[SCSI] qla2xxx: Don't modify parity bits during ISP25XX restart.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blob9578c1ae19ca9fde7a69e27fe617d3b928438637
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/signalfd.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cpuset.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/freezer.h>
50 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu_context.h>
55 extern void sem_exit (void);
57 static void exit_mm(struct task_struct * tsk);
59 static void __unhash_process(struct task_struct *p)
61 nr_threads--;
62 detach_pid(p, PIDTYPE_PID);
63 if (thread_group_leader(p)) {
64 detach_pid(p, PIDTYPE_PGID);
65 detach_pid(p, PIDTYPE_SID);
67 list_del_rcu(&p->tasks);
68 __get_cpu_var(process_counts)--;
70 list_del_rcu(&p->thread_group);
71 remove_parent(p);
75 * This function expects the tasklist_lock write-locked.
77 static void __exit_signal(struct task_struct *tsk)
79 struct signal_struct *sig = tsk->signal;
80 struct sighand_struct *sighand;
82 BUG_ON(!sig);
83 BUG_ON(!atomic_read(&sig->count));
85 rcu_read_lock();
86 sighand = rcu_dereference(tsk->sighand);
87 spin_lock(&sighand->siglock);
90 * Notify that this sighand has been detached. This must
91 * be called with the tsk->sighand lock held. Also, this
92 * access tsk->sighand internally, so it must be called
93 * before tsk->sighand is reset.
95 signalfd_detach_locked(tsk);
97 posix_cpu_timers_exit(tsk);
98 if (atomic_dec_and_test(&sig->count))
99 posix_cpu_timers_exit_group(tsk);
100 else {
102 * If there is any task waiting for the group exit
103 * then notify it:
105 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
106 wake_up_process(sig->group_exit_task);
107 sig->group_exit_task = NULL;
109 if (tsk == sig->curr_target)
110 sig->curr_target = next_thread(tsk);
112 * Accumulate here the counters for all threads but the
113 * group leader as they die, so they can be added into
114 * the process-wide totals when those are taken.
115 * The group leader stays around as a zombie as long
116 * as there are other threads. When it gets reaped,
117 * the exit.c code will add its counts into these totals.
118 * We won't ever get here for the group leader, since it
119 * will have been the last reference on the signal_struct.
121 sig->utime = cputime_add(sig->utime, tsk->utime);
122 sig->stime = cputime_add(sig->stime, tsk->stime);
123 sig->min_flt += tsk->min_flt;
124 sig->maj_flt += tsk->maj_flt;
125 sig->nvcsw += tsk->nvcsw;
126 sig->nivcsw += tsk->nivcsw;
127 sig->inblock += task_io_get_inblock(tsk);
128 sig->oublock += task_io_get_oublock(tsk);
129 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
130 sig = NULL; /* Marker for below. */
133 __unhash_process(tsk);
135 tsk->signal = NULL;
136 tsk->sighand = NULL;
137 spin_unlock(&sighand->siglock);
138 rcu_read_unlock();
140 __cleanup_sighand(sighand);
141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 flush_sigqueue(&tsk->pending);
143 if (sig) {
144 flush_sigqueue(&sig->shared_pending);
145 taskstats_tgid_free(sig);
146 __cleanup_signal(sig);
150 static void delayed_put_task_struct(struct rcu_head *rhp)
152 put_task_struct(container_of(rhp, struct task_struct, rcu));
155 void release_task(struct task_struct * p)
157 struct task_struct *leader;
158 int zap_leader;
159 repeat:
160 atomic_dec(&p->user->processes);
161 write_lock_irq(&tasklist_lock);
162 ptrace_unlink(p);
163 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
164 __exit_signal(p);
167 * If we are the last non-leader member of the thread
168 * group, and the leader is zombie, then notify the
169 * group leader's parent process. (if it wants notification.)
171 zap_leader = 0;
172 leader = p->group_leader;
173 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
174 BUG_ON(leader->exit_signal == -1);
175 do_notify_parent(leader, leader->exit_signal);
177 * If we were the last child thread and the leader has
178 * exited already, and the leader's parent ignores SIGCHLD,
179 * then we are the one who should release the leader.
181 * do_notify_parent() will have marked it self-reaping in
182 * that case.
184 zap_leader = (leader->exit_signal == -1);
187 write_unlock_irq(&tasklist_lock);
188 proc_flush_task(p);
189 release_thread(p);
190 call_rcu(&p->rcu, delayed_put_task_struct);
192 p = leader;
193 if (unlikely(zap_leader))
194 goto repeat;
198 * This checks not only the pgrp, but falls back on the pid if no
199 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
200 * without this...
202 * The caller must hold rcu lock or the tasklist lock.
204 struct pid *session_of_pgrp(struct pid *pgrp)
206 struct task_struct *p;
207 struct pid *sid = NULL;
209 p = pid_task(pgrp, PIDTYPE_PGID);
210 if (p == NULL)
211 p = pid_task(pgrp, PIDTYPE_PID);
212 if (p != NULL)
213 sid = task_session(p);
215 return sid;
219 * Determine if a process group is "orphaned", according to the POSIX
220 * definition in 2.2.2.52. Orphaned process groups are not to be affected
221 * by terminal-generated stop signals. Newly orphaned process groups are
222 * to receive a SIGHUP and a SIGCONT.
224 * "I ask you, have you ever known what it is to be an orphan?"
226 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
228 struct task_struct *p;
229 int ret = 1;
231 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
232 if (p == ignored_task
233 || p->exit_state
234 || is_init(p->real_parent))
235 continue;
236 if (task_pgrp(p->real_parent) != pgrp &&
237 task_session(p->real_parent) == task_session(p)) {
238 ret = 0;
239 break;
241 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
242 return ret; /* (sighing) "Often!" */
245 int is_current_pgrp_orphaned(void)
247 int retval;
249 read_lock(&tasklist_lock);
250 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
251 read_unlock(&tasklist_lock);
253 return retval;
256 static int has_stopped_jobs(struct pid *pgrp)
258 int retval = 0;
259 struct task_struct *p;
261 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
262 if (p->state != TASK_STOPPED)
263 continue;
264 retval = 1;
265 break;
266 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
267 return retval;
271 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
273 * If a kernel thread is launched as a result of a system call, or if
274 * it ever exits, it should generally reparent itself to kthreadd so it
275 * isn't in the way of other processes and is correctly cleaned up on exit.
