2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
26 #define REGULATOR_VERSION "0.5"
28 static DEFINE_MUTEX(regulator_list_mutex
);
29 static LIST_HEAD(regulator_list
);
30 static LIST_HEAD(regulator_map_list
);
31 static int has_full_constraints
;
34 * struct regulator_map
36 * Used to provide symbolic supply names to devices.
38 struct regulator_map
{
39 struct list_head list
;
40 const char *dev_name
; /* The dev_name() for the consumer */
42 struct regulator_dev
*regulator
;
48 * One for each consumer device.
52 struct list_head list
;
57 struct device_attribute dev_attr
;
58 struct regulator_dev
*rdev
;
61 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
62 static int _regulator_disable(struct regulator_dev
*rdev
);
63 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
64 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
65 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
66 static void _notifier_call_chain(struct regulator_dev
*rdev
,
67 unsigned long event
, void *data
);
69 /* gets the regulator for a given consumer device */
70 static struct regulator
*get_device_regulator(struct device
*dev
)
72 struct regulator
*regulator
= NULL
;
73 struct regulator_dev
*rdev
;
75 mutex_lock(®ulator_list_mutex
);
76 list_for_each_entry(rdev
, ®ulator_list
, list
) {
77 mutex_lock(&rdev
->mutex
);
78 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
79 if (regulator
->dev
== dev
) {
80 mutex_unlock(&rdev
->mutex
);
81 mutex_unlock(®ulator_list_mutex
);
85 mutex_unlock(&rdev
->mutex
);
87 mutex_unlock(®ulator_list_mutex
);
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev
*rdev
,
93 int *min_uV
, int *max_uV
)
95 BUG_ON(*min_uV
> *max_uV
);
97 if (!rdev
->constraints
) {
98 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
102 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
103 printk(KERN_ERR
"%s: operation not allowed for %s\n",
104 __func__
, rdev
->desc
->name
);
108 if (*max_uV
> rdev
->constraints
->max_uV
)
109 *max_uV
= rdev
->constraints
->max_uV
;
110 if (*min_uV
< rdev
->constraints
->min_uV
)
111 *min_uV
= rdev
->constraints
->min_uV
;
113 if (*min_uV
> *max_uV
)
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
121 int *min_uA
, int *max_uA
)
123 BUG_ON(*min_uA
> *max_uA
);
125 if (!rdev
->constraints
) {
126 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
130 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
131 printk(KERN_ERR
"%s: operation not allowed for %s\n",
132 __func__
, rdev
->desc
->name
);
136 if (*max_uA
> rdev
->constraints
->max_uA
)
137 *max_uA
= rdev
->constraints
->max_uA
;
138 if (*min_uA
< rdev
->constraints
->min_uA
)
139 *min_uA
= rdev
->constraints
->min_uA
;
141 if (*min_uA
> *max_uA
)
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev
*rdev
, int mode
)
151 case REGULATOR_MODE_FAST
:
152 case REGULATOR_MODE_NORMAL
:
153 case REGULATOR_MODE_IDLE
:
154 case REGULATOR_MODE_STANDBY
:
160 if (!rdev
->constraints
) {
161 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
165 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
166 printk(KERN_ERR
"%s: operation not allowed for %s\n",
167 __func__
, rdev
->desc
->name
);
170 if (!(rdev
->constraints
->valid_modes_mask
& mode
)) {
171 printk(KERN_ERR
"%s: invalid mode %x for %s\n",
172 __func__
, mode
, rdev
->desc
->name
);
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev
*rdev
)
181 if (!rdev
->constraints
) {
182 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
186 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
187 printk(KERN_ERR
"%s: operation not allowed for %s\n",
188 __func__
, rdev
->desc
->name
);
194 static ssize_t
device_requested_uA_show(struct device
*dev
,
195 struct device_attribute
*attr
, char *buf
)
197 struct regulator
*regulator
;
199 regulator
= get_device_regulator(dev
);
200 if (regulator
== NULL
)
203 return sprintf(buf
, "%d\n", regulator
->uA_load
);
206 static ssize_t
regulator_uV_show(struct device
*dev
,
207 struct device_attribute
*attr
, char *buf
)
209 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
212 mutex_lock(&rdev
->mutex
);
213 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
214 mutex_unlock(&rdev
->mutex
);
218 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
220 static ssize_t
regulator_uA_show(struct device
*dev
,
221 struct device_attribute
*attr
, char *buf
)
223 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
225 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
227 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
229 static ssize_t
regulator_name_show(struct device
*dev
,
230 struct device_attribute
*attr
, char *buf
)
232 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
235 if (rdev
->constraints
&& rdev
->constraints
->name
)
236 name
= rdev
->constraints
->name
;
237 else if (rdev
->desc
->name
)
238 name
= rdev
->desc
->name
;
242 return sprintf(buf
, "%s\n", name
);
245 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
248 case REGULATOR_MODE_FAST
:
249 return sprintf(buf
, "fast\n");
250 case REGULATOR_MODE_NORMAL
:
251 return sprintf(buf
, "normal\n");
252 case REGULATOR_MODE_IDLE
:
253 return sprintf(buf
, "idle\n");
254 case REGULATOR_MODE_STANDBY
:
255 return sprintf(buf
, "standby\n");
257 return sprintf(buf
, "unknown\n");
260 static ssize_t
regulator_opmode_show(struct device
*dev
,
261 struct device_attribute
*attr
, char *buf
)
263 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
265 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
267 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
269 static ssize_t
regulator_print_state(char *buf
, int state
)
272 return sprintf(buf
, "enabled\n");
274 return sprintf(buf
, "disabled\n");
276 return sprintf(buf
, "unknown\n");
279 static ssize_t
regulator_state_show(struct device
*dev
,
280 struct device_attribute
*attr
, char *buf
)
282 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
285 mutex_lock(&rdev
->mutex
);
286 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
287 mutex_unlock(&rdev
->mutex
);
291 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
293 static ssize_t
regulator_status_show(struct device
*dev
,
294 struct device_attribute
*attr
, char *buf
)
296 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
300 status
= rdev
->desc
->ops
->get_status(rdev
);
305 case REGULATOR_STATUS_OFF
:
308 case REGULATOR_STATUS_ON
:
311 case REGULATOR_STATUS_ERROR
:
314 case REGULATOR_STATUS_FAST
:
317 case REGULATOR_STATUS_NORMAL
:
320 case REGULATOR_STATUS_IDLE
:
323 case REGULATOR_STATUS_STANDBY
:
330 return sprintf(buf
, "%s\n", label
);
332 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
334 static ssize_t
regulator_min_uA_show(struct device
*dev
,
335 struct device_attribute
*attr
, char *buf
)
337 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
339 if (!rdev
->constraints
)
340 return sprintf(buf
, "constraint not defined\n");
342 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
344 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
346 static ssize_t
regulator_max_uA_show(struct device
*dev
,
347 struct device_attribute
*attr
, char *buf
)
349 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
351 if (!rdev
->constraints
)
352 return sprintf(buf
, "constraint not defined\n");
354 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
356 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
358 static ssize_t
regulator_min_uV_show(struct device
*dev
,
359 struct device_attribute
*attr
, char *buf
)
361 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
363 if (!rdev
->constraints
)
364 return sprintf(buf
, "constraint not defined\n");
366 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
368 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
370 static ssize_t
regulator_max_uV_show(struct device
*dev
,
371 struct device_attribute
*attr
, char *buf
)
373 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
375 if (!rdev
->constraints
)
376 return sprintf(buf
, "constraint not defined\n");
378 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
380 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
382 static ssize_t
regulator_total_uA_show(struct device
*dev
,
383 struct device_attribute
*attr
, char *buf
)
385 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
386 struct regulator
*regulator
;
389 mutex_lock(&rdev
->mutex
);
390 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
391 uA
+= regulator
->uA_load
;
392 mutex_unlock(&rdev
->mutex
);
393 return sprintf(buf
, "%d\n", uA
);
395 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
397 static ssize_t
regulator_num_users_show(struct device
*dev
,
398 struct device_attribute
*attr
, char *buf
)
400 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
