Revert "x86: Cleanup highmap after brk is concluded"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
blob62787e30d508c2e63fe8f7923fbc45a63493a545
1 /*
2 * ipmi_si.c
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
70 #ifdef CONFIG_PPC_OF
71 #include <linux/of_device.h>
72 #include <linux/of_platform.h>
73 #include <linux/of_address.h>
74 #include <linux/of_irq.h>
75 #endif
77 #define PFX "ipmi_si: "
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC 10000
84 #define SI_USEC_PER_JIFFY (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
87 short timeout */
89 enum si_intf_state {
90 SI_NORMAL,
91 SI_GETTING_FLAGS,
92 SI_GETTING_EVENTS,
93 SI_CLEARING_FLAGS,
94 SI_CLEARING_FLAGS_THEN_SET_IRQ,
95 SI_GETTING_MESSAGES,
96 SI_ENABLE_INTERRUPTS1,
97 SI_ENABLE_INTERRUPTS2,
98 SI_DISABLE_INTERRUPTS1,
99 SI_DISABLE_INTERRUPTS2
100 /* FIXME - add watchdog stuff. */
103 /* Some BT-specific defines we need here. */
104 #define IPMI_BT_INTMASK_REG 2
105 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
106 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
108 enum si_type {
109 SI_KCS, SI_SMIC, SI_BT
111 static char *si_to_str[] = { "kcs", "smic", "bt" };
113 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
114 "ACPI", "SMBIOS", "PCI",
115 "device-tree", "default" };
117 #define DEVICE_NAME "ipmi_si"
119 static struct platform_driver ipmi_driver = {
120 .driver = {
121 .name = DEVICE_NAME,
122 .bus = &platform_bus_type
128 * Indexes into stats[] in smi_info below.
130 enum si_stat_indexes {
132 * Number of times the driver requested a timer while an operation
133 * was in progress.
135 SI_STAT_short_timeouts = 0,
138 * Number of times the driver requested a timer while nothing was in
139 * progress.
141 SI_STAT_long_timeouts,
143 /* Number of times the interface was idle while being polled. */
144 SI_STAT_idles,
146 /* Number of interrupts the driver handled. */
147 SI_STAT_interrupts,
149 /* Number of time the driver got an ATTN from the hardware. */
150 SI_STAT_attentions,
152 /* Number of times the driver requested flags from the hardware. */
153 SI_STAT_flag_fetches,
155 /* Number of times the hardware didn't follow the state machine. */
156 SI_STAT_hosed_count,
158 /* Number of completed messages. */
159 SI_STAT_complete_transactions,
161 /* Number of IPMI events received from the hardware. */
162 SI_STAT_events,
164 /* Number of watchdog pretimeouts. */
165 SI_STAT_watchdog_pretimeouts,
167 /* Number of asyncronous messages received. */
168 SI_STAT_incoming_messages,
171 /* This *must* remain last, add new values above this. */
172 SI_NUM_STATS
175 struct smi_info {
176 int intf_num;
177 ipmi_smi_t intf;
178 struct si_sm_data *si_sm;
179 struct si_sm_handlers *handlers;
180 enum si_type si_type;
181 spinlock_t si_lock;
182 spinlock_t msg_lock;
183 struct list_head xmit_msgs;
184 struct list_head hp_xmit_msgs;
185 struct ipmi_smi_msg *curr_msg;
186 enum si_intf_state si_state;
189 * Used to handle the various types of I/O that can occur with
190 * IPMI
192 struct si_sm_io io;
193 int (*io_setup)(struct smi_info *info);
194 void (*io_cleanup)(struct smi_info *info);
195 int (*irq_setup)(struct smi_info *info);
196 void (*irq_cleanup)(struct smi_info *info);
197 unsigned int io_size;
198 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
199 void (*addr_source_cleanup)(struct smi_info *info);
200 void *addr_source_data;
203 * Per-OEM handler, called from handle_flags(). Returns 1
204 * when handle_flags() needs to be re-run or 0 indicating it
205 * set si_state itself.
207 int (*oem_data_avail_handler)(struct smi_info *smi_info);
210 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
211 * is set to hold the flags until we are done handling everything
212 * from the flags.
214 #define RECEIVE_MSG_AVAIL 0x01
215 #define EVENT_MSG_BUFFER_FULL 0x02
216 #define WDT_PRE_TIMEOUT_INT 0x08
217 #define OEM0_DATA_AVAIL 0x20
218 #define OEM1_DATA_AVAIL 0x40
219 #define OEM2_DATA_AVAIL 0x80
220 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
221 OEM1_DATA_AVAIL | \
222 OEM2_DATA_AVAIL)
223 unsigned char msg_flags;
225 /* Does the BMC have an event buffer? */
226 char has_event_buffer;
229 * If set to true, this will request events the next time the
230 * state machine is idle.
232 atomic_t req_events;
235 * If true, run the state machine to completion on every send
236 * call. Generally used after a panic to make sure stuff goes
237 * out.
239 int run_to_completion;
241 /* The I/O port of an SI interface. */
242 int port;
245 * The space between start addresses of the two ports. For
246 * instance, if the first port is 0xca2 and the spacing is 4, then
247 * the second port is 0xca6.
249 unsigned int spacing;
251 /* zero if no irq; */
252 int irq;
254 /* The timer for this si. */
255 struct timer_list si_timer;
257 /* The time (in jiffies) the last timeout occurred at. */
258 unsigned long last_timeout_jiffies;
260 /* Used to gracefully stop the timer without race conditions. */
261 atomic_t stop_operation;
264 * The driver will disable interrupts when it gets into a
265 * situation where it cannot handle messages due to lack of
266 * memory. Once that situation clears up, it will re-enable
267 * interrupts.
269 int interrupt_disabled;
271 /* From the get device id response... */
272 struct ipmi_device_id device_id;
274 /* Driver model stuff. */
275 struct device *dev;
276 struct platform_device *pdev;
279 * True if we allocated the device, false if it came from
280 * someplace else (like PCI).
282 int dev_registered;
284 /* Slave address, could be reported from DMI. */
285 unsigned char slave_addr;
287 /* Counters and things for the proc filesystem. */
288 atomic_t stats[SI_NUM_STATS];
290 struct task_struct *thread;
292 struct list_head link;
293 union ipmi_smi_info_union addr_info;
296 #define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
301 #define SI_MAX_PARMS 4
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static int pnp_registered;
310 #endif
311 #ifdef CONFIG_PPC_OF
312 static int of_registered;
313 #endif
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
318 static int unload_when_empty = 1;
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
323 static void cleanup_ipmi_si(void);
325 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
326 static int register_xaction_notifier(struct notifier_block *nb)
328 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
331 static void deliver_recv_msg(struct smi_info *smi_info,
332 struct ipmi_smi_msg *msg)
334 /* Deliver the message to the upper layer with the lock
335 released. */
337 if (smi_info->run_to_completion) {
338 ipmi_smi_msg_received(smi_info->intf, msg);
339 } else {
340 spin_unlock(&(smi_info->si_lock));
341 ipmi_smi_msg_received(smi_info->intf, msg);
342 spin_lock(&(smi_info->si_lock));
346 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
348 struct ipmi_smi_msg *msg = smi_info->curr_msg;
350 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
351 cCode = IPMI_ERR_UNSPECIFIED;
352 /* else use it as is */
354 /* Make it a reponse */
355 msg->rsp[0] = msg->data[0] | 4;
356 msg->rsp[1] = msg->data[1];
357 msg->rsp[2] = cCode;
358 msg->rsp_size = 3;
360 smi_info->curr_msg = NULL;
361 deliver_recv_msg(smi_info, msg);
364 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
366 int rv;
367 struct list_head *entry = NULL;
368 #ifdef DEBUG_TIMING
369 struct timeval t;
370 #endif
373 * No need to save flags, we aleady have interrupts off and we
374 * already hold the SMI lock.
376 if (!smi_info->run_to_completion)
377 spin_lock(&(smi_info->msg_lock));
379 /* Pick the high priority queue first. */
380 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
381 entry = smi_info->hp_xmit_msgs.next;
382 } else if (!list_empty(&(smi_info->xmit_msgs))) {
383 entry = smi_info->xmit_msgs.next;
386 if (!entry) {
387 smi_info->curr_msg = NULL;
388 rv = SI_SM_IDLE;
389 } else {
390 int err;
392 list_del(entry);
393 smi_info->curr_msg = list_entry(entry,
394 struct ipmi_smi_msg,
395 link);
396 #ifdef DEBUG_TIMING
397 do_gettimeofday(&t);
398 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
399 #endif
400 err = atomic_notifier_call_chain(&xaction_notifier_list,
401 0, smi_info);
402 if (err & NOTIFY_STOP_MASK) {
403 rv = SI_SM_CALL_WITHOUT_DELAY;
404 goto out;
406 err = smi_info->handlers->start_transaction(
407 smi_info->si_sm,
408 smi_info->curr_msg->data,
409 smi_info->curr_msg->data_size);
410 if (err)
411 return_hosed_msg(smi_info, err);
413 rv = SI_SM_CALL_WITHOUT_DELAY;
415 out:
416 if (!smi_info->run_to_completion)
417 spin_unlock(&(smi_info->msg_lock));
419 return rv;
422 static void start_enable_irq(struct smi_info *smi_info)
424 unsigned char msg[2];
427 * If we are enabling interrupts, we have to tell the
428 * BMC to use them.
430 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
434 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
437 static void start_disable_irq(struct smi_info *smi_info)
439 unsigned char msg[2];
441 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
445 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
448 static void start_clear_flags(struct smi_info *smi_info)
450 unsigned char msg[3];
452 /* Make sure the watchdog pre-timeout flag is not set at startup. */
453 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
454 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
455 msg[2] = WDT_PRE_TIMEOUT_INT;
457 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
458 smi_info->si_state = SI_CLEARING_FLAGS;
462 * When we have a situtaion where we run out of memory and cannot
463 * allocate messages, we just leave them in the BMC and run the system
464 * polled until we can allocate some memory. Once we have some
465 * memory, we will re-enable the interrupt.
467 static inline void disable_si_irq(struct smi_info *smi_info)
469 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
470 start_disable_irq(smi_info);
471 smi_info->interrupt_disabled = 1;
472 if (!atomic_read(&smi_info->stop_operation))
473 mod_timer(&smi_info->si_timer,
474 jiffies + SI_TIMEOUT_JIFFIES);
478 static inline void enable_si_irq(struct smi_info *smi_info)
480 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
481 start_enable_irq(smi_info);
482 smi_info->interrupt_disabled = 0;
486 static void handle_flags(struct smi_info *smi_info)
488 retry:
489 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
490 /* Watchdog pre-timeout */
491 smi_inc_stat(smi_info, watchdog_pretimeouts);
493 start_clear_flags(smi_info);
494 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
495 spin_unlock(&(smi_info->si_lock));
496 ipmi_smi_watchdog_pretimeout(smi_info->intf);
497 spin_lock(&(smi_info->si_lock));
498 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
499 /* Messages available. */
500 smi_info->curr_msg = ipmi_alloc_smi_msg();
501 if (!smi_info->curr_msg) {
502 disable_si_irq(smi_info);
503 smi_info->si_state = SI_NORMAL;
504 return;
506 enable_si_irq(smi_info);
508 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
509 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
510 smi_info->curr_msg->data_size = 2;
512 smi_info->handlers->start_transaction(
513 smi_info->si_sm,
514 smi_info->curr_msg->data,
515 smi_info->curr_msg->data_size);
516 smi_info->si_state = SI_GETTING_MESSAGES;
517 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
518 /* Events available. */
519 smi_info->curr_msg = ipmi_alloc_smi_msg();
520 if (!smi_info->curr_msg) {
521 disable_si_irq(smi_info);
522 smi_info->si_state = SI_NORMAL;
523 return;
525 enable_si_irq(smi_info);
527 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
528 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
529 smi_info->curr_msg->data_size = 2;
531 smi_info->handlers->start_transaction(
532 smi_info->si_sm,
533 smi_info->curr_msg->data,
534 smi_info->curr_msg->data_size);
535 smi_info->si_state = SI_GETTING_EVENTS;
536 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
537 smi_info->oem_data_avail_handler) {
538 if (smi_info->oem_data_avail_handler(smi_info))
539 goto retry;
540 } else
541 smi_info->si_state = SI_NORMAL;
544 static void handle_transaction_done(struct smi_info *smi_info)
546 struct ipmi_smi_msg *msg;
547 #ifdef DEBUG_TIMING
548 struct timeval t;
550 do_gettimeofday(&t);
551 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
552 #endif
553 switch (smi_info->si_state) {
554 case SI_NORMAL:
555 if (!smi_info->curr_msg)
556 break;
558 smi_info->curr_msg->rsp_size
559 = smi_info->handlers->get_result(
560 smi_info->si_sm,
561 smi_info->curr_msg->rsp,
562 IPMI_MAX_MSG_LENGTH);
565 * Do this here becase deliver_recv_msg() releases the
566 * lock, and a new message can be put in during the
567 * time the lock is released.
