sierra: add new ID for Airprime/Sierra USB IP modem
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / extent-tree.c
blob559f72489b3bf02b4477369da854bf371cbbd0e4
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include "compat.h"
26 #include "hash.h"
27 #include "ctree.h"
28 #include "disk-io.h"
29 #include "print-tree.h"
30 #include "transaction.h"
31 #include "volumes.h"
32 #include "locking.h"
33 #include "free-space-cache.h"
35 static int update_block_group(struct btrfs_trans_handle *trans,
36 struct btrfs_root *root,
37 u64 bytenr, u64 num_bytes, int alloc,
38 int mark_free);
39 static int update_reserved_extents(struct btrfs_block_group_cache *cache,
40 u64 num_bytes, int reserve);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 u64 bytenr, u64 num_bytes, u64 parent,
44 u64 root_objectid, u64 owner_objectid,
45 u64 owner_offset, int refs_to_drop,
46 struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 struct extent_buffer *leaf,
49 struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 parent, u64 root_objectid,
58 u64 flags, struct btrfs_disk_key *key,
59 int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 struct btrfs_root *extent_root, u64 alloc_bytes,
62 u64 flags, int force);
63 static int pin_down_bytes(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root,
65 struct btrfs_path *path,
66 u64 bytenr, u64 num_bytes,
67 int is_data, int reserved,
68 struct extent_buffer **must_clean);
69 static int find_next_key(struct btrfs_path *path, int level,
70 struct btrfs_key *key);
71 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
72 int dump_block_groups);
74 static noinline int
75 block_group_cache_done(struct btrfs_block_group_cache *cache)
77 smp_mb();
78 return cache->cached == BTRFS_CACHE_FINISHED;
81 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
83 return (cache->flags & bits) == bits;
86 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
88 atomic_inc(&cache->count);
91 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
93 if (atomic_dec_and_test(&cache->count))
94 kfree(cache);
98 * this adds the block group to the fs_info rb tree for the block group
99 * cache
101 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
102 struct btrfs_block_group_cache *block_group)
104 struct rb_node **p;
105 struct rb_node *parent = NULL;
106 struct btrfs_block_group_cache *cache;
108 spin_lock(&info->block_group_cache_lock);
109 p = &info->block_group_cache_tree.rb_node;
111 while (*p) {
112 parent = *p;
113 cache = rb_entry(parent, struct btrfs_block_group_cache,
114 cache_node);
115 if (block_group->key.objectid < cache->key.objectid) {
116 p = &(*p)->rb_left;
117 } else if (block_group->key.objectid > cache->key.objectid) {
118 p = &(*p)->rb_right;
119 } else {
120 spin_unlock(&info->block_group_cache_lock);
121 return -EEXIST;
125 rb_link_node(&block_group->cache_node, parent, p);
126 rb_insert_color(&block_group->cache_node,
127 &info->block_group_cache_tree);
128 spin_unlock(&info->block_group_cache_lock);
130 return 0;
134 * This will return the block group at or after bytenr if contains is 0, else
135 * it will return the block group that contains the bytenr
137 static struct btrfs_block_group_cache *
138 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
139 int contains)
141 struct btrfs_block_group_cache *cache, *ret = NULL;
142 struct rb_node *n;
143 u64 end, start;
145 spin_lock(&info->block_group_cache_lock);
146 n = info->block_group_cache_tree.rb_node;
148 while (n) {
149 cache = rb_entry(n, struct btrfs_block_group_cache,
150 cache_node);
151 end = cache->key.objectid + cache->key.offset - 1;
152 start = cache->key.objectid;
154 if (bytenr < start) {
155 if (!contains && (!ret || start < ret->key.objectid))
156 ret = cache;
157 n = n->rb_left;
158 } else if (bytenr > start) {
159 if (contains && bytenr <= end) {
160 ret = cache;
161 break;
163 n = n->rb_right;
164 } else {
165 ret = cache;
166 break;
169 if (ret)
170 btrfs_get_block_group(ret);
171 spin_unlock(&info->block_group_cache_lock);
173 return ret;
176 static int add_excluded_extent(struct btrfs_root *root,
177 u64 start, u64 num_bytes)
179 u64 end = start + num_bytes - 1;
180 set_extent_bits(&root->fs_info->freed_extents[0],
181 start, end, EXTENT_UPTODATE, GFP_NOFS);
182 set_extent_bits(&root->fs_info->freed_extents[1],
183 start, end, EXTENT_UPTODATE, GFP_NOFS);
184 return 0;
187 static void free_excluded_extents(struct btrfs_root *root,
188 struct btrfs_block_group_cache *cache)
190 u64 start, end;
192 start = cache->key.objectid;
193 end = start + cache->key.offset - 1;
195 clear_extent_bits(&root->fs_info->freed_extents[0],
196 start, end, EXTENT_UPTODATE, GFP_NOFS);
197 clear_extent_bits(&root->fs_info->freed_extents[1],
198 start, end, EXTENT_UPTODATE, GFP_NOFS);
201 static int exclude_super_stripes(struct btrfs_root *root,
202 struct btrfs_block_group_cache *cache)
204 u64 bytenr;
205 u64 *logical;
206 int stripe_len;
207 int i, nr, ret;
209 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
210 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
211 cache->bytes_super += stripe_len;
212 ret = add_excluded_extent(root, cache->key.objectid,
213 stripe_len);
214 BUG_ON(ret);
217 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
218 bytenr = btrfs_sb_offset(i);
219 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
220 cache->key.objectid, bytenr,
221 0, &logical, &nr, &stripe_len);
222 BUG_ON(ret);
224 while (nr--) {
225 cache->bytes_super += stripe_len;
226 ret = add_excluded_extent(root, logical[nr],
227 stripe_len);
228 BUG_ON(ret);
231 kfree(logical);
233 return 0;
236 static struct btrfs_caching_control *
237 get_caching_control(struct btrfs_block_group_cache *cache)
239 struct btrfs_caching_control *ctl;
241 spin_lock(&cache->lock);
242 if (cache->cached != BTRFS_CACHE_STARTED) {
243 spin_unlock(&cache->lock);
244 return NULL;
247 ctl = cache->caching_ctl;
248 atomic_inc(&ctl->count);
249 spin_unlock(&cache->lock);
250 return ctl;
253 static void put_caching_control(struct btrfs_caching_control *ctl)
255 if (atomic_dec_and_test(&ctl->count))
256 kfree(ctl);
260 * this is only called by cache_block_group, since we could have freed extents
261 * we need to check the pinned_extents for any extents that can't be used yet
262 * since their free space will be released as soon as the transaction commits.
264 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
265 struct btrfs_fs_info *info, u64 start, u64 end)
267 u64 extent_start, extent_end, size, total_added = 0;
268 int ret;
270 while (start < end) {
271 ret = find_first_extent_bit(info->pinned_extents, start,
272 &extent_start, &extent_end,
273 EXTENT_DIRTY | EXTENT_UPTODATE);
274 if (ret)
275 break;
277 if (extent_start <= start) {
278 start = extent_end + 1;
279 } else if (extent_start > start && extent_start < end) {
280 size = extent_start - start;
281 total_added += size;
282 ret = btrfs_add_free_space(block_group, start,
283 size);
284 BUG_ON(ret);
285 start = extent_end + 1;
286 } else {
287 break;
291 if (start < end) {
292 size = end - start;
293 total_added += size;
294 ret = btrfs_add_free_space(block_group, start, size);
295 BUG_ON(ret);
298 return total_added;
301 static int caching_kthread(void *data)
303 struct btrfs_block_group_cache *block_group = data;
304 struct btrfs_fs_info *fs_info = block_group->fs_info;
305 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
306 struct btrfs_root *extent_root = fs_info->extent_root;
307 struct btrfs_path *path;
308 struct extent_buffer *leaf;
309 struct btrfs_key key;
310 u64 total_found = 0;
311 u64 last = 0;
312 u32 nritems;
313 int ret = 0;
315 path = btrfs_alloc_path();
316 if (!path)
317 return -ENOMEM;
319 exclude_super_stripes(extent_root, block_group);
320 spin_lock(&block_group->space_info->lock);
321 block_group->space_info->bytes_super += block_group->bytes_super;
322 spin_unlock(&block_group->space_info->lock);
324 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
327 * We don't want to deadlock with somebody trying to allocate a new
328 * extent for the extent root while also trying to search the extent
329 * root to add free space. So we skip locking and search the commit
330 * root, since its read-only
332 path->skip_locking = 1;
333 path->search_commit_root = 1;
334 path->reada = 2;
336 key.objectid = last;
337 key.offset = 0;
338 key.type = BTRFS_EXTENT_ITEM_KEY;
339 again:
340 mutex_lock(&caching_ctl->mutex);
341 /* need to make sure the commit_root doesn't disappear */
342 down_read(&fs_info->extent_commit_sem);
344 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
345 if (ret < 0)
346 goto err;
348 leaf = path->nodes[0];
349 nritems = btrfs_header_nritems(leaf);
351 while (1) {
352 smp_mb();
353 if (fs_info->closing > 1) {
354 last = (u64)-1;
355 break;
358 if (path->slots[0] < nritems) {
359 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
360 } else {
361 ret = find_next_key(path, 0, &key);
362 if (ret)
363 break;
365 caching_ctl->progress = last;
366 btrfs_release_path(extent_root, path);
367 up_read(&fs_info->extent_commit_sem);
368 mutex_unlock(&caching_ctl->mutex);
369 if (btrfs_transaction_in_commit(fs_info))
370 schedule_timeout(1);
371 else
372 cond_resched();
373 goto again;
376 if (key.objectid < block_group->key.objectid) {
377 path->slots[0]++;
378 continue;
381 if (key.objectid >= block_group->key.objectid +
382 block_group->key.offset)
383 break;
385 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
386 total_found += add_new_free_space(block_group,
387 fs_info, last,
388 key.objectid);
389 last = key.objectid + key.offset;
391 if (total_found > (1024 * 1024 * 2)) {
392 total_found = 0;
393 wake_up(&caching_ctl->wait);
396 path->slots[0]++;
398 ret = 0;
400 total_found += add_new_free_space(block_group, fs_info, last,
401 block_group->key.objectid +
402 block_group->key.offset);
403 caching_ctl->progress = (u64)-1;
405 spin_lock(&block_group->lock);
406 block_group->caching_ctl = NULL;
407 block_group->cached = BTRFS_CACHE_FINISHED;
408 spin_unlock(&block_group->lock);
410 err:
411 btrfs_free_path(path);
412 up_read(&fs_info->extent_commit_sem);
414 free_excluded_extents(extent_root, block_group);
416 mutex_unlock(&caching_ctl->mutex);
417 wake_up(&caching_ctl->wait);
419 put_caching_control(caching_ctl);
420 atomic_dec(&block_group->space_info->caching_threads);
421 btrfs_put_block_group(block_group);
423 return 0;
426 static int cache_block_group(struct btrfs_block_group_cache *cache)
428 struct btrfs_fs_info *fs_info = cache->fs_info;
429 struct btrfs_caching_control *caching_ctl;
430 struct task_struct *tsk;
431 int ret = 0;
433 smp_mb();
434 if (cache->cached != BTRFS_CACHE_NO)
435 return 0;
437 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
438 BUG_ON(!caching_ctl);
440 INIT_LIST_HEAD(&caching_ctl->list);
441 mutex_init(&caching_ctl->mutex);
442 init_waitqueue_head(&caching_ctl->wait);
443 caching_ctl->block_group = cache;
444 caching_ctl->progress = cache->key.objectid;
445 /* one for caching kthread, one for caching block group list */
446 atomic_set(&caching_ctl->count, 2);
448 spin_lock(&cache->lock);
449 if (cache->cached != BTRFS_CACHE_NO) {
450 spin_unlock(&cache->lock);
451 kfree(caching_ctl);
452 return 0;
454 cache->caching_ctl = caching_ctl;
455 cache->cached = BTRFS_CACHE_STARTED;
456 spin_unlock(&cache->lock);
458 down_write(&fs_info->extent_commit_sem);
459 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
460 up_write(&fs_info->extent_commit_sem);
462 atomic_inc(&cache->space_info->caching_threads);
463 btrfs_get_block_group(cache);
465 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
466 cache->key.objectid);
467 if (IS_ERR(tsk)) {
468 ret = PTR_ERR(tsk);
469 printk(KERN_ERR "error running thread %d\n", ret);
470 BUG();
473 return ret;
477 * return the block group that starts at or after bytenr
479 static struct btrfs_block_group_cache *
480 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
482 struct btrfs_block_group_cache *cache;
484 cache = block_group_cache_tree_search(info, bytenr, 0);
486 return cache;
490 * return the block group that contains the given bytenr
492 struct btrfs_block_group_cache *btrfs_lookup_block_group(
493 struct btrfs_fs_info *info,
494 u64 bytenr)
496 struct btrfs_block_group_cache *cache;
498 cache = block_group_cache_tree_search(info, bytenr, 1);
500 return cache;
503 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
504 u64 flags)
506 struct list_head *head = &info->space_info;
507 struct btrfs_space_info *found;
509 rcu_read_lock();
510 list_for_each_entry_rcu(found, head, list) {
511 if (found->flags == flags) {
512 rcu_read_unlock();
513 return found;
516 rcu_read_unlock();
517 return NULL;
521 * after adding space to the filesystem, we need to clear the full flags
522 * on all the space infos.
524 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
526 struct list_head *head = &info->space_info;
527 struct btrfs_space_info *found;
529 rcu_read_lock();
530 list_for_each_entry_rcu(found, head, list)
531 found->full = 0;
532 rcu_read_unlock();
535 static u64 div_factor(u64 num, int factor)
537 if (factor == 10)
538 return num;
539 num *= factor;
540 do_div(num, 10);
541 return num;
544 u64 btrfs_find_block_group(struct btrfs_root *root,
545 u64 search_start, u64 search_hint, int owner)
547 struct btrfs_block_group_cache *cache;
548 u64 used;
549 u64 last = max(search_hint, search_start);
550 u64 group_start = 0;
551 int full_search = 0;
552 int factor = 9;
553 int wrapped = 0;
554 again:
555 while (1) {
556 cache = btrfs_lookup_first_block_group(root->fs_info, last);
557 if (!cache)
558 break;
560 spin_lock(&cache->lock);
561 last = cache->key.objectid + cache->key.offset;
562 used = btrfs_block_group_used(&cache->item);
564 if ((full_search || !cache->ro) &&
565 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
566 if (used + cache->pinned + cache->reserved <
567 div_factor(cache->key.offset, factor)) {
568 group_start = cache->key.objectid;
569 spin_unlock(&cache->lock);
570 btrfs_put_block_group(cache);
571 goto found;
574 spin_unlock(&cache->lock);
575 btrfs_put_block_group(cache);
576 cond_resched();
578 if (!wrapped) {
579 last = search_start;
580 wrapped = 1;
581 goto again;
583 if (!full_search && factor < 10) {
584 last = search_start;
585 full_search = 1;
586 factor = 10;
587 goto again;
589 found:
590 return group_start;
593 /* simple helper to search for an existing extent at a given offset */
594 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
596 int ret;
597 struct btrfs_key key;
598 struct btrfs_path *path;
600 path = btrfs_alloc_path();
601 BUG_ON(!path);
602 key.objectid = start;
603 key.offset = len;
604 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
605 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
606 0, 0);
607 btrfs_free_path(path);
608 return ret;
612 * Back reference rules. Back refs have three main goals:
614 * 1) differentiate between all holders of references to an extent so that
615 * when a reference is dropped we can make sure it was a valid reference
616 * before freeing the extent.
618 * 2) Provide enough information to quickly find the holders of an extent
619 * if we notice a given block is corrupted or bad.
621 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
622 * maintenance. This is actually the same as #2, but with a slightly
623 * different use case.
625 * There are two kinds of back refs. The implicit back refs is optimized
626 * for pointers in non-shared tree blocks. For a given pointer in a block,
627 * back refs of this kind provide information about the block's owner tree
628 * and the pointer's key. These information allow us to find the block by
629 * b-tree searching. The full back refs is for pointers in tree blocks not
630 * referenced by their owner trees. The location of tree block is recorded
631 * in the back refs. Actually the full back refs is generic, and can be
632 * used in all cases the implicit back refs is used. The major shortcoming
633 * of the full back refs is its overhead. Every time a tree block gets
634 * COWed, we have to update back refs entry for all pointers in it.
636 * For a newly allocated tree block, we use implicit back refs for
637 * pointers in it. This means most tree related operations only involve
638 * implicit back refs. For a tree block created in old transaction, the
639 * only way to drop a reference to it is COW it. So we can detect the
640 * event that tree block loses its owner tree's reference and do the
641 * back refs conversion.
643 * When a tree block is COW'd through a tree, there are four cases:
645 * The reference count of the block is one and the tree is the block's
646 * owner tree. Nothing to do in this case.
648 * The reference count of the block is one and the tree is not the
649 * block's owner tree. In this case, full back refs is used for pointers
650 * in the block. Remove these full back refs, add implicit back refs for
651 * every pointers in the new block.
653 * The reference count of the block is greater than one and the tree is
654 * the block's owner tree. In this case, implicit back refs is used for
655 * pointers in the block. Add full back refs for every pointers in the
656 * block, increase lower level extents' reference counts. The original
657 * implicit back refs are entailed to the new block.
659 * The reference count of the block is greater than one and the tree is
660 * not the block's owner tree. Add implicit back refs for every pointer in
661 * the new block, increase lower level extents' reference count.
663 * Back Reference Key composing:
665 * The key objectid corresponds to the first byte in the extent,
666 * The key type is used to differentiate between types of back refs.
667 * There are different meanings of the key offset for different types
668 * of back refs.
670 * File extents can be referenced by:
672 * - multiple snapshots, subvolumes, or different generations in one subvol
673 * - different files inside a single subvolume
674 * - different offsets inside a file (bookend extents in file.c)
676 * The extent ref structure for the implicit back refs has fields for:
678 * - Objectid of the subvolume root
679 * - objectid of the file holding the reference
680 * - original offset in the file
681 * - how many bookend extents
683 * The key offset for the implicit back refs is hash of the first
684 * three fields.
686 * The extent ref structure for the full back refs has field for:
688 * - number of pointers in the tree leaf
690 * The key offset for the implicit back refs is the first byte of
691 * the tree leaf
693 * When a file extent is allocated, The implicit back refs is used.
694 * the fields are filled in:
696 * (root_key.objectid, inode objectid, offset in file, 1)
698 * When a file extent is removed file truncation, we find the
699 * corresponding implicit back refs and check the following fields:
701 * (btrfs_header_owner(leaf), inode objectid, offset in file)
703 * Btree extents can be referenced by:
705 * - Different subvolumes
707 * Both the implicit back refs and the full back refs for tree blocks
708 * only consist of key. The key offset for the implicit back refs is
709 * objectid of block's owner tree. The key offset for the full back refs
710 * is the first byte of parent block.
712 * When implicit back refs is used, information about the lowest key and
713 * level of the tree block are required. These information are stored in
714 * tree block info structure.