401 return sprintf(buf
, "%d\n", rdev
->use_count
);
404 static ssize_t
regulator_type_show(struct device
*dev
,
405 struct device_attribute
*attr
, char *buf
)
407 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
409 switch (rdev
->desc
->type
) {
410 case REGULATOR_VOLTAGE
:
411 return sprintf(buf
, "voltage\n");
412 case REGULATOR_CURRENT
:
413 return sprintf(buf
, "current\n");
415 return sprintf(buf
, "unknown\n");
418 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
419 struct device_attribute
*attr
, char *buf
)
421 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
423 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
425 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
426 regulator_suspend_mem_uV_show
, NULL
);
428 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
429 struct device_attribute
*attr
, char *buf
)
431 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
433 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
435 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
436 regulator_suspend_disk_uV_show
, NULL
);
438 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
439 struct device_attribute
*attr
, char *buf
)
441 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
443 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
445 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
446 regulator_suspend_standby_uV_show
, NULL
);
448 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
449 struct device_attribute
*attr
, char *buf
)
451 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
453 return regulator_print_opmode(buf
,
454 rdev
->constraints
->state_mem
.mode
);
456 static DEVICE_ATTR(suspend_mem_mode
, 0444,
457 regulator_suspend_mem_mode_show
, NULL
);
459 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
460 struct device_attribute
*attr
, char *buf
)
462 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
464 return regulator_print_opmode(buf
,
465 rdev
->constraints
->state_disk
.mode
);
467 static DEVICE_ATTR(suspend_disk_mode
, 0444,
468 regulator_suspend_disk_mode_show
, NULL
);
470 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
471 struct device_attribute
*attr
, char *buf
)
473 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
475 return regulator_print_opmode(buf
,
476 rdev
->constraints
->state_standby
.mode
);
478 static DEVICE_ATTR(suspend_standby_mode
, 0444,
479 regulator_suspend_standby_mode_show
, NULL
);
481 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
482 struct device_attribute
*attr
, char *buf
)
484 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
486 return regulator_print_state(buf
,
487 rdev
->constraints
->state_mem
.enabled
);
489 static DEVICE_ATTR(suspend_mem_state
, 0444,
490 regulator_suspend_mem_state_show
, NULL
);
492 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
493 struct device_attribute
*attr
, char *buf
)
495 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
497 return regulator_print_state(buf
,
498 rdev
->constraints
->state_disk
.enabled
);
500 static DEVICE_ATTR(suspend_disk_state
, 0444,
501 regulator_suspend_disk_state_show
, NULL
);
503 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
504 struct device_attribute
*attr
, char *buf
)
506 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
508 return regulator_print_state(buf
,
509 rdev
->constraints
->state_standby
.enabled
);
511 static DEVICE_ATTR(suspend_standby_state
, 0444,
512 regulator_suspend_standby_state_show
, NULL
);
516 * These are the only attributes are present for all regulators.
517 * Other attributes are a function of regulator functionality.
519 static struct device_attribute regulator_dev_attrs
[] = {
520 __ATTR(name
, 0444, regulator_name_show
, NULL
),
521 __ATTR(num_users
, 0444, regulator_num_users_show
, NULL
),
522 __ATTR(type
, 0444, regulator_type_show
, NULL
),
526 static void regulator_dev_release(struct device
*dev
)
528 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
532 static struct class regulator_class
= {
534 .dev_release
= regulator_dev_release
,
535 .dev_attrs
= regulator_dev_attrs
,
538 /* Calculate the new optimum regulator operating mode based on the new total
539 * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev
*rdev
)
542 struct regulator
*sibling
;
543 int current_uA
= 0, output_uV
, input_uV
, err
;
546 err
= regulator_check_drms(rdev
);
547 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
548 !rdev
->desc
->ops
->get_voltage
|| !rdev
->desc
->ops
->set_mode
)
551 /* get output voltage */
552 output_uV
= rdev
->desc
->ops
->get_voltage(rdev
);
556 /* get input voltage */
557 if (rdev
->supply
&& rdev
->supply
->desc
->ops
->get_voltage
)
558 input_uV
= rdev
->supply
->desc
->ops
->get_voltage(rdev
->supply
);
560 input_uV
= rdev
->constraints
->input_uV
;
564 /* calc total requested load */
565 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
566 current_uA
+= sibling
->uA_load
;
568 /* now get the optimum mode for our new total regulator load */
569 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
570 output_uV
, current_uA
);
572 /* check the new mode is allowed */
573 err
= regulator_check_mode(rdev
, mode
);
575 rdev
->desc
->ops
->set_mode(rdev
, mode
);
578 static int suspend_set_state(struct regulator_dev
*rdev
,
579 struct regulator_state
*rstate
)
583 /* enable & disable are mandatory for suspend control */
584 if (!rdev
->desc
->ops
->set_suspend_enable
||
585 !rdev
->desc
->ops
->set_suspend_disable
) {
586 printk(KERN_ERR
"%s: no way to set suspend state\n",
592 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
594 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
596 printk(KERN_ERR
"%s: failed to enabled/disable\n", __func__
);
600 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
601 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
603 printk(KERN_ERR
"%s: failed to set voltage\n",
609 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
610 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
612 printk(KERN_ERR
"%s: failed to set mode\n", __func__
);
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
622 if (!rdev
->constraints
)
626 case PM_SUSPEND_STANDBY
:
627 return suspend_set_state(rdev
,
628 &rdev
->constraints
->state_standby
);
630 return suspend_set_state(rdev
,
631 &rdev
->constraints
->state_mem
);
633 return suspend_set_state(rdev
,
634 &rdev
->constraints
->state_disk
);
640 static void print_constraints(struct regulator_dev
*rdev
)
642 struct regulation_constraints
*constraints
= rdev
->constraints
;
647 if (constraints
->min_uV
&& constraints
->max_uV
) {
648 if (constraints
->min_uV
== constraints
->max_uV
)
649 count
+= sprintf(buf
+ count
, "%d mV ",
650 constraints
->min_uV
/ 1000);
652 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
653 constraints
->min_uV
/ 1000,
654 constraints
->max_uV
/ 1000);
657 if (!constraints
->min_uV
||
658 constraints
->min_uV
!= constraints
->max_uV
) {
659 ret
= _regulator_get_voltage(rdev
);
661 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
664 if (constraints
->min_uA
&& constraints
->max_uA
) {
665 if (constraints
->min_uA
== constraints
->max_uA
)
666 count
+= sprintf(buf
+ count
, "%d mA ",
667 constraints
->min_uA
/ 1000);
669 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
670 constraints
->min_uA
/ 1000,
671 constraints
->max_uA
/ 1000);
674 if (!constraints
->min_uA
||
675 constraints
->min_uA
!= constraints
->max_uA
) {
676 ret
= _regulator_get_current_limit(rdev
);
678 count
+= sprintf(buf
+ count
, "at %d uA ", ret
/ 1000);
681 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
682 count
+= sprintf(buf
+ count
, "fast ");
683 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
684 count
+= sprintf(buf
+ count
, "normal ");
685 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
686 count
+= sprintf(buf
+ count
, "idle ");
687 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
688 count
+= sprintf(buf
+ count
, "standby");
690 printk(KERN_INFO
"regulator: %s: %s\n", rdev
->desc
->name
, buf
);
693 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
694 const char *name
, struct regulation_constraints
*constraints
)
696 struct regulator_ops
*ops
= rdev
->desc
->ops
;
699 /* do we need to apply the constraint voltage */
700 if (rdev
->constraints
->apply_uV
&&
701 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
&&
703 ret
= ops
->set_voltage(rdev
,
704 rdev
->constraints
->min_uV
, rdev
->constraints
->max_uV
);
706 printk(KERN_ERR
"%s: failed to apply %duV constraint to %s\n",
708 rdev
->constraints
->min_uV
, name
);
709 rdev
->constraints
= NULL
;
714 /* constrain machine-level voltage specs to fit
715 * the actual range supported by this regulator.
