4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
77 #include <trace/events/sched.h>
80 * Protected counters by write_lock_irq(&tasklist_lock)
82 unsigned long total_forks
; /* Handle normal Linux uptimes. */
83 int nr_threads
; /* The idle threads do not count.. */
85 int max_threads
; /* tunable limit on nr_threads */
87 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
89 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
94 return lockdep_is_held(&tasklist_lock
);
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
99 int nr_processes(void)
104 for_each_possible_cpu(cpu
)
105 total
+= per_cpu(process_counts
, cpu
);
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct_node(node) \
112 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113 # define free_task_struct(tsk) \
114 kmem_cache_free(task_struct_cachep, (tsk))
115 static struct kmem_cache
*task_struct_cachep
;
118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
122 #ifdef CONFIG_DEBUG_STACK_USAGE
123 gfp_t mask
= GFP_KERNEL
| __GFP_ZERO
;
125 gfp_t mask
= GFP_KERNEL
;
127 struct page
*page
= alloc_pages_node(node
, mask
, THREAD_SIZE_ORDER
);
129 return page
? page_address(page
) : NULL
;
132 static inline void free_thread_info(struct thread_info
*ti
)
134 free_pages((unsigned long)ti
, THREAD_SIZE_ORDER
);
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache
*signal_cachep
;
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache
*sighand_cachep
;
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache
*files_cachep
;
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache
*fs_cachep
;
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache
*vm_area_cachep
;
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache
*mm_cachep
;
156 static void account_kernel_stack(struct thread_info
*ti
, int account
)
158 struct zone
*zone
= page_zone(virt_to_page(ti
));
160 mod_zone_page_state(zone
, NR_KERNEL_STACK
, account
);
163 void free_task(struct task_struct
*tsk
)
165 prop_local_destroy_single(&tsk
->dirties
);
166 account_kernel_stack(tsk
->stack
, -1);
167 free_thread_info(tsk
->stack
);
168 rt_mutex_debug_task_free(tsk
);
169 ftrace_graph_exit_task(tsk
);
170 free_task_struct(tsk
);
172 EXPORT_SYMBOL(free_task
);
174 static inline void free_signal_struct(struct signal_struct
*sig
)
176 taskstats_tgid_free(sig
);
177 sched_autogroup_exit(sig
);
178 kmem_cache_free(signal_cachep
, sig
);
181 static inline void put_signal_struct(struct signal_struct
*sig
)
183 if (atomic_dec_and_test(&sig
->sigcnt
))
184 free_signal_struct(sig
);
187 void __put_task_struct(struct task_struct
*tsk
)
189 WARN_ON(!tsk
->exit_state
);
190 WARN_ON(atomic_read(&tsk
->usage
));
191 WARN_ON(tsk
== current
);
194 delayacct_tsk_free(tsk
);
195 put_signal_struct(tsk
->signal
);
197 if (!profile_handoff_task(tsk
))
200 EXPORT_SYMBOL_GPL(__put_task_struct
);
203 * macro override instead of weak attribute alias, to workaround
204 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
206 #ifndef arch_task_cache_init
207 #define arch_task_cache_init()
210 void __init
fork_init(unsigned long mempages
)
212 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
213 #ifndef ARCH_MIN_TASKALIGN
214 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
216 /* create a slab on which task_structs can be allocated */
218 kmem_cache_create("task_struct", sizeof(struct task_struct
),
219 ARCH_MIN_TASKALIGN
, SLAB_PANIC
| SLAB_NOTRACK
, NULL
);
222 /* do the arch specific task caches init */
223 arch_task_cache_init();
226 * The default maximum number of threads is set to a safe
227 * value: the thread structures can take up at most half
230 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
233 * we need to allow at least 20 threads to boot a system
235 if (max_threads
< 20)
238 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
239 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
240 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
241 init_task
.signal
->rlim
[RLIMIT_NPROC
];
244 int __attribute__((weak
)) arch_dup_task_struct(struct task_struct
*dst
,
245 struct task_struct
*src
)
251 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
253 struct task_struct
*tsk
;
254 struct thread_info
*ti
;
255 unsigned long *stackend
;
256 int node
= tsk_fork_get_node(orig
);
259 prepare_to_copy(orig
);
261 tsk
= alloc_task_struct_node(node
);
265 ti
= alloc_thread_info_node(tsk
, node
);
267 free_task_struct(tsk
);
271 err
= arch_dup_task_struct(tsk
, orig
);
277 err
= prop_local_init_single(&tsk
->dirties
);
281 setup_thread_stack(tsk
, orig
);
282 clear_user_return_notifier(tsk
);
283 clear_tsk_need_resched(tsk
);
284 stackend
= end_of_stack(tsk
);
285 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
287 #ifdef CONFIG_CC_STACKPROTECTOR
288 tsk
->stack_canary
= get_random_int();
292 * One for us, one for whoever does the "release_task()" (usually
