sfc: Simplify XMAC link polling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / sfc / falcon.c
blobfac534a274c8dc98c1932140ca8ae22820e6b360
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "spi.h"
23 #include "falcon.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "mdio_10g.h"
27 #include "phy.h"
28 #include "workarounds.h"
30 /* Hardware control for SFC4000 (aka Falcon). */
32 /**************************************************************************
34 * Configurable values
36 **************************************************************************
39 /* This is set to 16 for a good reason. In summary, if larger than
40 * 16, the descriptor cache holds more than a default socket
41 * buffer's worth of packets (for UDP we can only have at most one
42 * socket buffer's worth outstanding). This combined with the fact
43 * that we only get 1 TX event per descriptor cache means the NIC
44 * goes idle.
46 #define TX_DC_ENTRIES 16
47 #define TX_DC_ENTRIES_ORDER 1
48 #define TX_DC_BASE 0x130000
50 #define RX_DC_ENTRIES 64
51 #define RX_DC_ENTRIES_ORDER 3
52 #define RX_DC_BASE 0x100000
54 static const unsigned int
55 /* "Large" EEPROM device: Atmel AT25640 or similar
56 * 8 KB, 16-bit address, 32 B write block */
57 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
58 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
59 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
60 /* Default flash device: Atmel AT25F1024
61 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
62 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
63 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
64 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
65 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
66 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
68 /* RX FIFO XOFF watermark
70 * When the amount of the RX FIFO increases used increases past this
71 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
72 * This also has an effect on RX/TX arbitration
74 static int rx_xoff_thresh_bytes = -1;
75 module_param(rx_xoff_thresh_bytes, int, 0644);
76 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
78 /* RX FIFO XON watermark
80 * When the amount of the RX FIFO used decreases below this
81 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
82 * This also has an effect on RX/TX arbitration
84 static int rx_xon_thresh_bytes = -1;
85 module_param(rx_xon_thresh_bytes, int, 0644);
86 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
88 /* If FALCON_MAX_INT_ERRORS internal errors occur within
89 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
90 * disable it.
92 #define FALCON_INT_ERROR_EXPIRE 3600
93 #define FALCON_MAX_INT_ERRORS 5
95 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
97 #define FALCON_FLUSH_INTERVAL 10
98 #define FALCON_FLUSH_POLL_COUNT 100
100 /**************************************************************************
102 * Falcon constants
104 **************************************************************************
107 /* Size and alignment of special buffers (4KB) */
108 #define FALCON_BUF_SIZE 4096
110 /* Depth of RX flush request fifo */
111 #define FALCON_RX_FLUSH_COUNT 4
113 #define FALCON_IS_DUAL_FUNC(efx) \
114 (falcon_rev(efx) < FALCON_REV_B0)
116 /**************************************************************************
118 * Falcon hardware access
120 **************************************************************************/
122 static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
123 unsigned int index)
125 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
126 value, index);
129 /* Read the current event from the event queue */
130 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
131 unsigned int index)
133 return (((efx_qword_t *) (channel->eventq.addr)) + index);
136 /* See if an event is present
138 * We check both the high and low dword of the event for all ones. We
139 * wrote all ones when we cleared the event, and no valid event can
140 * have all ones in either its high or low dwords. This approach is
141 * robust against reordering.
143 * Note that using a single 64-bit comparison is incorrect; even
144 * though the CPU read will be atomic, the DMA write may not be.
146 static inline int falcon_event_present(efx_qword_t *event)
148 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
149 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
152 /**************************************************************************
154 * I2C bus - this is a bit-bashing interface using GPIO pins
155 * Note that it uses the output enables to tristate the outputs
156 * SDA is the data pin and SCL is the clock
158 **************************************************************************
160 static void falcon_setsda(void *data, int state)
162 struct efx_nic *efx = (struct efx_nic *)data;
163 efx_oword_t reg;
165 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
166 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
167 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
170 static void falcon_setscl(void *data, int state)
172 struct efx_nic *efx = (struct efx_nic *)data;
173 efx_oword_t reg;
175 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
176 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
177 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
180 static int falcon_getsda(void *data)
182 struct efx_nic *efx = (struct efx_nic *)data;
183 efx_oword_t reg;
185 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
186 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
189 static int falcon_getscl(void *data)
191 struct efx_nic *efx = (struct efx_nic *)data;
192 efx_oword_t reg;
194 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
195 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
198 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
199 .setsda = falcon_setsda,
200 .setscl = falcon_setscl,
201 .getsda = falcon_getsda,
202 .getscl = falcon_getscl,
203 .udelay = 5,
204 /* Wait up to 50 ms for slave to let us pull SCL high */
205 .timeout = DIV_ROUND_UP(HZ, 20),
208 /**************************************************************************
210 * Falcon special buffer handling
211 * Special buffers are used for event queues and the TX and RX
212 * descriptor rings.
214 *************************************************************************/
217 * Initialise a Falcon special buffer
219 * This will define a buffer (previously allocated via
220 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
221 * it to be used for event queues, descriptor rings etc.
223 static void
224 falcon_init_special_buffer(struct efx_nic *efx,
225 struct efx_special_buffer *buffer)
227 efx_qword_t buf_desc;
228 int index;
229 dma_addr_t dma_addr;
230 int i;
232 EFX_BUG_ON_PARANOID(!buffer->addr);
234 /* Write buffer descriptors to NIC */
235 for (i = 0; i < buffer->entries; i++) {
236 index = buffer->index + i;
237 dma_addr = buffer->dma_addr + (i * 4096);
238 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
239 index, (unsigned long long)dma_addr);
240 EFX_POPULATE_QWORD_3(buf_desc,
241 FRF_AZ_BUF_ADR_REGION, 0,
242 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
243 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
244 falcon_write_buf_tbl(efx, &buf_desc, index);
248 /* Unmaps a buffer from Falcon and clears the buffer table entries */
249 static void
250 falcon_fini_special_buffer(struct efx_nic *efx,
251 struct efx_special_buffer *buffer)
253 efx_oword_t buf_tbl_upd;
254 unsigned int start = buffer->index;
255 unsigned int end = (buffer->index + buffer->entries - 1);
257 if (!buffer->entries)
258 return;
260 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
261 buffer->index, buffer->index + buffer->entries - 1);
263 EFX_POPULATE_OWORD_4(buf_tbl_upd,
264 FRF_AZ_BUF_UPD_CMD, 0,
265 FRF_AZ_BUF_CLR_CMD, 1,
266 FRF_AZ_BUF_CLR_END_ID, end,
267 FRF_AZ_BUF_CLR_START_ID, start);
268 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
272 * Allocate a new Falcon special buffer
274 * This allocates memory for a new buffer, clears it and allocates a
275 * new buffer ID range. It does not write into Falcon's buffer table.
277 * This call will allocate 4KB buffers, since Falcon can't use 8KB
278 * buffers for event queues and descriptor rings.
280 static int falcon_alloc_special_buffer(struct efx_nic *efx,
281 struct efx_special_buffer *buffer,
282 unsigned int len)
284 len = ALIGN(len, FALCON_BUF_SIZE);
286 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
287 &buffer->dma_addr);
288 if (!buffer->addr)
289 return -ENOMEM;
290 buffer->len = len;
291 buffer->entries = len / FALCON_BUF_SIZE;
292 BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
294 /* All zeros is a potentially valid event so memset to 0xff */
295 memset(buffer->addr, 0xff, len);
297 /* Select new buffer ID */
298 buffer->index = efx->next_buffer_table;
299 efx->next_buffer_table += buffer->entries;
301 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
302 "(virt %p phys %llx)\n", buffer->index,
303 buffer->index + buffer->entries - 1,
304 (u64)buffer->dma_addr, len,
305 buffer->addr, (u64)virt_to_phys(buffer->addr));
307 return 0;
310 static void falcon_free_special_buffer(struct efx_nic *efx,
311 struct efx_special_buffer *buffer)
313 if (!buffer->addr)
314 return;
316 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
317 "(virt %p phys %llx)\n", buffer->index,
318 buffer->index + buffer->entries - 1,
319 (u64)buffer->dma_addr, buffer->len,
320 buffer->addr, (u64)virt_to_phys(buffer->addr));
322 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
323 buffer->dma_addr);
324 buffer->addr = NULL;
325 buffer->entries = 0;
328 /**************************************************************************
330 * Falcon generic buffer handling
331 * These buffers are used for interrupt status and MAC stats
333 **************************************************************************/
335 static int falcon_alloc_buffer(struct efx_nic *efx,
336 struct efx_buffer *buffer, unsigned int len)
338 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
339 &buffer->dma_addr);
340 if (!buffer->addr)
341 return -ENOMEM;
342 buffer->len = len;
343 memset(buffer->addr, 0, len);
344 return 0;
347 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
349 if (buffer->addr) {
350 pci_free_consistent(efx->pci_dev, buffer->len,
351 buffer->addr, buffer->dma_addr);
352 buffer->addr = NULL;
356 /**************************************************************************
358 * Falcon TX path
360 **************************************************************************/
362 /* Returns a pointer to the specified transmit descriptor in the TX
363 * descriptor queue belonging to the specified channel.
365 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
366 unsigned int index)
368 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
371 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
372 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
374 unsigned write_ptr;
375 efx_dword_t reg;
377 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
378 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
379 efx_writed_page(tx_queue->efx, &reg,
380 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
384 /* For each entry inserted into the software descriptor ring, create a
385 * descriptor in the hardware TX descriptor ring (in host memory), and
386 * write a doorbell.
