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8822 do_div(rt_period_us, NSEC_PER_USEC);
8823 return rt_period_us;
8826 static int sched_rt_global_constraints(void)
8828 u64 runtime, period;
8829 int ret = 0;
8831 if (sysctl_sched_rt_period <= 0)
8832 return -EINVAL;
8834 runtime = global_rt_runtime();
8835 period = global_rt_period();
8838 * Sanity check on the sysctl variables.
8840 if (runtime > period && runtime != RUNTIME_INF)
8841 return -EINVAL;
8843 mutex_lock(&rt_constraints_mutex);
8844 read_lock(&tasklist_lock);
8845 ret = __rt_schedulable(NULL, 0, 0);
8846 read_unlock(&tasklist_lock);
8847 mutex_unlock(&rt_constraints_mutex);
8849 return ret;
8852 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8854 /* Don't accept realtime tasks when there is no way for them to run */
8855 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8856 return 0;
8858 return 1;
8861 #else /* !CONFIG_RT_GROUP_SCHED */
8862 static int sched_rt_global_constraints(void)
8864 unsigned long flags;
8865 int i;
8867 if (sysctl_sched_rt_period <= 0)
8868 return -EINVAL;
8871 * There's always some RT tasks in the root group
8872 * -- migration, kstopmachine etc..
8874 if (sysctl_sched_rt_runtime == 0)
8875 return -EBUSY;
8877 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8878 for_each_possible_cpu(i) {
8879 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8881 raw_spin_lock(&rt_rq->rt_runtime_lock);
8882 rt_rq->rt_runtime = global_rt_runtime();
8883 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8885 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8887 return 0;
8889 #endif /* CONFIG_RT_GROUP_SCHED */
8891 int sched_rt_handler(struct ctl_table *table, int write,
8892 void __user *buffer, size_t *lenp,
8893 loff_t *ppos)
8895 int ret;
8896 int old_period, old_runtime;
8897 static DEFINE_MUTEX(mutex);
8899 mutex_lock(&mutex);
8900 old_period = sysctl_sched_rt_period;
8901 old_runtime = sysctl_sched_rt_runtime;
8903 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8905 if (!ret && write) {
8906 ret = sched_rt_global_constraints();
8907 if (ret) {
8908 sysctl_sched_rt_period = old_period;
8909 sysctl_sched_rt_runtime = old_runtime;
8910 } else {
8911 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8912 def_rt_bandwidth.rt_period =
8913 ns_to_ktime(global_rt_period());
8916 mutex_unlock(&mutex);
8918 return ret;
8921 #ifdef CONFIG_CGROUP_SCHED
8923 /* return corresponding task_group object of a cgroup */
8924 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8926 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8927 struct task_group, css);
8930 static struct cgroup_subsys_state *
8931 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8933 struct task_group *tg, *parent;
8935 if (!cgrp->parent) {
8936 /* This is early initialization for the top cgroup */
8937 return &root_task_group.css;
8940 parent = cgroup_tg(cgrp->parent);
8941 tg = sched_create_group(parent);
8942 if (IS_ERR(tg))
8943 return ERR_PTR(-ENOMEM);
8945 return &tg->css;
8948 static void
8949 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8951 struct task_group *tg = cgroup_tg(cgrp);
8953 sched_destroy_group(tg);
8956 static int
8957 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8959 #ifdef CONFIG_RT_GROUP_SCHED
8960 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8961 return -EINVAL;
8962 #else
8963 /* We don't support RT-tasks being in separate groups */
8964 if (tsk->sched_class != &fair_sched_class)
8965 return -EINVAL;
8966 #endif
8967 return 0;
8970 static void
8971 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8973 sched_move_task(tsk);
8976 static void
8977 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8978 struct cgroup *old_cgrp, struct task_struct *task)
8981 * cgroup_exit() is called in the copy_process() failure path.
8982 * Ignore this case since the task hasn't ran yet, this avoids
8983 * trying to poke a half freed task state from generic code.