295 atomic_set(&tsk
->usage
, 2);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
299 tsk
->splice_pipe
= NULL
;
301 account_kernel_stack(ti
, 1);
306 free_thread_info(ti
);
307 free_task_struct(tsk
);
312 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
314 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
315 struct rb_node
**rb_link
, *rb_parent
;
317 unsigned long charge
;
318 struct mempolicy
*pol
;
320 down_write(&oldmm
->mmap_sem
);
321 flush_cache_dup_mm(oldmm
);
323 * Not linked in yet - no deadlock potential:
325 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
329 mm
->mmap_cache
= NULL
;
330 mm
->free_area_cache
= oldmm
->mmap_base
;
331 mm
->cached_hole_size
= ~0UL;
333 cpumask_clear(mm_cpumask(mm
));
335 rb_link
= &mm
->mm_rb
.rb_node
;
338 retval
= ksm_fork(mm
, oldmm
);
341 retval
= khugepaged_fork(mm
, oldmm
);
346 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
349 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
350 long pages
= vma_pages(mpnt
);
351 mm
->total_vm
-= pages
;
352 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
357 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
358 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
359 if (security_vm_enough_memory(len
))
363 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
367 INIT_LIST_HEAD(&tmp
->anon_vma_chain
);
368 pol
= mpol_dup(vma_policy(mpnt
));
369 retval
= PTR_ERR(pol
);
371 goto fail_nomem_policy
;
372 vma_set_policy(tmp
, pol
);
374 if (anon_vma_fork(tmp
, mpnt
))
375 goto fail_nomem_anon_vma_fork
;
376 tmp
->vm_flags
&= ~VM_LOCKED
;
377 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
380 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
381 struct address_space
*mapping
= file
->f_mapping
;
384 if (tmp
->vm_flags
& VM_DENYWRITE
)
385 atomic_dec(&inode
->i_writecount
);
386 mutex_lock(&mapping
->i_mmap_mutex
);
387 if (tmp
->vm_flags
& VM_SHARED
)
388 mapping
->i_mmap_writable
++;
389 flush_dcache_mmap_lock(mapping
);
390 /* insert tmp into the share list, just after mpnt */
391 vma_prio_tree_add(tmp
, mpnt
);
392 flush_dcache_mmap_unlock(mapping
);
393 mutex_unlock(&mapping
->i_mmap_mutex
);
397 * Clear hugetlb-related page reserves for children. This only
398 * affects MAP_PRIVATE mappings. Faults generated by the child
399 * are not guaranteed to succeed, even if read-only
401 if (is_vm_hugetlb_page(tmp
))
402 reset_vma_resv_huge_pages(tmp
);
405 * Link in the new vma and copy the page table entries.
408 pprev
= &tmp
->vm_next
;
412 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
413 rb_link
= &tmp
->vm_rb
.rb_right
;
414 rb_parent
= &tmp
->vm_rb
;
417 retval
= copy_page_range(mm
, oldmm
, mpnt
);
419 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
420 tmp
->vm_ops
->open(tmp
);
425 /* a new mm has just been created */
426 arch_dup_mmap(oldmm
, mm
);
429 up_write(&mm
->mmap_sem
);
431 up_write(&oldmm
->mmap_sem
);
433 fail_nomem_anon_vma_fork
:
436 kmem_cache_free(vm_area_cachep
, tmp
);
439 vm_unacct_memory(charge
);
443 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
445 mm
->pgd
= pgd_alloc(mm
);
446 if (unlikely(!mm
->pgd
))
451 static inline void mm_free_pgd(struct mm_struct
*mm
)
453 pgd_free(mm
, mm
->pgd
);
456 #define dup_mmap(mm, oldmm) (0)
457 #define mm_alloc_pgd(mm) (0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
461 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
463 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
466 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
468 static int __init
coredump_filter_setup(char *s
)
470 default_dump_filter
=
471 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
472 MMF_DUMP_FILTER_MASK
;
476 __setup("coredump_filter=", coredump_filter_setup
);
478 #include <linux/init_task.h>
480 static void mm_init_aio(struct mm_struct
*mm
)
483 spin_lock_init(&mm
->ioctx_lock
);
484 INIT_HLIST_HEAD(&mm
->ioctx_list
);
488 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
)
490 atomic_set(&mm
->mm_users
, 1);
491 atomic_set(&mm
->mm_count
, 1);
492 init_rwsem(&mm
->mmap_sem
);
493 INIT_LIST_HEAD(&mm
->mmlist
);
494 mm
->flags
= (current
->mm
) ?
495 (current
->mm
->flags
& MMF_INIT_MASK
) : default_dump_filter
;
496 mm
->core_state
= NULL
;
498 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
499 spin_lock_init(&mm
->page_table_lock
);
500 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
501 mm
->cached_hole_size
= ~0UL;
503 mm_init_owner(mm
, p
);
505 if (likely(!mm_alloc_pgd(mm
))) {
507 mmu_notifier_mm_init(mm
);
516 * Allocate and initialize an mm_struct.
518 struct mm_struct
*mm_alloc(void)
520 struct mm_struct
*mm
;
526 memset(mm
, 0, sizeof(*mm
));
528 return mm_init(mm
, current
);
532 * Called when the last reference to the mm
533 * is dropped: either by a lazy thread or by
534 * mmput. Free the page directory and the mm.