569 msg = smi_info->curr_msg;
570 smi_info->curr_msg = NULL;
571 deliver_recv_msg(smi_info, msg);
572 break;
574 case SI_GETTING_FLAGS:
576 unsigned char msg[4];
577 unsigned int len;
579 /* We got the flags from the SMI, now handle them. */
580 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
581 if (msg[2] != 0) {
582 /* Error fetching flags, just give up for now. */
583 smi_info->si_state = SI_NORMAL;
584 } else if (len < 4) {
586 * Hmm, no flags. That's technically illegal, but
587 * don't use uninitialized data.
589 smi_info->si_state = SI_NORMAL;
590 } else {
591 smi_info->msg_flags = msg[3];
592 handle_flags(smi_info);
594 break;
597 case SI_CLEARING_FLAGS:
598 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
600 unsigned char msg[3];
602 /* We cleared the flags. */
603 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
604 if (msg[2] != 0) {
605 /* Error clearing flags */
606 dev_warn(smi_info->dev,
607 "Error clearing flags: %2.2x\n", msg[2]);
609 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
610 start_enable_irq(smi_info);
611 else
612 smi_info->si_state = SI_NORMAL;
613 break;
616 case SI_GETTING_EVENTS:
618 smi_info->curr_msg->rsp_size
619 = smi_info->handlers->get_result(
620 smi_info->si_sm,
621 smi_info->curr_msg->rsp,
622 IPMI_MAX_MSG_LENGTH);
625 * Do this here becase deliver_recv_msg() releases the
626 * lock, and a new message can be put in during the
627 * time the lock is released.
629 msg = smi_info->curr_msg;
630 smi_info->curr_msg = NULL;
631 if (msg->rsp[2] != 0) {
632 /* Error getting event, probably done. */
633 msg->done(msg);
635 /* Take off the event flag. */
636 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
637 handle_flags(smi_info);
638 } else {
639 smi_inc_stat(smi_info, events);
642 * Do this before we deliver the message
643 * because delivering the message releases the
644 * lock and something else can mess with the
645 * state.
647 handle_flags(smi_info);
649 deliver_recv_msg(smi_info, msg);
651 break;
654 case SI_GETTING_MESSAGES:
656 smi_info->curr_msg->rsp_size
657 = smi_info->handlers->get_result(
658 smi_info->si_sm,
659 smi_info->curr_msg->rsp,
660 IPMI_MAX_MSG_LENGTH);
663 * Do this here becase deliver_recv_msg() releases the
664 * lock, and a new message can be put in during the
665 * time the lock is released.
667 msg = smi_info->curr_msg;
668 smi_info->curr_msg = NULL;
669 if (msg->rsp[2] != 0) {
670 /* Error getting event, probably done. */
671 msg->done(msg);
673 /* Take off the msg flag. */
674 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
675 handle_flags(smi_info);
676 } else {
677 smi_inc_stat(smi_info, incoming_messages);
680 * Do this before we deliver the message
681 * because delivering the message releases the
682 * lock and something else can mess with the
683 * state.
685 handle_flags(smi_info);
687 deliver_recv_msg(smi_info, msg);
689 break;
692 case SI_ENABLE_INTERRUPTS1:
694 unsigned char msg[4];
696 /* We got the flags from the SMI, now handle them. */
697 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
698 if (msg[2] != 0) {
699 dev_warn(smi_info->dev, "Could not enable interrupts"
700 ", failed get, using polled mode.\n");
701 smi_info->si_state = SI_NORMAL;
702 } else {
703 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
704 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
705 msg[2] = (msg[3] |
706 IPMI_BMC_RCV_MSG_INTR |
707 IPMI_BMC_EVT_MSG_INTR);
708 smi_info->handlers->start_transaction(
709 smi_info->si_sm, msg, 3);
710 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
712 break;
715 case SI_ENABLE_INTERRUPTS2:
717 unsigned char msg[4];
719 /* We got the flags from the SMI, now handle them. */
720 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
721 if (msg[2] != 0)
722 dev_warn(smi_info->dev, "Could not enable interrupts"
723 ", failed set, using polled mode.\n");
724 else
725 smi_info->interrupt_disabled = 0;
726 smi_info->si_state = SI_NORMAL;
727 break;
730 case SI_DISABLE_INTERRUPTS1:
732 unsigned char msg[4];
734 /* We got the flags from the SMI, now handle them. */
735 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736 if (msg[2] != 0) {
737 dev_warn(smi_info->dev, "Could not disable interrupts"
738 ", failed get.\n");
739 smi_info->si_state = SI_NORMAL;
740 } else {
741 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
742 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
743 msg[2] = (msg[3] &
744 ~(IPMI_BMC_RCV_MSG_INTR |
745 IPMI_BMC_EVT_MSG_INTR));
746 smi_info->handlers->start_transaction(
747 smi_info->si_sm, msg, 3);
748 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
750 break;
753 case SI_DISABLE_INTERRUPTS2:
755 unsigned char msg[4];
757 /* We got the flags from the SMI, now handle them. */
758 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
759 if (msg[2] != 0) {
760 dev_warn(smi_info->dev, "Could not disable interrupts"
761 ", failed set.\n");
763 smi_info->si_state = SI_NORMAL;
764 break;
770 * Called on timeouts and events. Timeouts should pass the elapsed
771 * time, interrupts should pass in zero. Must be called with
772 * si_lock held and interrupts disabled.
774 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
775 int time)
777 enum si_sm_result si_sm_result;
779 restart:
781 * There used to be a loop here that waited a little while
782 * (around 25us) before giving up. That turned out to be
783 * pointless, the minimum delays I was seeing were in the 300us
784 * range, which is far too long to wait in an interrupt. So
785 * we just run until the state machine tells us something
786 * happened or it needs a delay.
788 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
789 time = 0;
790 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
791 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
793 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
794 smi_inc_stat(smi_info, complete_transactions);
796 handle_transaction_done(smi_info);
797 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
798 } else if (si_sm_result == SI_SM_HOSED) {
799 smi_inc_stat(smi_info, hosed_count);
802 * Do the before return_hosed_msg, because that
803 * releases the lock.
805 smi_info->si_state = SI_NORMAL;
806 if (smi_info->curr_msg != NULL) {
808 * If we were handling a user message, format
809 * a response to send to the upper layer to
810 * tell it about the error.
812 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
814 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
818 * We prefer handling attn over new messages. But don't do
819 * this if there is not yet an upper layer to handle anything.
821 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
822 unsigned char msg[2];
824 smi_inc_stat(smi_info, attentions);
827 * Got a attn, send down a get message flags to see
828 * what's causing it. It would be better to handle
829 * this in the upper layer, but due to the way
830 * interrupts work with the SMI, that's not really
831 * possible.
833 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
834 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
836 smi_info->handlers->start_transaction(
837 smi_info->si_sm, msg, 2);
838 smi_info->si_state = SI_GETTING_FLAGS;
839 goto restart;
842 /* If we are currently idle, try to start the next message. */
843 if (si_sm_result == SI_SM_IDLE) {
844 smi_inc_stat(smi_info, idles);
846 si_sm_result = start_next_msg(smi_info);
847 if (si_sm_result != SI_SM_IDLE)
848 goto restart;
851 if ((si_sm_result == SI_SM_IDLE)
852 && (atomic_read(&smi_info->req_events))) {
854 * We are idle and the upper layer requested that I fetch
855 * events, so do so.
857 atomic_set(&smi_info->req_events, 0);
859 smi_info->curr_msg = ipmi_alloc_smi_msg();
860 if (!smi_info->curr_msg)
861 goto out;
863 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
864 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
865 smi_info->curr_msg->data_size = 2;
867 smi_info->handlers->start_transaction(
868 smi_info->si_sm,
869 smi_info->curr_msg->data,
870 smi_info->curr_msg->data_size);
871 smi_info->si_state = SI_GETTING_EVENTS;
872 goto restart;
874 out:
875 return si_sm_result;
878 static void sender(void *send_info,
879 struct ipmi_smi_msg *msg,
880 int priority)
882 struct smi_info *smi_info = send_info;
883 enum si_sm_result result;
884 unsigned long flags;
885 #ifdef DEBUG_TIMING
886 struct timeval t;
887 #endif
889 if (atomic_read(&smi_info->stop_operation)) {
890 msg->rsp[0] = msg->data[0] | 4;
891 msg->rsp[1] = msg->data[1];
892 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
893 msg->rsp_size = 3;
894 deliver_recv_msg(smi_info, msg);
895 return;
898 #ifdef DEBUG_TIMING
899 do_gettimeofday(&t);
900 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
901 #endif
904 * last_timeout_jiffies is updated here to avoid
905 * smi_timeout() handler passing very large time_diff
906 * value to smi_event_handler() that causes
907 * the send command to abort.
909 smi_info->last_timeout_jiffies = jiffies;
911 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
913 if (smi_info->thread)
914 wake_up_process(smi_info->thread);
916 if (smi_info->run_to_completion) {
918 * If we are running to completion, then throw it in
919 * the list and run transactions until everything is
920 * clear. Priority doesn't matter here.
924 * Run to completion means we are single-threaded, no
925 * need for locks.