717 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
718 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
719 struct btrfs_root *root,
720 struct btrfs_path *path,
721 u64 owner, u32 extra_size)
723 struct btrfs_extent_item *item;
724 struct btrfs_extent_item_v0 *ei0;
725 struct btrfs_extent_ref_v0 *ref0;
726 struct btrfs_tree_block_info *bi;
727 struct extent_buffer *leaf;
728 struct btrfs_key key;
729 struct btrfs_key found_key;
730 u32 new_size = sizeof(*item);
731 u64 refs;
732 int ret;
734 leaf = path->nodes[0];
735 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
737 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
738 ei0 = btrfs_item_ptr(leaf, path->slots[0],
739 struct btrfs_extent_item_v0);
740 refs = btrfs_extent_refs_v0(leaf, ei0);
742 if (owner == (u64)-1) {
743 while (1) {
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 ret = btrfs_next_leaf(root, path);
746 if (ret < 0)
747 return ret;
748 BUG_ON(ret > 0);
749 leaf = path->nodes[0];
751 btrfs_item_key_to_cpu(leaf, &found_key,
752 path->slots[0]);
753 BUG_ON(key.objectid != found_key.objectid);
754 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
755 path->slots[0]++;
756 continue;
758 ref0 = btrfs_item_ptr(leaf, path->slots[0],
759 struct btrfs_extent_ref_v0);
760 owner = btrfs_ref_objectid_v0(leaf, ref0);
761 break;
764 btrfs_release_path(root, path);
766 if (owner < BTRFS_FIRST_FREE_OBJECTID)
767 new_size += sizeof(*bi);
769 new_size -= sizeof(*ei0);
770 ret = btrfs_search_slot(trans, root, &key, path,
771 new_size + extra_size, 1);
772 if (ret < 0)
773 return ret;
774 BUG_ON(ret);
776 ret = btrfs_extend_item(trans, root, path, new_size);
777 BUG_ON(ret);
779 leaf = path->nodes[0];
780 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
781 btrfs_set_extent_refs(leaf, item, refs);
782 /* FIXME: get real generation */
783 btrfs_set_extent_generation(leaf, item, 0);
784 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
785 btrfs_set_extent_flags(leaf, item,
786 BTRFS_EXTENT_FLAG_TREE_BLOCK |
787 BTRFS_BLOCK_FLAG_FULL_BACKREF);
788 bi = (struct btrfs_tree_block_info *)(item + 1);
789 /* FIXME: get first key of the block */
790 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
791 btrfs_set_tree_block_level(leaf, bi, (int)owner);
792 } else {
793 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
795 btrfs_mark_buffer_dirty(leaf);
796 return 0;
798 #endif
800 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
802 u32 high_crc = ~(u32)0;
803 u32 low_crc = ~(u32)0;
804 __le64 lenum;
806 lenum = cpu_to_le64(root_objectid);
807 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
808 lenum = cpu_to_le64(owner);
809 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
810 lenum = cpu_to_le64(offset);
811 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
813 return ((u64)high_crc << 31) ^ (u64)low_crc;
816 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
817 struct btrfs_extent_data_ref *ref)
819 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
820 btrfs_extent_data_ref_objectid(leaf, ref),
821 btrfs_extent_data_ref_offset(leaf, ref));
824 static int match_extent_data_ref(struct extent_buffer *leaf,
825 struct btrfs_extent_data_ref *ref,
826 u64 root_objectid, u64 owner, u64 offset)
828 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
829 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
830 btrfs_extent_data_ref_offset(leaf, ref) != offset)
831 return 0;
832 return 1;
835 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
836 struct btrfs_root *root,
837 struct btrfs_path *path,
838 u64 bytenr, u64 parent,
839 u64 root_objectid,
840 u64 owner, u64 offset)
842 struct btrfs_key key;
843 struct btrfs_extent_data_ref *ref;
844 struct extent_buffer *leaf;
845 u32 nritems;
846 int ret;
847 int recow;
848 int err = -ENOENT;
850 key.objectid = bytenr;
851 if (parent) {
852 key.type = BTRFS_SHARED_DATA_REF_KEY;
853 key.offset = parent;
854 } else {
855 key.type = BTRFS_EXTENT_DATA_REF_KEY;
856 key.offset = hash_extent_data_ref(root_objectid,
857 owner, offset);
859 again:
860 recow = 0;
861 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
862 if (ret < 0) {
863 err = ret;
864 goto fail;
867 if (parent) {
868 if (!ret)
869 return 0;
870 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
871 key.type = BTRFS_EXTENT_REF_V0_KEY;
872 btrfs_release_path(root, path);
873 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
874 if (ret < 0) {
875 err = ret;
876 goto fail;
878 if (!ret)
879 return 0;
880 #endif
881 goto fail;
884 leaf = path->nodes[0];
885 nritems = btrfs_header_nritems(leaf);
886 while (1) {
887 if (path->slots[0] >= nritems) {
888 ret = btrfs_next_leaf(root, path);
889 if (ret < 0)
890 err = ret;
891 if (ret)
892 goto fail;
894 leaf = path->nodes[0];
895 nritems = btrfs_header_nritems(leaf);
896 recow = 1;
899 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
900 if (key.objectid != bytenr ||
901 key.type != BTRFS_EXTENT_DATA_REF_KEY)
902 goto fail;
904 ref = btrfs_item_ptr(leaf, path->slots[0],
905 struct btrfs_extent_data_ref);
907 if (match_extent_data_ref(leaf, ref, root_objectid,
908 owner, offset)) {
909 if (recow) {
910 btrfs_release_path(root, path);
911 goto again;
913 err = 0;
914 break;
916 path->slots[0]++;
918 fail:
919 return err;
922 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
923 struct btrfs_root *root,
924 struct btrfs_path *path,
925 u64 bytenr, u64 parent,
926 u64 root_objectid, u64 owner,
927 u64 offset, int refs_to_add)
929 struct btrfs_key key;
930 struct extent_buffer *leaf;
931 u32 size;
932 u32 num_refs;
933 int ret;
935 key.objectid = bytenr;
936 if (parent) {
937 key.type = BTRFS_SHARED_DATA_REF_KEY;
938 key.offset = parent;
939 size = sizeof(struct btrfs_shared_data_ref);
940 } else {
941 key.type = BTRFS_EXTENT_DATA_REF_KEY;
942 key.offset = hash_extent_data_ref(root_objectid,
943 owner, offset);
944 size = sizeof(struct btrfs_extent_data_ref);
947 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
948 if (ret && ret != -EEXIST)
949 goto fail;
951 leaf = path->nodes[0];
952 if (parent) {
953 struct btrfs_shared_data_ref *ref;
954 ref = btrfs_item_ptr(leaf, path->slots[0],
955 struct btrfs_shared_data_ref);
956 if (ret == 0) {
957 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
958 } else {
959 num_refs = btrfs_shared_data_ref_count(leaf, ref);
960 num_refs += refs_to_add;
961 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
963 } else {
964 struct btrfs_extent_data_ref *ref;
965 while (ret == -EEXIST) {
966 ref = btrfs_item_ptr(leaf, path->slots[0],
967 struct btrfs_extent_data_ref);
968 if (match_extent_data_ref(leaf, ref, root_objectid,
969 owner, offset))
970 break;
971 btrfs_release_path(root, path);
972 key.offset++;
973 ret = btrfs_insert_empty_item(trans, root, path, &key,
974 size);
975 if (ret && ret != -EEXIST)
976 goto fail;
978 leaf = path->nodes[0];
980 ref = btrfs_item_ptr(leaf, path->slots[0],
981 struct btrfs_extent_data_ref);
982 if (ret == 0) {
983 btrfs_set_extent_data_ref_root(leaf, ref,
984 root_objectid);
985 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
986 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
987 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
988 } else {
989 num_refs = btrfs_extent_data_ref_count(leaf, ref);
990 num_refs += refs_to_add;
991 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
994 btrfs_mark_buffer_dirty(leaf);
995 ret = 0;
996 fail:
997 btrfs_release_path(root, path);
998 return ret;
1001 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1002 struct btrfs_root *root,
1003 struct btrfs_path *path,
1004 int refs_to_drop)
1006 struct btrfs_key key;
1007 struct btrfs_extent_data_ref *ref1 = NULL;
1008 struct btrfs_shared_data_ref *ref2 = NULL;
1009 struct extent_buffer *leaf;
1010 u32 num_refs = 0;
1011 int ret = 0;
1013 leaf = path->nodes[0];
1014 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1016 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1017 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1018 struct btrfs_extent_data_ref);
1019 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1020 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1021 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1022 struct btrfs_shared_data_ref);
1023 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1024 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1025 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1026 struct btrfs_extent_ref_v0 *ref0;
1027 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1028 struct btrfs_extent_ref_v0);
1029 num_refs = btrfs_ref_count_v0(leaf, ref0);
1030 #endif
1031 } else {
1032 BUG();
1035 BUG_ON(num_refs < refs_to_drop);
1036 num_refs -= refs_to_drop;
1038 if (num_refs == 0) {
1039 ret = btrfs_del_item(trans, root, path);
1040 } else {
1041 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1042 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1043 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1044 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1045 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1046 else {
1047 struct btrfs_extent_ref_v0 *ref0;
1048 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1049 struct btrfs_extent_ref_v0);
1050 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1052 #endif
1053 btrfs_mark_buffer_dirty(leaf);
1055 return ret;
1058 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1059 struct btrfs_path *path,
1060 struct btrfs_extent_inline_ref *iref)
1062 struct btrfs_key key;
1063 struct extent_buffer *leaf;
1064 struct btrfs_extent_data_ref *ref1;
1065 struct btrfs_shared_data_ref *ref2;
1066 u32 num_refs = 0;
1068 leaf = path->nodes[0];
1069 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1070 if (iref) {
1071 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1072 BTRFS_EXTENT_DATA_REF_KEY) {
1073 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1074 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1075 } else {
1076 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1077 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1079 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1080 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_extent_data_ref);
1082 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1083 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1084 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1085 struct btrfs_shared_data_ref);
1086 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1087 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1088 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1089 struct btrfs_extent_ref_v0 *ref0;
1090 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_extent_ref_v0);
1092 num_refs = btrfs_ref_count_v0(leaf, ref0);
1093 #endif
1094 } else {
1095 WARN_ON(1);
1097 return num_refs;
1100 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1101 struct btrfs_root *root,
1102 struct btrfs_path *path,
1103 u64 bytenr, u64 parent,
1104 u64 root_objectid)
1106 struct btrfs_key key;
1107 int ret;
1109 key.objectid = bytenr;
1110 if (parent) {
1111 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1112 key.offset = parent;
1113 } else {
1114 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1115 key.offset = root_objectid;
1118 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1119 if (ret > 0)
1120 ret = -ENOENT;
1121 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1122 if (ret == -ENOENT && parent) {
1123 btrfs_release_path(root, path);
1124 key.type = BTRFS_EXTENT_REF_V0_KEY;
1125 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1126 if (ret > 0)
1127 ret = -ENOENT;
1129 #endif
1130 return ret;
1133 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1134 struct btrfs_root *root,
1135 struct btrfs_path *path,
1136 u64 bytenr, u64 parent,
1137 u64 root_objectid)
1139 struct btrfs_key key;
1140 int ret;
1142 key.objectid = bytenr;
1143 if (parent) {
1144 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1145 key.offset = parent;
1146 } else {
1147 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1148 key.offset = root_objectid;
1151 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1152 btrfs_release_path(root, path);
1153 return ret;
1156 static inline int extent_ref_type(u64 parent, u64 owner)
1158 int type;
1159 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1160 if (parent > 0)
1161 type = BTRFS_SHARED_BLOCK_REF_KEY;
1162 else
1163 type = BTRFS_TREE_BLOCK_REF_KEY;
1164 } else {
1165 if (parent > 0)
1166 type = BTRFS_SHARED_DATA_REF_KEY;
1167 else
1168 type = BTRFS_EXTENT_DATA_REF_KEY;
1170 return type;
1173 static int find_next_key(struct btrfs_path *path, int level,
1174 struct btrfs_key *key)
1177 for (; level < BTRFS_MAX_LEVEL; level++) {
1178 if (!path->nodes[level])
1179 break;
1180 if (path->slots[level] + 1 >=
1181 btrfs_header_nritems(path->nodes[level]))
1182 continue;
1183 if (level == 0)
1184 btrfs_item_key_to_cpu(path->nodes[level], key,
1185 path->slots[level] + 1);
1186 else
1187 btrfs_node_key_to_cpu(path->nodes[level], key,
1188 path->slots[level] + 1);
1189 return 0;
1191 return 1;
1195 * look for inline back ref. if back ref is found, *ref_ret is set
1196 * to the address of inline back ref, and 0 is returned.
1198 * if back ref isn't found, *ref_ret is set to the address where it
1199 * should be inserted, and -ENOENT is returned.
1201 * if insert is true and there are too many inline back refs, the path
1202 * points to the extent item, and -EAGAIN is returned.
1204 * NOTE: inline back refs are ordered in the same way that back ref
1205 * items in the tree are ordered.
1207 static noinline_for_stack
1208 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1209 struct btrfs_root *root,
1210 struct btrfs_path *path,
1211 struct btrfs_extent_inline_ref **ref_ret,
1212 u64 bytenr, u64 num_bytes,
1213 u64 parent, u64 root_objectid,
1214 u64 owner, u64 offset, int insert)
1216 struct btrfs_key key;
1217 struct extent_buffer *leaf;
1218 struct btrfs_extent_item *ei;
1219 struct btrfs_extent_inline_ref *iref;
1220 u64 flags;
1221 u64 item_size;
1222 unsigned long ptr;
1223 unsigned long end;
1224 int extra_size;
1225 int type;
1226 int want;
1227 int ret;
1228 int err = 0;
1230 key.objectid = bytenr;
1231 key.type = BTRFS_EXTENT_ITEM_KEY;
1232 key.offset = num_bytes;
1234 want = extent_ref_type(parent, owner);
1235 if (insert) {
1236 extra_size = btrfs_extent_inline_ref_size(want);
1237 path->keep_locks = 1;
1238 } else
1239 extra_size = -1;
1240 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1241 if (ret < 0) {
1242 err = ret;
1243 goto out;
1245 BUG_ON(ret);
1247 leaf = path->nodes[0];
1248 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1249 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1250 if (item_size < sizeof(*ei)) {
1251 if (!insert) {
1252 err = -ENOENT;
1253 goto out;
1255 ret = convert_extent_item_v0(trans, root, path, owner,
1256 extra_size);
1257 if (ret < 0) {
1258 err = ret;
1259 goto out;
1261 leaf = path->nodes[0];
1262 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1264 #endif
1265 BUG_ON(item_size < sizeof(*ei));
1267 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1268 flags = btrfs_extent_flags(leaf, ei);
1270 ptr = (unsigned long)(ei + 1);
1271 end = (unsigned long)ei + item_size;
1273 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1274 ptr += sizeof(struct btrfs_tree_block_info);
1275 BUG_ON(ptr > end);
1276 } else {
1277 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1280 err = -ENOENT;
1281 while (1) {
1282 if (ptr >= end) {
1283 WARN_ON(ptr > end);
1284 break;
1286 iref = (struct btrfs_extent_inline_ref *)ptr;
1287 type = btrfs_extent_inline_ref_type(leaf, iref);
1288 if (want < type)
1289 break;
1290 if (want > type) {
1291 ptr += btrfs_extent_inline_ref_size(type);
1292 continue;
1295 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1296 struct btrfs_extent_data_ref *dref;
1297 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1298 if (match_extent_data_ref(leaf, dref, root_objectid,
1299 owner, offset)) {
1300 err = 0;
1301 break;
1303 if (hash_extent_data_ref_item(leaf, dref) <
1304 hash_extent_data_ref(root_objectid, owner, offset))
1305 break;
1306 } else {
1307 u64 ref_offset;
1308 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1309 if (parent > 0) {
1310 if (parent == ref_offset) {
1311 err = 0;
1312 break;
1314 if (ref_offset < parent)
1315 break;
1316 } else {
1317 if (root_objectid == ref_offset) {
1318 err = 0;
1319 break;
1321 if (ref_offset < root_objectid)
1322 break;
1325 ptr += btrfs_extent_inline_ref_size(type);
1327 if (err == -ENOENT && insert) {
1328 if (item_size + extra_size >=
1329 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1330 err = -EAGAIN;
1331 goto out;
1334 * To add new inline back ref, we have to make sure
1335 * there is no corresponding back ref item.
1336 * For simplicity, we just do not add new inline back
1337 * ref if there is any kind of item for this block
1339 if (find_next_key(path, 0, &key) == 0 &&
1340 key.objectid == bytenr &&
1341 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1342 err = -EAGAIN;
1343 goto out;
1346 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1347 out:
1348 if (insert) {
1349 path->keep_locks = 0;
1350 btrfs_unlock_up_safe(path, 1);
1352 return err;
1356 * helper to add new inline back ref
1358 static noinline_for_stack
1359 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1360 struct btrfs_root *root,
1361 struct btrfs_path *path,
1362 struct btrfs_extent_inline_ref *iref,
1363 u64 parent, u64 root_objectid,
1364 u64 owner, u64 offset, int refs_to_add,
1365 struct btrfs_delayed_extent_op *extent_op)
1367 struct extent_buffer *leaf;
1368 struct btrfs_extent_item *ei;
1369 unsigned long ptr;
1370 unsigned long end;
1371 unsigned long item_offset;
1372 u64 refs;
1373 int size;
1374 int type;
1375 int ret;
1377 leaf = path->nodes[0];
1378 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1379 item_offset = (unsigned long)iref - (unsigned long)ei;
1381 type = extent_ref_type(parent, owner);
1382 size = btrfs_extent_inline_ref_size(type);
1384 ret = btrfs_extend_item(trans, root, path, size);
1385 BUG_ON(ret);
1387 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1388 refs = btrfs_extent_refs(leaf, ei);
1389 refs += refs_to_add;
1390 btrfs_set_extent_refs(leaf, ei, refs);
1391 if (extent_op)
1392 __run_delayed_extent_op(extent_op, leaf, ei);
1394 ptr = (unsigned long)ei + item_offset;
1395 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1396 if (ptr < end - size)
1397 memmove_extent_buffer(leaf, ptr + size, ptr,
1398 end - size - ptr);
1400 iref = (struct btrfs_extent_inline_ref *)ptr;
1401 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1402 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1403 struct btrfs_extent_data_ref *dref;
1404 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1405 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1406 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1407 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1408 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1409 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1410 struct btrfs_shared_data_ref *sref;
1411 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1412 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1413 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1414 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1415 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1416 } else {
1417 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1419 btrfs_mark_buffer_dirty(leaf);
1420 return 0;
1423 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1424 struct btrfs_root *root,
1425 struct btrfs_path *path,
1426 struct btrfs_extent_inline_ref **ref_ret,
1427 u64 bytenr, u64 num_bytes, u64 parent,
1428 u64 root_objectid, u64 owner, u64 offset)
1430 int ret;
1432 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1433 bytenr, num_bytes, parent,
1434 root_objectid, owner, offset, 0);
1435 if (ret != -ENOENT)
1436 return ret;
1438 btrfs_release_path(root, path);
1439 *ref_ret = NULL;
1441 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1442 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1443 root_objectid);
1444 } else {
1445 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1446 root_objectid, owner, offset);
1448 return ret;
1452 * helper to update/remove inline back ref
1454 static noinline_for_stack
1455 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root,
1457 struct btrfs_path *path,
1458 struct btrfs_extent_inline_ref *iref,
1459 int refs_to_mod,
1460 struct btrfs_delayed_extent_op *extent_op)
1462 struct extent_buffer *leaf;
1463 struct btrfs_extent_item *ei;
1464 struct btrfs_extent_data_ref *dref = NULL;
1465 struct btrfs_shared_data_ref *sref = NULL;
1466 unsigned long ptr;
1467 unsigned long end;
1468 u32 item_size;
1469 int size;
1470 int type;
1471 int ret;
1472 u64 refs;
1474 leaf = path->nodes[0];
1475 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1476 refs = btrfs_extent_refs(leaf, ei);
1477 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1478 refs += refs_to_mod;
1479 btrfs_set_extent_refs(leaf, ei, refs);
1480 if (extent_op)
1481 __run_delayed_extent_op(extent_op, leaf, ei);
1483 type = btrfs_extent_inline_ref_type(leaf, iref);
1485 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1486 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1487 refs = btrfs_extent_data_ref_count(leaf, dref);
1488 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1489 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1490 refs = btrfs_shared_data_ref_count(leaf, sref);
1491 } else {
1492 refs = 1;
1493 BUG_ON(refs_to_mod != -1);
1496 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1497 refs += refs_to_mod;
1499 if (refs > 0) {
1500 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1501 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1502 else
1503 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1504 } else {
1505 size = btrfs_extent_inline_ref_size(type);
1506 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1507 ptr = (unsigned long)iref;
1508 end = (unsigned long)ei + item_size;
1509 if (ptr + size < end)
1510 memmove_extent_buffer(leaf, ptr, ptr + size,
1511 end - ptr - size);
1512 item_size -= size;
1513 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1514 BUG_ON(ret);
1516 btrfs_mark_buffer_dirty(leaf);
1517 return 0;
1520 static noinline_for_stack
1521 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1522 struct btrfs_root *root,
1523 struct btrfs_path *path,
1524 u64 bytenr, u64 num_bytes, u64 parent,
1525 u64 root_objectid, u64 owner,
1526 u64 offset, int refs_to_add,
1527 struct btrfs_delayed_extent_op *extent_op)
1529 struct btrfs_extent_inline_ref *iref;
1530 int ret;
1532 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1533 bytenr, num_bytes, parent,
1534 root_objectid, owner, offset, 1);
1535 if (ret == 0) {
1536 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1537 ret = update_inline_extent_backref(trans, root, path, iref,
1538 refs_to_add, extent_op);
1539 } else if (ret == -ENOENT) {
1540 ret = setup_inline_extent_backref(trans, root, path, iref,
1541 parent, root_objectid,
1542 owner, offset, refs_to_add,
1543 extent_op);
1545 return ret;
1548 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1549 struct btrfs_root *root,
1550 struct btrfs_path *path,
1551 u64 bytenr, u64 parent, u64 root_objectid,
1552 u64 owner, u64 offset, int refs_to_add)
1554 int ret;
1555 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1556 BUG_ON(refs_to_add != 1);
1557 ret = insert_tree_block_ref(trans, root, path, bytenr,
1558 parent, root_objectid);
1559 } else {
1560 ret = insert_extent_data_ref(trans, root, path, bytenr,
1561 parent, root_objectid,
1562 owner, offset, refs_to_add);
1564 return ret;
1567 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1568 struct btrfs_root *root,
1569 struct btrfs_path *path,
1570 struct btrfs_extent_inline_ref *iref,
1571 int refs_to_drop, int is_data)
1573 int ret;
1575 BUG_ON(!is_data && refs_to_drop != 1);
1576 if (iref) {
1577 ret = update_inline_extent_backref(trans, root, path, iref,
1578 -refs_to_drop, NULL);
1579 } else if (is_data) {
1580 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1581 } else {
1582 ret = btrfs_del_item(trans, root, path);
1584 return ret;
1587 static void btrfs_issue_discard(struct block_device *bdev,
1588 u64 start, u64 len)
1590 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL,
1591 DISCARD_FL_BARRIER);
1594 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1595 u64 num_bytes)
1597 int ret;
1598 u64 map_length = num_bytes;
1599 struct btrfs_multi_bio *multi = NULL;
1601 if (!btrfs_test_opt(root, DISCARD))
1602 return 0;
1604 /* Tell the block device(s) that the sectors can be discarded */
1605 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1606 bytenr, &map_length, &multi, 0);
1607 if (!ret) {
1608 struct btrfs_bio_stripe *stripe = multi->stripes;
1609 int i;
1611 if (map_length > num_bytes)
1612 map_length = num_bytes;
1614 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1615 btrfs_issue_discard(stripe->dev->bdev,
1616 stripe->physical,
1617 map_length);
1619 kfree(multi);
1622 return ret;
1625 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1626 struct btrfs_root *root,
1627 u64 bytenr, u64 num_bytes, u64 parent,
1628 u64 root_objectid, u64 owner, u64 offset)
1630 int ret;
1631 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1632 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1634 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1635 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1636 parent, root_objectid, (int)owner,
1637 BTRFS_ADD_DELAYED_REF, NULL);
1638 } else {
1639 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1640 parent, root_objectid, owner, offset,
1641 BTRFS_ADD_DELAYED_REF, NULL);
1643 return ret;
1646 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1647 struct btrfs_root *root,
1648 u64 bytenr, u64 num_bytes,
1649 u64 parent, u64 root_objectid,
1650 u64 owner, u64 offset, int refs_to_add,
1651 struct btrfs_delayed_extent_op *extent_op)
1653 struct btrfs_path *path;
1654 struct extent_buffer *leaf;
1655 struct btrfs_extent_item *item;
1656 u64 refs;
1657 int ret;
1658 int err = 0;
1660 path = btrfs_alloc_path();
1661 if (!path)
1662 return -ENOMEM;
1664 path->reada = 1;
1665 path->leave_spinning = 1;
1666 /* this will setup the path even if it fails to insert the back ref */
1667 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1668 path, bytenr, num_bytes, parent,
1669 root_objectid, owner, offset,
1670 refs_to_add, extent_op);
1671 if (ret == 0)
1672 goto out;
1674 if (ret != -EAGAIN) {
1675 err = ret;
1676 goto out;
1679 leaf = path->nodes[0];
1680 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 refs = btrfs_extent_refs(leaf, item);
1682 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1683 if (extent_op)
1684 __run_delayed_extent_op(extent_op, leaf, item);
1686 btrfs_mark_buffer_dirty(leaf);
1687 btrfs_release_path(root->fs_info->extent_root, path);
1689 path->reada = 1;
1690 path->leave_spinning = 1;
1692 /* now insert the actual backref */
1693 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1694 path, bytenr, parent, root_objectid,
1695 owner, offset, refs_to_add);
1696 BUG_ON(ret);
1697 out:
1698 btrfs_free_path(path);
1699 return err;
1702 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1703 struct btrfs_root *root,
1704 struct btrfs_delayed_ref_node *node,
1705 struct btrfs_delayed_extent_op *extent_op,
1706 int insert_reserved)
1708 int ret = 0;
1709 struct btrfs_delayed_data_ref *ref;
1710 struct btrfs_key ins;
1711 u64 parent = 0;
1712 u64 ref_root = 0;
1713 u64 flags = 0;
1715 ins.objectid = node->bytenr;
1716 ins.offset = node->num_bytes;
1717 ins.type = BTRFS_EXTENT_ITEM_KEY;
1719 ref = btrfs_delayed_node_to_data_ref(node);
1720 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1721 parent = ref->parent;
1722 else
1723 ref_root = ref->root;
1725 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1726 if (extent_op) {
1727 BUG_ON(extent_op->update_key);
1728 flags |= extent_op->flags_to_set;
1730 ret = alloc_reserved_file_extent(trans, root,
1731 parent, ref_root, flags,
1732 ref->objectid, ref->offset,
1733 &ins, node->ref_mod);
1734 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1735 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1736 node->num_bytes, parent,
1737 ref_root, ref->objectid,
1738 ref->offset, node->ref_mod,
1739 extent_op);
1740 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1741 ret = __btrfs_free_extent(trans, root, node->bytenr,
1742 node->num_bytes, parent,
1743 ref_root, ref->objectid,
1744 ref->offset, node->ref_mod,
1745 extent_op);
1746 } else {
1747 BUG();
1749 return ret;
1752 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1753 struct extent_buffer *leaf,
1754 struct btrfs_extent_item *ei)
1756 u64 flags = btrfs_extent_flags(leaf, ei);
1757 if (extent_op->update_flags) {
1758 flags |= extent_op->flags_to_set;
1759 btrfs_set_extent_flags(leaf, ei, flags);
1762 if (extent_op->update_key) {
1763 struct btrfs_tree_block_info *bi;
1764 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1765 bi = (struct btrfs_tree_block_info *)(ei + 1);
1766 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1770 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1771 struct btrfs_root *root,
1772 struct btrfs_delayed_ref_node *node,
1773 struct btrfs_delayed_extent_op *extent_op)
1775 struct btrfs_key key;
1776 struct btrfs_path *path;
1777 struct btrfs_extent_item *ei;
1778 struct extent_buffer *leaf;
1779 u32 item_size;
1780 int ret;
1781 int err = 0;
1783 path = btrfs_alloc_path();
1784 if (!path)
1785 return -ENOMEM;
1787 key.objectid = node->bytenr;
1788 key.type = BTRFS_EXTENT_ITEM_KEY;
1789 key.offset = node->num_bytes;
1791 path->reada = 1;
1792 path->leave_spinning = 1;
1793 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1794 path, 0, 1);
1795 if (ret < 0) {
1796 err = ret;
1797 goto out;
1799 if (ret > 0) {
1800 err = -EIO;
1801 goto out;
1804 leaf = path->nodes[0];
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1807 if (item_size < sizeof(*ei)) {
1808 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1809 path, (u64)-1, 0);
1810 if (ret < 0) {
1811 err = ret;
1812 goto out;
1814 leaf = path->nodes[0];
1815 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1817 #endif
1818 BUG_ON(item_size < sizeof(*ei));
1819 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1820 __run_delayed_extent_op(extent_op, leaf, ei);
1822 btrfs_mark_buffer_dirty(leaf);
1823 out:
1824 btrfs_free_path(path);
1825 return err;
1828 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1829 struct btrfs_root *root,
1830 struct btrfs_delayed_ref_node *node,
1831 struct btrfs_delayed_extent_op *extent_op,
1832 int insert_reserved)
1834 int ret = 0;
1835 struct btrfs_delayed_tree_ref *ref;
1836 struct btrfs_key ins;
1837 u64 parent = 0;
1838 u64 ref_root = 0;
1840 ins.objectid = node->bytenr;
1841 ins.offset = node->num_bytes;
1842 ins.type = BTRFS_EXTENT_ITEM_KEY;
1844 ref = btrfs_delayed_node_to_tree_ref(node);
1845 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1846 parent = ref->parent;
1847 else
1848 ref_root = ref->root;
1850 BUG_ON(node->ref_mod != 1);
1851 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1852 BUG_ON(!extent_op || !extent_op->update_flags ||
1853 !extent_op->update_key);
1854 ret = alloc_reserved_tree_block(trans, root,
1855 parent, ref_root,
1856 extent_op->flags_to_set,
1857 &extent_op->key,
1858 ref->level, &ins);
1859 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1860 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1861 node->num_bytes, parent, ref_root,
1862 ref->level, 0, 1, extent_op);
1863 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1864 ret = __btrfs_free_extent(trans, root, node->bytenr,
1865 node->num_bytes, parent, ref_root,
1866 ref->level, 0, 1, extent_op);
1867 } else {
1868 BUG();
1870 return ret;
1874 /* helper function to actually process a single delayed ref entry */
1875 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root,
1877 struct btrfs_delayed_ref_node *node,
1878 struct btrfs_delayed_extent_op *extent_op,
1879 int insert_reserved)
1881 int ret;
1882 if (btrfs_delayed_ref_is_head(node)) {
1883 struct btrfs_delayed_ref_head *head;
1885 * we've hit the end of the chain and we were supposed
1886 * to insert this extent into the tree. But, it got
1887 * deleted before we ever needed to insert it, so all
1888 * we have to do is clean up the accounting
1890 BUG_ON(extent_op);
1891 head = btrfs_delayed_node_to_head(node);
1892 if (insert_reserved) {
1893 int mark_free = 0;
1894 struct extent_buffer *must_clean = NULL;
1896 ret = pin_down_bytes(trans, root, NULL,
1897 node->bytenr, node->num_bytes,
1898 head->is_data, 1, &must_clean);
1899 if (ret > 0)
1900 mark_free = 1;
1902 if (must_clean) {
1903 clean_tree_block(NULL, root, must_clean);
1904 btrfs_tree_unlock(must_clean);
1905 free_extent_buffer(must_clean);
1907 if (head->is_data) {
1908 ret = btrfs_del_csums(trans, root,
1909 node->bytenr,
1910 node->num_bytes);
1911 BUG_ON(ret);
1913 if (mark_free) {
1914 ret = btrfs_free_reserved_extent(root,
1915 node->bytenr,
1916 node->num_bytes);
1917 BUG_ON(ret);
1920 mutex_unlock(&head->mutex);
1921 return 0;
1924 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1925 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1926 ret = run_delayed_tree_ref(trans, root, node, extent_op,
1927 insert_reserved);
1928 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1929 node->type == BTRFS_SHARED_DATA_REF_KEY)
1930 ret = run_delayed_data_ref(trans, root, node, extent_op,
1931 insert_reserved);
1932 else
1933 BUG();
1934 return ret;
1937 static noinline struct btrfs_delayed_ref_node *
1938 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1940 struct rb_node *node;
1941 struct btrfs_delayed_ref_node *ref;
1942 int action = BTRFS_ADD_DELAYED_REF;
1943 again:
1945 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
1946 * this prevents ref count from going down to zero when
1947 * there still are pending delayed ref.