277 * The various task state such as scheduling policy and priority may have
278 * been inherited from a user process, so we reset them to sane values here.
280 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
282 static void reparent_to_kthreadd(void)
284 write_lock_irq(&tasklist_lock);
286 ptrace_unlink(current);
287 /* Reparent to init */
288 remove_parent(current);
289 current->real_parent = current->parent = kthreadd_task;
290 add_parent(current);
292 /* Set the exit signal to SIGCHLD so we signal init on exit */
293 current->exit_signal = SIGCHLD;
295 if (task_nice(current) < 0)
296 set_user_nice(current, 0);
297 /* cpus_allowed? */
298 /* rt_priority? */
299 /* signals? */
300 security_task_reparent_to_init(current);
301 memcpy(current->signal->rlim, init_task.signal->rlim,
302 sizeof(current->signal->rlim));
303 atomic_inc(&(INIT_USER->__count));
304 write_unlock_irq(&tasklist_lock);
305 switch_uid(INIT_USER);
308 void __set_special_pids(pid_t session, pid_t pgrp)
310 struct task_struct *curr = current->group_leader;
312 if (process_session(curr) != session) {
313 detach_pid(curr, PIDTYPE_SID);
314 set_signal_session(curr->signal, session);
315 attach_pid(curr, PIDTYPE_SID, find_pid(session));
317 if (process_group(curr) != pgrp) {
318 detach_pid(curr, PIDTYPE_PGID);
319 curr->signal->pgrp = pgrp;
320 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
324 static void set_special_pids(pid_t session, pid_t pgrp)
326 write_lock_irq(&tasklist_lock);
327 __set_special_pids(session, pgrp);
328 write_unlock_irq(&tasklist_lock);
332 * Let kernel threads use this to say that they
333 * allow a certain signal (since daemonize() will
334 * have disabled all of them by default).
336 int allow_signal(int sig)
338 if (!valid_signal(sig) || sig < 1)
339 return -EINVAL;
341 spin_lock_irq(&current->sighand->siglock);
342 sigdelset(&current->blocked, sig);
343 if (!current->mm) {
344 /* Kernel threads handle their own signals.
345 Let the signal code know it'll be handled, so
346 that they don't get converted to SIGKILL or
347 just silently dropped */
348 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
350 recalc_sigpending();
351 spin_unlock_irq(&current->sighand->siglock);
352 return 0;
355 EXPORT_SYMBOL(allow_signal);
357 int disallow_signal(int sig)
359 if (!valid_signal(sig) || sig < 1)
360 return -EINVAL;
362 spin_lock_irq(&current->sighand->siglock);
363 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
364 recalc_sigpending();
365 spin_unlock_irq(&current->sighand->siglock);
366 return 0;
369 EXPORT_SYMBOL(disallow_signal);
372 * Put all the gunge required to become a kernel thread without
373 * attached user resources in one place where it belongs.
376 void daemonize(const char *name, ...)
378 va_list args;
379 struct fs_struct *fs;
380 sigset_t blocked;
382 va_start(args, name);
383 vsnprintf(current->comm, sizeof(current->comm), name, args);
384 va_end(args);
387 * If we were started as result of loading a module, close all of the
388 * user space pages. We don't need them, and if we didn't close them
389 * they would be locked into memory.
391 exit_mm(current);
393 * We don't want to have TIF_FREEZE set if the system-wide hibernation
394 * or suspend transition begins right now.
396 current->flags |= PF_NOFREEZE;
398 set_special_pids(1, 1);
399 proc_clear_tty(current);
401 /* Block and flush all signals */
402 sigfillset(&blocked);
403 sigprocmask(SIG_BLOCK, &blocked, NULL);
404 flush_signals(current);
406 /* Become as one with the init task */
408 exit_fs(current); /* current->fs->count--; */
409 fs = init_task.fs;
410 current->fs = fs;
411 atomic_inc(&fs->count);
413 exit_task_namespaces(current);
414 current->nsproxy = init_task.nsproxy;
415 get_task_namespaces(current);
417 exit_files(current);
418 current->files = init_task.files;
419 atomic_inc(&current->files->count);
421 reparent_to_kthreadd();
424 EXPORT_SYMBOL(daemonize);
426 static void close_files(struct files_struct * files)
428 int i, j;
429 struct fdtable *fdt;
431 j = 0;
434 * It is safe to dereference the fd table without RCU or
435 * ->file_lock because this is the last reference to the
436 * files structure.
438 fdt = files_fdtable(files);
439 for (;;) {
440 unsigned long set;
441 i = j * __NFDBITS;
442 if (i >= fdt->max_fds)
443 break;
444 set = fdt->open_fds->fds_bits[j++];
445 while (set) {
446 if (set & 1) {
447 struct file * file = xchg(&fdt->fd[i], NULL);
448 if (file) {
449 filp_close(file, files);
450 cond_resched();
453 i++;
454 set >>= 1;
459 struct files_struct *get_files_struct(struct task_struct *task)
461 struct files_struct *files;
463 task_lock(task);
464 files = task->files;
465 if (files)
466 atomic_inc(&files->count);
467 task_unlock(task);
469 return files;
472 void fastcall put_files_struct(struct files_struct *files)
474 struct fdtable *fdt;
476 if (atomic_dec_and_test(&files->count)) {
477 close_files(files);
479 * Free the fd and fdset arrays if we expanded them.
480 * If the fdtable was embedded, pass files for freeing
481 * at the end of the RCU grace period. Otherwise,
482 * you can free files immediately.
