amd64_edac: fix K8 intlv_sel check
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / edac / amd64_edac.c
blob2c869d1fe33486ff6be3bbf6a7f42ad4b34e0569
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 /* Lookup table for all possible MC control instances */
17 struct amd64_pvt;
18 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
19 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
22 * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
23 * for DDR2 DRAM mapping.
25 u32 revf_quad_ddr2_shift[] = {
26 0, /* 0000b NULL DIMM (128mb) */
27 28, /* 0001b 256mb */
28 29, /* 0010b 512mb */
29 29, /* 0011b 512mb */
30 29, /* 0100b 512mb */
31 30, /* 0101b 1gb */
32 30, /* 0110b 1gb */
33 31, /* 0111b 2gb */
34 31, /* 1000b 2gb */
35 32, /* 1001b 4gb */
36 32, /* 1010b 4gb */
37 33, /* 1011b 8gb */
38 0, /* 1100b future */
39 0, /* 1101b future */
40 0, /* 1110b future */
41 0 /* 1111b future */
45 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
46 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
47 * or higher value'.
49 *FIXME: Produce a better mapping/linearisation.
52 struct scrubrate scrubrates[] = {
53 { 0x01, 1600000000UL},
54 { 0x02, 800000000UL},
55 { 0x03, 400000000UL},
56 { 0x04, 200000000UL},
57 { 0x05, 100000000UL},
58 { 0x06, 50000000UL},
59 { 0x07, 25000000UL},
60 { 0x08, 12284069UL},
61 { 0x09, 6274509UL},
62 { 0x0A, 3121951UL},
63 { 0x0B, 1560975UL},
64 { 0x0C, 781440UL},
65 { 0x0D, 390720UL},
66 { 0x0E, 195300UL},
67 { 0x0F, 97650UL},
68 { 0x10, 48854UL},
69 { 0x11, 24427UL},
70 { 0x12, 12213UL},
71 { 0x13, 6101UL},
72 { 0x14, 3051UL},
73 { 0x15, 1523UL},
74 { 0x16, 761UL},
75 { 0x00, 0UL}, /* scrubbing off */
79 * Memory scrubber control interface. For K8, memory scrubbing is handled by
80 * hardware and can involve L2 cache, dcache as well as the main memory. With
81 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
82 * functionality.
84 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
85 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
86 * bytes/sec for the setting.
88 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
89 * other archs, we might not have access to the caches directly.
93 * scan the scrub rate mapping table for a close or matching bandwidth value to
94 * issue. If requested is too big, then use last maximum value found.
96 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
97 u32 min_scrubrate)
99 u32 scrubval;
100 int i;
103 * map the configured rate (new_bw) to a value specific to the AMD64
104 * memory controller and apply to register. Search for the first
105 * bandwidth entry that is greater or equal than the setting requested
106 * and program that. If at last entry, turn off DRAM scrubbing.
108 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
110 * skip scrub rates which aren't recommended
111 * (see F10 BKDG, F3x58)
113 if (scrubrates[i].scrubval < min_scrubrate)
114 continue;
116 if (scrubrates[i].bandwidth <= new_bw)
117 break;
120 * if no suitable bandwidth found, turn off DRAM scrubbing
121 * entirely by falling back to the last element in the
122 * scrubrates array.
126 scrubval = scrubrates[i].scrubval;
127 if (scrubval)
128 edac_printk(KERN_DEBUG, EDAC_MC,
129 "Setting scrub rate bandwidth: %u\n",
130 scrubrates[i].bandwidth);
131 else
132 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
134 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
136 return 0;
139 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
141 struct amd64_pvt *pvt = mci->pvt_info;
142 u32 min_scrubrate = 0x0;
144 switch (boot_cpu_data.x86) {
145 case 0xf:
146 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
147 break;
148 case 0x10:
149 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
150 break;
151 case 0x11:
152 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
153 break;
155 default:
156 amd64_printk(KERN_ERR, "Unsupported family!\n");
157 break;
159 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
160 min_scrubrate);
163 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 scrubval = 0;
167 int status = -1, i, ret = 0;
169 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
170 if (ret)
171 debugf0("Reading K8_SCRCTRL failed\n");
173 scrubval = scrubval & 0x001F;
175 edac_printk(KERN_DEBUG, EDAC_MC,
176 "pci-read, sdram scrub control value: %d \n", scrubval);
178 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
179 if (scrubrates[i].scrubval == scrubval) {
180 *bw = scrubrates[i].bandwidth;
181 status = 0;
182 break;
186 return status;
189 /* Map from a CSROW entry to the mask entry that operates on it */
190 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
192 return csrow >> (pvt->num_dcsm >> 3);
195 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
196 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
198 if (dct == 0)
199 return pvt->dcsb0[csrow];
200 else
201 return pvt->dcsb1[csrow];
205 * Return the 'mask' address the i'th CS entry. This function is needed because
206 * there number of DCSM registers on Rev E and prior vs Rev F and later is
207 * different.
209 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
211 if (dct == 0)
212 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
213 else
214 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
219 * In *base and *limit, pass back the full 40-bit base and limit physical
220 * addresses for the node given by node_id. This information is obtained from
221 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
222 * base and limit addresses are of type SysAddr, as defined at the start of
223 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
224 * in the address range they represent.
226 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
227 u64 *base, u64 *limit)
229 *base = pvt->dram_base[node_id];
230 *limit = pvt->dram_limit[node_id];
234 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
235 * with node_id
237 static int amd64_base_limit_match(struct amd64_pvt *pvt,
238 u64 sys_addr, int node_id)
240 u64 base, limit, addr;
242 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
244 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
245 * all ones if the most significant implemented address bit is 1.
246 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
247 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
248 * Application Programming.
250 addr = sys_addr & 0x000000ffffffffffull;
252 return (addr >= base) && (addr <= limit);
256 * Attempt to map a SysAddr to a node. On success, return a pointer to the
257 * mem_ctl_info structure for the node that the SysAddr maps to.
259 * On failure, return NULL.
261 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
262 u64 sys_addr)
264 struct amd64_pvt *pvt;
265 int node_id;
266 u32 intlv_en, bits;
269 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
270 * 3.4.4.2) registers to map the SysAddr to a node ID.
272 pvt = mci->pvt_info;
275 * The value of this field should be the same for all DRAM Base
276 * registers. Therefore we arbitrarily choose to read it from the
277 * register for node 0.
279 intlv_en = pvt->dram_IntlvEn[0];
281 if (intlv_en == 0) {
282 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
283 if (amd64_base_limit_match(pvt, sys_addr, node_id))
284 goto found;
286 goto err_no_match;
289 if (unlikely((intlv_en != 0x01) &&
290 (intlv_en != 0x03) &&
291 (intlv_en != 0x07))) {
292 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
293 "IntlvEn field of DRAM Base Register for node 0: "
294 "this probably indicates a BIOS bug.\n", intlv_en);
295 return NULL;
298 bits = (((u32) sys_addr) >> 12) & intlv_en;
300 for (node_id = 0; ; ) {
301 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
302 break; /* intlv_sel field matches */
304 if (++node_id >= DRAM_REG_COUNT)
305 goto err_no_match;
308 /* sanity test for sys_addr */
309 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
310 amd64_printk(KERN_WARNING,
311 "%s(): sys_addr 0x%llx falls outside base/limit "
312 "address range for node %d with node interleaving "
313 "enabled.\n",
314 __func__, sys_addr, node_id);
315 return NULL;
318 found:
319 return edac_mc_find(node_id);
321 err_no_match:
322 debugf2("sys_addr 0x%lx doesn't match any node\n",
323 (unsigned long)sys_addr);
325 return NULL;
329 * Extract the DRAM CS base address from selected csrow register.
331 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
333 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
334 pvt->dcs_shift;
338 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
340 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
342 u64 dcsm_bits, other_bits;
343 u64 mask;
345 /* Extract bits from DRAM CS Mask. */
346 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
348 other_bits = pvt->dcsm_mask;
349 other_bits = ~(other_bits << pvt->dcs_shift);
352 * The extracted bits from DCSM belong in the spaces represented by
353 * the cleared bits in other_bits.
355 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
357 return mask;
361 * @input_addr is an InputAddr associated with the node given by mci. Return the
362 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
364 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
366 struct amd64_pvt *pvt;
367 int csrow;
368 u64 base, mask;
370 pvt = mci->pvt_info;
373 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
374 * base/mask register pair, test the condition shown near the start of
375 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
377 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
379 /* This DRAM chip select is disabled on this node */
380 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
381 continue;
383 base = base_from_dct_base(pvt, csrow);
384 mask = ~mask_from_dct_mask(pvt, csrow);
386 if ((input_addr & mask) == (base & mask)) {
387 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
388 (unsigned long)input_addr, csrow,
389 pvt->mc_node_id);
391 return csrow;
395 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
396 (unsigned long)input_addr, pvt->mc_node_id);
398 return -1;
402 * Return the base value defined by the DRAM Base register for the node
403 * represented by mci. This function returns the full 40-bit value despite the
404 * fact that the register only stores bits 39-24 of the value. See section
405 * 3.4.4.1 (BKDG #26094, K8, revA-E)
407 static inline u64 get_dram_base(struct mem_ctl_info *mci)
409 struct amd64_pvt *pvt = mci->pvt_info;
411 return pvt->dram_base[pvt->mc_node_id];
415 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
416 * for the node represented by mci. Info is passed back in *hole_base,
417 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
418 * info is invalid. Info may be invalid for either of the following reasons:
420 * - The revision of the node is not E or greater. In this case, the DRAM Hole
421 * Address Register does not exist.
423 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
424 * indicating that its contents are not valid.
426 * The values passed back in *hole_base, *hole_offset, and *hole_size are
427 * complete 32-bit values despite the fact that the bitfields in the DHAR
428 * only represent bits 31-24 of the base and offset values.