1949 node = rb_prev(&head->node.rb_node);
1950 while (1) {
1951 if (!node)
1952 break;
1953 ref = rb_entry(node, struct btrfs_delayed_ref_node,
1954 rb_node);
1955 if (ref->bytenr != head->node.bytenr)
1956 break;
1957 if (ref->action == action)
1958 return ref;
1959 node = rb_prev(node);
1961 if (action == BTRFS_ADD_DELAYED_REF) {
1962 action = BTRFS_DROP_DELAYED_REF;
1963 goto again;
1965 return NULL;
1968 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 struct list_head *cluster)
1972 struct btrfs_delayed_ref_root *delayed_refs;
1973 struct btrfs_delayed_ref_node *ref;
1974 struct btrfs_delayed_ref_head *locked_ref = NULL;
1975 struct btrfs_delayed_extent_op *extent_op;
1976 int ret;
1977 int count = 0;
1978 int must_insert_reserved = 0;
1980 delayed_refs = &trans->transaction->delayed_refs;
1981 while (1) {
1982 if (!locked_ref) {
1983 /* pick a new head ref from the cluster list */
1984 if (list_empty(cluster))
1985 break;
1987 locked_ref = list_entry(cluster->next,
1988 struct btrfs_delayed_ref_head, cluster);
1990 /* grab the lock that says we are going to process
1991 * all the refs for this head */
1992 ret = btrfs_delayed_ref_lock(trans, locked_ref);
1995 * we may have dropped the spin lock to get the head
1996 * mutex lock, and that might have given someone else
1997 * time to free the head. If that's true, it has been
1998 * removed from our list and we can move on.
2000 if (ret == -EAGAIN) {
2001 locked_ref = NULL;
2002 count++;
2003 continue;
2008 * record the must insert reserved flag before we
2009 * drop the spin lock.
2011 must_insert_reserved = locked_ref->must_insert_reserved;
2012 locked_ref->must_insert_reserved = 0;
2014 extent_op = locked_ref->extent_op;
2015 locked_ref->extent_op = NULL;
2018 * locked_ref is the head node, so we have to go one
2019 * node back for any delayed ref updates
2021 ref = select_delayed_ref(locked_ref);
2022 if (!ref) {
2023 /* All delayed refs have been processed, Go ahead
2024 * and send the head node to run_one_delayed_ref,
2025 * so that any accounting fixes can happen
2027 ref = &locked_ref->node;
2029 if (extent_op && must_insert_reserved) {
2030 kfree(extent_op);
2031 extent_op = NULL;
2034 if (extent_op) {
2035 spin_unlock(&delayed_refs->lock);
2037 ret = run_delayed_extent_op(trans, root,
2038 ref, extent_op);
2039 BUG_ON(ret);
2040 kfree(extent_op);
2042 cond_resched();
2043 spin_lock(&delayed_refs->lock);
2044 continue;
2047 list_del_init(&locked_ref->cluster);
2048 locked_ref = NULL;
2051 ref->in_tree = 0;
2052 rb_erase(&ref->rb_node, &delayed_refs->root);
2053 delayed_refs->num_entries--;
2055 spin_unlock(&delayed_refs->lock);
2057 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2058 must_insert_reserved);
2059 BUG_ON(ret);
2061 btrfs_put_delayed_ref(ref);
2062 kfree(extent_op);
2063 count++;
2065 cond_resched();
2066 spin_lock(&delayed_refs->lock);
2068 return count;
2072 * this starts processing the delayed reference count updates and
2073 * extent insertions we have queued up so far. count can be
2074 * 0, which means to process everything in the tree at the start
2075 * of the run (but not newly added entries), or it can be some target
2076 * number you'd like to process.
2078 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2079 struct btrfs_root *root, unsigned long count)
2081 struct rb_node *node;
2082 struct btrfs_delayed_ref_root *delayed_refs;
2083 struct btrfs_delayed_ref_node *ref;
2084 struct list_head cluster;
2085 int ret;
2086 int run_all = count == (unsigned long)-1;
2087 int run_most = 0;
2089 if (root == root->fs_info->extent_root)
2090 root = root->fs_info->tree_root;
2092 delayed_refs = &trans->transaction->delayed_refs;
2093 INIT_LIST_HEAD(&cluster);
2094 again:
2095 spin_lock(&delayed_refs->lock);
2096 if (count == 0) {
2097 count = delayed_refs->num_entries * 2;
2098 run_most = 1;
2100 while (1) {
2101 if (!(run_all || run_most) &&
2102 delayed_refs->num_heads_ready < 64)
2103 break;
2106 * go find something we can process in the rbtree. We start at
2107 * the beginning of the tree, and then build a cluster
2108 * of refs to process starting at the first one we are able to
2109 * lock
2111 ret = btrfs_find_ref_cluster(trans, &cluster,
2112 delayed_refs->run_delayed_start);
2113 if (ret)
2114 break;
2116 ret = run_clustered_refs(trans, root, &cluster);
2117 BUG_ON(ret < 0);
2119 count -= min_t(unsigned long, ret, count);
2121 if (count == 0)
2122 break;
2125 if (run_all) {
2126 node = rb_first(&delayed_refs->root);
2127 if (!node)
2128 goto out;
2129 count = (unsigned long)-1;
2131 while (node) {
2132 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2133 rb_node);
2134 if (btrfs_delayed_ref_is_head(ref)) {
2135 struct btrfs_delayed_ref_head *head;
2137 head = btrfs_delayed_node_to_head(ref);
2138 atomic_inc(&ref->refs);
2140 spin_unlock(&delayed_refs->lock);
2141 mutex_lock(&head->mutex);
2142 mutex_unlock(&head->mutex);
2144 btrfs_put_delayed_ref(ref);
2145 cond_resched();
2146 goto again;
2148 node = rb_next(node);
2150 spin_unlock(&delayed_refs->lock);
2151 schedule_timeout(1);
2152 goto again;
2154 out:
2155 spin_unlock(&delayed_refs->lock);
2156 return 0;
2159 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2160 struct btrfs_root *root,
2161 u64 bytenr, u64 num_bytes, u64 flags,
2162 int is_data)
2164 struct btrfs_delayed_extent_op *extent_op;
2165 int ret;
2167 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2168 if (!extent_op)
2169 return -ENOMEM;
2171 extent_op->flags_to_set = flags;
2172 extent_op->update_flags = 1;
2173 extent_op->update_key = 0;
2174 extent_op->is_data = is_data ? 1 : 0;
2176 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2177 if (ret)
2178 kfree(extent_op);
2179 return ret;
2182 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2183 struct btrfs_root *root,
2184 struct btrfs_path *path,
2185 u64 objectid, u64 offset, u64 bytenr)
2187 struct btrfs_delayed_ref_head *head;
2188 struct btrfs_delayed_ref_node *ref;
2189 struct btrfs_delayed_data_ref *data_ref;
2190 struct btrfs_delayed_ref_root *delayed_refs;
2191 struct rb_node *node;
2192 int ret = 0;
2194 ret = -ENOENT;
2195 delayed_refs = &trans->transaction->delayed_refs;
2196 spin_lock(&delayed_refs->lock);
2197 head = btrfs_find_delayed_ref_head(trans, bytenr);
2198 if (!head)
2199 goto out;
2201 if (!mutex_trylock(&head->mutex)) {
2202 atomic_inc(&head->node.refs);
2203 spin_unlock(&delayed_refs->lock);
2205 btrfs_release_path(root->fs_info->extent_root, path);
2207 mutex_lock(&head->mutex);
2208 mutex_unlock(&head->mutex);
2209 btrfs_put_delayed_ref(&head->node);
2210 return -EAGAIN;
2213 node = rb_prev(&head->node.rb_node);
2214 if (!node)
2215 goto out_unlock;
2217 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2219 if (ref->bytenr != bytenr)
2220 goto out_unlock;
2222 ret = 1;
2223 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2224 goto out_unlock;
2226 data_ref = btrfs_delayed_node_to_data_ref(ref);
2228 node = rb_prev(node);
2229 if (node) {
2230 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2231 if (ref->bytenr == bytenr)
2232 goto out_unlock;
2235 if (data_ref->root != root->root_key.objectid ||
2236 data_ref->objectid != objectid || data_ref->offset != offset)
2237 goto out_unlock;
2239 ret = 0;
2240 out_unlock:
2241 mutex_unlock(&head->mutex);
2242 out:
2243 spin_unlock(&delayed_refs->lock);
2244 return ret;
2247 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2248 struct btrfs_root *root,
2249 struct btrfs_path *path,
2250 u64 objectid, u64 offset, u64 bytenr)
2252 struct btrfs_root *extent_root = root->fs_info->extent_root;
2253 struct extent_buffer *leaf;
2254 struct btrfs_extent_data_ref *ref;
2255 struct btrfs_extent_inline_ref *iref;
2256 struct btrfs_extent_item *ei;
2257 struct btrfs_key key;
2258 u32 item_size;
2259 int ret;
2261 key.objectid = bytenr;
2262 key.offset = (u64)-1;
2263 key.type = BTRFS_EXTENT_ITEM_KEY;
2265 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2266 if (ret < 0)
2267 goto out;
2268 BUG_ON(ret == 0);
2270 ret = -ENOENT;
2271 if (path->slots[0] == 0)
2272 goto out;
2274 path->slots[0]--;
2275 leaf = path->nodes[0];
2276 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2278 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2279 goto out;
2281 ret = 1;
2282 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2283 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2284 if (item_size < sizeof(*ei)) {
2285 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2286 goto out;
2288 #endif
2289 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2291 if (item_size != sizeof(*ei) +
2292 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2293 goto out;
2295 if (btrfs_extent_generation(leaf, ei) <=
2296 btrfs_root_last_snapshot(&root->root_item))
2297 goto out;
2299 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2300 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2301 BTRFS_EXTENT_DATA_REF_KEY)
2302 goto out;
2304 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2305 if (btrfs_extent_refs(leaf, ei) !=
2306 btrfs_extent_data_ref_count(leaf, ref) ||
2307 btrfs_extent_data_ref_root(leaf, ref) !=
2308 root->root_key.objectid ||
2309 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2310 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2311 goto out;
2313 ret = 0;
2314 out:
2315 return ret;
2318 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2319 struct btrfs_root *root,
2320 u64 objectid, u64 offset, u64 bytenr)
2322 struct btrfs_path *path;
2323 int ret;
2324 int ret2;
2326 path = btrfs_alloc_path();
2327 if (!path)
2328 return -ENOENT;
2330 do {
2331 ret = check_committed_ref(trans, root, path, objectid,
2332 offset, bytenr);
2333 if (ret && ret != -ENOENT)
2334 goto out;
2336 ret2 = check_delayed_ref(trans, root, path, objectid,
2337 offset, bytenr);
2338 } while (ret2 == -EAGAIN);
2340 if (ret2 && ret2 != -ENOENT) {
2341 ret = ret2;
2342 goto out;
2345 if (ret != -ENOENT || ret2 != -ENOENT)
2346 ret = 0;
2347 out:
2348 btrfs_free_path(path);
2349 return ret;
2352 #if 0
2353 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2354 struct extent_buffer *buf, u32 nr_extents)
2356 struct btrfs_key key;
2357 struct btrfs_file_extent_item *fi;
2358 u64 root_gen;
2359 u32 nritems;
2360 int i;
2361 int level;
2362 int ret = 0;
2363 int shared = 0;
2365 if (!root->ref_cows)
2366 return 0;
2368 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2369 shared = 0;
2370 root_gen = root->root_key.offset;
2371 } else {
2372 shared = 1;
2373 root_gen = trans->transid - 1;
2376 level = btrfs_header_level(buf);
2377 nritems = btrfs_header_nritems(buf);
2379 if (level == 0) {
2380 struct btrfs_leaf_ref *ref;
2381 struct btrfs_extent_info *info;
2383 ref = btrfs_alloc_leaf_ref(root, nr_extents);
2384 if (!ref) {
2385 ret = -ENOMEM;
2386 goto out;
2389 ref->root_gen = root_gen;
2390 ref->bytenr = buf->start;
2391 ref->owner = btrfs_header_owner(buf);
2392 ref->generation = btrfs_header_generation(buf);
2393 ref->nritems = nr_extents;
2394 info = ref->extents;
2396 for (i = 0; nr_extents > 0 && i < nritems; i++) {
2397 u64 disk_bytenr;
2398 btrfs_item_key_to_cpu(buf, &key, i);
2399 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2400 continue;
2401 fi = btrfs_item_ptr(buf, i,
2402 struct btrfs_file_extent_item);
2403 if (btrfs_file_extent_type(buf, fi) ==
2404 BTRFS_FILE_EXTENT_INLINE)
2405 continue;
2406 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2407 if (disk_bytenr == 0)
2408 continue;
2410 info->bytenr = disk_bytenr;
2411 info->num_bytes =
2412 btrfs_file_extent_disk_num_bytes(buf, fi);
2413 info->objectid = key.objectid;
2414 info->offset = key.offset;
2415 info++;
2418 ret = btrfs_add_leaf_ref(root, ref, shared);
2419 if (ret == -EEXIST && shared) {
2420 struct btrfs_leaf_ref *old;
2421 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2422 BUG_ON(!old);
2423 btrfs_remove_leaf_ref(root, old);
2424 btrfs_free_leaf_ref(root, old);
2425 ret = btrfs_add_leaf_ref(root, ref, shared);
2427 WARN_ON(ret);
2428 btrfs_free_leaf_ref(root, ref);
2430 out:
2431 return ret;
2434 /* when a block goes through cow, we update the reference counts of
2435 * everything that block points to. The internal pointers of the block
2436 * can be in just about any order, and it is likely to have clusters of
2437 * things that are close together and clusters of things that are not.
2439 * To help reduce the seeks that come with updating all of these reference
2440 * counts, sort them by byte number before actual updates are done.
2442 * struct refsort is used to match byte number to slot in the btree block.
2443 * we sort based on the byte number and then use the slot to actually
2444 * find the item.
2446 * struct refsort is smaller than strcut btrfs_item and smaller than
2447 * struct btrfs_key_ptr. Since we're currently limited to the page size
2448 * for a btree block, there's no way for a kmalloc of refsorts for a
2449 * single node to be bigger than a page.
2451 struct refsort {
2452 u64 bytenr;
2453 u32 slot;
2457 * for passing into sort()
2459 static int refsort_cmp(const void *a_void, const void *b_void)
2461 const struct refsort *a = a_void;
2462 const struct refsort *b = b_void;
2464 if (a->bytenr < b->bytenr)
2465 return -1;
2466 if (a->bytenr > b->bytenr)
2467 return 1;
2468 return 0;
2470 #endif
2472 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2473 struct btrfs_root *root,
2474 struct extent_buffer *buf,
2475 int full_backref, int inc)
2477 u64 bytenr;
2478 u64 num_bytes;
2479 u64 parent;
2480 u64 ref_root;
2481 u32 nritems;
2482 struct btrfs_key key;
2483 struct btrfs_file_extent_item *fi;
2484 int i;
2485 int level;
2486 int ret = 0;
2487 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2488 u64, u64, u64, u64, u64, u64);
2490 ref_root = btrfs_header_owner(buf);
2491 nritems = btrfs_header_nritems(buf);
2492 level = btrfs_header_level(buf);
2494 if (!root->ref_cows && level == 0)
2495 return 0;
2497 if (inc)
2498 process_func = btrfs_inc_extent_ref;
2499 else
2500 process_func = btrfs_free_extent;
2502 if (full_backref)
2503 parent = buf->start;
2504 else
2505 parent = 0;
2507 for (i = 0; i < nritems; i++) {
2508 if (level == 0) {
2509 btrfs_item_key_to_cpu(buf, &key, i);
2510 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2511 continue;
2512 fi = btrfs_item_ptr(buf, i,
2513 struct btrfs_file_extent_item);
2514 if (btrfs_file_extent_type(buf, fi) ==
2515 BTRFS_FILE_EXTENT_INLINE)
2516 continue;
2517 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2518 if (bytenr == 0)
2519 continue;
2521 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2522 key.offset -= btrfs_file_extent_offset(buf, fi);
2523 ret = process_func(trans, root, bytenr, num_bytes,
2524 parent, ref_root, key.objectid,
2525 key.offset);
2526 if (ret)
2527 goto fail;
2528 } else {
2529 bytenr = btrfs_node_blockptr(buf, i);
2530 num_bytes = btrfs_level_size(root, level - 1);
2531 ret = process_func(trans, root, bytenr, num_bytes,
2532 parent, ref_root, level - 1, 0);
2533 if (ret)
2534 goto fail;
2537 return 0;
2538 fail:
2539 BUG();
2540 return ret;
2543 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2544 struct extent_buffer *buf, int full_backref)
2546 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2549 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2550 struct extent_buffer *buf, int full_backref)
2552 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2555 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2556 struct btrfs_root *root,
2557 struct btrfs_path *path,
2558 struct btrfs_block_group_cache *cache)
2560 int ret;
2561 struct btrfs_root *extent_root = root->fs_info->extent_root;
2562 unsigned long bi;
2563 struct extent_buffer *leaf;
2565 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2566 if (ret < 0)
2567 goto fail;
2568 BUG_ON(ret);
2570 leaf = path->nodes[0];
2571 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2572 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2573 btrfs_mark_buffer_dirty(leaf);
2574 btrfs_release_path(extent_root, path);
2575 fail:
2576 if (ret)
2577 return ret;
2578 return 0;
2582 static struct btrfs_block_group_cache *
2583 next_block_group(struct btrfs_root *root,
2584 struct btrfs_block_group_cache *cache)
2586 struct rb_node *node;
2587 spin_lock(&root->fs_info->block_group_cache_lock);
2588 node = rb_next(&cache->cache_node);
2589 btrfs_put_block_group(cache);
2590 if (node) {
2591 cache = rb_entry(node, struct btrfs_block_group_cache,
2592 cache_node);
2593 btrfs_get_block_group(cache);
2594 } else
2595 cache = NULL;
2596 spin_unlock(&root->fs_info->block_group_cache_lock);
2597 return cache;
2600 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2601 struct btrfs_root *root)
2603 struct btrfs_block_group_cache *cache;
2604 int err = 0;
2605 struct btrfs_path *path;
2606 u64 last = 0;
2608 path = btrfs_alloc_path();
2609 if (!path)
2610 return -ENOMEM;
2612 while (1) {
2613 if (last == 0) {
2614 err = btrfs_run_delayed_refs(trans, root,
2615 (unsigned long)-1);
2616 BUG_ON(err);
2619 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2620 while (cache) {
2621 if (cache->dirty)
2622 break;
2623 cache = next_block_group(root, cache);
2625 if (!cache) {
2626 if (last == 0)
2627 break;
2628 last = 0;
2629 continue;
2632 cache->dirty = 0;
2633 last = cache->key.objectid + cache->key.offset;
2635 err = write_one_cache_group(trans, root, path, cache);
2636 BUG_ON(err);
2637 btrfs_put_block_group(cache);
2640 btrfs_free_path(path);
2641 return 0;
2644 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2646 struct btrfs_block_group_cache *block_group;
2647 int readonly = 0;
2649 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2650 if (!block_group || block_group->ro)
2651 readonly = 1;
2652 if (block_group)
2653 btrfs_put_block_group(block_group);
2654 return readonly;
2657 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2658 u64 total_bytes, u64 bytes_used,
2659 struct btrfs_space_info **space_info)
2661 struct btrfs_space_info *found;
2663 found = __find_space_info(info, flags);
2664 if (found) {
2665 spin_lock(&found->lock);
2666 found->total_bytes += total_bytes;
2667 found->bytes_used += bytes_used;
2668 found->full = 0;
2669 spin_unlock(&found->lock);
2670 *space_info = found;
2671 return 0;
2673 found = kzalloc(sizeof(*found), GFP_NOFS);
2674 if (!found)
2675 return -ENOMEM;
2677 INIT_LIST_HEAD(&found->block_groups);
2678 init_rwsem(&found->groups_sem);
2679 spin_lock_init(&found->lock);
2680 found->flags = flags;
2681 found->total_bytes = total_bytes;
2682 found->bytes_used = bytes_used;
2683 found->bytes_pinned = 0;
2684 found->bytes_reserved = 0;
2685 found->bytes_readonly = 0;
2686 found->bytes_delalloc = 0;
2687 found->full = 0;
2688 found->force_alloc = 0;
2689 *space_info = found;
2690 list_add_rcu(&found->list, &info->space_info);
2691 atomic_set(&found->caching_threads, 0);
2692 return 0;
2695 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2697 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2698 BTRFS_BLOCK_GROUP_RAID1 |
2699 BTRFS_BLOCK_GROUP_RAID10 |
2700 BTRFS_BLOCK_GROUP_DUP);
2701 if (extra_flags) {
2702 if (flags & BTRFS_BLOCK_GROUP_DATA)
2703 fs_info->avail_data_alloc_bits |= extra_flags;
2704 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2705 fs_info->avail_metadata_alloc_bits |= extra_flags;
2706 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2707 fs_info->avail_system_alloc_bits |= extra_flags;
2711 static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
2713 spin_lock(&cache->space_info->lock);
2714 spin_lock(&cache->lock);
2715 if (!cache->ro) {
2716 cache->space_info->bytes_readonly += cache->key.offset -
2717 btrfs_block_group_used(&cache->item);
2718 cache->ro = 1;
2720 spin_unlock(&cache->lock);
2721 spin_unlock(&cache->space_info->lock);
2724 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2726 u64 num_devices = root->fs_info->fs_devices->rw_devices;
2728 if (num_devices == 1)
2729 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2730 if (num_devices < 4)
2731 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2733 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2734 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2735 BTRFS_BLOCK_GROUP_RAID10))) {
2736 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2739 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2740 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2741 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2744 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2745 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2746 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2747 (flags & BTRFS_BLOCK_GROUP_DUP)))
2748 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2749 return flags;
2752 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
2754 struct btrfs_fs_info *info = root->fs_info;
2755 u64 alloc_profile;
2757 if (data) {
2758 alloc_profile = info->avail_data_alloc_bits &
2759 info->data_alloc_profile;
2760 data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
2761 } else if (root == root->fs_info->chunk_root) {
2762 alloc_profile = info->avail_system_alloc_bits &
2763 info->system_alloc_profile;
2764 data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
2765 } else {
2766 alloc_profile = info->avail_metadata_alloc_bits &
2767 info->metadata_alloc_profile;
2768 data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
2771 return btrfs_reduce_alloc_profile(root, data);
2774 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
2776 u64 alloc_target;
2778 alloc_target = btrfs_get_alloc_profile(root, 1);
2779 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
2780 alloc_target);
2783 static u64 calculate_bytes_needed(struct btrfs_root *root, int num_items)
2785 u64 num_bytes;
2786 int level;
2788 level = BTRFS_MAX_LEVEL - 2;
2790 * NOTE: these calculations are absolutely the worst possible case.