484 fdt = files_fdtable(files);
485 if (fdt != &files->fdtab)
486 kmem_cache_free(files_cachep, files);
487 free_fdtable(fdt);
491 EXPORT_SYMBOL(put_files_struct);
493 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
495 struct files_struct *old;
497 old = tsk->files;
498 task_lock(tsk);
499 tsk->files = files;
500 task_unlock(tsk);
501 put_files_struct(old);
503 EXPORT_SYMBOL(reset_files_struct);
505 static inline void __exit_files(struct task_struct *tsk)
507 struct files_struct * files = tsk->files;
509 if (files) {
510 task_lock(tsk);
511 tsk->files = NULL;
512 task_unlock(tsk);
513 put_files_struct(files);
517 void exit_files(struct task_struct *tsk)
519 __exit_files(tsk);
522 static inline void __put_fs_struct(struct fs_struct *fs)
524 /* No need to hold fs->lock if we are killing it */
525 if (atomic_dec_and_test(&fs->count)) {
526 dput(fs->root);
527 mntput(fs->rootmnt);
528 dput(fs->pwd);
529 mntput(fs->pwdmnt);
530 if (fs->altroot) {
531 dput(fs->altroot);
532 mntput(fs->altrootmnt);
534 kmem_cache_free(fs_cachep, fs);
538 void put_fs_struct(struct fs_struct *fs)
540 __put_fs_struct(fs);
543 static inline void __exit_fs(struct task_struct *tsk)
545 struct fs_struct * fs = tsk->fs;
547 if (fs) {
548 task_lock(tsk);
549 tsk->fs = NULL;
550 task_unlock(tsk);
551 __put_fs_struct(fs);
555 void exit_fs(struct task_struct *tsk)
557 __exit_fs(tsk);
560 EXPORT_SYMBOL_GPL(exit_fs);
563 * Turn us into a lazy TLB process if we
564 * aren't already..
566 static void exit_mm(struct task_struct * tsk)
568 struct mm_struct *mm = tsk->mm;
570 mm_release(tsk, mm);
571 if (!mm)
572 return;
574 * Serialize with any possible pending coredump.
575 * We must hold mmap_sem around checking core_waiters
576 * and clearing tsk->mm. The core-inducing thread
577 * will increment core_waiters for each thread in the
578 * group with ->mm != NULL.
580 down_read(&mm->mmap_sem);
581 if (mm->core_waiters) {
582 up_read(&mm->mmap_sem);
583 down_write(&mm->mmap_sem);
584 if (!--mm->core_waiters)
585 complete(mm->core_startup_done);
586 up_write(&mm->mmap_sem);
588 wait_for_completion(&mm->core_done);
589 down_read(&mm->mmap_sem);
591 atomic_inc(&mm->mm_count);
592 BUG_ON(mm != tsk->active_mm);
593 /* more a memory barrier than a real lock */
594 task_lock(tsk);
595 tsk->mm = NULL;
596 up_read(&mm->mmap_sem);
597 enter_lazy_tlb(mm, current);
598 /* We don't want this task to be frozen prematurely */
599 clear_freeze_flag(tsk);
600 task_unlock(tsk);
601 mmput(mm);
604 static inline void
605 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
608 * Make sure we're not reparenting to ourselves and that
609 * the parent is not a zombie.
611 BUG_ON(p == reaper || reaper->exit_state);
612 p->real_parent = reaper;
615 static void
616 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
618 if (p->pdeath_signal)
619 /* We already hold the tasklist_lock here. */
620 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
622 /* Move the child from its dying parent to the new one. */
623 if (unlikely(traced)) {
624 /* Preserve ptrace links if someone else is tracing this child. */
625 list_del_init(&p->ptrace_list);
626 if (p->parent != p->real_parent)
627 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
628 } else {
629 /* If this child is being traced, then we're the one tracing it
630 * anyway, so let go of it.
632 p->ptrace = 0;
633 remove_parent(p);
634 p->parent = p->real_parent;
635 add_parent(p);
637 if (p->state == TASK_TRACED) {
639 * If it was at a trace stop, turn it into
640 * a normal stop since it's no longer being
641 * traced.
643 ptrace_untrace(p);
647 /* If this is a threaded reparent there is no need to
648 * notify anyone anything has happened.
650 if (p->real_parent->group_leader == father->group_leader)
651 return;
653 /* We don't want people slaying init. */
654 if (p->exit_signal != -1)
655 p->exit_signal = SIGCHLD;
657 /* If we'd notified the old parent about this child's death,
658 * also notify the new parent.
660 if (!traced && p->exit_state == EXIT_ZOMBIE &&
661 p->exit_signal != -1 && thread_group_empty(p))
662 do_notify_parent(p, p->exit_signal);
665 * process group orphan check
666 * Case ii: Our child is in a different pgrp
667 * than we are, and it was the only connection
668 * outside, so the child pgrp is now orphaned.
670 if ((task_pgrp(p) != task_pgrp(father)) &&
671 (task_session(p) == task_session(father))) {
672 struct pid *pgrp = task_pgrp(p);
674 if (will_become_orphaned_pgrp(pgrp, NULL) &&
675 has_stopped_jobs(pgrp)) {
676 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
677 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
683 * When we die, we re-parent all our children.
684 * Try to give them to another thread in our thread
685 * group, and if no such member exists, give it to
686 * the child reaper process (ie "init") in our pid
687 * space.
689 static void
690 forget_original_parent(struct task_struct *father, struct list_head *to_release)
692 struct task_struct *p, *reaper = father;
693 struct list_head *_p, *_n;
695 do {
696 reaper = next_thread(reaper);
697 if (reaper == father) {
698 reaper = child_reaper(father);
699 break;
701 } while (reaper->exit_state);
704 * There are only two places where our children can be:
706 * - in our child list
707 * - in our ptraced child list
709 * Search them and reparent children.