430 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
431 u64 *hole_offset, u64 *hole_size)
433 struct amd64_pvt *pvt = mci->pvt_info;
434 u64 base;
436 /* only revE and later have the DRAM Hole Address Register */
437 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
438 debugf1(" revision %d for node %d does not support DHAR\n",
439 pvt->ext_model, pvt->mc_node_id);
440 return 1;
443 /* only valid for Fam10h */
444 if (boot_cpu_data.x86 == 0x10 &&
445 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
446 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
447 return 1;
450 if ((pvt->dhar & DHAR_VALID) == 0) {
451 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
452 pvt->mc_node_id);
453 return 1;
456 /* This node has Memory Hoisting */
458 /* +------------------+--------------------+--------------------+-----
459 * | memory | DRAM hole | relocated |
460 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
461 * | | | DRAM hole |
462 * | | | [0x100000000, |
463 * | | | (0x100000000+ |
464 * | | | (0xffffffff-x))] |
465 * +------------------+--------------------+--------------------+-----
467 * Above is a diagram of physical memory showing the DRAM hole and the
468 * relocated addresses from the DRAM hole. As shown, the DRAM hole
469 * starts at address x (the base address) and extends through address
470 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
471 * addresses in the hole so that they start at 0x100000000.
474 base = dhar_base(pvt->dhar);
476 *hole_base = base;
477 *hole_size = (0x1ull << 32) - base;
479 if (boot_cpu_data.x86 > 0xf)
480 *hole_offset = f10_dhar_offset(pvt->dhar);
481 else
482 *hole_offset = k8_dhar_offset(pvt->dhar);
484 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
485 pvt->mc_node_id, (unsigned long)*hole_base,
486 (unsigned long)*hole_offset, (unsigned long)*hole_size);
488 return 0;
490 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
493 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
494 * assumed that sys_addr maps to the node given by mci.
496 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
497 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
498 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
499 * then it is also involved in translating a SysAddr to a DramAddr. Sections
500 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
501 * These parts of the documentation are unclear. I interpret them as follows:
503 * When node n receives a SysAddr, it processes the SysAddr as follows:
505 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
506 * Limit registers for node n. If the SysAddr is not within the range
507 * specified by the base and limit values, then node n ignores the Sysaddr
508 * (since it does not map to node n). Otherwise continue to step 2 below.
510 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
511 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
512 * the range of relocated addresses (starting at 0x100000000) from the DRAM
513 * hole. If not, skip to step 3 below. Else get the value of the
514 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
515 * offset defined by this value from the SysAddr.
517 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
518 * Base register for node n. To obtain the DramAddr, subtract the base
519 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
521 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
523 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
524 int ret = 0;
526 dram_base = get_dram_base(mci);
528 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
529 &hole_size);
530 if (!ret) {
531 if ((sys_addr >= (1ull << 32)) &&
532 (sys_addr < ((1ull << 32) + hole_size))) {
533 /* use DHAR to translate SysAddr to DramAddr */
534 dram_addr = sys_addr - hole_offset;
536 debugf2("using DHAR to translate SysAddr 0x%lx to "
537 "DramAddr 0x%lx\n",
538 (unsigned long)sys_addr,
539 (unsigned long)dram_addr);
541 return dram_addr;
546 * Translate the SysAddr to a DramAddr as shown near the start of
547 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
548 * only deals with 40-bit values. Therefore we discard bits 63-40 of
549 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
550 * discard are all 1s. Otherwise the bits we discard are all 0s. See
551 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
552 * Programmer's Manual Volume 1 Application Programming.
554 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
556 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
557 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
558 (unsigned long)dram_addr);
559 return dram_addr;
563 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
564 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
565 * for node interleaving.
567 static int num_node_interleave_bits(unsigned intlv_en)
569 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
570 int n;
572 BUG_ON(intlv_en > 7);
573 n = intlv_shift_table[intlv_en];
574 return n;
577 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
578 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
580 struct amd64_pvt *pvt;
581 int intlv_shift;
582 u64 input_addr;
584 pvt = mci->pvt_info;
587 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
588 * concerning translating a DramAddr to an InputAddr.
590 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
591 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
592 (dram_addr & 0xfff);
594 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
595 intlv_shift, (unsigned long)dram_addr,
596 (unsigned long)input_addr);
598 return input_addr;
602 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
603 * assumed that @sys_addr maps to the node given by mci.
605 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
607 u64 input_addr;
609 input_addr =
610 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
612 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
613 (unsigned long)sys_addr, (unsigned long)input_addr);
615 return input_addr;
620 * @input_addr is an InputAddr associated with the node represented by mci.
621 * Translate @input_addr to a DramAddr and return the result.
623 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
625 struct amd64_pvt *pvt;
626 int node_id, intlv_shift;
627 u64 bits, dram_addr;
628 u32 intlv_sel;
631 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
632 * shows how to translate a DramAddr to an InputAddr. Here we reverse
633 * this procedure. When translating from a DramAddr to an InputAddr, the
634 * bits used for node interleaving are discarded. Here we recover these
635 * bits from the IntlvSel field of the DRAM Limit register (section
636 * 3.4.4.2) for the node that input_addr is associated with.
638 pvt = mci->pvt_info;
639 node_id = pvt->mc_node_id;
640 BUG_ON((node_id < 0) || (node_id > 7));
642 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
644 if (intlv_shift == 0) {
645 debugf1(" InputAddr 0x%lx translates to DramAddr of "
646 "same value\n", (unsigned long)input_addr);
648 return input_addr;
651 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
652 (input_addr & 0xfff);
654 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
655 dram_addr = bits + (intlv_sel << 12);
657 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
658 "(%d node interleave bits)\n", (unsigned long)input_addr,
659 (unsigned long)dram_addr, intlv_shift);
661 return dram_addr;
665 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
666 * @dram_addr to a SysAddr.
668 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
670 struct amd64_pvt *pvt = mci->pvt_info;
671 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
672 int ret = 0;
674 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
675 &hole_size);
676 if (!ret) {
677 if ((dram_addr >= hole_base) &&
678 (dram_addr < (hole_base + hole_size))) {
679 sys_addr = dram_addr + hole_offset;
681 debugf1("using DHAR to translate DramAddr 0x%lx to "
682 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
683 (unsigned long)sys_addr);
685 return sys_addr;
689 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
690 sys_addr = dram_addr + base;
693 * The sys_addr we have computed up to this point is a 40-bit value
694 * because the k8 deals with 40-bit values. However, the value we are
695 * supposed to return is a full 64-bit physical address. The AMD
696 * x86-64 architecture specifies that the most significant implemented
697 * address bit through bit 63 of a physical address must be either all
698 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
699 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
700 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
701 * Programming.
703 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
705 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
706 pvt->mc_node_id, (unsigned long)dram_addr,
707 (unsigned long)sys_addr);
709 return sys_addr;
713 * @input_addr is an InputAddr associated with the node given by mci. Translate
714 * @input_addr to a SysAddr.
716 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
717 u64 input_addr)
719 return dram_addr_to_sys_addr(mci,
720 input_addr_to_dram_addr(mci, input_addr));
724 * Find the minimum and maximum InputAddr values that map to the given @csrow.
725 * Pass back these values in *input_addr_min and *input_addr_max.
727 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
728 u64 *input_addr_min, u64 *input_addr_max)
730 struct amd64_pvt *pvt;
731 u64 base, mask;
733 pvt = mci->pvt_info;
734 BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
736 base = base_from_dct_base(pvt, csrow);
737 mask = mask_from_dct_mask(pvt, csrow);
739 *input_addr_min = base & ~mask;
740 *input_addr_max = base | mask | pvt->dcs_mask_notused;
744 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
745 * Address High (section 3.6.4.6) register values and return the result. Address
746 * is located in the info structure (nbeah and nbeal), the encoding is device
747 * specific.
749 static u64 extract_error_address(struct mem_ctl_info *mci,
750 struct err_regs *info)
752 struct amd64_pvt *pvt = mci->pvt_info;
754 return pvt->ops->get_error_address(mci, info);
758 /* Map the Error address to a PAGE and PAGE OFFSET. */
759 static inline void error_address_to_page_and_offset(u64 error_address,
760 u32 *page, u32 *offset)
762 *page = (u32) (error_address >> PAGE_SHIFT);
763 *offset = ((u32) error_address) & ~PAGE_MASK;
767 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
768 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
769 * of a node that detected an ECC memory error. mci represents the node that
770 * the error address maps to (possibly different from the node that detected
771 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
772 * error.
774 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
776 int csrow;
778 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
780 if (csrow == -1)
781 amd64_mc_printk(mci, KERN_ERR,
782 "Failed to translate InputAddr to csrow for "
783 "address 0x%lx\n", (unsigned long)sys_addr);
784 return csrow;
787 static int get_channel_from_ecc_syndrome(unsigned short syndrome);
789 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
791 if (boot_cpu_data.x86 == 0x11)
792 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
793 else if (boot_cpu_data.x86 == 0x10)
794 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
795 else if (boot_cpu_data.x86 == 0xf)
796 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
797 (pvt->ext_model >= OPTERON_CPU_REV_F) ?
798 "Rev F or later" : "Rev E or earlier");
799 else
800 /* we'll hardly ever ever get here */
801 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
805 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
806 * are ECC capable.