2791 * This assumes that _every_ item we insert will require a new leaf, and
2792 * that the tree has grown to its maximum level size.
2796 * for every item we insert we could insert both an extent item and a
2797 * extent ref item. Then for ever item we insert, we will need to cow
2798 * both the original leaf, plus the leaf to the left and right of it.
2800 * Unless we are talking about the extent root, then we just want the
2801 * number of items * 2, since we just need the extent item plus its ref.
2803 if (root == root->fs_info->extent_root)
2804 num_bytes = num_items * 2;
2805 else
2806 num_bytes = (num_items + (2 * num_items)) * 3;
2809 * num_bytes is total number of leaves we could need times the leaf
2810 * size, and then for every leaf we could end up cow'ing 2 nodes per
2811 * level, down to the leaf level.
2813 num_bytes = (num_bytes * root->leafsize) +
2814 (num_bytes * (level * 2)) * root->nodesize;
2816 return num_bytes;
2820 * Unreserve metadata space for delalloc. If we have less reserved credits than
2821 * we have extents, this function does nothing.
2823 int btrfs_unreserve_metadata_for_delalloc(struct btrfs_root *root,
2824 struct inode *inode, int num_items)
2826 struct btrfs_fs_info *info = root->fs_info;
2827 struct btrfs_space_info *meta_sinfo;
2828 u64 num_bytes;
2829 u64 alloc_target;
2830 bool bug = false;
2832 /* get the space info for where the metadata will live */
2833 alloc_target = btrfs_get_alloc_profile(root, 0);
2834 meta_sinfo = __find_space_info(info, alloc_target);
2836 num_bytes = calculate_bytes_needed(root->fs_info->extent_root,
2837 num_items);
2839 spin_lock(&meta_sinfo->lock);
2840 spin_lock(&BTRFS_I(inode)->accounting_lock);
2841 if (BTRFS_I(inode)->reserved_extents <=
2842 BTRFS_I(inode)->outstanding_extents) {
2843 spin_unlock(&BTRFS_I(inode)->accounting_lock);
2844 spin_unlock(&meta_sinfo->lock);
2845 return 0;
2847 spin_unlock(&BTRFS_I(inode)->accounting_lock);
2849 BTRFS_I(inode)->reserved_extents--;
2850 BUG_ON(BTRFS_I(inode)->reserved_extents < 0);
2852 if (meta_sinfo->bytes_delalloc < num_bytes) {
2853 bug = true;
2854 meta_sinfo->bytes_delalloc = 0;
2855 } else {
2856 meta_sinfo->bytes_delalloc -= num_bytes;
2858 spin_unlock(&meta_sinfo->lock);
2860 BUG_ON(bug);
2862 return 0;
2865 static void check_force_delalloc(struct btrfs_space_info *meta_sinfo)
2867 u64 thresh;
2869 thresh = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
2870 meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
2871 meta_sinfo->bytes_super + meta_sinfo->bytes_root +
2872 meta_sinfo->bytes_may_use;
2874 thresh = meta_sinfo->total_bytes - thresh;
2875 thresh *= 80;
2876 do_div(thresh, 100);
2877 if (thresh <= meta_sinfo->bytes_delalloc)
2878 meta_sinfo->force_delalloc = 1;
2879 else
2880 meta_sinfo->force_delalloc = 0;
2883 struct async_flush {
2884 struct btrfs_root *root;
2885 struct btrfs_space_info *info;
2886 struct btrfs_work work;
2889 static noinline void flush_delalloc_async(struct btrfs_work *work)
2891 struct async_flush *async;
2892 struct btrfs_root *root;
2893 struct btrfs_space_info *info;
2895 async = container_of(work, struct async_flush, work);
2896 root = async->root;
2897 info = async->info;
2899 btrfs_start_delalloc_inodes(root, 0);
2900 wake_up(&info->flush_wait);
2901 btrfs_wait_ordered_extents(root, 0, 0);
2903 spin_lock(&info->lock);
2904 info->flushing = 0;
2905 spin_unlock(&info->lock);
2906 wake_up(&info->flush_wait);
2908 kfree(async);
2911 static void wait_on_flush(struct btrfs_space_info *info)
2913 DEFINE_WAIT(wait);
2914 u64 used;
2916 while (1) {
2917 prepare_to_wait(&info->flush_wait, &wait,
2918 TASK_UNINTERRUPTIBLE);
2919 spin_lock(&info->lock);
2920 if (!info->flushing) {
2921 spin_unlock(&info->lock);
2922 break;
2925 used = info->bytes_used + info->bytes_reserved +
2926 info->bytes_pinned + info->bytes_readonly +
2927 info->bytes_super + info->bytes_root +
2928 info->bytes_may_use + info->bytes_delalloc;
2929 if (used < info->total_bytes) {
2930 spin_unlock(&info->lock);
2931 break;
2933 spin_unlock(&info->lock);
2934 schedule();
2936 finish_wait(&info->flush_wait, &wait);
2939 static void flush_delalloc(struct btrfs_root *root,
2940 struct btrfs_space_info *info)
2942 struct async_flush *async;
2943 bool wait = false;
2945 spin_lock(&info->lock);
2947 if (!info->flushing) {
2948 info->flushing = 1;
2949 init_waitqueue_head(&info->flush_wait);
2950 } else {
2951 wait = true;
2954 spin_unlock(&info->lock);
2956 if (wait) {
2957 wait_on_flush(info);
2958 return;
2961 async = kzalloc(sizeof(*async), GFP_NOFS);
2962 if (!async)
2963 goto flush;
2965 async->root = root;
2966 async->info = info;
2967 async->work.func = flush_delalloc_async;
2969 btrfs_queue_worker(&root->fs_info->enospc_workers,
2970 &async->work);
2971 wait_on_flush(info);
2972 return;
2974 flush:
2975 btrfs_start_delalloc_inodes(root, 0);
2976 btrfs_wait_ordered_extents(root, 0, 0);
2978 spin_lock(&info->lock);
2979 info->flushing = 0;
2980 spin_unlock(&info->lock);
2981 wake_up(&info->flush_wait);
2984 static int maybe_allocate_chunk(struct btrfs_root *root,
2985 struct btrfs_space_info *info)
2987 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
2988 struct btrfs_trans_handle *trans;
2989 bool wait = false;
2990 int ret = 0;
2991 u64 min_metadata;
2992 u64 free_space;
2994 free_space = btrfs_super_total_bytes(disk_super);
2996 * we allow the metadata to grow to a max of either 10gb or 5% of the
2997 * space in the volume.
2999 min_metadata = min((u64)10 * 1024 * 1024 * 1024,
3000 div64_u64(free_space * 5, 100));
3001 if (info->total_bytes >= min_metadata) {
3002 spin_unlock(&info->lock);
3003 return 0;
3006 if (info->full) {
3007 spin_unlock(&info->lock);
3008 return 0;
3011 if (!info->allocating_chunk) {
3012 info->force_alloc = 1;
3013 info->allocating_chunk = 1;
3014 init_waitqueue_head(&info->allocate_wait);
3015 } else {
3016 wait = true;
3019 spin_unlock(&info->lock);
3021 if (wait) {
3022 wait_event(info->allocate_wait,
3023 !info->allocating_chunk);
3024 return 1;
3027 trans = btrfs_start_transaction(root, 1);
3028 if (!trans) {
3029 ret = -ENOMEM;
3030 goto out;
3033 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3034 4096 + 2 * 1024 * 1024,
3035 info->flags, 0);
3036 btrfs_end_transaction(trans, root);
3037 if (ret)
3038 goto out;
3039 out:
3040 spin_lock(&info->lock);
3041 info->allocating_chunk = 0;
3042 spin_unlock(&info->lock);
3043 wake_up(&info->allocate_wait);
3045 if (ret)
3046 return 0;
3047 return 1;
3051 * Reserve metadata space for delalloc.
3053 int btrfs_reserve_metadata_for_delalloc(struct btrfs_root *root,
3054 struct inode *inode, int num_items)
3056 struct btrfs_fs_info *info = root->fs_info;
3057 struct btrfs_space_info *meta_sinfo;
3058 u64 num_bytes;
3059 u64 used;
3060 u64 alloc_target;
3061 int flushed = 0;
3062 int force_delalloc;
3064 /* get the space info for where the metadata will live */
3065 alloc_target = btrfs_get_alloc_profile(root, 0);
3066 meta_sinfo = __find_space_info(info, alloc_target);
3068 num_bytes = calculate_bytes_needed(root->fs_info->extent_root,
3069 num_items);
3070 again:
3071 spin_lock(&meta_sinfo->lock);
3073 force_delalloc = meta_sinfo->force_delalloc;
3075 if (unlikely(!meta_sinfo->bytes_root))
3076 meta_sinfo->bytes_root = calculate_bytes_needed(root, 6);
3078 if (!flushed)
3079 meta_sinfo->bytes_delalloc += num_bytes;
3081 used = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
3082 meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
3083 meta_sinfo->bytes_super + meta_sinfo->bytes_root +
3084 meta_sinfo->bytes_may_use + meta_sinfo->bytes_delalloc;
3086 if (used > meta_sinfo->total_bytes) {
3087 flushed++;
3089 if (flushed == 1) {
3090 if (maybe_allocate_chunk(root, meta_sinfo))
3091 goto again;
3092 flushed++;
3093 } else {
3094 spin_unlock(&meta_sinfo->lock);
3097 if (flushed == 2) {
3098 filemap_flush(inode->i_mapping);
3099 goto again;
3100 } else if (flushed == 3) {
3101 flush_delalloc(root, meta_sinfo);
3102 goto again;
3104 spin_lock(&meta_sinfo->lock);
3105 meta_sinfo->bytes_delalloc -= num_bytes;
3106 spin_unlock(&meta_sinfo->lock);
3107 printk(KERN_ERR "enospc, has %d, reserved %d\n",
3108 BTRFS_I(inode)->outstanding_extents,
3109 BTRFS_I(inode)->reserved_extents);
3110 dump_space_info(meta_sinfo, 0, 0);
3111 return -ENOSPC;
3114 BTRFS_I(inode)->reserved_extents++;
3115 check_force_delalloc(meta_sinfo);
3116 spin_unlock(&meta_sinfo->lock);
3118 if (!flushed && force_delalloc)
3119 filemap_flush(inode->i_mapping);
3121 return 0;
3125 * unreserve num_items number of items worth of metadata space. This needs to
3126 * be paired with btrfs_reserve_metadata_space.
3128 * NOTE: if you have the option, run this _AFTER_ you do a
3129 * btrfs_end_transaction, since btrfs_end_transaction will run delayed ref
3130 * oprations which will result in more used metadata, so we want to make sure we
3131 * can do that without issue.
3133 int btrfs_unreserve_metadata_space(struct btrfs_root *root, int num_items)
3135 struct btrfs_fs_info *info = root->fs_info;
3136 struct btrfs_space_info *meta_sinfo;
3137 u64 num_bytes;
3138 u64 alloc_target;
3139 bool bug = false;
3141 /* get the space info for where the metadata will live */
3142 alloc_target = btrfs_get_alloc_profile(root, 0);
3143 meta_sinfo = __find_space_info(info, alloc_target);
3145 num_bytes = calculate_bytes_needed(root, num_items);
3147 spin_lock(&meta_sinfo->lock);
3148 if (meta_sinfo->bytes_may_use < num_bytes) {
3149 bug = true;
3150 meta_sinfo->bytes_may_use = 0;
3151 } else {
3152 meta_sinfo->bytes_may_use -= num_bytes;
3154 spin_unlock(&meta_sinfo->lock);
3156 BUG_ON(bug);
3158 return 0;
3162 * Reserve some metadata space for use. We'll calculate the worste case number
3163 * of bytes that would be needed to modify num_items number of items. If we
3164 * have space, fantastic, if not, you get -ENOSPC. Please call
3165 * btrfs_unreserve_metadata_space when you are done for the _SAME_ number of
3166 * items you reserved, since whatever metadata you needed should have already
3167 * been allocated.
3169 * This will commit the transaction to make more space if we don't have enough
3170 * metadata space. THe only time we don't do this is if we're reserving space
3171 * inside of a transaction, then we will just return -ENOSPC and it is the
3172 * callers responsibility to handle it properly.
3174 int btrfs_reserve_metadata_space(struct btrfs_root *root, int num_items)
3176 struct btrfs_fs_info *info = root->fs_info;
3177 struct btrfs_space_info *meta_sinfo;
3178 u64 num_bytes;
3179 u64 used;
3180 u64 alloc_target;
3181 int retries = 0;
3183 /* get the space info for where the metadata will live */
3184 alloc_target = btrfs_get_alloc_profile(root, 0);
3185 meta_sinfo = __find_space_info(info, alloc_target);
3187 num_bytes = calculate_bytes_needed(root, num_items);
3188 again:
3189 spin_lock(&meta_sinfo->lock);
3191 if (unlikely(!meta_sinfo->bytes_root))
3192 meta_sinfo->bytes_root = calculate_bytes_needed(root, 6);
3194 if (!retries)
3195 meta_sinfo->bytes_may_use += num_bytes;
3197 used = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
3198 meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
3199 meta_sinfo->bytes_super + meta_sinfo->bytes_root +
3200 meta_sinfo->bytes_may_use + meta_sinfo->bytes_delalloc;
3202 if (used > meta_sinfo->total_bytes) {
3203 retries++;
3204 if (retries == 1) {
3205 if (maybe_allocate_chunk(root, meta_sinfo))
3206 goto again;
3207 retries++;
3208 } else {
3209 spin_unlock(&meta_sinfo->lock);
3212 if (retries == 2) {
3213 flush_delalloc(root, meta_sinfo);
3214 goto again;
3216 spin_lock(&meta_sinfo->lock);
3217 meta_sinfo->bytes_may_use -= num_bytes;
3218 spin_unlock(&meta_sinfo->lock);
3220 dump_space_info(meta_sinfo, 0, 0);
3221 return -ENOSPC;
3224 check_force_delalloc(meta_sinfo);
3225 spin_unlock(&meta_sinfo->lock);
3227 return 0;
3231 * This will check the space that the inode allocates from to make sure we have
3232 * enough space for bytes.
3234 int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
3235 u64 bytes)
3237 struct btrfs_space_info *data_sinfo;
3238 int ret = 0, committed = 0;
3240 /* make sure bytes are sectorsize aligned */
3241 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3243 data_sinfo = BTRFS_I(inode)->space_info;
3244 if (!data_sinfo)
3245 goto alloc;
3247 again:
3248 /* make sure we have enough space to handle the data first */
3249 spin_lock(&data_sinfo->lock);
3250 if (data_sinfo->total_bytes - data_sinfo->bytes_used -
3251 data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
3252 data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
3253 data_sinfo->bytes_may_use - data_sinfo->bytes_super < bytes) {
3254 struct btrfs_trans_handle *trans;
3257 * if we don't have enough free bytes in this space then we need
3258 * to alloc a new chunk.
3260 if (!data_sinfo->full) {
3261 u64 alloc_target;
3263 data_sinfo->force_alloc = 1;
3264 spin_unlock(&data_sinfo->lock);
3265 alloc:
3266 alloc_target = btrfs_get_alloc_profile(root, 1);
3267 trans = btrfs_start_transaction(root, 1);
3268 if (!trans)
3269 return -ENOMEM;
3271 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3272 bytes + 2 * 1024 * 1024,
3273 alloc_target, 0);
3274 btrfs_end_transaction(trans, root);
3275 if (ret)
3276 return ret;
3278 if (!data_sinfo) {
3279 btrfs_set_inode_space_info(root, inode);
3280 data_sinfo = BTRFS_I(inode)->space_info;
3282 goto again;
3284 spin_unlock(&data_sinfo->lock);
3286 /* commit the current transaction and try again */
3287 if (!committed && !root->fs_info->open_ioctl_trans) {
3288 committed = 1;
3289 trans = btrfs_join_transaction(root, 1);
3290 if (!trans)
3291 return -ENOMEM;
3292 ret = btrfs_commit_transaction(trans, root);
3293 if (ret)
3294 return ret;
3295 goto again;
3298 printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
3299 ", %llu bytes_used, %llu bytes_reserved, "
3300 "%llu bytes_pinned, %llu bytes_readonly, %llu may use "
3301 "%llu total\n", (unsigned long long)bytes,
3302 (unsigned long long)data_sinfo->bytes_delalloc,
3303 (unsigned long long)data_sinfo->bytes_used,
3304 (unsigned long long)data_sinfo->bytes_reserved,
3305 (unsigned long long)data_sinfo->bytes_pinned,
3306 (unsigned long long)data_sinfo->bytes_readonly,
3307 (unsigned long long)data_sinfo->bytes_may_use,
3308 (unsigned long long)data_sinfo->total_bytes);
3309 return -ENOSPC;
3311 data_sinfo->bytes_may_use += bytes;
3312 BTRFS_I(inode)->reserved_bytes += bytes;
3313 spin_unlock(&data_sinfo->lock);
3315 return 0;
3319 * if there was an error for whatever reason after calling
3320 * btrfs_check_data_free_space, call this so we can cleanup the counters.
3322 void btrfs_free_reserved_data_space(struct btrfs_root *root,
3323 struct inode *inode, u64 bytes)
3325 struct btrfs_space_info *data_sinfo;
3327 /* make sure bytes are sectorsize aligned */
3328 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3330 data_sinfo = BTRFS_I(inode)->space_info;
3331 spin_lock(&data_sinfo->lock);
3332 data_sinfo->bytes_may_use -= bytes;
3333 BTRFS_I(inode)->reserved_bytes -= bytes;
3334 spin_unlock(&data_sinfo->lock);
3337 /* called when we are adding a delalloc extent to the inode's io_tree */
3338 void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
3339 u64 bytes)
3341 struct btrfs_space_info *data_sinfo;
3343 /* get the space info for where this inode will be storing its data */
3344 data_sinfo = BTRFS_I(inode)->space_info;
3346 /* make sure we have enough space to handle the data first */
3347 spin_lock(&data_sinfo->lock);
3348 data_sinfo->bytes_delalloc += bytes;
3351 * we are adding a delalloc extent without calling
3352 * btrfs_check_data_free_space first. This happens on a weird
3353 * writepage condition, but shouldn't hurt our accounting
3355 if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
3356 data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
3357 BTRFS_I(inode)->reserved_bytes = 0;
3358 } else {
3359 data_sinfo->bytes_may_use -= bytes;
3360 BTRFS_I(inode)->reserved_bytes -= bytes;
3363 spin_unlock(&data_sinfo->lock);
3366 /* called when we are clearing an delalloc extent from the inode's io_tree */
3367 void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
3368 u64 bytes)
3370 struct btrfs_space_info *info;
3372 info = BTRFS_I(inode)->space_info;
3374 spin_lock(&info->lock);
3375 info->bytes_delalloc -= bytes;
3376 spin_unlock(&info->lock);
3379 static void force_metadata_allocation(struct btrfs_fs_info *info)
3381 struct list_head *head = &info->space_info;
3382 struct btrfs_space_info *found;
3384 rcu_read_lock();
3385 list_for_each_entry_rcu(found, head, list) {
3386 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3387 found->force_alloc = 1;
3389 rcu_read_unlock();
3392 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3393 struct btrfs_root *extent_root, u64 alloc_bytes,
3394 u64 flags, int force)
3396 struct btrfs_space_info *space_info;
3397 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3398 u64 thresh;
3399 int ret = 0;
3401 mutex_lock(&fs_info->chunk_mutex);
3403 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3405 space_info = __find_space_info(extent_root->fs_info, flags);
3406 if (!space_info) {
3407 ret = update_space_info(extent_root->fs_info, flags,
3408 0, 0, &space_info);
3409 BUG_ON(ret);
3411 BUG_ON(!space_info);
3413 spin_lock(&space_info->lock);
3414 if (space_info->force_alloc)
3415 force = 1;
3416 if (space_info->full) {
3417 spin_unlock(&space_info->lock);
3418 goto out;
3421 thresh = space_info->total_bytes - space_info->bytes_readonly;
3422 thresh = div_factor(thresh, 8);
3423 if (!force &&
3424 (space_info->bytes_used + space_info->bytes_pinned +
3425 space_info->bytes_reserved + alloc_bytes) < thresh) {
3426 spin_unlock(&space_info->lock);
3427 goto out;
3429 spin_unlock(&space_info->lock);
3432 * if we're doing a data chunk, go ahead and make sure that
3433 * we keep a reasonable number of metadata chunks allocated in the
3434 * FS as well.
