2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency
= 5000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity
= 1000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency
= 5;
51 * After fork, child runs first. If set to 0 (default) then
52 * parent will (try to) run first.
54 unsigned int sysctl_sched_child_runs_first __read_mostly
;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield
;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
74 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
76 static const struct sched_class fair_sched_class
;
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
82 #ifdef CONFIG_FAIR_GROUP_SCHED
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se) (!se->my_q)
93 static inline struct task_struct
*task_of(struct sched_entity
*se
)
95 #ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se
));
98 return container_of(se
, struct task_struct
, se
);
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
105 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
125 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
127 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
134 /* Do the two (enqueued) entities belong to the same group ? */
136 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
138 if (se
->cfs_rq
== pse
->cfs_rq
)
144 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity
*se
)
154 for_each_sched_entity(se
)
161 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
163 int se_depth
, pse_depth
;
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
172 /* First walk up until both entities are at same depth */
173 se_depth
= depth_se(*se
);
174 pse_depth
= depth_se(*pse
);
176 while (se_depth
> pse_depth
) {
178 *se
= parent_entity(*se
);
181 while (pse_depth
> se_depth
) {
183 *pse
= parent_entity(*pse
);
186 while (!is_same_group(*se
, *pse
)) {
187 *se
= parent_entity(*se
);
188 *pse
= parent_entity(*pse
);
192 #else /* !CONFIG_FAIR_GROUP_SCHED */
194 static inline struct task_struct
*task_of(struct sched_entity
*se
)
196 return container_of(se
, struct task_struct
, se
);
199 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
201 return container_of(cfs_rq
, struct rq
, cfs
);
204 #define entity_is_task(se) 1
206 #define for_each_sched_entity(se) \
207 for (; se; se = NULL)
209 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
211 return &task_rq(p
)->cfs
;
214 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
216 struct task_struct
*p
= task_of(se
);
217 struct rq
*rq
= task_rq(p
);
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
228 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
230 return &cpu_rq(this_cpu
)->cfs
;
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
237 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
242 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
248 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
252 #endif /* CONFIG_FAIR_GROUP_SCHED */
255 /**************************************************************
256 * Scheduling class tree data structure manipulation methods:
259 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
261 s64 delta
= (s64
)(vruntime
- min_vruntime
);
263 min_vruntime
= vruntime
;
268 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
270 s64 delta
= (s64
)(vruntime
- min_vruntime
);
272 min_vruntime
= vruntime
;
277 static inline int entity_before(struct sched_entity
*a
,
278 struct sched_entity
*b
)
280 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
283 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
285 return se
->vruntime
- cfs_rq
->min_vruntime
;
288 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
290 u64 vruntime
= cfs_rq
->min_vruntime
;
293 vruntime
= cfs_rq
->curr
->vruntime
;
295 if (cfs_rq
->rb_leftmost
) {
296 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
301 vruntime
= se
->vruntime
;
303 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
306 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
310 * Enqueue an entity into the rb-tree:
312 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
314 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
315 struct rb_node
*parent
= NULL
;
316 struct sched_entity
*entry
;
317 s64 key
= entity_key(cfs_rq
, se
);
321 * Find the right place in the rbtree:
325 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
330 if (key
< entity_key(cfs_rq
, entry
)) {
331 link
= &parent
->rb_left
;
333 link
= &parent
->rb_right
;
339 * Maintain a cache of leftmost tree entries (it is frequently
343 cfs_rq
->rb_leftmost
= &se
->run_node
;
345 rb_link_node(&se
->run_node
, parent
, link
);
346 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
349 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
351 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
352 struct rb_node
*next_node
;
354 next_node
= rb_next(&se
->run_node
);
355 cfs_rq
->rb_leftmost
= next_node
;
358 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
361 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
363 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
368 return rb_entry(left
, struct sched_entity
, run_node
);
371 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
373 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
378 return rb_entry(last
, struct sched_entity
, run_node
);
381 /**************************************************************
382 * Scheduling class statistics methods:
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table
*table
, int write
,
387 void __user
*buffer
, size_t *lenp
,
390 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
395 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
396 sysctl_sched_min_granularity
);
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
408 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
409 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
415 * The idea is to set a period in which each task runs once.
