2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/nodemask.h>
36 #include <linux/vmalloc.h>
38 #include <asm/tlbflush.h>
42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 nodemask_t node_online_map
= { { [0] = 1UL } };
46 EXPORT_SYMBOL(node_online_map
);
47 nodemask_t node_possible_map
= NODE_MASK_ALL
;
48 EXPORT_SYMBOL(node_possible_map
);
49 struct pglist_data
*pgdat_list
;
50 unsigned long totalram_pages
;
51 unsigned long totalhigh_pages
;
55 * results with 256, 32 in the lowmem_reserve sysctl:
56 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57 * 1G machine -> (16M dma, 784M normal, 224M high)
58 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
62 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 32 };
64 EXPORT_SYMBOL(totalram_pages
);
65 EXPORT_SYMBOL(nr_swap_pages
);
68 * Used by page_zone() to look up the address of the struct zone whose
69 * id is encoded in the upper bits of page->flags
71 struct zone
*zone_table
[1 << (ZONES_SHIFT
+ NODES_SHIFT
)];
72 EXPORT_SYMBOL(zone_table
);
74 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "Normal", "HighMem" };
75 int min_free_kbytes
= 1024;
77 unsigned long __initdata nr_kernel_pages
;
78 unsigned long __initdata nr_all_pages
;
81 * Temporary debugging check for pages not lying within a given zone.
83 static int bad_range(struct zone
*zone
, struct page
*page
)
85 if (page_to_pfn(page
) >= zone
->zone_start_pfn
+ zone
->spanned_pages
)
87 if (page_to_pfn(page
) < zone
->zone_start_pfn
)
89 #ifdef CONFIG_HOLES_IN_ZONE
90 if (!pfn_valid(page_to_pfn(page
)))
93 if (zone
!= page_zone(page
))
98 static void bad_page(const char *function
, struct page
*page
)
100 printk(KERN_EMERG
"Bad page state at %s (in process '%s', page %p)\n",
101 function
, current
->comm
, page
);
102 printk(KERN_EMERG
"flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 (int)(2*sizeof(page_flags_t
)), (unsigned long)page
->flags
,
104 page
->mapping
, page_mapcount(page
), page_count(page
));
105 printk(KERN_EMERG
"Backtrace:\n");
107 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n");
108 page
->flags
&= ~(1 << PG_private
|
115 set_page_count(page
, 0);
116 reset_page_mapcount(page
);
117 page
->mapping
= NULL
;
118 tainted
|= TAINT_BAD_PAGE
;
121 #ifndef CONFIG_HUGETLB_PAGE
122 #define prep_compound_page(page, order) do { } while (0)
123 #define destroy_compound_page(page, order) do { } while (0)
126 * Higher-order pages are called "compound pages". They are structured thusly:
128 * The first PAGE_SIZE page is called the "head page".
130 * The remaining PAGE_SIZE pages are called "tail pages".
132 * All pages have PG_compound set. All pages have their ->private pointing at
133 * the head page (even the head page has this).
135 * The first tail page's ->mapping, if non-zero, holds the address of the
136 * compound page's put_page() function.
138 * The order of the allocation is stored in the first tail page's ->index
139 * This is only for debug at present. This usage means that zero-order pages
140 * may not be compound.
142 static void prep_compound_page(struct page
*page
, unsigned long order
)
145 int nr_pages
= 1 << order
;
147 page
[1].mapping
= NULL
;
148 page
[1].index
= order
;
149 for (i
= 0; i
< nr_pages
; i
++) {
150 struct page
*p
= page
+ i
;
153 p
->private = (unsigned long)page
;
157 static void destroy_compound_page(struct page
*page
, unsigned long order
)
160 int nr_pages
= 1 << order
;
162 if (!PageCompound(page
))
165 if (page
[1].index
!= order
)
166 bad_page(__FUNCTION__
, page
);
168 for (i
= 0; i
< nr_pages
; i
++) {
169 struct page
*p
= page
+ i
;
171 if (!PageCompound(p
))
172 bad_page(__FUNCTION__
, page
);
173 if (p
->private != (unsigned long)page
)
174 bad_page(__FUNCTION__
, page
);
175 ClearPageCompound(p
);
178 #endif /* CONFIG_HUGETLB_PAGE */
181 * function for dealing with page's order in buddy system.
182 * zone->lock is already acquired when we use these.
183 * So, we don't need atomic page->flags operations here.
185 static inline unsigned long page_order(struct page
*page
) {
186 return page
->private;
189 static inline void set_page_order(struct page
*page
, int order
) {
190 page
->private = order
;
191 __SetPagePrivate(page
);
194 static inline void rmv_page_order(struct page
*page
)
196 __ClearPagePrivate(page
);
201 * Locate the struct page for both the matching buddy in our
202 * pair (buddy1) and the combined O(n+1) page they form (page).
204 * 1) Any buddy B1 will have an order O twin B2 which satisfies
205 * the following equation:
207 * For example, if the starting buddy (buddy2) is #8 its order
209 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
211 * 2) Any buddy B will have an order O+1 parent P which
212 * satisfies the following equation:
215 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
217 static inline struct page
*
218 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
220 unsigned long buddy_idx
= page_idx
^ (1 << order
);
222 return page
+ (buddy_idx
- page_idx
);
225 static inline unsigned long
226 __find_combined_index(unsigned long page_idx
, unsigned int order
)
228 return (page_idx
& ~(1 << order
));
232 * This function checks whether a page is free && is the buddy
233 * we can do coalesce a page and its buddy if
234 * (a) the buddy is free &&
235 * (b) the buddy is on the buddy system &&
236 * (c) a page and its buddy have the same order.
237 * for recording page's order, we use page->private and PG_private.
240 static inline int page_is_buddy(struct page
*page
, int order
)
242 if (PagePrivate(page
) &&
243 (page_order(page
) == order
) &&
244 !PageReserved(page
) &&
245 page_count(page
) == 0)
251 * Freeing function for a buddy system allocator.
253 * The concept of a buddy system is to maintain direct-mapped table
254 * (containing bit values) for memory blocks of various "orders".
255 * The bottom level table contains the map for the smallest allocatable
256 * units of memory (here, pages), and each level above it describes
257 * pairs of units from the levels below, hence, "buddies".
258 * At a high level, all that happens here is marking the table entry
259 * at the bottom level available, and propagating the changes upward
260 * as necessary, plus some accounting needed to play nicely with other
261 * parts of the VM system.