388 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
391 struct efx_tx_buffer *buffer;
392 efx_qword_t *txd;
393 unsigned write_ptr;
395 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
397 do {
398 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
399 buffer = &tx_queue->buffer[write_ptr];
400 txd = falcon_tx_desc(tx_queue, write_ptr);
401 ++tx_queue->write_count;
403 /* Create TX descriptor ring entry */
404 EFX_POPULATE_QWORD_4(*txd,
405 FSF_AZ_TX_KER_CONT, buffer->continuation,
406 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
407 FSF_AZ_TX_KER_BUF_REGION, 0,
408 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
409 } while (tx_queue->write_count != tx_queue->insert_count);
411 wmb(); /* Ensure descriptors are written before they are fetched */
412 falcon_notify_tx_desc(tx_queue);
415 /* Allocate hardware resources for a TX queue */
416 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
418 struct efx_nic *efx = tx_queue->efx;
419 BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
420 EFX_TXQ_SIZE & EFX_TXQ_MASK);
421 return falcon_alloc_special_buffer(efx, &tx_queue->txd,
422 EFX_TXQ_SIZE * sizeof(efx_qword_t));
425 void falcon_init_tx(struct efx_tx_queue *tx_queue)
427 efx_oword_t tx_desc_ptr;
428 struct efx_nic *efx = tx_queue->efx;
430 tx_queue->flushed = FLUSH_NONE;
432 /* Pin TX descriptor ring */
433 falcon_init_special_buffer(efx, &tx_queue->txd);
435 /* Push TX descriptor ring to card */
436 EFX_POPULATE_OWORD_10(tx_desc_ptr,
437 FRF_AZ_TX_DESCQ_EN, 1,
438 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
439 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
440 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
441 FRF_AZ_TX_DESCQ_EVQ_ID,
442 tx_queue->channel->channel,
443 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
444 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
445 FRF_AZ_TX_DESCQ_SIZE,
446 __ffs(tx_queue->txd.entries),
447 FRF_AZ_TX_DESCQ_TYPE, 0,
448 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
450 if (falcon_rev(efx) >= FALCON_REV_B0) {
451 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
452 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
453 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
454 !csum);
457 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
458 tx_queue->queue);
460 if (falcon_rev(efx) < FALCON_REV_B0) {
461 efx_oword_t reg;
463 /* Only 128 bits in this register */
464 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
466 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
467 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
468 clear_bit_le(tx_queue->queue, (void *)&reg);
469 else
470 set_bit_le(tx_queue->queue, (void *)&reg);
471 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
475 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
477 struct efx_nic *efx = tx_queue->efx;
478 efx_oword_t tx_flush_descq;
480 tx_queue->flushed = FLUSH_PENDING;
482 /* Post a flush command */
483 EFX_POPULATE_OWORD_2(tx_flush_descq,
484 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
485 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
486 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
489 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
491 struct efx_nic *efx = tx_queue->efx;
492 efx_oword_t tx_desc_ptr;
494 /* The queue should have been flushed */
495 WARN_ON(tx_queue->flushed != FLUSH_DONE);
497 /* Remove TX descriptor ring from card */
498 EFX_ZERO_OWORD(tx_desc_ptr);
499 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
500 tx_queue->queue);
502 /* Unpin TX descriptor ring */
503 falcon_fini_special_buffer(efx, &tx_queue->txd);
506 /* Free buffers backing TX queue */
507 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
509 falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
512 /**************************************************************************
514 * Falcon RX path
516 **************************************************************************/
518 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
519 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
520 unsigned int index)
522 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
525 /* This creates an entry in the RX descriptor queue */
526 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
527 unsigned index)
529 struct efx_rx_buffer *rx_buf;
530 efx_qword_t *rxd;
532 rxd = falcon_rx_desc(rx_queue, index);
533 rx_buf = efx_rx_buffer(rx_queue, index);
534 EFX_POPULATE_QWORD_3(*rxd,
535 FSF_AZ_RX_KER_BUF_SIZE,
536 rx_buf->len -
537 rx_queue->efx->type->rx_buffer_padding,
538 FSF_AZ_RX_KER_BUF_REGION, 0,
539 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
542 /* This writes to the RX_DESC_WPTR register for the specified receive
543 * descriptor ring.
545 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
547 efx_dword_t reg;
548 unsigned write_ptr;
550 while (rx_queue->notified_count != rx_queue->added_count) {
551 falcon_build_rx_desc(rx_queue,
552 rx_queue->notified_count &
553 EFX_RXQ_MASK);
554 ++rx_queue->notified_count;
557 wmb();
558 write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
559 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
560 efx_writed_page(rx_queue->efx, &reg,
561 FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
564 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
566 struct efx_nic *efx = rx_queue->efx;
567 BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
568 EFX_RXQ_SIZE & EFX_RXQ_MASK);
569 return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
570 EFX_RXQ_SIZE * sizeof(efx_qword_t));
573 void falcon_init_rx(struct efx_rx_queue *rx_queue)
575 efx_oword_t rx_desc_ptr;
576 struct efx_nic *efx = rx_queue->efx;
577 bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
578 bool iscsi_digest_en = is_b0;
580 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
581 rx_queue->queue, rx_queue->rxd.index,
582 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
584 rx_queue->flushed = FLUSH_NONE;
586 /* Pin RX descriptor ring */
587 falcon_init_special_buffer(efx, &rx_queue->rxd);
589 /* Push RX descriptor ring to card */
590 EFX_POPULATE_OWORD_10(rx_desc_ptr,
591 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
592 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
593 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
594 FRF_AZ_RX_DESCQ_EVQ_ID,
595 rx_queue->channel->channel,
596 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
597 FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
598 FRF_AZ_RX_DESCQ_SIZE,
599 __ffs(rx_queue->rxd.entries),
600 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
601 /* For >=B0 this is scatter so disable */
602 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
603 FRF_AZ_RX_DESCQ_EN, 1);
604 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
605 rx_queue->queue);
608 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
610 struct efx_nic *efx = rx_queue->efx;
611 efx_oword_t rx_flush_descq;
613 rx_queue->flushed = FLUSH_PENDING;
615 /* Post a flush command */
616 EFX_POPULATE_OWORD_2(rx_flush_descq,
617 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
618 FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
619 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
622 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
624 efx_oword_t rx_desc_ptr;
625 struct efx_nic *efx = rx_queue->efx;
627 /* The queue should already have been flushed */
628 WARN_ON(rx_queue->flushed != FLUSH_DONE);
630 /* Remove RX descriptor ring from card */
631 EFX_ZERO_OWORD(rx_desc_ptr);
632 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
633 rx_queue->queue);
635 /* Unpin RX descriptor ring */
636 falcon_fini_special_buffer(efx, &rx_queue->rxd);
639 /* Free buffers backing RX queue */
640 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
642 falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
645 /**************************************************************************
647 * Falcon event queue processing
648 * Event queues are processed by per-channel tasklets.
650 **************************************************************************/
652 /* Update a channel's event queue's read pointer (RPTR) register
654 * This writes the EVQ_RPTR_REG register for the specified channel's
655 * event queue.
657 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
658 * whereas channel->eventq_read_ptr contains the index of the "next to
659 * read" event.
661 void falcon_eventq_read_ack(struct efx_channel *channel)
663 efx_dword_t reg;
664 struct efx_nic *efx = channel->efx;
666 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
667 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
668 channel->channel);
671 /* Use HW to insert a SW defined event */
672 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
674 efx_oword_t drv_ev_reg;
676 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
677 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
678 drv_ev_reg.u32[0] = event->u32[0];
679 drv_ev_reg.u32[1] = event->u32[1];
680 drv_ev_reg.u32[2] = 0;
681 drv_ev_reg.u32[3] = 0;
682 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
683 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
686 /* Handle a transmit completion event
688 * Falcon batches TX completion events; the message we receive is of
689 * the form "complete all TX events up to this index".
691 static void falcon_handle_tx_event(struct efx_channel *channel,
692 efx_qword_t *event)
694 unsigned int tx_ev_desc_ptr;
695 unsigned int tx_ev_q_label;
696 struct efx_tx_queue *tx_queue;
697 struct efx_nic *efx = channel->efx;
699 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
700 /* Transmit completion */
701 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
702 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
703 tx_queue = &efx->tx_queue[tx_ev_q_label];
704 channel->irq_mod_score +=
705 (tx_ev_desc_ptr - tx_queue->read_count) &
706 EFX_TXQ_MASK;
707 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
708 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
709 /* Rewrite the FIFO write pointer */
710 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
711 tx_queue = &efx->tx_queue[tx_ev_q_label];
713 if (efx_dev_registered(efx))
714 netif_tx_lock(efx->net_dev);
715 falcon_notify_tx_desc(tx_queue);
716 if (efx_dev_registered(efx))
717 netif_tx_unlock(efx->net_dev);
718 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
719 EFX_WORKAROUND_10727(efx)) {
720 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
721 } else {
722 EFX_ERR(efx, "channel %d unexpected TX event "
723 EFX_QWORD_FMT"\n", channel->channel,
724 EFX_QWORD_VAL(*event));
728 /* Detect errors included in the rx_evt_pkt_ok bit. */
729 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
730 const efx_qword_t *event,
731 bool *rx_ev_pkt_ok,
732 bool *discard)
734 struct efx_nic *efx = rx_queue->efx;
735 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
736 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
737 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
738 bool rx_ev_other_err, rx_ev_pause_frm;
739 bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
740 unsigned rx_ev_pkt_type;
742 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
743 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
744 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
745 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
746 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
747 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
748 rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
749 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
750 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
751 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
752 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
753 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
754 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
755 rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
756 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
757 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
759 /* Every error apart from tobe_disc and pause_frm */
760 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
761 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
762 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
764 /* Count errors that are not in MAC stats. Ignore expected
765 * checksum errors during self-test. */
766 if (rx_ev_frm_trunc)
767 ++rx_queue->channel->n_rx_frm_trunc;
768 else if (rx_ev_tobe_disc)
769 ++rx_queue->channel->n_rx_tobe_disc;
770 else if (!efx->loopback_selftest) {
771 if (rx_ev_ip_hdr_chksum_err)
772 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
773 else if (rx_ev_tcp_udp_chksum_err)
774 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
776 if (rx_ev_ip_frag_err)
777 ++rx_queue->channel->n_rx_ip_frag_err;
779 /* The frame must be discarded if any of these are true. */
780 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
781 rx_ev_tobe_disc | rx_ev_pause_frm);
783 /* TOBE_DISC is expected on unicast mismatches; don't print out an
784 * error message. FRM_TRUNC indicates RXDP dropped the packet due
785 * to a FIFO overflow.
787 #ifdef EFX_ENABLE_DEBUG
788 if (rx_ev_other_err) {
789 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
790 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
791 rx_queue->queue, EFX_QWORD_VAL(*event),
792 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
793 rx_ev_ip_hdr_chksum_err ?
794 " [IP_HDR_CHKSUM_ERR]" : "",
795 rx_ev_tcp_udp_chksum_err ?
796 " [TCP_UDP_CHKSUM_ERR]" : "",
797 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
798 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
799 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
800 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
801 rx_ev_pause_frm ? " [PAUSE]" : "");
803 #endif
806 /* Handle receive events that are not in-order. */
807 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
808 unsigned index)
810 struct efx_nic *efx = rx_queue->efx;
811 unsigned expected, dropped;
813 expected = rx_queue->removed_count & EFX_RXQ_MASK;
814 dropped = (index - expected) & EFX_RXQ_MASK;
815 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
816 dropped, index, expected);
818 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
819 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
822 /* Handle a packet received event
824 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
825 * wrong destination address
826 * Also "is multicast" and "matches multicast filter" flags can be used to
827 * discard non-matching multicast packets.
829 static void falcon_handle_rx_event(struct efx_channel *channel,
830 const efx_qword_t *event)
832 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
833 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
834 unsigned expected_ptr;
835 bool rx_ev_pkt_ok, discard = false, checksummed;
836 struct efx_rx_queue *rx_queue;
837 struct efx_nic *efx = channel->efx;
839 /* Basic packet information */
840 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
841 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
842 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
843 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
844 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
845 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
846 channel->channel);
848 rx_queue = &efx->rx_queue[channel->channel];
850 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
851 expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
852 if (unlikely(rx_ev_desc_ptr != expected_ptr))
853 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
855 if (likely(rx_ev_pkt_ok)) {
856 /* If packet is marked as OK and packet type is TCP/IPv4 or
857 * UDP/IPv4, then we can rely on the hardware checksum.