711 list_for_each_safe(_p, _n, &father->children) {
712 int ptrace;
713 p = list_entry(_p, struct task_struct, sibling);
715 ptrace = p->ptrace;
717 /* if father isn't the real parent, then ptrace must be enabled */
718 BUG_ON(father != p->real_parent && !ptrace);
720 if (father == p->real_parent) {
721 /* reparent with a reaper, real father it's us */
722 choose_new_parent(p, reaper);
723 reparent_thread(p, father, 0);
724 } else {
725 /* reparent ptraced task to its real parent */
726 __ptrace_unlink (p);
727 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
728 thread_group_empty(p))
729 do_notify_parent(p, p->exit_signal);
733 * if the ptraced child is a zombie with exit_signal == -1
734 * we must collect it before we exit, or it will remain
735 * zombie forever since we prevented it from self-reap itself
736 * while it was being traced by us, to be able to see it in wait4.
738 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
739 list_add(&p->ptrace_list, to_release);
741 list_for_each_safe(_p, _n, &father->ptrace_children) {
742 p = list_entry(_p, struct task_struct, ptrace_list);
743 choose_new_parent(p, reaper);
744 reparent_thread(p, father, 1);
749 * Send signals to all our closest relatives so that they know
750 * to properly mourn us..
752 static void exit_notify(struct task_struct *tsk)
754 int state;
755 struct task_struct *t;
756 struct list_head ptrace_dead, *_p, *_n;
757 struct pid *pgrp;
759 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
760 && !thread_group_empty(tsk)) {
762 * This occurs when there was a race between our exit
763 * syscall and a group signal choosing us as the one to
764 * wake up. It could be that we are the only thread
765 * alerted to check for pending signals, but another thread
766 * should be woken now to take the signal since we will not.
767 * Now we'll wake all the threads in the group just to make
768 * sure someone gets all the pending signals.
770 read_lock(&tasklist_lock);
771 spin_lock_irq(&tsk->sighand->siglock);
772 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
773 if (!signal_pending(t) && !(t->flags & PF_EXITING))
774 recalc_sigpending_and_wake(t);
775 spin_unlock_irq(&tsk->sighand->siglock);
776 read_unlock(&tasklist_lock);
779 write_lock_irq(&tasklist_lock);
782 * This does two things:
784 * A. Make init inherit all the child processes
785 * B. Check to see if any process groups have become orphaned
786 * as a result of our exiting, and if they have any stopped
787 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
790 INIT_LIST_HEAD(&ptrace_dead);
791 forget_original_parent(tsk, &ptrace_dead);
792 BUG_ON(!list_empty(&tsk->children));
793 BUG_ON(!list_empty(&tsk->ptrace_children));
796 * Check to see if any process groups have become orphaned
797 * as a result of our exiting, and if they have any stopped
798 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
800 * Case i: Our father is in a different pgrp than we are
801 * and we were the only connection outside, so our pgrp
802 * is about to become orphaned.
805 t = tsk->real_parent;
807 pgrp = task_pgrp(tsk);
808 if ((task_pgrp(t) != pgrp) &&
809 (task_session(t) == task_session(tsk)) &&
810 will_become_orphaned_pgrp(pgrp, tsk) &&
811 has_stopped_jobs(pgrp)) {
812 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
813 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
816 /* Let father know we died
818 * Thread signals are configurable, but you aren't going to use
819 * that to send signals to arbitary processes.
820 * That stops right now.
822 * If the parent exec id doesn't match the exec id we saved
823 * when we started then we know the parent has changed security
824 * domain.
826 * If our self_exec id doesn't match our parent_exec_id then
827 * we have changed execution domain as these two values started
828 * the same after a fork.
830 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
831 ( tsk->parent_exec_id != t->self_exec_id ||
832 tsk->self_exec_id != tsk->parent_exec_id)
833 && !capable(CAP_KILL))
834 tsk->exit_signal = SIGCHLD;
837 /* If something other than our normal parent is ptracing us, then
838 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
839 * only has special meaning to our real parent.
841 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
842 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
843 do_notify_parent(tsk, signal);
844 } else if (tsk->ptrace) {
845 do_notify_parent(tsk, SIGCHLD);
848 state = EXIT_ZOMBIE;
849 if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
850 state = EXIT_DEAD;
851 tsk->exit_state = state;
853 write_unlock_irq(&tasklist_lock);
855 list_for_each_safe(_p, _n, &ptrace_dead) {
856 list_del_init(_p);
857 t = list_entry(_p, struct task_struct, ptrace_list);
858 release_task(t);
861 /* If the process is dead, release it - nobody will wait for it */
862 if (state == EXIT_DEAD)
863 release_task(tsk);
866 #ifdef CONFIG_DEBUG_STACK_USAGE
867 static void check_stack_usage(void)
869 static DEFINE_SPINLOCK(low_water_lock);
870 static int lowest_to_date = THREAD_SIZE;
871 unsigned long *n = end_of_stack(current);
872 unsigned long free;
874 while (*n == 0)
875 n++;
876 free = (unsigned long)n - (unsigned long)end_of_stack(current);
878 if (free >= lowest_to_date)
879 return;
881 spin_lock(&low_water_lock);
882 if (free < lowest_to_date) {
883 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
884 "left\n",
885 current->comm, free);
886 lowest_to_date = free;
888 spin_unlock(&low_water_lock);
890 #else
891 static inline void check_stack_usage(void) {}
892 #endif
894 fastcall NORET_TYPE void do_exit(long code)
896 struct task_struct *tsk = current;
897 int group_dead;
899 profile_task_exit(tsk);
901 WARN_ON(atomic_read(&tsk->fs_excl));
903 if (unlikely(in_interrupt()))
904 panic("Aiee, killing interrupt handler!");
905 if (unlikely(!tsk->pid))
906 panic("Attempted to kill the idle task!");
907 if (unlikely(tsk == child_reaper(tsk))) {
908 if (tsk->nsproxy->pid_ns != &init_pid_ns)
909 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
910 else
911 panic("Attempted to kill init!");
915 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
916 current->ptrace_message = code;
917 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
921 * We're taking recursive faults here in do_exit. Safest is to just
922 * leave this task alone and wait for reboot.