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
420 * p = (nr <= nl) ? l : l*nr/nl
422 static u64
__sched_period(unsigned long nr_running
)
424 u64 period
= sysctl_sched_latency
;
425 unsigned long nr_latency
= sched_nr_latency
;
427 if (unlikely(nr_running
> nr_latency
)) {
428 period
= sysctl_sched_min_granularity
;
429 period
*= nr_running
;
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
441 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
443 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
445 for_each_sched_entity(se
) {
446 struct load_weight
*load
;
447 struct load_weight lw
;
449 cfs_rq
= cfs_rq_of(se
);
450 load
= &cfs_rq
->load
;
452 if (unlikely(!se
->on_rq
)) {
455 update_load_add(&lw
, se
->load
.weight
);
458 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
464 * We calculate the vruntime slice of a to be inserted task
468 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
470 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
478 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
479 unsigned long delta_exec
)
481 unsigned long delta_exec_weighted
;
483 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
485 curr
->sum_exec_runtime
+= delta_exec
;
486 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
487 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
488 curr
->vruntime
+= delta_exec_weighted
;
489 update_min_vruntime(cfs_rq
);
492 static void update_curr(struct cfs_rq
*cfs_rq
)
494 struct sched_entity
*curr
= cfs_rq
->curr
;
495 u64 now
= rq_of(cfs_rq
)->clock
;
496 unsigned long delta_exec
;
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
506 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
510 __update_curr(cfs_rq
, curr
, delta_exec
);
511 curr
->exec_start
= now
;
513 if (entity_is_task(curr
)) {
514 struct task_struct
*curtask
= task_of(curr
);
516 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
517 cpuacct_charge(curtask
, delta_exec
);
518 account_group_exec_runtime(curtask
, delta_exec
);
523 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
525 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
529 * Task is being enqueued - update stats:
531 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
534 * Are we enqueueing a waiting task? (for current tasks
535 * a dequeue/enqueue event is a NOP)
537 if (se
!= cfs_rq
->curr
)
538 update_stats_wait_start(cfs_rq
, se
);
542 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
544 schedstat_set(se
->wait_max
, max(se
->wait_max
,
545 rq_of(cfs_rq
)->clock
- se
->wait_start
));
546 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
547 schedstat_set(se
->wait_sum
, se
->wait_sum
+
548 rq_of(cfs_rq
)->clock
- se
->wait_start
);
549 #ifdef CONFIG_SCHEDSTATS
550 if (entity_is_task(se
)) {
551 trace_sched_stat_wait(task_of(se
),
552 rq_of(cfs_rq
)->clock
- se
->wait_start
);
555 schedstat_set(se
->wait_start
, 0);
559 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
562 * Mark the end of the wait period if dequeueing a
565 if (se
!= cfs_rq
->curr
)
566 update_stats_wait_end(cfs_rq
, se
);
570 * We are picking a new current task - update its stats:
573 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
576 * We are starting a new run period:
578 se
->exec_start
= rq_of(cfs_rq
)->clock
;
581 /**************************************************
582 * Scheduling class queueing methods:
585 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
587 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
589 cfs_rq
->task_weight
+= weight
;
593 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
599 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
601 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
602 if (!parent_entity(se
))
603 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
604 if (entity_is_task(se
)) {
605 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
606 list_add(&se
->group_node
, &cfs_rq
->tasks
);
608 cfs_rq
->nr_running
++;
613 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
615 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
616 if (!parent_entity(se
))
617 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
618 if (entity_is_task(se
)) {
619 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
620 list_del_init(&se
->group_node
);
622 cfs_rq
->nr_running
--;
626 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
628 #ifdef CONFIG_SCHEDSTATS
629 struct task_struct
*tsk
= NULL
;
631 if (entity_is_task(se
))
634 if (se
->sleep_start
) {
635 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
640 if (unlikely(delta
> se
->sleep_max
))
641 se
->sleep_max
= delta
;
644 se
->sum_sleep_runtime
+= delta
;
647 account_scheduler_latency(tsk
, delta
>> 10, 1);
648 trace_sched_stat_sleep(tsk
, delta
);
651 if (se
->block_start
) {
652 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
657 if (unlikely(delta
> se
->block_max
))
658 se
->block_max
= delta
;
661 se
->sum_sleep_runtime
+= delta
;
664 if (tsk
->in_iowait
) {
665 se
->iowait_sum
+= delta
;
667 trace_sched_stat_iowait(tsk
, delta
);
671 * Blocking time is in units of nanosecs, so shift by
672 * 20 to get a milliseconds-range estimation of the
673 * amount of time that the task spent sleeping:
675 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
676 profile_hits(SLEEP_PROFILING
,
677 (void *)get_wchan(tsk
),
680 account_scheduler_latency(tsk
, delta
>> 10, 0);
686 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
688 #ifdef CONFIG_SCHED_DEBUG
689 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
694 if (d
> 3*sysctl_sched_latency
)
695 schedstat_inc(cfs_rq
, nr_spread_over
);
700 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
702 u64 vruntime
= cfs_rq
->min_vruntime
;
705 * The 'current' period is already promised to the current tasks,
706 * however the extra weight of the new task will slow them down a
707 * little, place the new task so that it fits in the slot that
708 * stays open at the end.
710 if (initial
&& sched_feat(START_DEBIT
))
711 vruntime
+= sched_vslice(cfs_rq
, se
);
713 /* sleeps up to a single latency don't count. */
714 if (!initial
&& sched_feat(FAIR_SLEEPERS
)) {
715 unsigned long thresh
= sysctl_sched_latency
;
718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight.
