[PATCH] ext4: move block number hi bits
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / balloc.c
blob3e85886a6382b734f1a9b20af4aadf96ef1ebd8b
1 /*
2 * linux/fs/ext4/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
24 * balloc.c contains the blocks allocation and deallocation routines
28 * The free blocks are managed by bitmaps. A file system contains several
29 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
30 * block for inodes, N blocks for the inode table and data blocks.
32 * The file system contains group descriptors which are located after the
33 * super block. Each descriptor contains the number of the bitmap block and
34 * the free blocks count in the block. The descriptors are loaded in memory
35 * when a file system is mounted (see ext4_read_super).
39 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
41 /**
42 * ext4_get_group_desc() -- load group descriptor from disk
43 * @sb: super block
44 * @block_group: given block group
45 * @bh: pointer to the buffer head to store the block
46 * group descriptor
48 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
49 unsigned int block_group,
50 struct buffer_head ** bh)
52 unsigned long group_desc;
53 unsigned long offset;
54 struct ext4_group_desc * desc;
55 struct ext4_sb_info *sbi = EXT4_SB(sb);
57 if (block_group >= sbi->s_groups_count) {
58 ext4_error (sb, "ext4_get_group_desc",
59 "block_group >= groups_count - "
60 "block_group = %d, groups_count = %lu",
61 block_group, sbi->s_groups_count);
63 return NULL;
65 smp_rmb();
67 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
68 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
69 if (!sbi->s_group_desc[group_desc]) {
70 ext4_error (sb, "ext4_get_group_desc",
71 "Group descriptor not loaded - "
72 "block_group = %d, group_desc = %lu, desc = %lu",
73 block_group, group_desc, offset);
74 return NULL;
77 desc = (struct ext4_group_desc *)(
78 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
79 offset * EXT4_DESC_SIZE(sb));
80 if (bh)
81 *bh = sbi->s_group_desc[group_desc];
82 return desc;
85 /**
86 * read_block_bitmap()
87 * @sb: super block
88 * @block_group: given block group
90 * Read the bitmap for a given block_group, reading into the specified
91 * slot in the superblock's bitmap cache.
93 * Return buffer_head on success or NULL in case of failure.
95 static struct buffer_head *
96 read_block_bitmap(struct super_block *sb, unsigned int block_group)
98 struct ext4_group_desc * desc;
99 struct buffer_head * bh = NULL;
101 desc = ext4_get_group_desc (sb, block_group, NULL);
102 if (!desc)
103 goto error_out;
104 bh = sb_bread(sb, ext4_block_bitmap(sb, desc));
105 if (!bh)
106 ext4_error (sb, "read_block_bitmap",
107 "Cannot read block bitmap - "
108 "block_group = %d, block_bitmap = %llu",
109 block_group,
110 ext4_block_bitmap(sb, desc));
111 error_out:
112 return bh;
115 * The reservation window structure operations
116 * --------------------------------------------
117 * Operations include:
118 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
120 * We use a red-black tree to represent per-filesystem reservation
121 * windows.
126 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
127 * @rb_root: root of per-filesystem reservation rb tree
128 * @verbose: verbose mode
129 * @fn: function which wishes to dump the reservation map
131 * If verbose is turned on, it will print the whole block reservation
132 * windows(start, end). Otherwise, it will only print out the "bad" windows,
133 * those windows that overlap with their immediate neighbors.
135 #if 1
136 static void __rsv_window_dump(struct rb_root *root, int verbose,
137 const char *fn)
139 struct rb_node *n;
140 struct ext4_reserve_window_node *rsv, *prev;
141 int bad;
143 restart:
144 n = rb_first(root);
145 bad = 0;
146 prev = NULL;
148 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
149 while (n) {
150 rsv = list_entry(n, struct ext4_reserve_window_node, rsv_node);
151 if (verbose)
152 printk("reservation window 0x%p "
153 "start: %llu, end: %llu\n",
154 rsv, rsv->rsv_start, rsv->rsv_end);
155 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
156 printk("Bad reservation %p (start >= end)\n",
157 rsv);
158 bad = 1;
160 if (prev && prev->rsv_end >= rsv->rsv_start) {
161 printk("Bad reservation %p (prev->end >= start)\n",
162 rsv);
163 bad = 1;
165 if (bad) {
166 if (!verbose) {
167 printk("Restarting reservation walk in verbose mode\n");
168 verbose = 1;
169 goto restart;
172 n = rb_next(n);
173 prev = rsv;
175 printk("Window map complete.\n");
176 if (bad)
177 BUG();
179 #define rsv_window_dump(root, verbose) \
180 __rsv_window_dump((root), (verbose), __FUNCTION__)
181 #else
182 #define rsv_window_dump(root, verbose) do {} while (0)
183 #endif
186 * goal_in_my_reservation()
187 * @rsv: inode's reservation window
188 * @grp_goal: given goal block relative to the allocation block group
189 * @group: the current allocation block group
190 * @sb: filesystem super block
192 * Test if the given goal block (group relative) is within the file's
193 * own block reservation window range.
195 * If the reservation window is outside the goal allocation group, return 0;
196 * grp_goal (given goal block) could be -1, which means no specific
197 * goal block. In this case, always return 1.
198 * If the goal block is within the reservation window, return 1;
199 * otherwise, return 0;
201 static int
202 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
203 unsigned int group, struct super_block * sb)
205 ext4_fsblk_t group_first_block, group_last_block;
207 group_first_block = ext4_group_first_block_no(sb, group);
208 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
210 if ((rsv->_rsv_start > group_last_block) ||
211 (rsv->_rsv_end < group_first_block))
212 return 0;
213 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
214 || (grp_goal + group_first_block > rsv->_rsv_end)))
215 return 0;
216 return 1;
220 * search_reserve_window()
221 * @rb_root: root of reservation tree
222 * @goal: target allocation block
224 * Find the reserved window which includes the goal, or the previous one
225 * if the goal is not in any window.
226 * Returns NULL if there are no windows or if all windows start after the goal.
228 static struct ext4_reserve_window_node *
229 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
231 struct rb_node *n = root->rb_node;
232 struct ext4_reserve_window_node *rsv;
234 if (!n)
235 return NULL;
237 do {
238 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
240 if (goal < rsv->rsv_start)
241 n = n->rb_left;
242 else if (goal > rsv->rsv_end)
243 n = n->rb_right;
244 else
245 return rsv;
246 } while (n);
248 * We've fallen off the end of the tree: the goal wasn't inside
249 * any particular node. OK, the previous node must be to one
250 * side of the interval containing the goal. If it's the RHS,
251 * we need to back up one.