262 * At each level, we keep a list of pages, which are heads of continuous
263 * free pages of length of (1 << order) and marked with PG_Private.Page's
264 * order is recorded in page->private field.
265 * So when we are allocating or freeing one, we can derive the state of the
266 * other. That is, if we allocate a small block, and both were
267 * free, the remainder of the region must be split into blocks.
268 * If a block is freed, and its buddy is also free, then this
269 * triggers coalescing into a block of larger size.
274 static inline void __free_pages_bulk (struct page
*page
,
275 struct zone
*zone
, unsigned int order
)
277 unsigned long page_idx
;
278 int order_size
= 1 << order
;
281 destroy_compound_page(page
, order
);
283 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
285 BUG_ON(page_idx
& (order_size
- 1));
286 BUG_ON(bad_range(zone
, page
));
288 zone
->free_pages
+= order_size
;
289 while (order
< MAX_ORDER
-1) {
290 unsigned long combined_idx
;
291 struct free_area
*area
;
294 combined_idx
= __find_combined_index(page_idx
, order
);
295 buddy
= __page_find_buddy(page
, page_idx
, order
);
297 if (bad_range(zone
, buddy
))
299 if (!page_is_buddy(buddy
, order
))
300 break; /* Move the buddy up one level. */
301 list_del(&buddy
->lru
);
302 area
= zone
->free_area
+ order
;
304 rmv_page_order(buddy
);
305 page
= page
+ (combined_idx
- page_idx
);
306 page_idx
= combined_idx
;
309 set_page_order(page
, order
);
310 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
311 zone
->free_area
[order
].nr_free
++;
314 static inline void free_pages_check(const char *function
, struct page
*page
)
316 if ( page_mapcount(page
) ||
317 page
->mapping
!= NULL
||
318 page_count(page
) != 0 ||
327 1 << PG_writeback
)))
328 bad_page(function
, page
);
330 ClearPageDirty(page
);
334 * Frees a list of pages.
335 * Assumes all pages on list are in same zone, and of same order.
336 * count is the number of pages to free, or 0 for all on the list.
338 * If the zone was previously in an "all pages pinned" state then look to
339 * see if this freeing clears that state.
341 * And clear the zone's pages_scanned counter, to hold off the "all pages are
342 * pinned" detection logic.
345 free_pages_bulk(struct zone
*zone
, int count
,
346 struct list_head
*list
, unsigned int order
)
349 struct page
*page
= NULL
;
352 spin_lock_irqsave(&zone
->lock
, flags
);
353 zone
->all_unreclaimable
= 0;
354 zone
->pages_scanned
= 0;
355 while (!list_empty(list
) && count
--) {
356 page
= list_entry(list
->prev
, struct page
, lru
);
357 /* have to delete it as __free_pages_bulk list manipulates */
358 list_del(&page
->lru
);
359 __free_pages_bulk(page
, zone
, order
);
362 spin_unlock_irqrestore(&zone
->lock
, flags
);
366 void __free_pages_ok(struct page
*page
, unsigned int order
)
371 arch_free_page(page
, order
);
373 mod_page_state(pgfree
, 1 << order
);
377 for (i
= 1 ; i
< (1 << order
) ; ++i
)
378 __put_page(page
+ i
);
381 for (i
= 0 ; i
< (1 << order
) ; ++i
)
382 free_pages_check(__FUNCTION__
, page
+ i
);
383 list_add(&page
->lru
, &list
);
384 kernel_map_pages(page
, 1<<order
, 0);
385 free_pages_bulk(page_zone(page
), 1, &list
, order
);
390 * The order of subdivision here is critical for the IO subsystem.
391 * Please do not alter this order without good reasons and regression
392 * testing. Specifically, as large blocks of memory are subdivided,
393 * the order in which smaller blocks are delivered depends on the order
394 * they're subdivided in this function. This is the primary factor
395 * influencing the order in which pages are delivered to the IO
396 * subsystem according to empirical testing, and this is also justified
397 * by considering the behavior of a buddy system containing a single
398 * large block of memory acted on by a series of small allocations.
399 * This behavior is a critical factor in sglist merging's success.
403 static inline struct page
*
404 expand(struct zone
*zone
, struct page
*page
,
405 int low
, int high
, struct free_area
*area
)
407 unsigned long size
= 1 << high
;
413 BUG_ON(bad_range(zone
, &page
[size
]));
414 list_add(&page
[size
].lru
, &area
->free_list
);
416 set_page_order(&page
[size
], high
);
421 void set_page_refs(struct page
*page
, int order
)
424 set_page_count(page
, 1);
429 * We need to reference all the pages for this order, otherwise if
430 * anyone accesses one of the pages with (get/put) it will be freed.
431 * - eg: access_process_vm()
433 for (i
= 0; i
< (1 << order
); i
++)
434 set_page_count(page
+ i
, 1);
435 #endif /* CONFIG_MMU */
439 * This page is about to be returned from the page allocator
441 static void prep_new_page(struct page
*page
, int order
)
443 if (page
->mapping
|| page_mapcount(page
) ||
452 1 << PG_writeback
)))
453 bad_page(__FUNCTION__
, page
);
455 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
456 1 << PG_referenced
| 1 << PG_arch_1
|
457 1 << PG_checked
| 1 << PG_mappedtodisk
);
459 set_page_refs(page
, order
);
460 kernel_map_pages(page
, 1 << order
, 1);
464 * Do the hard work of removing an element from the buddy allocator.
465 * Call me with the zone->lock already held.
467 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
469 struct free_area
* area
;
470 unsigned int current_order
;
473 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
474 area
= zone
->free_area
+ current_order
;
475 if (list_empty(&area
->free_list
))
478 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
479 list_del(&page
->lru
);
480 rmv_page_order(page
);
482 zone
->free_pages
-= 1UL << order
;
483 return expand(zone
, page
, order
, current_order
, area
);
490 * Obtain a specified number of elements from the buddy allocator, all under
491 * a single hold of the lock, for efficiency. Add them to the supplied list.
492 * Returns the number of new pages which were placed at *list.
