Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sched / sch_tbf.c
bloba2f93c09f3cc2490b5131df91659112b3fc10693
1 /*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/pkt_sched.h>
25 /* Simple Token Bucket Filter.
26 =======================================
28 SOURCE.
29 -------
31 None.
33 Description.
34 ------------
36 A data flow obeys TBF with rate R and depth B, if for any
37 time interval t_i...t_f the number of transmitted bits
38 does not exceed B + R*(t_f-t_i).
40 Packetized version of this definition:
41 The sequence of packets of sizes s_i served at moments t_i
42 obeys TBF, if for any i<=k:
44 s_i+....+s_k <= B + R*(t_k - t_i)
46 Algorithm.
47 ----------
49 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51 N(t+delta) = min{B/R, N(t) + delta}
53 If the first packet in queue has length S, it may be
54 transmitted only at the time t_* when S/R <= N(t_*),
55 and in this case N(t) jumps:
57 N(t_* + 0) = N(t_* - 0) - S/R.
61 Actually, QoS requires two TBF to be applied to a data stream.
62 One of them controls steady state burst size, another
63 one with rate P (peak rate) and depth M (equal to link MTU)
64 limits bursts at a smaller time scale.
66 It is easy to see that P>R, and B>M. If P is infinity, this double
67 TBF is equivalent to a single one.
69 When TBF works in reshaping mode, latency is estimated as:
71 lat = max ((L-B)/R, (L-M)/P)
74 NOTES.
75 ------
77 If TBF throttles, it starts a watchdog timer, which will wake it up
78 when it is ready to transmit.
79 Note that the minimal timer resolution is 1/HZ.
80 If no new packets arrive during this period,
81 or if the device is not awaken by EOI for some previous packet,
82 TBF can stop its activity for 1/HZ.
85 This means, that with depth B, the maximal rate is
87 R_crit = B*HZ
89 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91 Note that the peak rate TBF is much more tough: with MTU 1500
92 P_crit = 150Kbytes/sec. So, if you need greater peak
93 rates, use alpha with HZ=1000 :-)
95 With classful TBF, limit is just kept for backwards compatibility.
96 It is passed to the default bfifo qdisc - if the inner qdisc is
97 changed the limit is not effective anymore.
100 struct tbf_sched_data
102 /* Parameters */
103 u32 limit; /* Maximal length of backlog: bytes */
104 u32 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
105 u32 mtu;
106 u32 max_size;
107 struct qdisc_rate_table *R_tab;
108 struct qdisc_rate_table *P_tab;
110 /* Variables */
111 long tokens; /* Current number of B tokens */
112 long ptokens; /* Current number of P tokens */
113 psched_time_t t_c; /* Time check-point */
114 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
115 struct qdisc_watchdog watchdog; /* Watchdog timer */
118 #define L2T(q,L) qdisc_l2t((q)->R_tab,L)
119 #define L2T_P(q,L) qdisc_l2t((q)->P_tab,L)
121 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc* sch)
123 struct tbf_sched_data *q = qdisc_priv(sch);
124 int ret;
126 if (qdisc_pkt_len(skb) > q->max_size)
127 return qdisc_reshape_fail(skb, sch);
129 ret = qdisc_enqueue(skb, q->qdisc);
130 if (ret != 0) {
131 if (net_xmit_drop_count(ret))
132 sch->qstats.drops++;
133 return ret;
136 sch->q.qlen++;
137 sch->bstats.bytes += qdisc_pkt_len(skb);
138 sch->bstats.packets++;
139 return 0;
142 static unsigned int tbf_drop(struct Qdisc* sch)
144 struct tbf_sched_data *q = qdisc_priv(sch);
145 unsigned int len = 0;
147 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
148 sch->q.qlen--;
149 sch->qstats.drops++;
151 return len;
154 static struct sk_buff *tbf_dequeue(struct Qdisc* sch)
156 struct tbf_sched_data *q = qdisc_priv(sch);
157 struct sk_buff *skb;
159 skb = q->qdisc->ops->peek(q->qdisc);
161 if (skb) {
162 psched_time_t now;
163 long toks;
164 long ptoks = 0;
165 unsigned int len = qdisc_pkt_len(skb);
167 now = psched_get_time();
168 toks = psched_tdiff_bounded(now, q->t_c, q->buffer);
170 if (q->P_tab) {
171 ptoks = toks + q->ptokens;
172 if (ptoks > (long)q->mtu)
173 ptoks = q->mtu;
174 ptoks -= L2T_P(q, len);
176 toks += q->tokens;
177 if (toks > (long)q->buffer)
178 toks = q->buffer;
179 toks -= L2T(q, len);
181 if ((toks|ptoks) >= 0) {
182 skb = qdisc_dequeue_peeked(q->qdisc);
183 if (unlikely(!skb))
184 return NULL;
186 q->t_c = now;
187 q->tokens = toks;
188 q->ptokens = ptoks;
189 sch->q.qlen--;
190 sch->flags &= ~TCQ_F_THROTTLED;
191 return skb;
194 qdisc_watchdog_schedule(&q->watchdog,
195 now + max_t(long, -toks, -ptoks));
197 /* Maybe we have a shorter packet in the queue,
198 which can be sent now. It sounds cool,
199 but, however, this is wrong in principle.