3436 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3437 fs_info->data_chunk_allocations++;
3438 if (!(fs_info->data_chunk_allocations %
3439 fs_info->metadata_ratio))
3440 force_metadata_allocation(fs_info);
3443 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3444 spin_lock(&space_info->lock);
3445 if (ret)
3446 space_info->full = 1;
3447 space_info->force_alloc = 0;
3448 spin_unlock(&space_info->lock);
3449 out:
3450 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3451 return ret;
3454 static int update_block_group(struct btrfs_trans_handle *trans,
3455 struct btrfs_root *root,
3456 u64 bytenr, u64 num_bytes, int alloc,
3457 int mark_free)
3459 struct btrfs_block_group_cache *cache;
3460 struct btrfs_fs_info *info = root->fs_info;
3461 u64 total = num_bytes;
3462 u64 old_val;
3463 u64 byte_in_group;
3465 /* block accounting for super block */
3466 spin_lock(&info->delalloc_lock);
3467 old_val = btrfs_super_bytes_used(&info->super_copy);
3468 if (alloc)
3469 old_val += num_bytes;
3470 else
3471 old_val -= num_bytes;
3472 btrfs_set_super_bytes_used(&info->super_copy, old_val);
3473 spin_unlock(&info->delalloc_lock);
3475 while (total) {
3476 cache = btrfs_lookup_block_group(info, bytenr);
3477 if (!cache)
3478 return -1;
3479 byte_in_group = bytenr - cache->key.objectid;
3480 WARN_ON(byte_in_group > cache->key.offset);
3482 spin_lock(&cache->space_info->lock);
3483 spin_lock(&cache->lock);
3484 cache->dirty = 1;
3485 old_val = btrfs_block_group_used(&cache->item);
3486 num_bytes = min(total, cache->key.offset - byte_in_group);
3487 if (alloc) {
3488 old_val += num_bytes;
3489 btrfs_set_block_group_used(&cache->item, old_val);
3490 cache->reserved -= num_bytes;
3491 cache->space_info->bytes_used += num_bytes;
3492 cache->space_info->bytes_reserved -= num_bytes;
3493 if (cache->ro)
3494 cache->space_info->bytes_readonly -= num_bytes;
3495 spin_unlock(&cache->lock);
3496 spin_unlock(&cache->space_info->lock);
3497 } else {
3498 old_val -= num_bytes;
3499 cache->space_info->bytes_used -= num_bytes;
3500 if (cache->ro)
3501 cache->space_info->bytes_readonly += num_bytes;
3502 btrfs_set_block_group_used(&cache->item, old_val);
3503 spin_unlock(&cache->lock);
3504 spin_unlock(&cache->space_info->lock);
3505 if (mark_free) {
3506 int ret;
3508 ret = btrfs_discard_extent(root, bytenr,
3509 num_bytes);
3510 WARN_ON(ret);
3512 ret = btrfs_add_free_space(cache, bytenr,
3513 num_bytes);
3514 WARN_ON(ret);
3517 btrfs_put_block_group(cache);
3518 total -= num_bytes;
3519 bytenr += num_bytes;
3521 return 0;
3524 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
3526 struct btrfs_block_group_cache *cache;
3527 u64 bytenr;
3529 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
3530 if (!cache)
3531 return 0;
3533 bytenr = cache->key.objectid;
3534 btrfs_put_block_group(cache);
3536 return bytenr;
3540 * this function must be called within transaction
3542 int btrfs_pin_extent(struct btrfs_root *root,
3543 u64 bytenr, u64 num_bytes, int reserved)
3545 struct btrfs_fs_info *fs_info = root->fs_info;
3546 struct btrfs_block_group_cache *cache;
3548 cache = btrfs_lookup_block_group(fs_info, bytenr);
3549 BUG_ON(!cache);
3551 spin_lock(&cache->space_info->lock);
3552 spin_lock(&cache->lock);
3553 cache->pinned += num_bytes;
3554 cache->space_info->bytes_pinned += num_bytes;
3555 if (reserved) {
3556 cache->reserved -= num_bytes;
3557 cache->space_info->bytes_reserved -= num_bytes;
3559 spin_unlock(&cache->lock);
3560 spin_unlock(&cache->space_info->lock);
3562 btrfs_put_block_group(cache);
3564 set_extent_dirty(fs_info->pinned_extents,
3565 bytenr, bytenr + num_bytes - 1, GFP_NOFS);
3566 return 0;
3569 static int update_reserved_extents(struct btrfs_block_group_cache *cache,
3570 u64 num_bytes, int reserve)
3572 spin_lock(&cache->space_info->lock);
3573 spin_lock(&cache->lock);
3574 if (reserve) {
3575 cache->reserved += num_bytes;
3576 cache->space_info->bytes_reserved += num_bytes;
3577 } else {
3578 cache->reserved -= num_bytes;
3579 cache->space_info->bytes_reserved -= num_bytes;
3581 spin_unlock(&cache->lock);
3582 spin_unlock(&cache->space_info->lock);
3583 return 0;
3586 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3587 struct btrfs_root *root)
3589 struct btrfs_fs_info *fs_info = root->fs_info;
3590 struct btrfs_caching_control *next;
3591 struct btrfs_caching_control *caching_ctl;
3592 struct btrfs_block_group_cache *cache;
3594 down_write(&fs_info->extent_commit_sem);
3596 list_for_each_entry_safe(caching_ctl, next,
3597 &fs_info->caching_block_groups, list) {
3598 cache = caching_ctl->block_group;
3599 if (block_group_cache_done(cache)) {
3600 cache->last_byte_to_unpin = (u64)-1;
3601 list_del_init(&caching_ctl->list);
3602 put_caching_control(caching_ctl);
3603 } else {
3604 cache->last_byte_to_unpin = caching_ctl->progress;
3608 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3609 fs_info->pinned_extents = &fs_info->freed_extents[1];
3610 else
3611 fs_info->pinned_extents = &fs_info->freed_extents[0];
3613 up_write(&fs_info->extent_commit_sem);
3614 return 0;
3617 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
3619 struct btrfs_fs_info *fs_info = root->fs_info;
3620 struct btrfs_block_group_cache *cache = NULL;
3621 u64 len;
3623 while (start <= end) {
3624 if (!cache ||
3625 start >= cache->key.objectid + cache->key.offset) {
3626 if (cache)
3627 btrfs_put_block_group(cache);
3628 cache = btrfs_lookup_block_group(fs_info, start);
3629 BUG_ON(!cache);
3632 len = cache->key.objectid + cache->key.offset - start;
3633 len = min(len, end + 1 - start);
3635 if (start < cache->last_byte_to_unpin) {
3636 len = min(len, cache->last_byte_to_unpin - start);
3637 btrfs_add_free_space(cache, start, len);
3640 spin_lock(&cache->space_info->lock);
3641 spin_lock(&cache->lock);
3642 cache->pinned -= len;
3643 cache->space_info->bytes_pinned -= len;
3644 spin_unlock(&cache->lock);
3645 spin_unlock(&cache->space_info->lock);
3647 start += len;
3650 if (cache)
3651 btrfs_put_block_group(cache);
3652 return 0;
3655 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3656 struct btrfs_root *root)
3658 struct btrfs_fs_info *fs_info = root->fs_info;
3659 struct extent_io_tree *unpin;
3660 u64 start;
3661 u64 end;
3662 int ret;
3664 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3665 unpin = &fs_info->freed_extents[1];
3666 else
3667 unpin = &fs_info->freed_extents[0];
3669 while (1) {
3670 ret = find_first_extent_bit(unpin, 0, &start, &end,
3671 EXTENT_DIRTY);
3672 if (ret)
3673 break;
3675 ret = btrfs_discard_extent(root, start, end + 1 - start);
3677 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3678 unpin_extent_range(root, start, end);
3679 cond_resched();
3682 return ret;
3685 static int pin_down_bytes(struct btrfs_trans_handle *trans,
3686 struct btrfs_root *root,
3687 struct btrfs_path *path,
3688 u64 bytenr, u64 num_bytes,
3689 int is_data, int reserved,
3690 struct extent_buffer **must_clean)
3692 int err = 0;
3693 struct extent_buffer *buf;
3695 if (is_data)
3696 goto pinit;
3699 * discard is sloooow, and so triggering discards on
3700 * individual btree blocks isn't a good plan. Just
3701 * pin everything in discard mode.
3703 if (btrfs_test_opt(root, DISCARD))
3704 goto pinit;
3706 buf = btrfs_find_tree_block(root, bytenr, num_bytes);
3707 if (!buf)
3708 goto pinit;
3710 /* we can reuse a block if it hasn't been written
3711 * and it is from this transaction. We can't
3712 * reuse anything from the tree log root because
3713 * it has tiny sub-transactions.
3715 if (btrfs_buffer_uptodate(buf, 0) &&
3716 btrfs_try_tree_lock(buf)) {
3717 u64 header_owner = btrfs_header_owner(buf);
3718 u64 header_transid = btrfs_header_generation(buf);
3719 if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
3720 header_transid == trans->transid &&
3721 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3722 *must_clean = buf;
3723 return 1;
3725 btrfs_tree_unlock(buf);
3727 free_extent_buffer(buf);
3728 pinit:
3729 if (path)
3730 btrfs_set_path_blocking(path);
3731 /* unlocks the pinned mutex */
3732 btrfs_pin_extent(root, bytenr, num_bytes, reserved);
3734 BUG_ON(err < 0);
3735 return 0;
3738 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3739 struct btrfs_root *root,
3740 u64 bytenr, u64 num_bytes, u64 parent,
3741 u64 root_objectid, u64 owner_objectid,
3742 u64 owner_offset, int refs_to_drop,
3743 struct btrfs_delayed_extent_op *extent_op)
3745 struct btrfs_key key;
3746 struct btrfs_path *path;
3747 struct btrfs_fs_info *info = root->fs_info;
3748 struct btrfs_root *extent_root = info->extent_root;
3749 struct extent_buffer *leaf;
3750 struct btrfs_extent_item *ei;
3751 struct btrfs_extent_inline_ref *iref;
3752 int ret;
3753 int is_data;
3754 int extent_slot = 0;
3755 int found_extent = 0;
3756 int num_to_del = 1;
3757 u32 item_size;
3758 u64 refs;
3760 path = btrfs_alloc_path();
3761 if (!path)
3762 return -ENOMEM;
3764 path->reada = 1;
3765 path->leave_spinning = 1;
3767 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3768 BUG_ON(!is_data && refs_to_drop != 1);
3770 ret = lookup_extent_backref(trans, extent_root, path, &iref,
3771 bytenr, num_bytes, parent,
3772 root_objectid, owner_objectid,
3773 owner_offset);
3774 if (ret == 0) {
3775 extent_slot = path->slots[0];
3776 while (extent_slot >= 0) {
3777 btrfs_item_key_to_cpu(path->nodes[0], &key,
3778 extent_slot);
3779 if (key.objectid != bytenr)
3780 break;
3781 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3782 key.offset == num_bytes) {
3783 found_extent = 1;
3784 break;
3786 if (path->slots[0] - extent_slot > 5)
3787 break;
3788 extent_slot--;
3790 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3791 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
3792 if (found_extent && item_size < sizeof(*ei))
3793 found_extent = 0;
3794 #endif
3795 if (!found_extent) {
3796 BUG_ON(iref);
3797 ret = remove_extent_backref(trans, extent_root, path,
3798 NULL, refs_to_drop,
3799 is_data);
3800 BUG_ON(ret);
3801 btrfs_release_path(extent_root, path);
3802 path->leave_spinning = 1;
3804 key.objectid = bytenr;
3805 key.type = BTRFS_EXTENT_ITEM_KEY;
3806 key.offset = num_bytes;
3808 ret = btrfs_search_slot(trans, extent_root,
3809 &key, path, -1, 1);
3810 if (ret) {
3811 printk(KERN_ERR "umm, got %d back from search"
3812 ", was looking for %llu\n", ret,
3813 (unsigned long long)bytenr);
3814 btrfs_print_leaf(extent_root, path->nodes[0]);
3816 BUG_ON(ret);
3817 extent_slot = path->slots[0];
3819 } else {
3820 btrfs_print_leaf(extent_root, path->nodes[0]);
3821 WARN_ON(1);
3822 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
3823 "parent %llu root %llu owner %llu offset %llu\n",
3824 (unsigned long long)bytenr,
3825 (unsigned long long)parent,
3826 (unsigned long long)root_objectid,
3827 (unsigned long long)owner_objectid,
3828 (unsigned long long)owner_offset);
3831 leaf = path->nodes[0];
3832 item_size = btrfs_item_size_nr(leaf, extent_slot);
3833 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3834 if (item_size < sizeof(*ei)) {
3835 BUG_ON(found_extent || extent_slot != path->slots[0]);
3836 ret = convert_extent_item_v0(trans, extent_root, path,
3837 owner_objectid, 0);
3838 BUG_ON(ret < 0);
3840 btrfs_release_path(extent_root, path);
3841 path->leave_spinning = 1;
3843 key.objectid = bytenr;
3844 key.type = BTRFS_EXTENT_ITEM_KEY;
3845 key.offset = num_bytes;
3847 ret = btrfs_search_slot(trans, extent_root, &key, path,
3848 -1, 1);
3849 if (ret) {
3850 printk(KERN_ERR "umm, got %d back from search"
3851 ", was looking for %llu\n", ret,
3852 (unsigned long long)bytenr);
3853 btrfs_print_leaf(extent_root, path->nodes[0]);
3855 BUG_ON(ret);
3856 extent_slot = path->slots[0];
3857 leaf = path->nodes[0];
3858 item_size = btrfs_item_size_nr(leaf, extent_slot);
3860 #endif
3861 BUG_ON(item_size < sizeof(*ei));
3862 ei = btrfs_item_ptr(leaf, extent_slot,
3863 struct btrfs_extent_item);
3864 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
3865 struct btrfs_tree_block_info *bi;
3866 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3867 bi = (struct btrfs_tree_block_info *)(ei + 1);
3868 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3871 refs = btrfs_extent_refs(leaf, ei);
3872 BUG_ON(refs < refs_to_drop);
3873 refs -= refs_to_drop;
3875 if (refs > 0) {
3876 if (extent_op)
3877 __run_delayed_extent_op(extent_op, leaf, ei);
3879 * In the case of inline back ref, reference count will
3880 * be updated by remove_extent_backref
3882 if (iref) {
3883 BUG_ON(!found_extent);
3884 } else {
3885 btrfs_set_extent_refs(leaf, ei, refs);
3886 btrfs_mark_buffer_dirty(leaf);
3888 if (found_extent) {
3889 ret = remove_extent_backref(trans, extent_root, path,
3890 iref, refs_to_drop,
3891 is_data);
3892 BUG_ON(ret);
3894 } else {
3895 int mark_free = 0;
3896 struct extent_buffer *must_clean = NULL;
3898 if (found_extent) {
3899 BUG_ON(is_data && refs_to_drop !=
3900 extent_data_ref_count(root, path, iref));
3901 if (iref) {
3902 BUG_ON(path->slots[0] != extent_slot);
3903 } else {
3904 BUG_ON(path->slots[0] != extent_slot + 1);
3905 path->slots[0] = extent_slot;
3906 num_to_del = 2;
3910 ret = pin_down_bytes(trans, root, path, bytenr,
3911 num_bytes, is_data, 0, &must_clean);
3912 if (ret > 0)
3913 mark_free = 1;
3914 BUG_ON(ret < 0);
3916 * it is going to be very rare for someone to be waiting
3917 * on the block we're freeing. del_items might need to
3918 * schedule, so rather than get fancy, just force it
3919 * to blocking here
3921 if (must_clean)
3922 btrfs_set_lock_blocking(must_clean);
3924 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3925 num_to_del);
3926 BUG_ON(ret);
3927 btrfs_release_path(extent_root, path);
3929 if (must_clean) {
3930 clean_tree_block(NULL, root, must_clean);
3931 btrfs_tree_unlock(must_clean);
3932 free_extent_buffer(must_clean);
3935 if (is_data) {
3936 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
3937 BUG_ON(ret);
3938 } else {
3939 invalidate_mapping_pages(info->btree_inode->i_mapping,
3940 bytenr >> PAGE_CACHE_SHIFT,
3941 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
3944 ret = update_block_group(trans, root, bytenr, num_bytes, 0,
3945 mark_free);
3946 BUG_ON(ret);
3948 btrfs_free_path(path);
3949 return ret;
3953 * when we free an extent, it is possible (and likely) that we free the last
3954 * delayed ref for that extent as well. This searches the delayed ref tree for
3955 * a given extent, and if there are no other delayed refs to be processed, it
3956 * removes it from the tree.
3958 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3959 struct btrfs_root *root, u64 bytenr)
3961 struct btrfs_delayed_ref_head *head;
3962 struct btrfs_delayed_ref_root *delayed_refs;
3963 struct btrfs_delayed_ref_node *ref;
3964 struct rb_node *node;
3965 int ret;
3967 delayed_refs = &trans->transaction->delayed_refs;
3968 spin_lock(&delayed_refs->lock);
3969 head = btrfs_find_delayed_ref_head(trans, bytenr);
3970 if (!head)
3971 goto out;
3973 node = rb_prev(&head->node.rb_node);
3974 if (!node)
3975 goto out;
3977 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3979 /* there are still entries for this ref, we can't drop it */
3980 if (ref->bytenr == bytenr)
3981 goto out;
3983 if (head->extent_op) {
3984 if (!head->must_insert_reserved)
3985 goto out;
3986 kfree(head->extent_op);
3987 head->extent_op = NULL;
3991 * waiting for the lock here would deadlock. If someone else has it
3992 * locked they are already in the process of dropping it anyway
3994 if (!mutex_trylock(&head->mutex))
3995 goto out;
3998 * at this point we have a head with no other entries. Go
3999 * ahead and process it.
4001 head->node.in_tree = 0;
4002 rb_erase(&head->node.rb_node, &delayed_refs->root);
4004 delayed_refs->num_entries--;
4007 * we don't take a ref on the node because we're removing it from the
4008 * tree, so we just steal the ref the tree was holding.
4010 delayed_refs->num_heads--;
4011 if (list_empty(&head->cluster))
4012 delayed_refs->num_heads_ready--;
4014 list_del_init(&head->cluster);
4015 spin_unlock(&delayed_refs->lock);
4017 ret = run_one_delayed_ref(trans, root->fs_info->tree_root,
4018 &head->node, head->extent_op,
4019 head->must_insert_reserved);
4020 BUG_ON(ret);
4021 btrfs_put_delayed_ref(&head->node);
4022 return 0;
4023 out:
4024 spin_unlock(&delayed_refs->lock);
4025 return 0;
4028 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4029 struct btrfs_root *root,
4030 u64 bytenr, u64 num_bytes, u64 parent,
4031 u64 root_objectid, u64 owner, u64 offset)
4033 int ret;
4036 * tree log blocks never actually go into the extent allocation
4037 * tree, just update pinning info and exit early.
4039 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4040 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4041 /* unlocks the pinned mutex */
4042 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4043 ret = 0;
4044 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4045 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4046 parent, root_objectid, (int)owner,
4047 BTRFS_DROP_DELAYED_REF, NULL);
4048 BUG_ON(ret);
4049 ret = check_ref_cleanup(trans, root, bytenr);
4050 BUG_ON(ret);
4051 } else {
4052 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4053 parent, root_objectid, owner,
4054 offset, BTRFS_DROP_DELAYED_REF, NULL);
4055 BUG_ON(ret);
4057 return ret;
4060 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4061 struct btrfs_root *root,
4062 u64 bytenr, u32 blocksize,
4063 u64 parent, u64 root_objectid, int level)
4065 u64 used;
4066 spin_lock(&root->node_lock);
4067 used = btrfs_root_used(&root->root_item) - blocksize;
4068 btrfs_set_root_used(&root->root_item, used);
4069 spin_unlock(&root->node_lock);
4071 return btrfs_free_extent(trans, root, bytenr, blocksize,
4072 parent, root_objectid, level, 0);
4075 static u64 stripe_align(struct btrfs_root *root, u64 val)
4077 u64 mask = ((u64)root->stripesize - 1);
4078 u64 ret = (val + mask) & ~mask;
4079 return ret;
4083 * when we wait for progress in the block group caching, its because
4084 * our allocation attempt failed at least once. So, we must sleep
4085 * and let some progress happen before we try again.
4087 * This function will sleep at least once waiting for new free space to
4088 * show up, and then it will check the block group free space numbers
4089 * for our min num_bytes. Another option is to have it go ahead
4090 * and look in the rbtree for a free extent of a given size, but this
4091 * is a good start.
4093 static noinline int
4094 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4095 u64 num_bytes)
4097 struct btrfs_caching_control *caching_ctl;
4098 DEFINE_WAIT(wait);
4100 caching_ctl = get_caching_control(cache);
4101 if (!caching_ctl)
4102 return 0;
4104 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4105 (cache->free_space >= num_bytes));
4107 put_caching_control(caching_ctl);
4108 return 0;
4111 static noinline int
4112 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4114 struct btrfs_caching_control *caching_ctl;
4115 DEFINE_WAIT(wait);
4117 caching_ctl = get_caching_control(cache);
4118 if (!caching_ctl)
4119 return 0;
4121 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4123 put_caching_control(caching_ctl);
4124 return 0;
4127 enum btrfs_loop_type {
4128 LOOP_FIND_IDEAL = 0,
4129 LOOP_CACHING_NOWAIT = 1,
4130 LOOP_CACHING_WAIT = 2,
4131 LOOP_ALLOC_CHUNK = 3,
4132 LOOP_NO_EMPTY_SIZE = 4,
4136 * walks the btree of allocated extents and find a hole of a given size.
4137 * The key ins is changed to record the hole:
4138 * ins->objectid == block start
4139 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4140 * ins->offset == number of blocks
4141 * Any available blocks before search_start are skipped.
4143 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4144 struct btrfs_root *orig_root,
4145 u64 num_bytes, u64 empty_size,
4146 u64 search_start, u64 search_end,
4147 u64 hint_byte, struct btrfs_key *ins,
4148 u64 exclude_start, u64 exclude_nr,
4149 int data)
4151 int ret = 0;
4152 struct btrfs_root *root = orig_root->fs_info->extent_root;
4153 struct btrfs_free_cluster *last_ptr = NULL;
4154 struct btrfs_block_group_cache *block_group = NULL;
4155 int empty_cluster = 2 * 1024 * 1024;
4156 int allowed_chunk_alloc = 0;
4157 int done_chunk_alloc = 0;
4158 struct btrfs_space_info *space_info;
4159 int last_ptr_loop = 0;
4160 int loop = 0;
4161 bool found_uncached_bg = false;
4162 bool failed_cluster_refill = false;
4163 bool failed_alloc = false;
4164 u64 ideal_cache_percent = 0;
4165 u64 ideal_cache_offset = 0;
4167 WARN_ON(num_bytes < root->sectorsize);
4168 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4169 ins->objectid = 0;
4170 ins->offset = 0;
4172 space_info = __find_space_info(root->fs_info, data);
4174 if (orig_root->ref_cows || empty_size)
4175 allowed_chunk_alloc = 1;
4177 if (data & BTRFS_BLOCK_GROUP_METADATA) {
4178 last_ptr = &root->fs_info->meta_alloc_cluster;
4179 if (!btrfs_test_opt(root, SSD))
4180 empty_cluster = 64 * 1024;
4183 if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
4184 last_ptr = &root->fs_info->data_alloc_cluster;
4187 if (last_ptr) {
4188 spin_lock(&last_ptr->lock);
4189 if (last_ptr->block_group)
4190 hint_byte = last_ptr->window_start;
4191 spin_unlock(&last_ptr->lock);
4194 search_start = max(search_start, first_logical_byte(root, 0));
4195 search_start = max(search_start, hint_byte);
4197 if (!last_ptr)
4198 empty_cluster = 0;
4200 if (search_start == hint_byte) {
4201 ideal_cache:
4202 block_group = btrfs_lookup_block_group(root->fs_info,
4203 search_start);
4205 * we don't want to use the block group if it doesn't match our
4206 * allocation bits, or if its not cached.
4208 * However if we are re-searching with an ideal block group
4209 * picked out then we don't care that the block group is cached.
4211 if (block_group && block_group_bits(block_group, data) &&
4212 (block_group->cached != BTRFS_CACHE_NO ||
4213 search_start == ideal_cache_offset)) {
4214 down_read(&space_info->groups_sem);
4215 if (list_empty(&block_group->list) ||
4216 block_group->ro) {
4218 * someone is removing this block group,
4219 * we can't jump into the have_block_group
4220 * target because our list pointers are not
4221 * valid
4223 btrfs_put_block_group(block_group);
4224 up_read(&space_info->groups_sem);
4225 } else {
4226 goto have_block_group;
4228 } else if (block_group) {
4229 btrfs_put_block_group(block_group);
4232 search:
4233 down_read(&space_info->groups_sem);
4234 list_for_each_entry(block_group, &space_info->block_groups, list) {
4235 u64 offset;
4236 int cached;
4238 btrfs_get_block_group(block_group);
4239 search_start = block_group->key.objectid;
4241 have_block_group:
4242 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4243 u64 free_percent;
4245 free_percent = btrfs_block_group_used(&block_group->item);
4246 free_percent *= 100;
4247 free_percent = div64_u64(free_percent,
4248 block_group->key.offset);
4249 free_percent = 100 - free_percent;
4250 if (free_percent > ideal_cache_percent &&
4251 likely(!block_group->ro)) {
4252 ideal_cache_offset = block_group->key.objectid;
4253 ideal_cache_percent = free_percent;
4257 * We only want to start kthread caching if we are at
4258 * the point where we will wait for caching to make
4259 * progress, or if our ideal search is over and we've
4260 * found somebody to start caching.
4262 if (loop > LOOP_CACHING_NOWAIT ||
4263 (loop > LOOP_FIND_IDEAL &&
4264 atomic_read(&space_info->caching_threads) < 2)) {
4265 ret = cache_block_group(block_group);
4266 BUG_ON(ret);
4268 found_uncached_bg = true;
4271 * If loop is set for cached only, try the next block
4272 * group.
4274 if (loop == LOOP_FIND_IDEAL)
4275 goto loop;
4278 cached = block_group_cache_done(block_group);
4279 if (unlikely(!cached))
4280 found_uncached_bg = true;
4282 if (unlikely(block_group->ro))
4283 goto loop;
4286 * Ok we want to try and use the cluster allocator, so lets look
4287 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4288 * have tried the cluster allocator plenty of times at this
4289 * point and not have found anything, so we are likely way too
4290 * fragmented for the clustering stuff to find anything, so lets
4291 * just skip it and let the allocator find whatever block it can
4292 * find
4294 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
4296 * the refill lock keeps out other
4297 * people trying to start a new cluster
4299 spin_lock(&last_ptr->refill_lock);
4300 if (last_ptr->block_group &&
4301 (last_ptr->block_group->ro ||
4302 !block_group_bits(last_ptr->block_group, data))) {
4303 offset = 0;
4304 goto refill_cluster;
4307 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
4308 num_bytes, search_start);
4309 if (offset) {
4310 /* we have a block, we're done */
4311 spin_unlock(&last_ptr->refill_lock);
4312 goto checks;
4315 spin_lock(&last_ptr->lock);
4317 * whoops, this cluster doesn't actually point to
4318 * this block group. Get a ref on the block
4319 * group is does point to and try again
4321 if (!last_ptr_loop && last_ptr->block_group &&
4322 last_ptr->block_group != block_group) {
4324 btrfs_put_block_group(block_group);
4325 block_group = last_ptr->block_group;
4326 btrfs_get_block_group(block_group);
4327 spin_unlock(&last_ptr->lock);
4328 spin_unlock(&last_ptr->refill_lock);
4330 last_ptr_loop = 1;
4331 search_start = block_group->key.objectid;
4333 * we know this block group is properly
4334 * in the list because
4335 * btrfs_remove_block_group, drops the
4336 * cluster before it removes the block
4337 * group from the list
4339 goto have_block_group;
4341 spin_unlock(&last_ptr->lock);
4342 refill_cluster:
4344 * this cluster didn't work out, free it and
4345 * start over
4347 btrfs_return_cluster_to_free_space(NULL, last_ptr);
4349 last_ptr_loop = 0;
4351 /* allocate a cluster in this block group */
4352 ret = btrfs_find_space_cluster(trans, root,
4353 block_group, last_ptr,
4354 offset, num_bytes,
4355 empty_cluster + empty_size);
4356 if (ret == 0) {
4358 * now pull our allocation out of this
4359 * cluster
4361 offset = btrfs_alloc_from_cluster(block_group,
4362 last_ptr, num_bytes,
4363 search_start);
4364 if (offset) {
4365 /* we found one, proceed */
4366 spin_unlock(&last_ptr->refill_lock);
4367 goto checks;
4369 } else if (!cached && loop > LOOP_CACHING_NOWAIT
4370 && !failed_cluster_refill) {
4371 spin_unlock(&last_ptr->refill_lock);
4373 failed_cluster_refill = true;
4374 wait_block_group_cache_progress(block_group,
4375 num_bytes + empty_cluster + empty_size);
4376 goto have_block_group;
4380 * at this point we either didn't find a cluster
4381 * or we weren't able to allocate a block from our
4382 * cluster. Free the cluster we've been trying
4383 * to use, and go to the next block group
4385 btrfs_return_cluster_to_free_space(NULL, last_ptr);
4386 spin_unlock(&last_ptr->refill_lock);
4387 goto loop;
4390 offset = btrfs_find_space_for_alloc(block_group, search_start,
4391 num_bytes, empty_size);
4393 * If we didn't find a chunk, and we haven't failed on this
4394 * block group before, and this block group is in the middle of
4395 * caching and we are ok with waiting, then go ahead and wait
4396 * for progress to be made, and set failed_alloc to true.