253 if (rsv->rsv_start > goal) {
254 n = rb_prev(&rsv->rsv_node);
255 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
257 return rsv;
261 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
262 * @sb: super block
263 * @rsv: reservation window to add
265 * Must be called with rsv_lock hold.
267 void ext4_rsv_window_add(struct super_block *sb,
268 struct ext4_reserve_window_node *rsv)
270 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
271 struct rb_node *node = &rsv->rsv_node;
272 ext4_fsblk_t start = rsv->rsv_start;
274 struct rb_node ** p = &root->rb_node;
275 struct rb_node * parent = NULL;
276 struct ext4_reserve_window_node *this;
278 while (*p)
280 parent = *p;
281 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
283 if (start < this->rsv_start)
284 p = &(*p)->rb_left;
285 else if (start > this->rsv_end)
286 p = &(*p)->rb_right;
287 else {
288 rsv_window_dump(root, 1);
289 BUG();
293 rb_link_node(node, parent, p);
294 rb_insert_color(node, root);
298 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
299 * @sb: super block
300 * @rsv: reservation window to remove
302 * Mark the block reservation window as not allocated, and unlink it
303 * from the filesystem reservation window rb tree. Must be called with
304 * rsv_lock hold.
306 static void rsv_window_remove(struct super_block *sb,
307 struct ext4_reserve_window_node *rsv)
309 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
310 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
311 rsv->rsv_alloc_hit = 0;
312 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
316 * rsv_is_empty() -- Check if the reservation window is allocated.
317 * @rsv: given reservation window to check
319 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
321 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
323 /* a valid reservation end block could not be 0 */
324 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
328 * ext4_init_block_alloc_info()
329 * @inode: file inode structure
331 * Allocate and initialize the reservation window structure, and
332 * link the window to the ext4 inode structure at last
334 * The reservation window structure is only dynamically allocated
335 * and linked to ext4 inode the first time the open file
336 * needs a new block. So, before every ext4_new_block(s) call, for
337 * regular files, we should check whether the reservation window
338 * structure exists or not. In the latter case, this function is called.
339 * Fail to do so will result in block reservation being turned off for that
340 * open file.
342 * This function is called from ext4_get_blocks_handle(), also called
343 * when setting the reservation window size through ioctl before the file
344 * is open for write (needs block allocation).
346 * Needs truncate_mutex protection prior to call this function.
348 void ext4_init_block_alloc_info(struct inode *inode)
350 struct ext4_inode_info *ei = EXT4_I(inode);
351 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
352 struct super_block *sb = inode->i_sb;
354 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
355 if (block_i) {
356 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
358 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
359 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
362 * if filesystem is mounted with NORESERVATION, the goal
363 * reservation window size is set to zero to indicate
364 * block reservation is off
366 if (!test_opt(sb, RESERVATION))
367 rsv->rsv_goal_size = 0;
368 else
369 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
370 rsv->rsv_alloc_hit = 0;
371 block_i->last_alloc_logical_block = 0;
372 block_i->last_alloc_physical_block = 0;
374 ei->i_block_alloc_info = block_i;
378 * ext4_discard_reservation()
379 * @inode: inode
381 * Discard(free) block reservation window on last file close, or truncate
382 * or at last iput().
384 * It is being called in three cases:
385 * ext4_release_file(): last writer close the file
386 * ext4_clear_inode(): last iput(), when nobody link to this file.
387 * ext4_truncate(): when the block indirect map is about to change.
390 void ext4_discard_reservation(struct inode *inode)
392 struct ext4_inode_info *ei = EXT4_I(inode);
393 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
394 struct ext4_reserve_window_node *rsv;
395 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
397 if (!block_i)
398 return;
400 rsv = &block_i->rsv_window_node;
401 if (!rsv_is_empty(&rsv->rsv_window)) {
402 spin_lock(rsv_lock);
403 if (!rsv_is_empty(&rsv->rsv_window))
404 rsv_window_remove(inode->i_sb, rsv);
405 spin_unlock(rsv_lock);
410 * ext4_free_blocks_sb() -- Free given blocks and update quota
411 * @handle: handle to this transaction
412 * @sb: super block
413 * @block: start physcial block to free
414 * @count: number of blocks to free
415 * @pdquot_freed_blocks: pointer to quota
417 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
418 ext4_fsblk_t block, unsigned long count,
419 unsigned long *pdquot_freed_blocks)
421 struct buffer_head *bitmap_bh = NULL;
422 struct buffer_head *gd_bh;
423 unsigned long block_group;
424 ext4_grpblk_t bit;
425 unsigned long i;
426 unsigned long overflow;
427 struct ext4_group_desc * desc;
428 struct ext4_super_block * es;
429 struct ext4_sb_info *sbi;
430 int err = 0, ret;
431 ext4_grpblk_t group_freed;
433 *pdquot_freed_blocks = 0;
434 sbi = EXT4_SB(sb);
435 es = sbi->s_es;
436 if (block < le32_to_cpu(es->s_first_data_block) ||
437 block + count < block ||
438 block + count > ext4_blocks_count(es)) {
439 ext4_error (sb, "ext4_free_blocks",
440 "Freeing blocks not in datazone - "
441 "block = %llu, count = %lu", block, count);
442 goto error_return;
445 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
447 do_more:
448 overflow = 0;
449 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
451 * Check to see if we are freeing blocks across a group
452 * boundary.
454 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
455 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
456 count -= overflow;
458 brelse(bitmap_bh);
459 bitmap_bh = read_block_bitmap(sb, block_group);
460 if (!bitmap_bh)
461 goto error_return;
462 desc = ext4_get_group_desc (sb, block_group, &gd_bh);
463 if (!desc)
464 goto error_return;
466 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
467 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
468 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
469 in_range(block + count - 1, ext4_inode_table(sb, desc),
470 sbi->s_itb_per_group))
471 ext4_error (sb, "ext4_free_blocks",
472 "Freeing blocks in system zones - "
473 "Block = %llu, count = %lu",
474 block, count);
477 * We are about to start releasing blocks in the bitmap,
478 * so we need undo access.
480 /* @@@ check errors */
481 BUFFER_TRACE(bitmap_bh, "getting undo access");
482 err = ext4_journal_get_undo_access(handle, bitmap_bh);
483 if (err)
484 goto error_return;
487 * We are about to modify some metadata. Call the journal APIs
488 * to unshare ->b_data if a currently-committing transaction is
489 * using it
491 BUFFER_TRACE(gd_bh, "get_write_access");
492 err = ext4_journal_get_write_access(handle, gd_bh);
493 if (err)
494 goto error_return;
496 jbd_lock_bh_state(bitmap_bh);
498 for (i = 0, group_freed = 0; i < count; i++) {
500 * An HJ special. This is expensive...