8985 if (!(task->flags & PF_EXITING))
8986 return;
8988 sched_move_task(task);
8991 #ifdef CONFIG_FAIR_GROUP_SCHED
8992 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8993 u64 shareval)
8995 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8998 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9000 struct task_group *tg = cgroup_tg(cgrp);
9002 return (u64) scale_load_down(tg->shares);
9004 #endif /* CONFIG_FAIR_GROUP_SCHED */
9006 #ifdef CONFIG_RT_GROUP_SCHED
9007 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9008 s64 val)
9010 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9013 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9015 return sched_group_rt_runtime(cgroup_tg(cgrp));
9018 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9019 u64 rt_period_us)
9021 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9024 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9026 return sched_group_rt_period(cgroup_tg(cgrp));
9028 #endif /* CONFIG_RT_GROUP_SCHED */
9030 static struct cftype cpu_files[] = {
9031 #ifdef CONFIG_FAIR_GROUP_SCHED
9033 .name = "shares",
9034 .read_u64 = cpu_shares_read_u64,
9035 .write_u64 = cpu_shares_write_u64,
9037 #endif
9038 #ifdef CONFIG_RT_GROUP_SCHED
9040 .name = "rt_runtime_us",
9041 .read_s64 = cpu_rt_runtime_read,
9042 .write_s64 = cpu_rt_runtime_write,
9045 .name = "rt_period_us",
9046 .read_u64 = cpu_rt_period_read_uint,
9047 .write_u64 = cpu_rt_period_write_uint,
9049 #endif
9052 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9054 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9057 struct cgroup_subsys cpu_cgroup_subsys = {
9058 .name = "cpu",
9059 .create = cpu_cgroup_create,
9060 .destroy = cpu_cgroup_destroy,
9061 .can_attach_task = cpu_cgroup_can_attach_task,
9062 .attach_task = cpu_cgroup_attach_task,
9063 .exit = cpu_cgroup_exit,
9064 .populate = cpu_cgroup_populate,
9065 .subsys_id = cpu_cgroup_subsys_id,
9066 .early_init = 1,
9069 #endif /* CONFIG_CGROUP_SCHED */
9071 #ifdef CONFIG_CGROUP_CPUACCT
9074 * CPU accounting code for task groups.
9076 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9077 * (balbir@in.ibm.com).
9080 /* track cpu usage of a group of tasks and its child groups */
9081 struct cpuacct {
9082 struct cgroup_subsys_state css;
9083 /* cpuusage holds pointer to a u64-type object on every cpu */
9084 u64 __percpu *cpuusage;
9085 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9086 struct cpuacct *parent;
9089 struct cgroup_subsys cpuacct_subsys;
9091 /* return cpu accounting group corresponding to this container */
9092 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9094 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9095 struct cpuacct, css);
9098 /* return cpu accounting group to which this task belongs */
9099 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9101 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9102 struct cpuacct, css);
9105 /* create a new cpu accounting group */
9106 static struct cgroup_subsys_state *cpuacct_create(
9107 struct cgroup_subsys *ss, struct cgroup *cgrp)
9109 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9110 int i;
9112 if (!ca)
9113 goto out;
9115 ca->cpuusage = alloc_percpu(u64);
9116 if (!ca->cpuusage)
9117 goto out_free_ca;
9119 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9120 if (percpu_counter_init(&ca->cpustat[i], 0))
9121 goto out_free_counters;
9123 if (cgrp->parent)
9124 ca->parent = cgroup_ca(cgrp->parent);
9126 return &ca->css;
9128 out_free_counters:
9129 while (--i >= 0)
9130 percpu_counter_destroy(&ca->cpustat[i]);
9131 free_percpu(ca->cpuusage);
9132 out_free_ca:
9133 kfree(ca);
9134 out:
9135 return ERR_PTR(-ENOMEM);
9138 /* destroy an existing cpu accounting group */
9139 static void
9140 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9142 struct cpuacct *ca = cgroup_ca(cgrp);
9143 int i;
9145 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9146 percpu_counter_destroy(&ca->cpustat[i]);
9147 free_percpu(ca->cpuusage);
9148 kfree(ca);
9151 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9153 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9154 u64 data;
9156 #ifndef CONFIG_64BIT