536 void __mmdrop(struct mm_struct
*mm
)
538 BUG_ON(mm
== &init_mm
);
541 mmu_notifier_mm_destroy(mm
);
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 VM_BUG_ON(mm
->pmd_huge_pte
);
547 EXPORT_SYMBOL_GPL(__mmdrop
);
550 * Decrement the use count and release all resources for an mm.
552 void mmput(struct mm_struct
*mm
)
556 if (atomic_dec_and_test(&mm
->mm_users
)) {
559 khugepaged_exit(mm
); /* must run before exit_mmap */
561 set_mm_exe_file(mm
, NULL
);
562 if (!list_empty(&mm
->mmlist
)) {
563 spin_lock(&mmlist_lock
);
564 list_del(&mm
->mmlist
);
565 spin_unlock(&mmlist_lock
);
569 module_put(mm
->binfmt
->module
);
573 EXPORT_SYMBOL_GPL(mmput
);
576 * We added or removed a vma mapping the executable. The vmas are only mapped
577 * during exec and are not mapped with the mmap system call.
578 * Callers must hold down_write() on the mm's mmap_sem for these
580 void added_exe_file_vma(struct mm_struct
*mm
)
582 mm
->num_exe_file_vmas
++;
585 void removed_exe_file_vma(struct mm_struct
*mm
)
587 mm
->num_exe_file_vmas
--;
588 if ((mm
->num_exe_file_vmas
== 0) && mm
->exe_file
) {
595 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
598 get_file(new_exe_file
);
601 mm
->exe_file
= new_exe_file
;
602 mm
->num_exe_file_vmas
= 0;
605 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
607 struct file
*exe_file
;
609 /* We need mmap_sem to protect against races with removal of
610 * VM_EXECUTABLE vmas */
611 down_read(&mm
->mmap_sem
);
612 exe_file
= mm
->exe_file
;
615 up_read(&mm
->mmap_sem
);
619 static void dup_mm_exe_file(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
621 /* It's safe to write the exe_file pointer without exe_file_lock because
622 * this is called during fork when the task is not yet in /proc */
623 newmm
->exe_file
= get_mm_exe_file(oldmm
);
627 * get_task_mm - acquire a reference to the task's mm
629 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
630 * this kernel workthread has transiently adopted a user mm with use_mm,
631 * to do its AIO) is not set and if so returns a reference to it, after
632 * bumping up the use count. User must release the mm via mmput()
633 * after use. Typically used by /proc and ptrace.
635 struct mm_struct
*get_task_mm(struct task_struct
*task
)
637 struct mm_struct
*mm
;
642 if (task
->flags
& PF_KTHREAD
)
645 atomic_inc(&mm
->mm_users
);
650 EXPORT_SYMBOL_GPL(get_task_mm
);
652 /* Please note the differences between mmput and mm_release.
653 * mmput is called whenever we stop holding onto a mm_struct,
654 * error success whatever.
656 * mm_release is called after a mm_struct has been removed
657 * from the current process.
659 * This difference is important for error handling, when we
660 * only half set up a mm_struct for a new process and need to restore
661 * the old one. Because we mmput the new mm_struct before
662 * restoring the old one. . .
663 * Eric Biederman 10 January 1998
665 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
667 struct completion
*vfork_done
= tsk
->vfork_done
;
669 /* Get rid of any futexes when releasing the mm */
671 if (unlikely(tsk
->robust_list
)) {
672 exit_robust_list(tsk
);
673 tsk
->robust_list
= NULL
;
676 if (unlikely(tsk
->compat_robust_list
)) {
677 compat_exit_robust_list(tsk
);
678 tsk
->compat_robust_list
= NULL
;
681 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
682 exit_pi_state_list(tsk
);
685 /* Get rid of any cached register state */
686 deactivate_mm(tsk
, mm
);
688 /* notify parent sleeping on vfork() */
690 tsk
->vfork_done
= NULL
;
691 complete(vfork_done
);
695 * If we're exiting normally, clear a user-space tid field if
696 * requested. We leave this alone when dying by signal, to leave
697 * the value intact in a core dump, and to save the unnecessary
698 * trouble otherwise. Userland only wants this done for a sys_exit.
700 if (tsk
->clear_child_tid
) {
701 if (!(tsk
->flags
& PF_SIGNALED
) &&
702 atomic_read(&mm
->mm_users
) > 1) {
704 * We don't check the error code - if userspace has
705 * not set up a proper pointer then tough luck.
707 put_user(0, tsk
->clear_child_tid
);
708 sys_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
711 tsk
->clear_child_tid
= NULL
;
716 * Allocate a new mm structure and copy contents from the
717 * mm structure of the passed in task structure.