808 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
810 int bit;
811 enum dev_type edac_cap = EDAC_FLAG_NONE;
813 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
814 ? 19
815 : 17;
817 if (pvt->dclr0 & BIT(bit))
818 edac_cap = EDAC_FLAG_SECDED;
820 return edac_cap;
824 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
825 int ganged);
827 /* Display and decode various NB registers for debug purposes. */
828 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
830 int ganged;
832 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
833 pvt->nbcap,
834 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
835 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
836 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
837 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
838 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
839 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
840 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
841 pvt->dclr0,
842 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
843 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
844 (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
845 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
846 (pvt->dclr0 & BIT(12)) ? "Y" : "N",
847 (pvt->dclr0 & BIT(13)) ? "Y" : "N",
848 (pvt->dclr0 & BIT(14)) ? "Y" : "N",
849 (pvt->dclr0 & BIT(15)) ? "Y" : "N",
850 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
853 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
855 if (boot_cpu_data.x86 == 0xf) {
856 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
857 pvt->dhar, dhar_base(pvt->dhar),
858 k8_dhar_offset(pvt->dhar));
859 debugf1(" DramHoleValid=%s\n",
860 (pvt->dhar & DHAR_VALID) ? "True" : "False");
862 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
864 /* everything below this point is Fam10h and above */
865 return;
867 } else {
868 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
869 pvt->dhar, dhar_base(pvt->dhar),
870 f10_dhar_offset(pvt->dhar));
871 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
872 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
873 "True" : "False",
874 (pvt->dhar & DHAR_VALID) ?
875 "True" : "False");
878 /* Only if NOT ganged does dcl1 have valid info */
879 if (!dct_ganging_enabled(pvt)) {
880 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
881 "Width=%s\n", pvt->dclr1,
882 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
883 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
884 (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
885 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
886 "DIMM Type=%s\n",
887 (pvt->dclr1 & BIT(12)) ? "Y" : "N",
888 (pvt->dclr1 & BIT(13)) ? "Y" : "N",
889 (pvt->dclr1 & BIT(14)) ? "Y" : "N",
890 (pvt->dclr1 & BIT(15)) ? "Y" : "N",
891 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
895 * Determine if ganged and then dump memory sizes for first controller,
896 * and if NOT ganged dump info for 2nd controller.
898 ganged = dct_ganging_enabled(pvt);
900 f10_debug_display_dimm_sizes(0, pvt, ganged);
902 if (!ganged)
903 f10_debug_display_dimm_sizes(1, pvt, ganged);
906 /* Read in both of DBAM registers */
907 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
909 int err = 0;
910 unsigned int reg;
912 reg = DBAM0;
913 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
914 if (err)
915 goto err_reg;
917 if (boot_cpu_data.x86 >= 0x10) {
918 reg = DBAM1;
919 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
921 if (err)
922 goto err_reg;
925 return;
927 err_reg:
928 debugf0("Error reading F2x%03x.\n", reg);
932 * NOTE: CPU Revision Dependent code: Rev E and Rev F
934 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
935 * set the shift factor for the DCSB and DCSM values.
937 * ->dcs_mask_notused, RevE:
939 * To find the max InputAddr for the csrow, start with the base address and set
940 * all bits that are "don't care" bits in the test at the start of section
941 * 3.5.4 (p. 84).
943 * The "don't care" bits are all set bits in the mask and all bits in the gaps
944 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
945 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
946 * gaps.
948 * ->dcs_mask_notused, RevF and later:
950 * To find the max InputAddr for the csrow, start with the base address and set
951 * all bits that are "don't care" bits in the test at the start of NPT section
952 * 4.5.4 (p. 87).
954 * The "don't care" bits are all set bits in the mask and all bits in the gaps
955 * between bit ranges [36:27] and [21:13].
957 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
958 * which are all bits in the above-mentioned gaps.
960 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
962 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
963 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
964 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
965 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
966 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
968 switch (boot_cpu_data.x86) {
969 case 0xf:
970 pvt->num_dcsm = REV_F_DCSM_COUNT;
971 break;
973 case 0x10:
974 pvt->num_dcsm = F10_DCSM_COUNT;
975 break;
977 case 0x11:
978 pvt->num_dcsm = F11_DCSM_COUNT;
979 break;
981 default:
982 amd64_printk(KERN_ERR, "Unsupported family!\n");
983 break;
985 } else {
986 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
987 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
988 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
989 pvt->dcs_shift = REV_E_DCS_SHIFT;
990 pvt->num_dcsm = REV_E_DCSM_COUNT;
995 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
997 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
999 int cs, reg, err = 0;
1001 amd64_set_dct_base_and_mask(pvt);
1003 for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
1004 reg = K8_DCSB0 + (cs * 4);
1005 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1006 &pvt->dcsb0[cs]);
1007 if (unlikely(err))
1008 debugf0("Reading K8_DCSB0[%d] failed\n", cs);
1009 else
1010 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
1011 cs, pvt->dcsb0[cs], reg);
1013 /* If DCT are NOT ganged, then read in DCT1's base */
1014 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1015 reg = F10_DCSB1 + (cs * 4);
1016 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1017 &pvt->dcsb1[cs]);
1018 if (unlikely(err))
1019 debugf0("Reading F10_DCSB1[%d] failed\n", cs);
1020 else
1021 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
1022 cs, pvt->dcsb1[cs], reg);
1023 } else {
1024 pvt->dcsb1[cs] = 0;
1028 for (cs = 0; cs < pvt->num_dcsm; cs++) {
1029 reg = K8_DCSM0 + (cs * 4);
1030 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1031 &pvt->dcsm0[cs]);
1032 if (unlikely(err))
1033 debugf0("Reading K8_DCSM0 failed\n");
1034 else
1035 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1036 cs, pvt->dcsm0[cs], reg);
1038 /* If DCT are NOT ganged, then read in DCT1's mask */
1039 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1040 reg = F10_DCSM1 + (cs * 4);
1041 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1042 &pvt->dcsm1[cs]);
1043 if (unlikely(err))
1044 debugf0("Reading F10_DCSM1[%d] failed\n", cs);
1045 else
1046 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1047 cs, pvt->dcsm1[cs], reg);
1048 } else
1049 pvt->dcsm1[cs] = 0;
1053 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1055 enum mem_type type;
1057 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1058 /* Rev F and later */
1059 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1060 } else {
1061 /* Rev E and earlier */
1062 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1065 debugf1(" Memory type is: %s\n",
1066 (type == MEM_DDR2) ? "MEM_DDR2" :
1067 (type == MEM_RDDR2) ? "MEM_RDDR2" :
1068 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1070 return type;
1074 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1075 * and the later RevF memory controllers (DDR vs DDR2)
1077 * Return:
1078 * number of memory channels in operation
1079 * Pass back:
1080 * contents of the DCL0_LOW register
1082 static int k8_early_channel_count(struct amd64_pvt *pvt)
1084 int flag, err = 0;
1086 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1087 if (err)
1088 return err;
1090 if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1091 /* RevF (NPT) and later */
1092 flag = pvt->dclr0 & F10_WIDTH_128;
1093 } else {
1094 /* RevE and earlier */
1095 flag = pvt->dclr0 & REVE_WIDTH_128;
1098 /* not used */
1099 pvt->dclr1 = 0;
1101 return (flag) ? 2 : 1;
1104 /* extract the ERROR ADDRESS for the K8 CPUs */
1105 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1106 struct err_regs *info)
1108 return (((u64) (info->nbeah & 0xff)) << 32) +
1109 (info->nbeal & ~0x03);
1113 * Read the Base and Limit registers for K8 based Memory controllers; extract
1114 * fields from the 'raw' reg into separate data fields
1116 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1118 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1120 u32 low;
1121 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1122 int err;
1124 err = pci_read_config_dword(pvt->addr_f1_ctl,
1125 K8_DRAM_BASE_LOW + off, &low);
1126 if (err)
1127 debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1129 /* Extract parts into separate data entries */
1130 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 24;
1131 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1132 pvt->dram_rw_en[dram] = (low & 0x3);
1134 err = pci_read_config_dword(pvt->addr_f1_ctl,
1135 K8_DRAM_LIMIT_LOW + off, &low);
1136 if (err)
1137 debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1140 * Extract parts into separate data entries. Limit is the HIGHEST memory
1141 * location of the region, so lower 24 bits need to be all ones
1143 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 24) | 0x00FFFFFF;
1144 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1145 pvt->dram_DstNode[dram] = (low & 0x7);
1148 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1149 struct err_regs *info,
1150 u64 SystemAddress)
1152 struct mem_ctl_info *src_mci;
1153 unsigned short syndrome;
1154 int channel, csrow;
1155 u32 page, offset;
1157 /* Extract the syndrome parts and form a 16-bit syndrome */
1158 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1159 syndrome |= LOW_SYNDROME(info->nbsh);
1161 /* CHIPKILL enabled */
1162 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1163 channel = get_channel_from_ecc_syndrome(syndrome);
1164 if (channel < 0) {
1166 * Syndrome didn't map, so we don't know which of the
1167 * 2 DIMMs is in error. So we need to ID 'both' of them
1168 * as suspect.
1170 amd64_mc_printk(mci, KERN_WARNING,
1171 "unknown syndrome 0x%x - possible error "
1172 "reporting race\n", syndrome);
1173 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1174 return;
1176 } else {
1178 * non-chipkill ecc mode
1180 * The k8 documentation is unclear about how to determine the
1181 * channel number when using non-chipkill memory. This method
1182 * was obtained from email communication with someone at AMD.
1183 * (Wish the email was placed in this comment - norsk)
1185 channel = ((SystemAddress & BIT(3)) != 0);
1189 * Find out which node the error address belongs to. This may be
1190 * different from the node that detected the error.
1192 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
1193 if (src_mci) {
1194 amd64_mc_printk(mci, KERN_ERR,
1195 "failed to map error address 0x%lx to a node\n",
1196 (unsigned long)SystemAddress);
1197 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1198 return;
1201 /* Now map the SystemAddress to a CSROW */
1202 csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1203 if (csrow < 0) {
1204 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1205 } else {
1206 error_address_to_page_and_offset(SystemAddress, &page, &offset);
1208 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1209 channel, EDAC_MOD_STR);
1214 * determrine the number of PAGES in for this DIMM's size based on its DRAM
1215 * Address Mapping.