927 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
929 result = smi_event_handler(smi_info, 0);
930 while (result != SI_SM_IDLE) {
931 udelay(SI_SHORT_TIMEOUT_USEC);
932 result = smi_event_handler(smi_info,
933 SI_SHORT_TIMEOUT_USEC);
935 return;
938 spin_lock_irqsave(&smi_info->msg_lock, flags);
939 if (priority > 0)
940 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
941 else
942 list_add_tail(&msg->link, &smi_info->xmit_msgs);
943 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
945 spin_lock_irqsave(&smi_info->si_lock, flags);
946 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
947 start_next_msg(smi_info);
948 spin_unlock_irqrestore(&smi_info->si_lock, flags);
951 static void set_run_to_completion(void *send_info, int i_run_to_completion)
953 struct smi_info *smi_info = send_info;
954 enum si_sm_result result;
956 smi_info->run_to_completion = i_run_to_completion;
957 if (i_run_to_completion) {
958 result = smi_event_handler(smi_info, 0);
959 while (result != SI_SM_IDLE) {
960 udelay(SI_SHORT_TIMEOUT_USEC);
961 result = smi_event_handler(smi_info,
962 SI_SHORT_TIMEOUT_USEC);
968 * Use -1 in the nsec value of the busy waiting timespec to tell that
969 * we are spinning in kipmid looking for something and not delaying
970 * between checks
972 static inline void ipmi_si_set_not_busy(struct timespec *ts)
974 ts->tv_nsec = -1;
976 static inline int ipmi_si_is_busy(struct timespec *ts)
978 return ts->tv_nsec != -1;
981 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
982 const struct smi_info *smi_info,
983 struct timespec *busy_until)
985 unsigned int max_busy_us = 0;
987 if (smi_info->intf_num < num_max_busy_us)
988 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
989 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
990 ipmi_si_set_not_busy(busy_until);
991 else if (!ipmi_si_is_busy(busy_until)) {
992 getnstimeofday(busy_until);
993 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
994 } else {
995 struct timespec now;
996 getnstimeofday(&now);
997 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
998 ipmi_si_set_not_busy(busy_until);
999 return 0;
1002 return 1;
1007 * A busy-waiting loop for speeding up IPMI operation.
1009 * Lousy hardware makes this hard. This is only enabled for systems
1010 * that are not BT and do not have interrupts. It starts spinning
1011 * when an operation is complete or until max_busy tells it to stop
1012 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1013 * Documentation/IPMI.txt for details.
1015 static int ipmi_thread(void *data)
1017 struct smi_info *smi_info = data;
1018 unsigned long flags;
1019 enum si_sm_result smi_result;
1020 struct timespec busy_until;
1022 ipmi_si_set_not_busy(&busy_until);
1023 set_user_nice(current, 19);
1024 while (!kthread_should_stop()) {
1025 int busy_wait;
1027 spin_lock_irqsave(&(smi_info->si_lock), flags);
1028 smi_result = smi_event_handler(smi_info, 0);
1029 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1030 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1031 &busy_until);
1032 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1033 ; /* do nothing */
1034 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1035 schedule();
1036 else if (smi_result == SI_SM_IDLE)
1037 schedule_timeout_interruptible(100);
1038 else
1039 schedule_timeout_interruptible(1);
1041 return 0;
1045 static void poll(void *send_info)
1047 struct smi_info *smi_info = send_info;
1048 unsigned long flags;
1051 * Make sure there is some delay in the poll loop so we can
1052 * drive time forward and timeout things.
1054 udelay(10);
1055 spin_lock_irqsave(&smi_info->si_lock, flags);
1056 smi_event_handler(smi_info, 10);
1057 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1060 static void request_events(void *send_info)
1062 struct smi_info *smi_info = send_info;
1064 if (atomic_read(&smi_info->stop_operation) ||
1065 !smi_info->has_event_buffer)
1066 return;
1068 atomic_set(&smi_info->req_events, 1);
1071 static int initialized;
1073 static void smi_timeout(unsigned long data)
1075 struct smi_info *smi_info = (struct smi_info *) data;
1076 enum si_sm_result smi_result;
1077 unsigned long flags;
1078 unsigned long jiffies_now;
1079 long time_diff;
1080 long timeout;
1081 #ifdef DEBUG_TIMING
1082 struct timeval t;
1083 #endif
1085 spin_lock_irqsave(&(smi_info->si_lock), flags);
1086 #ifdef DEBUG_TIMING
1087 do_gettimeofday(&t);
1088 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1089 #endif
1090 jiffies_now = jiffies;
1091 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1092 * SI_USEC_PER_JIFFY);
1093 smi_result = smi_event_handler(smi_info, time_diff);
1095 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1097 smi_info->last_timeout_jiffies = jiffies_now;
1099 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1100 /* Running with interrupts, only do long timeouts. */
1101 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1102 smi_inc_stat(smi_info, long_timeouts);
1103 goto do_mod_timer;
1107 * If the state machine asks for a short delay, then shorten
1108 * the timer timeout.
1110 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1111 smi_inc_stat(smi_info, short_timeouts);
1112 timeout = jiffies + 1;
1113 } else {
1114 smi_inc_stat(smi_info, long_timeouts);
1115 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1118 do_mod_timer:
1119 if (smi_result != SI_SM_IDLE)
1120 mod_timer(&(smi_info->si_timer), timeout);
1123 static irqreturn_t si_irq_handler(int irq, void *data)
1125 struct smi_info *smi_info = data;
1126 unsigned long flags;
1127 #ifdef DEBUG_TIMING
1128 struct timeval t;
1129 #endif
1131 spin_lock_irqsave(&(smi_info->si_lock), flags);
1133 smi_inc_stat(smi_info, interrupts);
1135 #ifdef DEBUG_TIMING
1136 do_gettimeofday(&t);
1137 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1138 #endif
1139 smi_event_handler(smi_info, 0);
1140 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1141 return IRQ_HANDLED;
1144 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1146 struct smi_info *smi_info = data;
1147 /* We need to clear the IRQ flag for the BT interface. */
1148 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1149 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1150 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1151 return si_irq_handler(irq, data);
1154 static int smi_start_processing(void *send_info,
1155 ipmi_smi_t intf)
1157 struct smi_info *new_smi = send_info;
1158 int enable = 0;
1160 new_smi->intf = intf;
1162 /* Try to claim any interrupts. */
1163 if (new_smi->irq_setup)
1164 new_smi->irq_setup(new_smi);
1166 /* Set up the timer that drives the interface. */
1167 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1168 new_smi->last_timeout_jiffies = jiffies;
1169 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1172 * Check if the user forcefully enabled the daemon.
1174 if (new_smi->intf_num < num_force_kipmid)
1175 enable = force_kipmid[new_smi->intf_num];
1177 * The BT interface is efficient enough to not need a thread,
1178 * and there is no need for a thread if we have interrupts.
1180 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1181 enable = 1;
1183 if (enable) {
1184 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1185 "kipmi%d", new_smi->intf_num);
1186 if (IS_ERR(new_smi->thread)) {
1187 dev_notice(new_smi->dev, "Could not start"
1188 " kernel thread due to error %ld, only using"
1189 " timers to drive the interface\n",
1190 PTR_ERR(new_smi->thread));
1191 new_smi->thread = NULL;
1195 return 0;
1198 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1200 struct smi_info *smi = send_info;
1202 data->addr_src = smi->addr_source;
1203 data->dev = smi->dev;
1204 data->addr_info = smi->addr_info;
1205 get_device(smi->dev);
1207 return 0;
1210 static void set_maintenance_mode(void *send_info, int enable)
1212 struct smi_info *smi_info = send_info;
1214 if (!enable)
1215 atomic_set(&smi_info->req_events, 0);
1218 static struct ipmi_smi_handlers handlers = {
1219 .owner = THIS_MODULE,
1220 .start_processing = smi_start_processing,
1221 .get_smi_info = get_smi_info,
1222 .sender = sender,
1223 .request_events = request_events,
1224 .set_maintenance_mode = set_maintenance_mode,
1225 .set_run_to_completion = set_run_to_completion,
1226 .poll = poll,
1230 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1231 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1234 static LIST_HEAD(smi_infos);
1235 static DEFINE_MUTEX(smi_infos_lock);
1236 static int smi_num; /* Used to sequence the SMIs */
1238 #define DEFAULT_REGSPACING 1
1239 #define DEFAULT_REGSIZE 1
1241 static int si_trydefaults = 1;
1242 static char *si_type[SI_MAX_PARMS];
1243 #define MAX_SI_TYPE_STR 30
1244 static char si_type_str[MAX_SI_TYPE_STR];
1245 static unsigned long addrs[SI_MAX_PARMS];
1246 static unsigned int num_addrs;
1247 static unsigned int ports[SI_MAX_PARMS];
1248 static unsigned int num_ports;
1249 static int irqs[SI_MAX_PARMS];
1250 static unsigned int num_irqs;
1251 static int regspacings[SI_MAX_PARMS];
1252 static unsigned int num_regspacings;
1253 static int regsizes[SI_MAX_PARMS];
1254 static unsigned int num_regsizes;
1255 static int regshifts[SI_MAX_PARMS];
1256 static unsigned int num_regshifts;
1257 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1258 static unsigned int num_slave_addrs;
1260 #define IPMI_IO_ADDR_SPACE 0
1261 #define IPMI_MEM_ADDR_SPACE 1
1262 static char *addr_space_to_str[] = { "i/o", "mem" };
1264 static int hotmod_handler(const char *val, struct kernel_param *kp);
1266 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1267 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1268 " Documentation/IPMI.txt in the kernel sources for the"
1269 " gory details.");
1271 module_param_named(trydefaults, si_trydefaults, bool, 0);
1272 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1273 " default scan of the KCS and SMIC interface at the standard"
1274 " address");
1275 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1276 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1277 " interface separated by commas. The types are 'kcs',"
1278 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1279 " the first interface to kcs and the second to bt");
1280 module_param_array(addrs, ulong, &num_addrs, 0);
1281 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1282 " addresses separated by commas. Only use if an interface"
1283 " is in memory. Otherwise, set it to zero or leave"
1284 " it blank.");
1285 module_param_array(ports, uint, &num_ports, 0);
1286 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1287 " addresses separated by commas. Only use if an interface"
1288 " is a port. Otherwise, set it to zero or leave"
1289 " it blank.");
1290 module_param_array(irqs, int, &num_irqs, 0);
1291 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1292 " addresses separated by commas. Only use if an interface"
1293 " has an interrupt. Otherwise, set it to zero or leave"
1294 " it blank.");
1295 module_param_array(regspacings, int, &num_regspacings, 0);
1296 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1297 " and each successive register used by the interface. For"
1298 " instance, if the start address is 0xca2 and the spacing"
1299 " is 2, then the second address is at 0xca4. Defaults"
1300 " to 1.");
1301 module_param_array(regsizes, int, &num_regsizes, 0);
1302 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1303 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1304 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1305 " the 8-bit IPMI register has to be read from a larger"
1306 " register.");
1307 module_param_array(regshifts, int, &num_regshifts, 0);
1308 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1309 " IPMI register, in bits. For instance, if the data"
1310 " is read from a 32-bit word and the IPMI data is in"
1311 " bit 8-15, then the shift would be 8");
1312 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1313 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1314 " the controller. Normally this is 0x20, but can be"
1315 " overridden by this parm. This is an array indexed"
1316 " by interface number.");
1317 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1318 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1319 " disabled(0). Normally the IPMI driver auto-detects"
1320 " this, but the value may be overridden by this parm.");
1321 module_param(unload_when_empty, int, 0);
1322 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1323 " specified or found, default is 1. Setting to 0"
1324 " is useful for hot add of devices using hotmod.");
1325 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1326 MODULE_PARM_DESC(kipmid_max_busy_us,
1327 "Max time (in microseconds) to busy-wait for IPMI data before"
1328 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1329 " if kipmid is using up a lot of CPU time.");
1332 static void std_irq_cleanup(struct smi_info *info)
1334 if (info->si_type == SI_BT)
1335 /* Disable the interrupt in the BT interface. */
1336 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1337 free_irq(info->irq, info);
1340 static int std_irq_setup(struct smi_info *info)
1342 int rv;
1344 if (!info->irq)
1345 return 0;
1347 if (info->si_type == SI_BT) {
1348 rv = request_irq(info->irq,
1349 si_bt_irq_handler,
1350 IRQF_SHARED | IRQF_DISABLED,
1351 DEVICE_NAME,
1352 info);
1353 if (!rv)
1354 /* Enable the interrupt in the BT interface. */
1355 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1356 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1357 } else
1358 rv = request_irq(info->irq,
1359 si_irq_handler,
1360 IRQF_SHARED | IRQF_DISABLED,
1361 DEVICE_NAME,
1362 info);
1363 if (rv) {
1364 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1365 " running polled\n",
1366 DEVICE_NAME, info->irq);
1367 info->irq = 0;
1368 } else {
1369 info->irq_cleanup = std_irq_cleanup;
1370 dev_info(info->dev, "Using irq %d\n", info->irq);
1373 return rv;
1376 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1378 unsigned int addr = io->addr_data;
1380 return inb(addr + (offset * io->regspacing));
1383 static void port_outb(struct si_sm_io *io, unsigned int offset,
1384 unsigned char b)
1386 unsigned int addr = io->addr_data;
1388 outb(b, addr + (offset * io->regspacing));
1391 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1393 unsigned int addr = io->addr_data;
1395 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1398 static void port_outw(struct si_sm_io *io, unsigned int offset,
1399 unsigned char b)
1401 unsigned int addr = io->addr_data;
1403 outw(b << io->regshift, addr + (offset * io->regspacing));
1406 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1408 unsigned int addr = io->addr_data;
1410 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1413 static void port_outl(struct si_sm_io *io, unsigned int offset,
1414 unsigned char b)
1416 unsigned int addr = io->addr_data;
1418 outl(b << io->regshift, addr+(offset * io->regspacing));
1421 static void port_cleanup(struct smi_info *info)
1423 unsigned int addr = info->io.addr_data;
1424 int idx;
1426 if (addr) {
1427 for (idx = 0; idx < info->io_size; idx++)
1428 release_region(addr + idx * info->io.regspacing,
1429 info->io.regsize);
1433 static int port_setup(struct smi_info *info)
1435 unsigned int addr = info->io.addr_data;
1436 int idx;
1438 if (!addr)
1439 return -ENODEV;
1441 info->io_cleanup = port_cleanup;
1444 * Figure out the actual inb/inw/inl/etc routine to use based
1445 * upon the register size.