719 struct mm_struct
*dup_mm(struct task_struct
*tsk
)
721 struct mm_struct
*mm
, *oldmm
= current
->mm
;
731 memcpy(mm
, oldmm
, sizeof(*mm
));
734 /* Initializing for Swap token stuff */
735 mm
->token_priority
= 0;
736 mm
->last_interval
= 0;
738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
739 mm
->pmd_huge_pte
= NULL
;
742 if (!mm_init(mm
, tsk
))
745 if (init_new_context(tsk
, mm
))
748 dup_mm_exe_file(oldmm
, mm
);
750 err
= dup_mmap(mm
, oldmm
);
754 mm
->hiwater_rss
= get_mm_rss(mm
);
755 mm
->hiwater_vm
= mm
->total_vm
;
757 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
763 /* don't put binfmt in mmput, we haven't got module yet */
772 * If init_new_context() failed, we cannot use mmput() to free the mm
773 * because it calls destroy_context()
780 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
782 struct mm_struct
*mm
, *oldmm
;
785 tsk
->min_flt
= tsk
->maj_flt
= 0;
786 tsk
->nvcsw
= tsk
->nivcsw
= 0;
787 #ifdef CONFIG_DETECT_HUNG_TASK
788 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
792 tsk
->active_mm
= NULL
;
795 * Are we cloning a kernel thread?
797 * We need to steal a active VM for that..
803 if (clone_flags
& CLONE_VM
) {
804 atomic_inc(&oldmm
->mm_users
);
815 /* Initializing for Swap token stuff */
816 mm
->token_priority
= 0;
817 mm
->last_interval
= 0;
827 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
829 struct fs_struct
*fs
= current
->fs
;
830 if (clone_flags
& CLONE_FS
) {
831 /* tsk->fs is already what we want */
832 spin_lock(&fs
->lock
);
834 spin_unlock(&fs
->lock
);
838 spin_unlock(&fs
->lock
);
841 tsk
->fs
= copy_fs_struct(fs
);
847 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
849 struct files_struct
*oldf
, *newf
;
853 * A background process may not have any files ...
855 oldf
= current
->files
;
859 if (clone_flags
& CLONE_FILES
) {
860 atomic_inc(&oldf
->count
);
864 newf
= dup_fd(oldf
, &error
);
874 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
877 struct io_context
*ioc
= current
->io_context
;
882 * Share io context with parent, if CLONE_IO is set
884 if (clone_flags
& CLONE_IO
) {
885 tsk
->io_context
= ioc_task_link(ioc
);
886 if (unlikely(!tsk
->io_context
))
888 } else if (ioprio_valid(ioc
->ioprio
)) {
889 tsk
->io_context
= alloc_io_context(GFP_KERNEL
, -1);
890 if (unlikely(!tsk
->io_context
))
893 tsk
->io_context
->ioprio
= ioc
->ioprio
;
899 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
901 struct sighand_struct
*sig
;
903 if (clone_flags
& CLONE_SIGHAND
) {
904 atomic_inc(¤t
->sighand
->count
);
907 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
908 rcu_assign_pointer(tsk
->sighand
, sig
);
911 atomic_set(&sig
->count
, 1);
912 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
916 void __cleanup_sighand(struct sighand_struct
*sighand
)
918 if (atomic_dec_and_test(&sighand
->count
))
919 kmem_cache_free(sighand_cachep
, sighand
);
924 * Initialize POSIX timer handling for a thread group.
926 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
928 unsigned long cpu_limit
;
930 /* Thread group counters. */
931 thread_group_cputime_init(sig
);
933 cpu_limit
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
934 if (cpu_limit
!= RLIM_INFINITY
) {
935 sig
->cputime_expires
.prof_exp
= secs_to_cputime(cpu_limit
);
936 sig
->cputimer
.running
= 1;
939 /* The timer lists. */
940 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
941 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
942 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
945 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
947 struct signal_struct
*sig
;
949 if (clone_flags
& CLONE_THREAD
)
952 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
958 atomic_set(&sig
->live
, 1);
959 atomic_set(&sig
->sigcnt
, 1);
960 init_waitqueue_head(&sig
->wait_chldexit
);
961 if (clone_flags
& CLONE_NEWPID
)
962 sig
->flags
|= SIGNAL_UNKILLABLE
;
963 sig
->curr_target
= tsk
;
964 init_sigpending(&sig
->shared_pending
);
965 INIT_LIST_HEAD(&sig
->posix_timers
);
967 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
968 sig
->real_timer
.function
= it_real_fn
;
970 task_lock(current
->group_leader
);
971 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
972 task_unlock(current
->group_leader
);
974 posix_cpu_timers_init_group(sig
);
977 sched_autogroup_fork(sig
);
979 #ifdef CONFIG_CGROUPS
980 init_rwsem(&sig
->threadgroup_fork_lock
);
983 sig
->oom_adj
= current
->signal
->oom_adj
;
984 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
985 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
987 mutex_init(&sig
->cred_guard_mutex
);
992 static void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
994 unsigned long new_flags
= p
->flags
;
996 new_flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
);
997 new_flags
|= PF_FORKNOEXEC
;
998 new_flags
|= PF_STARTING
;
999 p
->flags
= new_flags
;
1000 clear_freeze_flag(p
);
1003 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1005 current
->clear_child_tid
= tidptr
;
1007 return task_pid_vnr(current
);
1010 static void rt_mutex_init_task(struct task_struct
*p
)
1012 raw_spin_lock_init(&p
->pi_lock
);
1013 #ifdef CONFIG_RT_MUTEXES
1014 plist_head_init(&p
->pi_waiters
);
1015 p
->pi_blocked_on
= NULL
;
1019 #ifdef CONFIG_MM_OWNER
1020 void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
1024 #endif /* CONFIG_MM_OWNER */
1027 * Initialize POSIX timer handling for a single task.