723 if (sched_feat(NORMALIZED_SLEEPER
) && (!entity_is_task(se
) ||
724 task_of(se
)->policy
!= SCHED_IDLE
))
725 thresh
= calc_delta_fair(thresh
, se
);
728 * Halve their sleep time's effect, to allow
729 * for a gentler effect of sleepers:
731 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
737 /* ensure we never gain time by being placed backwards. */
738 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
740 se
->vruntime
= vruntime
;
744 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
747 * Update run-time statistics of the 'current'.
750 account_entity_enqueue(cfs_rq
, se
);
753 place_entity(cfs_rq
, se
, 0);
754 enqueue_sleeper(cfs_rq
, se
);
757 update_stats_enqueue(cfs_rq
, se
);
758 check_spread(cfs_rq
, se
);
759 if (se
!= cfs_rq
->curr
)
760 __enqueue_entity(cfs_rq
, se
);
763 static void __clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
765 if (!se
|| cfs_rq
->last
== se
)
768 if (!se
|| cfs_rq
->next
== se
)
772 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
774 for_each_sched_entity(se
)
775 __clear_buddies(cfs_rq_of(se
), se
);
779 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
782 * Update run-time statistics of the 'current'.
786 update_stats_dequeue(cfs_rq
, se
);
788 #ifdef CONFIG_SCHEDSTATS
789 if (entity_is_task(se
)) {
790 struct task_struct
*tsk
= task_of(se
);
792 if (tsk
->state
& TASK_INTERRUPTIBLE
)
793 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
794 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
795 se
->block_start
= rq_of(cfs_rq
)->clock
;
800 clear_buddies(cfs_rq
, se
);
802 if (se
!= cfs_rq
->curr
)
803 __dequeue_entity(cfs_rq
, se
);
804 account_entity_dequeue(cfs_rq
, se
);
805 update_min_vruntime(cfs_rq
);
809 * Preempt the current task with a newly woken task if needed:
812 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
814 unsigned long ideal_runtime
, delta_exec
;
816 ideal_runtime
= sched_slice(cfs_rq
, curr
);
817 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
818 if (delta_exec
> ideal_runtime
) {
819 resched_task(rq_of(cfs_rq
)->curr
);
821 * The current task ran long enough, ensure it doesn't get
822 * re-elected due to buddy favours.
824 clear_buddies(cfs_rq
, curr
);
829 * Ensure that a task that missed wakeup preemption by a
830 * narrow margin doesn't have to wait for a full slice.
831 * This also mitigates buddy induced latencies under load.
833 if (!sched_feat(WAKEUP_PREEMPT
))
836 if (delta_exec
< sysctl_sched_min_granularity
)
839 if (cfs_rq
->nr_running
> 1) {
840 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
841 s64 delta
= curr
->vruntime
- se
->vruntime
;
843 if (delta
> ideal_runtime
)
844 resched_task(rq_of(cfs_rq
)->curr
);
849 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
851 /* 'current' is not kept within the tree. */
854 * Any task has to be enqueued before it get to execute on
855 * a CPU. So account for the time it spent waiting on the
858 update_stats_wait_end(cfs_rq
, se
);
859 __dequeue_entity(cfs_rq
, se
);
862 update_stats_curr_start(cfs_rq
, se
);
864 #ifdef CONFIG_SCHEDSTATS
866 * Track our maximum slice length, if the CPU's load is at
867 * least twice that of our own weight (i.e. dont track it
868 * when there are only lesser-weight tasks around):
870 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
871 se
->slice_max
= max(se
->slice_max
,
872 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
875 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
879 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
881 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
883 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
884 struct sched_entity
*left
= se
;
886 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
890 * Prefer last buddy, try to return the CPU to a preempted task.
892 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
895 clear_buddies(cfs_rq
, se
);
900 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
903 * If still on the runqueue then deactivate_task()
904 * was not called and update_curr() has to be done:
909 check_spread(cfs_rq
, prev
);
911 update_stats_wait_start(cfs_rq
, prev
);
912 /* Put 'current' back into the tree. */
913 __enqueue_entity(cfs_rq
, prev
);
919 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
922 * Update run-time statistics of the 'current'.
926 #ifdef CONFIG_SCHED_HRTICK
928 * queued ticks are scheduled to match the slice, so don't bother
929 * validating it and just reschedule.
932 resched_task(rq_of(cfs_rq
)->curr
);
936 * don't let the period tick interfere with the hrtick preemption
938 if (!sched_feat(DOUBLE_TICK
) &&
939 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
943 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
944 check_preempt_tick(cfs_rq
, curr
);
947 /**************************************************
948 * CFS operations on tasks:
951 #ifdef CONFIG_SCHED_HRTICK
952 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
954 struct sched_entity
*se
= &p
->se
;
955 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
957 WARN_ON(task_rq(p
) != rq
);
959 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
960 u64 slice
= sched_slice(cfs_rq
, se
);
961 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
962 s64 delta
= slice
- ran
;
971 * Don't schedule slices shorter than 10000ns, that just
972 * doesn't make sense. Rely on vruntime for fairness.