924 if (unlikely(tsk->flags & PF_EXITING)) {
925 printk(KERN_ALERT
926 "Fixing recursive fault but reboot is needed!\n");
928 * We can do this unlocked here. The futex code uses
929 * this flag just to verify whether the pi state
930 * cleanup has been done or not. In the worst case it
931 * loops once more. We pretend that the cleanup was
932 * done as there is no way to return. Either the
933 * OWNER_DIED bit is set by now or we push the blocked
934 * task into the wait for ever nirwana as well.
936 tsk->flags |= PF_EXITPIDONE;
937 if (tsk->io_context)
938 exit_io_context();
939 set_current_state(TASK_UNINTERRUPTIBLE);
940 schedule();
944 * tsk->flags are checked in the futex code to protect against
945 * an exiting task cleaning up the robust pi futexes.
947 spin_lock_irq(&tsk->pi_lock);
948 tsk->flags |= PF_EXITING;
949 spin_unlock_irq(&tsk->pi_lock);
951 if (unlikely(in_atomic()))
952 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
953 current->comm, current->pid,
954 preempt_count());
956 acct_update_integrals(tsk);
957 if (tsk->mm) {
958 update_hiwater_rss(tsk->mm);
959 update_hiwater_vm(tsk->mm);
961 group_dead = atomic_dec_and_test(&tsk->signal->live);
962 if (group_dead) {
963 hrtimer_cancel(&tsk->signal->real_timer);
964 exit_itimers(tsk->signal);
966 acct_collect(code, group_dead);
967 if (unlikely(tsk->robust_list))
968 exit_robust_list(tsk);
969 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
970 if (unlikely(tsk->compat_robust_list))
971 compat_exit_robust_list(tsk);
972 #endif
973 if (group_dead)
974 tty_audit_exit();
975 if (unlikely(tsk->audit_context))
976 audit_free(tsk);
978 taskstats_exit(tsk, group_dead);
980 exit_mm(tsk);
982 if (group_dead)
983 acct_process();
984 exit_sem(tsk);
985 __exit_files(tsk);
986 __exit_fs(tsk);
987 check_stack_usage();
988 exit_thread();
989 cpuset_exit(tsk);
990 exit_keys(tsk);
992 if (group_dead && tsk->signal->leader)
993 disassociate_ctty(1);
995 module_put(task_thread_info(tsk)->exec_domain->module);
996 if (tsk->binfmt)
997 module_put(tsk->binfmt->module);
999 tsk->exit_code = code;
1000 proc_exit_connector(tsk);
1001 exit_task_namespaces(tsk);
1002 exit_notify(tsk);
1003 #ifdef CONFIG_NUMA
1004 mpol_free(tsk->mempolicy);
1005 tsk->mempolicy = NULL;
1006 #endif
1008 * This must happen late, after the PID is not
1009 * hashed anymore:
1011 if (unlikely(!list_empty(&tsk->pi_state_list)))
1012 exit_pi_state_list(tsk);
1013 if (unlikely(current->pi_state_cache))
1014 kfree(current->pi_state_cache);
1016 * Make sure we are holding no locks:
1018 debug_check_no_locks_held(tsk);
1020 * We can do this unlocked here. The futex code uses this flag
1021 * just to verify whether the pi state cleanup has been done
1022 * or not. In the worst case it loops once more.
1024 tsk->flags |= PF_EXITPIDONE;
1026 if (tsk->io_context)
1027 exit_io_context();
1029 if (tsk->splice_pipe)
1030 __free_pipe_info(tsk->splice_pipe);
1032 preempt_disable();
1033 /* causes final put_task_struct in finish_task_switch(). */
1034 tsk->state = TASK_DEAD;
1036 schedule();
1037 BUG();
1038 /* Avoid "noreturn function does return". */
1039 for (;;)
1040 cpu_relax(); /* For when BUG is null */
1043 EXPORT_SYMBOL_GPL(do_exit);
1045 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1047 if (comp)
1048 complete(comp);
1050 do_exit(code);
1053 EXPORT_SYMBOL(complete_and_exit);
1055 asmlinkage long sys_exit(int error_code)
1057 do_exit((error_code&0xff)<<8);
1061 * Take down every thread in the group. This is called by fatal signals
1062 * as well as by sys_exit_group (below).
1064 NORET_TYPE void
1065 do_group_exit(int exit_code)
1067 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1069 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1070 exit_code = current->signal->group_exit_code;
1071 else if (!thread_group_empty(current)) {
1072 struct signal_struct *const sig = current->signal;
1073 struct sighand_struct *const sighand = current->sighand;
1074 spin_lock_irq(&sighand->siglock);
1075 if (sig->flags & SIGNAL_GROUP_EXIT)
1076 /* Another thread got here before we took the lock. */
1077 exit_code = sig->group_exit_code;
1078 else {
1079 sig->group_exit_code = exit_code;
1080 zap_other_threads(current);
1082 spin_unlock_irq(&sighand->siglock);
1085 do_exit(exit_code);
1086 /* NOTREACHED */
1090 * this kills every thread in the thread group. Note that any externally
1091 * wait4()-ing process will get the correct exit code - even if this
1092 * thread is not the thread group leader.