200 We MUST NOT reorder packets under these circumstances.
202 Really, if we split the flow into independent
203 subflows, it would be a very good solution.
204 This is the main idea of all FQ algorithms
205 (cf. CSZ, HPFQ, HFSC)
208 sch->qstats.overlimits++;
210 return NULL;
213 static void tbf_reset(struct Qdisc* sch)
215 struct tbf_sched_data *q = qdisc_priv(sch);
217 qdisc_reset(q->qdisc);
218 sch->q.qlen = 0;
219 q->t_c = psched_get_time();
220 q->tokens = q->buffer;
221 q->ptokens = q->mtu;
222 qdisc_watchdog_cancel(&q->watchdog);
225 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
226 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
227 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
228 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
231 static int tbf_change(struct Qdisc* sch, struct nlattr *opt)
233 int err;
234 struct tbf_sched_data *q = qdisc_priv(sch);
235 struct nlattr *tb[TCA_TBF_PTAB + 1];
236 struct tc_tbf_qopt *qopt;
237 struct qdisc_rate_table *rtab = NULL;
238 struct qdisc_rate_table *ptab = NULL;
239 struct qdisc_rate_table *tmp;
240 struct Qdisc *child = NULL;
241 int max_size,n;
243 err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy);
244 if (err < 0)
245 return err;
247 err = -EINVAL;
248 if (tb[TCA_TBF_PARMS] == NULL)
249 goto done;
251 qopt = nla_data(tb[TCA_TBF_PARMS]);
252 rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]);
253 if (rtab == NULL)
254 goto done;
256 if (qopt->peakrate.rate) {
257 if (qopt->peakrate.rate > qopt->rate.rate)
258 ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]);
259 if (ptab == NULL)
260 goto done;
263 for (n = 0; n < 256; n++)
264 if (rtab->data[n] > qopt->buffer) break;
265 max_size = (n << qopt->rate.cell_log)-1;
266 if (ptab) {
267 int size;
269 for (n = 0; n < 256; n++)
270 if (ptab->data[n] > qopt->mtu) break;
271 size = (n << qopt->peakrate.cell_log)-1;
272 if (size < max_size) max_size = size;
274 if (max_size < 0)
275 goto done;
277 if (qopt->limit > 0) {
278 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
279 if (IS_ERR(child)) {
280 err = PTR_ERR(child);
281 goto done;
285 sch_tree_lock(sch);
286 if (child) {
287 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
288 qdisc_destroy(q->qdisc);
289 q->qdisc = child;
291 q->limit = qopt->limit;
292 q->mtu = qopt->mtu;
293 q->max_size = max_size;
294 q->buffer = qopt->buffer;
295 q->tokens = q->buffer;
296 q->ptokens = q->mtu;
298 tmp = q->R_tab;
299 q->R_tab = rtab;
300 rtab = tmp;
302 tmp = q->P_tab;
303 q->P_tab = ptab;
304 ptab = tmp;
305 sch_tree_unlock(sch);
306 err = 0;
307 done:
308 if (rtab)
309 qdisc_put_rtab(rtab);
310 if (ptab)
311 qdisc_put_rtab(ptab);
312 return err;
315 static int tbf_init(struct Qdisc* sch, struct nlattr *opt)
317 struct tbf_sched_data *q = qdisc_priv(sch);
319 if (opt == NULL)
320 return -EINVAL;
322 q->t_c = psched_get_time();
323 qdisc_watchdog_init(&q->watchdog, sch);
324 q->qdisc = &noop_qdisc;
326 return tbf_change(sch, opt);
329 static void tbf_destroy(struct Qdisc *sch)
331 struct tbf_sched_data *q = qdisc_priv(sch);
333 qdisc_watchdog_cancel(&q->watchdog);
335 if (q->P_tab)
336 qdisc_put_rtab(q->P_tab);