975 delta
= max_t(s64
, 10000LL, delta
);
977 hrtick_start(rq
, delta
);
982 * called from enqueue/dequeue and updates the hrtick when the
983 * current task is from our class and nr_running is low enough
986 static void hrtick_update(struct rq
*rq
)
988 struct task_struct
*curr
= rq
->curr
;
990 if (curr
->sched_class
!= &fair_sched_class
)
993 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
994 hrtick_start_fair(rq
, curr
);
996 #else /* !CONFIG_SCHED_HRTICK */
998 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1002 static inline void hrtick_update(struct rq
*rq
)
1008 * The enqueue_task method is called before nr_running is
1009 * increased. Here we update the fair scheduling stats and
1010 * then put the task into the rbtree:
1012 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1014 struct cfs_rq
*cfs_rq
;
1015 struct sched_entity
*se
= &p
->se
;
1017 for_each_sched_entity(se
) {
1020 cfs_rq
= cfs_rq_of(se
);
1021 enqueue_entity(cfs_rq
, se
, wakeup
);
1029 * The dequeue_task method is called before nr_running is
1030 * decreased. We remove the task from the rbtree and
1031 * update the fair scheduling stats:
1033 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1035 struct cfs_rq
*cfs_rq
;
1036 struct sched_entity
*se
= &p
->se
;
1038 for_each_sched_entity(se
) {
1039 cfs_rq
= cfs_rq_of(se
);
1040 dequeue_entity(cfs_rq
, se
, sleep
);
1041 /* Don't dequeue parent if it has other entities besides us */
1042 if (cfs_rq
->load
.weight
)
1051 * sched_yield() support is very simple - we dequeue and enqueue.
1053 * If compat_yield is turned on then we requeue to the end of the tree.
1055 static void yield_task_fair(struct rq
*rq
)
1057 struct task_struct
*curr
= rq
->curr
;
1058 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1059 struct sched_entity
*rightmost
, *se
= &curr
->se
;
1062 * Are we the only task in the tree?
1064 if (unlikely(cfs_rq
->nr_running
== 1))
1067 clear_buddies(cfs_rq
, se
);
1069 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
1070 update_rq_clock(rq
);
1072 * Update run-time statistics of the 'current'.
1074 update_curr(cfs_rq
);
1079 * Find the rightmost entry in the rbtree:
1081 rightmost
= __pick_last_entity(cfs_rq
);
1083 * Already in the rightmost position?
1085 if (unlikely(!rightmost
|| entity_before(rightmost
, se
)))
1089 * Minimally necessary key value to be last in the tree:
1090 * Upon rescheduling, sched_class::put_prev_task() will place
1091 * 'current' within the tree based on its new key value.
1093 se
->vruntime
= rightmost
->vruntime
+ 1;
1098 #ifdef CONFIG_FAIR_GROUP_SCHED
1100 * effective_load() calculates the load change as seen from the root_task_group
1102 * Adding load to a group doesn't make a group heavier, but can cause movement
1103 * of group shares between cpus. Assuming the shares were perfectly aligned one
1104 * can calculate the shift in shares.
1106 * The problem is that perfectly aligning the shares is rather expensive, hence
1107 * we try to avoid doing that too often - see update_shares(), which ratelimits
1110 * We compensate this by not only taking the current delta into account, but
1111 * also considering the delta between when the shares were last adjusted and
1114 * We still saw a performance dip, some tracing learned us that between
1115 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1116 * significantly. Therefore try to bias the error in direction of failing
1117 * the affine wakeup.
1120 static long effective_load(struct task_group
*tg
, int cpu
,
1123 struct sched_entity
*se
= tg
->se
[cpu
];
1129 * By not taking the decrease of shares on the other cpu into
1130 * account our error leans towards reducing the affine wakeups.
1132 if (!wl
&& sched_feat(ASYM_EFF_LOAD
))
1135 for_each_sched_entity(se
) {
1136 long S
, rw
, s
, a
, b
;
1140 * Instead of using this increment, also add the difference
1141 * between when the shares were last updated and now.
1143 more_w
= se
->my_q
->load
.weight
- se
->my_q
->rq_weight
;
1147 S
= se
->my_q
->tg
->shares
;
1148 s
= se
->my_q
->shares
;
1149 rw
= se
->my_q
->rq_weight
;
1160 * Assume the group is already running and will
1161 * thus already be accounted for in the weight.
1163 * That is, moving shares between CPUs, does not
1164 * alter the group weight.