1029 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1031 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
1032 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
1033 tsk
->cputime_expires
.sched_exp
= 0;
1034 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1035 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1036 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1040 * This creates a new process as a copy of the old one,
1041 * but does not actually start it yet.
1043 * It copies the registers, and all the appropriate
1044 * parts of the process environment (as per the clone
1045 * flags). The actual kick-off is left to the caller.
1047 static struct task_struct
*copy_process(unsigned long clone_flags
,
1048 unsigned long stack_start
,
1049 struct pt_regs
*regs
,
1050 unsigned long stack_size
,
1051 int __user
*child_tidptr
,
1056 struct task_struct
*p
;
1057 int cgroup_callbacks_done
= 0;
1059 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1060 return ERR_PTR(-EINVAL
);
1063 * Thread groups must share signals as well, and detached threads
1064 * can only be started up within the thread group.
1066 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1067 return ERR_PTR(-EINVAL
);
1070 * Shared signal handlers imply shared VM. By way of the above,
1071 * thread groups also imply shared VM. Blocking this case allows
1072 * for various simplifications in other code.
1074 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1075 return ERR_PTR(-EINVAL
);
1078 * Siblings of global init remain as zombies on exit since they are
1079 * not reaped by their parent (swapper). To solve this and to avoid
1080 * multi-rooted process trees, prevent global and container-inits
1081 * from creating siblings.
1083 if ((clone_flags
& CLONE_PARENT
) &&
1084 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1085 return ERR_PTR(-EINVAL
);
1087 retval
= security_task_create(clone_flags
);
1092 p
= dup_task_struct(current
);
1096 ftrace_graph_init_task(p
);
1098 rt_mutex_init_task(p
);
1100 #ifdef CONFIG_PROVE_LOCKING
1101 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1102 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1105 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1106 task_rlimit(p
, RLIMIT_NPROC
)) {
1107 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
1108 p
->real_cred
->user
!= INIT_USER
)
1111 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1113 retval
= copy_creds(p
, clone_flags
);
1118 * If multiple threads are within copy_process(), then this check
1119 * triggers too late. This doesn't hurt, the check is only there
1120 * to stop root fork bombs.
1123 if (nr_threads
>= max_threads
)
1124 goto bad_fork_cleanup_count
;
1126 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1127 goto bad_fork_cleanup_count
;
1130 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1131 copy_flags(clone_flags
, p
);
1132 INIT_LIST_HEAD(&p
->children
);
1133 INIT_LIST_HEAD(&p
->sibling
);
1134 rcu_copy_process(p
);
1135 p
->vfork_done
= NULL
;
1136 spin_lock_init(&p
->alloc_lock
);
1138 init_sigpending(&p
->pending
);
1140 p
->utime
= cputime_zero
;
1141 p
->stime
= cputime_zero
;
1142 p
->gtime
= cputime_zero
;
1143 p
->utimescaled
= cputime_zero
;
1144 p
->stimescaled
= cputime_zero
;
1145 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1146 p
->prev_utime
= cputime_zero
;
1147 p
->prev_stime
= cputime_zero
;
1149 #if defined(SPLIT_RSS_COUNTING)
1150 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1153 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1155 task_io_accounting_init(&p
->ioac
);
1156 acct_clear_integrals(p
);
1158 posix_cpu_timers_init(p
);
1160 do_posix_clock_monotonic_gettime(&p
->start_time
);
1161 p
->real_start_time
= p
->start_time
;
1162 monotonic_to_bootbased(&p
->real_start_time
);
1163 p
->io_context
= NULL
;
1164 p
->audit_context
= NULL
;
1165 if (clone_flags
& CLONE_THREAD
)
1166 threadgroup_fork_read_lock(current
);
1169 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1170 if (IS_ERR(p
->mempolicy
)) {
1171 retval
= PTR_ERR(p
->mempolicy
);
1172 p
->mempolicy
= NULL
;
1173 goto bad_fork_cleanup_cgroup
;
1175 mpol_fix_fork_child_flag(p
);
1177 #ifdef CONFIG_CPUSETS