1447 switch (info->io.regsize) {
1448 case 1:
1449 info->io.inputb = port_inb;
1450 info->io.outputb = port_outb;
1451 break;
1452 case 2:
1453 info->io.inputb = port_inw;
1454 info->io.outputb = port_outw;
1455 break;
1456 case 4:
1457 info->io.inputb = port_inl;
1458 info->io.outputb = port_outl;
1459 break;
1460 default:
1461 dev_warn(info->dev, "Invalid register size: %d\n",
1462 info->io.regsize);
1463 return -EINVAL;
1467 * Some BIOSes reserve disjoint I/O regions in their ACPI
1468 * tables. This causes problems when trying to register the
1469 * entire I/O region. Therefore we must register each I/O
1470 * port separately.
1472 for (idx = 0; idx < info->io_size; idx++) {
1473 if (request_region(addr + idx * info->io.regspacing,
1474 info->io.regsize, DEVICE_NAME) == NULL) {
1475 /* Undo allocations */
1476 while (idx--) {
1477 release_region(addr + idx * info->io.regspacing,
1478 info->io.regsize);
1480 return -EIO;
1483 return 0;
1486 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1488 return readb((io->addr)+(offset * io->regspacing));
1491 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1492 unsigned char b)
1494 writeb(b, (io->addr)+(offset * io->regspacing));
1497 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1499 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1500 & 0xff;
1503 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1504 unsigned char b)
1506 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1509 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1511 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1512 & 0xff;
1515 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1516 unsigned char b)
1518 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1521 #ifdef readq
1522 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1524 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1525 & 0xff;
1528 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1529 unsigned char b)
1531 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1533 #endif
1535 static void mem_cleanup(struct smi_info *info)
1537 unsigned long addr = info->io.addr_data;
1538 int mapsize;
1540 if (info->io.addr) {
1541 iounmap(info->io.addr);
1543 mapsize = ((info->io_size * info->io.regspacing)
1544 - (info->io.regspacing - info->io.regsize));
1546 release_mem_region(addr, mapsize);
1550 static int mem_setup(struct smi_info *info)
1552 unsigned long addr = info->io.addr_data;
1553 int mapsize;
1555 if (!addr)
1556 return -ENODEV;
1558 info->io_cleanup = mem_cleanup;
1561 * Figure out the actual readb/readw/readl/etc routine to use based
1562 * upon the register size.
1564 switch (info->io.regsize) {
1565 case 1:
1566 info->io.inputb = intf_mem_inb;
1567 info->io.outputb = intf_mem_outb;
1568 break;
1569 case 2:
1570 info->io.inputb = intf_mem_inw;
1571 info->io.outputb = intf_mem_outw;
1572 break;
1573 case 4:
1574 info->io.inputb = intf_mem_inl;
1575 info->io.outputb = intf_mem_outl;
1576 break;
1577 #ifdef readq
1578 case 8:
1579 info->io.inputb = mem_inq;
1580 info->io.outputb = mem_outq;
1581 break;
1582 #endif
1583 default:
1584 dev_warn(info->dev, "Invalid register size: %d\n",
1585 info->io.regsize);
1586 return -EINVAL;
1590 * Calculate the total amount of memory to claim. This is an
1591 * unusual looking calculation, but it avoids claiming any
1592 * more memory than it has to. It will claim everything
1593 * between the first address to the end of the last full
1594 * register.
1596 mapsize = ((info->io_size * info->io.regspacing)
1597 - (info->io.regspacing - info->io.regsize));
1599 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1600 return -EIO;
1602 info->io.addr = ioremap(addr, mapsize);
1603 if (info->io.addr == NULL) {
1604 release_mem_region(addr, mapsize);
1605 return -EIO;
1607 return 0;
1611 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1612 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1613 * Options are:
1614 * rsp=<regspacing>
1615 * rsi=<regsize>
1616 * rsh=<regshift>
1617 * irq=<irq>
1618 * ipmb=<ipmb addr>
1620 enum hotmod_op { HM_ADD, HM_REMOVE };
1621 struct hotmod_vals {
1622 char *name;
1623 int val;
1625 static struct hotmod_vals hotmod_ops[] = {
1626 { "add", HM_ADD },
1627 { "remove", HM_REMOVE },
1628 { NULL }
1630 static struct hotmod_vals hotmod_si[] = {
1631 { "kcs", SI_KCS },
1632 { "smic", SI_SMIC },
1633 { "bt", SI_BT },
1634 { NULL }
1636 static struct hotmod_vals hotmod_as[] = {
1637 { "mem", IPMI_MEM_ADDR_SPACE },
1638 { "i/o", IPMI_IO_ADDR_SPACE },
1639 { NULL }
1642 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1644 char *s;
1645 int i;
1647 s = strchr(*curr, ',');
1648 if (!s) {
1649 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1650 return -EINVAL;
1652 *s = '\0';
1653 s++;
1654 for (i = 0; hotmod_ops[i].name; i++) {
1655 if (strcmp(*curr, v[i].name) == 0) {
1656 *val = v[i].val;
1657 *curr = s;
1658 return 0;
1662 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1663 return -EINVAL;
1666 static int check_hotmod_int_op(const char *curr, const char *option,
1667 const char *name, int *val)
1669 char *n;
1671 if (strcmp(curr, name) == 0) {
1672 if (!option) {
1673 printk(KERN_WARNING PFX
1674 "No option given for '%s'\n",
1675 curr);
1676 return -EINVAL;
1678 *val = simple_strtoul(option, &n, 0);
1679 if ((*n != '\0') || (*option == '\0')) {
1680 printk(KERN_WARNING PFX
1681 "Bad option given for '%s'\n",
1682 curr);
1683 return -EINVAL;
1685 return 1;
1687 return 0;
1690 static struct smi_info *smi_info_alloc(void)
1692 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1694 if (info) {
1695 spin_lock_init(&info->si_lock);
1696 spin_lock_init(&info->msg_lock);
1698 return info;
1701 static int hotmod_handler(const char *val, struct kernel_param *kp)
1703 char *str = kstrdup(val, GFP_KERNEL);
1704 int rv;
1705 char *next, *curr, *s, *n, *o;
1706 enum hotmod_op op;
1707 enum si_type si_type;
1708 int addr_space;
1709 unsigned long addr;
1710 int regspacing;
1711 int regsize;
1712 int regshift;
1713 int irq;
1714 int ipmb;
1715 int ival;
1716 int len;
1717 struct smi_info *info;
1719 if (!str)
1720 return -ENOMEM;
1722 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1723 len = strlen(str);
1724 ival = len - 1;
1725 while ((ival >= 0) && isspace(str[ival])) {
1726 str[ival] = '\0';
1727 ival--;
1730 for (curr = str; curr; curr = next) {
1731 regspacing = 1;
1732 regsize = 1;
1733 regshift = 0;
1734 irq = 0;
1735 ipmb = 0; /* Choose the default if not specified */
1737 next = strchr(curr, ':');
1738 if (next) {
1739 *next = '\0';
1740 next++;
1743 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1744 if (rv)
1745 break;
1746 op = ival;
1748 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1749 if (rv)
1750 break;
1751 si_type = ival;
1753 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1754 if (rv)
1755 break;
1757 s = strchr(curr, ',');
1758 if (s) {
1759 *s = '\0';
1760 s++;
1762 addr = simple_strtoul(curr, &n, 0);
1763 if ((*n != '\0') || (*curr == '\0')) {
1764 printk(KERN_WARNING PFX "Invalid hotmod address"
1765 " '%s'\n", curr);
1766 break;
1769 while (s) {
1770 curr = s;
1771 s = strchr(curr, ',');
1772 if (s) {
1773 *s = '\0';
1774 s++;
1776 o = strchr(curr, '=');
1777 if (o) {
1778 *o = '\0';
1779 o++;
1781 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1782 if (rv < 0)
1783 goto out;
1784 else if (rv)
1785 continue;
1786 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1787 if (rv < 0)
1788 goto out;
1789 else if (rv)
1790 continue;
1791 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1792 if (rv < 0)
1793 goto out;
1794 else if (rv)
1795 continue;
1796 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1797 if (rv < 0)
1798 goto out;
1799 else if (rv)
1800 continue;
1801 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1802 if (rv < 0)
1803 goto out;
1804 else if (rv)
1805 continue;
1807 rv = -EINVAL;
1808 printk(KERN_WARNING PFX
1809 "Invalid hotmod option '%s'\n",
1810 curr);
1811 goto out;
1814 if (op == HM_ADD) {
1815 info = smi_info_alloc();
1816 if (!info) {
1817 rv = -ENOMEM;
1818 goto out;
1821 info->addr_source = SI_HOTMOD;
1822 info->si_type = si_type;
1823 info->io.addr_data = addr;
1824 info->io.addr_type = addr_space;
1825 if (addr_space == IPMI_MEM_ADDR_SPACE)
1826 info->io_setup = mem_setup;
1827 else
1828 info->io_setup = port_setup;
1830 info->io.addr = NULL;
1831 info->io.regspacing = regspacing;
1832 if (!info->io.regspacing)
1833 info->io.regspacing = DEFAULT_REGSPACING;
1834 info->io.regsize = regsize;
1835 if (!info->io.regsize)
1836 info->io.regsize = DEFAULT_REGSPACING;
1837 info->io.regshift = regshift;
1838 info->irq = irq;
1839 if (info->irq)
1840 info->irq_setup = std_irq_setup;
1841 info->slave_addr = ipmb;
1843 if (!add_smi(info)) {
1844 if (try_smi_init(info))
1845 cleanup_one_si(info);
1846 } else {
1847 kfree(info);
1849 } else {
1850 /* remove */
1851 struct smi_info *e, *tmp_e;
1853 mutex_lock(&smi_infos_lock);
1854 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1855 if (e->io.addr_type != addr_space)
1856 continue;
1857 if (e->si_type != si_type)
1858 continue;
1859 if (e->io.addr_data == addr)
1860 cleanup_one_si(e);
1862 mutex_unlock(&smi_infos_lock);
1865 rv = len;
1866 out:
1867 kfree(str);
1868 return rv;
1871 static void __devinit hardcode_find_bmc(void)
1873 int i;
1874 struct smi_info *info;
1876 for (i = 0; i < SI_MAX_PARMS; i++) {
1877 if (!ports[i] && !addrs[i])
1878 continue;
1880 info = smi_info_alloc();
1881 if (!info)
1882 return;
1884 info->addr_source = SI_HARDCODED;
1885 printk(KERN_INFO PFX "probing via hardcoded address\n");
1887 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1888 info->si_type = SI_KCS;
1889 } else if (strcmp(si_type[i], "smic") == 0) {
1890 info->si_type = SI_SMIC;
1891 } else if (strcmp(si_type[i], "bt") == 0) {
1892 info->si_type = SI_BT;
1893 } else {
1894 printk(KERN_WARNING PFX "Interface type specified "
1895 "for interface %d, was invalid: %s\n",
1896 i, si_type[i]);
1897 kfree(info);
1898 continue;
1901 if (ports[i]) {
1902 /* An I/O port */
1903 info->io_setup = port_setup;
1904 info->io.addr_data = ports[i];
1905 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1906 } else if (addrs[i]) {
1907 /* A memory port */
1908 info->io_setup = mem_setup;
1909 info->io.addr_data = addrs[i];
1910 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1911 } else {
1912 printk(KERN_WARNING PFX "Interface type specified "
1913 "for interface %d, but port and address were "
1914 "not set or set to zero.\n", i);
1915 kfree(info);
1916 continue;
1919 info->io.addr = NULL;
1920 info->io.regspacing = regspacings[i];
1921 if (!info->io.regspacing)
1922 info->io.regspacing = DEFAULT_REGSPACING;
1923 info->io.regsize = regsizes[i];
1924 if (!info->io.regsize)
1925 info->io.regsize = DEFAULT_REGSPACING;
1926 info->io.regshift = regshifts[i];
1927 info->irq = irqs[i];
1928 if (info->irq)
1929 info->irq_setup = std_irq_setup;
1930 info->slave_addr = slave_addrs[i];
1932 if (!add_smi(info)) {
1933 if (try_smi_init(info))
1934 cleanup_one_si(info);
1935 } else {
1936 kfree(info);
1941 #ifdef CONFIG_ACPI
1943 #include <linux/acpi.h>
1946 * Once we get an ACPI failure, we don't try any more, because we go
1947 * through the tables sequentially. Once we don't find a table, there
1948 * are no more.