1174 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1175 unsigned long wl
, unsigned long wg
)
1182 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
1184 struct task_struct
*curr
= current
;
1185 unsigned long this_load
, load
;
1186 int idx
, this_cpu
, prev_cpu
;
1187 unsigned long tl_per_task
;
1188 unsigned int imbalance
;
1189 struct task_group
*tg
;
1190 unsigned long weight
;
1194 this_cpu
= smp_processor_id();
1195 prev_cpu
= task_cpu(p
);
1196 load
= source_load(prev_cpu
, idx
);
1197 this_load
= target_load(this_cpu
, idx
);
1200 if (sched_feat(SYNC_LESS
) &&
1201 (curr
->se
.avg_overlap
> sysctl_sched_migration_cost
||
1202 p
->se
.avg_overlap
> sysctl_sched_migration_cost
))
1205 if (sched_feat(SYNC_MORE
) &&
1206 (curr
->se
.avg_overlap
< sysctl_sched_migration_cost
&&
1207 p
->se
.avg_overlap
< sysctl_sched_migration_cost
))
1212 * If sync wakeup then subtract the (maximum possible)
1213 * effect of the currently running task from the load
1214 * of the current CPU:
1217 tg
= task_group(current
);
1218 weight
= current
->se
.load
.weight
;
1220 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1221 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1225 weight
= p
->se
.load
.weight
;
1227 imbalance
= 100 + (sd
->imbalance_pct
- 100) / 2;
1230 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1231 * due to the sync cause above having dropped this_load to 0, we'll
1232 * always have an imbalance, but there's really nothing you can do
1233 * about that, so that's good too.
1235 * Otherwise check if either cpus are near enough in load to allow this
1236 * task to be woken on this_cpu.
1238 balanced
= !this_load
||
1239 100*(this_load
+ effective_load(tg
, this_cpu
, weight
, weight
)) <=
1240 imbalance
*(load
+ effective_load(tg
, prev_cpu
, 0, weight
));
1243 * If the currently running task will sleep within
1244 * a reasonable amount of time then attract this newly
1247 if (sync
&& balanced
)
1250 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1251 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1254 (this_load
<= load
&&
1255 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
1257 * This domain has SD_WAKE_AFFINE and
1258 * p is cache cold in this domain, and
1259 * there is no bad imbalance.
1261 schedstat_inc(sd
, ttwu_move_affine
);
1262 schedstat_inc(p
, se
.nr_wakeups_affine
);
1270 * find_idlest_group finds and returns the least busy CPU group within the
1273 static struct sched_group
*
1274 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
1275 int this_cpu
, int load_idx
)
1277 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1278 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1279 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1282 unsigned long load
, avg_load
;
1286 /* Skip over this group if it has no CPUs allowed */
1287 if (!cpumask_intersects(sched_group_cpus(group
),
1291 local_group
= cpumask_test_cpu(this_cpu
,
1292 sched_group_cpus(group
));
1294 /* Tally up the load of all CPUs in the group */
1297 for_each_cpu(i
, sched_group_cpus(group
)) {
1298 /* Bias balancing toward cpus of our domain */
1300 load
= source_load(i
, load_idx
);
1302 load
= target_load(i
, load_idx
);
1307 /* Adjust by relative CPU power of the group */
1308 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1311 this_load
= avg_load
;
1313 } else if (avg_load
< min_load
) {
1314 min_load
= avg_load
;
1317 } while (group
= group
->next
, group
!= sd
->groups
);
1319 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1325 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1328 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1330 unsigned long load
, min_load
= ULONG_MAX
;
1334 /* Traverse only the allowed CPUs */
1335 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
1336 load
= weighted_cpuload(i
);
1338 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1348 * sched_balance_self: balance the current task (running on cpu) in domains
1349 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1352 * Balance, ie. select the least loaded group.
1354 * Returns the target CPU number, or the same CPU if no balancing is needed.
1356 * preempt must be disabled.
1358 static int select_task_rq_fair(struct task_struct
*p
, int sd_flag
, int wake_flags
)
1360 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
1361 int cpu
= smp_processor_id();
1362 int prev_cpu
= task_cpu(p
);
1364 int want_affine
= 0;
1366 int sync
= wake_flags
& WF_SYNC
;
1368 if (sd_flag
& SD_BALANCE_WAKE
) {
1369 if (sched_feat(AFFINE_WAKEUPS
) &&
1370 cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1376 for_each_domain(cpu
, tmp
) {
1378 * If power savings logic is enabled for a domain, see if we
1379 * are not overloaded, if so, don't balance wider.
1381 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
1382 unsigned long power
= 0;
1383 unsigned long nr_running
= 0;
1384 unsigned long capacity
;
1387 for_each_cpu(i
, sched_domain_span(tmp
)) {
1388 power
+= power_of(i
);
1389 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
1392 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
1394 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1397 if (nr_running
< capacity
)
1401 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
)) {
1402 int candidate
= -1, i
;
1404 if (cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
)))
1408 * Check for an idle shared cache.