494 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
495 unsigned long count
, struct list_head
*list
)
502 spin_lock_irqsave(&zone
->lock
, flags
);
503 for (i
= 0; i
< count
; ++i
) {
504 page
= __rmqueue(zone
, order
);
508 list_add_tail(&page
->lru
, list
);
510 spin_unlock_irqrestore(&zone
->lock
, flags
);
514 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
515 static void __drain_pages(unsigned int cpu
)
520 for_each_zone(zone
) {
521 struct per_cpu_pageset
*pset
;
523 pset
= &zone
->pageset
[cpu
];
524 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
525 struct per_cpu_pages
*pcp
;
528 pcp
->count
-= free_pages_bulk(zone
, pcp
->count
,
533 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
537 void mark_free_pages(struct zone
*zone
)
539 unsigned long zone_pfn
, flags
;
541 struct list_head
*curr
;
543 if (!zone
->spanned_pages
)
546 spin_lock_irqsave(&zone
->lock
, flags
);
547 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
548 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
550 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
551 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
552 unsigned long start_pfn
, i
;
554 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
556 for (i
=0; i
< (1<<order
); i
++)
557 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
559 spin_unlock_irqrestore(&zone
->lock
, flags
);
563 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
565 void drain_local_pages(void)
569 local_irq_save(flags
);
570 __drain_pages(smp_processor_id());
571 local_irq_restore(flags
);
573 #endif /* CONFIG_PM */
575 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
)
580 pg_data_t
*pg
= z
->zone_pgdat
;
581 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
582 struct per_cpu_pageset
*p
;
584 local_irq_save(flags
);
585 cpu
= smp_processor_id();
586 p
= &z
->pageset
[cpu
];
588 z
->pageset
[cpu
].numa_hit
++;
591 zonelist
->zones
[0]->pageset
[cpu
].numa_foreign
++;
593 if (pg
== NODE_DATA(numa_node_id()))
597 local_irq_restore(flags
);
602 * Free a 0-order page
604 static void FASTCALL(free_hot_cold_page(struct page
*page
, int cold
));
605 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
607 struct zone
*zone
= page_zone(page
);
608 struct per_cpu_pages
*pcp
;
611 arch_free_page(page
, 0);
613 kernel_map_pages(page
, 1, 0);
614 inc_page_state(pgfree
);
616 page
->mapping
= NULL
;
617 free_pages_check(__FUNCTION__
, page
);
618 pcp
= &zone
->pageset
[get_cpu()].pcp
[cold
];
619 local_irq_save(flags
);
620 if (pcp
->count
>= pcp
->high
)
621 pcp
->count
-= free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
622 list_add(&page
->lru
, &pcp
->list
);
624 local_irq_restore(flags
);
628 void fastcall
free_hot_page(struct page
*page
)
630 free_hot_cold_page(page
, 0);
633 void fastcall
free_cold_page(struct page
*page
)
635 free_hot_cold_page(page
, 1);
638 static inline void prep_zero_page(struct page
*page
, int order
, unsigned int __nocast gfp_flags
)
642 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
643 for(i
= 0; i
< (1 << order
); i
++)
644 clear_highpage(page
+ i
);
648 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
649 * we cheat by calling it from here, in the order > 0 path. Saves a branch
653 buffered_rmqueue(struct zone
*zone
, int order
, unsigned int __nocast gfp_flags
)
656 struct page
*page
= NULL
;
657 int cold
= !!(gfp_flags
& __GFP_COLD
);
660 struct per_cpu_pages
*pcp
;
662 pcp
= &zone
->pageset
[get_cpu()].pcp
[cold
];
663 local_irq_save(flags
);
664 if (pcp
->count
<= pcp
->low
)
665 pcp
->count
+= rmqueue_bulk(zone
, 0,
666 pcp
->batch
, &pcp
->list
);
668 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
669 list_del(&page
->lru
);
672 local_irq_restore(flags
);
677 spin_lock_irqsave(&zone
->lock
, flags
);
678 page
= __rmqueue(zone
, order
);
679 spin_unlock_irqrestore(&zone
->lock
, flags
);
683 BUG_ON(bad_range(zone
, page
));
684 mod_page_state_zone(zone
, pgalloc
, 1 << order
);
685 prep_new_page(page
, order
);
687 if (gfp_flags
& __GFP_ZERO
)
688 prep_zero_page(page
, order
, gfp_flags
);
690 if (order
&& (gfp_flags
& __GFP_COMP
))
691 prep_compound_page(page
, order
);
697 * Return 1 if free pages are above 'mark'. This takes into account the order
700 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
701 int classzone_idx
, int can_try_harder
, int gfp_high
)
703 /* free_pages my go negative - that's OK */
704 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
712 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
714 for (o
= 0; o
< order
; o
++) {
715 /* At the next order, this order's pages become unavailable */
716 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
718 /* Require fewer higher order pages to be free */
721 if (free_pages
<= min
)
728 * This is the 'heart' of the zoned buddy allocator.
730 struct page
* fastcall
731 __alloc_pages(unsigned int __nocast gfp_mask
, unsigned int order
,
732 struct zonelist
*zonelist
)
734 const int wait
= gfp_mask
& __GFP_WAIT
;
735 struct zone
**zones
, *z
;
737 struct reclaim_state reclaim_state
;
738 struct task_struct
*p
= current
;
743 int did_some_progress
;
745 might_sleep_if(wait
);
748 * The caller may dip into page reserves a bit more if the caller
749 * cannot run direct reclaim, or is the caller has realtime scheduling
752 can_try_harder
= (unlikely(rt_task(p
)) && !in_interrupt()) || !wait
;
754 zones
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
756 if (unlikely(zones
[0] == NULL
)) {
757 /* Should this ever happen?? */
761 classzone_idx
= zone_idx(zones
[0]);
764 /* Go through the zonelist once, looking for a zone with enough free */
765 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
767 if (!zone_watermark_ok(z
, order
, z
->pages_low
,
768 classzone_idx
, 0, 0))
771 if (!cpuset_zone_allowed(z
))
774 page
= buffered_rmqueue(z
, order
, gfp_mask
);
779 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++)
780 wakeup_kswapd(z
, order
);
783 * Go through the zonelist again. Let __GFP_HIGH and allocations
784 * coming from realtime tasks to go deeper into reserves
786 * This is the last chance, in general, before the goto nopage.