717 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
718 int count
= rdev
->desc
->n_voltages
;
720 int min_uV
= INT_MAX
;
721 int max_uV
= INT_MIN
;
722 int cmin
= constraints
->min_uV
;
723 int cmax
= constraints
->max_uV
;
725 /* it's safe to autoconfigure fixed-voltage supplies
726 and the constraints are used by list_voltage. */
727 if (count
== 1 && !cmin
) {
730 constraints
->min_uV
= cmin
;
731 constraints
->max_uV
= cmax
;
734 /* voltage constraints are optional */
735 if ((cmin
== 0) && (cmax
== 0))
738 /* else require explicit machine-level constraints */
739 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
740 pr_err("%s: %s '%s' voltage constraints\n",
741 __func__
, "invalid", name
);
745 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
746 for (i
= 0; i
< count
; i
++) {
749 value
= ops
->list_voltage(rdev
, i
);
753 /* maybe adjust [min_uV..max_uV] */
754 if (value
>= cmin
&& value
< min_uV
)
756 if (value
<= cmax
&& value
> max_uV
)
760 /* final: [min_uV..max_uV] valid iff constraints valid */
761 if (max_uV
< min_uV
) {
762 pr_err("%s: %s '%s' voltage constraints\n",
763 __func__
, "unsupportable", name
);
767 /* use regulator's subset of machine constraints */
768 if (constraints
->min_uV
< min_uV
) {
769 pr_debug("%s: override '%s' %s, %d -> %d\n",
770 __func__
, name
, "min_uV",
771 constraints
->min_uV
, min_uV
);
772 constraints
->min_uV
= min_uV
;
774 if (constraints
->max_uV
> max_uV
) {
775 pr_debug("%s: override '%s' %s, %d -> %d\n",
776 __func__
, name
, "max_uV",
777 constraints
->max_uV
, max_uV
);
778 constraints
->max_uV
= max_uV
;
786 * set_machine_constraints - sets regulator constraints
787 * @rdev: regulator source
788 * @constraints: constraints to apply
790 * Allows platform initialisation code to define and constrain
791 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
792 * Constraints *must* be set by platform code in order for some
793 * regulator operations to proceed i.e. set_voltage, set_current_limit,
796 static int set_machine_constraints(struct regulator_dev
*rdev
,
797 struct regulation_constraints
*constraints
)
801 struct regulator_ops
*ops
= rdev
->desc
->ops
;
803 if (constraints
->name
)
804 name
= constraints
->name
;
805 else if (rdev
->desc
->name
)
806 name
= rdev
->desc
->name
;
810 rdev
->constraints
= constraints
;
812 ret
= machine_constraints_voltage(rdev
, name
, constraints
);
816 /* do we need to setup our suspend state */
817 if (constraints
->initial_state
) {
818 ret
= suspend_prepare(rdev
, constraints
->initial_state
);
820 printk(KERN_ERR
"%s: failed to set suspend state for %s\n",
822 rdev
->constraints
= NULL
;
827 if (constraints
->initial_mode
) {
828 if (!ops
->set_mode
) {
829 printk(KERN_ERR
"%s: no set_mode operation for %s\n",
835 ret
= ops
->set_mode(rdev
, constraints
->initial_mode
);
838 "%s: failed to set initial mode for %s: %d\n",
839 __func__
, name
, ret
);
844 /* If the constraints say the regulator should be on at this point
845 * and we have control then make sure it is enabled.
847 if ((constraints
->always_on
|| constraints
->boot_on
) && ops
->enable
) {
848 ret
= ops
->enable(rdev
);
850 printk(KERN_ERR
"%s: failed to enable %s\n",
852 rdev
->constraints
= NULL
;
857 print_constraints(rdev
);
863 * set_supply - set regulator supply regulator
864 * @rdev: regulator name
865 * @supply_rdev: supply regulator name
867 * Called by platform initialisation code to set the supply regulator for this
868 * regulator. This ensures that a regulators supply will also be enabled by the
869 * core if it's child is enabled.
871 static int set_supply(struct regulator_dev
*rdev
,
872 struct regulator_dev
*supply_rdev
)
876 err
= sysfs_create_link(&rdev
->dev
.kobj
, &supply_rdev
->dev
.kobj
,
880 "%s: could not add device link %s err %d\n",
881 __func__
, supply_rdev
->dev
.kobj
.name
, err
);
884 rdev
->supply
= supply_rdev
;
885 list_add(&rdev
->slist
, &supply_rdev
->supply_list
);
891 * set_consumer_device_supply: Bind a regulator to a symbolic supply
892 * @rdev: regulator source
893 * @consumer_dev: device the supply applies to
894 * @consumer_dev_name: dev_name() string for device supply applies to
895 * @supply: symbolic name for supply
897 * Allows platform initialisation code to map physical regulator
898 * sources to symbolic names for supplies for use by devices. Devices
899 * should use these symbolic names to request regulators, avoiding the
900 * need to provide board-specific regulator names as platform data.
902 * Only one of consumer_dev and consumer_dev_name may be specified.