859 checksummed =
860 efx->rx_checksum_enabled &&
861 (rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
862 rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
863 } else {
864 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
865 &discard);
866 checksummed = false;
869 /* Detect multicast packets that didn't match the filter */
870 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
871 if (rx_ev_mcast_pkt) {
872 unsigned int rx_ev_mcast_hash_match =
873 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
875 if (unlikely(!rx_ev_mcast_hash_match))
876 discard = true;
879 channel->irq_mod_score += 2;
881 /* Handle received packet */
882 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
883 checksummed, discard);
886 /* Global events are basically PHY events */
887 static void falcon_handle_global_event(struct efx_channel *channel,
888 efx_qword_t *event)
890 struct efx_nic *efx = channel->efx;
891 bool handled = false;
893 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
894 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
895 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
896 efx->phy_op->clear_interrupt(efx);
897 queue_work(efx->workqueue, &efx->phy_work);
898 handled = true;
901 if ((falcon_rev(efx) >= FALCON_REV_B0) &&
902 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
903 efx->xmac_poll_required = true;
904 handled = true;
907 if (falcon_rev(efx) <= FALCON_REV_A1 ?
908 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
909 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
910 EFX_ERR(efx, "channel %d seen global RX_RESET "
911 "event. Resetting.\n", channel->channel);
913 atomic_inc(&efx->rx_reset);
914 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
915 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
916 handled = true;
919 if (!handled)
920 EFX_ERR(efx, "channel %d unknown global event "
921 EFX_QWORD_FMT "\n", channel->channel,
922 EFX_QWORD_VAL(*event));
925 static void falcon_handle_driver_event(struct efx_channel *channel,
926 efx_qword_t *event)
928 struct efx_nic *efx = channel->efx;
929 unsigned int ev_sub_code;
930 unsigned int ev_sub_data;
932 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
933 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
935 switch (ev_sub_code) {
936 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
937 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
938 channel->channel, ev_sub_data);
939 break;
940 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
941 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
942 channel->channel, ev_sub_data);
943 break;
944 case FSE_AZ_EVQ_INIT_DONE_EV:
945 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
946 channel->channel, ev_sub_data);
947 break;
948 case FSE_AZ_SRM_UPD_DONE_EV:
949 EFX_TRACE(efx, "channel %d SRAM update done\n",
950 channel->channel);
951 break;
952 case FSE_AZ_WAKE_UP_EV:
953 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
954 channel->channel, ev_sub_data);
955 break;
956 case FSE_AZ_TIMER_EV:
957 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
958 channel->channel, ev_sub_data);
959 break;
960 case FSE_AA_RX_RECOVER_EV:
961 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
962 "Resetting.\n", channel->channel);
963 atomic_inc(&efx->rx_reset);
964 efx_schedule_reset(efx,
965 EFX_WORKAROUND_6555(efx) ?
966 RESET_TYPE_RX_RECOVERY :
967 RESET_TYPE_DISABLE);
968 break;
969 case FSE_BZ_RX_DSC_ERROR_EV:
970 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
971 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
972 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
973 break;
974 case FSE_BZ_TX_DSC_ERROR_EV:
975 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
976 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
977 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
978 break;
979 default:
980 EFX_TRACE(efx, "channel %d unknown driver event code %d "
981 "data %04x\n", channel->channel, ev_sub_code,
982 ev_sub_data);
983 break;
987 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
989 unsigned int read_ptr;
990 efx_qword_t event, *p_event;
991 int ev_code;
992 int rx_packets = 0;
994 read_ptr = channel->eventq_read_ptr;
996 do {
997 p_event = falcon_event(channel, read_ptr);
998 event = *p_event;
1000 if (!falcon_event_present(&event))
1001 /* End of events */
1002 break;
1004 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1005 channel->channel, EFX_QWORD_VAL(event));
1007 /* Clear this event by marking it all ones */
1008 EFX_SET_QWORD(*p_event);
1010 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1012 switch (ev_code) {
1013 case FSE_AZ_EV_CODE_RX_EV:
1014 falcon_handle_rx_event(channel, &event);
1015 ++rx_packets;
1016 break;
1017 case FSE_AZ_EV_CODE_TX_EV:
1018 falcon_handle_tx_event(channel, &event);
1019 break;
1020 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1021 channel->eventq_magic = EFX_QWORD_FIELD(
1022 event, FSF_AZ_DRV_GEN_EV_MAGIC);
1023 EFX_LOG(channel->efx, "channel %d received generated "
1024 "event "EFX_QWORD_FMT"\n", channel->channel,
1025 EFX_QWORD_VAL(event));
1026 break;
1027 case FSE_AZ_EV_CODE_GLOBAL_EV:
1028 falcon_handle_global_event(channel, &event);
1029 break;
1030 case FSE_AZ_EV_CODE_DRIVER_EV:
1031 falcon_handle_driver_event(channel, &event);
1032 break;
1033 default:
1034 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1035 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1036 ev_code, EFX_QWORD_VAL(event));
1039 /* Increment read pointer */
1040 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1042 } while (rx_packets < rx_quota);
1044 channel->eventq_read_ptr = read_ptr;
1045 return rx_packets;
1048 void falcon_set_int_moderation(struct efx_channel *channel)
1050 efx_dword_t timer_cmd;
1051 struct efx_nic *efx = channel->efx;
1053 /* Set timer register */
1054 if (channel->irq_moderation) {
1055 EFX_POPULATE_DWORD_2(timer_cmd,
1056 FRF_AB_TC_TIMER_MODE,
1057 FFE_BB_TIMER_MODE_INT_HLDOFF,
1058 FRF_AB_TC_TIMER_VAL,
1059 channel->irq_moderation - 1);
1060 } else {
1061 EFX_POPULATE_DWORD_2(timer_cmd,
1062 FRF_AB_TC_TIMER_MODE,
1063 FFE_BB_TIMER_MODE_DIS,
1064 FRF_AB_TC_TIMER_VAL, 0);
1066 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1067 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1068 channel->channel);
1072 /* Allocate buffer table entries for event queue */
1073 int falcon_probe_eventq(struct efx_channel *channel)
1075 struct efx_nic *efx = channel->efx;
1076 BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1077 EFX_EVQ_SIZE & EFX_EVQ_MASK);
1078 return falcon_alloc_special_buffer(efx, &channel->eventq,
1079 EFX_EVQ_SIZE * sizeof(efx_qword_t));
1082 void falcon_init_eventq(struct efx_channel *channel)
1084 efx_oword_t evq_ptr;
1085 struct efx_nic *efx = channel->efx;
1087 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1088 channel->channel, channel->eventq.index,
1089 channel->eventq.index + channel->eventq.entries - 1);
1091 /* Pin event queue buffer */
1092 falcon_init_special_buffer(efx, &channel->eventq);
1094 /* Fill event queue with all ones (i.e. empty events) */
1095 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1097 /* Push event queue to card */
1098 EFX_POPULATE_OWORD_3(evq_ptr,
1099 FRF_AZ_EVQ_EN, 1,
1100 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1101 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1102 efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1103 channel->channel);
1105 falcon_set_int_moderation(channel);
1108 void falcon_fini_eventq(struct efx_channel *channel)
1110 efx_oword_t eventq_ptr;
1111 struct efx_nic *efx = channel->efx;
1113 /* Remove event queue from card */
1114 EFX_ZERO_OWORD(eventq_ptr);
1115 efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1116 channel->channel);
1118 /* Unpin event queue */
1119 falcon_fini_special_buffer(efx, &channel->eventq);
1122 /* Free buffers backing event queue */
1123 void falcon_remove_eventq(struct efx_channel *channel)
1125 falcon_free_special_buffer(channel->efx, &channel->eventq);
1129 /* Generates a test event on the event queue. A subsequent call to
1130 * process_eventq() should pick up the event and place the value of
1131 * "magic" into channel->eventq_magic;
1133 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1135 efx_qword_t test_event;
1137 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1138 FSE_AZ_EV_CODE_DRV_GEN_EV,
1139 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1140 falcon_generate_event(channel, &test_event);
1143 void falcon_sim_phy_event(struct efx_nic *efx)
1145 efx_qword_t phy_event;
1147 EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
1148 FSE_AZ_EV_CODE_GLOBAL_EV);
1149 if (EFX_IS10G(efx))
1150 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1151 else
1152 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1154 falcon_generate_event(&efx->channel[0], &phy_event);
1157 /**************************************************************************
1159 * Flush handling
1161 **************************************************************************/
1164 static void falcon_poll_flush_events(struct efx_nic *efx)
1166 struct efx_channel *channel = &efx->channel[0];
1167 struct efx_tx_queue *tx_queue;
1168 struct efx_rx_queue *rx_queue;
1169 unsigned int read_ptr = channel->eventq_read_ptr;
1170 unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1172 do {
1173 efx_qword_t *event = falcon_event(channel, read_ptr);
1174 int ev_code, ev_sub_code, ev_queue;
1175 bool ev_failed;
1177 if (!falcon_event_present(event))
1178 break;
1180 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1181 ev_sub_code = EFX_QWORD_FIELD(*event,
1182 FSF_AZ_DRIVER_EV_SUBCODE);
1183 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1184 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1185 ev_queue = EFX_QWORD_FIELD(*event,
1186 FSF_AZ_DRIVER_EV_SUBDATA);
1187 if (ev_queue < EFX_TX_QUEUE_COUNT) {
1188 tx_queue = efx->tx_queue + ev_queue;
1189 tx_queue->flushed = FLUSH_DONE;
1191 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1192 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1193 ev_queue = EFX_QWORD_FIELD(
1194 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1195 ev_failed = EFX_QWORD_FIELD(
1196 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1197 if (ev_queue < efx->n_rx_queues) {
1198 rx_queue = efx->rx_queue + ev_queue;
1199 rx_queue->flushed =
1200 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1204 /* We're about to destroy the queue anyway, so
1205 * it's ok to throw away every non-flush event */
1206 EFX_SET_QWORD(*event);
1208 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1209 } while (read_ptr != end_ptr);
1211 channel->eventq_read_ptr = read_ptr;
1214 static void falcon_prepare_flush(struct efx_nic *efx)
1216 falcon_deconfigure_mac_wrapper(efx);
1218 /* Wait for the tx and rx fifo's to get to the next packet boundary
1219 * (~1ms without back-pressure), then to drain the remainder of the
1220 * fifo's at data path speeds (negligible), with a healthy margin. */
1221 msleep(10);
1224 /* Handle tx and rx flushes at the same time, since they run in
1225 * parallel in the hardware and there's no reason for us to
1226 * serialise them */
1227 int falcon_flush_queues(struct efx_nic *efx)
1229 struct efx_rx_queue *rx_queue;
1230 struct efx_tx_queue *tx_queue;
1231 int i, tx_pending, rx_pending;
1233 falcon_prepare_flush(efx);
1235 /* Flush all tx queues in parallel */
1236 efx_for_each_tx_queue(tx_queue, efx)
1237 falcon_flush_tx_queue(tx_queue);
1239 /* The hardware supports four concurrent rx flushes, each of which may
1240 * need to be retried if there is an outstanding descriptor fetch */
1241 for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1242 rx_pending = tx_pending = 0;
1243 efx_for_each_rx_queue(rx_queue, efx) {
1244 if (rx_queue->flushed == FLUSH_PENDING)
1245 ++rx_pending;
1247 efx_for_each_rx_queue(rx_queue, efx) {
1248 if (rx_pending == FALCON_RX_FLUSH_COUNT)
1249 break;
1250 if (rx_queue->flushed == FLUSH_FAILED ||
1251 rx_queue->flushed == FLUSH_NONE) {
1252 falcon_flush_rx_queue(rx_queue);
1253 ++rx_pending;
1256 efx_for_each_tx_queue(tx_queue, efx) {
1257 if (tx_queue->flushed != FLUSH_DONE)
1258 ++tx_pending;
1261 if (rx_pending == 0 && tx_pending == 0)
1262 return 0;
1264 msleep(FALCON_FLUSH_INTERVAL);
1265 falcon_poll_flush_events(efx);
1268 /* Mark the queues as all flushed. We're going to return failure
1269 * leading to a reset, or fake up success anyway */
1270 efx_for_each_tx_queue(tx_queue, efx) {
1271 if (tx_queue->flushed != FLUSH_DONE)
1272 EFX_ERR(efx, "tx queue %d flush command timed out\n",
1273 tx_queue->queue);
1274 tx_queue->flushed = FLUSH_DONE;
1276 efx_for_each_rx_queue(rx_queue, efx) {
1277 if (rx_queue->flushed != FLUSH_DONE)
1278 EFX_ERR(efx, "rx queue %d flush command timed out\n",
1279 rx_queue->queue);
1280 rx_queue->flushed = FLUSH_DONE;
1283 if (EFX_WORKAROUND_7803(efx))
1284 return 0;
1286 return -ETIMEDOUT;
1289 /**************************************************************************
1291 * Falcon hardware interrupts
1292 * The hardware interrupt handler does very little work; all the event
1293 * queue processing is carried out by per-channel tasklets.