1178 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1179 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1181 #ifdef CONFIG_TRACE_IRQFLAGS
1183 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1184 p
->hardirqs_enabled
= 1;
1186 p
->hardirqs_enabled
= 0;
1188 p
->hardirq_enable_ip
= 0;
1189 p
->hardirq_enable_event
= 0;
1190 p
->hardirq_disable_ip
= _THIS_IP_
;
1191 p
->hardirq_disable_event
= 0;
1192 p
->softirqs_enabled
= 1;
1193 p
->softirq_enable_ip
= _THIS_IP_
;
1194 p
->softirq_enable_event
= 0;
1195 p
->softirq_disable_ip
= 0;
1196 p
->softirq_disable_event
= 0;
1197 p
->hardirq_context
= 0;
1198 p
->softirq_context
= 0;
1200 #ifdef CONFIG_LOCKDEP
1201 p
->lockdep_depth
= 0; /* no locks held yet */
1202 p
->curr_chain_key
= 0;
1203 p
->lockdep_recursion
= 0;
1206 #ifdef CONFIG_DEBUG_MUTEXES
1207 p
->blocked_on
= NULL
; /* not blocked yet */
1209 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1210 p
->memcg_batch
.do_batch
= 0;
1211 p
->memcg_batch
.memcg
= NULL
;
1214 /* Perform scheduler related setup. Assign this task to a CPU. */
1217 retval
= perf_event_init_task(p
);
1219 goto bad_fork_cleanup_policy
;
1220 retval
= audit_alloc(p
);
1222 goto bad_fork_cleanup_policy
;
1223 /* copy all the process information */
1224 retval
= copy_semundo(clone_flags
, p
);
1226 goto bad_fork_cleanup_audit
;
1227 retval
= copy_files(clone_flags
, p
);
1229 goto bad_fork_cleanup_semundo
;
1230 retval
= copy_fs(clone_flags
, p
);
1232 goto bad_fork_cleanup_files
;
1233 retval
= copy_sighand(clone_flags
, p
);
1235 goto bad_fork_cleanup_fs
;
1236 retval
= copy_signal(clone_flags
, p
);
1238 goto bad_fork_cleanup_sighand
;
1239 retval
= copy_mm(clone_flags
, p
);
1241 goto bad_fork_cleanup_signal
;
1242 retval
= copy_namespaces(clone_flags
, p
);
1244 goto bad_fork_cleanup_mm
;
1245 retval
= copy_io(clone_flags
, p
);
1247 goto bad_fork_cleanup_namespaces
;
1248 retval
= copy_thread(clone_flags
, stack_start
, stack_size
, p
, regs
);
1250 goto bad_fork_cleanup_io
;
1252 if (pid
!= &init_struct_pid
) {
1254 pid
= alloc_pid(p
->nsproxy
->pid_ns
);
1256 goto bad_fork_cleanup_io
;
1259 p
->pid
= pid_nr(pid
);
1261 if (clone_flags
& CLONE_THREAD
)
1262 p
->tgid
= current
->tgid
;
1264 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1266 * Clear TID on mm_release()?
1268 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1273 p
->robust_list
= NULL
;
1274 #ifdef CONFIG_COMPAT
1275 p
->compat_robust_list
= NULL
;
1277 INIT_LIST_HEAD(&p
->pi_state_list
);
1278 p
->pi_state_cache
= NULL
;
1281 * sigaltstack should be cleared when sharing the same VM
1283 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1284 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1287 * Syscall tracing and stepping should be turned off in the
1288 * child regardless of CLONE_PTRACE.
1290 user_disable_single_step(p
);
1291 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1292 #ifdef TIF_SYSCALL_EMU
1293 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1295 clear_all_latency_tracing(p
);
1297 /* ok, now we should be set up.. */
1298 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1299 p
->pdeath_signal
= 0;
1303 * Ok, make it visible to the rest of the system.
1304 * We dont wake it up yet.
1306 p
->group_leader
= p
;
1307 INIT_LIST_HEAD(&p
->thread_group
);
1309 /* Now that the task is set up, run cgroup callbacks if
1310 * necessary. We need to run them before the task is visible
1311 * on the tasklist. */
1312 cgroup_fork_callbacks(p
);
1313 cgroup_callbacks_done
= 1;
1315 /* Need tasklist lock for parent etc handling! */
1316 write_lock_irq(&tasklist_lock
);
1318 /* CLONE_PARENT re-uses the old parent */
1319 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1320 p
->real_parent
= current
->real_parent
;
1321 p
->parent_exec_id
= current
->parent_exec_id
;
1323 p
->real_parent
= current
;
1324 p
->parent_exec_id
= current
->self_exec_id
;
1327 spin_lock(¤t
->sighand
->siglock
);
1330 * Process group and session signals need to be delivered to just the
1331 * parent before the fork or both the parent and the child after the
1332 * fork. Restart if a signal comes in before we add the new process to
1333 * it's process group.
1334 * A fatal signal pending means that current will exit, so the new
1335 * thread can't slip out of an OOM kill (or normal SIGKILL).