502 #ifdef CONFIG_JBD_DEBUG
503 jbd_unlock_bh_state(bitmap_bh);
505 struct buffer_head *debug_bh;
506 debug_bh = sb_find_get_block(sb, block + i);
507 if (debug_bh) {
508 BUFFER_TRACE(debug_bh, "Deleted!");
509 if (!bh2jh(bitmap_bh)->b_committed_data)
510 BUFFER_TRACE(debug_bh,
511 "No commited data in bitmap");
512 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
513 __brelse(debug_bh);
516 jbd_lock_bh_state(bitmap_bh);
517 #endif
518 if (need_resched()) {
519 jbd_unlock_bh_state(bitmap_bh);
520 cond_resched();
521 jbd_lock_bh_state(bitmap_bh);
523 /* @@@ This prevents newly-allocated data from being
524 * freed and then reallocated within the same
525 * transaction.
527 * Ideally we would want to allow that to happen, but to
528 * do so requires making jbd2_journal_forget() capable of
529 * revoking the queued write of a data block, which
530 * implies blocking on the journal lock. *forget()
531 * cannot block due to truncate races.
533 * Eventually we can fix this by making jbd2_journal_forget()
534 * return a status indicating whether or not it was able
535 * to revoke the buffer. On successful revoke, it is
536 * safe not to set the allocation bit in the committed
537 * bitmap, because we know that there is no outstanding
538 * activity on the buffer any more and so it is safe to
539 * reallocate it.
541 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
542 J_ASSERT_BH(bitmap_bh,
543 bh2jh(bitmap_bh)->b_committed_data != NULL);
544 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
545 bh2jh(bitmap_bh)->b_committed_data);
548 * We clear the bit in the bitmap after setting the committed
549 * data bit, because this is the reverse order to that which
550 * the allocator uses.
552 BUFFER_TRACE(bitmap_bh, "clear bit");
553 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
554 bit + i, bitmap_bh->b_data)) {
555 jbd_unlock_bh_state(bitmap_bh);
556 ext4_error(sb, __FUNCTION__,
557 "bit already cleared for block %llu",
558 (ext4_fsblk_t)(block + i));
559 jbd_lock_bh_state(bitmap_bh);
560 BUFFER_TRACE(bitmap_bh, "bit already cleared");
561 } else {
562 group_freed++;
565 jbd_unlock_bh_state(bitmap_bh);
567 spin_lock(sb_bgl_lock(sbi, block_group));
568 desc->bg_free_blocks_count =
569 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
570 group_freed);
571 spin_unlock(sb_bgl_lock(sbi, block_group));
572 percpu_counter_mod(&sbi->s_freeblocks_counter, count);
574 /* We dirtied the bitmap block */
575 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
576 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
578 /* And the group descriptor block */
579 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
580 ret = ext4_journal_dirty_metadata(handle, gd_bh);
581 if (!err) err = ret;
582 *pdquot_freed_blocks += group_freed;
584 if (overflow && !err) {
585 block += count;
586 count = overflow;
587 goto do_more;
589 sb->s_dirt = 1;
590 error_return:
591 brelse(bitmap_bh);
592 ext4_std_error(sb, err);
593 return;
597 * ext4_free_blocks() -- Free given blocks and update quota
598 * @handle: handle for this transaction
599 * @inode: inode
600 * @block: start physical block to free
601 * @count: number of blocks to count
603 void ext4_free_blocks(handle_t *handle, struct inode *inode,
604 ext4_fsblk_t block, unsigned long count)
606 struct super_block * sb;
607 unsigned long dquot_freed_blocks;
609 sb = inode->i_sb;
610 if (!sb) {
611 printk ("ext4_free_blocks: nonexistent device");
612 return;
614 ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
615 if (dquot_freed_blocks)
616 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
617 return;
621 * ext4_test_allocatable()
622 * @nr: given allocation block group
623 * @bh: bufferhead contains the bitmap of the given block group
625 * For ext4 allocations, we must not reuse any blocks which are
626 * allocated in the bitmap buffer's "last committed data" copy. This
627 * prevents deletes from freeing up the page for reuse until we have
628 * committed the delete transaction.
630 * If we didn't do this, then deleting something and reallocating it as
631 * data would allow the old block to be overwritten before the
632 * transaction committed (because we force data to disk before commit).
633 * This would lead to corruption if we crashed between overwriting the
634 * data and committing the delete.
636 * @@@ We may want to make this allocation behaviour conditional on
637 * data-writes at some point, and disable it for metadata allocations or
638 * sync-data inodes.
640 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
642 int ret;
643 struct journal_head *jh = bh2jh(bh);
645 if (ext4_test_bit(nr, bh->b_data))
646 return 0;
648 jbd_lock_bh_state(bh);
649 if (!jh->b_committed_data)
650 ret = 1;
651 else
652 ret = !ext4_test_bit(nr, jh->b_committed_data);
653 jbd_unlock_bh_state(bh);
654 return ret;
658 * bitmap_search_next_usable_block()
659 * @start: the starting block (group relative) of the search
660 * @bh: bufferhead contains the block group bitmap
661 * @maxblocks: the ending block (group relative) of the reservation
663 * The bitmap search --- search forward alternately through the actual
664 * bitmap on disk and the last-committed copy in journal, until we find a
665 * bit free in both bitmaps.
667 static ext4_grpblk_t
668 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
669 ext4_grpblk_t maxblocks)
671 ext4_grpblk_t next;
672 struct journal_head *jh = bh2jh(bh);
674 while (start < maxblocks) {
675 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
676 if (next >= maxblocks)
677 return -1;
678 if (ext4_test_allocatable(next, bh))
679 return next;
680 jbd_lock_bh_state(bh);
681 if (jh->b_committed_data)
682 start = ext4_find_next_zero_bit(jh->b_committed_data,
683 maxblocks, next);
684 jbd_unlock_bh_state(bh);
686 return -1;
690 * find_next_usable_block()
691 * @start: the starting block (group relative) to find next
692 * allocatable block in bitmap.
693 * @bh: bufferhead contains the block group bitmap
694 * @maxblocks: the ending block (group relative) for the search
696 * Find an allocatable block in a bitmap. We honor both the bitmap and
697 * its last-committed copy (if that exists), and perform the "most
698 * appropriate allocation" algorithm of looking for a free block near
699 * the initial goal; then for a free byte somewhere in the bitmap; then
700 * for any free bit in the bitmap.