1295 **************************************************************************/
1297 /* Enable/disable/generate Falcon interrupts */
1298 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1299 int force)
1301 efx_oword_t int_en_reg_ker;
1303 EFX_POPULATE_OWORD_2(int_en_reg_ker,
1304 FRF_AZ_KER_INT_KER, force,
1305 FRF_AZ_DRV_INT_EN_KER, enabled);
1306 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1309 void falcon_enable_interrupts(struct efx_nic *efx)
1311 efx_oword_t int_adr_reg_ker;
1312 struct efx_channel *channel;
1314 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1315 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1317 /* Program address */
1318 EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1319 FRF_AZ_NORM_INT_VEC_DIS_KER,
1320 EFX_INT_MODE_USE_MSI(efx),
1321 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1322 efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1324 /* Enable interrupts */
1325 falcon_interrupts(efx, 1, 0);
1327 /* Force processing of all the channels to get the EVQ RPTRs up to
1328 date */
1329 efx_for_each_channel(channel, efx)
1330 efx_schedule_channel(channel);
1333 void falcon_disable_interrupts(struct efx_nic *efx)
1335 /* Disable interrupts */
1336 falcon_interrupts(efx, 0, 0);
1339 /* Generate a Falcon test interrupt
1340 * Interrupt must already have been enabled, otherwise nasty things
1341 * may happen.
1343 void falcon_generate_interrupt(struct efx_nic *efx)
1345 falcon_interrupts(efx, 1, 1);
1348 /* Acknowledge a legacy interrupt from Falcon
1350 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1352 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1353 * BIU. Interrupt acknowledge is read sensitive so must write instead
1354 * (then read to ensure the BIU collector is flushed)
1356 * NB most hardware supports MSI interrupts
1358 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1360 efx_dword_t reg;
1362 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1363 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1364 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1367 /* Process a fatal interrupt
1368 * Disable bus mastering ASAP and schedule a reset
1370 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1372 struct falcon_nic_data *nic_data = efx->nic_data;
1373 efx_oword_t *int_ker = efx->irq_status.addr;
1374 efx_oword_t fatal_intr;
1375 int error, mem_perr;
1377 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1378 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1380 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1381 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1382 EFX_OWORD_VAL(fatal_intr),
1383 error ? "disabling bus mastering" : "no recognised error");
1384 if (error == 0)
1385 goto out;
1387 /* If this is a memory parity error dump which blocks are offending */
1388 mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1389 if (mem_perr) {
1390 efx_oword_t reg;
1391 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1392 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1393 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1396 /* Disable both devices */
1397 pci_clear_master(efx->pci_dev);
1398 if (FALCON_IS_DUAL_FUNC(efx))
1399 pci_clear_master(nic_data->pci_dev2);
1400 falcon_disable_interrupts(efx);
1402 /* Count errors and reset or disable the NIC accordingly */
1403 if (efx->int_error_count == 0 ||
1404 time_after(jiffies, efx->int_error_expire)) {
1405 efx->int_error_count = 0;
1406 efx->int_error_expire =
1407 jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1409 if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1410 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1411 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1412 } else {
1413 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1414 "NIC will be disabled\n");
1415 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1417 out:
1418 return IRQ_HANDLED;
1421 /* Handle a legacy interrupt from Falcon
1422 * Acknowledges the interrupt and schedule event queue processing.
1424 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1426 struct efx_nic *efx = dev_id;
1427 efx_oword_t *int_ker = efx->irq_status.addr;
1428 irqreturn_t result = IRQ_NONE;
1429 struct efx_channel *channel;
1430 efx_dword_t reg;
1431 u32 queues;
1432 int syserr;
1434 /* Read the ISR which also ACKs the interrupts */
1435 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1436 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1438 /* Check to see if we have a serious error condition */
1439 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1440 if (unlikely(syserr))
1441 return falcon_fatal_interrupt(efx);
1443 /* Schedule processing of any interrupting queues */
1444 efx_for_each_channel(channel, efx) {
1445 if ((queues & 1) ||
1446 falcon_event_present(
1447 falcon_event(channel, channel->eventq_read_ptr))) {
1448 efx_schedule_channel(channel);
1449 result = IRQ_HANDLED;
1451 queues >>= 1;
1454 if (result == IRQ_HANDLED) {
1455 efx->last_irq_cpu = raw_smp_processor_id();
1456 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1457 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1460 return result;
1464 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1466 struct efx_nic *efx = dev_id;
1467 efx_oword_t *int_ker = efx->irq_status.addr;
1468 struct efx_channel *channel;
1469 int syserr;
1470 int queues;
1472 /* Check to see if this is our interrupt. If it isn't, we
1473 * exit without having touched the hardware.
1475 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1476 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1477 raw_smp_processor_id());
1478 return IRQ_NONE;
1480 efx->last_irq_cpu = raw_smp_processor_id();
1481 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1482 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1484 /* Check to see if we have a serious error condition */
1485 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1486 if (unlikely(syserr))
1487 return falcon_fatal_interrupt(efx);
1489 /* Determine interrupting queues, clear interrupt status
1490 * register and acknowledge the device interrupt.
1492 BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1493 queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1494 EFX_ZERO_OWORD(*int_ker);
1495 wmb(); /* Ensure the vector is cleared before interrupt ack */
1496 falcon_irq_ack_a1(efx);
1498 /* Schedule processing of any interrupting queues */
1499 channel = &efx->channel[0];
1500 while (queues) {
1501 if (queues & 0x01)
1502 efx_schedule_channel(channel);
1503 channel++;
1504 queues >>= 1;
1507 return IRQ_HANDLED;
1510 /* Handle an MSI interrupt from Falcon
1512 * Handle an MSI hardware interrupt. This routine schedules event
1513 * queue processing. No interrupt acknowledgement cycle is necessary.
1514 * Also, we never need to check that the interrupt is for us, since
1515 * MSI interrupts cannot be shared.
1517 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1519 struct efx_channel *channel = dev_id;
1520 struct efx_nic *efx = channel->efx;
1521 efx_oword_t *int_ker = efx->irq_status.addr;
1522 int syserr;
1524 efx->last_irq_cpu = raw_smp_processor_id();
1525 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1526 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1528 /* Check to see if we have a serious error condition */
1529 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1530 if (unlikely(syserr))
1531 return falcon_fatal_interrupt(efx);
1533 /* Schedule processing of the channel */
1534 efx_schedule_channel(channel);
1536 return IRQ_HANDLED;
1540 /* Setup RSS indirection table.
1541 * This maps from the hash value of the packet to RXQ
1543 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1545 int i = 0;
1546 unsigned long offset;
1547 efx_dword_t dword;
1549 if (falcon_rev(efx) < FALCON_REV_B0)
1550 return;
1552 for (offset = FR_BZ_RX_INDIRECTION_TBL;
1553 offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1554 offset += 0x10) {
1555 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1556 i % efx->n_rx_queues);
1557 efx_writed(efx, &dword, offset);
1558 i++;
1562 /* Hook interrupt handler(s)
1563 * Try MSI and then legacy interrupts.