1094 asmlinkage void sys_exit_group(int error_code)
1096 do_group_exit((error_code & 0xff) << 8);
1099 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1101 int err;
1103 if (pid > 0) {
1104 if (p->pid != pid)
1105 return 0;
1106 } else if (!pid) {
1107 if (process_group(p) != process_group(current))
1108 return 0;
1109 } else if (pid != -1) {
1110 if (process_group(p) != -pid)
1111 return 0;
1115 * Do not consider detached threads that are
1116 * not ptraced:
1118 if (p->exit_signal == -1 && !p->ptrace)
1119 return 0;
1121 /* Wait for all children (clone and not) if __WALL is set;
1122 * otherwise, wait for clone children *only* if __WCLONE is
1123 * set; otherwise, wait for non-clone children *only*. (Note:
1124 * A "clone" child here is one that reports to its parent
1125 * using a signal other than SIGCHLD.) */
1126 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1127 && !(options & __WALL))
1128 return 0;
1130 * Do not consider thread group leaders that are
1131 * in a non-empty thread group:
1133 if (delay_group_leader(p))
1134 return 2;
1136 err = security_task_wait(p);
1137 if (err)
1138 return err;
1140 return 1;
1143 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1144 int why, int status,
1145 struct siginfo __user *infop,
1146 struct rusage __user *rusagep)
1148 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1150 put_task_struct(p);
1151 if (!retval)
1152 retval = put_user(SIGCHLD, &infop->si_signo);
1153 if (!retval)
1154 retval = put_user(0, &infop->si_errno);
1155 if (!retval)
1156 retval = put_user((short)why, &infop->si_code);
1157 if (!retval)
1158 retval = put_user(pid, &infop->si_pid);
1159 if (!retval)
1160 retval = put_user(uid, &infop->si_uid);
1161 if (!retval)
1162 retval = put_user(status, &infop->si_status);
1163 if (!retval)
1164 retval = pid;
1165 return retval;
1169 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1170 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1171 * the lock and this task is uninteresting. If we return nonzero, we have
1172 * released the lock and the system call should return.
1174 static int wait_task_zombie(struct task_struct *p, int noreap,
1175 struct siginfo __user *infop,
1176 int __user *stat_addr, struct rusage __user *ru)
1178 unsigned long state;
1179 int retval;
1180 int status;
1182 if (unlikely(noreap)) {
1183 pid_t pid = p->pid;
1184 uid_t uid = p->uid;
1185 int exit_code = p->exit_code;
1186 int why, status;
1188 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1189 return 0;
1190 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1191 return 0;
1192 get_task_struct(p);
1193 read_unlock(&tasklist_lock);
1194 if ((exit_code & 0x7f) == 0) {
1195 why = CLD_EXITED;
1196 status = exit_code >> 8;
1197 } else {
1198 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1199 status = exit_code & 0x7f;
1201 return wait_noreap_copyout(p, pid, uid, why,
1202 status, infop, ru);
1206 * Try to move the task's state to DEAD
1207 * only one thread is allowed to do this:
1209 state = xchg(&p->exit_state, EXIT_DEAD);
1210 if (state != EXIT_ZOMBIE) {
1211 BUG_ON(state != EXIT_DEAD);
1212 return 0;
1214 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1216 * This can only happen in a race with a ptraced thread
1217 * dying on another processor.
1219 return 0;
1222 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1223 struct signal_struct *psig;
1224 struct signal_struct *sig;
1227 * The resource counters for the group leader are in its
1228 * own task_struct. Those for dead threads in the group
1229 * are in its signal_struct, as are those for the child
1230 * processes it has previously reaped. All these
1231 * accumulate in the parent's signal_struct c* fields.
1233 * We don't bother to take a lock here to protect these
1234 * p->signal fields, because they are only touched by
1235 * __exit_signal, which runs with tasklist_lock
1236 * write-locked anyway, and so is excluded here. We do
1237 * need to protect the access to p->parent->signal fields,
1238 * as other threads in the parent group can be right
1239 * here reaping other children at the same time.
1241 spin_lock_irq(&p->parent->sighand->siglock);
1242 psig = p->parent->signal;
1243 sig = p->signal;
1244 psig->cutime =
1245 cputime_add(psig->cutime,
1246 cputime_add(p->utime,
1247 cputime_add(sig->utime,
1248 sig->cutime)));
1249 psig->cstime =
1250 cputime_add(psig->cstime,
1251 cputime_add(p->stime,
1252 cputime_add(sig->stime,
1253 sig->cstime)));
1254 psig->cmin_flt +=
1255 p->min_flt + sig->min_flt + sig->cmin_flt;
1256 psig->cmaj_flt +=
1257 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1258 psig->cnvcsw +=
1259 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1260 psig->cnivcsw +=
1261 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1262 psig->cinblock +=
1263 task_io_get_inblock(p) +
1264 sig->inblock + sig->cinblock;
1265 psig->coublock +=
1266 task_io_get_oublock(p) +
1267 sig->oublock + sig->coublock;
1268 spin_unlock_irq(&p->parent->sighand->siglock);
1272 * Now we are sure this task is interesting, and no other
1273 * thread can reap it because we set its state to EXIT_DEAD.
1275 read_unlock(&tasklist_lock);
1277 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1278 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1279 ? p->signal->group_exit_code : p->exit_code;
1280 if (!retval && stat_addr)
1281 retval = put_user(status, stat_addr);
1282 if (!retval && infop)
1283 retval = put_user(SIGCHLD, &infop->si_signo);
1284 if (!retval && infop)
1285 retval = put_user(0, &infop->si_errno);
1286 if (!retval && infop) {
1287 int why;
1289 if ((status & 0x7f) == 0) {
1290 why = CLD_EXITED;
1291 status >>= 8;
1292 } else {
1293 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1294 status &= 0x7f;
1296 retval = put_user((short)why, &infop->si_code);
1297 if (!retval)
1298 retval = put_user(status, &infop->si_status);
1300 if (!retval && infop)
1301 retval = put_user(p->pid, &infop->si_pid);
1302 if (!retval && infop)
1303 retval = put_user(p->uid, &infop->si_uid);
1304 if (retval) {
1305 // TODO: is this safe?
1306 p->exit_state = EXIT_ZOMBIE;
1307 return retval;
1309 retval = p->pid;
1310 if (p->real_parent != p->parent) {
1311 write_lock_irq(&tasklist_lock);
1312 /* Double-check with lock held. */
1313 if (p->real_parent != p->parent) {
1314 __ptrace_unlink(p);
1315 // TODO: is this safe?
1316 p->exit_state = EXIT_ZOMBIE;
1318 * If this is not a detached task, notify the parent.
1319 * If it's still not detached after that, don't release
1320 * it now.