702 static ext4_grpblk_t
703 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
704 ext4_grpblk_t maxblocks)
706 ext4_grpblk_t here, next;
707 char *p, *r;
709 if (start > 0) {
711 * The goal was occupied; search forward for a free
712 * block within the next XX blocks.
714 * end_goal is more or less random, but it has to be
715 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
716 * next 64-bit boundary is simple..
718 ext4_grpblk_t end_goal = (start + 63) & ~63;
719 if (end_goal > maxblocks)
720 end_goal = maxblocks;
721 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
722 if (here < end_goal && ext4_test_allocatable(here, bh))
723 return here;
724 ext4_debug("Bit not found near goal\n");
727 here = start;
728 if (here < 0)
729 here = 0;
731 p = ((char *)bh->b_data) + (here >> 3);
732 r = memscan(p, 0, (maxblocks - here + 7) >> 3);
733 next = (r - ((char *)bh->b_data)) << 3;
735 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
736 return next;
739 * The bitmap search --- search forward alternately through the actual
740 * bitmap and the last-committed copy until we find a bit free in
741 * both
743 here = bitmap_search_next_usable_block(here, bh, maxblocks);
744 return here;
748 * claim_block()
749 * @block: the free block (group relative) to allocate
750 * @bh: the bufferhead containts the block group bitmap
752 * We think we can allocate this block in this bitmap. Try to set the bit.
753 * If that succeeds then check that nobody has allocated and then freed the
754 * block since we saw that is was not marked in b_committed_data. If it _was_
755 * allocated and freed then clear the bit in the bitmap again and return
756 * zero (failure).
758 static inline int
759 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
761 struct journal_head *jh = bh2jh(bh);
762 int ret;
764 if (ext4_set_bit_atomic(lock, block, bh->b_data))
765 return 0;
766 jbd_lock_bh_state(bh);
767 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
768 ext4_clear_bit_atomic(lock, block, bh->b_data);
769 ret = 0;
770 } else {
771 ret = 1;
773 jbd_unlock_bh_state(bh);
774 return ret;
778 * ext4_try_to_allocate()
779 * @sb: superblock
780 * @handle: handle to this transaction
781 * @group: given allocation block group
782 * @bitmap_bh: bufferhead holds the block bitmap
783 * @grp_goal: given target block within the group
784 * @count: target number of blocks to allocate
785 * @my_rsv: reservation window
787 * Attempt to allocate blocks within a give range. Set the range of allocation
788 * first, then find the first free bit(s) from the bitmap (within the range),
789 * and at last, allocate the blocks by claiming the found free bit as allocated.
791 * To set the range of this allocation:
792 * if there is a reservation window, only try to allocate block(s) from the
793 * file's own reservation window;
794 * Otherwise, the allocation range starts from the give goal block, ends at
795 * the block group's last block.
797 * If we failed to allocate the desired block then we may end up crossing to a
798 * new bitmap. In that case we must release write access to the old one via
799 * ext4_journal_release_buffer(), else we'll run out of credits.
801 static ext4_grpblk_t
802 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
803 struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
804 unsigned long *count, struct ext4_reserve_window *my_rsv)
806 ext4_fsblk_t group_first_block;
807 ext4_grpblk_t start, end;
808 unsigned long num = 0;
810 /* we do allocation within the reservation window if we have a window */
811 if (my_rsv) {
812 group_first_block = ext4_group_first_block_no(sb, group);
813 if (my_rsv->_rsv_start >= group_first_block)
814 start = my_rsv->_rsv_start - group_first_block;
815 else
816 /* reservation window cross group boundary */
817 start = 0;
818 end = my_rsv->_rsv_end - group_first_block + 1;
819 if (end > EXT4_BLOCKS_PER_GROUP(sb))
820 /* reservation window crosses group boundary */
821 end = EXT4_BLOCKS_PER_GROUP(sb);
822 if ((start <= grp_goal) && (grp_goal < end))
823 start = grp_goal;
824 else
825 grp_goal = -1;
826 } else {
827 if (grp_goal > 0)
828 start = grp_goal;
829 else
830 start = 0;
831 end = EXT4_BLOCKS_PER_GROUP(sb);
834 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
836 repeat:
837 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
838 grp_goal = find_next_usable_block(start, bitmap_bh, end);
839 if (grp_goal < 0)
840 goto fail_access;
841 if (!my_rsv) {
842 int i;
844 for (i = 0; i < 7 && grp_goal > start &&
845 ext4_test_allocatable(grp_goal - 1,
846 bitmap_bh);
847 i++, grp_goal--)
851 start = grp_goal;
853 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
854 grp_goal, bitmap_bh)) {
856 * The block was allocated by another thread, or it was
857 * allocated and then freed by another thread
859 start++;
860 grp_goal++;
861 if (start >= end)
862 goto fail_access;
863 goto repeat;
865 num++;
866 grp_goal++;
867 while (num < *count && grp_goal < end
868 && ext4_test_allocatable(grp_goal, bitmap_bh)
869 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
870 grp_goal, bitmap_bh)) {
871 num++;
872 grp_goal++;
874 *count = num;
875 return grp_goal - num;
876 fail_access:
877 *count = num;
878 return -1;
882 * find_next_reservable_window():
883 * find a reservable space within the given range.
884 * It does not allocate the reservation window for now:
885 * alloc_new_reservation() will do the work later.
887 * @search_head: the head of the searching list;
888 * This is not necessarily the list head of the whole filesystem
890 * We have both head and start_block to assist the search
891 * for the reservable space. The list starts from head,
892 * but we will shift to the place where start_block is,
893 * then start from there, when looking for a reservable space.
895 * @size: the target new reservation window size
897 * @group_first_block: the first block we consider to start
898 * the real search from
900 * @last_block:
901 * the maximum block number that our goal reservable space
902 * could start from. This is normally the last block in this
903 * group. The search will end when we found the start of next
904 * possible reservable space is out of this boundary.
905 * This could handle the cross boundary reservation window
906 * request.
908 * basically we search from the given range, rather than the whole
909 * reservation double linked list, (start_block, last_block)
910 * to find a free region that is of my size and has not
911 * been reserved.