1950 static int acpi_failure;
1952 /* For GPE-type interrupts. */
1953 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1954 u32 gpe_number, void *context)
1956 struct smi_info *smi_info = context;
1957 unsigned long flags;
1958 #ifdef DEBUG_TIMING
1959 struct timeval t;
1960 #endif
1962 spin_lock_irqsave(&(smi_info->si_lock), flags);
1964 smi_inc_stat(smi_info, interrupts);
1966 #ifdef DEBUG_TIMING
1967 do_gettimeofday(&t);
1968 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1969 #endif
1970 smi_event_handler(smi_info, 0);
1971 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1973 return ACPI_INTERRUPT_HANDLED;
1976 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1978 if (!info->irq)
1979 return;
1981 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1984 static int acpi_gpe_irq_setup(struct smi_info *info)
1986 acpi_status status;
1988 if (!info->irq)
1989 return 0;
1991 /* FIXME - is level triggered right? */
1992 status = acpi_install_gpe_handler(NULL,
1993 info->irq,
1994 ACPI_GPE_LEVEL_TRIGGERED,
1995 &ipmi_acpi_gpe,
1996 info);
1997 if (status != AE_OK) {
1998 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1999 " running polled\n", DEVICE_NAME, info->irq);
2000 info->irq = 0;
2001 return -EINVAL;
2002 } else {
2003 info->irq_cleanup = acpi_gpe_irq_cleanup;
2004 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2005 return 0;
2010 * Defined at
2011 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2013 struct SPMITable {
2014 s8 Signature[4];
2015 u32 Length;
2016 u8 Revision;
2017 u8 Checksum;
2018 s8 OEMID[6];
2019 s8 OEMTableID[8];
2020 s8 OEMRevision[4];
2021 s8 CreatorID[4];
2022 s8 CreatorRevision[4];
2023 u8 InterfaceType;
2024 u8 IPMIlegacy;
2025 s16 SpecificationRevision;
2028 * Bit 0 - SCI interrupt supported
2029 * Bit 1 - I/O APIC/SAPIC
2031 u8 InterruptType;
2034 * If bit 0 of InterruptType is set, then this is the SCI
2035 * interrupt in the GPEx_STS register.
2037 u8 GPE;
2039 s16 Reserved;
2042 * If bit 1 of InterruptType is set, then this is the I/O
2043 * APIC/SAPIC interrupt.
2045 u32 GlobalSystemInterrupt;
2047 /* The actual register address. */
2048 struct acpi_generic_address addr;
2050 u8 UID[4];
2052 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2055 static int __devinit try_init_spmi(struct SPMITable *spmi)
2057 struct smi_info *info;
2059 if (spmi->IPMIlegacy != 1) {
2060 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2061 return -ENODEV;
2064 info = smi_info_alloc();
2065 if (!info) {
2066 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2067 return -ENOMEM;
2070 info->addr_source = SI_SPMI;
2071 printk(KERN_INFO PFX "probing via SPMI\n");
2073 /* Figure out the interface type. */
2074 switch (spmi->InterfaceType) {
2075 case 1: /* KCS */
2076 info->si_type = SI_KCS;
2077 break;
2078 case 2: /* SMIC */
2079 info->si_type = SI_SMIC;
2080 break;
2081 case 3: /* BT */
2082 info->si_type = SI_BT;
2083 break;
2084 default:
2085 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2086 spmi->InterfaceType);
2087 kfree(info);
2088 return -EIO;
2091 if (spmi->InterruptType & 1) {
2092 /* We've got a GPE interrupt. */
2093 info->irq = spmi->GPE;
2094 info->irq_setup = acpi_gpe_irq_setup;
2095 } else if (spmi->InterruptType & 2) {
2096 /* We've got an APIC/SAPIC interrupt. */
2097 info->irq = spmi->GlobalSystemInterrupt;
2098 info->irq_setup = std_irq_setup;
2099 } else {
2100 /* Use the default interrupt setting. */
2101 info->irq = 0;
2102 info->irq_setup = NULL;
2105 if (spmi->addr.bit_width) {
2106 /* A (hopefully) properly formed register bit width. */
2107 info->io.regspacing = spmi->addr.bit_width / 8;
2108 } else {
2109 info->io.regspacing = DEFAULT_REGSPACING;
2111 info->io.regsize = info->io.regspacing;
2112 info->io.regshift = spmi->addr.bit_offset;
2114 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2115 info->io_setup = mem_setup;
2116 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2117 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2118 info->io_setup = port_setup;
2119 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2120 } else {
2121 kfree(info);
2122 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2123 return -EIO;
2125 info->io.addr_data = spmi->addr.address;
2127 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2128 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2129 info->io.addr_data, info->io.regsize, info->io.regspacing,
2130 info->irq);
2132 if (add_smi(info))
2133 kfree(info);
2135 return 0;
2138 static void __devinit spmi_find_bmc(void)
2140 acpi_status status;
2141 struct SPMITable *spmi;
2142 int i;
2144 if (acpi_disabled)
2145 return;
2147 if (acpi_failure)
2148 return;
2150 for (i = 0; ; i++) {
2151 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2152 (struct acpi_table_header **)&spmi);
2153 if (status != AE_OK)
2154 return;
2156 try_init_spmi(spmi);
2160 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2161 const struct pnp_device_id *dev_id)
2163 struct acpi_device *acpi_dev;
2164 struct smi_info *info;
2165 struct resource *res, *res_second;
2166 acpi_handle handle;
2167 acpi_status status;
2168 unsigned long long tmp;
2170 acpi_dev = pnp_acpi_device(dev);
2171 if (!acpi_dev)
2172 return -ENODEV;
2174 info = smi_info_alloc();
2175 if (!info)
2176 return -ENOMEM;
2178 info->addr_source = SI_ACPI;
2179 printk(KERN_INFO PFX "probing via ACPI\n");
2181 handle = acpi_dev->handle;
2182 info->addr_info.acpi_info.acpi_handle = handle;
2184 /* _IFT tells us the interface type: KCS, BT, etc */
2185 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2186 if (ACPI_FAILURE(status))
2187 goto err_free;
2189 switch (tmp) {
2190 case 1:
2191 info->si_type = SI_KCS;
2192 break;
2193 case 2:
2194 info->si_type = SI_SMIC;
2195 break;
2196 case 3:
2197 info->si_type = SI_BT;
2198 break;
2199 default:
2200 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2201 goto err_free;
2204 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2205 if (res) {
2206 info->io_setup = port_setup;
2207 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2208 } else {
2209 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2210 if (res) {
2211 info->io_setup = mem_setup;
2212 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2215 if (!res) {
2216 dev_err(&dev->dev, "no I/O or memory address\n");
2217 goto err_free;
2219 info->io.addr_data = res->start;
2221 info->io.regspacing = DEFAULT_REGSPACING;
2222 res_second = pnp_get_resource(dev,
2223 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2224 IORESOURCE_IO : IORESOURCE_MEM,
2226 if (res_second) {
2227 if (res_second->start > info->io.addr_data)
2228 info->io.regspacing = res_second->start - info->io.addr_data;
2230 info->io.regsize = DEFAULT_REGSPACING;
2231 info->io.regshift = 0;
2233 /* If _GPE exists, use it; otherwise use standard interrupts */
2234 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2235 if (ACPI_SUCCESS(status)) {
2236 info->irq = tmp;
2237 info->irq_setup = acpi_gpe_irq_setup;
2238 } else if (pnp_irq_valid(dev, 0)) {
2239 info->irq = pnp_irq(dev, 0);
2240 info->irq_setup = std_irq_setup;
2243 info->dev = &dev->dev;
2244 pnp_set_drvdata(dev, info);
2246 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2247 res, info->io.regsize, info->io.regspacing,
2248 info->irq);
2250 if (add_smi(info))
2251 goto err_free;
2253 return 0;
2255 err_free:
2256 kfree(info);
2257 return -EINVAL;
2260 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2262 struct smi_info *info = pnp_get_drvdata(dev);
2264 cleanup_one_si(info);
2267 static const struct pnp_device_id pnp_dev_table[] = {
2268 {"IPI0001", 0},
2269 {"", 0},
2272 static struct pnp_driver ipmi_pnp_driver = {
2273 .name = DEVICE_NAME,
2274 .probe = ipmi_pnp_probe,
2275 .remove = __devexit_p(ipmi_pnp_remove),
2276 .id_table = pnp_dev_table,
2278 #endif
2280 #ifdef CONFIG_DMI
2281 struct dmi_ipmi_data {
2282 u8 type;
2283 u8 addr_space;
2284 unsigned long base_addr;
2285 u8 irq;
2286 u8 offset;
2287 u8 slave_addr;
2290 static int __devinit decode_dmi(const struct dmi_header *dm,
2291 struct dmi_ipmi_data *dmi)
2293 const u8 *data = (const u8 *)dm;
2294 unsigned long base_addr;
2295 u8 reg_spacing;
2296 u8 len = dm->length;
2298 dmi->type = data[4];
2300 memcpy(&base_addr, data+8, sizeof(unsigned long));
2301 if (len >= 0x11) {
2302 if (base_addr & 1) {
2303 /* I/O */
2304 base_addr &= 0xFFFE;
2305 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2306 } else
2307 /* Memory */
2308 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2310 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2311 is odd. */
2312 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2314 dmi->irq = data[0x11];
2316 /* The top two bits of byte 0x10 hold the register spacing. */
2317 reg_spacing = (data[0x10] & 0xC0) >> 6;
2318 switch (reg_spacing) {
2319 case 0x00: /* Byte boundaries */
2320 dmi->offset = 1;
2321 break;
2322 case 0x01: /* 32-bit boundaries */
2323 dmi->offset = 4;
2324 break;
2325 case 0x02: /* 16-byte boundaries */
2326 dmi->offset = 16;
2327 break;
2328 default:
2329 /* Some other interface, just ignore it. */
2330 return -EIO;
2332 } else {
2333 /* Old DMI spec. */
2335 * Note that technically, the lower bit of the base
2336 * address should be 1 if the address is I/O and 0 if
2337 * the address is in memory. So many systems get that
2338 * wrong (and all that I have seen are I/O) so we just
2339 * ignore that bit and assume I/O. Systems that use
2340 * memory should use the newer spec, anyway.