787 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
789 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
790 if (!zone_watermark_ok(z
, order
, z
->pages_min
,
791 classzone_idx
, can_try_harder
,
792 gfp_mask
& __GFP_HIGH
))
795 if (wait
&& !cpuset_zone_allowed(z
))
798 page
= buffered_rmqueue(z
, order
, gfp_mask
);
803 /* This allocation should allow future memory freeing. */
805 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
806 && !in_interrupt()) {
807 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
808 /* go through the zonelist yet again, ignoring mins */
809 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
810 if (!cpuset_zone_allowed(z
))
812 page
= buffered_rmqueue(z
, order
, gfp_mask
);
820 /* Atomic allocations - we can't balance anything */
827 /* We now go into synchronous reclaim */
828 p
->flags
|= PF_MEMALLOC
;
829 reclaim_state
.reclaimed_slab
= 0;
830 p
->reclaim_state
= &reclaim_state
;
832 did_some_progress
= try_to_free_pages(zones
, gfp_mask
, order
);
834 p
->reclaim_state
= NULL
;
835 p
->flags
&= ~PF_MEMALLOC
;
839 if (likely(did_some_progress
)) {
841 * Go through the zonelist yet one more time, keep
842 * very high watermark here, this is only to catch
843 * a parallel oom killing, we must fail if we're still
844 * under heavy pressure.
846 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
847 if (!zone_watermark_ok(z
, order
, z
->pages_min
,
848 classzone_idx
, can_try_harder
,
849 gfp_mask
& __GFP_HIGH
))
852 if (!cpuset_zone_allowed(z
))
855 page
= buffered_rmqueue(z
, order
, gfp_mask
);
859 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
861 * Go through the zonelist yet one more time, keep
862 * very high watermark here, this is only to catch
863 * a parallel oom killing, we must fail if we're still
864 * under heavy pressure.
866 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
867 if (!zone_watermark_ok(z
, order
, z
->pages_high
,
868 classzone_idx
, 0, 0))
871 if (!cpuset_zone_allowed(z
))
874 page
= buffered_rmqueue(z
, order
, gfp_mask
);
879 out_of_memory(gfp_mask
);
884 * Don't let big-order allocations loop unless the caller explicitly
885 * requests that. Wait for some write requests to complete then retry.
887 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
888 * <= 3, but that may not be true in other implementations.
891 if (!(gfp_mask
& __GFP_NORETRY
)) {
892 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
894 if (gfp_mask
& __GFP_NOFAIL
)
898 blk_congestion_wait(WRITE
, HZ
/50);
903 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
904 printk(KERN_WARNING
"%s: page allocation failure."
905 " order:%d, mode:0x%x\n",
906 p
->comm
, order
, gfp_mask
);
911 zone_statistics(zonelist
, z
);
915 EXPORT_SYMBOL(__alloc_pages
);
918 * Common helper functions.
920 fastcall
unsigned long __get_free_pages(unsigned int __nocast gfp_mask
, unsigned int order
)
923 page
= alloc_pages(gfp_mask
, order
);
926 return (unsigned long) page_address(page
);
929 EXPORT_SYMBOL(__get_free_pages
);
931 fastcall
unsigned long get_zeroed_page(unsigned int __nocast gfp_mask
)
936 * get_zeroed_page() returns a 32-bit address, which cannot represent
939 BUG_ON(gfp_mask
& __GFP_HIGHMEM
);
941 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
943 return (unsigned long) page_address(page
);
947 EXPORT_SYMBOL(get_zeroed_page
);
949 void __pagevec_free(struct pagevec
*pvec
)
951 int i
= pagevec_count(pvec
);
954 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
957 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
959 if (!PageReserved(page
) && put_page_testzero(page
)) {
963 __free_pages_ok(page
, order
);
967 EXPORT_SYMBOL(__free_pages
);
969 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
972 BUG_ON(!virt_addr_valid((void *)addr
));
973 __free_pages(virt_to_page((void *)addr
), order
);
977 EXPORT_SYMBOL(free_pages
);
980 * Total amount of free (allocatable) RAM:
982 unsigned int nr_free_pages(void)
984 unsigned int sum
= 0;
988 sum
+= zone
->free_pages
;
993 EXPORT_SYMBOL(nr_free_pages
);
996 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
998 unsigned int i
, sum
= 0;
1000 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1001 sum
+= pgdat
->node_zones
[i
].free_pages
;
1007 static unsigned int nr_free_zone_pages(int offset
)
1010 unsigned int sum
= 0;
1012 for_each_pgdat(pgdat
) {
1013 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1014 struct zone
**zonep
= zonelist
->zones
;
1017 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1018 unsigned long size
= zone
->present_pages
;
1019 unsigned long high
= zone
->pages_high
;
1029 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1031 unsigned int nr_free_buffer_pages(void)
1033 return nr_free_zone_pages(GFP_USER
& GFP_ZONEMASK
);
1037 * Amount of free RAM allocatable within all zones
1039 unsigned int nr_free_pagecache_pages(void)
1041 return nr_free_zone_pages(GFP_HIGHUSER
& GFP_ZONEMASK
);
1044 #ifdef CONFIG_HIGHMEM
1045 unsigned int nr_free_highpages (void)
1048 unsigned int pages
= 0;
1050 for_each_pgdat(pgdat
)
1051 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1058 static void show_node(struct zone
*zone
)
1060 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1063 #define show_node(zone) do { } while (0)
1067 * Accumulate the page_state information across all CPUs.
1068 * The result is unavoidably approximate - it can change
1069 * during and after execution of this function.