1565 int falcon_init_interrupt(struct efx_nic *efx)
1567 struct efx_channel *channel;
1568 int rc;
1570 if (!EFX_INT_MODE_USE_MSI(efx)) {
1571 irq_handler_t handler;
1572 if (falcon_rev(efx) >= FALCON_REV_B0)
1573 handler = falcon_legacy_interrupt_b0;
1574 else
1575 handler = falcon_legacy_interrupt_a1;
1577 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1578 efx->name, efx);
1579 if (rc) {
1580 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1581 efx->pci_dev->irq);
1582 goto fail1;
1584 return 0;
1587 /* Hook MSI or MSI-X interrupt */
1588 efx_for_each_channel(channel, efx) {
1589 rc = request_irq(channel->irq, falcon_msi_interrupt,
1590 IRQF_PROBE_SHARED, /* Not shared */
1591 channel->name, channel);
1592 if (rc) {
1593 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1594 goto fail2;
1598 return 0;
1600 fail2:
1601 efx_for_each_channel(channel, efx)
1602 free_irq(channel->irq, channel);
1603 fail1:
1604 return rc;
1607 void falcon_fini_interrupt(struct efx_nic *efx)
1609 struct efx_channel *channel;
1610 efx_oword_t reg;
1612 /* Disable MSI/MSI-X interrupts */
1613 efx_for_each_channel(channel, efx) {
1614 if (channel->irq)
1615 free_irq(channel->irq, channel);
1618 /* ACK legacy interrupt */
1619 if (falcon_rev(efx) >= FALCON_REV_B0)
1620 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1621 else
1622 falcon_irq_ack_a1(efx);
1624 /* Disable legacy interrupt */
1625 if (efx->legacy_irq)
1626 free_irq(efx->legacy_irq, efx);
1629 /**************************************************************************
1631 * EEPROM/flash
1633 **************************************************************************
1636 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1638 static int falcon_spi_poll(struct efx_nic *efx)
1640 efx_oword_t reg;
1641 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1642 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1645 /* Wait for SPI command completion */
1646 static int falcon_spi_wait(struct efx_nic *efx)
1648 /* Most commands will finish quickly, so we start polling at
1649 * very short intervals. Sometimes the command may have to
1650 * wait for VPD or expansion ROM access outside of our
1651 * control, so we allow up to 100 ms. */
1652 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1653 int i;
1655 for (i = 0; i < 10; i++) {
1656 if (!falcon_spi_poll(efx))
1657 return 0;
1658 udelay(10);
1661 for (;;) {
1662 if (!falcon_spi_poll(efx))
1663 return 0;
1664 if (time_after_eq(jiffies, timeout)) {
1665 EFX_ERR(efx, "timed out waiting for SPI\n");
1666 return -ETIMEDOUT;
1668 schedule_timeout_uninterruptible(1);
1672 int falcon_spi_cmd(const struct efx_spi_device *spi,
1673 unsigned int command, int address,
1674 const void *in, void *out, size_t len)
1676 struct efx_nic *efx = spi->efx;
1677 bool addressed = (address >= 0);
1678 bool reading = (out != NULL);
1679 efx_oword_t reg;
1680 int rc;
1682 /* Input validation */
1683 if (len > FALCON_SPI_MAX_LEN)
1684 return -EINVAL;
1685 BUG_ON(!mutex_is_locked(&efx->spi_lock));
1687 /* Check that previous command is not still running */
1688 rc = falcon_spi_poll(efx);
1689 if (rc)
1690 return rc;
1692 /* Program address register, if we have an address */
1693 if (addressed) {
1694 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1695 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1698 /* Program data register, if we have data */
1699 if (in != NULL) {
1700 memcpy(&reg, in, len);
1701 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1704 /* Issue read/write command */
1705 EFX_POPULATE_OWORD_7(reg,
1706 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1707 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1708 FRF_AB_EE_SPI_HCMD_DABCNT, len,
1709 FRF_AB_EE_SPI_HCMD_READ, reading,
1710 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1711 FRF_AB_EE_SPI_HCMD_ADBCNT,
1712 (addressed ? spi->addr_len : 0),
1713 FRF_AB_EE_SPI_HCMD_ENC, command);
1714 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1716 /* Wait for read/write to complete */
1717 rc = falcon_spi_wait(efx);
1718 if (rc)
1719 return rc;
1721 /* Read data */
1722 if (out != NULL) {
1723 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1724 memcpy(out, &reg, len);
1727 return 0;
1730 static size_t
1731 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1733 return min(FALCON_SPI_MAX_LEN,
1734 (spi->block_size - (start & (spi->block_size - 1))));
1737 static inline u8
1738 efx_spi_munge_command(const struct efx_spi_device *spi,
1739 const u8 command, const unsigned int address)
1741 return command | (((address >> 8) & spi->munge_address) << 3);
1744 /* Wait up to 10 ms for buffered write completion */
1745 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1747 struct efx_nic *efx = spi->efx;
1748 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1749 u8 status;
1750 int rc;
1752 for (;;) {
1753 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1754 &status, sizeof(status));
1755 if (rc)
1756 return rc;
1757 if (!(status & SPI_STATUS_NRDY))
1758 return 0;
1759 if (time_after_eq(jiffies, timeout)) {
1760 EFX_ERR(efx, "SPI write timeout on device %d"
1761 " last status=0x%02x\n",
1762 spi->device_id, status);
1763 return -ETIMEDOUT;
1765 schedule_timeout_uninterruptible(1);
1769 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1770 size_t len, size_t *retlen, u8 *buffer)
1772 size_t block_len, pos = 0;
1773 unsigned int command;
1774 int rc = 0;
1776 while (pos < len) {
1777 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1779 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1780 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1781 buffer + pos, block_len);
1782 if (rc)
1783 break;
1784 pos += block_len;
1786 /* Avoid locking up the system */
1787 cond_resched();
1788 if (signal_pending(current)) {
1789 rc = -EINTR;
1790 break;
1794 if (retlen)
1795 *retlen = pos;
1796 return rc;
1799 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1800 size_t len, size_t *retlen, const u8 *buffer)
1802 u8 verify_buffer[FALCON_SPI_MAX_LEN];
1803 size_t block_len, pos = 0;
1804 unsigned int command;
1805 int rc = 0;
1807 while (pos < len) {
1808 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1809 if (rc)
1810 break;
1812 block_len = min(len - pos,
1813 falcon_spi_write_limit(spi, start + pos));
1814 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1815 rc = falcon_spi_cmd(spi, command, start + pos,
1816 buffer + pos, NULL, block_len);
1817 if (rc)
1818 break;
1820 rc = falcon_spi_wait_write(spi);
1821 if (rc)
1822 break;
1824 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1825 rc = falcon_spi_cmd(spi, command, start + pos,
1826 NULL, verify_buffer, block_len);
1827 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1828 rc = -EIO;
1829 break;
1832 pos += block_len;
1834 /* Avoid locking up the system */
1835 cond_resched();
1836 if (signal_pending(current)) {
1837 rc = -EINTR;
1838 break;
1842 if (retlen)
1843 *retlen = pos;
1844 return rc;
1847 /**************************************************************************
1849 * MAC wrapper
1851 **************************************************************************
1854 static int falcon_reset_macs(struct efx_nic *efx)
1856 efx_oword_t reg;
1857 int count;
1859 if (falcon_rev(efx) < FALCON_REV_B0) {
1860 /* It's not safe to use GLB_CTL_REG to reset the
1861 * macs, so instead use the internal MAC resets
1863 if (!EFX_IS10G(efx)) {
1864 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1865 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1866 udelay(1000);
1868 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1869 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1870 udelay(1000);
1871 return 0;
1872 } else {
1873 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1874 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1876 for (count = 0; count < 10000; count++) {
1877 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1878 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1880 return 0;
1881 udelay(10);
1884 EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1885 return -ETIMEDOUT;
1889 /* MAC stats will fail whilst the TX fifo is draining. Serialise
1890 * the drain sequence with the statistics fetch */
1891 falcon_stop_nic_stats(efx);
1893 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1894 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1895 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1897 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1898 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1899 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1900 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1901 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1903 count = 0;
1904 while (1) {
1905 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1906 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1907 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1908 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1909 EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1910 count);
1911 break;
1913 if (count > 20) {
1914 EFX_ERR(efx, "MAC reset failed\n");
1915 break;
1917 count++;
1918 udelay(10);
1921 /* If we've reset the EM block and the link is up, then
1922 * we'll have to kick the XAUI link so the PHY can recover */
1923 if (efx->link_state.up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1924 falcon_reset_xaui(efx);
1926 falcon_start_nic_stats(efx);
1928 return 0;
1931 void falcon_drain_tx_fifo(struct efx_nic *efx)
1933 efx_oword_t reg;
1935 if ((falcon_rev(efx) < FALCON_REV_B0) ||
1936 (efx->loopback_mode != LOOPBACK_NONE))
1937 return;
1939 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1940 /* There is no point in draining more than once */
1941 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1942 return;
1944 falcon_reset_macs(efx);
1947 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1949 efx_oword_t reg;
1951 if (falcon_rev(efx) < FALCON_REV_B0)
1952 return;
1954 /* Isolate the MAC -> RX */
1955 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1956 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1957 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1959 if (!efx->link_state.up)
1960 falcon_drain_tx_fifo(efx);
1963 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1965 struct efx_link_state *link_state = &efx->link_state;
1966 efx_oword_t reg;
1967 int link_speed;
1968 bool tx_fc;
1970 switch (link_state->speed) {
1971 case 10000: link_speed = 3; break;
1972 case 1000: link_speed = 2; break;
1973 case 100: link_speed = 1; break;
1974 default: link_speed = 0; break;