914 static int find_next_reservable_window(
915 struct ext4_reserve_window_node *search_head,
916 struct ext4_reserve_window_node *my_rsv,
917 struct super_block * sb,
918 ext4_fsblk_t start_block,
919 ext4_fsblk_t last_block)
921 struct rb_node *next;
922 struct ext4_reserve_window_node *rsv, *prev;
923 ext4_fsblk_t cur;
924 int size = my_rsv->rsv_goal_size;
926 /* TODO: make the start of the reservation window byte-aligned */
927 /* cur = *start_block & ~7;*/
928 cur = start_block;
929 rsv = search_head;
930 if (!rsv)
931 return -1;
933 while (1) {
934 if (cur <= rsv->rsv_end)
935 cur = rsv->rsv_end + 1;
937 /* TODO?
938 * in the case we could not find a reservable space
939 * that is what is expected, during the re-search, we could
940 * remember what's the largest reservable space we could have
941 * and return that one.
943 * For now it will fail if we could not find the reservable
944 * space with expected-size (or more)...
946 if (cur > last_block)
947 return -1; /* fail */
949 prev = rsv;
950 next = rb_next(&rsv->rsv_node);
951 rsv = list_entry(next,struct ext4_reserve_window_node,rsv_node);
954 * Reached the last reservation, we can just append to the
955 * previous one.
957 if (!next)
958 break;
960 if (cur + size <= rsv->rsv_start) {
962 * Found a reserveable space big enough. We could
963 * have a reservation across the group boundary here
965 break;
969 * we come here either :
970 * when we reach the end of the whole list,
971 * and there is empty reservable space after last entry in the list.
972 * append it to the end of the list.
974 * or we found one reservable space in the middle of the list,
975 * return the reservation window that we could append to.
976 * succeed.
979 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
980 rsv_window_remove(sb, my_rsv);
983 * Let's book the whole avaliable window for now. We will check the
984 * disk bitmap later and then, if there are free blocks then we adjust
985 * the window size if it's larger than requested.
986 * Otherwise, we will remove this node from the tree next time
987 * call find_next_reservable_window.
989 my_rsv->rsv_start = cur;
990 my_rsv->rsv_end = cur + size - 1;
991 my_rsv->rsv_alloc_hit = 0;
993 if (prev != my_rsv)
994 ext4_rsv_window_add(sb, my_rsv);
996 return 0;
1000 * alloc_new_reservation()--allocate a new reservation window
1002 * To make a new reservation, we search part of the filesystem
1003 * reservation list (the list that inside the group). We try to
1004 * allocate a new reservation window near the allocation goal,
1005 * or the beginning of the group, if there is no goal.
1007 * We first find a reservable space after the goal, then from
1008 * there, we check the bitmap for the first free block after
1009 * it. If there is no free block until the end of group, then the
1010 * whole group is full, we failed. Otherwise, check if the free
1011 * block is inside the expected reservable space, if so, we
1012 * succeed.
1013 * If the first free block is outside the reservable space, then
1014 * start from the first free block, we search for next available
1015 * space, and go on.
1017 * on succeed, a new reservation will be found and inserted into the list
1018 * It contains at least one free block, and it does not overlap with other
1019 * reservation windows.
1021 * failed: we failed to find a reservation window in this group
1023 * @rsv: the reservation
1025 * @grp_goal: The goal (group-relative). It is where the search for a
1026 * free reservable space should start from.
1027 * if we have a grp_goal(grp_goal >0 ), then start from there,
1028 * no grp_goal(grp_goal = -1), we start from the first block
1029 * of the group.
1031 * @sb: the super block
1032 * @group: the group we are trying to allocate in
1033 * @bitmap_bh: the block group block bitmap
1036 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1037 ext4_grpblk_t grp_goal, struct super_block *sb,
1038 unsigned int group, struct buffer_head *bitmap_bh)
1040 struct ext4_reserve_window_node *search_head;
1041 ext4_fsblk_t group_first_block, group_end_block, start_block;
1042 ext4_grpblk_t first_free_block;
1043 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1044 unsigned long size;
1045 int ret;
1046 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1048 group_first_block = ext4_group_first_block_no(sb, group);
1049 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1051 if (grp_goal < 0)
1052 start_block = group_first_block;
1053 else
1054 start_block = grp_goal + group_first_block;
1056 size = my_rsv->rsv_goal_size;
1058 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1060 * if the old reservation is cross group boundary
1061 * and if the goal is inside the old reservation window,
1062 * we will come here when we just failed to allocate from
1063 * the first part of the window. We still have another part
1064 * that belongs to the next group. In this case, there is no
1065 * point to discard our window and try to allocate a new one
1066 * in this group(which will fail). we should
1067 * keep the reservation window, just simply move on.
1069 * Maybe we could shift the start block of the reservation
1070 * window to the first block of next group.
1073 if ((my_rsv->rsv_start <= group_end_block) &&
1074 (my_rsv->rsv_end > group_end_block) &&
1075 (start_block >= my_rsv->rsv_start))
1076 return -1;
1078 if ((my_rsv->rsv_alloc_hit >
1079 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1081 * if the previously allocation hit ratio is
1082 * greater than 1/2, then we double the size of
1083 * the reservation window the next time,
1084 * otherwise we keep the same size window
1086 size = size * 2;
1087 if (size > EXT4_MAX_RESERVE_BLOCKS)
1088 size = EXT4_MAX_RESERVE_BLOCKS;
1089 my_rsv->rsv_goal_size= size;
1093 spin_lock(rsv_lock);
1095 * shift the search start to the window near the goal block
1097 search_head = search_reserve_window(fs_rsv_root, start_block);
1100 * find_next_reservable_window() simply finds a reservable window
1101 * inside the given range(start_block, group_end_block).
1103 * To make sure the reservation window has a free bit inside it, we
1104 * need to check the bitmap after we found a reservable window.
1106 retry:
1107 ret = find_next_reservable_window(search_head, my_rsv, sb,
1108 start_block, group_end_block);
1110 if (ret == -1) {
1111 if (!rsv_is_empty(&my_rsv->rsv_window))
1112 rsv_window_remove(sb, my_rsv);
1113 spin_unlock(rsv_lock);
1114 return -1;
1118 * On success, find_next_reservable_window() returns the
1119 * reservation window where there is a reservable space after it.
1120 * Before we reserve this reservable space, we need
1121 * to make sure there is at least a free block inside this region.
1123 * searching the first free bit on the block bitmap and copy of
1124 * last committed bitmap alternatively, until we found a allocatable
1125 * block. Search start from the start block of the reservable space
1126 * we just found.