1071 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1073 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1074 EXPORT_SYMBOL(nr_pagecache
);
1076 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1079 void __get_page_state(struct page_state
*ret
, int nr
)
1083 memset(ret
, 0, sizeof(*ret
));
1085 cpu
= first_cpu(cpu_online_map
);
1086 while (cpu
< NR_CPUS
) {
1087 unsigned long *in
, *out
, off
;
1089 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1091 cpu
= next_cpu(cpu
, cpu_online_map
);
1094 prefetch(&per_cpu(page_states
, cpu
));
1096 out
= (unsigned long *)ret
;
1097 for (off
= 0; off
< nr
; off
++)
1102 void get_page_state(struct page_state
*ret
)
1106 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1107 nr
/= sizeof(unsigned long);
1109 __get_page_state(ret
, nr
+ 1);
1112 void get_full_page_state(struct page_state
*ret
)
1114 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long));
1117 unsigned long __read_page_state(unsigned offset
)
1119 unsigned long ret
= 0;
1122 for_each_online_cpu(cpu
) {
1125 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1126 ret
+= *((unsigned long *)in
);
1131 void __mod_page_state(unsigned offset
, unsigned long delta
)
1133 unsigned long flags
;
1136 local_irq_save(flags
);
1137 ptr
= &__get_cpu_var(page_states
);
1138 *(unsigned long*)(ptr
+ offset
) += delta
;
1139 local_irq_restore(flags
);
1142 EXPORT_SYMBOL(__mod_page_state
);
1144 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1145 unsigned long *free
, struct pglist_data
*pgdat
)
1147 struct zone
*zones
= pgdat
->node_zones
;
1153 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1154 *active
+= zones
[i
].nr_active
;
1155 *inactive
+= zones
[i
].nr_inactive
;
1156 *free
+= zones
[i
].free_pages
;
1160 void get_zone_counts(unsigned long *active
,
1161 unsigned long *inactive
, unsigned long *free
)
1163 struct pglist_data
*pgdat
;
1168 for_each_pgdat(pgdat
) {
1169 unsigned long l
, m
, n
;
1170 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1177 void si_meminfo(struct sysinfo
*val
)
1179 val
->totalram
= totalram_pages
;
1181 val
->freeram
= nr_free_pages();
1182 val
->bufferram
= nr_blockdev_pages();
1183 #ifdef CONFIG_HIGHMEM
1184 val
->totalhigh
= totalhigh_pages
;
1185 val
->freehigh
= nr_free_highpages();
1190 val
->mem_unit
= PAGE_SIZE
;
1193 EXPORT_SYMBOL(si_meminfo
);
1196 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1198 pg_data_t
*pgdat
= NODE_DATA(nid
);
1200 val
->totalram
= pgdat
->node_present_pages
;
1201 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1202 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1203 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1204 val
->mem_unit
= PAGE_SIZE
;
1208 #define K(x) ((x) << (PAGE_SHIFT-10))
1211 * Show free area list (used inside shift_scroll-lock stuff)
1212 * We also calculate the percentage fragmentation. We do this by counting the
1213 * memory on each free list with the exception of the first item on the list.
1215 void show_free_areas(void)
1217 struct page_state ps
;
1218 int cpu
, temperature
;
1219 unsigned long active
;
1220 unsigned long inactive
;
1224 for_each_zone(zone
) {
1226 printk("%s per-cpu:", zone
->name
);
1228 if (!zone
->present_pages
) {
1234 for (cpu
= 0; cpu
< NR_CPUS
; ++cpu
) {
1235 struct per_cpu_pageset
*pageset
;
1237 if (!cpu_possible(cpu
))
1240 pageset
= zone
->pageset
+ cpu
;
1242 for (temperature
= 0; temperature
< 2; temperature
++)
1243 printk("cpu %d %s: low %d, high %d, batch %d\n",
1245 temperature
? "cold" : "hot",
1246 pageset
->pcp
[temperature
].low
,
1247 pageset
->pcp
[temperature
].high
,
1248 pageset
->pcp
[temperature
].batch
);
1252 get_page_state(&ps
);
1253 get_zone_counts(&active
, &inactive
, &free
);
1255 printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1257 K(nr_free_highpages()));
1259 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1260 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1269 ps
.nr_page_table_pages
);
1271 for_each_zone(zone
) {
1283 " pages_scanned:%lu"
1284 " all_unreclaimable? %s"
1287 K(zone
->free_pages
),
1290 K(zone
->pages_high
),
1292 K(zone
->nr_inactive
),
1293 K(zone
->present_pages
),
1294 zone
->pages_scanned
,
1295 (zone
->all_unreclaimable
? "yes" : "no")
1297 printk("lowmem_reserve[]:");
1298 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1299 printk(" %lu", zone
->lowmem_reserve
[i
]);
1303 for_each_zone(zone
) {
1304 unsigned long nr
, flags
, order
, total
= 0;
1307 printk("%s: ", zone
->name
);
1308 if (!zone
->present_pages
) {
1313 spin_lock_irqsave(&zone
->lock
, flags
);
1314 for (order
= 0; order
< MAX_ORDER
; order
++) {
1315 nr
= zone
->free_area
[order
].nr_free
;
1316 total
+= nr
<< order
;
1317 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1319 spin_unlock_irqrestore(&zone
->lock
, flags
);
1320 printk("= %lukB\n", K(total
));
1323 show_swap_cache_info();
1327 * Builds allocation fallback zone lists.
1329 static int __init
build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
, int j
, int k
)
1336 zone
= pgdat
->node_zones
+ ZONE_HIGHMEM
;
1337 if (zone
->present_pages
) {
1338 #ifndef CONFIG_HIGHMEM
1341 zonelist
->zones
[j
++] = zone
;
1344 zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
1345 if (zone
->present_pages
)
1346 zonelist
->zones
[j
++] = zone
;
1348 zone
= pgdat
->node_zones
+ ZONE_DMA
;
1349 if (zone
->present_pages
)
1350 zonelist
->zones
[j
++] = zone
;
1357 #define MAX_NODE_LOAD (num_online_nodes())
1358 static int __initdata node_load
[MAX_NUMNODES
];
1360 * find_next_best_node - find the next node that should appear in a given node's fallback list
1361 * @node: node whose fallback list we're appending
1362 * @used_node_mask: nodemask_t of already used nodes
1364 * We use a number of factors to determine which is the next node that should
1365 * appear on a given node's fallback list. The node should not have appeared
1366 * already in @node's fallback list, and it should be the next closest node
1367 * according to the distance array (which contains arbitrary distance values
1368 * from each node to each node in the system), and should also prefer nodes
1369 * with no CPUs, since presumably they'll have very little allocation pressure
1370 * on them otherwise.
1371 * It returns -1 if no node is found.
1373 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1376 int min_val
= INT_MAX
;
1379 for_each_online_node(i
) {
1382 /* Start from local node */
1383 n
= (node
+i
) % num_online_nodes();
1385 /* Don't want a node to appear more than once */
1386 if (node_isset(n
, *used_node_mask
))
1389 /* Use the local node if we haven't already */
1390 if (!node_isset(node
, *used_node_mask
)) {
1395 /* Use the distance array to find the distance */
1396 val
= node_distance(node
, n
);
1398 /* Give preference to headless and unused nodes */
1399 tmp
= node_to_cpumask(n
);
1400 if (!cpus_empty(tmp
))
1401 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1403 /* Slight preference for less loaded node */
1404 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1405 val
+= node_load
[n
];
1407 if (val
< min_val
) {
1414 node_set(best_node
, *used_node_mask
);
1419 static void __init
build_zonelists(pg_data_t
*pgdat
)
1421 int i
, j
, k
, node
, local_node
;
1422 int prev_node
, load
;
1423 struct zonelist
*zonelist
;
1424 nodemask_t used_mask
;
1426 /* initialize zonelists */
1427 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1428 zonelist
= pgdat
->node_zonelists
+ i
;
1429 zonelist
->zones
[0] = NULL
;
1432 /* NUMA-aware ordering of nodes */
1433 local_node
= pgdat
->node_id
;
1434 load
= num_online_nodes();
1435 prev_node
= local_node
;
1436 nodes_clear(used_mask
);
1437 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1439 * We don't want to pressure a particular node.