2342 dmi->base_addr = base_addr & 0xfffe;
2343 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2344 dmi->offset = 1;
2347 dmi->slave_addr = data[6];
2349 return 0;
2352 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2354 struct smi_info *info;
2356 info = smi_info_alloc();
2357 if (!info) {
2358 printk(KERN_ERR PFX "Could not allocate SI data\n");
2359 return;
2362 info->addr_source = SI_SMBIOS;
2363 printk(KERN_INFO PFX "probing via SMBIOS\n");
2365 switch (ipmi_data->type) {
2366 case 0x01: /* KCS */
2367 info->si_type = SI_KCS;
2368 break;
2369 case 0x02: /* SMIC */
2370 info->si_type = SI_SMIC;
2371 break;
2372 case 0x03: /* BT */
2373 info->si_type = SI_BT;
2374 break;
2375 default:
2376 kfree(info);
2377 return;
2380 switch (ipmi_data->addr_space) {
2381 case IPMI_MEM_ADDR_SPACE:
2382 info->io_setup = mem_setup;
2383 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2384 break;
2386 case IPMI_IO_ADDR_SPACE:
2387 info->io_setup = port_setup;
2388 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2389 break;
2391 default:
2392 kfree(info);
2393 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2394 ipmi_data->addr_space);
2395 return;
2397 info->io.addr_data = ipmi_data->base_addr;
2399 info->io.regspacing = ipmi_data->offset;
2400 if (!info->io.regspacing)
2401 info->io.regspacing = DEFAULT_REGSPACING;
2402 info->io.regsize = DEFAULT_REGSPACING;
2403 info->io.regshift = 0;
2405 info->slave_addr = ipmi_data->slave_addr;
2407 info->irq = ipmi_data->irq;
2408 if (info->irq)
2409 info->irq_setup = std_irq_setup;
2411 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2412 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2413 info->io.addr_data, info->io.regsize, info->io.regspacing,
2414 info->irq);
2416 if (add_smi(info))
2417 kfree(info);
2420 static void __devinit dmi_find_bmc(void)
2422 const struct dmi_device *dev = NULL;
2423 struct dmi_ipmi_data data;
2424 int rv;
2426 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2427 memset(&data, 0, sizeof(data));
2428 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2429 &data);
2430 if (!rv)
2431 try_init_dmi(&data);
2434 #endif /* CONFIG_DMI */
2436 #ifdef CONFIG_PCI
2438 #define PCI_ERMC_CLASSCODE 0x0C0700
2439 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2440 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2441 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2442 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2443 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2445 #define PCI_HP_VENDOR_ID 0x103C
2446 #define PCI_MMC_DEVICE_ID 0x121A
2447 #define PCI_MMC_ADDR_CW 0x10
2449 static void ipmi_pci_cleanup(struct smi_info *info)
2451 struct pci_dev *pdev = info->addr_source_data;
2453 pci_disable_device(pdev);
2456 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2457 const struct pci_device_id *ent)
2459 int rv;
2460 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2461 struct smi_info *info;
2463 info = smi_info_alloc();
2464 if (!info)
2465 return -ENOMEM;
2467 info->addr_source = SI_PCI;
2468 dev_info(&pdev->dev, "probing via PCI");
2470 switch (class_type) {
2471 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2472 info->si_type = SI_SMIC;
2473 break;
2475 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2476 info->si_type = SI_KCS;
2477 break;
2479 case PCI_ERMC_CLASSCODE_TYPE_BT:
2480 info->si_type = SI_BT;
2481 break;
2483 default:
2484 kfree(info);
2485 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2486 return -ENOMEM;
2489 rv = pci_enable_device(pdev);
2490 if (rv) {
2491 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2492 kfree(info);
2493 return rv;
2496 info->addr_source_cleanup = ipmi_pci_cleanup;
2497 info->addr_source_data = pdev;
2499 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2500 info->io_setup = port_setup;
2501 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2502 } else {
2503 info->io_setup = mem_setup;
2504 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2506 info->io.addr_data = pci_resource_start(pdev, 0);
2508 info->io.regspacing = DEFAULT_REGSPACING;
2509 info->io.regsize = DEFAULT_REGSPACING;
2510 info->io.regshift = 0;
2512 info->irq = pdev->irq;
2513 if (info->irq)
2514 info->irq_setup = std_irq_setup;
2516 info->dev = &pdev->dev;
2517 pci_set_drvdata(pdev, info);
2519 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2520 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2521 info->irq);
2523 if (add_smi(info))
2524 kfree(info);
2526 return 0;
2529 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2531 struct smi_info *info = pci_get_drvdata(pdev);
2532 cleanup_one_si(info);
2535 #ifdef CONFIG_PM
2536 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2538 return 0;
2541 static int ipmi_pci_resume(struct pci_dev *pdev)
2543 return 0;
2545 #endif
2547 static struct pci_device_id ipmi_pci_devices[] = {
2548 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2549 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2550 { 0, }
2552 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2554 static struct pci_driver ipmi_pci_driver = {
2555 .name = DEVICE_NAME,
2556 .id_table = ipmi_pci_devices,
2557 .probe = ipmi_pci_probe,
2558 .remove = __devexit_p(ipmi_pci_remove),
2559 #ifdef CONFIG_PM
2560 .suspend = ipmi_pci_suspend,
2561 .resume = ipmi_pci_resume,
2562 #endif
2564 #endif /* CONFIG_PCI */
2567 #ifdef CONFIG_PPC_OF
2568 static int __devinit ipmi_of_probe(struct platform_device *dev,
2569 const struct of_device_id *match)
2571 struct smi_info *info;
2572 struct resource resource;
2573 const __be32 *regsize, *regspacing, *regshift;
2574 struct device_node *np = dev->dev.of_node;
2575 int ret;
2576 int proplen;
2578 dev_info(&dev->dev, "probing via device tree\n");
2580 ret = of_address_to_resource(np, 0, &resource);
2581 if (ret) {
2582 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2583 return ret;
2586 regsize = of_get_property(np, "reg-size", &proplen);
2587 if (regsize && proplen != 4) {
2588 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2589 return -EINVAL;
2592 regspacing = of_get_property(np, "reg-spacing", &proplen);
2593 if (regspacing && proplen != 4) {
2594 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2595 return -EINVAL;
2598 regshift = of_get_property(np, "reg-shift", &proplen);
2599 if (regshift && proplen != 4) {
2600 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2601 return -EINVAL;
2604 info = smi_info_alloc();
2606 if (!info) {
2607 dev_err(&dev->dev,
2608 "could not allocate memory for OF probe\n");
2609 return -ENOMEM;
2612 info->si_type = (enum si_type) match->data;
2613 info->addr_source = SI_DEVICETREE;
2614 info->irq_setup = std_irq_setup;
2616 if (resource.flags & IORESOURCE_IO) {
2617 info->io_setup = port_setup;
2618 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2619 } else {
2620 info->io_setup = mem_setup;
2621 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2624 info->io.addr_data = resource.start;
2626 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2627 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2628 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2630 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2631 info->dev = &dev->dev;
2633 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2634 info->io.addr_data, info->io.regsize, info->io.regspacing,
2635 info->irq);
2637 dev_set_drvdata(&dev->dev, info);
2639 if (add_smi(info)) {
2640 kfree(info);
2641 return -EBUSY;
2644 return 0;
2647 static int __devexit ipmi_of_remove(struct platform_device *dev)
2649 cleanup_one_si(dev_get_drvdata(&dev->dev));
2650 return 0;
2653 static struct of_device_id ipmi_match[] =
2655 { .type = "ipmi", .compatible = "ipmi-kcs",
2656 .data = (void *)(unsigned long) SI_KCS },
2657 { .type = "ipmi", .compatible = "ipmi-smic",
2658 .data = (void *)(unsigned long) SI_SMIC },
2659 { .type = "ipmi", .compatible = "ipmi-bt",
2660 .data = (void *)(unsigned long) SI_BT },
2664 static struct of_platform_driver ipmi_of_platform_driver = {
2665 .driver = {
2666 .name = "ipmi",
2667 .owner = THIS_MODULE,
2668 .of_match_table = ipmi_match,
2670 .probe = ipmi_of_probe,
2671 .remove = __devexit_p(ipmi_of_remove),
2673 #endif /* CONFIG_PPC_OF */
2675 static int wait_for_msg_done(struct smi_info *smi_info)
2677 enum si_sm_result smi_result;
2679 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2680 for (;;) {
2681 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2682 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2683 schedule_timeout_uninterruptible(1);
2684 smi_result = smi_info->handlers->event(
2685 smi_info->si_sm, 100);
2686 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2687 smi_result = smi_info->handlers->event(
2688 smi_info->si_sm, 0);
2689 } else
2690 break;
2692 if (smi_result == SI_SM_HOSED)
2694 * We couldn't get the state machine to run, so whatever's at
2695 * the port is probably not an IPMI SMI interface.
2697 return -ENODEV;
2699 return 0;
2702 static int try_get_dev_id(struct smi_info *smi_info)
2704 unsigned char msg[2];
2705 unsigned char *resp;
2706 unsigned long resp_len;
2707 int rv = 0;
2709 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2710 if (!resp)
2711 return -ENOMEM;
2714 * Do a Get Device ID command, since it comes back with some
2715 * useful info.