1976 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1977 * as advertised. Disable to ensure packets are not
1978 * indefinitely held and TX queue can be flushed at any point
1979 * while the link is down. */
1980 EFX_POPULATE_OWORD_5(reg,
1981 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1982 FRF_AB_MAC_BCAD_ACPT, 1,
1983 FRF_AB_MAC_UC_PROM, efx->promiscuous,
1984 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1985 FRF_AB_MAC_SPEED, link_speed);
1986 /* On B0, MAC backpressure can be disabled and packets get
1987 * discarded. */
1988 if (falcon_rev(efx) >= FALCON_REV_B0) {
1989 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1990 !link_state->up);
1993 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1995 /* Restore the multicast hash registers. */
1996 falcon_set_multicast_hash(efx);
1998 /* Transmission of pause frames when RX crosses the threshold is
1999 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
2000 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
2001 tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
2002 efx_reado(efx, &reg, FR_AZ_RX_CFG);
2003 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
2005 /* Unisolate the MAC -> RX */
2006 if (falcon_rev(efx) >= FALCON_REV_B0)
2007 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2008 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2011 static void falcon_stats_request(struct efx_nic *efx)
2013 struct falcon_nic_data *nic_data = efx->nic_data;
2014 efx_oword_t reg;
2016 WARN_ON(nic_data->stats_pending);
2017 WARN_ON(nic_data->stats_disable_count);
2019 if (nic_data->stats_dma_done == NULL)
2020 return; /* no mac selected */
2022 *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
2023 nic_data->stats_pending = true;
2024 wmb(); /* ensure done flag is clear */
2026 /* Initiate DMA transfer of stats */
2027 EFX_POPULATE_OWORD_2(reg,
2028 FRF_AB_MAC_STAT_DMA_CMD, 1,
2029 FRF_AB_MAC_STAT_DMA_ADR,
2030 efx->stats_buffer.dma_addr);
2031 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2033 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
2036 static void falcon_stats_complete(struct efx_nic *efx)
2038 struct falcon_nic_data *nic_data = efx->nic_data;
2040 if (!nic_data->stats_pending)
2041 return;
2043 nic_data->stats_pending = 0;
2044 if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
2045 rmb(); /* read the done flag before the stats */
2046 efx->mac_op->update_stats(efx);
2047 } else {
2048 EFX_ERR(efx, "timed out waiting for statistics\n");
2052 static void falcon_stats_timer_func(unsigned long context)
2054 struct efx_nic *efx = (struct efx_nic *)context;
2055 struct falcon_nic_data *nic_data = efx->nic_data;
2057 spin_lock(&efx->stats_lock);
2059 falcon_stats_complete(efx);
2060 if (nic_data->stats_disable_count == 0)
2061 falcon_stats_request(efx);
2063 spin_unlock(&efx->stats_lock);
2066 /**************************************************************************
2068 * PHY access via GMII
2070 **************************************************************************
2073 /* Wait for GMII access to complete */
2074 static int falcon_gmii_wait(struct efx_nic *efx)
2076 efx_oword_t md_stat;
2077 int count;
2079 /* wait upto 50ms - taken max from datasheet */
2080 for (count = 0; count < 5000; count++) {
2081 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
2082 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2083 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2084 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2085 EFX_ERR(efx, "error from GMII access "
2086 EFX_OWORD_FMT"\n",
2087 EFX_OWORD_VAL(md_stat));
2088 return -EIO;
2090 return 0;
2092 udelay(10);
2094 EFX_ERR(efx, "timed out waiting for GMII\n");
2095 return -ETIMEDOUT;
2098 /* Write an MDIO register of a PHY connected to Falcon. */
2099 static int falcon_mdio_write(struct net_device *net_dev,
2100 int prtad, int devad, u16 addr, u16 value)
2102 struct efx_nic *efx = netdev_priv(net_dev);
2103 efx_oword_t reg;
2104 int rc;
2106 EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2107 prtad, devad, addr, value);
2109 spin_lock_bh(&efx->phy_lock);
2111 /* Check MDIO not currently being accessed */
2112 rc = falcon_gmii_wait(efx);
2113 if (rc)
2114 goto out;
2116 /* Write the address/ID register */
2117 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2118 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2120 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2121 FRF_AB_MD_DEV_ADR, devad);
2122 efx_writeo(efx, &reg, FR_AB_MD_ID);
2124 /* Write data */
2125 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2126 efx_writeo(efx, &reg, FR_AB_MD_TXD);
2128 EFX_POPULATE_OWORD_2(reg,
2129 FRF_AB_MD_WRC, 1,
2130 FRF_AB_MD_GC, 0);
2131 efx_writeo(efx, &reg, FR_AB_MD_CS);
2133 /* Wait for data to be written */
2134 rc = falcon_gmii_wait(efx);
2135 if (rc) {
2136 /* Abort the write operation */
2137 EFX_POPULATE_OWORD_2(reg,
2138 FRF_AB_MD_WRC, 0,
2139 FRF_AB_MD_GC, 1);
2140 efx_writeo(efx, &reg, FR_AB_MD_CS);
2141 udelay(10);
2144 out:
2145 spin_unlock_bh(&efx->phy_lock);
2146 return rc;
2149 /* Read an MDIO register of a PHY connected to Falcon. */
2150 static int falcon_mdio_read(struct net_device *net_dev,
2151 int prtad, int devad, u16 addr)
2153 struct efx_nic *efx = netdev_priv(net_dev);
2154 efx_oword_t reg;
2155 int rc;
2157 spin_lock_bh(&efx->phy_lock);
2159 /* Check MDIO not currently being accessed */
2160 rc = falcon_gmii_wait(efx);
2161 if (rc)
2162 goto out;
2164 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2165 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2167 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2168 FRF_AB_MD_DEV_ADR, devad);
2169 efx_writeo(efx, &reg, FR_AB_MD_ID);
2171 /* Request data to be read */
2172 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2173 efx_writeo(efx, &reg, FR_AB_MD_CS);
2175 /* Wait for data to become available */
2176 rc = falcon_gmii_wait(efx);
2177 if (rc == 0) {
2178 efx_reado(efx, &reg, FR_AB_MD_RXD);
2179 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2180 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2181 prtad, devad, addr, rc);
2182 } else {
2183 /* Abort the read operation */
2184 EFX_POPULATE_OWORD_2(reg,
2185 FRF_AB_MD_RIC, 0,
2186 FRF_AB_MD_GC, 1);
2187 efx_writeo(efx, &reg, FR_AB_MD_CS);
2189 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2190 prtad, devad, addr, rc);
2193 out:
2194 spin_unlock_bh(&efx->phy_lock);
2195 return rc;
2198 static void falcon_clock_mac(struct efx_nic *efx)
2200 unsigned strap_val;
2201 efx_oword_t nic_stat;
2203 /* Configure the NIC generated MAC clock correctly */
2204 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2205 strap_val = EFX_IS10G(efx) ? 5 : 3;
2206 if (falcon_rev(efx) >= FALCON_REV_B0) {
2207 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2208 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2209 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2210 } else {
2211 /* Falcon A1 does not support 1G/10G speed switching
2212 * and must not be used with a PHY that does. */
2213 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2214 strap_val);
2218 int falcon_switch_mac(struct efx_nic *efx)
2220 struct efx_mac_operations *old_mac_op = efx->mac_op;
2221 struct falcon_nic_data *nic_data = efx->nic_data;
2222 unsigned int stats_done_offset;
2223 int rc = 0;
2225 /* Don't try to fetch MAC stats while we're switching MACs */
2226 falcon_stop_nic_stats(efx);
2228 /* Internal loopbacks override the phy speed setting */
2229 if (efx->loopback_mode == LOOPBACK_GMAC) {
2230 efx->link_state.speed = 1000;
2231 efx->link_state.fd = true;
2232 } else if (LOOPBACK_INTERNAL(efx)) {
2233 efx->link_state.speed = 10000;
2234 efx->link_state.fd = true;
2237 WARN_ON(!mutex_is_locked(&efx->mac_lock));
2238 efx->mac_op = (EFX_IS10G(efx) ?
2239 &falcon_xmac_operations : &falcon_gmac_operations);
2241 if (EFX_IS10G(efx))
2242 stats_done_offset = XgDmaDone_offset;
2243 else
2244 stats_done_offset = GDmaDone_offset;
2245 nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
2247 if (old_mac_op == efx->mac_op)
2248 goto out;
2250 falcon_clock_mac(efx);
2252 EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2253 /* Not all macs support a mac-level link state */
2254 efx->xmac_poll_required = false;
2256 rc = falcon_reset_macs(efx);
2257 out:
2258 falcon_start_nic_stats(efx);
2259 return rc;
2262 /* This call is responsible for hooking in the MAC and PHY operations */
2263 int falcon_probe_port(struct efx_nic *efx)
2265 int rc;
2267 switch (efx->phy_type) {
2268 case PHY_TYPE_SFX7101:
2269 efx->phy_op = &falcon_sfx7101_phy_ops;
2270 break;
2271 case PHY_TYPE_SFT9001A:
2272 case PHY_TYPE_SFT9001B:
2273 efx->phy_op = &falcon_sft9001_phy_ops;
2274 break;
2275 case PHY_TYPE_QT2022C2:
2276 case PHY_TYPE_QT2025C:
2277 efx->phy_op = &falcon_qt202x_phy_ops;
2278 break;
2279 default:
2280 EFX_ERR(efx, "Unknown PHY type %d\n",
2281 efx->phy_type);
2282 return -ENODEV;
2285 if (efx->phy_op->macs & EFX_XMAC)
2286 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2287 (1 << LOOPBACK_XGXS) |
2288 (1 << LOOPBACK_XAUI));
2289 if (efx->phy_op->macs & EFX_GMAC)
2290 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2291 efx->loopback_modes |= efx->phy_op->loopbacks;
2293 /* Set up MDIO structure for PHY */
2294 efx->mdio.mmds = efx->phy_op->mmds;
2295 efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2296 efx->mdio.mdio_read = falcon_mdio_read;
2297 efx->mdio.mdio_write = falcon_mdio_write;
2299 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2300 if (falcon_rev(efx) >= FALCON_REV_B0)
2301 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2302 else
2303 efx->wanted_fc = EFX_FC_RX;
2305 /* Allocate buffer for stats */
2306 rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2307 FALCON_MAC_STATS_SIZE);
2308 if (rc)
2309 return rc;
2310 EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2311 (u64)efx->stats_buffer.dma_addr,
2312 efx->stats_buffer.addr,
2313 (u64)virt_to_phys(efx->stats_buffer.addr));
2315 return 0;
2318 void falcon_remove_port(struct efx_nic *efx)
2320 falcon_free_buffer(efx, &efx->stats_buffer);
2323 /**************************************************************************
2325 * Multicast filtering
2327 **************************************************************************
2330 void falcon_set_multicast_hash(struct efx_nic *efx)
2332 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2334 /* Broadcast packets go through the multicast hash filter.
2335 * ether_crc_le() of the broadcast address is 0xbe2612ff
2336 * so we always add bit 0xff to the mask.