1322 if (p->exit_signal != -1) {
1323 do_notify_parent(p, p->exit_signal);
1324 if (p->exit_signal != -1)
1325 p = NULL;
1328 write_unlock_irq(&tasklist_lock);
1330 if (p != NULL)
1331 release_task(p);
1332 BUG_ON(!retval);
1333 return retval;
1337 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1338 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1339 * the lock and this task is uninteresting. If we return nonzero, we have
1340 * released the lock and the system call should return.
1342 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1343 int noreap, struct siginfo __user *infop,
1344 int __user *stat_addr, struct rusage __user *ru)
1346 int retval, exit_code;
1348 if (!p->exit_code)
1349 return 0;
1350 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1351 p->signal && p->signal->group_stop_count > 0)
1353 * A group stop is in progress and this is the group leader.
1354 * We won't report until all threads have stopped.
1356 return 0;
1359 * Now we are pretty sure this task is interesting.
1360 * Make sure it doesn't get reaped out from under us while we
1361 * give up the lock and then examine it below. We don't want to
1362 * keep holding onto the tasklist_lock while we call getrusage and
1363 * possibly take page faults for user memory.
1365 get_task_struct(p);
1366 read_unlock(&tasklist_lock);
1368 if (unlikely(noreap)) {
1369 pid_t pid = p->pid;
1370 uid_t uid = p->uid;
1371 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1373 exit_code = p->exit_code;
1374 if (unlikely(!exit_code) ||
1375 unlikely(p->state & TASK_TRACED))
1376 goto bail_ref;
1377 return wait_noreap_copyout(p, pid, uid,
1378 why, (exit_code << 8) | 0x7f,
1379 infop, ru);
1382 write_lock_irq(&tasklist_lock);
1385 * This uses xchg to be atomic with the thread resuming and setting
1386 * it. It must also be done with the write lock held to prevent a
1387 * race with the EXIT_ZOMBIE case.
1389 exit_code = xchg(&p->exit_code, 0);
1390 if (unlikely(p->exit_state)) {
1392 * The task resumed and then died. Let the next iteration
1393 * catch it in EXIT_ZOMBIE. Note that exit_code might
1394 * already be zero here if it resumed and did _exit(0).
1395 * The task itself is dead and won't touch exit_code again;
1396 * other processors in this function are locked out.
1398 p->exit_code = exit_code;
1399 exit_code = 0;
1401 if (unlikely(exit_code == 0)) {
1403 * Another thread in this function got to it first, or it
1404 * resumed, or it resumed and then died.
1406 write_unlock_irq(&tasklist_lock);
1407 bail_ref:
1408 put_task_struct(p);
1410 * We are returning to the wait loop without having successfully
1411 * removed the process and having released the lock. We cannot
1412 * continue, since the "p" task pointer is potentially stale.
1414 * Return -EAGAIN, and do_wait() will restart the loop from the
1415 * beginning. Do _not_ re-acquire the lock.
1417 return -EAGAIN;
1420 /* move to end of parent's list to avoid starvation */
1421 remove_parent(p);
1422 add_parent(p);
1424 write_unlock_irq(&tasklist_lock);
1426 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1427 if (!retval && stat_addr)
1428 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1429 if (!retval && infop)
1430 retval = put_user(SIGCHLD, &infop->si_signo);
1431 if (!retval && infop)
1432 retval = put_user(0, &infop->si_errno);
1433 if (!retval && infop)
1434 retval = put_user((short)((p->ptrace & PT_PTRACED)
1435 ? CLD_TRAPPED : CLD_STOPPED),
1436 &infop->si_code);
1437 if (!retval && infop)
1438 retval = put_user(exit_code, &infop->si_status);
1439 if (!retval && infop)
1440 retval = put_user(p->pid, &infop->si_pid);
1441 if (!retval && infop)
1442 retval = put_user(p->uid, &infop->si_uid);
1443 if (!retval)
1444 retval = p->pid;
1445 put_task_struct(p);
1447 BUG_ON(!retval);
1448 return retval;
1452 * Handle do_wait work for one task in a live, non-stopped state.
1453 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1454 * the lock and this task is uninteresting. If we return nonzero, we have
1455 * released the lock and the system call should return.
1457 static int wait_task_continued(struct task_struct *p, int noreap,
1458 struct siginfo __user *infop,
1459 int __user *stat_addr, struct rusage __user *ru)
1461 int retval;
1462 pid_t pid;
1463 uid_t uid;
1465 if (unlikely(!p->signal))
1466 return 0;
1468 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1469 return 0;
1471 spin_lock_irq(&p->sighand->siglock);
1472 /* Re-check with the lock held. */
1473 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1474 spin_unlock_irq(&p->sighand->siglock);
1475 return 0;
1477 if (!noreap)
1478 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1479 spin_unlock_irq(&p->sighand->siglock);
1481 pid = p->pid;
1482 uid = p->uid;
1483 get_task_struct(p);
1484 read_unlock(&tasklist_lock);
1486 if (!infop) {
1487 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1488 put_task_struct(p);
1489 if (!retval && stat_addr)
1490 retval = put_user(0xffff, stat_addr);
1491 if (!retval)
1492 retval = p->pid;
1493 } else {
1494 retval = wait_noreap_copyout(p, pid, uid,
1495 CLD_CONTINUED, SIGCONT,
1496 infop, ru);
1497 BUG_ON(retval == 0);
1500 return retval;
1504 static inline int my_ptrace_child(struct task_struct *p)
1506 if (!(p->ptrace & PT_PTRACED))
1507 return 0;
1508 if (!(p->ptrace & PT_ATTACHED))
1509 return 1;
1511 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1512 * we are the attacher. If we are the real parent, this is a race
1513 * inside ptrace_attach. It is waiting for the tasklist_lock,
1514 * which we have to switch the parent links, but has already set
1515 * the flags in p->ptrace.