2717 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2718 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2719 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2721 rv = wait_for_msg_done(smi_info);
2722 if (rv)
2723 goto out;
2725 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2726 resp, IPMI_MAX_MSG_LENGTH);
2728 /* Check and record info from the get device id, in case we need it. */
2729 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2731 out:
2732 kfree(resp);
2733 return rv;
2736 static int try_enable_event_buffer(struct smi_info *smi_info)
2738 unsigned char msg[3];
2739 unsigned char *resp;
2740 unsigned long resp_len;
2741 int rv = 0;
2743 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2744 if (!resp)
2745 return -ENOMEM;
2747 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2748 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2749 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2751 rv = wait_for_msg_done(smi_info);
2752 if (rv) {
2753 printk(KERN_WARNING PFX "Error getting response from get"
2754 " global enables command, the event buffer is not"
2755 " enabled.\n");
2756 goto out;
2759 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2760 resp, IPMI_MAX_MSG_LENGTH);
2762 if (resp_len < 4 ||
2763 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2764 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2765 resp[2] != 0) {
2766 printk(KERN_WARNING PFX "Invalid return from get global"
2767 " enables command, cannot enable the event buffer.\n");
2768 rv = -EINVAL;
2769 goto out;
2772 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2773 /* buffer is already enabled, nothing to do. */
2774 goto out;
2776 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2777 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2778 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2779 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2781 rv = wait_for_msg_done(smi_info);
2782 if (rv) {
2783 printk(KERN_WARNING PFX "Error getting response from set"
2784 " global, enables command, the event buffer is not"
2785 " enabled.\n");
2786 goto out;
2789 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2790 resp, IPMI_MAX_MSG_LENGTH);
2792 if (resp_len < 3 ||
2793 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2794 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2795 printk(KERN_WARNING PFX "Invalid return from get global,"
2796 "enables command, not enable the event buffer.\n");
2797 rv = -EINVAL;
2798 goto out;
2801 if (resp[2] != 0)
2803 * An error when setting the event buffer bit means
2804 * that the event buffer is not supported.
2806 rv = -ENOENT;
2807 out:
2808 kfree(resp);
2809 return rv;
2812 static int type_file_read_proc(char *page, char **start, off_t off,
2813 int count, int *eof, void *data)
2815 struct smi_info *smi = data;
2817 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2820 static int stat_file_read_proc(char *page, char **start, off_t off,
2821 int count, int *eof, void *data)
2823 char *out = (char *) page;
2824 struct smi_info *smi = data;
2826 out += sprintf(out, "interrupts_enabled: %d\n",
2827 smi->irq && !smi->interrupt_disabled);
2828 out += sprintf(out, "short_timeouts: %u\n",
2829 smi_get_stat(smi, short_timeouts));
2830 out += sprintf(out, "long_timeouts: %u\n",
2831 smi_get_stat(smi, long_timeouts));
2832 out += sprintf(out, "idles: %u\n",
2833 smi_get_stat(smi, idles));
2834 out += sprintf(out, "interrupts: %u\n",
2835 smi_get_stat(smi, interrupts));
2836 out += sprintf(out, "attentions: %u\n",
2837 smi_get_stat(smi, attentions));
2838 out += sprintf(out, "flag_fetches: %u\n",
2839 smi_get_stat(smi, flag_fetches));
2840 out += sprintf(out, "hosed_count: %u\n",
2841 smi_get_stat(smi, hosed_count));
2842 out += sprintf(out, "complete_transactions: %u\n",
2843 smi_get_stat(smi, complete_transactions));
2844 out += sprintf(out, "events: %u\n",
2845 smi_get_stat(smi, events));
2846 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2847 smi_get_stat(smi, watchdog_pretimeouts));
2848 out += sprintf(out, "incoming_messages: %u\n",
2849 smi_get_stat(smi, incoming_messages));
2851 return out - page;
2854 static int param_read_proc(char *page, char **start, off_t off,
2855 int count, int *eof, void *data)
2857 struct smi_info *smi = data;
2859 return sprintf(page,
2860 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2861 si_to_str[smi->si_type],
2862 addr_space_to_str[smi->io.addr_type],
2863 smi->io.addr_data,
2864 smi->io.regspacing,
2865 smi->io.regsize,
2866 smi->io.regshift,
2867 smi->irq,
2868 smi->slave_addr);
2872 * oem_data_avail_to_receive_msg_avail
2873 * @info - smi_info structure with msg_flags set
2875 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2876 * Returns 1 indicating need to re-run handle_flags().
2878 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2880 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2881 RECEIVE_MSG_AVAIL);
2882 return 1;
2886 * setup_dell_poweredge_oem_data_handler
2887 * @info - smi_info.device_id must be populated
2889 * Systems that match, but have firmware version < 1.40 may assert
2890 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2891 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2892 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2893 * as RECEIVE_MSG_AVAIL instead.
2895 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2896 * assert the OEM[012] bits, and if it did, the driver would have to
2897 * change to handle that properly, we don't actually check for the
2898 * firmware version.
2899 * Device ID = 0x20 BMC on PowerEdge 8G servers
2900 * Device Revision = 0x80
2901 * Firmware Revision1 = 0x01 BMC version 1.40
2902 * Firmware Revision2 = 0x40 BCD encoded
2903 * IPMI Version = 0x51 IPMI 1.5
2904 * Manufacturer ID = A2 02 00 Dell IANA
2906 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2907 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2910 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2911 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2912 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2913 #define DELL_IANA_MFR_ID 0x0002a2
2914 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2916 struct ipmi_device_id *id = &smi_info->device_id;
2917 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2918 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2919 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2920 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2921 smi_info->oem_data_avail_handler =
2922 oem_data_avail_to_receive_msg_avail;
2923 } else if (ipmi_version_major(id) < 1 ||
2924 (ipmi_version_major(id) == 1 &&
2925 ipmi_version_minor(id) < 5)) {
2926 smi_info->oem_data_avail_handler =
2927 oem_data_avail_to_receive_msg_avail;
2932 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2933 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2935 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2937 /* Make it a reponse */
2938 msg->rsp[0] = msg->data[0] | 4;
2939 msg->rsp[1] = msg->data[1];
2940 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2941 msg->rsp_size = 3;
2942 smi_info->curr_msg = NULL;
2943 deliver_recv_msg(smi_info, msg);
2947 * dell_poweredge_bt_xaction_handler
2948 * @info - smi_info.device_id must be populated
2950 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2951 * not respond to a Get SDR command if the length of the data
2952 * requested is exactly 0x3A, which leads to command timeouts and no
2953 * data returned. This intercepts such commands, and causes userspace
2954 * callers to try again with a different-sized buffer, which succeeds.
2957 #define STORAGE_NETFN 0x0A
2958 #define STORAGE_CMD_GET_SDR 0x23
2959 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2960 unsigned long unused,
2961 void *in)
2963 struct smi_info *smi_info = in;
2964 unsigned char *data = smi_info->curr_msg->data;
2965 unsigned int size = smi_info->curr_msg->data_size;
2966 if (size >= 8 &&
2967 (data[0]>>2) == STORAGE_NETFN &&
2968 data[1] == STORAGE_CMD_GET_SDR &&
2969 data[7] == 0x3A) {
2970 return_hosed_msg_badsize(smi_info);
2971 return NOTIFY_STOP;
2973 return NOTIFY_DONE;
2976 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2977 .notifier_call = dell_poweredge_bt_xaction_handler,
2981 * setup_dell_poweredge_bt_xaction_handler
2982 * @info - smi_info.device_id must be filled in already
2984 * Fills in smi_info.device_id.start_transaction_pre_hook
2985 * when we know what function to use there.
2987 static void
2988 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2990 struct ipmi_device_id *id = &smi_info->device_id;
2991 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2992 smi_info->si_type == SI_BT)
2993 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2997 * setup_oem_data_handler
2998 * @info - smi_info.device_id must be filled in already
3000 * Fills in smi_info.device_id.oem_data_available_handler
3001 * when we know what function to use there.
3004 static void setup_oem_data_handler(struct smi_info *smi_info)
3006 setup_dell_poweredge_oem_data_handler(smi_info);
3009 static void setup_xaction_handlers(struct smi_info *smi_info)
3011 setup_dell_poweredge_bt_xaction_handler(smi_info);
3014 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3016 if (smi_info->intf) {
3018 * The timer and thread are only running if the
3019 * interface has been started up and registered.
3021 if (smi_info->thread != NULL)
3022 kthread_stop(smi_info->thread);
3023 del_timer_sync(&smi_info->si_timer);
3027 static __devinitdata struct ipmi_default_vals
3029 int type;
3030 int port;
3031 } ipmi_defaults[] =
3033 { .type = SI_KCS, .port = 0xca2 },
3034 { .type = SI_SMIC, .port = 0xca9 },
3035 { .type = SI_BT, .port = 0xe4 },
3036 { .port = 0 }
3039 static void __devinit default_find_bmc(void)
3041 struct smi_info *info;
3042 int i;
3044 for (i = 0; ; i++) {
3045 if (!ipmi_defaults[i].port)
3046 break;
3047 #ifdef CONFIG_PPC
3048 if (check_legacy_ioport(ipmi_defaults[i].port))
3049 continue;
3050 #endif
3051 info = smi_info_alloc();
3052 if (!info)
3053 return;
3055 info->addr_source = SI_DEFAULT;
3057 info->si_type = ipmi_defaults[i].type;
3058 info->io_setup = port_setup;
3059 info->io.addr_data = ipmi_defaults[i].port;
3060 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3062 info->io.addr = NULL;
3063 info->io.regspacing = DEFAULT_REGSPACING;
3064 info->io.regsize = DEFAULT_REGSPACING;
3065 info->io.regshift = 0;
3067 if (add_smi(info) == 0) {
3068 if ((try_smi_init(info)) == 0) {
3069 /* Found one... */
3070 printk(KERN_INFO PFX "Found default %s"
3071 " state machine at %s address 0x%lx\n",
3072 si_to_str[info->si_type],
3073 addr_space_to_str[info->io.addr_type],
3074 info->io.addr_data);
3075 } else
3076 cleanup_one_si(info);
3077 } else {
3078 kfree(info);
3083 static int is_new_interface(struct smi_info *info)
3085 struct smi_info *e;
3087 list_for_each_entry(e, &smi_infos, link) {
3088 if (e->io.addr_type != info->io.addr_type)
3089 continue;
3090 if (e->io.addr_data == info->io.addr_data)
3091 return 0;
3094 return 1;
3097 static int add_smi(struct smi_info *new_smi)
3099 int rv = 0;
3101 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3102 ipmi_addr_src_to_str[new_smi->addr_source],
3103 si_to_str[new_smi->si_type]);
3104 mutex_lock(&smi_infos_lock);
3105 if (!is_new_interface(new_smi)) {
3106 printk(KERN_CONT " duplicate interface\n");
3107 rv = -EBUSY;
3108 goto out_err;
3111 printk(KERN_CONT "\n");
3113 /* So we know not to free it unless we have allocated one. */
3114 new_smi->intf = NULL;
3115 new_smi->si_sm = NULL;
3116 new_smi->handlers = NULL;
3118 list_add_tail(&new_smi->link, &smi_infos);
3120 out_err:
3121 mutex_unlock(&smi_infos_lock);
3122 return rv;
3125 static int try_smi_init(struct smi_info *new_smi)
3127 int rv = 0;
3128 int i;
3130 printk(KERN_INFO PFX "Trying %s-specified %s state"
3131 " machine at %s address 0x%lx, slave address 0x%x,"
3132 " irq %d\n",
3133 ipmi_addr_src_to_str[new_smi->addr_source],
3134 si_to_str[new_smi->si_type],
3135 addr_space_to_str[new_smi->io.addr_type],
3136 new_smi->io.addr_data,
3137 new_smi->slave_addr, new_smi->irq);
3139 switch (new_smi->si_type) {
3140 case SI_KCS:
3141 new_smi->handlers = &kcs_smi_handlers;
3142 break;
3144 case SI_SMIC:
3145 new_smi->handlers = &smic_smi_handlers;
3146 break;
3148 case SI_BT:
3149 new_smi->handlers = &bt_smi_handlers;
3150 break;
3152 default:
3153 /* No support for anything else yet. */
3154 rv = -EIO;
3155 goto out_err;
3158 /* Allocate the state machine's data and initialize it. */
3159 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3160 if (!new_smi->si_sm) {
3161 printk(KERN_ERR PFX
3162 "Could not allocate state machine memory\n");
3163 rv = -ENOMEM;
3164 goto out_err;
3166 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3167 &new_smi->io);
3169 /* Now that we know the I/O size, we can set up the I/O. */
3170 rv = new_smi->io_setup(new_smi);
3171 if (rv) {
3172 printk(KERN_ERR PFX "Could not set up I/O space\n");
3173 goto out_err;
3176 /* Do low-level detection first. */
3177 if (new_smi->handlers->detect(new_smi->si_sm)) {
3178 if (new_smi->addr_source)
3179 printk(KERN_INFO PFX "Interface detection failed\n");
3180 rv = -ENODEV;
3181 goto out_err;
3185 * Attempt a get device id command. If it fails, we probably
3186 * don't have a BMC here.