904 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
905 struct device
*consumer_dev
, const char *consumer_dev_name
,
908 struct regulator_map
*node
;
911 if (consumer_dev
&& consumer_dev_name
)
914 if (!consumer_dev_name
&& consumer_dev
)
915 consumer_dev_name
= dev_name(consumer_dev
);
920 if (consumer_dev_name
!= NULL
)
925 list_for_each_entry(node
, ®ulator_map_list
, list
) {
926 if (consumer_dev_name
!= node
->dev_name
)
928 if (strcmp(node
->supply
, supply
) != 0)
931 dev_dbg(consumer_dev
, "%s/%s is '%s' supply; fail %s/%s\n",
932 dev_name(&node
->regulator
->dev
),
933 node
->regulator
->desc
->name
,
935 dev_name(&rdev
->dev
), rdev
->desc
->name
);
939 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
943 node
->regulator
= rdev
;
944 node
->supply
= supply
;
947 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
948 if (node
->dev_name
== NULL
) {
954 list_add(&node
->list
, ®ulator_map_list
);
958 static void unset_consumer_device_supply(struct regulator_dev
*rdev
,
959 const char *consumer_dev_name
, struct device
*consumer_dev
)
961 struct regulator_map
*node
, *n
;
963 if (consumer_dev
&& !consumer_dev_name
)
964 consumer_dev_name
= dev_name(consumer_dev
);
966 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
967 if (rdev
!= node
->regulator
)
970 if (consumer_dev_name
&& node
->dev_name
&&
971 strcmp(consumer_dev_name
, node
->dev_name
))
974 list_del(&node
->list
);
975 kfree(node
->dev_name
);
981 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
983 struct regulator_map
*node
, *n
;
985 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
986 if (rdev
== node
->regulator
) {
987 list_del(&node
->list
);
988 kfree(node
->dev_name
);
995 #define REG_STR_SIZE 32
997 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
999 const char *supply_name
)
1001 struct regulator
*regulator
;
1002 char buf
[REG_STR_SIZE
];
1005 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1006 if (regulator
== NULL
)
1009 mutex_lock(&rdev
->mutex
);
1010 regulator
->rdev
= rdev
;
1011 list_add(®ulator
->list
, &rdev
->consumer_list
);
1014 /* create a 'requested_microamps_name' sysfs entry */
1015 size
= scnprintf(buf
, REG_STR_SIZE
, "microamps_requested_%s",
1017 if (size
>= REG_STR_SIZE
)
1020 regulator
->dev
= dev
;
1021 regulator
->dev_attr
.attr
.name
= kstrdup(buf
, GFP_KERNEL
);
1022 if (regulator
->dev_attr
.attr
.name
== NULL
)
1025 regulator
->dev_attr
.attr
.owner
= THIS_MODULE
;
1026 regulator
->dev_attr
.attr
.mode
= 0444;
1027 regulator
->dev_attr
.show
= device_requested_uA_show
;
1028 err
= device_create_file(dev
, ®ulator
->dev_attr
);
1030 printk(KERN_WARNING
"%s: could not add regulator_dev"
1031 " load sysfs\n", __func__
);
1035 /* also add a link to the device sysfs entry */
1036 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1037 dev
->kobj
.name
, supply_name
);
1038 if (size
>= REG_STR_SIZE
)
1041 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1042 if (regulator
->supply_name
== NULL
)
1045 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1049 "%s: could not add device link %s err %d\n",
1050 __func__
, dev
->kobj
.name
, err
);
1051 device_remove_file(dev
, ®ulator
->dev_attr
);
1055 mutex_unlock(&rdev
->mutex
);
1058 kfree(regulator
->supply_name
);
1060 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1062 kfree(regulator
->dev_attr
.attr
.name
);
1064 list_del(®ulator
->list
);
1066 mutex_unlock(&rdev
->mutex
);
1070 /* Internal regulator request function */
1071 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1074 struct regulator_dev
*rdev
;
1075 struct regulator_map
*map
;
1076 struct regulator
*regulator
= ERR_PTR(-ENODEV
);
1077 const char *devname
= NULL
;
1081 printk(KERN_ERR
"regulator: get() with no identifier\n");
1086 devname
= dev_name(dev
);
1088 mutex_lock(®ulator_list_mutex
);
1090 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1091 /* If the mapping has a device set up it must match */
1092 if (map
->dev_name
&&
1093 (!devname
|| strcmp(map
->dev_name
, devname
)))
1096 if (strcmp(map
->supply
, id
) == 0) {
1097 rdev
= map
->regulator
;
1101 mutex_unlock(®ulator_list_mutex
);
1105 if (rdev
->exclusive
) {
1106 regulator
= ERR_PTR(-EPERM
);
1110 if (exclusive
&& rdev
->open_count
) {
1111 regulator
= ERR_PTR(-EBUSY
);
1115 if (!try_module_get(rdev
->owner
))
1118 regulator
= create_regulator(rdev
, dev
, id
);
1119 if (regulator
== NULL
) {
1120 regulator
= ERR_PTR(-ENOMEM
);
1121 module_put(rdev
->owner
);
1126 rdev
->exclusive
= 1;
1128 ret
= _regulator_is_enabled(rdev
);
1130 rdev
->use_count
= 1;
1132 rdev
->use_count
= 0;
1136 mutex_unlock(®ulator_list_mutex
);
1142 * regulator_get - lookup and obtain a reference to a regulator.
1143 * @dev: device for regulator "consumer"
1144 * @id: Supply name or regulator ID.
1146 * Returns a struct regulator corresponding to the regulator producer,
1147 * or IS_ERR() condition containing errno.
1149 * Use of supply names configured via regulator_set_device_supply() is
1150 * strongly encouraged. It is recommended that the supply name used
1151 * should match the name used for the supply and/or the relevant
1152 * device pins in the datasheet.
1154 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1156 return _regulator_get(dev
, id
, 0);
1158 EXPORT_SYMBOL_GPL(regulator_get
);
1161 * regulator_get_exclusive - obtain exclusive access to a regulator.
1162 * @dev: device for regulator "consumer"
1163 * @id: Supply name or regulator ID.
1165 * Returns a struct regulator corresponding to the regulator producer,
1166 * or IS_ERR() condition containing errno. Other consumers will be
1167 * unable to obtain this reference is held and the use count for the
1168 * regulator will be initialised to reflect the current state of the
1171 * This is intended for use by consumers which cannot tolerate shared
1172 * use of the regulator such as those which need to force the
1173 * regulator off for correct operation of the hardware they are
1176 * Use of supply names configured via regulator_set_device_supply() is
1177 * strongly encouraged. It is recommended that the supply name used
1178 * should match the name used for the supply and/or the relevant
1179 * device pins in the datasheet.
1181 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1183 return _regulator_get(dev
, id
, 1);
1185 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1188 * regulator_put - "free" the regulator source
1189 * @regulator: regulator source
1191 * Note: drivers must ensure that all regulator_enable calls made on this
1192 * regulator source are balanced by regulator_disable calls prior to calling
1195 void regulator_put(struct regulator
*regulator
)
1197 struct regulator_dev
*rdev
;
1199 if (regulator
== NULL
|| IS_ERR(regulator
))
1202 mutex_lock(®ulator_list_mutex
);
1203 rdev
= regulator
->rdev
;
1205 /* remove any sysfs entries */
1206 if (regulator
->dev
) {
1207 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1208 kfree(regulator
->supply_name
);
1209 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1210 kfree(regulator
->dev_attr
.attr
.name
);
1212 list_del(®ulator
->list
);
1216 rdev
->exclusive
= 0;
1218 module_put(rdev
->owner
);
1219 mutex_unlock(®ulator_list_mutex
);
1221 EXPORT_SYMBOL_GPL(regulator_put
);
1223 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
1225 if (!rdev
->constraints
)
1228 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
1234 /* locks held by regulator_enable() */
1235 static int _regulator_enable(struct regulator_dev
*rdev
)
1239 /* do we need to enable the supply regulator first */
1241 ret
= _regulator_enable(rdev
->supply
);
1243 printk(KERN_ERR
"%s: failed to enable %s: %d\n",
1244 __func__
, rdev
->desc
->name
, ret
);
1249 /* check voltage and requested load before enabling */
1250 if (rdev
->constraints
&&
1251 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1252 drms_uA_update(rdev
);
1254 if (rdev
->use_count
== 0) {
1255 /* The regulator may on if it's not switchable or left on */
1256 ret
= _regulator_is_enabled(rdev
);
1257 if (ret
== -EINVAL
|| ret
== 0) {
1258 if (!_regulator_can_change_status(rdev
))
1261 if (rdev
->desc
->ops
->enable
) {
1262 ret
= rdev
->desc
->ops
->enable(rdev
);
1268 } else if (ret
< 0) {
1269 printk(KERN_ERR
"%s: is_enabled() failed for %s: %d\n",
1270 __func__
, rdev
->desc
->name
, ret
);
1273 /* Fallthrough on positive return values - already enabled */
1282 * regulator_enable - enable regulator output
1283 * @regulator: regulator source
1285 * Request that the regulator be enabled with the regulator output at
1286 * the predefined voltage or current value. Calls to regulator_enable()
1287 * must be balanced with calls to regulator_disable().
1289 * NOTE: the output value can be set by other drivers, boot loader or may be
1290 * hardwired in the regulator.