2338 set_bit_le(0xff, mc_hash->byte);
2340 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
2341 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2345 /**************************************************************************
2347 * Falcon test code
2349 **************************************************************************/
2351 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2353 struct falcon_nvconfig *nvconfig;
2354 struct efx_spi_device *spi;
2355 void *region;
2356 int rc, magic_num, struct_ver;
2357 __le16 *word, *limit;
2358 u32 csum;
2360 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2361 if (!spi)
2362 return -EINVAL;
2364 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2365 if (!region)
2366 return -ENOMEM;
2367 nvconfig = region + FALCON_NVCONFIG_OFFSET;
2369 mutex_lock(&efx->spi_lock);
2370 rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2371 mutex_unlock(&efx->spi_lock);
2372 if (rc) {
2373 EFX_ERR(efx, "Failed to read %s\n",
2374 efx->spi_flash ? "flash" : "EEPROM");
2375 rc = -EIO;
2376 goto out;
2379 magic_num = le16_to_cpu(nvconfig->board_magic_num);
2380 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2382 rc = -EINVAL;
2383 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
2384 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2385 goto out;
2387 if (struct_ver < 2) {
2388 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2389 goto out;
2390 } else if (struct_ver < 4) {
2391 word = &nvconfig->board_magic_num;
2392 limit = (__le16 *) (nvconfig + 1);
2393 } else {
2394 word = region;
2395 limit = region + FALCON_NVCONFIG_END;
2397 for (csum = 0; word < limit; ++word)
2398 csum += le16_to_cpu(*word);
2400 if (~csum & 0xffff) {
2401 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2402 goto out;
2405 rc = 0;
2406 if (nvconfig_out)
2407 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2409 out:
2410 kfree(region);
2411 return rc;
2414 /* Registers tested in the falcon register test */
2415 static struct {
2416 unsigned address;
2417 efx_oword_t mask;
2418 } efx_test_registers[] = {
2419 { FR_AZ_ADR_REGION,
2420 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2421 { FR_AZ_RX_CFG,
2422 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2423 { FR_AZ_TX_CFG,
2424 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2425 { FR_AZ_TX_RESERVED,
2426 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2427 { FR_AB_MAC_CTRL,
2428 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2429 { FR_AZ_SRM_TX_DC_CFG,
2430 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2431 { FR_AZ_RX_DC_CFG,
2432 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2433 { FR_AZ_RX_DC_PF_WM,
2434 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2435 { FR_BZ_DP_CTRL,
2436 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2437 { FR_AB_GM_CFG2,
2438 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2439 { FR_AB_GMF_CFG0,
2440 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2441 { FR_AB_XM_GLB_CFG,
2442 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2443 { FR_AB_XM_TX_CFG,
2444 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2445 { FR_AB_XM_RX_CFG,
2446 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2447 { FR_AB_XM_RX_PARAM,
2448 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2449 { FR_AB_XM_FC,
2450 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2451 { FR_AB_XM_ADR_LO,
2452 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2453 { FR_AB_XX_SD_CTL,
2454 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2457 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2458 const efx_oword_t *mask)
2460 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2461 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2464 int falcon_test_registers(struct efx_nic *efx)
2466 unsigned address = 0, i, j;
2467 efx_oword_t mask, imask, original, reg, buf;
2469 /* Falcon should be in loopback to isolate the XMAC from the PHY */
2470 WARN_ON(!LOOPBACK_INTERNAL(efx));
2472 for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2473 address = efx_test_registers[i].address;
2474 mask = imask = efx_test_registers[i].mask;
2475 EFX_INVERT_OWORD(imask);
2477 efx_reado(efx, &original, address);
2479 /* bit sweep on and off */
2480 for (j = 0; j < 128; j++) {
2481 if (!EFX_EXTRACT_OWORD32(mask, j, j))
2482 continue;
2484 /* Test this testable bit can be set in isolation */
2485 EFX_AND_OWORD(reg, original, mask);
2486 EFX_SET_OWORD32(reg, j, j, 1);
2488 efx_writeo(efx, &reg, address);
2489 efx_reado(efx, &buf, address);
2491 if (efx_masked_compare_oword(&reg, &buf, &mask))
2492 goto fail;
2494 /* Test this testable bit can be cleared in isolation */
2495 EFX_OR_OWORD(reg, original, mask);
2496 EFX_SET_OWORD32(reg, j, j, 0);
2498 efx_writeo(efx, &reg, address);
2499 efx_reado(efx, &buf, address);
2501 if (efx_masked_compare_oword(&reg, &buf, &mask))
2502 goto fail;
2505 efx_writeo(efx, &original, address);
2508 return 0;
2510 fail:
2511 EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2512 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2513 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2514 return -EIO;
2517 /**************************************************************************
2519 * Device reset
2521 **************************************************************************
2524 /* Resets NIC to known state. This routine must be called in process
2525 * context and is allowed to sleep. */
2526 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2528 struct falcon_nic_data *nic_data = efx->nic_data;
2529 efx_oword_t glb_ctl_reg_ker;
2530 int rc;
2532 EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2534 /* Initiate device reset */
2535 if (method == RESET_TYPE_WORLD) {
2536 rc = pci_save_state(efx->pci_dev);
2537 if (rc) {
2538 EFX_ERR(efx, "failed to backup PCI state of primary "
2539 "function prior to hardware reset\n");
2540 goto fail1;
2542 if (FALCON_IS_DUAL_FUNC(efx)) {
2543 rc = pci_save_state(nic_data->pci_dev2);
2544 if (rc) {
2545 EFX_ERR(efx, "failed to backup PCI state of "
2546 "secondary function prior to "
2547 "hardware reset\n");
2548 goto fail2;
2552 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2553 FRF_AB_EXT_PHY_RST_DUR,
2554 FFE_AB_EXT_PHY_RST_DUR_10240US,
2555 FRF_AB_SWRST, 1);
2556 } else {
2557 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2558 /* exclude PHY from "invisible" reset */
2559 FRF_AB_EXT_PHY_RST_CTL,
2560 method == RESET_TYPE_INVISIBLE,
2561 /* exclude EEPROM/flash and PCIe */
2562 FRF_AB_PCIE_CORE_RST_CTL, 1,
2563 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2564 FRF_AB_PCIE_SD_RST_CTL, 1,
2565 FRF_AB_EE_RST_CTL, 1,
2566 FRF_AB_EXT_PHY_RST_DUR,
2567 FFE_AB_EXT_PHY_RST_DUR_10240US,
2568 FRF_AB_SWRST, 1);
2570 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2572 EFX_LOG(efx, "waiting for hardware reset\n");
2573 schedule_timeout_uninterruptible(HZ / 20);
2575 /* Restore PCI configuration if needed */
2576 if (method == RESET_TYPE_WORLD) {
2577 if (FALCON_IS_DUAL_FUNC(efx)) {
2578 rc = pci_restore_state(nic_data->pci_dev2);
2579 if (rc) {
2580 EFX_ERR(efx, "failed to restore PCI config for "
2581 "the secondary function\n");
2582 goto fail3;
2585 rc = pci_restore_state(efx->pci_dev);
2586 if (rc) {
2587 EFX_ERR(efx, "failed to restore PCI config for the "
2588 "primary function\n");
2589 goto fail4;
2591 EFX_LOG(efx, "successfully restored PCI config\n");
2594 /* Assert that reset complete */
2595 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2596 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2597 rc = -ETIMEDOUT;
2598 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2599 goto fail5;
2601 EFX_LOG(efx, "hardware reset complete\n");
2603 return 0;
2605 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2606 fail2:
2607 fail3:
2608 pci_restore_state(efx->pci_dev);
2609 fail1:
2610 fail4:
2611 fail5:
2612 return rc;
2615 void falcon_monitor(struct efx_nic *efx)
2617 int rc;
2619 rc = falcon_board(efx)->type->monitor(efx);
2620 if (rc) {
2621 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
2622 (rc == -ERANGE) ? "reported fault" : "failed");
2623 efx->phy_mode |= PHY_MODE_LOW_POWER;
2624 falcon_sim_phy_event(efx);
2626 efx->phy_op->poll(efx);
2627 if (EFX_IS10G(efx))
2628 falcon_poll_xmac(efx);
2631 /* Zeroes out the SRAM contents. This routine must be called in
2632 * process context and is allowed to sleep.
2634 static int falcon_reset_sram(struct efx_nic *efx)
2636 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2637 int count;
2639 /* Set the SRAM wake/sleep GPIO appropriately. */
2640 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2641 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2642 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2643 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2645 /* Initiate SRAM reset */
2646 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2647 FRF_AZ_SRM_INIT_EN, 1,
2648 FRF_AZ_SRM_NB_SZ, 0);
2649 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2651 /* Wait for SRAM reset to complete */
2652 count = 0;
2653 do {
2654 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2656 /* SRAM reset is slow; expect around 16ms */
2657 schedule_timeout_uninterruptible(HZ / 50);
2659 /* Check for reset complete */
2660 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2661 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2662 EFX_LOG(efx, "SRAM reset complete\n");
2664 return 0;
2666 } while (++count < 20); /* wait upto 0.4 sec */
2668 EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2669 return -ETIMEDOUT;
2672 static int falcon_spi_device_init(struct efx_nic *efx,
2673 struct efx_spi_device **spi_device_ret,
2674 unsigned int device_id, u32 device_type)
2676 struct efx_spi_device *spi_device;
2678 if (device_type != 0) {
2679 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2680 if (!spi_device)
2681 return -ENOMEM;
2682 spi_device->device_id = device_id;
2683 spi_device->size =
2684 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2685 spi_device->addr_len =
2686 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2687 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2688 spi_device->addr_len == 1);
2689 spi_device->erase_command =
2690 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2691 spi_device->erase_size =
2692 1 << SPI_DEV_TYPE_FIELD(device_type,
2693 SPI_DEV_TYPE_ERASE_SIZE);
2694 spi_device->block_size =
2695 1 << SPI_DEV_TYPE_FIELD(device_type,
2696 SPI_DEV_TYPE_BLOCK_SIZE);
2698 spi_device->efx = efx;
2699 } else {
2700 spi_device = NULL;
2703 kfree(*spi_device_ret);
2704 *spi_device_ret = spi_device;
2705 return 0;
2709 static void falcon_remove_spi_devices(struct efx_nic *efx)
2711 kfree(efx->spi_eeprom);
2712 efx->spi_eeprom = NULL;
2713 kfree(efx->spi_flash);
2714 efx->spi_flash = NULL;
2717 /* Extract non-volatile configuration */
2718 static int falcon_probe_nvconfig(struct efx_nic *efx)
2720 struct falcon_nvconfig *nvconfig;
2721 int board_rev;
2722 int rc;
2724 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2725 if (!nvconfig)
2726 return -ENOMEM;
2728 rc = falcon_read_nvram(efx, nvconfig);
2729 if (rc == -EINVAL) {
2730 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2731 efx->phy_type = PHY_TYPE_NONE;
2732 efx->mdio.prtad = MDIO_PRTAD_NONE;
2733 board_rev = 0;
2734 rc = 0;
2735 } else if (rc) {
2736 goto fail1;
2737 } else {
2738 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2739 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2741 efx->phy_type = v2->port0_phy_type;
2742 efx->mdio.prtad = v2->port0_phy_addr;
2743 board_rev = le16_to_cpu(v2->board_revision);
2745 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2746 rc = falcon_spi_device_init(
2747 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2748 le32_to_cpu(v3->spi_device_type
2749 [FFE_AB_SPI_DEVICE_FLASH]));
2750 if (rc)
2751 goto fail2;
2752 rc = falcon_spi_device_init(
2753 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2754 le32_to_cpu(v3->spi_device_type
2755 [FFE_AB_SPI_DEVICE_EEPROM]));
2756 if (rc)
2757 goto fail2;
2761 /* Read the MAC addresses */
2762 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2764 EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2766 falcon_probe_board(efx, board_rev);
2768 kfree(nvconfig);
2769 return 0;
2771 fail2:
2772 falcon_remove_spi_devices(efx);
2773 fail1:
2774 kfree(nvconfig);
2775 return rc;
2778 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2779 * count, port speed). Set workaround and feature flags accordingly.