1337 recalc_sigpending();
1338 if (signal_pending(current
)) {
1339 spin_unlock(¤t
->sighand
->siglock
);
1340 write_unlock_irq(&tasklist_lock
);
1341 retval
= -ERESTARTNOINTR
;
1342 goto bad_fork_free_pid
;
1345 if (clone_flags
& CLONE_THREAD
) {
1346 current
->signal
->nr_threads
++;
1347 atomic_inc(¤t
->signal
->live
);
1348 atomic_inc(¤t
->signal
->sigcnt
);
1349 p
->group_leader
= current
->group_leader
;
1350 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1353 if (likely(p
->pid
)) {
1354 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1356 if (thread_group_leader(p
)) {
1357 if (is_child_reaper(pid
))
1358 p
->nsproxy
->pid_ns
->child_reaper
= p
;
1360 p
->signal
->leader_pid
= pid
;
1361 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1362 attach_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1363 attach_pid(p
, PIDTYPE_SID
, task_session(current
));
1364 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1365 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1366 __this_cpu_inc(process_counts
);
1368 attach_pid(p
, PIDTYPE_PID
, pid
);
1373 spin_unlock(¤t
->sighand
->siglock
);
1374 write_unlock_irq(&tasklist_lock
);
1375 proc_fork_connector(p
);
1376 cgroup_post_fork(p
);
1377 if (clone_flags
& CLONE_THREAD
)
1378 threadgroup_fork_read_unlock(current
);
1383 if (pid
!= &init_struct_pid
)
1385 bad_fork_cleanup_io
:
1388 bad_fork_cleanup_namespaces
:
1389 exit_task_namespaces(p
);
1390 bad_fork_cleanup_mm
:
1393 bad_fork_cleanup_signal
:
1394 if (!(clone_flags
& CLONE_THREAD
))
1395 free_signal_struct(p
->signal
);
1396 bad_fork_cleanup_sighand
:
1397 __cleanup_sighand(p
->sighand
);
1398 bad_fork_cleanup_fs
:
1399 exit_fs(p
); /* blocking */
1400 bad_fork_cleanup_files
:
1401 exit_files(p
); /* blocking */
1402 bad_fork_cleanup_semundo
:
1404 bad_fork_cleanup_audit
:
1406 bad_fork_cleanup_policy
:
1407 perf_event_free_task(p
);
1409 mpol_put(p
->mempolicy
);
1410 bad_fork_cleanup_cgroup
:
1412 if (clone_flags
& CLONE_THREAD
)
1413 threadgroup_fork_read_unlock(current
);
1414 cgroup_exit(p
, cgroup_callbacks_done
);
1415 delayacct_tsk_free(p
);
1416 module_put(task_thread_info(p
)->exec_domain
->module
);
1417 bad_fork_cleanup_count
:
1418 atomic_dec(&p
->cred
->user
->processes
);
1423 return ERR_PTR(retval
);
1426 noinline
struct pt_regs
* __cpuinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1428 memset(regs
, 0, sizeof(struct pt_regs
));
1432 static inline void init_idle_pids(struct pid_link
*links
)
1436 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1437 INIT_HLIST_NODE(&links
[type
].node
); /* not really needed */
1438 links
[type
].pid
= &init_struct_pid
;
1442 struct task_struct
* __cpuinit
fork_idle(int cpu
)
1444 struct task_struct
*task
;
1445 struct pt_regs regs
;
1447 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
,
1448 &init_struct_pid
, 0);
1449 if (!IS_ERR(task
)) {
1450 init_idle_pids(task
->pids
);
1451 init_idle(task
, cpu
);
1458 * Ok, this is the main fork-routine.
1460 * It copies the process, and if successful kick-starts
1461 * it and waits for it to finish using the VM if required.
1463 long do_fork(unsigned long clone_flags
,
1464 unsigned long stack_start
,
1465 struct pt_regs
*regs
,
1466 unsigned long stack_size
,
1467 int __user
*parent_tidptr
,
1468 int __user
*child_tidptr
)
1470 struct task_struct
*p
;
1475 * Do some preliminary argument and permissions checking before we
1476 * actually start allocating stuff
1478 if (clone_flags
& CLONE_NEWUSER
) {
1479 if (clone_flags
& CLONE_THREAD
)
1481 /* hopefully this check will go away when userns support is
1484 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SETUID
) ||
1485 !capable(CAP_SETGID
))
1490 * Determine whether and which event to report to ptracer. When
1491 * called from kernel_thread or CLONE_UNTRACED is explicitly
1492 * requested, no event is reported; otherwise, report if the event
1493 * for the type of forking is enabled.
1495 if (likely(user_mode(regs
)) && !(clone_flags
& CLONE_UNTRACED
)) {
1496 if (clone_flags
& CLONE_VFORK
)
1497 trace
= PTRACE_EVENT_VFORK
;
1498 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
1499 trace
= PTRACE_EVENT_CLONE
;
1501 trace
= PTRACE_EVENT_FORK
;
1503 if (likely(!ptrace_event_enabled(current
, trace
)))
1507 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
,
1508 child_tidptr
, NULL
, trace
);
1510 * Do this prior waking up the new thread - the thread pointer
1511 * might get invalid after that point, if the thread exits quickly.
1514 struct completion vfork
;
1516 trace_sched_process_fork(current
, p
);
1518 nr
= task_pid_vnr(p
);
1520 if (clone_flags
& CLONE_PARENT_SETTID
)
1521 put_user(nr
, parent_tidptr
);
1523 if (clone_flags
& CLONE_VFORK
) {
1524 p
->vfork_done
= &vfork
;
1525 init_completion(&vfork
);
1528 audit_finish_fork(p
);
1531 * We set PF_STARTING at creation in case tracing wants to
1532 * use this to distinguish a fully live task from one that
1533 * hasn't finished SIGSTOP raising yet. Now we clear it
1534 * and set the child going.