1292 int regulator_enable(struct regulator
*regulator
)
1294 struct regulator_dev
*rdev
= regulator
->rdev
;
1297 mutex_lock(&rdev
->mutex
);
1298 ret
= _regulator_enable(rdev
);
1299 mutex_unlock(&rdev
->mutex
);
1302 EXPORT_SYMBOL_GPL(regulator_enable
);
1304 /* locks held by regulator_disable() */
1305 static int _regulator_disable(struct regulator_dev
*rdev
)
1309 if (WARN(rdev
->use_count
<= 0,
1310 "unbalanced disables for %s\n",
1314 /* are we the last user and permitted to disable ? */
1315 if (rdev
->use_count
== 1 &&
1316 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1318 /* we are last user */
1319 if (_regulator_can_change_status(rdev
) &&
1320 rdev
->desc
->ops
->disable
) {
1321 ret
= rdev
->desc
->ops
->disable(rdev
);
1323 printk(KERN_ERR
"%s: failed to disable %s\n",
1324 __func__
, rdev
->desc
->name
);
1329 /* decrease our supplies ref count and disable if required */
1331 _regulator_disable(rdev
->supply
);
1333 rdev
->use_count
= 0;
1334 } else if (rdev
->use_count
> 1) {
1336 if (rdev
->constraints
&&
1337 (rdev
->constraints
->valid_ops_mask
&
1338 REGULATOR_CHANGE_DRMS
))
1339 drms_uA_update(rdev
);
1347 * regulator_disable - disable regulator output
1348 * @regulator: regulator source
1350 * Disable the regulator output voltage or current. Calls to
1351 * regulator_enable() must be balanced with calls to
1352 * regulator_disable().
1354 * NOTE: this will only disable the regulator output if no other consumer
1355 * devices have it enabled, the regulator device supports disabling and
1356 * machine constraints permit this operation.
1358 int regulator_disable(struct regulator
*regulator
)
1360 struct regulator_dev
*rdev
= regulator
->rdev
;
1363 mutex_lock(&rdev
->mutex
);
1364 ret
= _regulator_disable(rdev
);
1365 mutex_unlock(&rdev
->mutex
);
1368 EXPORT_SYMBOL_GPL(regulator_disable
);
1370 /* locks held by regulator_force_disable() */
1371 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1376 if (rdev
->desc
->ops
->disable
) {
1377 /* ah well, who wants to live forever... */
1378 ret
= rdev
->desc
->ops
->disable(rdev
);
1380 printk(KERN_ERR
"%s: failed to force disable %s\n",
1381 __func__
, rdev
->desc
->name
);
1384 /* notify other consumers that power has been forced off */
1385 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
,
1389 /* decrease our supplies ref count and disable if required */
1391 _regulator_disable(rdev
->supply
);
1393 rdev
->use_count
= 0;
1398 * regulator_force_disable - force disable regulator output
1399 * @regulator: regulator source
1401 * Forcibly disable the regulator output voltage or current.
1402 * NOTE: this *will* disable the regulator output even if other consumer
1403 * devices have it enabled. This should be used for situations when device
1404 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1406 int regulator_force_disable(struct regulator
*regulator
)
1410 mutex_lock(®ulator
->rdev
->mutex
);
1411 regulator
->uA_load
= 0;
1412 ret
= _regulator_force_disable(regulator
->rdev
);
1413 mutex_unlock(®ulator
->rdev
->mutex
);
1416 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1418 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
1421 if (!rdev
->desc
->ops
->is_enabled
)
1424 return rdev
->desc
->ops
->is_enabled(rdev
);
1428 * regulator_is_enabled - is the regulator output enabled
1429 * @regulator: regulator source
1431 * Returns positive if the regulator driver backing the source/client
1432 * has requested that the device be enabled, zero if it hasn't, else a
1433 * negative errno code.
1435 * Note that the device backing this regulator handle can have multiple
1436 * users, so it might be enabled even if regulator_enable() was never
1437 * called for this particular source.
1439 int regulator_is_enabled(struct regulator
*regulator
)
1443 mutex_lock(®ulator
->rdev
->mutex
);
1444 ret
= _regulator_is_enabled(regulator
->rdev
);
1445 mutex_unlock(®ulator
->rdev
->mutex
);
1449 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
1452 * regulator_count_voltages - count regulator_list_voltage() selectors
1453 * @regulator: regulator source
1455 * Returns number of selectors, or negative errno. Selectors are
1456 * numbered starting at zero, and typically correspond to bitfields
1457 * in hardware registers.
1459 int regulator_count_voltages(struct regulator
*regulator
)
1461 struct regulator_dev
*rdev
= regulator
->rdev
;
1463 return rdev
->desc
->n_voltages
? : -EINVAL
;
1465 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
1468 * regulator_list_voltage - enumerate supported voltages
1469 * @regulator: regulator source
1470 * @selector: identify voltage to list
1471 * Context: can sleep
1473 * Returns a voltage that can be passed to @regulator_set_voltage(),
1474 * zero if this selector code can't be used on this sytem, or a
1477 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
1479 struct regulator_dev
*rdev
= regulator
->rdev
;
1480 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1483 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
1486 mutex_lock(&rdev
->mutex
);
1487 ret
= ops
->list_voltage(rdev
, selector
);
1488 mutex_unlock(&rdev
->mutex
);
1491 if (ret
< rdev
->constraints
->min_uV
)
1493 else if (ret
> rdev
->constraints
->max_uV
)
1499 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
1502 * regulator_is_supported_voltage - check if a voltage range can be supported
1504 * @regulator: Regulator to check.
1505 * @min_uV: Minimum required voltage in uV.
1506 * @max_uV: Maximum required voltage in uV.
1508 * Returns a boolean or a negative error code.
1510 int regulator_is_supported_voltage(struct regulator
*regulator
,
1511 int min_uV
, int max_uV
)
1513 int i
, voltages
, ret
;
1515 ret
= regulator_count_voltages(regulator
);
1520 for (i
= 0; i
< voltages
; i
++) {
1521 ret
= regulator_list_voltage(regulator
, i
);
1523 if (ret
>= min_uV
&& ret
<= max_uV
)
1531 * regulator_set_voltage - set regulator output voltage
1532 * @regulator: regulator source
1533 * @min_uV: Minimum required voltage in uV
1534 * @max_uV: Maximum acceptable voltage in uV
1536 * Sets a voltage regulator to the desired output voltage. This can be set
1537 * during any regulator state. IOW, regulator can be disabled or enabled.
1539 * If the regulator is enabled then the voltage will change to the new value
1540 * immediately otherwise if the regulator is disabled the regulator will
1541 * output at the new voltage when enabled.
1543 * NOTE: If the regulator is shared between several devices then the lowest
1544 * request voltage that meets the system constraints will be used.
1545 * Regulator system constraints must be set for this regulator before
1546 * calling this function otherwise this call will fail.
1548 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
1550 struct regulator_dev
*rdev
= regulator
->rdev
;
1553 mutex_lock(&rdev
->mutex
);
1556 if (!rdev
->desc
->ops
->set_voltage
) {
1561 /* constraints check */
1562 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
1565 regulator
->min_uV
= min_uV
;
1566 regulator
->max_uV
= max_uV
;
1567 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
);
1570 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
, NULL
);
1571 mutex_unlock(&rdev
->mutex
);
1574 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
1576 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
1579 if (rdev
->desc
->ops
->get_voltage
)
1580 return rdev
->desc
->ops
->get_voltage(rdev
);
1586 * regulator_get_voltage - get regulator output voltage
1587 * @regulator: regulator source
1589 * This returns the current regulator voltage in uV.
1591 * NOTE: If the regulator is disabled it will return the voltage value. This
1592 * function should not be used to determine regulator state.