2781 static int falcon_probe_nic_variant(struct efx_nic *efx)
2783 efx_oword_t altera_build;
2784 efx_oword_t nic_stat;
2786 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2787 if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2788 EFX_ERR(efx, "Falcon FPGA not supported\n");
2789 return -ENODEV;
2792 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2794 switch (falcon_rev(efx)) {
2795 case FALCON_REV_A0:
2796 case 0xff:
2797 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2798 return -ENODEV;
2800 case FALCON_REV_A1:
2801 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2802 EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2803 return -ENODEV;
2805 break;
2807 case FALCON_REV_B0:
2808 break;
2810 default:
2811 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2812 return -ENODEV;
2815 /* Initial assumed speed */
2816 efx->link_state.speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2818 return 0;
2821 /* Probe all SPI devices on the NIC */
2822 static void falcon_probe_spi_devices(struct efx_nic *efx)
2824 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2825 int boot_dev;
2827 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2828 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2829 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2831 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2832 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2833 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2834 EFX_LOG(efx, "Booted from %s\n",
2835 boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2836 } else {
2837 /* Disable VPD and set clock dividers to safe
2838 * values for initial programming. */
2839 boot_dev = -1;
2840 EFX_LOG(efx, "Booted from internal ASIC settings;"
2841 " setting SPI config\n");
2842 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2843 /* 125 MHz / 7 ~= 20 MHz */
2844 FRF_AB_EE_SF_CLOCK_DIV, 7,
2845 /* 125 MHz / 63 ~= 2 MHz */
2846 FRF_AB_EE_EE_CLOCK_DIV, 63);
2847 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2850 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2851 falcon_spi_device_init(efx, &efx->spi_flash,
2852 FFE_AB_SPI_DEVICE_FLASH,
2853 default_flash_type);
2854 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2855 falcon_spi_device_init(efx, &efx->spi_eeprom,
2856 FFE_AB_SPI_DEVICE_EEPROM,
2857 large_eeprom_type);
2860 int falcon_probe_nic(struct efx_nic *efx)
2862 struct falcon_nic_data *nic_data;
2863 struct falcon_board *board;
2864 int rc;
2866 /* Allocate storage for hardware specific data */
2867 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2868 if (!nic_data)
2869 return -ENOMEM;
2870 efx->nic_data = nic_data;
2872 /* Determine number of ports etc. */
2873 rc = falcon_probe_nic_variant(efx);
2874 if (rc)
2875 goto fail1;
2877 /* Probe secondary function if expected */
2878 if (FALCON_IS_DUAL_FUNC(efx)) {
2879 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2881 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2882 dev))) {
2883 if (dev->bus == efx->pci_dev->bus &&
2884 dev->devfn == efx->pci_dev->devfn + 1) {
2885 nic_data->pci_dev2 = dev;
2886 break;
2889 if (!nic_data->pci_dev2) {
2890 EFX_ERR(efx, "failed to find secondary function\n");
2891 rc = -ENODEV;
2892 goto fail2;
2896 /* Now we can reset the NIC */
2897 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2898 if (rc) {
2899 EFX_ERR(efx, "failed to reset NIC\n");
2900 goto fail3;
2903 /* Allocate memory for INT_KER */
2904 rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2905 if (rc)
2906 goto fail4;
2907 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2909 EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2910 (u64)efx->irq_status.dma_addr,
2911 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2913 falcon_probe_spi_devices(efx);
2915 /* Read in the non-volatile configuration */
2916 rc = falcon_probe_nvconfig(efx);
2917 if (rc)
2918 goto fail5;
2920 /* Initialise I2C adapter */
2921 board = falcon_board(efx);
2922 board->i2c_adap.owner = THIS_MODULE;
2923 board->i2c_data = falcon_i2c_bit_operations;
2924 board->i2c_data.data = efx;
2925 board->i2c_adap.algo_data = &board->i2c_data;
2926 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2927 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2928 sizeof(board->i2c_adap.name));
2929 rc = i2c_bit_add_bus(&board->i2c_adap);
2930 if (rc)
2931 goto fail5;
2933 rc = falcon_board(efx)->type->init(efx);
2934 if (rc) {
2935 EFX_ERR(efx, "failed to initialise board\n");
2936 goto fail6;
2939 nic_data->stats_disable_count = 1;
2940 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2941 (unsigned long)efx);
2943 return 0;
2945 fail6:
2946 BUG_ON(i2c_del_adapter(&board->i2c_adap));
2947 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2948 fail5:
2949 falcon_remove_spi_devices(efx);
2950 falcon_free_buffer(efx, &efx->irq_status);
2951 fail4:
2952 fail3:
2953 if (nic_data->pci_dev2) {
2954 pci_dev_put(nic_data->pci_dev2);
2955 nic_data->pci_dev2 = NULL;
2957 fail2:
2958 fail1:
2959 kfree(efx->nic_data);
2960 return rc;
2963 static void falcon_init_rx_cfg(struct efx_nic *efx)
2965 /* Prior to Siena the RX DMA engine will split each frame at
2966 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2967 * be so large that that never happens. */
2968 const unsigned huge_buf_size = (3 * 4096) >> 5;
2969 /* RX control FIFO thresholds (32 entries) */
2970 const unsigned ctrl_xon_thr = 20;
2971 const unsigned ctrl_xoff_thr = 25;
2972 /* RX data FIFO thresholds (256-byte units; size varies) */
2973 int data_xon_thr = rx_xon_thresh_bytes >> 8;
2974 int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2975 efx_oword_t reg;
2977 efx_reado(efx, &reg, FR_AZ_RX_CFG);
2978 if (falcon_rev(efx) <= FALCON_REV_A1) {
2979 /* Data FIFO size is 5.5K */
2980 if (data_xon_thr < 0)
2981 data_xon_thr = 512 >> 8;
2982 if (data_xoff_thr < 0)
2983 data_xoff_thr = 2048 >> 8;
2984 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2985 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2986 huge_buf_size);
2987 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2988 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
2989 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2990 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2991 } else {
2992 /* Data FIFO size is 80K; register fields moved */
2993 if (data_xon_thr < 0)
2994 data_xon_thr = 27648 >> 8; /* ~3*max MTU */
2995 if (data_xoff_thr < 0)
2996 data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2997 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2998 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2999 huge_buf_size);
3000 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
3001 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
3002 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
3003 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
3004 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
3006 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
3009 /* This call performs hardware-specific global initialisation, such as
3010 * defining the descriptor cache sizes and number of RSS channels.
3011 * It does not set up any buffers, descriptor rings or event queues.
3013 int falcon_init_nic(struct efx_nic *efx)
3015 efx_oword_t temp;
3016 int rc;
3018 /* Use on-chip SRAM */
3019 efx_reado(efx, &temp, FR_AB_NIC_STAT);
3020 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
3021 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
3023 /* Set the source of the GMAC clock */
3024 if (falcon_rev(efx) == FALCON_REV_B0) {
3025 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3026 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
3027 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
3030 /* Select the correct MAC */
3031 falcon_clock_mac(efx);
3033 rc = falcon_reset_sram(efx);
3034 if (rc)
3035 return rc;
3037 /* Set positions of descriptor caches in SRAM. */
3038 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
3039 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3040 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
3041 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3043 /* Set TX descriptor cache size. */
3044 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
3045 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3046 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3048 /* Set RX descriptor cache size. Set low watermark to size-8, as
3049 * this allows most efficient prefetching.
3051 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
3052 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3053 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3054 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3055 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3057 /* Clear the parity enables on the TX data fifos as
3058 * they produce false parity errors because of timing issues
3060 if (EFX_WORKAROUND_5129(efx)) {
3061 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3062 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
3063 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
3066 /* Enable all the genuinely fatal interrupts. (They are still
3067 * masked by the overall interrupt mask, controlled by
3068 * falcon_interrupts()).
3070 * Note: All other fatal interrupts are enabled
3072 EFX_POPULATE_OWORD_3(temp,
3073 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3074 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3075 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3076 EFX_INVERT_OWORD(temp);
3077 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3079 if (EFX_WORKAROUND_7244(efx)) {
3080 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3081 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3082 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3083 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3084 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3085 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3088 falcon_setup_rss_indir_table(efx);
3090 /* XXX This is documented only for Falcon A0/A1 */
3091 /* Setup RX. Wait for descriptor is broken and must
3092 * be disabled. RXDP recovery shouldn't be needed, but is.
3094 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3095 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3096 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3097 if (EFX_WORKAROUND_5583(efx))
3098 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3099 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3101 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3102 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3104 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3105 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3106 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3107 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3108 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3109 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3110 /* Enable SW_EV to inherit in char driver - assume harmless here */
3111 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3112 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3113 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3114 /* Squash TX of packets of 16 bytes or less */
3115 if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3116 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3117 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3119 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3120 * descriptors (which is bad).
3122 efx_reado(efx, &temp, FR_AZ_TX_CFG);
3123 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3124 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3126 falcon_init_rx_cfg(efx);
3128 /* Set destination of both TX and RX Flush events */
3129 if (falcon_rev(efx) >= FALCON_REV_B0) {
3130 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3131 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3134 return 0;
3137 void falcon_remove_nic(struct efx_nic *efx)
3139 struct falcon_nic_data *nic_data = efx->nic_data;
3140 struct falcon_board *board = falcon_board(efx);
3141 int rc;
3143 board->type->fini(efx);
3145 /* Remove I2C adapter and clear it in preparation for a retry */
3146 rc = i2c_del_adapter(&board->i2c_adap);
3147 BUG_ON(rc);
3148 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3150 falcon_remove_spi_devices(efx);
3151 falcon_free_buffer(efx, &efx->irq_status);
3153 falcon_reset_hw(efx, RESET_TYPE_ALL);
3155 /* Release the second function after the reset */
3156 if (nic_data->pci_dev2) {
3157 pci_dev_put(nic_data->pci_dev2);
3158 nic_data->pci_dev2 = NULL;
3161 /* Tear down the private nic state */
3162 kfree(efx->nic_data);
3163 efx->nic_data = NULL;
3166 void falcon_update_nic_stats(struct efx_nic *efx)
3168 struct falcon_nic_data *nic_data = efx->nic_data;
3169 efx_oword_t cnt;
3171 if (nic_data->stats_disable_count)
3172 return;
3174 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3175 efx->n_rx_nodesc_drop_cnt +=
3176 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3178 if (nic_data->stats_pending &&
3179 *nic_data->stats_dma_done == FALCON_STATS_DONE) {
3180 nic_data->stats_pending = false;
3181 rmb(); /* read the done flag before the stats */
3182 efx->mac_op->update_stats(efx);
3186 void falcon_start_nic_stats(struct efx_nic *efx)
3188 struct falcon_nic_data *nic_data = efx->nic_data;
3190 spin_lock_bh(&efx->stats_lock);
3191 if (--nic_data->stats_disable_count == 0)
3192 falcon_stats_request(efx);
3193 spin_unlock_bh(&efx->stats_lock);
3196 void falcon_stop_nic_stats(struct efx_nic *efx)
3198 struct falcon_nic_data *nic_data = efx->nic_data;
3199 int i;
3201 might_sleep();
3203 spin_lock_bh(&efx->stats_lock);
3204 ++nic_data->stats_disable_count;
3205 spin_unlock_bh(&efx->stats_lock);
3207 del_timer_sync(&nic_data->stats_timer);
3209 /* Wait enough time for the most recent transfer to
3210 * complete. */
3211 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
3212 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
3213 break;
3214 msleep(1);
3217 spin_lock_bh(&efx->stats_lock);
3218 falcon_stats_complete(efx);
3219 spin_unlock_bh(&efx->stats_lock);
3222 /**************************************************************************
3224 * Revision-dependent attributes used by efx.c
3226 **************************************************************************
3229 struct efx_nic_type falcon_a_nic_type = {
3230 .mem_map_size = 0x20000,
3231 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3232 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3233 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3234 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3235 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3236 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3237 .rx_buffer_padding = 0x24,
3238 .max_interrupt_mode = EFX_INT_MODE_MSI,
3239 .phys_addr_channels = 4,
3242 struct efx_nic_type falcon_b_nic_type = {
3243 /* Map everything up to and including the RSS indirection
3244 * table. Don't map MSI-X table, MSI-X PBA since Linux
3245 * requires that they not be mapped. */
3246 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3247 FR_BZ_RX_INDIRECTION_TBL_STEP *
3248 FR_BZ_RX_INDIRECTION_TBL_ROWS),
3249 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3250 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3251 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3252 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3253 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3254 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3255 .rx_buffer_padding = 0,
3256 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3257 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3258 * interrupt handler only supports 32
3259 * channels */