1440 * So adding penalty to the first node in same
1441 * distance group to make it round-robin.
1443 if (node_distance(local_node
, node
) !=
1444 node_distance(local_node
, prev_node
))
1445 node_load
[node
] += load
;
1448 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1449 zonelist
= pgdat
->node_zonelists
+ i
;
1450 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1453 if (i
& __GFP_HIGHMEM
)
1458 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1459 zonelist
->zones
[j
] = NULL
;
1464 #else /* CONFIG_NUMA */
1466 static void __init
build_zonelists(pg_data_t
*pgdat
)
1468 int i
, j
, k
, node
, local_node
;
1470 local_node
= pgdat
->node_id
;
1471 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1472 struct zonelist
*zonelist
;
1474 zonelist
= pgdat
->node_zonelists
+ i
;
1478 if (i
& __GFP_HIGHMEM
)
1483 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1485 * Now we build the zonelist so that it contains the zones
1486 * of all the other nodes.
1487 * We don't want to pressure a particular node, so when
1488 * building the zones for node N, we make sure that the
1489 * zones coming right after the local ones are those from
1490 * node N+1 (modulo N)
1492 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1493 if (!node_online(node
))
1495 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1497 for (node
= 0; node
< local_node
; node
++) {
1498 if (!node_online(node
))
1500 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1503 zonelist
->zones
[j
] = NULL
;
1507 #endif /* CONFIG_NUMA */
1509 void __init
build_all_zonelists(void)
1513 for_each_online_node(i
)
1514 build_zonelists(NODE_DATA(i
));
1515 printk("Built %i zonelists\n", num_online_nodes());
1516 cpuset_init_current_mems_allowed();
1520 * Helper functions to size the waitqueue hash table.
1521 * Essentially these want to choose hash table sizes sufficiently
1522 * large so that collisions trying to wait on pages are rare.
1523 * But in fact, the number of active page waitqueues on typical
1524 * systems is ridiculously low, less than 200. So this is even
1525 * conservative, even though it seems large.
1527 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1528 * waitqueues, i.e. the size of the waitq table given the number of pages.
1530 #define PAGES_PER_WAITQUEUE 256
1532 static inline unsigned long wait_table_size(unsigned long pages
)
1534 unsigned long size
= 1;
1536 pages
/= PAGES_PER_WAITQUEUE
;
1538 while (size
< pages
)
1542 * Once we have dozens or even hundreds of threads sleeping
1543 * on IO we've got bigger problems than wait queue collision.
1544 * Limit the size of the wait table to a reasonable size.
1546 size
= min(size
, 4096UL);
1548 return max(size
, 4UL);
1552 * This is an integer logarithm so that shifts can be used later
1553 * to extract the more random high bits from the multiplicative
1554 * hash function before the remainder is taken.
1556 static inline unsigned long wait_table_bits(unsigned long size
)
1561 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1563 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1564 unsigned long *zones_size
, unsigned long *zholes_size
)
1566 unsigned long realtotalpages
, totalpages
= 0;
1569 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1570 totalpages
+= zones_size
[i
];
1571 pgdat
->node_spanned_pages
= totalpages
;
1573 realtotalpages
= totalpages
;
1575 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1576 realtotalpages
-= zholes_size
[i
];
1577 pgdat
->node_present_pages
= realtotalpages
;
1578 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1583 * Initially all pages are reserved - free ones are freed
1584 * up by free_all_bootmem() once the early boot process is
1585 * done. Non-atomic initialization, single-pass.
1587 void __init
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1588 unsigned long start_pfn
)
1590 struct page
*start
= pfn_to_page(start_pfn
);
1593 for (page
= start
; page
< (start
+ size
); page
++) {
1594 set_page_zone(page
, NODEZONE(nid
, zone
));
1595 set_page_count(page
, 0);
1596 reset_page_mapcount(page
);
1597 SetPageReserved(page
);
1598 INIT_LIST_HEAD(&page
->lru
);
1599 #ifdef WANT_PAGE_VIRTUAL
1600 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1601 if (!is_highmem_idx(zone
))
1602 set_page_address(page
, __va(start_pfn
<< PAGE_SHIFT
));
1608 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1612 for (order
= 0; order
< MAX_ORDER
; order
++) {
1613 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1614 zone
->free_area
[order
].nr_free
= 0;
1618 #ifndef __HAVE_ARCH_MEMMAP_INIT
1619 #define memmap_init(size, nid, zone, start_pfn) \
1620 memmap_init_zone((size), (nid), (zone), (start_pfn))
1624 * Set up the zone data structures:
1625 * - mark all pages reserved
1626 * - mark all memory queues empty
1627 * - clear the memory bitmaps
1629 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
1630 unsigned long *zones_size
, unsigned long *zholes_size
)
1633 const unsigned long zone_required_alignment
= 1UL << (MAX_ORDER
-1);
1634 int cpu
, nid
= pgdat
->node_id
;
1635 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
1637 pgdat
->nr_zones
= 0;
1638 init_waitqueue_head(&pgdat
->kswapd_wait
);
1639 pgdat
->kswapd_max_order
= 0;
1641 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
1642 struct zone
*zone
= pgdat
->node_zones
+ j
;
1643 unsigned long size
, realsize
;
1644 unsigned long batch
;
1646 zone_table
[NODEZONE(nid
, j
)] = zone
;
1647 realsize
= size
= zones_size
[j
];
1649 realsize
-= zholes_size
[j
];
1651 if (j
== ZONE_DMA
|| j
== ZONE_NORMAL
)
1652 nr_kernel_pages
+= realsize
;
1653 nr_all_pages
+= realsize
;
1655 zone
->spanned_pages
= size
;
1656 zone
->present_pages
= realsize
;
1657 zone
->name
= zone_names
[j
];
1658 spin_lock_init(&zone
->lock
);
1659 spin_lock_init(&zone
->lru_lock
);
1660 zone
->zone_pgdat
= pgdat
;
1661 zone
->free_pages
= 0;
1663 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
1666 * The per-cpu-pages pools are set to around 1000th of the
1667 * size of the zone. But no more than 1/4 of a meg - there's
1668 * no point in going beyond the size of L2 cache.
1670 * OK, so we don't know how big the cache is. So guess.