1217 * First step is to calc the number of bits to shift a value of 1 left to
1218 * indicate show many pages. Start with the DBAM value as the starting bits,
1219 * then proceed to adjust those shift bits, based on CPU rev and the table.
1220 * See BKDG on the DBAM
1222 static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1224 int nr_pages;
1226 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1227 nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1228 } else {
1230 * RevE and less section; this line is tricky. It collapses the
1231 * table used by RevD and later to one that matches revisions CG
1232 * and earlier.
1234 dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1235 (dram_map > 8 ? 4 : (dram_map > 5 ?
1236 3 : (dram_map > 2 ? 1 : 0))) : 0;
1238 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1239 nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1242 return nr_pages;
1246 * Get the number of DCT channels in use.
1248 * Return:
1249 * number of Memory Channels in operation
1250 * Pass back:
1251 * contents of the DCL0_LOW register
1253 static int f10_early_channel_count(struct amd64_pvt *pvt)
1255 int dbams[] = { DBAM0, DBAM1 };
1256 int err = 0, channels = 0;
1257 int i, j;
1258 u32 dbam;
1260 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1261 if (err)
1262 goto err_reg;
1264 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
1265 if (err)
1266 goto err_reg;
1268 /* If we are in 128 bit mode, then we are using 2 channels */
1269 if (pvt->dclr0 & F10_WIDTH_128) {
1270 debugf0("Data WIDTH is 128 bits - 2 channels\n");
1271 channels = 2;
1272 return channels;
1276 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1277 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1278 * will be OFF.
1280 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1281 * their CSEnable bit on. If so, then SINGLE DIMM case.
1283 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1286 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1287 * is more than just one DIMM present in unganged mode. Need to check
1288 * both controllers since DIMMs can be placed in either one.
1290 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1291 err = pci_read_config_dword(pvt->dram_f2_ctl, dbams[i], &dbam);
1292 if (err)
1293 goto err_reg;
1295 for (j = 0; j < 4; j++) {
1296 if (DBAM_DIMM(j, dbam) > 0) {
1297 channels++;
1298 break;
1303 debugf0("MCT channel count: %d\n", channels);
1305 return channels;
1307 err_reg:
1308 return -1;
1312 static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1314 return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1317 /* Enable extended configuration access via 0xCF8 feature */
1318 static void amd64_setup(struct amd64_pvt *pvt)
1320 u32 reg;
1322 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1324 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1325 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1326 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1329 /* Restore the extended configuration access via 0xCF8 feature */
1330 static void amd64_teardown(struct amd64_pvt *pvt)
1332 u32 reg;
1334 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1336 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1337 if (pvt->flags.cf8_extcfg)
1338 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1339 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1342 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1343 struct err_regs *info)
1345 return (((u64) (info->nbeah & 0xffff)) << 32) +
1346 (info->nbeal & ~0x01);
1350 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1351 * fields from the 'raw' reg into separate data fields.
1353 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1355 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1357 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1359 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1360 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1362 /* read the 'raw' DRAM BASE Address register */
1363 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
1365 /* Read from the ECS data register */
1366 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
1368 /* Extract parts into separate data entries */
1369 pvt->dram_rw_en[dram] = (low_base & 0x3);
1371 if (pvt->dram_rw_en[dram] == 0)
1372 return;
1374 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1376 pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
1377 ((u64) low_base & 0xFFFF0000))) << 8;
1379 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1380 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1382 /* read the 'raw' LIMIT registers */
1383 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
1385 /* Read from the ECS data register for the HIGH portion */
1386 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
1388 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
1389 high_base, low_base, high_limit, low_limit);
1391 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1392 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1395 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1396 * memory location of the region, so low 24 bits need to be all ones.
1398 low_limit |= 0x0000FFFF;
1399 pvt->dram_limit[dram] =
1400 ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
1403 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1405 int err = 0;
1407 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1408 &pvt->dram_ctl_select_low);
1409 if (err) {
1410 debugf0("Reading F10_DCTL_SEL_LOW failed\n");
1411 } else {
1412 debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
1413 pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
1415 debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
1416 "sel-hi-range=%s\n",
1417 (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
1418 (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
1419 (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
1421 debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
1422 (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
1423 (dct_memory_cleared(pvt) ? "True " : "False "),
1424 dct_sel_interleave_addr(pvt));
1427 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1428 &pvt->dram_ctl_select_high);
1429 if (err)
1430 debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
1434 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1435 * Interleaving Modes.
1437 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1438 int hi_range_sel, u32 intlv_en)
1440 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1442 if (dct_ganging_enabled(pvt))
1443 cs = 0;
1444 else if (hi_range_sel)
1445 cs = dct_sel_high;
1446 else if (dct_interleave_enabled(pvt)) {
1448 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1450 if (dct_sel_interleave_addr(pvt) == 0)
1451 cs = sys_addr >> 6 & 1;
1452 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1453 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1455 if (dct_sel_interleave_addr(pvt) & 1)
1456 cs = (sys_addr >> 9 & 1) ^ temp;
1457 else
1458 cs = (sys_addr >> 6 & 1) ^ temp;
1459 } else if (intlv_en & 4)
1460 cs = sys_addr >> 15 & 1;
1461 else if (intlv_en & 2)
1462 cs = sys_addr >> 14 & 1;
1463 else if (intlv_en & 1)
1464 cs = sys_addr >> 13 & 1;
1465 else
1466 cs = sys_addr >> 12 & 1;
1467 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1468 cs = ~dct_sel_high & 1;
1469 else
1470 cs = 0;
1472 return cs;
1475 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1477 if (intlv_en == 1)
1478 return 1;
1479 else if (intlv_en == 3)
1480 return 2;
1481 else if (intlv_en == 7)
1482 return 3;
1484 return 0;
1487 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1488 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1489 u32 dct_sel_base_addr,
1490 u64 dct_sel_base_off,
1491 u32 hole_valid, u32 hole_off,
1492 u64 dram_base)
1494 u64 chan_off;
1496 if (hi_range_sel) {
1497 if (!(dct_sel_base_addr & 0xFFFFF800) &&
1498 hole_valid && (sys_addr >= 0x100000000ULL))
1499 chan_off = hole_off << 16;
1500 else
1501 chan_off = dct_sel_base_off;
1502 } else {
1503 if (hole_valid && (sys_addr >= 0x100000000ULL))
1504 chan_off = hole_off << 16;
1505 else
1506 chan_off = dram_base & 0xFFFFF8000000ULL;
1509 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1510 (chan_off & 0x0000FFFFFF800000ULL);
1513 /* Hack for the time being - Can we get this from BIOS?? */
1514 #define CH0SPARE_RANK 0
1515 #define CH1SPARE_RANK 1
1518 * checks if the csrow passed in is marked as SPARED, if so returns the new
1519 * spare row
1521 static inline int f10_process_possible_spare(int csrow,
1522 u32 cs, struct amd64_pvt *pvt)
1524 u32 swap_done;
1525 u32 bad_dram_cs;
1527 /* Depending on channel, isolate respective SPARING info */
1528 if (cs) {
1529 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1530 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1531 if (swap_done && (csrow == bad_dram_cs))
1532 csrow = CH1SPARE_RANK;
1533 } else {
1534 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1535 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1536 if (swap_done && (csrow == bad_dram_cs))
1537 csrow = CH0SPARE_RANK;
1539 return csrow;
1543 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1544 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1546 * Return:
1547 * -EINVAL: NOT FOUND
1548 * 0..csrow = Chip-Select Row
1550 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1552 struct mem_ctl_info *mci;
1553 struct amd64_pvt *pvt;
1554 u32 cs_base, cs_mask;
1555 int cs_found = -EINVAL;
1556 int csrow;
1558 mci = mci_lookup[nid];
1559 if (!mci)
1560 return cs_found;
1562 pvt = mci->pvt_info;
1564 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1566 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
1568 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1569 if (!(cs_base & K8_DCSB_CS_ENABLE))
1570 continue;
1573 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1574 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1575 * of the actual address.
1577 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1580 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1581 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1583 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1585 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1586 csrow, cs_base, cs_mask);
1588 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1590 debugf1(" Final CSMask=0x%x\n", cs_mask);
1591 debugf1(" (InputAddr & ~CSMask)=0x%x "
1592 "(CSBase & ~CSMask)=0x%x\n",
1593 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1595 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1596 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1598 debugf1(" MATCH csrow=%d\n", cs_found);
1599 break;
1602 return cs_found;
1605 /* For a given @dram_range, check if @sys_addr falls within it. */
1606 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1607 u64 sys_addr, int *nid, int *chan_sel)
1609 int node_id, cs_found = -EINVAL, high_range = 0;
1610 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1611 u32 hole_valid, tmp, dct_sel_base, channel;
1612 u64 dram_base, chan_addr, dct_sel_base_off;
1614 dram_base = pvt->dram_base[dram_range];
1615 intlv_en = pvt->dram_IntlvEn[dram_range];
1617 node_id = pvt->dram_DstNode[dram_range];
1618 intlv_sel = pvt->dram_IntlvSel[dram_range];
1620 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1621 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1624 * This assumes that one node's DHAR is the same as all the other
1625 * nodes' DHAR.
1627 hole_off = (pvt->dhar & 0x0000FF80);
1628 hole_valid = (pvt->dhar & 0x1);
1629 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1631 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1632 hole_off, hole_valid, intlv_sel);
1634 if (intlv_en ||
1635 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1636 return -EINVAL;
1638 dct_sel_base = dct_sel_baseaddr(pvt);
1641 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1642 * select between DCT0 and DCT1.