1410 if (tmp
->flags
& SD_PREFER_SIBLING
) {
1411 if (candidate
== cpu
) {
1412 if (!cpu_rq(prev_cpu
)->cfs
.nr_running
)
1413 candidate
= prev_cpu
;
1416 if (candidate
== -1 || candidate
== cpu
) {
1417 for_each_cpu(i
, sched_domain_span(tmp
)) {
1418 if (!cpumask_test_cpu(i
, &p
->cpus_allowed
))
1420 if (!cpu_rq(i
)->cfs
.nr_running
) {
1428 if (candidate
>= 0) {
1435 if (!want_sd
&& !want_affine
)
1438 if (!(tmp
->flags
& sd_flag
))
1445 if (sched_feat(LB_SHARES_UPDATE
)) {
1447 * Pick the largest domain to update shares over
1450 if (affine_sd
&& (!tmp
||
1451 cpumask_weight(sched_domain_span(affine_sd
)) >
1452 cpumask_weight(sched_domain_span(sd
))))
1459 if (affine_sd
&& wake_affine(affine_sd
, p
, sync
)) {
1465 int load_idx
= sd
->forkexec_idx
;
1466 struct sched_group
*group
;
1469 if (!(sd
->flags
& sd_flag
)) {
1474 if (sd_flag
& SD_BALANCE_WAKE
)
1475 load_idx
= sd
->wake_idx
;
1477 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
1483 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
1484 if (new_cpu
== -1 || new_cpu
== cpu
) {
1485 /* Now try balancing at a lower domain level of cpu */
1490 /* Now try balancing at a lower domain level of new_cpu */
1492 weight
= cpumask_weight(sched_domain_span(sd
));
1494 for_each_domain(cpu
, tmp
) {
1495 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
1497 if (tmp
->flags
& sd_flag
)
1500 /* while loop will break here if sd == NULL */
1507 #endif /* CONFIG_SMP */
1510 * Adaptive granularity
1512 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1513 * with the limit of wakeup_gran -- when it never does a wakeup.
1515 * So the smaller avg_wakeup is the faster we want this task to preempt,
1516 * but we don't want to treat the preemptee unfairly and therefore allow it
1517 * to run for at least the amount of time we'd like to run.
1519 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1521 * NOTE: we use *nr_running to scale with load, this nicely matches the
1522 * degrading latency on load.
1524 static unsigned long
1525 adaptive_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1527 u64 this_run
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1528 u64 expected_wakeup
= 2*se
->avg_wakeup
* cfs_rq_of(se
)->nr_running
;
1531 if (this_run
< expected_wakeup
)
1532 gran
= expected_wakeup
- this_run
;
1534 return min_t(s64
, gran
, sysctl_sched_wakeup_granularity
);
1537 static unsigned long
1538 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1540 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1542 if (cfs_rq_of(curr
)->curr
&& sched_feat(ADAPTIVE_GRAN
))
1543 gran
= adaptive_gran(curr
, se
);
1546 * Since its curr running now, convert the gran from real-time
1547 * to virtual-time in his units.
1549 if (sched_feat(ASYM_GRAN
)) {
1551 * By using 'se' instead of 'curr' we penalize light tasks, so
1552 * they get preempted easier. That is, if 'se' < 'curr' then
1553 * the resulting gran will be larger, therefore penalizing the
1554 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1555 * be smaller, again penalizing the lighter task.
1557 * This is especially important for buddies when the leftmost
1558 * task is higher priority than the buddy.
1560 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
1561 gran
= calc_delta_fair(gran
, se
);
1563 if (unlikely(curr
->load
.weight
!= NICE_0_LOAD
))
1564 gran
= calc_delta_fair(gran
, curr
);
1571 * Should 'se' preempt 'curr'.
1585 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1587 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1592 gran
= wakeup_gran(curr
, se
);
1599 static void set_last_buddy(struct sched_entity
*se
)
1601 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1602 for_each_sched_entity(se
)
1603 cfs_rq_of(se
)->last
= se
;
1607 static void set_next_buddy(struct sched_entity
*se
)
1609 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1610 for_each_sched_entity(se
)
1611 cfs_rq_of(se
)->next
= se
;
1616 * Preempt the current task with a newly woken task if needed:
1618 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1620 struct task_struct
*curr
= rq
->curr
;
1621 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1622 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1623 int sync
= wake_flags
& WF_SYNC
;
1624 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
1626 update_curr(cfs_rq
);
1628 if (unlikely(rt_prio(p
->prio
))) {
1633 if (unlikely(p
->sched_class
!= &fair_sched_class
))
1636 if (unlikely(se
== pse
))
1639 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
))
1640 set_next_buddy(pse
);
1643 * We can come here with TIF_NEED_RESCHED already set from new task
1646 if (test_tsk_need_resched(curr
))
1650 * Batch and idle tasks do not preempt (their preemption is driven by
1653 if (unlikely(p
->policy
!= SCHED_NORMAL
))
1656 /* Idle tasks are by definition preempted by everybody. */
1657 if (unlikely(curr
->policy
== SCHED_IDLE
)) {
1662 if ((sched_feat(WAKEUP_SYNC
) && sync
) ||
1663 (sched_feat(WAKEUP_OVERLAP
) &&
1664 (se
->avg_overlap
< sysctl_sched_migration_cost
&&
1665 pse
->avg_overlap
< sysctl_sched_migration_cost
))) {
1670 if (sched_feat(WAKEUP_RUNNING
)) {
1671 if (pse
->avg_running
< se
->avg_running
) {
1672 set_next_buddy(pse
);
1678 if (!sched_feat(WAKEUP_PREEMPT
))
1681 find_matching_se(&se
, &pse
);
1685 if (wakeup_preempt_entity(se
, pse
) == 1) {
1688 * Only set the backward buddy when the current task is still
1689 * on the rq. This can happen when a wakeup gets interleaved
1690 * with schedule on the ->pre_schedule() or idle_balance()
1691 * point, either of which can * drop the rq lock.