337 if (q->R_tab)
338 qdisc_put_rtab(q->R_tab);
340 qdisc_destroy(q->qdisc);
343 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
345 struct tbf_sched_data *q = qdisc_priv(sch);
346 struct nlattr *nest;
347 struct tc_tbf_qopt opt;
349 nest = nla_nest_start(skb, TCA_OPTIONS);
350 if (nest == NULL)
351 goto nla_put_failure;
353 opt.limit = q->limit;
354 opt.rate = q->R_tab->rate;
355 if (q->P_tab)
356 opt.peakrate = q->P_tab->rate;
357 else
358 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
359 opt.mtu = q->mtu;
360 opt.buffer = q->buffer;
361 NLA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt);
363 nla_nest_end(skb, nest);
364 return skb->len;
366 nla_put_failure:
367 nla_nest_cancel(skb, nest);
368 return -1;
371 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
372 struct sk_buff *skb, struct tcmsg *tcm)
374 struct tbf_sched_data *q = qdisc_priv(sch);
376 if (cl != 1) /* only one class */
377 return -ENOENT;
379 tcm->tcm_handle |= TC_H_MIN(1);
380 tcm->tcm_info = q->qdisc->handle;
382 return 0;
385 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
386 struct Qdisc **old)
388 struct tbf_sched_data *q = qdisc_priv(sch);
390 if (new == NULL)
391 new = &noop_qdisc;
393 sch_tree_lock(sch);
394 *old = q->qdisc;
395 q->qdisc = new;
396 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
397 qdisc_reset(*old);
398 sch_tree_unlock(sch);
400 return 0;
403 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
405 struct tbf_sched_data *q = qdisc_priv(sch);
406 return q->qdisc;
409 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
411 return 1;
414 static void tbf_put(struct Qdisc *sch, unsigned long arg)
418 static int tbf_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
419 struct nlattr **tca, unsigned long *arg)
421 return -ENOSYS;
424 static int tbf_delete(struct Qdisc *sch, unsigned long arg)
426 return -ENOSYS;
429 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
431 if (!walker->stop) {
432 if (walker->count >= walker->skip)
433 if (walker->fn(sch, 1, walker) < 0) {
434 walker->stop = 1;
435 return;
437 walker->count++;
441 static struct tcf_proto **tbf_find_tcf(struct Qdisc *sch, unsigned long cl)
443 return NULL;
446 static const struct Qdisc_class_ops tbf_class_ops =
448 .graft = tbf_graft,
449 .leaf = tbf_leaf,
450 .get = tbf_get,
451 .put = tbf_put,
452 .change = tbf_change_class,
453 .delete = tbf_delete,
454 .walk = tbf_walk,
455 .tcf_chain = tbf_find_tcf,
456 .dump = tbf_dump_class,
459 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
460 .next = NULL,
461 .cl_ops = &tbf_class_ops,
462 .id = "tbf",
463 .priv_size = sizeof(struct tbf_sched_data),
464 .enqueue = tbf_enqueue,
465 .dequeue = tbf_dequeue,
466 .peek = qdisc_peek_dequeued,
467 .drop = tbf_drop,
468 .init = tbf_init,
469 .reset = tbf_reset,
470 .destroy = tbf_destroy,
471 .change = tbf_change,
472 .dump = tbf_dump,
473 .owner = THIS_MODULE,
476 static int __init tbf_module_init(void)
478 return register_qdisc(&tbf_qdisc_ops);
481 static void __exit tbf_module_exit(void)
483 unregister_qdisc(&tbf_qdisc_ops);
485 module_init(tbf_module_init)
486 module_exit(tbf_module_exit)
487 MODULE_LICENSE("GPL");