1644 if (dct_high_range_enabled(pvt) &&
1645 !dct_ganging_enabled(pvt) &&
1646 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1647 high_range = 1;
1649 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1651 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1652 dct_sel_base_off, hole_valid,
1653 hole_off, dram_base);
1655 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1657 /* remove Node ID (in case of memory interleaving) */
1658 tmp = chan_addr & 0xFC0;
1660 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1662 /* remove channel interleave and hash */
1663 if (dct_interleave_enabled(pvt) &&
1664 !dct_high_range_enabled(pvt) &&
1665 !dct_ganging_enabled(pvt)) {
1666 if (dct_sel_interleave_addr(pvt) != 1)
1667 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1668 else {
1669 tmp = chan_addr & 0xFC0;
1670 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1671 | tmp;
1675 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1676 chan_addr, (u32)(chan_addr >> 8));
1678 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1680 if (cs_found >= 0) {
1681 *nid = node_id;
1682 *chan_sel = channel;
1684 return cs_found;
1687 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1688 int *node, int *chan_sel)
1690 int dram_range, cs_found = -EINVAL;
1691 u64 dram_base, dram_limit;
1693 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1695 if (!pvt->dram_rw_en[dram_range])
1696 continue;
1698 dram_base = pvt->dram_base[dram_range];
1699 dram_limit = pvt->dram_limit[dram_range];
1701 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1703 cs_found = f10_match_to_this_node(pvt, dram_range,
1704 sys_addr, node,
1705 chan_sel);
1706 if (cs_found >= 0)
1707 break;
1710 return cs_found;
1714 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1715 * CSROW, Channel.
1717 * The @sys_addr is usually an error address received from the hardware.
1719 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1720 struct err_regs *info,
1721 u64 sys_addr)
1723 struct amd64_pvt *pvt = mci->pvt_info;
1724 u32 page, offset;
1725 unsigned short syndrome;
1726 int nid, csrow, chan = 0;
1728 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1730 if (csrow >= 0) {
1731 error_address_to_page_and_offset(sys_addr, &page, &offset);
1733 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1734 syndrome |= LOW_SYNDROME(info->nbsh);
1737 * Is CHIPKILL on? If so, then we can attempt to use the
1738 * syndrome to isolate which channel the error was on.
1740 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1741 chan = get_channel_from_ecc_syndrome(syndrome);
1743 if (chan >= 0) {
1744 edac_mc_handle_ce(mci, page, offset, syndrome,
1745 csrow, chan, EDAC_MOD_STR);
1746 } else {
1748 * Channel unknown, report all channels on this
1749 * CSROW as failed.
1751 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1752 chan++) {
1753 edac_mc_handle_ce(mci, page, offset,
1754 syndrome,
1755 csrow, chan,
1756 EDAC_MOD_STR);
1760 } else {
1761 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1766 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1767 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1768 * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1770 * Normalize to 128MB by subracting 27 bit shift.
1772 static int map_dbam_to_csrow_size(int index)
1774 int mega_bytes = 0;
1776 if (index > 0 && index <= DBAM_MAX_VALUE)
1777 mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
1779 return mega_bytes;
1783 * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1784 * CSROWs as well
1786 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
1787 int ganged)
1789 int dimm, size0, size1;
1790 u32 dbam;
1791 u32 *dcsb;
1793 debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
1794 ctrl ? pvt->dbam1 : pvt->dbam0,
1795 ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
1797 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1798 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1800 /* Dump memory sizes for DIMM and its CSROWs */
1801 for (dimm = 0; dimm < 4; dimm++) {
1803 size0 = 0;
1804 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1805 size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1807 size1 = 0;
1808 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1809 size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1811 debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
1812 "CSROW-%d=%5dMB\n",
1813 ctrl,
1814 dimm,
1815 size0 + size1,
1816 dimm * 2,
1817 size0,
1818 dimm * 2 + 1,
1819 size1);
1824 * Very early hardware probe on pci_probe thread to determine if this module
1825 * supports the hardware.
1827 * Return:
1828 * 0 for OK
1829 * 1 for error
1831 static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
1833 int ret = 0;
1836 * If we are on a DDR3 machine, we don't know yet if
1837 * we support that properly at this time
1839 if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
1840 (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
1842 amd64_printk(KERN_WARNING,
1843 "%s() This machine is running with DDR3 memory. "
1844 "This is not currently supported. "
1845 "DCHR0=0x%x DCHR1=0x%x\n",
1846 __func__, pvt->dchr0, pvt->dchr1);
1848 amd64_printk(KERN_WARNING,
1849 " Contact '%s' module MAINTAINER to help add"
1850 " support.\n",
1851 EDAC_MOD_STR);
1853 ret = 1;
1856 return ret;
1860 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1861 * (as per PCI DEVICE_IDs):
1863 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1864 * DEVICE ID, even though there is differences between the different Revisions
1865 * (CG,D,E,F).
1867 * Family F10h and F11h.
1870 static struct amd64_family_type amd64_family_types[] = {
1871 [K8_CPUS] = {
1872 .ctl_name = "RevF",
1873 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1874 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1875 .ops = {
1876 .early_channel_count = k8_early_channel_count,
1877 .get_error_address = k8_get_error_address,
1878 .read_dram_base_limit = k8_read_dram_base_limit,
1879 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1880 .dbam_map_to_pages = k8_dbam_map_to_pages,
1883 [F10_CPUS] = {
1884 .ctl_name = "Family 10h",
1885 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1886 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1887 .ops = {
1888 .probe_valid_hardware = f10_probe_valid_hardware,
1889 .early_channel_count = f10_early_channel_count,
1890 .get_error_address = f10_get_error_address,
1891 .read_dram_base_limit = f10_read_dram_base_limit,
1892 .read_dram_ctl_register = f10_read_dram_ctl_register,
1893 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1894 .dbam_map_to_pages = f10_dbam_map_to_pages,
1897 [F11_CPUS] = {
1898 .ctl_name = "Family 11h",
1899 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1900 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1901 .ops = {
1902 .probe_valid_hardware = f10_probe_valid_hardware,
1903 .early_channel_count = f10_early_channel_count,
1904 .get_error_address = f10_get_error_address,
1905 .read_dram_base_limit = f10_read_dram_base_limit,
1906 .read_dram_ctl_register = f10_read_dram_ctl_register,
1907 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1908 .dbam_map_to_pages = f10_dbam_map_to_pages,
1913 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1914 unsigned int device,
1915 struct pci_dev *related)
1917 struct pci_dev *dev = NULL;
1919 dev = pci_get_device(vendor, device, dev);
1920 while (dev) {
1921 if ((dev->bus->number == related->bus->number) &&
1922 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1923 break;
1924 dev = pci_get_device(vendor, device, dev);
1927 return dev;
1931 * syndrome mapping table for ECC ChipKill devices
1933 * The comment in each row is the token (nibble) number that is in error.
1934 * The least significant nibble of the syndrome is the mask for the bits
1935 * that are in error (need to be toggled) for the particular nibble.
1937 * Each row contains 16 entries.
1938 * The first entry (0th) is the channel number for that row of syndromes.
1939 * The remaining 15 entries are the syndromes for the respective Error
1940 * bit mask index.
1942 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1943 * bit in error.
1944 * The 2nd index entry is 0x0010 that the second bit is damaged.
1945 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1946 * are damaged.
1947 * Thus so on until index 15, 0x1111, whose entry has the syndrome
1948 * indicating that all 4 bits are damaged.
1950 * A search is performed on this table looking for a given syndrome.
1952 * See the AMD documentation for ECC syndromes. This ECC table is valid
1953 * across all the versions of the AMD64 processors.
1955 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1956 * COLUMN index, then search all ROWS of that column, looking for a match
1957 * with the input syndrome. The ROW value will be the token number.
1959 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1960 * error.
1962 #define NUMBER_ECC_ROWS 36
1963 static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1964 /* Channel 0 syndromes */
1965 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1966 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1967 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1968 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1969 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1970 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1971 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1972 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1973 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1974 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1975 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1976 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1977 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1978 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1979 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1980 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1981 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1982 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1983 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1984 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1985 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1986 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1987 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1988 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1989 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1990 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1991 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1992 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1993 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1994 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1995 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
1996 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
1998 /* Channel 1 syndromes */
1999 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
2000 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
2001 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
2002 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
2003 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
2004 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
2005 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
2006 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
2007 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
2008 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
2009 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
2010 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
2011 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
2012 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
2013 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
2014 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
2015 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
2016 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
2017 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
2018 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
2019 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
2020 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
2021 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
2022 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
2023 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
2024 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
2025 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
2026 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
2027 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
2028 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
2029 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
2030 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
2032 /* ECC bits are also in the set of tokens and they too can go bad
2033 * first 2 cover channel 0, while the second 2 cover channel 1
2035 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
2036 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
2037 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
2038 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
2039 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
2040 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
2041 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
2042 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
2046 * Given the syndrome argument, scan each of the channel tables for a syndrome
2047 * match. Depending on which table it is found, return the channel number.
2049 static int get_channel_from_ecc_syndrome(unsigned short syndrome)
2051 int row;
2052 int column;
2054 /* Determine column to scan */
2055 column = syndrome & 0xF;
2057 /* Scan all rows, looking for syndrome, or end of table */
2058 for (row = 0; row < NUMBER_ECC_ROWS; row++) {
2059 if (ecc_chipkill_syndromes[row][column] == syndrome)
2060 return ecc_chipkill_syndromes[row][0];
2063 debugf0("syndrome(%x) not found\n", syndrome);
2064 return -1;
2068 * Check for valid error in the NB Status High register. If so, proceed to read
2069 * NB Status Low, NB Address Low and NB Address High registers and store data
2070 * into error structure.