1693 * Also, during early boot the idle thread is in the fair class,
1694 * for obvious reasons its a bad idea to schedule back to it.
1696 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
1698 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
1703 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1705 struct task_struct
*p
;
1706 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1707 struct sched_entity
*se
;
1709 if (unlikely(!cfs_rq
->nr_running
))
1713 se
= pick_next_entity(cfs_rq
);
1714 set_next_entity(cfs_rq
, se
);
1715 cfs_rq
= group_cfs_rq(se
);
1719 hrtick_start_fair(rq
, p
);
1725 * Account for a descheduled task:
1727 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1729 struct sched_entity
*se
= &prev
->se
;
1730 struct cfs_rq
*cfs_rq
;
1732 for_each_sched_entity(se
) {
1733 cfs_rq
= cfs_rq_of(se
);
1734 put_prev_entity(cfs_rq
, se
);
1739 /**************************************************
1740 * Fair scheduling class load-balancing methods:
1744 * Load-balancing iterator. Note: while the runqueue stays locked
1745 * during the whole iteration, the current task might be
1746 * dequeued so the iterator has to be dequeue-safe. Here we
1747 * achieve that by always pre-iterating before returning
1750 static struct task_struct
*
1751 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct list_head
*next
)
1753 struct task_struct
*p
= NULL
;
1754 struct sched_entity
*se
;
1756 if (next
== &cfs_rq
->tasks
)
1759 se
= list_entry(next
, struct sched_entity
, group_node
);
1761 cfs_rq
->balance_iterator
= next
->next
;
1766 static struct task_struct
*load_balance_start_fair(void *arg
)
1768 struct cfs_rq
*cfs_rq
= arg
;
1770 return __load_balance_iterator(cfs_rq
, cfs_rq
->tasks
.next
);
1773 static struct task_struct
*load_balance_next_fair(void *arg
)
1775 struct cfs_rq
*cfs_rq
= arg
;
1777 return __load_balance_iterator(cfs_rq
, cfs_rq
->balance_iterator
);
1780 static unsigned long
1781 __load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1782 unsigned long max_load_move
, struct sched_domain
*sd
,
1783 enum cpu_idle_type idle
, int *all_pinned
, int *this_best_prio
,
1784 struct cfs_rq
*cfs_rq
)
1786 struct rq_iterator cfs_rq_iterator
;
1788 cfs_rq_iterator
.start
= load_balance_start_fair
;
1789 cfs_rq_iterator
.next
= load_balance_next_fair
;
1790 cfs_rq_iterator
.arg
= cfs_rq
;
1792 return balance_tasks(this_rq
, this_cpu
, busiest
,
1793 max_load_move
, sd
, idle
, all_pinned
,
1794 this_best_prio
, &cfs_rq_iterator
);
1797 #ifdef CONFIG_FAIR_GROUP_SCHED
1798 static unsigned long
1799 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1800 unsigned long max_load_move
,
1801 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1802 int *all_pinned
, int *this_best_prio
)
1804 long rem_load_move
= max_load_move
;
1805 int busiest_cpu
= cpu_of(busiest
);
1806 struct task_group
*tg
;
1809 update_h_load(busiest_cpu
);
1811 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
1812 struct cfs_rq
*busiest_cfs_rq
= tg
->cfs_rq
[busiest_cpu
];
1813 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
1814 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
1815 u64 rem_load
, moved_load
;
1820 if (!busiest_cfs_rq
->task_weight
)
1823 rem_load
= (u64
)rem_load_move
* busiest_weight
;
1824 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
1826 moved_load
= __load_balance_fair(this_rq
, this_cpu
, busiest
,
1827 rem_load
, sd
, idle
, all_pinned
, this_best_prio
,
1828 tg
->cfs_rq
[busiest_cpu
]);
1833 moved_load
*= busiest_h_load
;
1834 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
1836 rem_load_move
-= moved_load
;
1837 if (rem_load_move
< 0)
1842 return max_load_move
- rem_load_move
;
1845 static unsigned long
1846 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1847 unsigned long max_load_move
,
1848 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1849 int *all_pinned
, int *this_best_prio
)
1851 return __load_balance_fair(this_rq
, this_cpu
, busiest
,
1852 max_load_move
, sd
, idle
, all_pinned
,
1853 this_best_prio
, &busiest
->cfs
);
1858 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1859 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1861 struct cfs_rq
*busy_cfs_rq
;
1862 struct rq_iterator cfs_rq_iterator
;
1864 cfs_rq_iterator
.start
= load_balance_start_fair
;
1865 cfs_rq_iterator
.next
= load_balance_next_fair
;
1867 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1869 * pass busy_cfs_rq argument into
1870 * load_balance_[start|next]_fair iterators
1872 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1873 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1880 #endif /* CONFIG_SMP */
1883 * scheduler tick hitting a task of our scheduling class:
1885 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1887 struct cfs_rq
*cfs_rq
;
1888 struct sched_entity
*se
= &curr
->se
;
1890 for_each_sched_entity(se
) {
1891 cfs_rq
= cfs_rq_of(se
);
1892 entity_tick(cfs_rq
, se
, queued
);
1897 * Share the fairness runtime between parent and child, thus the
1898 * total amount of pressure for CPU stays equal - new tasks
1899 * get a chance to run but frequent forkers are not allowed to
1900 * monopolize the CPU. Note: the parent runqueue is locked,
1901 * the child is not running yet.