1672 batch
= zone
->present_pages
/ 1024;
1673 if (batch
* PAGE_SIZE
> 256 * 1024)
1674 batch
= (256 * 1024) / PAGE_SIZE
;
1675 batch
/= 4; /* We effectively *= 4 below */
1680 * Clamp the batch to a 2^n - 1 value. Having a power
1681 * of 2 value was found to be more likely to have
1682 * suboptimal cache aliasing properties in some cases.
1684 * For example if 2 tasks are alternately allocating
1685 * batches of pages, one task can end up with a lot
1686 * of pages of one half of the possible page colors
1687 * and the other with pages of the other colors.
1689 batch
= (1 << fls(batch
+ batch
/2)) - 1;
1691 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
1692 struct per_cpu_pages
*pcp
;
1694 pcp
= &zone
->pageset
[cpu
].pcp
[0]; /* hot */
1696 pcp
->low
= 2 * batch
;
1697 pcp
->high
= 6 * batch
;
1698 pcp
->batch
= 1 * batch
;
1699 INIT_LIST_HEAD(&pcp
->list
);
1701 pcp
= &zone
->pageset
[cpu
].pcp
[1]; /* cold */
1704 pcp
->high
= 2 * batch
;
1705 pcp
->batch
= 1 * batch
;
1706 INIT_LIST_HEAD(&pcp
->list
);
1708 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
1709 zone_names
[j
], realsize
, batch
);
1710 INIT_LIST_HEAD(&zone
->active_list
);
1711 INIT_LIST_HEAD(&zone
->inactive_list
);
1712 zone
->nr_scan_active
= 0;
1713 zone
->nr_scan_inactive
= 0;
1714 zone
->nr_active
= 0;
1715 zone
->nr_inactive
= 0;
1720 * The per-page waitqueue mechanism uses hashed waitqueues
1723 zone
->wait_table_size
= wait_table_size(size
);
1724 zone
->wait_table_bits
=
1725 wait_table_bits(zone
->wait_table_size
);
1726 zone
->wait_table
= (wait_queue_head_t
*)
1727 alloc_bootmem_node(pgdat
, zone
->wait_table_size
1728 * sizeof(wait_queue_head_t
));
1730 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
1731 init_waitqueue_head(zone
->wait_table
+ i
);
1733 pgdat
->nr_zones
= j
+1;
1735 zone
->zone_mem_map
= pfn_to_page(zone_start_pfn
);
1736 zone
->zone_start_pfn
= zone_start_pfn
;
1738 if ((zone_start_pfn
) & (zone_required_alignment
-1))
1739 printk(KERN_CRIT
"BUG: wrong zone alignment, it will crash\n");
1741 memmap_init(size
, nid
, j
, zone_start_pfn
);
1743 zone_start_pfn
+= size
;
1745 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
1749 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
1753 /* Skip empty nodes */
1754 if (!pgdat
->node_spanned_pages
)
1757 /* ia64 gets its own node_mem_map, before this, without bootmem */
1758 if (!pgdat
->node_mem_map
) {
1759 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
1760 pgdat
->node_mem_map
= alloc_bootmem_node(pgdat
, size
);
1762 #ifndef CONFIG_DISCONTIGMEM
1764 * With no DISCONTIG, the global mem_map is just set as node 0's
1766 if (pgdat
== NODE_DATA(0))
1767 mem_map
= NODE_DATA(0)->node_mem_map
;
1771 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
1772 unsigned long *zones_size
, unsigned long node_start_pfn
,
1773 unsigned long *zholes_size
)
1775 pgdat
->node_id
= nid
;
1776 pgdat
->node_start_pfn
= node_start_pfn
;
1777 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
1779 alloc_node_mem_map(pgdat
);
1781 free_area_init_core(pgdat
, zones_size
, zholes_size
);
1784 #ifndef CONFIG_DISCONTIGMEM
1785 static bootmem_data_t contig_bootmem_data
;
1786 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
1788 EXPORT_SYMBOL(contig_page_data
);
1790 void __init
free_area_init(unsigned long *zones_size
)
1792 free_area_init_node(0, &contig_page_data
, zones_size
,
1793 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
1797 #ifdef CONFIG_PROC_FS
1799 #include <linux/seq_file.h>
1801 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
1806 for (pgdat
= pgdat_list
; pgdat
&& node
; pgdat
= pgdat
->pgdat_next
)
1812 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1814 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1817 return pgdat
->pgdat_next
;
1820 static void frag_stop(struct seq_file
*m
, void *arg
)
1825 * This walks the free areas for each zone.
1827 static int frag_show(struct seq_file
*m
, void *arg
)
1829 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1831 struct zone
*node_zones
= pgdat
->node_zones
;
1832 unsigned long flags
;
1835 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
1836 if (!zone
->present_pages
)
1839 spin_lock_irqsave(&zone
->lock
, flags
);
1840 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1841 for (order
= 0; order
< MAX_ORDER
; ++order
)
1842 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
1843 spin_unlock_irqrestore(&zone
->lock
, flags
);
1849 struct seq_operations fragmentation_op
= {
1850 .start
= frag_start
,
1856 static char *vmstat_text
[] = {
1860 "nr_page_table_pages",
1885 "pgscan_kswapd_high",
1886 "pgscan_kswapd_normal",
1888 "pgscan_kswapd_dma",
1889 "pgscan_direct_high",
1890 "pgscan_direct_normal",
1891 "pgscan_direct_dma",
1896 "kswapd_inodesteal",
1904 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1906 struct page_state
*ps
;
1908 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1911 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
1914 return ERR_PTR(-ENOMEM
);
1915 get_full_page_state(ps
);
1916 ps
->pgpgin
/= 2; /* sectors -> kbytes */
1918 return (unsigned long *)ps
+ *pos
;
1921 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1924 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1926 return (unsigned long *)m
->private + *pos
;
1929 static int vmstat_show(struct seq_file
*m
, void *arg
)
1931 unsigned long *l
= arg
;
1932 unsigned long off
= l
- (unsigned long *)m
->private;
1934 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1938 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1944 struct seq_operations vmstat_op
= {
1945 .start
= vmstat_start
,
1946 .next
= vmstat_next
,
1947 .stop
= vmstat_stop
,
1948 .show
= vmstat_show
,
1951 #endif /* CONFIG_PROC_FS */
1953 #ifdef CONFIG_HOTPLUG_CPU
1954 static int page_alloc_cpu_notify(struct notifier_block
*self
,
1955 unsigned long action
, void *hcpu
)
1957 int cpu
= (unsigned long)hcpu
;
1959 unsigned long *src
, *dest
;
1961 if (action
== CPU_DEAD
) {
1964 /* Drain local pagecache count. */
1965 count
= &per_cpu(nr_pagecache_local
, cpu
);
1966 atomic_add(*count
, &nr_pagecache
);
1968 local_irq_disable();
1971 /* Add dead cpu's page_states to our own. */
1972 dest
= (unsigned long *)&__get_cpu_var(page_states
);
1973 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
1975 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
1985 #endif /* CONFIG_HOTPLUG_CPU */
1987 void __init
page_alloc_init(void)
1989 hotcpu_notifier(page_alloc_cpu_notify
, 0);
1993 * setup_per_zone_lowmem_reserve - called whenever
1994 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
1995 * has a correct pages reserved value, so an adequate number of
1996 * pages are left in the zone after a successful __alloc_pages().