1536 p
->flags
&= ~PF_STARTING
;
1538 wake_up_new_task(p
);
1540 /* forking complete and child started to run, tell ptracer */
1541 if (unlikely(trace
))
1542 ptrace_event(trace
, nr
);
1544 if (clone_flags
& CLONE_VFORK
) {
1545 freezer_do_not_count();
1546 wait_for_completion(&vfork
);
1548 ptrace_event(PTRACE_EVENT_VFORK_DONE
, nr
);
1556 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1557 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1560 static void sighand_ctor(void *data
)
1562 struct sighand_struct
*sighand
= data
;
1564 spin_lock_init(&sighand
->siglock
);
1565 init_waitqueue_head(&sighand
->signalfd_wqh
);
1568 void __init
proc_caches_init(void)
1570 sighand_cachep
= kmem_cache_create("sighand_cache",
1571 sizeof(struct sighand_struct
), 0,
1572 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
|
1573 SLAB_NOTRACK
, sighand_ctor
);
1574 signal_cachep
= kmem_cache_create("signal_cache",
1575 sizeof(struct signal_struct
), 0,
1576 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1577 files_cachep
= kmem_cache_create("files_cache",
1578 sizeof(struct files_struct
), 0,
1579 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1580 fs_cachep
= kmem_cache_create("fs_cache",
1581 sizeof(struct fs_struct
), 0,
1582 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1584 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1585 * whole struct cpumask for the OFFSTACK case. We could change
1586 * this to *only* allocate as much of it as required by the
1587 * maximum number of CPU's we can ever have. The cpumask_allocation
1588 * is at the end of the structure, exactly for that reason.
1590 mm_cachep
= kmem_cache_create("mm_struct",
1591 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1592 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1593 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
);
1595 nsproxy_cache_init();
1599 * Check constraints on flags passed to the unshare system call.
1601 static int check_unshare_flags(unsigned long unshare_flags
)
1603 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1604 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1605 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
))
1608 * Not implemented, but pretend it works if there is nothing to
1609 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1610 * needs to unshare vm.
1612 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
1613 /* FIXME: get_task_mm() increments ->mm_users */
1614 if (atomic_read(¤t
->mm
->mm_users
) > 1)
1622 * Unshare the filesystem structure if it is being shared
1624 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1626 struct fs_struct
*fs
= current
->fs
;
1628 if (!(unshare_flags
& CLONE_FS
) || !fs
)
1631 /* don't need lock here; in the worst case we'll do useless copy */
1635 *new_fsp
= copy_fs_struct(fs
);
1643 * Unshare file descriptor table if it is being shared
1645 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1647 struct files_struct
*fd
= current
->files
;
1650 if ((unshare_flags
& CLONE_FILES
) &&
1651 (fd
&& atomic_read(&fd
->count
) > 1)) {
1652 *new_fdp
= dup_fd(fd
, &error
);
1661 * unshare allows a process to 'unshare' part of the process
1662 * context which was originally shared using clone. copy_*
1663 * functions used by do_fork() cannot be used here directly
1664 * because they modify an inactive task_struct that is being
1665 * constructed. Here we are modifying the current, active,
1668 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
1670 struct fs_struct
*fs
, *new_fs
= NULL
;
1671 struct files_struct
*fd
, *new_fd
= NULL
;
1672 struct nsproxy
*new_nsproxy
= NULL
;
1676 err
= check_unshare_flags(unshare_flags
);
1678 goto bad_unshare_out
;
1681 * If unsharing namespace, must also unshare filesystem information.
1683 if (unshare_flags
& CLONE_NEWNS
)
1684 unshare_flags
|= CLONE_FS
;
1686 * CLONE_NEWIPC must also detach from the undolist: after switching
1687 * to a new ipc namespace, the semaphore arrays from the old
1688 * namespace are unreachable.
1690 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
1692 err
= unshare_fs(unshare_flags
, &new_fs
);
1694 goto bad_unshare_out
;
1695 err
= unshare_fd(unshare_flags
, &new_fd
);
1697 goto bad_unshare_cleanup_fs
;
1698 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
, new_fs
);
1700 goto bad_unshare_cleanup_fd
;
1702 if (new_fs
|| new_fd
|| do_sysvsem
|| new_nsproxy
) {
1705 * CLONE_SYSVSEM is equivalent to sys_exit().
1711 switch_task_namespaces(current
, new_nsproxy
);
1719 spin_lock(&fs
->lock
);
1720 current
->fs
= new_fs
;
1725 spin_unlock(&fs
->lock
);
1729 fd
= current
->files
;
1730 current
->files
= new_fd
;
1734 task_unlock(current
);
1738 put_nsproxy(new_nsproxy
);
1740 bad_unshare_cleanup_fd
:
1742 put_files_struct(new_fd
);
1744 bad_unshare_cleanup_fs
:
1746 free_fs_struct(new_fs
);
1753 * Helper to unshare the files of the current task.
1754 * We don't want to expose copy_files internals to
1755 * the exec layer of the kernel.
1758 int unshare_files(struct files_struct
**displaced
)
1760 struct task_struct
*task
= current
;
1761 struct files_struct
*copy
= NULL
;
1764 error
= unshare_fd(CLONE_FILES
, ©
);
1765 if (error
|| !copy
) {
1769 *displaced
= task
->files
;