4398 * If failed_alloc is true then we've already waited on this
4399 * block group once and should move on to the next block group.
4401 if (!offset && !failed_alloc && !cached &&
4402 loop > LOOP_CACHING_NOWAIT) {
4403 wait_block_group_cache_progress(block_group,
4404 num_bytes + empty_size);
4405 failed_alloc = true;
4406 goto have_block_group;
4407 } else if (!offset) {
4408 goto loop;
4410 checks:
4411 search_start = stripe_align(root, offset);
4412 /* move on to the next group */
4413 if (search_start + num_bytes >= search_end) {
4414 btrfs_add_free_space(block_group, offset, num_bytes);
4415 goto loop;
4418 /* move on to the next group */
4419 if (search_start + num_bytes >
4420 block_group->key.objectid + block_group->key.offset) {
4421 btrfs_add_free_space(block_group, offset, num_bytes);
4422 goto loop;
4425 if (exclude_nr > 0 &&
4426 (search_start + num_bytes > exclude_start &&
4427 search_start < exclude_start + exclude_nr)) {
4428 search_start = exclude_start + exclude_nr;
4430 btrfs_add_free_space(block_group, offset, num_bytes);
4432 * if search_start is still in this block group
4433 * then we just re-search this block group
4435 if (search_start >= block_group->key.objectid &&
4436 search_start < (block_group->key.objectid +
4437 block_group->key.offset))
4438 goto have_block_group;
4439 goto loop;
4442 ins->objectid = search_start;
4443 ins->offset = num_bytes;
4445 if (offset < search_start)
4446 btrfs_add_free_space(block_group, offset,
4447 search_start - offset);
4448 BUG_ON(offset > search_start);
4450 update_reserved_extents(block_group, num_bytes, 1);
4452 /* we are all good, lets return */
4453 break;
4454 loop:
4455 failed_cluster_refill = false;
4456 failed_alloc = false;
4457 btrfs_put_block_group(block_group);
4459 up_read(&space_info->groups_sem);
4461 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
4462 * for them to make caching progress. Also
4463 * determine the best possible bg to cache
4464 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4465 * caching kthreads as we move along
4466 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4467 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4468 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4469 * again
4471 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
4472 (found_uncached_bg || empty_size || empty_cluster ||
4473 allowed_chunk_alloc)) {
4474 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
4475 found_uncached_bg = false;
4476 loop++;
4477 if (!ideal_cache_percent &&
4478 atomic_read(&space_info->caching_threads))
4479 goto search;
4482 * 1 of the following 2 things have happened so far
4484 * 1) We found an ideal block group for caching that
4485 * is mostly full and will cache quickly, so we might
4486 * as well wait for it.
4488 * 2) We searched for cached only and we didn't find
4489 * anything, and we didn't start any caching kthreads
4490 * either, so chances are we will loop through and
4491 * start a couple caching kthreads, and then come back
4492 * around and just wait for them. This will be slower
4493 * because we will have 2 caching kthreads reading at
4494 * the same time when we could have just started one
4495 * and waited for it to get far enough to give us an
4496 * allocation, so go ahead and go to the wait caching
4497 * loop.
4499 loop = LOOP_CACHING_WAIT;
4500 search_start = ideal_cache_offset;
4501 ideal_cache_percent = 0;
4502 goto ideal_cache;
4503 } else if (loop == LOOP_FIND_IDEAL) {
4505 * Didn't find a uncached bg, wait on anything we find
4506 * next.
4508 loop = LOOP_CACHING_WAIT;
4509 goto search;
4512 if (loop < LOOP_CACHING_WAIT) {
4513 loop++;
4514 goto search;
4517 if (loop == LOOP_ALLOC_CHUNK) {
4518 empty_size = 0;
4519 empty_cluster = 0;
4522 if (allowed_chunk_alloc) {
4523 ret = do_chunk_alloc(trans, root, num_bytes +
4524 2 * 1024 * 1024, data, 1);
4525 allowed_chunk_alloc = 0;
4526 done_chunk_alloc = 1;
4527 } else if (!done_chunk_alloc) {
4528 space_info->force_alloc = 1;
4531 if (loop < LOOP_NO_EMPTY_SIZE) {
4532 loop++;
4533 goto search;
4535 ret = -ENOSPC;
4536 } else if (!ins->objectid) {
4537 ret = -ENOSPC;
4540 /* we found what we needed */
4541 if (ins->objectid) {
4542 if (!(data & BTRFS_BLOCK_GROUP_DATA))
4543 trans->block_group = block_group->key.objectid;
4545 btrfs_put_block_group(block_group);
4546 ret = 0;
4549 return ret;
4552 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
4553 int dump_block_groups)
4555 struct btrfs_block_group_cache *cache;
4557 spin_lock(&info->lock);
4558 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
4559 (unsigned long long)(info->total_bytes - info->bytes_used -
4560 info->bytes_pinned - info->bytes_reserved -
4561 info->bytes_super),
4562 (info->full) ? "" : "not ");
4563 printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu,"
4564 " may_use=%llu, used=%llu, root=%llu, super=%llu, reserved=%llu"
4565 "\n",
4566 (unsigned long long)info->total_bytes,
4567 (unsigned long long)info->bytes_pinned,
4568 (unsigned long long)info->bytes_delalloc,
4569 (unsigned long long)info->bytes_may_use,
4570 (unsigned long long)info->bytes_used,
4571 (unsigned long long)info->bytes_root,
4572 (unsigned long long)info->bytes_super,
4573 (unsigned long long)info->bytes_reserved);
4574 spin_unlock(&info->lock);
4576 if (!dump_block_groups)
4577 return;
4579 down_read(&info->groups_sem);
4580 list_for_each_entry(cache, &info->block_groups, list) {
4581 spin_lock(&cache->lock);
4582 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
4583 "%llu pinned %llu reserved\n",
4584 (unsigned long long)cache->key.objectid,
4585 (unsigned long long)cache->key.offset,
4586 (unsigned long long)btrfs_block_group_used(&cache->item),
4587 (unsigned long long)cache->pinned,
4588 (unsigned long long)cache->reserved);
4589 btrfs_dump_free_space(cache, bytes);
4590 spin_unlock(&cache->lock);
4592 up_read(&info->groups_sem);
4595 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
4596 struct btrfs_root *root,
4597 u64 num_bytes, u64 min_alloc_size,
4598 u64 empty_size, u64 hint_byte,
4599 u64 search_end, struct btrfs_key *ins,
4600 u64 data)
4602 int ret;
4603 u64 search_start = 0;
4605 data = btrfs_get_alloc_profile(root, data);
4606 again:
4608 * the only place that sets empty_size is btrfs_realloc_node, which
4609 * is not called recursively on allocations
4611 if (empty_size || root->ref_cows)
4612 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4613 num_bytes + 2 * 1024 * 1024, data, 0);
4615 WARN_ON(num_bytes < root->sectorsize);
4616 ret = find_free_extent(trans, root, num_bytes, empty_size,
4617 search_start, search_end, hint_byte, ins,
4618 trans->alloc_exclude_start,
4619 trans->alloc_exclude_nr, data);
4621 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
4622 num_bytes = num_bytes >> 1;
4623 num_bytes = num_bytes & ~(root->sectorsize - 1);
4624 num_bytes = max(num_bytes, min_alloc_size);
4625 do_chunk_alloc(trans, root->fs_info->extent_root,
4626 num_bytes, data, 1);
4627 goto again;
4629 if (ret == -ENOSPC) {
4630 struct btrfs_space_info *sinfo;
4632 sinfo = __find_space_info(root->fs_info, data);
4633 printk(KERN_ERR "btrfs allocation failed flags %llu, "
4634 "wanted %llu\n", (unsigned long long)data,
4635 (unsigned long long)num_bytes);
4636 dump_space_info(sinfo, num_bytes, 1);
4639 return ret;
4642 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
4644 struct btrfs_block_group_cache *cache;
4645 int ret = 0;
4647 cache = btrfs_lookup_block_group(root->fs_info, start);
4648 if (!cache) {
4649 printk(KERN_ERR "Unable to find block group for %llu\n",
4650 (unsigned long long)start);
4651 return -ENOSPC;
4654 ret = btrfs_discard_extent(root, start, len);
4656 btrfs_add_free_space(cache, start, len);
4657 update_reserved_extents(cache, len, 0);
4658 btrfs_put_block_group(cache);
4660 return ret;
4663 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4664 struct btrfs_root *root,
4665 u64 parent, u64 root_objectid,
4666 u64 flags, u64 owner, u64 offset,
4667 struct btrfs_key *ins, int ref_mod)
4669 int ret;
4670 struct btrfs_fs_info *fs_info = root->fs_info;
4671 struct btrfs_extent_item *extent_item;
4672 struct btrfs_extent_inline_ref *iref;
4673 struct btrfs_path *path;
4674 struct extent_buffer *leaf;
4675 int type;
4676 u32 size;
4678 if (parent > 0)
4679 type = BTRFS_SHARED_DATA_REF_KEY;
4680 else
4681 type = BTRFS_EXTENT_DATA_REF_KEY;
4683 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4685 path = btrfs_alloc_path();
4686 BUG_ON(!path);
4688 path->leave_spinning = 1;
4689 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4690 ins, size);
4691 BUG_ON(ret);
4693 leaf = path->nodes[0];
4694 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4695 struct btrfs_extent_item);
4696 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4697 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4698 btrfs_set_extent_flags(leaf, extent_item,
4699 flags | BTRFS_EXTENT_FLAG_DATA);
4701 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4703 if (parent > 0) {
4704 struct btrfs_shared_data_ref *ref;
4705 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4706 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4707 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4708 } else {
4709 struct btrfs_extent_data_ref *ref;
4710 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4711 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4712 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4713 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4714 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4717 btrfs_mark_buffer_dirty(path->nodes[0]);
4718 btrfs_free_path(path);
4720 ret = update_block_group(trans, root, ins->objectid, ins->offset,
4721 1, 0);
4722 if (ret) {
4723 printk(KERN_ERR "btrfs update block group failed for %llu "
4724 "%llu\n", (unsigned long long)ins->objectid,
4725 (unsigned long long)ins->offset);
4726 BUG();
4728 return ret;
4731 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4732 struct btrfs_root *root,
4733 u64 parent, u64 root_objectid,
4734 u64 flags, struct btrfs_disk_key *key,
4735 int level, struct btrfs_key *ins)
4737 int ret;
4738 struct btrfs_fs_info *fs_info = root->fs_info;
4739 struct btrfs_extent_item *extent_item;
4740 struct btrfs_tree_block_info *block_info;
4741 struct btrfs_extent_inline_ref *iref;
4742 struct btrfs_path *path;
4743 struct extent_buffer *leaf;
4744 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
4746 path = btrfs_alloc_path();
4747 BUG_ON(!path);
4749 path->leave_spinning = 1;
4750 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4751 ins, size);
4752 BUG_ON(ret);
4754 leaf = path->nodes[0];
4755 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4756 struct btrfs_extent_item);
4757 btrfs_set_extent_refs(leaf, extent_item, 1);
4758 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4759 btrfs_set_extent_flags(leaf, extent_item,
4760 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4761 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4763 btrfs_set_tree_block_key(leaf, block_info, key);
4764 btrfs_set_tree_block_level(leaf, block_info, level);
4766 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4767 if (parent > 0) {
4768 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4769 btrfs_set_extent_inline_ref_type(leaf, iref,
4770 BTRFS_SHARED_BLOCK_REF_KEY);
4771 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4772 } else {
4773 btrfs_set_extent_inline_ref_type(leaf, iref,
4774 BTRFS_TREE_BLOCK_REF_KEY);
4775 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
4778 btrfs_mark_buffer_dirty(leaf);
4779 btrfs_free_path(path);
4781 ret = update_block_group(trans, root, ins->objectid, ins->offset,
4782 1, 0);
4783 if (ret) {
4784 printk(KERN_ERR "btrfs update block group failed for %llu "
4785 "%llu\n", (unsigned long long)ins->objectid,
4786 (unsigned long long)ins->offset);
4787 BUG();
4789 return ret;
4792 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4793 struct btrfs_root *root,
4794 u64 root_objectid, u64 owner,
4795 u64 offset, struct btrfs_key *ins)
4797 int ret;
4799 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4801 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
4802 0, root_objectid, owner, offset,
4803 BTRFS_ADD_DELAYED_EXTENT, NULL);
4804 return ret;
4808 * this is used by the tree logging recovery code. It records that
4809 * an extent has been allocated and makes sure to clear the free
4810 * space cache bits as well
4812 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4813 struct btrfs_root *root,
4814 u64 root_objectid, u64 owner, u64 offset,
4815 struct btrfs_key *ins)
4817 int ret;
4818 struct btrfs_block_group_cache *block_group;
4819 struct btrfs_caching_control *caching_ctl;
4820 u64 start = ins->objectid;
4821 u64 num_bytes = ins->offset;
4823 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
4824 cache_block_group(block_group);
4825 caching_ctl = get_caching_control(block_group);
4827 if (!caching_ctl) {
4828 BUG_ON(!block_group_cache_done(block_group));
4829 ret = btrfs_remove_free_space(block_group, start, num_bytes);
4830 BUG_ON(ret);
4831 } else {
4832 mutex_lock(&caching_ctl->mutex);
4834 if (start >= caching_ctl->progress) {
4835 ret = add_excluded_extent(root, start, num_bytes);
4836 BUG_ON(ret);
4837 } else if (start + num_bytes <= caching_ctl->progress) {
4838 ret = btrfs_remove_free_space(block_group,
4839 start, num_bytes);
4840 BUG_ON(ret);
4841 } else {
4842 num_bytes = caching_ctl->progress - start;
4843 ret = btrfs_remove_free_space(block_group,
4844 start, num_bytes);
4845 BUG_ON(ret);
4847 start = caching_ctl->progress;
4848 num_bytes = ins->objectid + ins->offset -
4849 caching_ctl->progress;
4850 ret = add_excluded_extent(root, start, num_bytes);
4851 BUG_ON(ret);
4854 mutex_unlock(&caching_ctl->mutex);
4855 put_caching_control(caching_ctl);
4858 update_reserved_extents(block_group, ins->offset, 1);
4859 btrfs_put_block_group(block_group);
4860 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
4861 0, owner, offset, ins, 1);
4862 return ret;
4866 * finds a free extent and does all the dirty work required for allocation
4867 * returns the key for the extent through ins, and a tree buffer for
4868 * the first block of the extent through buf.
4870 * returns 0 if everything worked, non-zero otherwise.
4872 static int alloc_tree_block(struct btrfs_trans_handle *trans,
4873 struct btrfs_root *root,
4874 u64 num_bytes, u64 parent, u64 root_objectid,
4875 struct btrfs_disk_key *key, int level,
4876 u64 empty_size, u64 hint_byte, u64 search_end,
4877 struct btrfs_key *ins)
4879 int ret;
4880 u64 flags = 0;
4882 ret = btrfs_reserve_extent(trans, root, num_bytes, num_bytes,
4883 empty_size, hint_byte, search_end,
4884 ins, 0);
4885 if (ret)
4886 return ret;
4888 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4889 if (parent == 0)
4890 parent = ins->objectid;
4891 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4892 } else
4893 BUG_ON(parent > 0);
4895 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4896 struct btrfs_delayed_extent_op *extent_op;
4897 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
4898 BUG_ON(!extent_op);
4899 if (key)
4900 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4901 else
4902 memset(&extent_op->key, 0, sizeof(extent_op->key));
4903 extent_op->flags_to_set = flags;
4904 extent_op->update_key = 1;
4905 extent_op->update_flags = 1;
4906 extent_op->is_data = 0;
4908 ret = btrfs_add_delayed_tree_ref(trans, ins->objectid,
4909 ins->offset, parent, root_objectid,
4910 level, BTRFS_ADD_DELAYED_EXTENT,
4911 extent_op);
4912 BUG_ON(ret);
4915 if (root_objectid == root->root_key.objectid) {
4916 u64 used;
4917 spin_lock(&root->node_lock);
4918 used = btrfs_root_used(&root->root_item) + num_bytes;
4919 btrfs_set_root_used(&root->root_item, used);
4920 spin_unlock(&root->node_lock);
4922 return ret;
4925 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
4926 struct btrfs_root *root,
4927 u64 bytenr, u32 blocksize,
4928 int level)
4930 struct extent_buffer *buf;
4932 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
4933 if (!buf)
4934 return ERR_PTR(-ENOMEM);
4935 btrfs_set_header_generation(buf, trans->transid);
4936 btrfs_set_buffer_lockdep_class(buf, level);
4937 btrfs_tree_lock(buf);
4938 clean_tree_block(trans, root, buf);
4940 btrfs_set_lock_blocking(buf);
4941 btrfs_set_buffer_uptodate(buf);
4943 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4945 * we allow two log transactions at a time, use different
4946 * EXENT bit to differentiate dirty pages.
4948 if (root->log_transid % 2 == 0)
4949 set_extent_dirty(&root->dirty_log_pages, buf->start,
4950 buf->start + buf->len - 1, GFP_NOFS);
4951 else
4952 set_extent_new(&root->dirty_log_pages, buf->start,
4953 buf->start + buf->len - 1, GFP_NOFS);
4954 } else {
4955 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4956 buf->start + buf->len - 1, GFP_NOFS);
4958 trans->blocks_used++;
4959 /* this returns a buffer locked for blocking */
4960 return buf;
4964 * helper function to allocate a block for a given tree
4965 * returns the tree buffer or NULL.
4967 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
4968 struct btrfs_root *root, u32 blocksize,
4969 u64 parent, u64 root_objectid,
4970 struct btrfs_disk_key *key, int level,
4971 u64 hint, u64 empty_size)
4973 struct btrfs_key ins;
4974 int ret;
4975 struct extent_buffer *buf;
4977 ret = alloc_tree_block(trans, root, blocksize, parent, root_objectid,
4978 key, level, empty_size, hint, (u64)-1, &ins);
4979 if (ret) {
4980 BUG_ON(ret > 0);
4981 return ERR_PTR(ret);
4984 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
4985 blocksize, level);
4986 return buf;
4989 struct walk_control {
4990 u64 refs[BTRFS_MAX_LEVEL];
4991 u64 flags[BTRFS_MAX_LEVEL];
4992 struct btrfs_key update_progress;
4993 int stage;
4994 int level;
4995 int shared_level;
4996 int update_ref;
4997 int keep_locks;
4998 int reada_slot;
4999 int reada_count;
5002 #define DROP_REFERENCE 1
5003 #define UPDATE_BACKREF 2
5005 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5006 struct btrfs_root *root,
5007 struct walk_control *wc,
5008 struct btrfs_path *path)
5010 u64 bytenr;
5011 u64 generation;
5012 u64 refs;
5013 u64 flags;
5014 u64 last = 0;
5015 u32 nritems;
5016 u32 blocksize;
5017 struct btrfs_key key;
5018 struct extent_buffer *eb;
5019 int ret;
5020 int slot;
5021 int nread = 0;
5023 if (path->slots[wc->level] < wc->reada_slot) {
5024 wc->reada_count = wc->reada_count * 2 / 3;
5025 wc->reada_count = max(wc->reada_count, 2);
5026 } else {
5027 wc->reada_count = wc->reada_count * 3 / 2;
5028 wc->reada_count = min_t(int, wc->reada_count,
5029 BTRFS_NODEPTRS_PER_BLOCK(root));
5032 eb = path->nodes[wc->level];
5033 nritems = btrfs_header_nritems(eb);
5034 blocksize = btrfs_level_size(root, wc->level - 1);
5036 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5037 if (nread >= wc->reada_count)
5038 break;
5040 cond_resched();
5041 bytenr = btrfs_node_blockptr(eb, slot);
5042 generation = btrfs_node_ptr_generation(eb, slot);
5044 if (slot == path->slots[wc->level])
5045 goto reada;
5047 if (wc->stage == UPDATE_BACKREF &&
5048 generation <= root->root_key.offset)
5049 continue;
5051 /* We don't lock the tree block, it's OK to be racy here */
5052 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5053 &refs, &flags);
5054 BUG_ON(ret);
5055 BUG_ON(refs == 0);
5057 if (wc->stage == DROP_REFERENCE) {
5058 if (refs == 1)
5059 goto reada;
5061 if (wc->level == 1 &&
5062 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5063 continue;
5064 if (!wc->update_ref ||
5065 generation <= root->root_key.offset)
5066 continue;
5067 btrfs_node_key_to_cpu(eb, &key, slot);
5068 ret = btrfs_comp_cpu_keys(&key,
5069 &wc->update_progress);
5070 if (ret < 0)
5071 continue;
5072 } else {
5073 if (wc->level == 1 &&
5074 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5075 continue;
5077 reada:
5078 ret = readahead_tree_block(root, bytenr, blocksize,
5079 generation);
5080 if (ret)
5081 break;
5082 last = bytenr + blocksize;
5083 nread++;
5085 wc->reada_slot = slot;
5089 * hepler to process tree block while walking down the tree.
5091 * when wc->stage == UPDATE_BACKREF, this function updates
5092 * back refs for pointers in the block.
5094 * NOTE: return value 1 means we should stop walking down.
5096 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5097 struct btrfs_root *root,
5098 struct btrfs_path *path,
5099 struct walk_control *wc, int lookup_info)
5101 int level = wc->level;
5102 struct extent_buffer *eb = path->nodes[level];
5103 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5104 int ret;
5106 if (wc->stage == UPDATE_BACKREF &&
5107 btrfs_header_owner(eb) != root->root_key.objectid)
5108 return 1;
5111 * when reference count of tree block is 1, it won't increase
5112 * again. once full backref flag is set, we never clear it.
5114 if (lookup_info &&
5115 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5116 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5117 BUG_ON(!path->locks[level]);
5118 ret = btrfs_lookup_extent_info(trans, root,
5119 eb->start, eb->len,
5120 &wc->refs[level],
5121 &wc->flags[level]);
5122 BUG_ON(ret);
5123 BUG_ON(wc->refs[level] == 0);
5126 if (wc->stage == DROP_REFERENCE) {
5127 if (wc->refs[level] > 1)
5128 return 1;
5130 if (path->locks[level] && !wc->keep_locks) {
5131 btrfs_tree_unlock(eb);
5132 path->locks[level] = 0;
5134 return 0;
5137 /* wc->stage == UPDATE_BACKREF */
5138 if (!(wc->flags[level] & flag)) {
5139 BUG_ON(!path->locks[level]);
5140 ret = btrfs_inc_ref(trans, root, eb, 1);
5141 BUG_ON(ret);
5142 ret = btrfs_dec_ref(trans, root, eb, 0);
5143 BUG_ON(ret);
5144 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5145 eb->len, flag, 0);
5146 BUG_ON(ret);
5147 wc->flags[level] |= flag;
5151 * the block is shared by multiple trees, so it's not good to
5152 * keep the tree lock
5154 if (path->locks[level] && level > 0) {
5155 btrfs_tree_unlock(eb);
5156 path->locks[level] = 0;
5158 return 0;
5162 * hepler to process tree block pointer.
5164 * when wc->stage == DROP_REFERENCE, this function checks
5165 * reference count of the block pointed to. if the block
5166 * is shared and we need update back refs for the subtree
5167 * rooted at the block, this function changes wc->stage to
5168 * UPDATE_BACKREF. if the block is shared and there is no
5169 * need to update back, this function drops the reference
5170 * to the block.
5172 * NOTE: return value 1 means we should stop walking down.