1594 int regulator_get_voltage(struct regulator
*regulator
)
1598 mutex_lock(®ulator
->rdev
->mutex
);
1600 ret
= _regulator_get_voltage(regulator
->rdev
);
1602 mutex_unlock(®ulator
->rdev
->mutex
);
1606 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
1609 * regulator_set_current_limit - set regulator output current limit
1610 * @regulator: regulator source
1611 * @min_uA: Minimuum supported current in uA
1612 * @max_uA: Maximum supported current in uA
1614 * Sets current sink to the desired output current. This can be set during
1615 * any regulator state. IOW, regulator can be disabled or enabled.
1617 * If the regulator is enabled then the current will change to the new value
1618 * immediately otherwise if the regulator is disabled the regulator will
1619 * output at the new current when enabled.
1621 * NOTE: Regulator system constraints must be set for this regulator before
1622 * calling this function otherwise this call will fail.
1624 int regulator_set_current_limit(struct regulator
*regulator
,
1625 int min_uA
, int max_uA
)
1627 struct regulator_dev
*rdev
= regulator
->rdev
;
1630 mutex_lock(&rdev
->mutex
);
1633 if (!rdev
->desc
->ops
->set_current_limit
) {
1638 /* constraints check */
1639 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
1643 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
1645 mutex_unlock(&rdev
->mutex
);
1648 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
1650 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
1654 mutex_lock(&rdev
->mutex
);
1657 if (!rdev
->desc
->ops
->get_current_limit
) {
1662 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
1664 mutex_unlock(&rdev
->mutex
);
1669 * regulator_get_current_limit - get regulator output current
1670 * @regulator: regulator source
1672 * This returns the current supplied by the specified current sink in uA.
1674 * NOTE: If the regulator is disabled it will return the current value. This
1675 * function should not be used to determine regulator state.
1677 int regulator_get_current_limit(struct regulator
*regulator
)
1679 return _regulator_get_current_limit(regulator
->rdev
);
1681 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
1684 * regulator_set_mode - set regulator operating mode
1685 * @regulator: regulator source
1686 * @mode: operating mode - one of the REGULATOR_MODE constants
1688 * Set regulator operating mode to increase regulator efficiency or improve
1689 * regulation performance.
1691 * NOTE: Regulator system constraints must be set for this regulator before
1692 * calling this function otherwise this call will fail.
1694 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
1696 struct regulator_dev
*rdev
= regulator
->rdev
;
1699 mutex_lock(&rdev
->mutex
);
1702 if (!rdev
->desc
->ops
->set_mode
) {
1707 /* constraints check */
1708 ret
= regulator_check_mode(rdev
, mode
);
1712 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1714 mutex_unlock(&rdev
->mutex
);
1717 EXPORT_SYMBOL_GPL(regulator_set_mode
);
1719 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
1723 mutex_lock(&rdev
->mutex
);
1726 if (!rdev
->desc
->ops
->get_mode
) {
1731 ret
= rdev
->desc
->ops
->get_mode(rdev
);
1733 mutex_unlock(&rdev
->mutex
);
1738 * regulator_get_mode - get regulator operating mode
1739 * @regulator: regulator source
1741 * Get the current regulator operating mode.
1743 unsigned int regulator_get_mode(struct regulator
*regulator
)
1745 return _regulator_get_mode(regulator
->rdev
);
1747 EXPORT_SYMBOL_GPL(regulator_get_mode
);
1750 * regulator_set_optimum_mode - set regulator optimum operating mode
1751 * @regulator: regulator source
1752 * @uA_load: load current
1754 * Notifies the regulator core of a new device load. This is then used by
1755 * DRMS (if enabled by constraints) to set the most efficient regulator
1756 * operating mode for the new regulator loading.
1758 * Consumer devices notify their supply regulator of the maximum power
1759 * they will require (can be taken from device datasheet in the power
1760 * consumption tables) when they change operational status and hence power
1761 * state. Examples of operational state changes that can affect power
1762 * consumption are :-
1764 * o Device is opened / closed.
1765 * o Device I/O is about to begin or has just finished.
1766 * o Device is idling in between work.
1768 * This information is also exported via sysfs to userspace.
1770 * DRMS will sum the total requested load on the regulator and change
1771 * to the most efficient operating mode if platform constraints allow.
1773 * Returns the new regulator mode or error.
1775 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
1777 struct regulator_dev
*rdev
= regulator
->rdev
;
1778 struct regulator
*consumer
;
1779 int ret
, output_uV
, input_uV
, total_uA_load
= 0;
1782 mutex_lock(&rdev
->mutex
);
1784 regulator
->uA_load
= uA_load
;
1785 ret
= regulator_check_drms(rdev
);
1791 if (!rdev
->desc
->ops
->get_optimum_mode
)
1794 /* get output voltage */
1795 output_uV
= rdev
->desc
->ops
->get_voltage(rdev
);
1796 if (output_uV
<= 0) {
1797 printk(KERN_ERR
"%s: invalid output voltage found for %s\n",
1798 __func__
, rdev
->desc
->name
);
1802 /* get input voltage */
1803 if (rdev
->supply
&& rdev
->supply
->desc
->ops
->get_voltage
)
1804 input_uV
= rdev
->supply
->desc
->ops
->get_voltage(rdev
->supply
);
1806 input_uV
= rdev
->constraints
->input_uV
;
1807 if (input_uV
<= 0) {
1808 printk(KERN_ERR
"%s: invalid input voltage found for %s\n",
1809 __func__
, rdev
->desc
->name
);
1813 /* calc total requested load for this regulator */
1814 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
1815 total_uA_load
+= consumer
->uA_load
;
1817 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
1818 input_uV
, output_uV
,
1820 ret
= regulator_check_mode(rdev
, mode
);
1822 printk(KERN_ERR
"%s: failed to get optimum mode for %s @"
1823 " %d uA %d -> %d uV\n", __func__
, rdev
->desc
->name
,
1824 total_uA_load
, input_uV
, output_uV
);
1828 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1830 printk(KERN_ERR
"%s: failed to set optimum mode %x for %s\n",
1831 __func__
, mode
, rdev
->desc
->name
);
1836 mutex_unlock(&rdev
->mutex
);
1839 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
1842 * regulator_register_notifier - register regulator event notifier
1843 * @regulator: regulator source
1844 * @nb: notifier block
1846 * Register notifier block to receive regulator events.
1848 int regulator_register_notifier(struct regulator
*regulator
,
1849 struct notifier_block
*nb
)
1851 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
1854 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
1857 * regulator_unregister_notifier - unregister regulator event notifier
1858 * @regulator: regulator source
1859 * @nb: notifier block
1861 * Unregister regulator event notifier block.
1863 int regulator_unregister_notifier(struct regulator
*regulator
,
1864 struct notifier_block
*nb
)
1866 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
1869 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
1871 /* notify regulator consumers and downstream regulator consumers.
1872 * Note mutex must be held by caller.
1874 static void _notifier_call_chain(struct regulator_dev
*rdev
,
1875 unsigned long event
, void *data
)
1877 struct regulator_dev
*_rdev
;
1879 /* call rdev chain first */
1880 blocking_notifier_call_chain(&rdev
->notifier
, event
, NULL
);
1882 /* now notify regulator we supply */
1883 list_for_each_entry(_rdev
, &rdev
->supply_list
, slist
) {
1884 mutex_lock(&_rdev
->mutex
);
1885 _notifier_call_chain(_rdev
, event
, data
);
1886 mutex_unlock(&_rdev
->mutex
);
1891 * regulator_bulk_get - get multiple regulator consumers
1893 * @dev: Device to supply
1894 * @num_consumers: Number of consumers to register
1895 * @consumers: Configuration of consumers; clients are stored here.