1517 return (p->parent != p->real_parent);
1520 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1521 int __user *stat_addr, struct rusage __user *ru)
1523 DECLARE_WAITQUEUE(wait, current);
1524 struct task_struct *tsk;
1525 int flag, retval;
1526 int allowed, denied;
1528 add_wait_queue(&current->signal->wait_chldexit,&wait);
1529 repeat:
1531 * We will set this flag if we see any child that might later
1532 * match our criteria, even if we are not able to reap it yet.
1534 flag = 0;
1535 allowed = denied = 0;
1536 current->state = TASK_INTERRUPTIBLE;
1537 read_lock(&tasklist_lock);
1538 tsk = current;
1539 do {
1540 struct task_struct *p;
1541 struct list_head *_p;
1542 int ret;
1544 list_for_each(_p,&tsk->children) {
1545 p = list_entry(_p, struct task_struct, sibling);
1547 ret = eligible_child(pid, options, p);
1548 if (!ret)
1549 continue;
1551 if (unlikely(ret < 0)) {
1552 denied = ret;
1553 continue;
1555 allowed = 1;
1557 switch (p->state) {
1558 case TASK_TRACED:
1560 * When we hit the race with PTRACE_ATTACH,
1561 * we will not report this child. But the
1562 * race means it has not yet been moved to
1563 * our ptrace_children list, so we need to
1564 * set the flag here to avoid a spurious ECHILD
1565 * when the race happens with the only child.
1567 flag = 1;
1568 if (!my_ptrace_child(p))
1569 continue;
1570 /*FALLTHROUGH*/
1571 case TASK_STOPPED:
1573 * It's stopped now, so it might later
1574 * continue, exit, or stop again.
1576 flag = 1;
1577 if (!(options & WUNTRACED) &&
1578 !my_ptrace_child(p))
1579 continue;
1580 retval = wait_task_stopped(p, ret == 2,
1581 (options & WNOWAIT),
1582 infop,
1583 stat_addr, ru);
1584 if (retval == -EAGAIN)
1585 goto repeat;
1586 if (retval != 0) /* He released the lock. */
1587 goto end;
1588 break;
1589 default:
1590 // case EXIT_DEAD:
1591 if (p->exit_state == EXIT_DEAD)
1592 continue;
1593 // case EXIT_ZOMBIE:
1594 if (p->exit_state == EXIT_ZOMBIE) {
1596 * Eligible but we cannot release
1597 * it yet:
1599 if (ret == 2)
1600 goto check_continued;
1601 if (!likely(options & WEXITED))
1602 continue;
1603 retval = wait_task_zombie(
1604 p, (options & WNOWAIT),
1605 infop, stat_addr, ru);
1606 /* He released the lock. */
1607 if (retval != 0)
1608 goto end;
1609 break;
1611 check_continued:
1613 * It's running now, so it might later
1614 * exit, stop, or stop and then continue.
1616 flag = 1;
1617 if (!unlikely(options & WCONTINUED))
1618 continue;
1619 retval = wait_task_continued(
1620 p, (options & WNOWAIT),
1621 infop, stat_addr, ru);
1622 if (retval != 0) /* He released the lock. */
1623 goto end;
1624 break;
1627 if (!flag) {
1628 list_for_each(_p, &tsk->ptrace_children) {
1629 p = list_entry(_p, struct task_struct,
1630 ptrace_list);
1631 if (!eligible_child(pid, options, p))
1632 continue;
1633 flag = 1;
1634 break;
1637 if (options & __WNOTHREAD)
1638 break;
1639 tsk = next_thread(tsk);
1640 BUG_ON(tsk->signal != current->signal);
1641 } while (tsk != current);
1643 read_unlock(&tasklist_lock);
1644 if (flag) {
1645 retval = 0;
1646 if (options & WNOHANG)
1647 goto end;
1648 retval = -ERESTARTSYS;
1649 if (signal_pending(current))
1650 goto end;
1651 schedule();
1652 goto repeat;
1654 retval = -ECHILD;
1655 if (unlikely(denied) && !allowed)
1656 retval = denied;
1657 end:
1658 current->state = TASK_RUNNING;
1659 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1660 if (infop) {
1661 if (retval > 0)
1662 retval = 0;
1663 else {
1665 * For a WNOHANG return, clear out all the fields
1666 * we would set so the user can easily tell the
1667 * difference.
1669 if (!retval)
1670 retval = put_user(0, &infop->si_signo);
1671 if (!retval)
1672 retval = put_user(0, &infop->si_errno);
1673 if (!retval)
1674 retval = put_user(0, &infop->si_code);
1675 if (!retval)
1676 retval = put_user(0, &infop->si_pid);
1677 if (!retval)
1678 retval = put_user(0, &infop->si_uid);
1679 if (!retval)
1680 retval = put_user(0, &infop->si_status);
1683 return retval;
1686 asmlinkage long sys_waitid(int which, pid_t pid,
1687 struct siginfo __user *infop, int options,
1688 struct rusage __user *ru)
1690 long ret;
1692 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1693 return -EINVAL;
1694 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1695 return -EINVAL;
1697 switch (which) {
1698 case P_ALL:
1699 pid = -1;
1700 break;
1701 case P_PID:
1702 if (pid <= 0)
1703 return -EINVAL;
1704 break;
1705 case P_PGID:
1706 if (pid <= 0)
1707 return -EINVAL;
1708 pid = -pid;
1709 break;
1710 default:
1711 return -EINVAL;
1714 ret = do_wait(pid, options, infop, NULL, ru);
1716 /* avoid REGPARM breakage on x86: */
1717 prevent_tail_call(ret);
1718 return ret;
1721 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1722 int options, struct rusage __user *ru)
1724 long ret;
1726 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1727 __WNOTHREAD|__WCLONE|__WALL))
1728 return -EINVAL;
1729 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1731 /* avoid REGPARM breakage on x86: */
1732 prevent_tail_call(ret);
1733 return ret;
1736 #ifdef __ARCH_WANT_SYS_WAITPID
1739 * sys_waitpid() remains for compatibility. waitpid() should be
1740 * implemented by calling sys_wait4() from libc.a.
1742 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1744 return sys_wait4(pid, stat_addr, options, NULL);
1747 #endif