2072 * Returns:
2073 * - 1: if hardware regs contains valid error info
2074 * - 0: if no valid error is indicated
2076 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
2077 struct err_regs *regs)
2079 struct amd64_pvt *pvt;
2080 struct pci_dev *misc_f3_ctl;
2081 int err = 0;
2083 pvt = mci->pvt_info;
2084 misc_f3_ctl = pvt->misc_f3_ctl;
2086 err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
2087 if (err)
2088 goto err_reg;
2090 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2091 return 0;
2093 /* valid error, read remaining error information registers */
2094 err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
2095 if (err)
2096 goto err_reg;
2098 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
2099 if (err)
2100 goto err_reg;
2102 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
2103 if (err)
2104 goto err_reg;
2106 err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
2107 if (err)
2108 goto err_reg;
2110 return 1;
2112 err_reg:
2113 debugf0("Reading error info register failed\n");
2114 return 0;
2118 * This function is called to retrieve the error data from hardware and store it
2119 * in the info structure.
2121 * Returns:
2122 * - 1: if a valid error is found
2123 * - 0: if no error is found
2125 static int amd64_get_error_info(struct mem_ctl_info *mci,
2126 struct err_regs *info)
2128 struct amd64_pvt *pvt;
2129 struct err_regs regs;
2131 pvt = mci->pvt_info;
2133 if (!amd64_get_error_info_regs(mci, info))
2134 return 0;
2137 * Here's the problem with the K8's EDAC reporting: There are four
2138 * registers which report pieces of error information. They are shared
2139 * between CEs and UEs. Furthermore, contrary to what is stated in the
2140 * BKDG, the overflow bit is never used! Every error always updates the
2141 * reporting registers.
2143 * Can you see the race condition? All four error reporting registers
2144 * must be read before a new error updates them! There is no way to read
2145 * all four registers atomically. The best than can be done is to detect
2146 * that a race has occured and then report the error without any kind of
2147 * precision.
2149 * What is still positive is that errors are still reported and thus
2150 * problems can still be detected - just not localized because the
2151 * syndrome and address are spread out across registers.
2153 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2154 * UEs and CEs should have separate register sets with proper overflow
2155 * bits that are used! At very least the problem can be fixed by
2156 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2157 * set the overflow bit - unless the current error is CE and the new
2158 * error is UE which would be the only situation for overwriting the
2159 * current values.
2162 regs = *info;
2164 /* Use info from the second read - most current */
2165 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2166 return 0;
2168 /* clear the error bits in hardware */
2169 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2171 /* Check for the possible race condition */
2172 if ((regs.nbsh != info->nbsh) ||
2173 (regs.nbsl != info->nbsl) ||
2174 (regs.nbeah != info->nbeah) ||
2175 (regs.nbeal != info->nbeal)) {
2176 amd64_mc_printk(mci, KERN_WARNING,
2177 "hardware STATUS read access race condition "
2178 "detected!\n");
2179 return 0;
2181 return 1;
2185 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2186 * ADDRESS and process.
2188 static void amd64_handle_ce(struct mem_ctl_info *mci,
2189 struct err_regs *info)
2191 struct amd64_pvt *pvt = mci->pvt_info;
2192 u64 SystemAddress;
2194 /* Ensure that the Error Address is VALID */
2195 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2196 amd64_mc_printk(mci, KERN_ERR,
2197 "HW has no ERROR_ADDRESS available\n");
2198 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2199 return;
2202 SystemAddress = extract_error_address(mci, info);
2204 amd64_mc_printk(mci, KERN_ERR,
2205 "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
2207 pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
2210 /* Handle any Un-correctable Errors (UEs) */
2211 static void amd64_handle_ue(struct mem_ctl_info *mci,
2212 struct err_regs *info)
2214 int csrow;
2215 u64 SystemAddress;
2216 u32 page, offset;
2217 struct mem_ctl_info *log_mci, *src_mci = NULL;
2219 log_mci = mci;
2221 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2222 amd64_mc_printk(mci, KERN_CRIT,
2223 "HW has no ERROR_ADDRESS available\n");
2224 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2225 return;
2228 SystemAddress = extract_error_address(mci, info);
2231 * Find out which node the error address belongs to. This may be
2232 * different from the node that detected the error.
2234 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
2235 if (!src_mci) {
2236 amd64_mc_printk(mci, KERN_CRIT,
2237 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2238 (unsigned long)SystemAddress);
2239 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2240 return;
2243 log_mci = src_mci;
2245 csrow = sys_addr_to_csrow(log_mci, SystemAddress);
2246 if (csrow < 0) {
2247 amd64_mc_printk(mci, KERN_CRIT,
2248 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2249 (unsigned long)SystemAddress);
2250 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2251 } else {
2252 error_address_to_page_and_offset(SystemAddress, &page, &offset);
2253 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2257 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2258 struct err_regs *info)
2260 u32 ec = ERROR_CODE(info->nbsl);
2261 u32 xec = EXT_ERROR_CODE(info->nbsl);
2262 int ecc_type = info->nbsh & (0x3 << 13);
2264 /* Bail early out if this was an 'observed' error */
2265 if (PP(ec) == K8_NBSL_PP_OBS)
2266 return;
2268 /* Do only ECC errors */
2269 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2270 return;
2272 if (ecc_type == 2)
2273 amd64_handle_ce(mci, info);
2274 else if (ecc_type == 1)
2275 amd64_handle_ue(mci, info);
2278 * If main error is CE then overflow must be CE. If main error is UE
2279 * then overflow is unknown. We'll call the overflow a CE - if
2280 * panic_on_ue is set then we're already panic'ed and won't arrive
2281 * here. Else, then apparently someone doesn't think that UE's are
2282 * catastrophic.
2284 if (info->nbsh & K8_NBSH_OVERFLOW)
2285 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2288 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2290 struct mem_ctl_info *mci = mci_lookup[node_id];
2292 __amd64_decode_bus_error(mci, regs);
2295 * Check the UE bit of the NB status high register, if set generate some
2296 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2297 * If it was a GART error, skip that process.
2299 * FIXME: this should go somewhere else, if at all.
2301 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2302 edac_mc_handle_ue_no_info(mci, "UE bit is set");
2307 * The main polling 'check' function, called FROM the edac core to perform the
2308 * error checking and if an error is encountered, error processing.
2310 static void amd64_check(struct mem_ctl_info *mci)
2312 struct err_regs regs;
2314 if (amd64_get_error_info(mci, &regs)) {
2315 struct amd64_pvt *pvt = mci->pvt_info;
2316 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2321 * Input:
2322 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2323 * 2) AMD Family index value
2325 * Ouput:
2326 * Upon return of 0, the following filled in:
2328 * struct pvt->addr_f1_ctl
2329 * struct pvt->misc_f3_ctl
2331 * Filled in with related device funcitions of 'dram_f2_ctl'
2332 * These devices are "reserved" via the pci_get_device()
2334 * Upon return of 1 (error status):
2336 * Nothing reserved
2338 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2340 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2342 /* Reserve the ADDRESS MAP Device */
2343 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2344 amd64_dev->addr_f1_ctl,
2345 pvt->dram_f2_ctl);
2347 if (!pvt->addr_f1_ctl) {
2348 amd64_printk(KERN_ERR, "error address map device not found: "
2349 "vendor %x device 0x%x (broken BIOS?)\n",
2350 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2351 return 1;
2354 /* Reserve the MISC Device */
2355 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2356 amd64_dev->misc_f3_ctl,
2357 pvt->dram_f2_ctl);
2359 if (!pvt->misc_f3_ctl) {
2360 pci_dev_put(pvt->addr_f1_ctl);
2361 pvt->addr_f1_ctl = NULL;
2363 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2364 "vendor %x device 0x%x (broken BIOS?)\n",
2365 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2366 return 1;
2369 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2370 pci_name(pvt->addr_f1_ctl));
2371 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2372 pci_name(pvt->dram_f2_ctl));
2373 debugf1(" Misc device PCI Bus ID:\t%s\n",
2374 pci_name(pvt->misc_f3_ctl));
2376 return 0;
2379 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2381 pci_dev_put(pvt->addr_f1_ctl);
2382 pci_dev_put(pvt->misc_f3_ctl);
2386 * Retrieve the hardware registers of the memory controller (this includes the
2387 * 'Address Map' and 'Misc' device regs)
2389 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2391 u64 msr_val;
2392 int dram, err = 0;
2395 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2396 * those are Read-As-Zero
2398 rdmsrl(MSR_K8_TOP_MEM1, msr_val);
2399 pvt->top_mem = msr_val >> 23;
2400 debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
2402 /* check first whether TOP_MEM2 is enabled */
2403 rdmsrl(MSR_K8_SYSCFG, msr_val);
2404 if (msr_val & (1U << 21)) {
2405 rdmsrl(MSR_K8_TOP_MEM2, msr_val);
2406 pvt->top_mem2 = msr_val >> 23;
2407 debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
2408 } else
2409 debugf0(" TOP_MEM2 disabled.\n");
2411 amd64_cpu_display_info(pvt);
2413 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2414 if (err)
2415 goto err_reg;
2417 if (pvt->ops->read_dram_ctl_register)
2418 pvt->ops->read_dram_ctl_register(pvt);
2420 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2422 * Call CPU specific READ function to get the DRAM Base and
2423 * Limit values from the DCT.
2425 pvt->ops->read_dram_base_limit(pvt, dram);
2428 * Only print out debug info on rows with both R and W Enabled.
2429 * Normal processing, compiler should optimize this whole 'if'
2430 * debug output block away.
2432 if (pvt->dram_rw_en[dram] != 0) {
2433 debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
2434 "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
2435 dram,
2436 (u32)(pvt->dram_base[dram] >> 32),
2437 (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
2438 (u32)(pvt->dram_limit[dram] >> 32),
2439 (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
2440 debugf1(" IntlvEn=%s %s %s "
2441 "IntlvSel=%d DstNode=%d\n",
2442 pvt->dram_IntlvEn[dram] ?