1897 * @return 0 on success, an errno on failure.
1899 * This helper function allows drivers to get several regulator
1900 * consumers in one operation. If any of the regulators cannot be
1901 * acquired then any regulators that were allocated will be freed
1902 * before returning to the caller.
1904 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
1905 struct regulator_bulk_data
*consumers
)
1910 for (i
= 0; i
< num_consumers
; i
++)
1911 consumers
[i
].consumer
= NULL
;
1913 for (i
= 0; i
< num_consumers
; i
++) {
1914 consumers
[i
].consumer
= regulator_get(dev
,
1915 consumers
[i
].supply
);
1916 if (IS_ERR(consumers
[i
].consumer
)) {
1917 ret
= PTR_ERR(consumers
[i
].consumer
);
1918 dev_err(dev
, "Failed to get supply '%s': %d\n",
1919 consumers
[i
].supply
, ret
);
1920 consumers
[i
].consumer
= NULL
;
1928 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
1929 regulator_put(consumers
[i
].consumer
);
1933 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
1936 * regulator_bulk_enable - enable multiple regulator consumers
1938 * @num_consumers: Number of consumers
1939 * @consumers: Consumer data; clients are stored here.
1940 * @return 0 on success, an errno on failure
1942 * This convenience API allows consumers to enable multiple regulator
1943 * clients in a single API call. If any consumers cannot be enabled
1944 * then any others that were enabled will be disabled again prior to
1947 int regulator_bulk_enable(int num_consumers
,
1948 struct regulator_bulk_data
*consumers
)
1953 for (i
= 0; i
< num_consumers
; i
++) {
1954 ret
= regulator_enable(consumers
[i
].consumer
);
1962 printk(KERN_ERR
"Failed to enable %s: %d\n", consumers
[i
].supply
, ret
);
1963 for (i
= 0; i
< num_consumers
; i
++)
1964 regulator_disable(consumers
[i
].consumer
);
1968 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
1971 * regulator_bulk_disable - disable multiple regulator consumers
1973 * @num_consumers: Number of consumers
1974 * @consumers: Consumer data; clients are stored here.
1975 * @return 0 on success, an errno on failure
1977 * This convenience API allows consumers to disable multiple regulator
1978 * clients in a single API call. If any consumers cannot be enabled
1979 * then any others that were disabled will be disabled again prior to
1982 int regulator_bulk_disable(int num_consumers
,
1983 struct regulator_bulk_data
*consumers
)
1988 for (i
= 0; i
< num_consumers
; i
++) {
1989 ret
= regulator_disable(consumers
[i
].consumer
);
1997 printk(KERN_ERR
"Failed to disable %s: %d\n", consumers
[i
].supply
,
1999 for (i
= 0; i
< num_consumers
; i
++)
2000 regulator_enable(consumers
[i
].consumer
);
2004 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
2007 * regulator_bulk_free - free multiple regulator consumers
2009 * @num_consumers: Number of consumers
2010 * @consumers: Consumer data; clients are stored here.
2012 * This convenience API allows consumers to free multiple regulator
2013 * clients in a single API call.
2015 void regulator_bulk_free(int num_consumers
,
2016 struct regulator_bulk_data
*consumers
)
2020 for (i
= 0; i
< num_consumers
; i
++) {
2021 regulator_put(consumers
[i
].consumer
);
2022 consumers
[i
].consumer
= NULL
;
2025 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
2028 * regulator_notifier_call_chain - call regulator event notifier
2029 * @rdev: regulator source
2030 * @event: notifier block
2031 * @data: callback-specific data.
2033 * Called by regulator drivers to notify clients a regulator event has
2034 * occurred. We also notify regulator clients downstream.
2035 * Note lock must be held by caller.
2037 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
2038 unsigned long event
, void *data
)
2040 _notifier_call_chain(rdev
, event
, data
);
2044 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
2047 * regulator_mode_to_status - convert a regulator mode into a status
2049 * @mode: Mode to convert
2051 * Convert a regulator mode into a status.
2053 int regulator_mode_to_status(unsigned int mode
)
2056 case REGULATOR_MODE_FAST
:
2057 return REGULATOR_STATUS_FAST
;
2058 case REGULATOR_MODE_NORMAL
:
2059 return REGULATOR_STATUS_NORMAL
;
2060 case REGULATOR_MODE_IDLE
:
2061 return REGULATOR_STATUS_IDLE
;
2062 case REGULATOR_STATUS_STANDBY
:
2063 return REGULATOR_STATUS_STANDBY
;
2068 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
2071 * To avoid cluttering sysfs (and memory) with useless state, only
2072 * create attributes that can be meaningfully displayed.
2074 static int add_regulator_attributes(struct regulator_dev
*rdev
)
2076 struct device
*dev
= &rdev
->dev
;
2077 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2080 /* some attributes need specific methods to be displayed */
2081 if (ops
->get_voltage
) {
2082 status
= device_create_file(dev
, &dev_attr_microvolts
);
2086 if (ops
->get_current_limit
) {
2087 status
= device_create_file(dev
, &dev_attr_microamps
);
2091 if (ops
->get_mode
) {
2092 status
= device_create_file(dev
, &dev_attr_opmode
);
2096 if (ops
->is_enabled
) {
2097 status
= device_create_file(dev
, &dev_attr_state
);
2101 if (ops
->get_status
) {
2102 status
= device_create_file(dev
, &dev_attr_status
);
2107 /* some attributes are type-specific */
2108 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
2109 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
2114 /* all the other attributes exist to support constraints;
2115 * don't show them if there are no constraints, or if the
2116 * relevant supporting methods are missing.
2118 if (!rdev
->constraints
)
2121 /* constraints need specific supporting methods */
2122 if (ops
->set_voltage
) {
2123 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
2126 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
2130 if (ops
->set_current_limit
) {
2131 status
= device_create_file(dev
, &dev_attr_min_microamps
);
2134 status
= device_create_file(dev
, &dev_attr_max_microamps
);
2139 /* suspend mode constraints need multiple supporting methods */
2140 if (!(ops
->set_suspend_enable
&& ops
->set_suspend_disable
))
2143 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
2146 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
2149 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
2153 if (ops
->set_suspend_voltage
) {
2154 status
= device_create_file(dev
,
2155 &dev_attr_suspend_standby_microvolts
);
2158 status
= device_create_file(dev
,
2159 &dev_attr_suspend_mem_microvolts
);
2162 status
= device_create_file(dev
,
2163 &dev_attr_suspend_disk_microvolts
);
2168 if (ops
->set_suspend_mode
) {
2169 status
= device_create_file(dev
,
2170 &dev_attr_suspend_standby_mode
);
2173 status
= device_create_file(dev
,
2174 &dev_attr_suspend_mem_mode
);
2177 status
= device_create_file(dev
,
2178 &dev_attr_suspend_disk_mode
);
2187 * regulator_register - register regulator
2188 * @regulator_desc: regulator to register
2189 * @dev: struct device for the regulator
2190 * @init_data: platform provided init data, passed through by driver
2191 * @driver_data: private regulator data
2193 * Called by regulator drivers to register a regulator.
2194 * Returns 0 on success.