9158 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9160 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9161 data = *cpuusage;
9162 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9163 #else
9164 data = *cpuusage;
9165 #endif
9167 return data;
9170 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9172 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9174 #ifndef CONFIG_64BIT
9176 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9178 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9179 *cpuusage = val;
9180 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9181 #else
9182 *cpuusage = val;
9183 #endif
9186 /* return total cpu usage (in nanoseconds) of a group */
9187 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9189 struct cpuacct *ca = cgroup_ca(cgrp);
9190 u64 totalcpuusage = 0;
9191 int i;
9193 for_each_present_cpu(i)
9194 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9196 return totalcpuusage;
9199 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9200 u64 reset)
9202 struct cpuacct *ca = cgroup_ca(cgrp);
9203 int err = 0;
9204 int i;
9206 if (reset) {
9207 err = -EINVAL;
9208 goto out;
9211 for_each_present_cpu(i)
9212 cpuacct_cpuusage_write(ca, i, 0);
9214 out:
9215 return err;
9218 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9219 struct seq_file *m)
9221 struct cpuacct *ca = cgroup_ca(cgroup);
9222 u64 percpu;
9223 int i;
9225 for_each_present_cpu(i) {
9226 percpu = cpuacct_cpuusage_read(ca, i);
9227 seq_printf(m, "%llu ", (unsigned long long) percpu);
9229 seq_printf(m, "\n");
9230 return 0;
9233 static const char *cpuacct_stat_desc[] = {
9234 [CPUACCT_STAT_USER] = "user",
9235 [CPUACCT_STAT_SYSTEM] = "system",
9238 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9239 struct cgroup_map_cb *cb)
9241 struct cpuacct *ca = cgroup_ca(cgrp);
9242 int i;
9244 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9245 s64 val = percpu_counter_read(&ca->cpustat[i]);
9246 val = cputime64_to_clock_t(val);
9247 cb->fill(cb, cpuacct_stat_desc[i], val);
9249 return 0;
9252 static struct cftype files[] = {
9254 .name = "usage",
9255 .read_u64 = cpuusage_read,
9256 .write_u64 = cpuusage_write,
9259 .name = "usage_percpu",
9260 .read_seq_string = cpuacct_percpu_seq_read,
9263 .name = "stat",
9264 .read_map = cpuacct_stats_show,
9268 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9270 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9274 * charge this task's execution time to its accounting group.
9276 * called with rq->lock held.
9278 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9280 struct cpuacct *ca;
9281 int cpu;
9283 if (unlikely(!cpuacct_subsys.active))
9284 return;
9286 cpu = task_cpu(tsk);
9288 rcu_read_lock();
9290 ca = task_ca(tsk);
9292 for (; ca; ca = ca->parent) {
9293 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9294 *cpuusage += cputime;
9297 rcu_read_unlock();
9301 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9302 * in cputime_t units. As a result, cpuacct_update_stats calls
9303 * percpu_counter_add with values large enough to always overflow the
9304 * per cpu batch limit causing bad SMP scalability.
9306 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9307 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9308 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9310 #ifdef CONFIG_SMP
9311 #define CPUACCT_BATCH \
9312 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9313 #else
9314 #define CPUACCT_BATCH 0
9315 #endif
9318 * Charge the system/user time to the task's accounting group.
9320 static void cpuacct_update_stats(struct task_struct *tsk,
9321 enum cpuacct_stat_index idx, cputime_t val)
9323 struct cpuacct *ca;
9324 int batch = CPUACCT_BATCH;
9326 if (unlikely(!cpuacct_subsys.active))
9327 return;
9329 rcu_read_lock();
9330 ca = task_ca(tsk);
9332 do {
9333 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9334 ca = ca->parent;
9335 } while (ca);
9336 rcu_read_unlock();
9339 struct cgroup_subsys cpuacct_subsys = {
9340 .name = "cpuacct",
9341 .create = cpuacct_create,
9342 .destroy = cpuacct_destroy,
9343 .populate = cpuacct_populate,
9344 .subsys_id = cpuacct_subsys_id,
9346 #endif /* CONFIG_CGROUP_CPUACCT */