2443 "Enabled" : "Disabled",
2444 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2445 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2446 pvt->dram_IntlvSel[dram],
2447 pvt->dram_DstNode[dram]);
2451 amd64_read_dct_base_mask(pvt);
2453 err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2454 if (err)
2455 goto err_reg;
2457 amd64_read_dbam_reg(pvt);
2459 err = pci_read_config_dword(pvt->misc_f3_ctl,
2460 F10_ONLINE_SPARE, &pvt->online_spare);
2461 if (err)
2462 goto err_reg;
2464 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2465 if (err)
2466 goto err_reg;
2468 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2469 if (err)
2470 goto err_reg;
2472 if (!dct_ganging_enabled(pvt)) {
2473 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
2474 &pvt->dclr1);
2475 if (err)
2476 goto err_reg;
2478 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
2479 &pvt->dchr1);
2480 if (err)
2481 goto err_reg;
2484 amd64_dump_misc_regs(pvt);
2486 return;
2488 err_reg:
2489 debugf0("Reading an MC register failed\n");
2494 * NOTE: CPU Revision Dependent code
2496 * Input:
2497 * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
2498 * k8 private pointer to -->
2499 * DRAM Bank Address mapping register
2500 * node_id
2501 * DCL register where dual_channel_active is
2503 * The DBAM register consists of 4 sets of 4 bits each definitions:
2505 * Bits: CSROWs
2506 * 0-3 CSROWs 0 and 1
2507 * 4-7 CSROWs 2 and 3
2508 * 8-11 CSROWs 4 and 5
2509 * 12-15 CSROWs 6 and 7
2511 * Values range from: 0 to 15
2512 * The meaning of the values depends on CPU revision and dual-channel state,
2513 * see relevant BKDG more info.
2515 * The memory controller provides for total of only 8 CSROWs in its current
2516 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2517 * single channel or two (2) DIMMs in dual channel mode.
2519 * The following code logic collapses the various tables for CSROW based on CPU
2520 * revision.
2522 * Returns:
2523 * The number of PAGE_SIZE pages on the specified CSROW number it
2524 * encompasses
2527 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2529 u32 dram_map, nr_pages;
2532 * The math on this doesn't look right on the surface because x/2*4 can
2533 * be simplified to x*2 but this expression makes use of the fact that
2534 * it is integral math where 1/2=0. This intermediate value becomes the
2535 * number of bits to shift the DBAM register to extract the proper CSROW
2536 * field.
2538 dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2540 nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
2543 * If dual channel then double the memory size of single channel.
2544 * Channel count is 1 or 2
2546 nr_pages <<= (pvt->channel_count - 1);
2548 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
2549 debugf0(" nr_pages= %u channel-count = %d\n",
2550 nr_pages, pvt->channel_count);
2552 return nr_pages;
2556 * Initialize the array of csrow attribute instances, based on the values
2557 * from pci config hardware registers.
2559 static int amd64_init_csrows(struct mem_ctl_info *mci)
2561 struct csrow_info *csrow;
2562 struct amd64_pvt *pvt;
2563 u64 input_addr_min, input_addr_max, sys_addr;
2564 int i, err = 0, empty = 1;
2566 pvt = mci->pvt_info;
2568 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2569 if (err)
2570 debugf0("Reading K8_NBCFG failed\n");
2572 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2573 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2574 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2577 for (i = 0; i < CHIPSELECT_COUNT; i++) {
2578 csrow = &mci->csrows[i];
2580 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2581 debugf1("----CSROW %d EMPTY for node %d\n", i,
2582 pvt->mc_node_id);
2583 continue;
2586 debugf1("----CSROW %d VALID for MC node %d\n",
2587 i, pvt->mc_node_id);
2589 empty = 0;
2590 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2591 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2592 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2593 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2594 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2595 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2596 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2597 /* 8 bytes of resolution */
2599 csrow->mtype = amd64_determine_memory_type(pvt);
2601 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2602 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2603 (unsigned long)input_addr_min,
2604 (unsigned long)input_addr_max);
2605 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2606 (unsigned long)sys_addr, csrow->page_mask);
2607 debugf1(" nr_pages: %u first_page: 0x%lx "
2608 "last_page: 0x%lx\n",
2609 (unsigned)csrow->nr_pages,
2610 csrow->first_page, csrow->last_page);
2613 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2615 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2616 csrow->edac_mode =
2617 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2618 EDAC_S4ECD4ED : EDAC_SECDED;
2619 else
2620 csrow->edac_mode = EDAC_NONE;
2623 return empty;
2627 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2628 * enable it.
2630 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2632 struct amd64_pvt *pvt = mci->pvt_info;
2633 const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
2634 int cpu, idx = 0, err = 0;
2635 struct msr msrs[cpumask_weight(cpumask)];
2636 u32 value;
2637 u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2639 if (!ecc_enable_override)
2640 return;
2642 memset(msrs, 0, sizeof(msrs));
2644 amd64_printk(KERN_WARNING,
2645 "'ecc_enable_override' parameter is active, "
2646 "Enabling AMD ECC hardware now: CAUTION\n");
2648 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2649 if (err)
2650 debugf0("Reading K8_NBCTL failed\n");
2652 /* turn on UECCn and CECCEn bits */
2653 pvt->old_nbctl = value & mask;
2654 pvt->nbctl_mcgctl_saved = 1;
2656 value |= mask;
2657 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2659 rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2661 for_each_cpu(cpu, cpumask) {
2662 if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2663 set_bit(idx, &pvt->old_mcgctl);
2665 msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2666 idx++;
2668 wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2670 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2671 if (err)
2672 debugf0("Reading K8_NBCFG failed\n");
2674 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2675 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2676 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2678 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2679 amd64_printk(KERN_WARNING,
2680 "This node reports that DRAM ECC is "
2681 "currently Disabled; ENABLING now\n");
2683 /* Attempt to turn on DRAM ECC Enable */
2684 value |= K8_NBCFG_ECC_ENABLE;
2685 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2687 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2688 if (err)
2689 debugf0("Reading K8_NBCFG failed\n");
2691 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2692 amd64_printk(KERN_WARNING,
2693 "Hardware rejects Enabling DRAM ECC checking\n"
2694 "Check memory DIMM configuration\n");
2695 } else {
2696 amd64_printk(KERN_DEBUG,
2697 "Hardware accepted DRAM ECC Enable\n");
2700 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2701 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2702 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2704 pvt->ctl_error_info.nbcfg = value;
2707 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2709 const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
2710 int cpu, idx = 0, err = 0;
2711 struct msr msrs[cpumask_weight(cpumask)];
2712 u32 value;
2713 u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2715 if (!pvt->nbctl_mcgctl_saved)
2716 return;
2718 memset(msrs, 0, sizeof(msrs));
2720 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2721 if (err)
2722 debugf0("Reading K8_NBCTL failed\n");
2723 value &= ~mask;
2724 value |= pvt->old_nbctl;
2726 /* restore the NB Enable MCGCTL bit */
2727 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2729 rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2731 for_each_cpu(cpu, cpumask) {
2732 msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2733 msrs[idx].l |=
2734 test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
2735 idx++;
2738 wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2741 /* get all cores on this DCT */
2742 static void get_cpus_on_this_dct_cpumask(cpumask_t *mask, int nid)
2744 int cpu;
2746 for_each_online_cpu(cpu)
2747 if (amd_get_nb_id(cpu) == nid)
2748 cpumask_set_cpu(cpu, mask);
2751 /* check MCG_CTL on all the cpus on this node */
2752 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2754 cpumask_t mask;
2755 struct msr *msrs;
2756 int cpu, nbe, idx = 0;
2757 bool ret = false;
2759 cpumask_clear(&mask);
2761 get_cpus_on_this_dct_cpumask(&mask, nid);
2763 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(&mask), GFP_KERNEL);
2764 if (!msrs) {
2765 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2766 __func__);
2767 return false;
2770 rdmsr_on_cpus(&mask, MSR_IA32_MCG_CTL, msrs);
2772 for_each_cpu(cpu, &mask) {
2773 nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
2775 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2776 cpu, msrs[idx].q,
2777 (nbe ? "enabled" : "disabled"));
2779 if (!nbe)
2780 goto out;
2782 idx++;
2784 ret = true;
2786 out:
2787 kfree(msrs);
2788 return ret;
2792 * EDAC requires that the BIOS have ECC enabled before taking over the
2793 * processing of ECC errors. This is because the BIOS can properly initialize
2794 * the memory system completely. A command line option allows to force-enable
2795 * hardware ECC later in amd64_enable_ecc_error_reporting().
2797 static const char *ecc_warning =
2798 "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
2799 " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
2800 " Also, use of the override can cause unknown side effects.\n";
2802 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2804 u32 value;
2805 int err = 0;
2806 u8 ecc_enabled = 0;
2807 bool nb_mce_en = false;
2809 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2810 if (err)
2811 debugf0("Reading K8_NBCTL failed\n");
2813 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2814 if (!ecc_enabled)
2815 amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
2816 "is currently disabled, set F3x%x[22] (%s).\n",
2817 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2818 else
2819 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2821 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2822 if (!nb_mce_en)
2823 amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
2824 "0x%08x[4] on node %d to enable.\n",
2825 MSR_IA32_MCG_CTL, pvt->mc_node_id);
2827 if (!ecc_enabled || !nb_mce_en) {
2828 if (!ecc_enable_override) {
2829 amd64_printk(KERN_WARNING, "%s", ecc_warning);
2830 return -ENODEV;
2832 } else
2833 /* CLEAR the override, since BIOS controlled it */
2834 ecc_enable_override = 0;
2836 return 0;
2839 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2840 ARRAY_SIZE(amd64_inj_attrs) +
2843 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2845 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2847 unsigned int i = 0, j = 0;
2849 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2850 sysfs_attrs[i] = amd64_dbg_attrs[i];
2852 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2853 sysfs_attrs[i] = amd64_inj_attrs[j];
2855 sysfs_attrs[i] = terminator;
2857 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2860 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2862 struct amd64_pvt *pvt = mci->pvt_info;
2864 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2865 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2867 if (pvt->nbcap & K8_NBCAP_SECDED)
2868 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2870 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2871 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2873 mci->edac_cap = amd64_determine_edac_cap(pvt);
2874 mci->mod_name = EDAC_MOD_STR;
2875 mci->mod_ver = EDAC_AMD64_VERSION;
2876 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2877 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2878 mci->ctl_page_to_phys = NULL;
2880 /* IMPORTANT: Set the polling 'check' function in this module */
2881 mci->edac_check = amd64_check;
2883 /* memory scrubber interface */
2884 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2885 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2889 * Init stuff for this DRAM Controller device.