5174 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5175 struct btrfs_root *root,
5176 struct btrfs_path *path,
5177 struct walk_control *wc, int *lookup_info)
5179 u64 bytenr;
5180 u64 generation;
5181 u64 parent;
5182 u32 blocksize;
5183 struct btrfs_key key;
5184 struct extent_buffer *next;
5185 int level = wc->level;
5186 int reada = 0;
5187 int ret = 0;
5189 generation = btrfs_node_ptr_generation(path->nodes[level],
5190 path->slots[level]);
5192 * if the lower level block was created before the snapshot
5193 * was created, we know there is no need to update back refs
5194 * for the subtree
5196 if (wc->stage == UPDATE_BACKREF &&
5197 generation <= root->root_key.offset) {
5198 *lookup_info = 1;
5199 return 1;
5202 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5203 blocksize = btrfs_level_size(root, level - 1);
5205 next = btrfs_find_tree_block(root, bytenr, blocksize);
5206 if (!next) {
5207 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5208 reada = 1;
5210 btrfs_tree_lock(next);
5211 btrfs_set_lock_blocking(next);
5213 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5214 &wc->refs[level - 1],
5215 &wc->flags[level - 1]);
5216 BUG_ON(ret);
5217 BUG_ON(wc->refs[level - 1] == 0);
5218 *lookup_info = 0;
5220 if (wc->stage == DROP_REFERENCE) {
5221 if (wc->refs[level - 1] > 1) {
5222 if (level == 1 &&
5223 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5224 goto skip;
5226 if (!wc->update_ref ||
5227 generation <= root->root_key.offset)
5228 goto skip;
5230 btrfs_node_key_to_cpu(path->nodes[level], &key,
5231 path->slots[level]);
5232 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5233 if (ret < 0)
5234 goto skip;
5236 wc->stage = UPDATE_BACKREF;
5237 wc->shared_level = level - 1;
5239 } else {
5240 if (level == 1 &&
5241 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5242 goto skip;
5245 if (!btrfs_buffer_uptodate(next, generation)) {
5246 btrfs_tree_unlock(next);
5247 free_extent_buffer(next);
5248 next = NULL;
5249 *lookup_info = 1;
5252 if (!next) {
5253 if (reada && level == 1)
5254 reada_walk_down(trans, root, wc, path);
5255 next = read_tree_block(root, bytenr, blocksize, generation);
5256 btrfs_tree_lock(next);
5257 btrfs_set_lock_blocking(next);
5260 level--;
5261 BUG_ON(level != btrfs_header_level(next));
5262 path->nodes[level] = next;
5263 path->slots[level] = 0;
5264 path->locks[level] = 1;
5265 wc->level = level;
5266 if (wc->level == 1)
5267 wc->reada_slot = 0;
5268 return 0;
5269 skip:
5270 wc->refs[level - 1] = 0;
5271 wc->flags[level - 1] = 0;
5272 if (wc->stage == DROP_REFERENCE) {
5273 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5274 parent = path->nodes[level]->start;
5275 } else {
5276 BUG_ON(root->root_key.objectid !=
5277 btrfs_header_owner(path->nodes[level]));
5278 parent = 0;
5281 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
5282 root->root_key.objectid, level - 1, 0);
5283 BUG_ON(ret);
5285 btrfs_tree_unlock(next);
5286 free_extent_buffer(next);
5287 *lookup_info = 1;
5288 return 1;
5292 * hepler to process tree block while walking up the tree.
5294 * when wc->stage == DROP_REFERENCE, this function drops
5295 * reference count on the block.
5297 * when wc->stage == UPDATE_BACKREF, this function changes
5298 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5299 * to UPDATE_BACKREF previously while processing the block.
5301 * NOTE: return value 1 means we should stop walking up.
5303 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5304 struct btrfs_root *root,
5305 struct btrfs_path *path,
5306 struct walk_control *wc)
5308 int ret = 0;
5309 int level = wc->level;
5310 struct extent_buffer *eb = path->nodes[level];
5311 u64 parent = 0;
5313 if (wc->stage == UPDATE_BACKREF) {
5314 BUG_ON(wc->shared_level < level);
5315 if (level < wc->shared_level)
5316 goto out;
5318 ret = find_next_key(path, level + 1, &wc->update_progress);
5319 if (ret > 0)
5320 wc->update_ref = 0;
5322 wc->stage = DROP_REFERENCE;
5323 wc->shared_level = -1;
5324 path->slots[level] = 0;
5327 * check reference count again if the block isn't locked.
5328 * we should start walking down the tree again if reference
5329 * count is one.
5331 if (!path->locks[level]) {
5332 BUG_ON(level == 0);
5333 btrfs_tree_lock(eb);
5334 btrfs_set_lock_blocking(eb);
5335 path->locks[level] = 1;
5337 ret = btrfs_lookup_extent_info(trans, root,
5338 eb->start, eb->len,
5339 &wc->refs[level],
5340 &wc->flags[level]);
5341 BUG_ON(ret);
5342 BUG_ON(wc->refs[level] == 0);
5343 if (wc->refs[level] == 1) {
5344 btrfs_tree_unlock(eb);
5345 path->locks[level] = 0;
5346 return 1;
5351 /* wc->stage == DROP_REFERENCE */
5352 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5354 if (wc->refs[level] == 1) {
5355 if (level == 0) {
5356 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5357 ret = btrfs_dec_ref(trans, root, eb, 1);
5358 else
5359 ret = btrfs_dec_ref(trans, root, eb, 0);
5360 BUG_ON(ret);
5362 /* make block locked assertion in clean_tree_block happy */
5363 if (!path->locks[level] &&
5364 btrfs_header_generation(eb) == trans->transid) {
5365 btrfs_tree_lock(eb);
5366 btrfs_set_lock_blocking(eb);
5367 path->locks[level] = 1;
5369 clean_tree_block(trans, root, eb);
5372 if (eb == root->node) {
5373 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5374 parent = eb->start;
5375 else
5376 BUG_ON(root->root_key.objectid !=
5377 btrfs_header_owner(eb));
5378 } else {
5379 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5380 parent = path->nodes[level + 1]->start;
5381 else
5382 BUG_ON(root->root_key.objectid !=
5383 btrfs_header_owner(path->nodes[level + 1]));
5386 ret = btrfs_free_extent(trans, root, eb->start, eb->len, parent,
5387 root->root_key.objectid, level, 0);
5388 BUG_ON(ret);
5389 out:
5390 wc->refs[level] = 0;
5391 wc->flags[level] = 0;
5392 return ret;
5395 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5396 struct btrfs_root *root,
5397 struct btrfs_path *path,
5398 struct walk_control *wc)
5400 int level = wc->level;
5401 int lookup_info = 1;
5402 int ret;
5404 while (level >= 0) {
5405 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5406 if (ret > 0)
5407 break;
5409 if (level == 0)
5410 break;
5412 if (path->slots[level] >=
5413 btrfs_header_nritems(path->nodes[level]))
5414 break;
5416 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5417 if (ret > 0) {
5418 path->slots[level]++;
5419 continue;
5421 level = wc->level;
5423 return 0;
5426 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5427 struct btrfs_root *root,
5428 struct btrfs_path *path,
5429 struct walk_control *wc, int max_level)
5431 int level = wc->level;
5432 int ret;
5434 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5435 while (level < max_level && path->nodes[level]) {
5436 wc->level = level;
5437 if (path->slots[level] + 1 <
5438 btrfs_header_nritems(path->nodes[level])) {
5439 path->slots[level]++;
5440 return 0;
5441 } else {
5442 ret = walk_up_proc(trans, root, path, wc);
5443 if (ret > 0)
5444 return 0;
5446 if (path->locks[level]) {
5447 btrfs_tree_unlock(path->nodes[level]);
5448 path->locks[level] = 0;
5450 free_extent_buffer(path->nodes[level]);
5451 path->nodes[level] = NULL;
5452 level++;
5455 return 1;
5459 * drop a subvolume tree.
5461 * this function traverses the tree freeing any blocks that only
5462 * referenced by the tree.
5464 * when a shared tree block is found. this function decreases its
5465 * reference count by one. if update_ref is true, this function
5466 * also make sure backrefs for the shared block and all lower level
5467 * blocks are properly updated.
5469 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref)
5471 struct btrfs_path *path;
5472 struct btrfs_trans_handle *trans;
5473 struct btrfs_root *tree_root = root->fs_info->tree_root;
5474 struct btrfs_root_item *root_item = &root->root_item;
5475 struct walk_control *wc;
5476 struct btrfs_key key;
5477 int err = 0;
5478 int ret;
5479 int level;
5481 path = btrfs_alloc_path();
5482 BUG_ON(!path);
5484 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5485 BUG_ON(!wc);
5487 trans = btrfs_start_transaction(tree_root, 1);
5489 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5490 level = btrfs_header_level(root->node);
5491 path->nodes[level] = btrfs_lock_root_node(root);
5492 btrfs_set_lock_blocking(path->nodes[level]);
5493 path->slots[level] = 0;
5494 path->locks[level] = 1;
5495 memset(&wc->update_progress, 0,
5496 sizeof(wc->update_progress));
5497 } else {
5498 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5499 memcpy(&wc->update_progress, &key,
5500 sizeof(wc->update_progress));
5502 level = root_item->drop_level;
5503 BUG_ON(level == 0);
5504 path->lowest_level = level;
5505 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5506 path->lowest_level = 0;
5507 if (ret < 0) {
5508 err = ret;
5509 goto out;
5511 WARN_ON(ret > 0);
5514 * unlock our path, this is safe because only this
5515 * function is allowed to delete this snapshot
5517 btrfs_unlock_up_safe(path, 0);
5519 level = btrfs_header_level(root->node);
5520 while (1) {
5521 btrfs_tree_lock(path->nodes[level]);
5522 btrfs_set_lock_blocking(path->nodes[level]);
5524 ret = btrfs_lookup_extent_info(trans, root,
5525 path->nodes[level]->start,
5526 path->nodes[level]->len,
5527 &wc->refs[level],
5528 &wc->flags[level]);
5529 BUG_ON(ret);
5530 BUG_ON(wc->refs[level] == 0);
5532 if (level == root_item->drop_level)
5533 break;
5535 btrfs_tree_unlock(path->nodes[level]);
5536 WARN_ON(wc->refs[level] != 1);
5537 level--;
5541 wc->level = level;
5542 wc->shared_level = -1;
5543 wc->stage = DROP_REFERENCE;
5544 wc->update_ref = update_ref;
5545 wc->keep_locks = 0;
5546 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5548 while (1) {
5549 ret = walk_down_tree(trans, root, path, wc);
5550 if (ret < 0) {
5551 err = ret;
5552 break;
5555 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5556 if (ret < 0) {
5557 err = ret;
5558 break;
5561 if (ret > 0) {
5562 BUG_ON(wc->stage != DROP_REFERENCE);
5563 break;
5566 if (wc->stage == DROP_REFERENCE) {
5567 level = wc->level;
5568 btrfs_node_key(path->nodes[level],
5569 &root_item->drop_progress,
5570 path->slots[level]);
5571 root_item->drop_level = level;
5574 BUG_ON(wc->level == 0);
5575 if (trans->transaction->in_commit ||
5576 trans->transaction->delayed_refs.flushing) {
5577 ret = btrfs_update_root(trans, tree_root,
5578 &root->root_key,
5579 root_item);
5580 BUG_ON(ret);
5582 btrfs_end_transaction(trans, tree_root);
5583 trans = btrfs_start_transaction(tree_root, 1);
5584 } else {
5585 unsigned long update;
5586 update = trans->delayed_ref_updates;
5587 trans->delayed_ref_updates = 0;
5588 if (update)
5589 btrfs_run_delayed_refs(trans, tree_root,
5590 update);
5593 btrfs_release_path(root, path);
5594 BUG_ON(err);
5596 ret = btrfs_del_root(trans, tree_root, &root->root_key);
5597 BUG_ON(ret);
5599 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5600 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
5601 NULL, NULL);
5602 BUG_ON(ret < 0);
5603 if (ret > 0) {
5604 ret = btrfs_del_orphan_item(trans, tree_root,
5605 root->root_key.objectid);
5606 BUG_ON(ret);
5610 if (root->in_radix) {
5611 btrfs_free_fs_root(tree_root->fs_info, root);
5612 } else {
5613 free_extent_buffer(root->node);
5614 free_extent_buffer(root->commit_root);
5615 kfree(root);
5617 out:
5618 btrfs_end_transaction(trans, tree_root);
5619 kfree(wc);
5620 btrfs_free_path(path);
5621 return err;
5625 * drop subtree rooted at tree block 'node'.
5627 * NOTE: this function will unlock and release tree block 'node'
5629 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5630 struct btrfs_root *root,
5631 struct extent_buffer *node,
5632 struct extent_buffer *parent)
5634 struct btrfs_path *path;
5635 struct walk_control *wc;
5636 int level;
5637 int parent_level;
5638 int ret = 0;
5639 int wret;
5641 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5643 path = btrfs_alloc_path();
5644 BUG_ON(!path);
5646 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5647 BUG_ON(!wc);
5649 btrfs_assert_tree_locked(parent);
5650 parent_level = btrfs_header_level(parent);
5651 extent_buffer_get(parent);
5652 path->nodes[parent_level] = parent;
5653 path->slots[parent_level] = btrfs_header_nritems(parent);
5655 btrfs_assert_tree_locked(node);
5656 level = btrfs_header_level(node);
5657 path->nodes[level] = node;
5658 path->slots[level] = 0;
5659 path->locks[level] = 1;
5661 wc->refs[parent_level] = 1;
5662 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5663 wc->level = level;
5664 wc->shared_level = -1;
5665 wc->stage = DROP_REFERENCE;
5666 wc->update_ref = 0;
5667 wc->keep_locks = 1;
5668 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5670 while (1) {
5671 wret = walk_down_tree(trans, root, path, wc);
5672 if (wret < 0) {
5673 ret = wret;
5674 break;
5677 wret = walk_up_tree(trans, root, path, wc, parent_level);
5678 if (wret < 0)
5679 ret = wret;
5680 if (wret != 0)
5681 break;
5684 kfree(wc);
5685 btrfs_free_path(path);
5686 return ret;
5689 #if 0
5690 static unsigned long calc_ra(unsigned long start, unsigned long last,
5691 unsigned long nr)
5693 return min(last, start + nr - 1);
5696 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
5697 u64 len)
5699 u64 page_start;
5700 u64 page_end;
5701 unsigned long first_index;
5702 unsigned long last_index;
5703 unsigned long i;
5704 struct page *page;
5705 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5706 struct file_ra_state *ra;
5707 struct btrfs_ordered_extent *ordered;
5708 unsigned int total_read = 0;
5709 unsigned int total_dirty = 0;
5710 int ret = 0;
5712 ra = kzalloc(sizeof(*ra), GFP_NOFS);
5714 mutex_lock(&inode->i_mutex);
5715 first_index = start >> PAGE_CACHE_SHIFT;
5716 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
5718 /* make sure the dirty trick played by the caller work */
5719 ret = invalidate_inode_pages2_range(inode->i_mapping,
5720 first_index, last_index);
5721 if (ret)
5722 goto out_unlock;
5724 file_ra_state_init(ra, inode->i_mapping);
5726 for (i = first_index ; i <= last_index; i++) {
5727 if (total_read % ra->ra_pages == 0) {
5728 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
5729 calc_ra(i, last_index, ra->ra_pages));
5731 total_read++;
5732 again:
5733 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
5734 BUG_ON(1);
5735 page = grab_cache_page(inode->i_mapping, i);
5736 if (!page) {
5737 ret = -ENOMEM;
5738 goto out_unlock;
5740 if (!PageUptodate(page)) {
5741 btrfs_readpage(NULL, page);
5742 lock_page(page);
5743 if (!PageUptodate(page)) {
5744 unlock_page(page);
5745 page_cache_release(page);
5746 ret = -EIO;
5747 goto out_unlock;
5750 wait_on_page_writeback(page);
5752 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
5753 page_end = page_start + PAGE_CACHE_SIZE - 1;
5754 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5756 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5757 if (ordered) {
5758 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5759 unlock_page(page);
5760 page_cache_release(page);
5761 btrfs_start_ordered_extent(inode, ordered, 1);
5762 btrfs_put_ordered_extent(ordered);
5763 goto again;
5765 set_page_extent_mapped(page);
5767 if (i == first_index)
5768 set_extent_bits(io_tree, page_start, page_end,
5769 EXTENT_BOUNDARY, GFP_NOFS);
5770 btrfs_set_extent_delalloc(inode, page_start, page_end);
5772 set_page_dirty(page);
5773 total_dirty++;
5775 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5776 unlock_page(page);
5777 page_cache_release(page);
5780 out_unlock:
5781 kfree(ra);
5782 mutex_unlock(&inode->i_mutex);
5783 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
5784 return ret;
5787 static noinline int relocate_data_extent(struct inode *reloc_inode,
5788 struct btrfs_key *extent_key,
5789 u64 offset)
5791 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
5792 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
5793 struct extent_map *em;
5794 u64 start = extent_key->objectid - offset;
5795 u64 end = start + extent_key->offset - 1;
5797 em = alloc_extent_map(GFP_NOFS);
5798 BUG_ON(!em || IS_ERR(em));
5800 em->start = start;
5801 em->len = extent_key->offset;
5802 em->block_len = extent_key->offset;
5803 em->block_start = extent_key->objectid;
5804 em->bdev = root->fs_info->fs_devices->latest_bdev;
5805 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5807 /* setup extent map to cheat btrfs_readpage */
5808 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
5809 while (1) {
5810 int ret;
5811 write_lock(&em_tree->lock);
5812 ret = add_extent_mapping(em_tree, em);
5813 write_unlock(&em_tree->lock);
5814 if (ret != -EEXIST) {
5815 free_extent_map(em);
5816 break;
5818 btrfs_drop_extent_cache(reloc_inode, start, end, 0);
5820 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
5822 return relocate_inode_pages(reloc_inode, start, extent_key->offset);
5825 struct btrfs_ref_path {
5826 u64 extent_start;
5827 u64 nodes[BTRFS_MAX_LEVEL];
5828 u64 root_objectid;
5829 u64 root_generation;
5830 u64 owner_objectid;
5831 u32 num_refs;
5832 int lowest_level;
5833 int current_level;
5834 int shared_level;
5836 struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
5837 u64 new_nodes[BTRFS_MAX_LEVEL];
5840 struct disk_extent {
5841 u64 ram_bytes;
5842 u64 disk_bytenr;
5843 u64 disk_num_bytes;
5844 u64 offset;
5845 u64 num_bytes;
5846 u8 compression;
5847 u8 encryption;
5848 u16 other_encoding;
5851 static int is_cowonly_root(u64 root_objectid)
5853 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
5854 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
5855 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
5856 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
5857 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
5858 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
5859 return 1;
5860 return 0;
5863 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
5864 struct btrfs_root *extent_root,
5865 struct btrfs_ref_path *ref_path,
5866 int first_time)
5868 struct extent_buffer *leaf;
5869 struct btrfs_path *path;
5870 struct btrfs_extent_ref *ref;
5871 struct btrfs_key key;
5872 struct btrfs_key found_key;
5873 u64 bytenr;
5874 u32 nritems;
5875 int level;
5876 int ret = 1;
5878 path = btrfs_alloc_path();
5879 if (!path)
5880 return -ENOMEM;
5882 if (first_time) {
5883 ref_path->lowest_level = -1;
5884 ref_path->current_level = -1;
5885 ref_path->shared_level = -1;
5886 goto walk_up;
5888 walk_down:
5889 level = ref_path->current_level - 1;
5890 while (level >= -1) {
5891 u64 parent;
5892 if (level < ref_path->lowest_level)
5893 break;
5895 if (level >= 0)
5896 bytenr = ref_path->nodes[level];
5897 else
5898 bytenr = ref_path->extent_start;
5899 BUG_ON(bytenr == 0);
5901 parent = ref_path->nodes[level + 1];
5902 ref_path->nodes[level + 1] = 0;
5903 ref_path->current_level = level;
5904 BUG_ON(parent == 0);
5906 key.objectid = bytenr;
5907 key.offset = parent + 1;
5908 key.type = BTRFS_EXTENT_REF_KEY;
5910 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
5911 if (ret < 0)
5912 goto out;
5913 BUG_ON(ret == 0);
5915 leaf = path->nodes[0];
5916 nritems = btrfs_header_nritems(leaf);
5917 if (path->slots[0] >= nritems) {
5918 ret = btrfs_next_leaf(extent_root, path);
5919 if (ret < 0)
5920 goto out;
5921 if (ret > 0)
5922 goto next;
5923 leaf = path->nodes[0];
5926 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5927 if (found_key.objectid == bytenr &&
5928 found_key.type == BTRFS_EXTENT_REF_KEY) {
5929 if (level < ref_path->shared_level)
5930 ref_path->shared_level = level;
5931 goto found;
5933 next:
5934 level--;
5935 btrfs_release_path(extent_root, path);
5936 cond_resched();
5938 /* reached lowest level */
5939 ret = 1;
5940 goto out;
5941 walk_up:
5942 level = ref_path->current_level;
5943 while (level < BTRFS_MAX_LEVEL - 1) {
5944 u64 ref_objectid;
5946 if (level >= 0)
5947 bytenr = ref_path->nodes[level];
5948 else
5949 bytenr = ref_path->extent_start;
5951 BUG_ON(bytenr == 0);
5953 key.objectid = bytenr;
5954 key.offset = 0;
5955 key.type = BTRFS_EXTENT_REF_KEY;
5957 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
5958 if (ret < 0)
5959 goto out;
5961 leaf = path->nodes[0];
5962 nritems = btrfs_header_nritems(leaf);
5963 if (path->slots[0] >= nritems) {
5964 ret = btrfs_next_leaf(extent_root, path);
5965 if (ret < 0)
5966 goto out;
5967 if (ret > 0) {
5968 /* the extent was freed by someone */
5969 if (ref_path->lowest_level == level)
5970 goto out;
5971 btrfs_release_path(extent_root, path);
5972 goto walk_down;
5974 leaf = path->nodes[0];
5977 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5978 if (found_key.objectid != bytenr ||
5979 found_key.type != BTRFS_EXTENT_REF_KEY) {
5980 /* the extent was freed by someone */
5981 if (ref_path->lowest_level == level) {
5982 ret = 1;
5983 goto out;
5985 btrfs_release_path(extent_root, path);
5986 goto walk_down;
5988 found:
5989 ref = btrfs_item_ptr(leaf, path->slots[0],
5990 struct btrfs_extent_ref);
5991 ref_objectid = btrfs_ref_objectid(leaf, ref);
5992 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5993 if (first_time) {
5994 level = (int)ref_objectid;
5995 BUG_ON(level >= BTRFS_MAX_LEVEL);
5996 ref_path->lowest_level = level;
5997 ref_path->current_level = level;
5998 ref_path->nodes[level] = bytenr;
5999 } else {
6000 WARN_ON(ref_objectid != level);
6002 } else {
6003 WARN_ON(level != -1);
6005 first_time = 0;
6007 if (ref_path->lowest_level == level) {
6008 ref_path->owner_objectid = ref_objectid;
6009 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6013 * the block is tree root or the block isn't in reference
6014 * counted tree.
6016 if (found_key.objectid == found_key.offset ||
6017 is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6018 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6019 ref_path->root_generation =
6020 btrfs_ref_generation(leaf, ref);
6021 if (level < 0) {
6022 /* special reference from the tree log */
6023 ref_path->nodes[0] = found_key.offset;
6024 ref_path->current_level = 0;
6026 ret = 0;
6027 goto out;
6030 level++;
6031 BUG_ON(ref_path->nodes[level] != 0);
6032 ref_path->nodes[level] = found_key.offset;
6033 ref_path->current_level = level;
6036 * the reference was created in the running transaction,
6037 * no need to continue walking up.