1903 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1905 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1906 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1907 int this_cpu
= smp_processor_id();
1909 sched_info_queued(p
);
1911 update_curr(cfs_rq
);
1913 se
->vruntime
= curr
->vruntime
;
1914 place_entity(cfs_rq
, se
, 1);
1916 /* 'curr' will be NULL if the child belongs to a different group */
1917 if (sysctl_sched_child_runs_first
&& this_cpu
== task_cpu(p
) &&
1918 curr
&& entity_before(curr
, se
)) {
1920 * Upon rescheduling, sched_class::put_prev_task() will place
1921 * 'current' within the tree based on its new key value.
1923 swap(curr
->vruntime
, se
->vruntime
);
1924 resched_task(rq
->curr
);
1927 enqueue_task_fair(rq
, p
, 0);
1931 * Priority of the task has changed. Check to see if we preempt
1934 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
1935 int oldprio
, int running
)
1938 * Reschedule if we are currently running on this runqueue and
1939 * our priority decreased, or if we are not currently running on
1940 * this runqueue and our priority is higher than the current's
1943 if (p
->prio
> oldprio
)
1944 resched_task(rq
->curr
);
1946 check_preempt_curr(rq
, p
, 0);
1950 * We switched to the sched_fair class.
1952 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
1956 * We were most likely switched from sched_rt, so
1957 * kick off the schedule if running, otherwise just see
1958 * if we can still preempt the current task.
1961 resched_task(rq
->curr
);
1963 check_preempt_curr(rq
, p
, 0);
1966 /* Account for a task changing its policy or group.
1968 * This routine is mostly called to set cfs_rq->curr field when a task
1969 * migrates between groups/classes.
1971 static void set_curr_task_fair(struct rq
*rq
)
1973 struct sched_entity
*se
= &rq
->curr
->se
;
1975 for_each_sched_entity(se
)
1976 set_next_entity(cfs_rq_of(se
), se
);
1979 #ifdef CONFIG_FAIR_GROUP_SCHED
1980 static void moved_group_fair(struct task_struct
*p
)
1982 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1984 update_curr(cfs_rq
);
1985 place_entity(cfs_rq
, &p
->se
, 1);
1989 unsigned int get_rr_interval_fair(struct task_struct
*task
)
1991 struct sched_entity
*se
= &task
->se
;
1992 unsigned long flags
;
1994 unsigned int rr_interval
= 0;
1997 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2000 rq
= task_rq_lock(task
, &flags
);
2001 if (rq
->cfs
.load
.weight
)
2002 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
2003 task_rq_unlock(rq
, &flags
);
2009 * All the scheduling class methods:
2011 static const struct sched_class fair_sched_class
= {
2012 .next
= &idle_sched_class
,
2013 .enqueue_task
= enqueue_task_fair
,
2014 .dequeue_task
= dequeue_task_fair
,
2015 .yield_task
= yield_task_fair
,
2017 .check_preempt_curr
= check_preempt_wakeup
,
2019 .pick_next_task
= pick_next_task_fair
,
2020 .put_prev_task
= put_prev_task_fair
,
2023 .select_task_rq
= select_task_rq_fair
,
2025 .load_balance
= load_balance_fair
,
2026 .move_one_task
= move_one_task_fair
,
2029 .set_curr_task
= set_curr_task_fair
,
2030 .task_tick
= task_tick_fair
,
2031 .task_new
= task_new_fair
,
2033 .prio_changed
= prio_changed_fair
,
2034 .switched_to
= switched_to_fair
,
2036 .get_rr_interval
= get_rr_interval_fair
,
2038 #ifdef CONFIG_FAIR_GROUP_SCHED
2039 .moved_group
= moved_group_fair
,
2043 #ifdef CONFIG_SCHED_DEBUG
2044 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
2046 struct cfs_rq
*cfs_rq
;
2049 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
2050 print_cfs_rq(m
, cpu
, cfs_rq
);