1128 spin_unlock(rsv_lock);
1129 first_free_block = bitmap_search_next_usable_block(
1130 my_rsv->rsv_start - group_first_block,
1131 bitmap_bh, group_end_block - group_first_block + 1);
1133 if (first_free_block < 0) {
1135 * no free block left on the bitmap, no point
1136 * to reserve the space. return failed.
1138 spin_lock(rsv_lock);
1139 if (!rsv_is_empty(&my_rsv->rsv_window))
1140 rsv_window_remove(sb, my_rsv);
1141 spin_unlock(rsv_lock);
1142 return -1; /* failed */
1145 start_block = first_free_block + group_first_block;
1147 * check if the first free block is within the
1148 * free space we just reserved
1150 if (start_block >= my_rsv->rsv_start && start_block < my_rsv->rsv_end)
1151 return 0; /* success */
1153 * if the first free bit we found is out of the reservable space
1154 * continue search for next reservable space,
1155 * start from where the free block is,
1156 * we also shift the list head to where we stopped last time
1158 search_head = my_rsv;
1159 spin_lock(rsv_lock);
1160 goto retry;
1164 * try_to_extend_reservation()
1165 * @my_rsv: given reservation window
1166 * @sb: super block
1167 * @size: the delta to extend
1169 * Attempt to expand the reservation window large enough to have
1170 * required number of free blocks
1172 * Since ext4_try_to_allocate() will always allocate blocks within
1173 * the reservation window range, if the window size is too small,
1174 * multiple blocks allocation has to stop at the end of the reservation
1175 * window. To make this more efficient, given the total number of
1176 * blocks needed and the current size of the window, we try to
1177 * expand the reservation window size if necessary on a best-effort
1178 * basis before ext4_new_blocks() tries to allocate blocks,
1180 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1181 struct super_block *sb, int size)
1183 struct ext4_reserve_window_node *next_rsv;
1184 struct rb_node *next;
1185 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1187 if (!spin_trylock(rsv_lock))
1188 return;
1190 next = rb_next(&my_rsv->rsv_node);
1192 if (!next)
1193 my_rsv->rsv_end += size;
1194 else {
1195 next_rsv = list_entry(next, struct ext4_reserve_window_node, rsv_node);
1197 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1198 my_rsv->rsv_end += size;
1199 else
1200 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1202 spin_unlock(rsv_lock);
1206 * ext4_try_to_allocate_with_rsv()
1207 * @sb: superblock
1208 * @handle: handle to this transaction
1209 * @group: given allocation block group
1210 * @bitmap_bh: bufferhead holds the block bitmap
1211 * @grp_goal: given target block within the group
1212 * @count: target number of blocks to allocate
1213 * @my_rsv: reservation window
1214 * @errp: pointer to store the error code
1216 * This is the main function used to allocate a new block and its reservation
1217 * window.
1219 * Each time when a new block allocation is need, first try to allocate from
1220 * its own reservation. If it does not have a reservation window, instead of
1221 * looking for a free bit on bitmap first, then look up the reservation list to
1222 * see if it is inside somebody else's reservation window, we try to allocate a
1223 * reservation window for it starting from the goal first. Then do the block
1224 * allocation within the reservation window.
1226 * This will avoid keeping on searching the reservation list again and
1227 * again when somebody is looking for a free block (without
1228 * reservation), and there are lots of free blocks, but they are all
1229 * being reserved.
1231 * We use a red-black tree for the per-filesystem reservation list.
1234 static ext4_grpblk_t
1235 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1236 unsigned int group, struct buffer_head *bitmap_bh,
1237 ext4_grpblk_t grp_goal,
1238 struct ext4_reserve_window_node * my_rsv,
1239 unsigned long *count, int *errp)
1241 ext4_fsblk_t group_first_block, group_last_block;
1242 ext4_grpblk_t ret = 0;
1243 int fatal;
1244 unsigned long num = *count;
1246 *errp = 0;
1249 * Make sure we use undo access for the bitmap, because it is critical
1250 * that we do the frozen_data COW on bitmap buffers in all cases even
1251 * if the buffer is in BJ_Forget state in the committing transaction.
1253 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1254 fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1255 if (fatal) {
1256 *errp = fatal;
1257 return -1;
1261 * we don't deal with reservation when
1262 * filesystem is mounted without reservation
1263 * or the file is not a regular file
1264 * or last attempt to allocate a block with reservation turned on failed
1266 if (my_rsv == NULL ) {
1267 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1268 grp_goal, count, NULL);
1269 goto out;
1272 * grp_goal is a group relative block number (if there is a goal)
1273 * 0 < grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1274 * first block is a filesystem wide block number
1275 * first block is the block number of the first block in this group
1277 group_first_block = ext4_group_first_block_no(sb, group);
1278 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1281 * Basically we will allocate a new block from inode's reservation
1282 * window.
1284 * We need to allocate a new reservation window, if:
1285 * a) inode does not have a reservation window; or
1286 * b) last attempt to allocate a block from existing reservation
1287 * failed; or
1288 * c) we come here with a goal and with a reservation window
1290 * We do not need to allocate a new reservation window if we come here
1291 * at the beginning with a goal and the goal is inside the window, or
1292 * we don't have a goal but already have a reservation window.
1293 * then we could go to allocate from the reservation window directly.
1295 while (1) {
1296 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1297 !goal_in_my_reservation(&my_rsv->rsv_window,
1298 grp_goal, group, sb)) {
1299 if (my_rsv->rsv_goal_size < *count)
1300 my_rsv->rsv_goal_size = *count;
1301 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1302 group, bitmap_bh);
1303 if (ret < 0)
1304 break; /* failed */
1306 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1307 grp_goal, group, sb))
1308 grp_goal = -1;
1309 } else if (grp_goal > 0 &&
1310 (my_rsv->rsv_end-grp_goal+1) < *count)
1311 try_to_extend_reservation(my_rsv, sb,
1312 *count-my_rsv->rsv_end + grp_goal - 1);
1314 if ((my_rsv->rsv_start > group_last_block) ||
1315 (my_rsv->rsv_end < group_first_block)) {
1316 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1317 BUG();
1319 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1320 grp_goal, &num, &my_rsv->rsv_window);
1321 if (ret >= 0) {
1322 my_rsv->rsv_alloc_hit += num;
1323 *count = num;
1324 break; /* succeed */
1326 num = *count;
1328 out:
1329 if (ret >= 0) {
1330 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1331 "bitmap block");
1332 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1333 if (fatal) {
1334 *errp = fatal;
1335 return -1;
1337 return ret;
1340 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1341 ext4_journal_release_buffer(handle, bitmap_bh);
1342 return ret;
1346 * ext4_has_free_blocks()
1347 * @sbi: in-core super block structure.