1998 static void setup_per_zone_lowmem_reserve(void)
2000 struct pglist_data
*pgdat
;
2003 for_each_pgdat(pgdat
) {
2004 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2005 struct zone
*zone
= pgdat
->node_zones
+ j
;
2006 unsigned long present_pages
= zone
->present_pages
;
2008 zone
->lowmem_reserve
[j
] = 0;
2010 for (idx
= j
-1; idx
>= 0; idx
--) {
2011 struct zone
*lower_zone
;
2013 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2014 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2016 lower_zone
= pgdat
->node_zones
+ idx
;
2017 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2018 sysctl_lowmem_reserve_ratio
[idx
];
2019 present_pages
+= lower_zone
->present_pages
;
2026 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2027 * that the pages_{min,low,high} values for each zone are set correctly
2028 * with respect to min_free_kbytes.
2030 static void setup_per_zone_pages_min(void)
2032 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2033 unsigned long lowmem_pages
= 0;
2035 unsigned long flags
;
2037 /* Calculate total number of !ZONE_HIGHMEM pages */
2038 for_each_zone(zone
) {
2039 if (!is_highmem(zone
))
2040 lowmem_pages
+= zone
->present_pages
;
2043 for_each_zone(zone
) {
2044 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2045 if (is_highmem(zone
)) {
2047 * Often, highmem doesn't need to reserve any pages.
2048 * But the pages_min/low/high values are also used for
2049 * batching up page reclaim activity so we need a
2050 * decent value here.
2054 min_pages
= zone
->present_pages
/ 1024;
2055 if (min_pages
< SWAP_CLUSTER_MAX
)
2056 min_pages
= SWAP_CLUSTER_MAX
;
2057 if (min_pages
> 128)
2059 zone
->pages_min
= min_pages
;
2061 /* if it's a lowmem zone, reserve a number of pages
2062 * proportionate to the zone's size.
2064 zone
->pages_min
= (pages_min
* zone
->present_pages
) /
2069 * When interpreting these watermarks, just keep in mind that:
2070 * zone->pages_min == (zone->pages_min * 4) / 4;
2072 zone
->pages_low
= (zone
->pages_min
* 5) / 4;
2073 zone
->pages_high
= (zone
->pages_min
* 6) / 4;
2074 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2079 * Initialise min_free_kbytes.
2081 * For small machines we want it small (128k min). For large machines
2082 * we want it large (64MB max). But it is not linear, because network
2083 * bandwidth does not increase linearly with machine size. We use
2085 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2086 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2102 static int __init
init_per_zone_pages_min(void)
2104 unsigned long lowmem_kbytes
;
2106 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2108 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2109 if (min_free_kbytes
< 128)
2110 min_free_kbytes
= 128;
2111 if (min_free_kbytes
> 65536)
2112 min_free_kbytes
= 65536;
2113 setup_per_zone_pages_min();
2114 setup_per_zone_lowmem_reserve();
2117 module_init(init_per_zone_pages_min
)
2120 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2121 * that we can call two helper functions whenever min_free_kbytes
2124 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2125 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2127 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2128 setup_per_zone_pages_min();
2133 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2134 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2135 * whenever sysctl_lowmem_reserve_ratio changes.
2137 * The reserve ratio obviously has absolutely no relation with the
2138 * pages_min watermarks. The lowmem reserve ratio can only make sense
2139 * if in function of the boot time zone sizes.
2141 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2142 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2144 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2145 setup_per_zone_lowmem_reserve();
2149 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2152 static int __init
set_hashdist(char *str
)
2156 hashdist
= simple_strtoul(str
, &str
, 0);
2159 __setup("hashdist=", set_hashdist
);
2163 * allocate a large system hash table from bootmem
2164 * - it is assumed that the hash table must contain an exact power-of-2
2165 * quantity of entries
2166 * - limit is the number of hash buckets, not the total allocation size
2168 void *__init
alloc_large_system_hash(const char *tablename
,
2169 unsigned long bucketsize
,
2170 unsigned long numentries
,
2173 unsigned int *_hash_shift
,
2174 unsigned int *_hash_mask
,
2175 unsigned long limit
)
2177 unsigned long long max
= limit
;
2178 unsigned long log2qty
, size
;
2181 /* allow the kernel cmdline to have a say */
2183 /* round applicable memory size up to nearest megabyte */
2184 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2185 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2186 numentries
>>= 20 - PAGE_SHIFT
;
2187 numentries
<<= 20 - PAGE_SHIFT
;
2189 /* limit to 1 bucket per 2^scale bytes of low memory */
2190 if (scale
> PAGE_SHIFT
)
2191 numentries
>>= (scale
- PAGE_SHIFT
);
2193 numentries
<<= (PAGE_SHIFT
- scale
);
2195 /* rounded up to nearest power of 2 in size */
2196 numentries
= 1UL << (long_log2(numentries
) + 1);
2198 /* limit allocation size to 1/16 total memory by default */
2200 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2201 do_div(max
, bucketsize
);
2204 if (numentries
> max
)
2207 log2qty
= long_log2(numentries
);
2210 size
= bucketsize
<< log2qty
;
2211 if (flags
& HASH_EARLY
)
2212 table
= alloc_bootmem(size
);
2214 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2216 unsigned long order
;
2217 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2219 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2221 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2224 panic("Failed to allocate %s hash table\n", tablename
);
2226 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2229 long_log2(size
) - PAGE_SHIFT
,
2233 *_hash_shift
= log2qty
;
2235 *_hash_mask
= (1 << log2qty
) - 1;