3188 rv = try_get_dev_id(new_smi);
3189 if (rv) {
3190 if (new_smi->addr_source)
3191 printk(KERN_INFO PFX "There appears to be no BMC"
3192 " at this location\n");
3193 goto out_err;
3196 setup_oem_data_handler(new_smi);
3197 setup_xaction_handlers(new_smi);
3199 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3200 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3201 new_smi->curr_msg = NULL;
3202 atomic_set(&new_smi->req_events, 0);
3203 new_smi->run_to_completion = 0;
3204 for (i = 0; i < SI_NUM_STATS; i++)
3205 atomic_set(&new_smi->stats[i], 0);
3207 new_smi->interrupt_disabled = 1;
3208 atomic_set(&new_smi->stop_operation, 0);
3209 new_smi->intf_num = smi_num;
3210 smi_num++;
3212 rv = try_enable_event_buffer(new_smi);
3213 if (rv == 0)
3214 new_smi->has_event_buffer = 1;
3217 * Start clearing the flags before we enable interrupts or the
3218 * timer to avoid racing with the timer.
3220 start_clear_flags(new_smi);
3221 /* IRQ is defined to be set when non-zero. */
3222 if (new_smi->irq)
3223 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3225 if (!new_smi->dev) {
3227 * If we don't already have a device from something
3228 * else (like PCI), then register a new one.
3230 new_smi->pdev = platform_device_alloc("ipmi_si",
3231 new_smi->intf_num);
3232 if (!new_smi->pdev) {
3233 printk(KERN_ERR PFX
3234 "Unable to allocate platform device\n");
3235 goto out_err;
3237 new_smi->dev = &new_smi->pdev->dev;
3238 new_smi->dev->driver = &ipmi_driver.driver;
3240 rv = platform_device_add(new_smi->pdev);
3241 if (rv) {
3242 printk(KERN_ERR PFX
3243 "Unable to register system interface device:"
3244 " %d\n",
3245 rv);
3246 goto out_err;
3248 new_smi->dev_registered = 1;
3251 rv = ipmi_register_smi(&handlers,
3252 new_smi,
3253 &new_smi->device_id,
3254 new_smi->dev,
3255 "bmc",
3256 new_smi->slave_addr);
3257 if (rv) {
3258 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3259 rv);
3260 goto out_err_stop_timer;
3263 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3264 type_file_read_proc,
3265 new_smi);
3266 if (rv) {
3267 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3268 goto out_err_stop_timer;
3271 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3272 stat_file_read_proc,
3273 new_smi);
3274 if (rv) {
3275 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3276 goto out_err_stop_timer;
3279 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3280 param_read_proc,
3281 new_smi);
3282 if (rv) {
3283 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3284 goto out_err_stop_timer;
3287 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3288 si_to_str[new_smi->si_type]);
3290 return 0;
3292 out_err_stop_timer:
3293 atomic_inc(&new_smi->stop_operation);
3294 wait_for_timer_and_thread(new_smi);
3296 out_err:
3297 new_smi->interrupt_disabled = 1;
3299 if (new_smi->intf) {
3300 ipmi_unregister_smi(new_smi->intf);
3301 new_smi->intf = NULL;
3304 if (new_smi->irq_cleanup) {
3305 new_smi->irq_cleanup(new_smi);
3306 new_smi->irq_cleanup = NULL;
3310 * Wait until we know that we are out of any interrupt
3311 * handlers might have been running before we freed the
3312 * interrupt.
3314 synchronize_sched();
3316 if (new_smi->si_sm) {
3317 if (new_smi->handlers)
3318 new_smi->handlers->cleanup(new_smi->si_sm);
3319 kfree(new_smi->si_sm);
3320 new_smi->si_sm = NULL;
3322 if (new_smi->addr_source_cleanup) {
3323 new_smi->addr_source_cleanup(new_smi);
3324 new_smi->addr_source_cleanup = NULL;
3326 if (new_smi->io_cleanup) {
3327 new_smi->io_cleanup(new_smi);
3328 new_smi->io_cleanup = NULL;
3331 if (new_smi->dev_registered) {
3332 platform_device_unregister(new_smi->pdev);
3333 new_smi->dev_registered = 0;
3336 return rv;
3339 static int __devinit init_ipmi_si(void)
3341 int i;
3342 char *str;
3343 int rv;
3344 struct smi_info *e;
3345 enum ipmi_addr_src type = SI_INVALID;
3347 if (initialized)
3348 return 0;
3349 initialized = 1;
3351 /* Register the device drivers. */
3352 rv = driver_register(&ipmi_driver.driver);
3353 if (rv) {
3354 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3355 return rv;
3359 /* Parse out the si_type string into its components. */
3360 str = si_type_str;
3361 if (*str != '\0') {
3362 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3363 si_type[i] = str;
3364 str = strchr(str, ',');
3365 if (str) {
3366 *str = '\0';
3367 str++;
3368 } else {
3369 break;
3374 printk(KERN_INFO "IPMI System Interface driver.\n");
3376 hardcode_find_bmc();
3378 /* If the user gave us a device, they presumably want us to use it */
3379 mutex_lock(&smi_infos_lock);
3380 if (!list_empty(&smi_infos)) {
3381 mutex_unlock(&smi_infos_lock);
3382 return 0;
3384 mutex_unlock(&smi_infos_lock);
3386 #ifdef CONFIG_PCI
3387 rv = pci_register_driver(&ipmi_pci_driver);
3388 if (rv)
3389 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3390 else
3391 pci_registered = 1;
3392 #endif
3394 #ifdef CONFIG_ACPI
3395 pnp_register_driver(&ipmi_pnp_driver);
3396 pnp_registered = 1;
3397 #endif
3399 #ifdef CONFIG_DMI
3400 dmi_find_bmc();
3401 #endif
3403 #ifdef CONFIG_ACPI
3404 spmi_find_bmc();
3405 #endif
3407 #ifdef CONFIG_PPC_OF
3408 of_register_platform_driver(&ipmi_of_platform_driver);
3409 of_registered = 1;
3410 #endif
3412 /* We prefer devices with interrupts, but in the case of a machine
3413 with multiple BMCs we assume that there will be several instances
3414 of a given type so if we succeed in registering a type then also
3415 try to register everything else of the same type */
3417 mutex_lock(&smi_infos_lock);
3418 list_for_each_entry(e, &smi_infos, link) {
3419 /* Try to register a device if it has an IRQ and we either
3420 haven't successfully registered a device yet or this
3421 device has the same type as one we successfully registered */
3422 if (e->irq && (!type || e->addr_source == type)) {
3423 if (!try_smi_init(e)) {
3424 type = e->addr_source;
3429 /* type will only have been set if we successfully registered an si */
3430 if (type) {
3431 mutex_unlock(&smi_infos_lock);
3432 return 0;
3435 /* Fall back to the preferred device */
3437 list_for_each_entry(e, &smi_infos, link) {
3438 if (!e->irq && (!type || e->addr_source == type)) {
3439 if (!try_smi_init(e)) {
3440 type = e->addr_source;
3444 mutex_unlock(&smi_infos_lock);
3446 if (type)
3447 return 0;
3449 if (si_trydefaults) {
3450 mutex_lock(&smi_infos_lock);
3451 if (list_empty(&smi_infos)) {
3452 /* No BMC was found, try defaults. */
3453 mutex_unlock(&smi_infos_lock);
3454 default_find_bmc();
3455 } else
3456 mutex_unlock(&smi_infos_lock);
3459 mutex_lock(&smi_infos_lock);
3460 if (unload_when_empty && list_empty(&smi_infos)) {
3461 mutex_unlock(&smi_infos_lock);
3462 cleanup_ipmi_si();
3463 printk(KERN_WARNING PFX
3464 "Unable to find any System Interface(s)\n");
3465 return -ENODEV;
3466 } else {
3467 mutex_unlock(&smi_infos_lock);
3468 return 0;
3471 module_init(init_ipmi_si);
3473 static void cleanup_one_si(struct smi_info *to_clean)
3475 int rv = 0;
3476 unsigned long flags;
3478 if (!to_clean)
3479 return;
3481 list_del(&to_clean->link);
3483 /* Tell the driver that we are shutting down. */
3484 atomic_inc(&to_clean->stop_operation);
3487 * Make sure the timer and thread are stopped and will not run
3488 * again.
3490 wait_for_timer_and_thread(to_clean);
3493 * Timeouts are stopped, now make sure the interrupts are off
3494 * for the device. A little tricky with locks to make sure
3495 * there are no races.
3497 spin_lock_irqsave(&to_clean->si_lock, flags);
3498 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3499 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3500 poll(to_clean);
3501 schedule_timeout_uninterruptible(1);
3502 spin_lock_irqsave(&to_clean->si_lock, flags);
3504 disable_si_irq(to_clean);
3505 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3506 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3507 poll(to_clean);
3508 schedule_timeout_uninterruptible(1);
3511 /* Clean up interrupts and make sure that everything is done. */
3512 if (to_clean->irq_cleanup)
3513 to_clean->irq_cleanup(to_clean);
3514 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3515 poll(to_clean);
3516 schedule_timeout_uninterruptible(1);
3519 if (to_clean->intf)
3520 rv = ipmi_unregister_smi(to_clean->intf);
3522 if (rv) {
3523 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3524 rv);
3527 if (to_clean->handlers)
3528 to_clean->handlers->cleanup(to_clean->si_sm);
3530 kfree(to_clean->si_sm);
3532 if (to_clean->addr_source_cleanup)
3533 to_clean->addr_source_cleanup(to_clean);
3534 if (to_clean->io_cleanup)
3535 to_clean->io_cleanup(to_clean);
3537 if (to_clean->dev_registered)
3538 platform_device_unregister(to_clean->pdev);
3540 kfree(to_clean);
3543 static void __exit cleanup_ipmi_si(void)
3545 struct smi_info *e, *tmp_e;
3547 if (!initialized)
3548 return;
3550 #ifdef CONFIG_PCI
3551 if (pci_registered)
3552 pci_unregister_driver(&ipmi_pci_driver);
3553 #endif
3554 #ifdef CONFIG_ACPI
3555 if (pnp_registered)
3556 pnp_unregister_driver(&ipmi_pnp_driver);
3557 #endif
3559 #ifdef CONFIG_PPC_OF
3560 if (of_registered)
3561 of_unregister_platform_driver(&ipmi_of_platform_driver);
3562 #endif
3564 mutex_lock(&smi_infos_lock);
3565 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3566 cleanup_one_si(e);
3567 mutex_unlock(&smi_infos_lock);
3569 driver_unregister(&ipmi_driver.driver);
3571 module_exit(cleanup_ipmi_si);
3573 MODULE_LICENSE("GPL");
3574 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3575 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3576 " system interfaces.");