2196 struct regulator_dev
*regulator_register(struct regulator_desc
*regulator_desc
,
2197 struct device
*dev
, struct regulator_init_data
*init_data
,
2200 static atomic_t regulator_no
= ATOMIC_INIT(0);
2201 struct regulator_dev
*rdev
;
2204 if (regulator_desc
== NULL
)
2205 return ERR_PTR(-EINVAL
);
2207 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
2208 return ERR_PTR(-EINVAL
);
2210 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
2211 regulator_desc
->type
!= REGULATOR_CURRENT
)
2212 return ERR_PTR(-EINVAL
);
2215 return ERR_PTR(-EINVAL
);
2217 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
2219 return ERR_PTR(-ENOMEM
);
2221 mutex_lock(®ulator_list_mutex
);
2223 mutex_init(&rdev
->mutex
);
2224 rdev
->reg_data
= driver_data
;
2225 rdev
->owner
= regulator_desc
->owner
;
2226 rdev
->desc
= regulator_desc
;
2227 INIT_LIST_HEAD(&rdev
->consumer_list
);
2228 INIT_LIST_HEAD(&rdev
->supply_list
);
2229 INIT_LIST_HEAD(&rdev
->list
);
2230 INIT_LIST_HEAD(&rdev
->slist
);
2231 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
2233 /* preform any regulator specific init */
2234 if (init_data
->regulator_init
) {
2235 ret
= init_data
->regulator_init(rdev
->reg_data
);
2240 /* register with sysfs */
2241 rdev
->dev
.class = ®ulator_class
;
2242 rdev
->dev
.parent
= dev
;
2243 dev_set_name(&rdev
->dev
, "regulator.%d",
2244 atomic_inc_return(®ulator_no
) - 1);
2245 ret
= device_register(&rdev
->dev
);
2249 dev_set_drvdata(&rdev
->dev
, rdev
);
2251 /* set regulator constraints */
2252 ret
= set_machine_constraints(rdev
, &init_data
->constraints
);
2256 /* add attributes supported by this regulator */
2257 ret
= add_regulator_attributes(rdev
);
2261 /* set supply regulator if it exists */
2262 if (init_data
->supply_regulator_dev
) {
2263 ret
= set_supply(rdev
,
2264 dev_get_drvdata(init_data
->supply_regulator_dev
));
2269 /* add consumers devices */
2270 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
2271 ret
= set_consumer_device_supply(rdev
,
2272 init_data
->consumer_supplies
[i
].dev
,
2273 init_data
->consumer_supplies
[i
].dev_name
,
2274 init_data
->consumer_supplies
[i
].supply
);
2276 for (--i
; i
>= 0; i
--)
2277 unset_consumer_device_supply(rdev
,
2278 init_data
->consumer_supplies
[i
].dev_name
,
2279 init_data
->consumer_supplies
[i
].dev
);
2284 list_add(&rdev
->list
, ®ulator_list
);
2286 mutex_unlock(®ulator_list_mutex
);
2290 device_unregister(&rdev
->dev
);
2291 /* device core frees rdev */
2292 rdev
= ERR_PTR(ret
);
2297 rdev
= ERR_PTR(ret
);
2300 EXPORT_SYMBOL_GPL(regulator_register
);
2303 * regulator_unregister - unregister regulator
2304 * @rdev: regulator to unregister
2306 * Called by regulator drivers to unregister a regulator.
2308 void regulator_unregister(struct regulator_dev
*rdev
)
2313 mutex_lock(®ulator_list_mutex
);
2314 WARN_ON(rdev
->open_count
);
2315 unset_regulator_supplies(rdev
);
2316 list_del(&rdev
->list
);
2318 sysfs_remove_link(&rdev
->dev
.kobj
, "supply");
2319 device_unregister(&rdev
->dev
);
2320 mutex_unlock(®ulator_list_mutex
);
2322 EXPORT_SYMBOL_GPL(regulator_unregister
);
2325 * regulator_suspend_prepare - prepare regulators for system wide suspend
2326 * @state: system suspend state
2328 * Configure each regulator with it's suspend operating parameters for state.
2329 * This will usually be called by machine suspend code prior to supending.
2331 int regulator_suspend_prepare(suspend_state_t state
)
2333 struct regulator_dev
*rdev
;
2336 /* ON is handled by regulator active state */
2337 if (state
== PM_SUSPEND_ON
)
2340 mutex_lock(®ulator_list_mutex
);
2341 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2343 mutex_lock(&rdev
->mutex
);
2344 ret
= suspend_prepare(rdev
, state
);
2345 mutex_unlock(&rdev
->mutex
);
2348 printk(KERN_ERR
"%s: failed to prepare %s\n",
2349 __func__
, rdev
->desc
->name
);
2354 mutex_unlock(®ulator_list_mutex
);
2357 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
2360 * regulator_has_full_constraints - the system has fully specified constraints
2362 * Calling this function will cause the regulator API to disable all
2363 * regulators which have a zero use count and don't have an always_on
2364 * constraint in a late_initcall.
2366 * The intention is that this will become the default behaviour in a
2367 * future kernel release so users are encouraged to use this facility
2370 void regulator_has_full_constraints(void)
2372 has_full_constraints
= 1;
2374 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
2377 * rdev_get_drvdata - get rdev regulator driver data
2380 * Get rdev regulator driver private data. This call can be used in the
2381 * regulator driver context.
2383 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
2385 return rdev
->reg_data
;
2387 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
2390 * regulator_get_drvdata - get regulator driver data
2391 * @regulator: regulator
2393 * Get regulator driver private data. This call can be used in the consumer
2394 * driver context when non API regulator specific functions need to be called.
2396 void *regulator_get_drvdata(struct regulator
*regulator
)
2398 return regulator
->rdev
->reg_data
;
2400 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
2403 * regulator_set_drvdata - set regulator driver data
2404 * @regulator: regulator
2407 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
2409 regulator
->rdev
->reg_data
= data
;
2411 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
2414 * regulator_get_id - get regulator ID
2417 int rdev_get_id(struct regulator_dev
*rdev
)
2419 return rdev
->desc
->id
;
2421 EXPORT_SYMBOL_GPL(rdev_get_id
);
2423 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
2427 EXPORT_SYMBOL_GPL(rdev_get_dev
);
2429 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
2431 return reg_init_data
->driver_data
;
2433 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
2435 static int __init
regulator_init(void)
2437 printk(KERN_INFO
"regulator: core version %s\n", REGULATOR_VERSION
);
2438 return class_register(®ulator_class
);
2441 /* init early to allow our consumers to complete system booting */
2442 core_initcall(regulator_init
);
2444 static int __init
regulator_init_complete(void)
2446 struct regulator_dev
*rdev
;
2447 struct regulator_ops
*ops
;
2448 struct regulation_constraints
*c
;
2452 mutex_lock(®ulator_list_mutex
);
2454 /* If we have a full configuration then disable any regulators
2455 * which are not in use or always_on. This will become the
2456 * default behaviour in the future.
2458 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2459 ops
= rdev
->desc
->ops
;
2460 c
= rdev
->constraints
;
2464 else if (rdev
->desc
->name
)
2465 name
= rdev
->desc
->name
;
2469 if (!ops
->disable
|| (c
&& c
->always_on
))
2472 mutex_lock(&rdev
->mutex
);
2474 if (rdev
->use_count
)
2477 /* If we can't read the status assume it's on. */
2478 if (ops
->is_enabled
)
2479 enabled
= ops
->is_enabled(rdev
);
2486 if (has_full_constraints
) {
2487 /* We log since this may kill the system if it
2489 printk(KERN_INFO
"%s: disabling %s\n",
2491 ret
= ops
->disable(rdev
);
2494 "%s: couldn't disable %s: %d\n",
2495 __func__
, name
, ret
);
2498 /* The intention is that in future we will
2499 * assume that full constraints are provided
2500 * so warn even if we aren't going to do
2504 "%s: incomplete constraints, leaving %s on\n",
2509 mutex_unlock(&rdev
->mutex
);
2512 mutex_unlock(®ulator_list_mutex
);
2516 late_initcall(regulator_init_complete
);