1349 * Check if filesystem has at least 1 free block available for allocation.
1351 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1353 ext4_fsblk_t free_blocks, root_blocks;
1355 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1356 root_blocks = ext4_r_blocks_count(sbi->s_es);
1357 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1358 sbi->s_resuid != current->fsuid &&
1359 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1360 return 0;
1362 return 1;
1366 * ext4_should_retry_alloc()
1367 * @sb: super block
1368 * @retries number of attemps has been made
1370 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1371 * it is profitable to retry the operation, this function will wait
1372 * for the current or commiting transaction to complete, and then
1373 * return TRUE.
1375 * if the total number of retries exceed three times, return FALSE.
1377 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1379 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1380 return 0;
1382 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1384 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1388 * ext4_new_blocks() -- core block(s) allocation function
1389 * @handle: handle to this transaction
1390 * @inode: file inode
1391 * @goal: given target block(filesystem wide)
1392 * @count: target number of blocks to allocate
1393 * @errp: error code
1395 * ext4_new_blocks uses a goal block to assist allocation. It tries to
1396 * allocate block(s) from the block group contains the goal block first. If that
1397 * fails, it will try to allocate block(s) from other block groups without
1398 * any specific goal block.
1401 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1402 ext4_fsblk_t goal, unsigned long *count, int *errp)
1404 struct buffer_head *bitmap_bh = NULL;
1405 struct buffer_head *gdp_bh;
1406 unsigned long group_no;
1407 int goal_group;
1408 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1409 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1410 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */
1411 int bgi; /* blockgroup iteration index */
1412 int fatal = 0, err;
1413 int performed_allocation = 0;
1414 ext4_grpblk_t free_blocks; /* number of free blocks in a group */
1415 struct super_block *sb;
1416 struct ext4_group_desc *gdp;
1417 struct ext4_super_block *es;
1418 struct ext4_sb_info *sbi;
1419 struct ext4_reserve_window_node *my_rsv = NULL;
1420 struct ext4_block_alloc_info *block_i;
1421 unsigned short windowsz = 0;
1422 #ifdef EXT4FS_DEBUG
1423 static int goal_hits, goal_attempts;
1424 #endif
1425 unsigned long ngroups;
1426 unsigned long num = *count;
1428 *errp = -ENOSPC;
1429 sb = inode->i_sb;
1430 if (!sb) {
1431 printk("ext4_new_block: nonexistent device");
1432 return 0;
1436 * Check quota for allocation of this block.
1438 if (DQUOT_ALLOC_BLOCK(inode, num)) {
1439 *errp = -EDQUOT;
1440 return 0;
1443 sbi = EXT4_SB(sb);
1444 es = EXT4_SB(sb)->s_es;
1445 ext4_debug("goal=%lu.\n", goal);
1447 * Allocate a block from reservation only when
1448 * filesystem is mounted with reservation(default,-o reservation), and
1449 * it's a regular file, and
1450 * the desired window size is greater than 0 (One could use ioctl
1451 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1452 * reservation on that particular file)
1454 block_i = EXT4_I(inode)->i_block_alloc_info;
1455 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1456 my_rsv = &block_i->rsv_window_node;
1458 if (!ext4_has_free_blocks(sbi)) {
1459 *errp = -ENOSPC;
1460 goto out;
1464 * First, test whether the goal block is free.
1466 if (goal < le32_to_cpu(es->s_first_data_block) ||
1467 goal >= ext4_blocks_count(es))
1468 goal = le32_to_cpu(es->s_first_data_block);
1469 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1470 goal_group = group_no;
1471 retry_alloc:
1472 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1473 if (!gdp)
1474 goto io_error;
1476 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1478 * if there is not enough free blocks to make a new resevation
1479 * turn off reservation for this allocation
1481 if (my_rsv && (free_blocks < windowsz)
1482 && (rsv_is_empty(&my_rsv->rsv_window)))
1483 my_rsv = NULL;
1485 if (free_blocks > 0) {
1486 bitmap_bh = read_block_bitmap(sb, group_no);
1487 if (!bitmap_bh)
1488 goto io_error;
1489 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1490 group_no, bitmap_bh, grp_target_blk,
1491 my_rsv, &num, &fatal);
1492 if (fatal)
1493 goto out;
1494 if (grp_alloc_blk >= 0)
1495 goto allocated;
1498 ngroups = EXT4_SB(sb)->s_groups_count;
1499 smp_rmb();
1502 * Now search the rest of the groups. We assume that
1503 * i and gdp correctly point to the last group visited.
1505 for (bgi = 0; bgi < ngroups; bgi++) {
1506 group_no++;
1507 if (group_no >= ngroups)
1508 group_no = 0;
1509 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1510 if (!gdp) {
1511 *errp = -EIO;
1512 goto out;
1514 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1516 * skip this group if the number of
1517 * free blocks is less than half of the reservation
1518 * window size.
1520 if (free_blocks <= (windowsz/2))
1521 continue;
1523 brelse(bitmap_bh);
1524 bitmap_bh = read_block_bitmap(sb, group_no);
1525 if (!bitmap_bh)
1526 goto io_error;
1528 * try to allocate block(s) from this group, without a goal(-1).
1530 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1531 group_no, bitmap_bh, -1, my_rsv,
1532 &num, &fatal);
1533 if (fatal)
1534 goto out;
1535 if (grp_alloc_blk >= 0)
1536 goto allocated;
1539 * We may end up a bogus ealier ENOSPC error due to
1540 * filesystem is "full" of reservations, but
1541 * there maybe indeed free blocks avaliable on disk
1542 * In this case, we just forget about the reservations
1543 * just do block allocation as without reservations.