2891 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2892 * Space feature MUST be enabled on ALL Processors prior to actually reading
2893 * from the ECS registers. Since the loading of the module can occur on any
2894 * 'core', and cores don't 'see' all the other processors ECS data when the
2895 * others are NOT enabled. Our solution is to first enable ECS access in this
2896 * routine on all processors, gather some data in a amd64_pvt structure and
2897 * later come back in a finish-setup function to perform that final
2898 * initialization. See also amd64_init_2nd_stage() for that.
2900 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2901 int mc_type_index)
2903 struct amd64_pvt *pvt = NULL;
2904 int err = 0, ret;
2906 ret = -ENOMEM;
2907 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2908 if (!pvt)
2909 goto err_exit;
2911 pvt->mc_node_id = get_node_id(dram_f2_ctl);
2913 pvt->dram_f2_ctl = dram_f2_ctl;
2914 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2915 pvt->mc_type_index = mc_type_index;
2916 pvt->ops = family_ops(mc_type_index);
2917 pvt->old_mcgctl = 0;
2920 * We have the dram_f2_ctl device as an argument, now go reserve its
2921 * sibling devices from the PCI system.
2923 ret = -ENODEV;
2924 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2925 if (err)
2926 goto err_free;
2928 ret = -EINVAL;
2929 err = amd64_check_ecc_enabled(pvt);
2930 if (err)
2931 goto err_put;
2934 * Key operation here: setup of HW prior to performing ops on it. Some
2935 * setup is required to access ECS data. After this is performed, the
2936 * 'teardown' function must be called upon error and normal exit paths.
2938 if (boot_cpu_data.x86 >= 0x10)
2939 amd64_setup(pvt);
2942 * Save the pointer to the private data for use in 2nd initialization
2943 * stage
2945 pvt_lookup[pvt->mc_node_id] = pvt;
2947 return 0;
2949 err_put:
2950 amd64_free_mc_sibling_devices(pvt);
2952 err_free:
2953 kfree(pvt);
2955 err_exit:
2956 return ret;
2960 * This is the finishing stage of the init code. Needs to be performed after all
2961 * MCs' hardware have been prepped for accessing extended config space.
2963 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2965 int node_id = pvt->mc_node_id;
2966 struct mem_ctl_info *mci;
2967 int ret, err = 0;
2969 amd64_read_mc_registers(pvt);
2971 ret = -ENODEV;
2972 if (pvt->ops->probe_valid_hardware) {
2973 err = pvt->ops->probe_valid_hardware(pvt);
2974 if (err)
2975 goto err_exit;
2979 * We need to determine how many memory channels there are. Then use
2980 * that information for calculating the size of the dynamic instance
2981 * tables in the 'mci' structure
2983 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2984 if (pvt->channel_count < 0)
2985 goto err_exit;
2987 ret = -ENOMEM;
2988 mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
2989 if (!mci)
2990 goto err_exit;
2992 mci->pvt_info = pvt;
2994 mci->dev = &pvt->dram_f2_ctl->dev;
2995 amd64_setup_mci_misc_attributes(mci);
2997 if (amd64_init_csrows(mci))
2998 mci->edac_cap = EDAC_FLAG_NONE;
3000 amd64_enable_ecc_error_reporting(mci);
3001 amd64_set_mc_sysfs_attributes(mci);
3003 ret = -ENODEV;
3004 if (edac_mc_add_mc(mci)) {
3005 debugf1("failed edac_mc_add_mc()\n");
3006 goto err_add_mc;
3009 mci_lookup[node_id] = mci;
3010 pvt_lookup[node_id] = NULL;
3012 /* register stuff with EDAC MCE */
3013 if (report_gart_errors)
3014 amd_report_gart_errors(true);
3016 amd_register_ecc_decoder(amd64_decode_bus_error);
3018 return 0;
3020 err_add_mc:
3021 edac_mc_free(mci);
3023 err_exit:
3024 debugf0("failure to init 2nd stage: ret=%d\n", ret);
3026 amd64_restore_ecc_error_reporting(pvt);
3028 if (boot_cpu_data.x86 > 0xf)
3029 amd64_teardown(pvt);
3031 amd64_free_mc_sibling_devices(pvt);
3033 kfree(pvt_lookup[pvt->mc_node_id]);
3034 pvt_lookup[node_id] = NULL;
3036 return ret;
3040 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
3041 const struct pci_device_id *mc_type)
3043 int ret = 0;
3045 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
3046 get_amd_family_name(mc_type->driver_data));
3048 ret = pci_enable_device(pdev);
3049 if (ret < 0)
3050 ret = -EIO;
3051 else
3052 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
3054 if (ret < 0)
3055 debugf0("ret=%d\n", ret);
3057 return ret;
3060 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
3062 struct mem_ctl_info *mci;
3063 struct amd64_pvt *pvt;
3065 /* Remove from EDAC CORE tracking list */
3066 mci = edac_mc_del_mc(&pdev->dev);
3067 if (!mci)
3068 return;
3070 pvt = mci->pvt_info;
3072 amd64_restore_ecc_error_reporting(pvt);
3074 if (boot_cpu_data.x86 > 0xf)
3075 amd64_teardown(pvt);
3077 amd64_free_mc_sibling_devices(pvt);
3079 kfree(pvt);
3080 mci->pvt_info = NULL;
3082 mci_lookup[pvt->mc_node_id] = NULL;
3084 /* unregister from EDAC MCE */
3085 amd_report_gart_errors(false);
3086 amd_unregister_ecc_decoder(amd64_decode_bus_error);
3088 /* Free the EDAC CORE resources */
3089 edac_mc_free(mci);
3093 * This table is part of the interface for loading drivers for PCI devices. The
3094 * PCI core identifies what devices are on a system during boot, and then
3095 * inquiry this table to see if this driver is for a given device found.
3097 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
3099 .vendor = PCI_VENDOR_ID_AMD,
3100 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
3101 .subvendor = PCI_ANY_ID,
3102 .subdevice = PCI_ANY_ID,
3103 .class = 0,
3104 .class_mask = 0,
3105 .driver_data = K8_CPUS
3108 .vendor = PCI_VENDOR_ID_AMD,
3109 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
3110 .subvendor = PCI_ANY_ID,
3111 .subdevice = PCI_ANY_ID,
3112 .class = 0,
3113 .class_mask = 0,
3114 .driver_data = F10_CPUS
3117 .vendor = PCI_VENDOR_ID_AMD,
3118 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
3119 .subvendor = PCI_ANY_ID,
3120 .subdevice = PCI_ANY_ID,
3121 .class = 0,
3122 .class_mask = 0,
3123 .driver_data = F11_CPUS
3125 {0, }
3127 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
3129 static struct pci_driver amd64_pci_driver = {
3130 .name = EDAC_MOD_STR,
3131 .probe = amd64_init_one_instance,
3132 .remove = __devexit_p(amd64_remove_one_instance),
3133 .id_table = amd64_pci_table,
3136 static void amd64_setup_pci_device(void)
3138 struct mem_ctl_info *mci;
3139 struct amd64_pvt *pvt;
3141 if (amd64_ctl_pci)
3142 return;
3144 mci = mci_lookup[0];
3145 if (mci) {
3147 pvt = mci->pvt_info;
3148 amd64_ctl_pci =
3149 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3150 EDAC_MOD_STR);
3152 if (!amd64_ctl_pci) {
3153 pr_warning("%s(): Unable to create PCI control\n",
3154 __func__);
3156 pr_warning("%s(): PCI error report via EDAC not set\n",
3157 __func__);
3162 static int __init amd64_edac_init(void)
3164 int nb, err = -ENODEV;
3166 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3168 opstate_init();
3170 if (cache_k8_northbridges() < 0)
3171 goto err_exit;
3173 err = pci_register_driver(&amd64_pci_driver);
3174 if (err)
3175 return err;
3178 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3179 * amd64_pvt structs. These will be used in the 2nd stage init function
3180 * to finish initialization of the MC instances.
3182 for (nb = 0; nb < num_k8_northbridges; nb++) {
3183 if (!pvt_lookup[nb])
3184 continue;
3186 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3187 if (err)
3188 goto err_2nd_stage;
3191 amd64_setup_pci_device();
3193 return 0;
3195 err_2nd_stage:
3196 debugf0("2nd stage failed\n");
3198 err_exit:
3199 pci_unregister_driver(&amd64_pci_driver);
3201 return err;
3204 static void __exit amd64_edac_exit(void)
3206 if (amd64_ctl_pci)
3207 edac_pci_release_generic_ctl(amd64_ctl_pci);
3209 pci_unregister_driver(&amd64_pci_driver);
3212 module_init(amd64_edac_init);
3213 module_exit(amd64_edac_exit);
3215 MODULE_LICENSE("GPL");
3216 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3217 "Dave Peterson, Thayne Harbaugh");
3218 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3219 EDAC_AMD64_VERSION);
3221 module_param(edac_op_state, int, 0444);
3222 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");