1545 if (my_rsv) {
1546 my_rsv = NULL;
1547 group_no = goal_group;
1548 goto retry_alloc;
1550 /* No space left on the device */
1551 *errp = -ENOSPC;
1552 goto out;
1554 allocated:
1556 ext4_debug("using block group %d(%d)\n",
1557 group_no, gdp->bg_free_blocks_count);
1559 BUFFER_TRACE(gdp_bh, "get_write_access");
1560 fatal = ext4_journal_get_write_access(handle, gdp_bh);
1561 if (fatal)
1562 goto out;
1564 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1566 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1567 in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1568 in_range(ret_block, ext4_inode_table(sb, gdp),
1569 EXT4_SB(sb)->s_itb_per_group) ||
1570 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1571 EXT4_SB(sb)->s_itb_per_group))
1572 ext4_error(sb, "ext4_new_block",
1573 "Allocating block in system zone - "
1574 "blocks from %llu, length %lu",
1575 ret_block, num);
1577 performed_allocation = 1;
1579 #ifdef CONFIG_JBD_DEBUG
1581 struct buffer_head *debug_bh;
1583 /* Record bitmap buffer state in the newly allocated block */
1584 debug_bh = sb_find_get_block(sb, ret_block);
1585 if (debug_bh) {
1586 BUFFER_TRACE(debug_bh, "state when allocated");
1587 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1588 brelse(debug_bh);
1591 jbd_lock_bh_state(bitmap_bh);
1592 spin_lock(sb_bgl_lock(sbi, group_no));
1593 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1594 int i;
1596 for (i = 0; i < num; i++) {
1597 if (ext4_test_bit(grp_alloc_blk+i,
1598 bh2jh(bitmap_bh)->b_committed_data)) {
1599 printk("%s: block was unexpectedly set in "
1600 "b_committed_data\n", __FUNCTION__);
1604 ext4_debug("found bit %d\n", grp_alloc_blk);
1605 spin_unlock(sb_bgl_lock(sbi, group_no));
1606 jbd_unlock_bh_state(bitmap_bh);
1607 #endif
1609 if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1610 ext4_error(sb, "ext4_new_block",
1611 "block(%llu) >= blocks count(%llu) - "
1612 "block_group = %lu, es == %p ", ret_block,
1613 ext4_blocks_count(es), group_no, es);
1614 goto out;
1618 * It is up to the caller to add the new buffer to a journal
1619 * list of some description. We don't know in advance whether
1620 * the caller wants to use it as metadata or data.
1622 ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1623 ret_block, goal_hits, goal_attempts);
1625 spin_lock(sb_bgl_lock(sbi, group_no));
1626 gdp->bg_free_blocks_count =
1627 cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1628 spin_unlock(sb_bgl_lock(sbi, group_no));
1629 percpu_counter_mod(&sbi->s_freeblocks_counter, -num);
1631 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1632 err = ext4_journal_dirty_metadata(handle, gdp_bh);
1633 if (!fatal)
1634 fatal = err;
1636 sb->s_dirt = 1;
1637 if (fatal)
1638 goto out;
1640 *errp = 0;
1641 brelse(bitmap_bh);
1642 DQUOT_FREE_BLOCK(inode, *count-num);
1643 *count = num;
1644 return ret_block;
1646 io_error:
1647 *errp = -EIO;
1648 out:
1649 if (fatal) {
1650 *errp = fatal;
1651 ext4_std_error(sb, fatal);
1654 * Undo the block allocation
1656 if (!performed_allocation)
1657 DQUOT_FREE_BLOCK(inode, *count);
1658 brelse(bitmap_bh);
1659 return 0;
1662 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1663 ext4_fsblk_t goal, int *errp)
1665 unsigned long count = 1;
1667 return ext4_new_blocks(handle, inode, goal, &count, errp);
1671 * ext4_count_free_blocks() -- count filesystem free blocks
1672 * @sb: superblock
1674 * Adds up the number of free blocks from each block group.
1676 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1678 ext4_fsblk_t desc_count;
1679 struct ext4_group_desc *gdp;
1680 int i;
1681 unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
1682 #ifdef EXT4FS_DEBUG
1683 struct ext4_super_block *es;
1684 ext4_fsblk_t bitmap_count;
1685 unsigned long x;
1686 struct buffer_head *bitmap_bh = NULL;
1688 es = EXT4_SB(sb)->s_es;
1689 desc_count = 0;
1690 bitmap_count = 0;
1691 gdp = NULL;
1693 smp_rmb();
1694 for (i = 0; i < ngroups; i++) {
1695 gdp = ext4_get_group_desc(sb, i, NULL);
1696 if (!gdp)
1697 continue;
1698 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1699 brelse(bitmap_bh);
1700 bitmap_bh = read_block_bitmap(sb, i);
1701 if (bitmap_bh == NULL)
1702 continue;
1704 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1705 printk("group %d: stored = %d, counted = %lu\n",
1706 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1707 bitmap_count += x;
1709 brelse(bitmap_bh);
1710 printk("ext4_count_free_blocks: stored = %llu"
1711 ", computed = %llu, %llu\n",
1712 EXT4_FREE_BLOCKS_COUNT(es),
1713 desc_count, bitmap_count);
1714 return bitmap_count;
1715 #else
1716 desc_count = 0;
1717 smp_rmb();
1718 for (i = 0; i < ngroups; i++) {
1719 gdp = ext4_get_group_desc(sb, i, NULL);
1720 if (!gdp)
1721 continue;
1722 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1725 return desc_count;
1726 #endif
1729 static inline int
1730 block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map)
1732 ext4_grpblk_t offset;
1734 ext4_get_group_no_and_offset(sb, block, NULL, &offset);
1735 return ext4_test_bit (offset, map);
1738 static inline int test_root(int a, int b)
1740 int num = b;
1742 while (a > num)
1743 num *= b;
1744 return num == a;
1747 static int ext4_group_sparse(int group)
1749 if (group <= 1)
1750 return 1;
1751 if (!(group & 1))
1752 return 0;
1753 return (test_root(group, 7) || test_root(group, 5) ||
1754 test_root(group, 3));
1758 * ext4_bg_has_super - number of blocks used by the superblock in group
1759 * @sb: superblock for filesystem
1760 * @group: group number to check
1762 * Return the number of blocks used by the superblock (primary or backup)
1763 * in this group. Currently this will be only 0 or 1.
1765 int ext4_bg_has_super(struct super_block *sb, int group)
1767 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1768 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1769 !ext4_group_sparse(group))
1770 return 0;
1771 return 1;
1774 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1776 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1777 unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1778 unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1780 if (group == first || group == first + 1 || group == last)
1781 return 1;
1782 return 0;
1785 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1787 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1788 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1789 !ext4_group_sparse(group))
1790 return 0;
1791 return EXT4_SB(sb)->s_gdb_count;
1795 * ext4_bg_num_gdb - number of blocks used by the group table in group
1796 * @sb: superblock for filesystem
1797 * @group: group number to check
1799 * Return the number of blocks used by the group descriptor table
1800 * (primary or backup) in this group. In the future there may be a
1801 * different number of descriptor blocks in each group.
1803 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1805 unsigned long first_meta_bg =
1806 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1807 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1809 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1810 metagroup < first_meta_bg)
1811 return ext4_bg_num_gdb_nometa(sb,group);
1813 return ext4_bg_num_gdb_meta(sb,group);