6039 if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6040 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6041 ref_path->root_generation =
6042 btrfs_ref_generation(leaf, ref);
6043 ret = 0;
6044 goto out;
6047 btrfs_release_path(extent_root, path);
6048 cond_resched();
6050 /* reached max tree level, but no tree root found. */
6051 BUG();
6052 out:
6053 btrfs_free_path(path);
6054 return ret;
6057 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6058 struct btrfs_root *extent_root,
6059 struct btrfs_ref_path *ref_path,
6060 u64 extent_start)
6062 memset(ref_path, 0, sizeof(*ref_path));
6063 ref_path->extent_start = extent_start;
6065 return __next_ref_path(trans, extent_root, ref_path, 1);
6068 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6069 struct btrfs_root *extent_root,
6070 struct btrfs_ref_path *ref_path)
6072 return __next_ref_path(trans, extent_root, ref_path, 0);
6075 static noinline int get_new_locations(struct inode *reloc_inode,
6076 struct btrfs_key *extent_key,
6077 u64 offset, int no_fragment,
6078 struct disk_extent **extents,
6079 int *nr_extents)
6081 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6082 struct btrfs_path *path;
6083 struct btrfs_file_extent_item *fi;
6084 struct extent_buffer *leaf;
6085 struct disk_extent *exts = *extents;
6086 struct btrfs_key found_key;
6087 u64 cur_pos;
6088 u64 last_byte;
6089 u32 nritems;
6090 int nr = 0;
6091 int max = *nr_extents;
6092 int ret;
6094 WARN_ON(!no_fragment && *extents);
6095 if (!exts) {
6096 max = 1;
6097 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6098 if (!exts)
6099 return -ENOMEM;
6102 path = btrfs_alloc_path();
6103 BUG_ON(!path);
6105 cur_pos = extent_key->objectid - offset;
6106 last_byte = extent_key->objectid + extent_key->offset;
6107 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6108 cur_pos, 0);
6109 if (ret < 0)
6110 goto out;
6111 if (ret > 0) {
6112 ret = -ENOENT;
6113 goto out;
6116 while (1) {
6117 leaf = path->nodes[0];
6118 nritems = btrfs_header_nritems(leaf);
6119 if (path->slots[0] >= nritems) {
6120 ret = btrfs_next_leaf(root, path);
6121 if (ret < 0)
6122 goto out;
6123 if (ret > 0)
6124 break;
6125 leaf = path->nodes[0];
6128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6129 if (found_key.offset != cur_pos ||
6130 found_key.type != BTRFS_EXTENT_DATA_KEY ||
6131 found_key.objectid != reloc_inode->i_ino)
6132 break;
6134 fi = btrfs_item_ptr(leaf, path->slots[0],
6135 struct btrfs_file_extent_item);
6136 if (btrfs_file_extent_type(leaf, fi) !=
6137 BTRFS_FILE_EXTENT_REG ||
6138 btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6139 break;
6141 if (nr == max) {
6142 struct disk_extent *old = exts;
6143 max *= 2;
6144 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6145 memcpy(exts, old, sizeof(*exts) * nr);
6146 if (old != *extents)
6147 kfree(old);
6150 exts[nr].disk_bytenr =
6151 btrfs_file_extent_disk_bytenr(leaf, fi);
6152 exts[nr].disk_num_bytes =
6153 btrfs_file_extent_disk_num_bytes(leaf, fi);
6154 exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6155 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6156 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6157 exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6158 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6159 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6160 fi);
6161 BUG_ON(exts[nr].offset > 0);
6162 BUG_ON(exts[nr].compression || exts[nr].encryption);
6163 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6165 cur_pos += exts[nr].num_bytes;
6166 nr++;
6168 if (cur_pos + offset >= last_byte)
6169 break;
6171 if (no_fragment) {
6172 ret = 1;
6173 goto out;
6175 path->slots[0]++;
6178 BUG_ON(cur_pos + offset > last_byte);
6179 if (cur_pos + offset < last_byte) {
6180 ret = -ENOENT;
6181 goto out;
6183 ret = 0;
6184 out:
6185 btrfs_free_path(path);
6186 if (ret) {
6187 if (exts != *extents)
6188 kfree(exts);
6189 } else {
6190 *extents = exts;
6191 *nr_extents = nr;
6193 return ret;
6196 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6197 struct btrfs_root *root,
6198 struct btrfs_path *path,
6199 struct btrfs_key *extent_key,
6200 struct btrfs_key *leaf_key,
6201 struct btrfs_ref_path *ref_path,
6202 struct disk_extent *new_extents,
6203 int nr_extents)
6205 struct extent_buffer *leaf;
6206 struct btrfs_file_extent_item *fi;
6207 struct inode *inode = NULL;
6208 struct btrfs_key key;
6209 u64 lock_start = 0;
6210 u64 lock_end = 0;
6211 u64 num_bytes;
6212 u64 ext_offset;
6213 u64 search_end = (u64)-1;
6214 u32 nritems;
6215 int nr_scaned = 0;
6216 int extent_locked = 0;
6217 int extent_type;
6218 int ret;
6220 memcpy(&key, leaf_key, sizeof(key));
6221 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6222 if (key.objectid < ref_path->owner_objectid ||
6223 (key.objectid == ref_path->owner_objectid &&
6224 key.type < BTRFS_EXTENT_DATA_KEY)) {
6225 key.objectid = ref_path->owner_objectid;
6226 key.type = BTRFS_EXTENT_DATA_KEY;
6227 key.offset = 0;
6231 while (1) {
6232 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
6233 if (ret < 0)
6234 goto out;
6236 leaf = path->nodes[0];
6237 nritems = btrfs_header_nritems(leaf);
6238 next:
6239 if (extent_locked && ret > 0) {
6241 * the file extent item was modified by someone
6242 * before the extent got locked.
6244 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6245 lock_end, GFP_NOFS);
6246 extent_locked = 0;
6249 if (path->slots[0] >= nritems) {
6250 if (++nr_scaned > 2)
6251 break;
6253 BUG_ON(extent_locked);
6254 ret = btrfs_next_leaf(root, path);
6255 if (ret < 0)
6256 goto out;
6257 if (ret > 0)
6258 break;
6259 leaf = path->nodes[0];
6260 nritems = btrfs_header_nritems(leaf);
6263 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
6265 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6266 if ((key.objectid > ref_path->owner_objectid) ||
6267 (key.objectid == ref_path->owner_objectid &&
6268 key.type > BTRFS_EXTENT_DATA_KEY) ||
6269 key.offset >= search_end)
6270 break;
6273 if (inode && key.objectid != inode->i_ino) {
6274 BUG_ON(extent_locked);
6275 btrfs_release_path(root, path);
6276 mutex_unlock(&inode->i_mutex);
6277 iput(inode);
6278 inode = NULL;
6279 continue;
6282 if (key.type != BTRFS_EXTENT_DATA_KEY) {
6283 path->slots[0]++;
6284 ret = 1;
6285 goto next;
6287 fi = btrfs_item_ptr(leaf, path->slots[0],
6288 struct btrfs_file_extent_item);
6289 extent_type = btrfs_file_extent_type(leaf, fi);
6290 if ((extent_type != BTRFS_FILE_EXTENT_REG &&
6291 extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
6292 (btrfs_file_extent_disk_bytenr(leaf, fi) !=
6293 extent_key->objectid)) {
6294 path->slots[0]++;
6295 ret = 1;
6296 goto next;
6299 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6300 ext_offset = btrfs_file_extent_offset(leaf, fi);
6302 if (search_end == (u64)-1) {
6303 search_end = key.offset - ext_offset +
6304 btrfs_file_extent_ram_bytes(leaf, fi);
6307 if (!extent_locked) {
6308 lock_start = key.offset;
6309 lock_end = lock_start + num_bytes - 1;
6310 } else {
6311 if (lock_start > key.offset ||
6312 lock_end + 1 < key.offset + num_bytes) {
6313 unlock_extent(&BTRFS_I(inode)->io_tree,
6314 lock_start, lock_end, GFP_NOFS);
6315 extent_locked = 0;
6319 if (!inode) {
6320 btrfs_release_path(root, path);
6322 inode = btrfs_iget_locked(root->fs_info->sb,
6323 key.objectid, root);
6324 if (inode->i_state & I_NEW) {
6325 BTRFS_I(inode)->root = root;
6326 BTRFS_I(inode)->location.objectid =
6327 key.objectid;
6328 BTRFS_I(inode)->location.type =
6329 BTRFS_INODE_ITEM_KEY;
6330 BTRFS_I(inode)->location.offset = 0;
6331 btrfs_read_locked_inode(inode);
6332 unlock_new_inode(inode);
6335 * some code call btrfs_commit_transaction while
6336 * holding the i_mutex, so we can't use mutex_lock
6337 * here.
6339 if (is_bad_inode(inode) ||
6340 !mutex_trylock(&inode->i_mutex)) {
6341 iput(inode);
6342 inode = NULL;
6343 key.offset = (u64)-1;
6344 goto skip;
6348 if (!extent_locked) {
6349 struct btrfs_ordered_extent *ordered;
6351 btrfs_release_path(root, path);
6353 lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6354 lock_end, GFP_NOFS);
6355 ordered = btrfs_lookup_first_ordered_extent(inode,
6356 lock_end);
6357 if (ordered &&
6358 ordered->file_offset <= lock_end &&
6359 ordered->file_offset + ordered->len > lock_start) {
6360 unlock_extent(&BTRFS_I(inode)->io_tree,
6361 lock_start, lock_end, GFP_NOFS);
6362 btrfs_start_ordered_extent(inode, ordered, 1);
6363 btrfs_put_ordered_extent(ordered);
6364 key.offset += num_bytes;
6365 goto skip;
6367 if (ordered)
6368 btrfs_put_ordered_extent(ordered);
6370 extent_locked = 1;
6371 continue;
6374 if (nr_extents == 1) {
6375 /* update extent pointer in place */
6376 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6377 new_extents[0].disk_bytenr);
6378 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6379 new_extents[0].disk_num_bytes);
6380 btrfs_mark_buffer_dirty(leaf);
6382 btrfs_drop_extent_cache(inode, key.offset,
6383 key.offset + num_bytes - 1, 0);
6385 ret = btrfs_inc_extent_ref(trans, root,
6386 new_extents[0].disk_bytenr,
6387 new_extents[0].disk_num_bytes,
6388 leaf->start,
6389 root->root_key.objectid,
6390 trans->transid,
6391 key.objectid);
6392 BUG_ON(ret);
6394 ret = btrfs_free_extent(trans, root,
6395 extent_key->objectid,
6396 extent_key->offset,
6397 leaf->start,
6398 btrfs_header_owner(leaf),
6399 btrfs_header_generation(leaf),
6400 key.objectid, 0);
6401 BUG_ON(ret);
6403 btrfs_release_path(root, path);
6404 key.offset += num_bytes;
6405 } else {
6406 BUG_ON(1);
6407 #if 0
6408 u64 alloc_hint;
6409 u64 extent_len;
6410 int i;
6412 * drop old extent pointer at first, then insert the
6413 * new pointers one bye one
6415 btrfs_release_path(root, path);
6416 ret = btrfs_drop_extents(trans, root, inode, key.offset,
6417 key.offset + num_bytes,
6418 key.offset, &alloc_hint);
6419 BUG_ON(ret);
6421 for (i = 0; i < nr_extents; i++) {
6422 if (ext_offset >= new_extents[i].num_bytes) {
6423 ext_offset -= new_extents[i].num_bytes;
6424 continue;
6426 extent_len = min(new_extents[i].num_bytes -
6427 ext_offset, num_bytes);
6429 ret = btrfs_insert_empty_item(trans, root,
6430 path, &key,
6431 sizeof(*fi));
6432 BUG_ON(ret);
6434 leaf = path->nodes[0];
6435 fi = btrfs_item_ptr(leaf, path->slots[0],
6436 struct btrfs_file_extent_item);
6437 btrfs_set_file_extent_generation(leaf, fi,
6438 trans->transid);
6439 btrfs_set_file_extent_type(leaf, fi,
6440 BTRFS_FILE_EXTENT_REG);
6441 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6442 new_extents[i].disk_bytenr);
6443 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6444 new_extents[i].disk_num_bytes);
6445 btrfs_set_file_extent_ram_bytes(leaf, fi,
6446 new_extents[i].ram_bytes);
6448 btrfs_set_file_extent_compression(leaf, fi,
6449 new_extents[i].compression);
6450 btrfs_set_file_extent_encryption(leaf, fi,
6451 new_extents[i].encryption);
6452 btrfs_set_file_extent_other_encoding(leaf, fi,
6453 new_extents[i].other_encoding);
6455 btrfs_set_file_extent_num_bytes(leaf, fi,
6456 extent_len);
6457 ext_offset += new_extents[i].offset;
6458 btrfs_set_file_extent_offset(leaf, fi,
6459 ext_offset);
6460 btrfs_mark_buffer_dirty(leaf);
6462 btrfs_drop_extent_cache(inode, key.offset,
6463 key.offset + extent_len - 1, 0);
6465 ret = btrfs_inc_extent_ref(trans, root,
6466 new_extents[i].disk_bytenr,
6467 new_extents[i].disk_num_bytes,
6468 leaf->start,
6469 root->root_key.objectid,
6470 trans->transid, key.objectid);
6471 BUG_ON(ret);
6472 btrfs_release_path(root, path);
6474 inode_add_bytes(inode, extent_len);
6476 ext_offset = 0;
6477 num_bytes -= extent_len;
6478 key.offset += extent_len;
6480 if (num_bytes == 0)
6481 break;
6483 BUG_ON(i >= nr_extents);
6484 #endif
6487 if (extent_locked) {
6488 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6489 lock_end, GFP_NOFS);
6490 extent_locked = 0;
6492 skip:
6493 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
6494 key.offset >= search_end)
6495 break;
6497 cond_resched();
6499 ret = 0;
6500 out:
6501 btrfs_release_path(root, path);
6502 if (inode) {
6503 mutex_unlock(&inode->i_mutex);
6504 if (extent_locked) {
6505 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6506 lock_end, GFP_NOFS);
6508 iput(inode);
6510 return ret;
6513 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
6514 struct btrfs_root *root,
6515 struct extent_buffer *buf, u64 orig_start)
6517 int level;
6518 int ret;
6520 BUG_ON(btrfs_header_generation(buf) != trans->transid);
6521 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6523 level = btrfs_header_level(buf);
6524 if (level == 0) {
6525 struct btrfs_leaf_ref *ref;
6526 struct btrfs_leaf_ref *orig_ref;
6528 orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
6529 if (!orig_ref)
6530 return -ENOENT;
6532 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
6533 if (!ref) {
6534 btrfs_free_leaf_ref(root, orig_ref);
6535 return -ENOMEM;
6538 ref->nritems = orig_ref->nritems;
6539 memcpy(ref->extents, orig_ref->extents,
6540 sizeof(ref->extents[0]) * ref->nritems);
6542 btrfs_free_leaf_ref(root, orig_ref);
6544 ref->root_gen = trans->transid;
6545 ref->bytenr = buf->start;
6546 ref->owner = btrfs_header_owner(buf);
6547 ref->generation = btrfs_header_generation(buf);
6549 ret = btrfs_add_leaf_ref(root, ref, 0);
6550 WARN_ON(ret);
6551 btrfs_free_leaf_ref(root, ref);
6553 return 0;
6556 static noinline int invalidate_extent_cache(struct btrfs_root *root,
6557 struct extent_buffer *leaf,
6558 struct btrfs_block_group_cache *group,
6559 struct btrfs_root *target_root)
6561 struct btrfs_key key;
6562 struct inode *inode = NULL;
6563 struct btrfs_file_extent_item *fi;
6564 u64 num_bytes;
6565 u64 skip_objectid = 0;
6566 u32 nritems;
6567 u32 i;
6569 nritems = btrfs_header_nritems(leaf);
6570 for (i = 0; i < nritems; i++) {
6571 btrfs_item_key_to_cpu(leaf, &key, i);
6572 if (key.objectid == skip_objectid ||
6573 key.type != BTRFS_EXTENT_DATA_KEY)
6574 continue;
6575 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6576 if (btrfs_file_extent_type(leaf, fi) ==
6577 BTRFS_FILE_EXTENT_INLINE)
6578 continue;
6579 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6580 continue;
6581 if (!inode || inode->i_ino != key.objectid) {
6582 iput(inode);
6583 inode = btrfs_ilookup(target_root->fs_info->sb,
6584 key.objectid, target_root, 1);
6586 if (!inode) {
6587 skip_objectid = key.objectid;
6588 continue;
6590 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6592 lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
6593 key.offset + num_bytes - 1, GFP_NOFS);
6594 btrfs_drop_extent_cache(inode, key.offset,
6595 key.offset + num_bytes - 1, 1);
6596 unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
6597 key.offset + num_bytes - 1, GFP_NOFS);
6598 cond_resched();
6600 iput(inode);
6601 return 0;
6604 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
6605 struct btrfs_root *root,
6606 struct extent_buffer *leaf,
6607 struct btrfs_block_group_cache *group,
6608 struct inode *reloc_inode)
6610 struct btrfs_key key;
6611 struct btrfs_key extent_key;
6612 struct btrfs_file_extent_item *fi;
6613 struct btrfs_leaf_ref *ref;
6614 struct disk_extent *new_extent;
6615 u64 bytenr;
6616 u64 num_bytes;
6617 u32 nritems;
6618 u32 i;
6619 int ext_index;
6620 int nr_extent;
6621 int ret;
6623 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
6624 BUG_ON(!new_extent);
6626 ref = btrfs_lookup_leaf_ref(root, leaf->start);
6627 BUG_ON(!ref);
6629 ext_index = -1;
6630 nritems = btrfs_header_nritems(leaf);
6631 for (i = 0; i < nritems; i++) {
6632 btrfs_item_key_to_cpu(leaf, &key, i);
6633 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
6634 continue;
6635 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6636 if (btrfs_file_extent_type(leaf, fi) ==
6637 BTRFS_FILE_EXTENT_INLINE)
6638 continue;
6639 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6640 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
6641 if (bytenr == 0)
6642 continue;
6644 ext_index++;
6645 if (bytenr >= group->key.objectid + group->key.offset ||
6646 bytenr + num_bytes <= group->key.objectid)
6647 continue;
6649 extent_key.objectid = bytenr;
6650 extent_key.offset = num_bytes;
6651 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
6652 nr_extent = 1;
6653 ret = get_new_locations(reloc_inode, &extent_key,
6654 group->key.objectid, 1,
6655 &new_extent, &nr_extent);
6656 if (ret > 0)
6657 continue;
6658 BUG_ON(ret < 0);
6660 BUG_ON(ref->extents[ext_index].bytenr != bytenr);
6661 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
6662 ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
6663 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
6665 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6666 new_extent->disk_bytenr);
6667 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6668 new_extent->disk_num_bytes);
6669 btrfs_mark_buffer_dirty(leaf);
6671 ret = btrfs_inc_extent_ref(trans, root,
6672 new_extent->disk_bytenr,
6673 new_extent->disk_num_bytes,
6674 leaf->start,
6675 root->root_key.objectid,
6676 trans->transid, key.objectid);
6677 BUG_ON(ret);
6679 ret = btrfs_free_extent(trans, root,
6680 bytenr, num_bytes, leaf->start,
6681 btrfs_header_owner(leaf),
6682 btrfs_header_generation(leaf),
6683 key.objectid, 0);
6684 BUG_ON(ret);
6685 cond_resched();
6687 kfree(new_extent);
6688 BUG_ON(ext_index + 1 != ref->nritems);
6689 btrfs_free_leaf_ref(root, ref);
6690 return 0;
6693 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
6694 struct btrfs_root *root)
6696 struct btrfs_root *reloc_root;
6697 int ret;
6699 if (root->reloc_root) {
6700 reloc_root = root->reloc_root;
6701 root->reloc_root = NULL;
6702 list_add(&reloc_root->dead_list,
6703 &root->fs_info->dead_reloc_roots);
6705 btrfs_set_root_bytenr(&reloc_root->root_item,
6706 reloc_root->node->start);
6707 btrfs_set_root_level(&root->root_item,
6708 btrfs_header_level(reloc_root->node));
6709 memset(&reloc_root->root_item.drop_progress, 0,
6710 sizeof(struct btrfs_disk_key));
6711 reloc_root->root_item.drop_level = 0;
6713 ret = btrfs_update_root(trans, root->fs_info->tree_root,
6714 &reloc_root->root_key,
6715 &reloc_root->root_item);
6716 BUG_ON(ret);
6718 return 0;
6721 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
6723 struct btrfs_trans_handle *trans;
6724 struct btrfs_root *reloc_root;
6725 struct btrfs_root *prev_root = NULL;
6726 struct list_head dead_roots;
6727 int ret;
6728 unsigned long nr;
6730 INIT_LIST_HEAD(&dead_roots);
6731 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
6733 while (!list_empty(&dead_roots)) {
6734 reloc_root = list_entry(dead_roots.prev,
6735 struct btrfs_root, dead_list);
6736 list_del_init(&reloc_root->dead_list);
6738 BUG_ON(reloc_root->commit_root != NULL);
6739 while (1) {
6740 trans = btrfs_join_transaction(root, 1);
6741 BUG_ON(!trans);
6743 mutex_lock(&root->fs_info->drop_mutex);
6744 ret = btrfs_drop_snapshot(trans, reloc_root);
6745 if (ret != -EAGAIN)
6746 break;
6747 mutex_unlock(&root->fs_info->drop_mutex);
6749 nr = trans->blocks_used;
6750 ret = btrfs_end_transaction(trans, root);
6751 BUG_ON(ret);
6752 btrfs_btree_balance_dirty(root, nr);
6755 free_extent_buffer(reloc_root->node);
6757 ret = btrfs_del_root(trans, root->fs_info->tree_root,
6758 &reloc_root->root_key);
6759 BUG_ON(ret);
6760 mutex_unlock(&root->fs_info->drop_mutex);
6762 nr = trans->blocks_used;
6763 ret = btrfs_end_transaction(trans, root);
6764 BUG_ON(ret);
6765 btrfs_btree_balance_dirty(root, nr);
6767 kfree(prev_root);
6768 prev_root = reloc_root;
6770 if (prev_root) {
6771 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
6772 kfree(prev_root);
6774 return 0;
6777 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
6779 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
6780 return 0;
6783 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
6785 struct btrfs_root *reloc_root;
6786 struct btrfs_trans_handle *trans;
6787 struct btrfs_key location;
6788 int found;
6789 int ret;
6791 mutex_lock(&root->fs_info->tree_reloc_mutex);
6792 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
6793 BUG_ON(ret);
6794 found = !list_empty(&root->fs_info->dead_reloc_roots);
6795 mutex_unlock(&root->fs_info->tree_reloc_mutex);
6797 if (found) {
6798 trans = btrfs_start_transaction(root, 1);
6799 BUG_ON(!trans);
6800 ret = btrfs_commit_transaction(trans, root);
6801 BUG_ON(ret);
6804 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
6805 location.offset = (u64)-1;
6806 location.type = BTRFS_ROOT_ITEM_KEY;
6808 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
6809 BUG_ON(!reloc_root);
6810 btrfs_orphan_cleanup(reloc_root);
6811 return 0;
6814 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
6815 struct btrfs_root *root)
6817 struct btrfs_root *reloc_root;
6818 struct extent_buffer *eb;
6819 struct btrfs_root_item *root_item;
6820 struct btrfs_key root_key;
6821 int ret;
6823 BUG_ON(!root->ref_cows);
6824 if (root->reloc_root)
6825 return 0;
6827 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
6828 BUG_ON(!root_item);
6830 ret = btrfs_copy_root(trans, root, root->commit_root,
6831 &eb, BTRFS_TREE_RELOC_OBJECTID);
6832 BUG_ON(ret);
6834 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
6835 root_key.offset = root->root_key.objectid;
6836 root_key.type = BTRFS_ROOT_ITEM_KEY;
6838 memcpy(root_item, &root->root_item, sizeof(root_item));
6839 btrfs_set_root_refs(root_item, 0);
6840 btrfs_set_root_bytenr(root_item, eb->start);
6841 btrfs_set_root_level(root_item, btrfs_header_level(eb));
6842 btrfs_set_root_generation(root_item, trans->transid);
6844 btrfs_tree_unlock(eb);
6845 free_extent_buffer(eb);
6847 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
6848 &root_key, root_item);
6849 BUG_ON(ret);
6850 kfree(root_item);
6852 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
6853 &root_key);
6854 BUG_ON(!reloc_root);
6855 reloc_root->last_trans = trans->transid;
6856 reloc_root->commit_root = NULL;
6857 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
6859 root->reloc_root = reloc_root;
6860 return 0;
6864 * Core function of space balance.
6866 * The idea is using reloc trees to relocate tree blocks in reference
6867 * counted roots. There is one reloc tree for each subvol, and all
6868 * reloc trees share same root key objectid. Reloc trees are snapshots
6869 * of the latest committed roots of subvols (root->commit_root).
6871 * To relocate a tree block referenced by a subvol, there are two steps.
6872 * COW the block through subvol's reloc tree, then update block pointer
6873 * in the subvol to point to the new block. Since all reloc trees share
6874 * same root key objectid, doing special handing for tree blocks owned
6875 * by them is easy. Once a tree block has been COWed in one reloc tree,
6876 * we can use the resulting new block directly when the same block is
6877 * required to COW again through other reloc trees. By this way, relocated
6878 * tree blocks are shared between reloc trees, so they are also shared
6879 * between subvols.
6881 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
6882 struct btrfs_root *root,
6883 struct btrfs_path *path,
6884 struct btrfs_key *first_key,
6885 struct btrfs_ref_path *ref_path,
6886 struct btrfs_block_group_cache *group,
6887 struct inode *reloc_inode)
6889 struct btrfs_root *reloc_root;
6890 struct extent_buffer *eb = NULL;
6891 struct btrfs_key *keys;
6892 u64 *nodes;
6893 int level;
6894 int shared_level;
6895 int lowest_level = 0;
6896 int ret;
6898 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
6899 lowest_level = ref_path->owner_objectid;
6901 if (!root->ref_cows) {
6902 path->lowest_level = lowest_level;
6903 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
6904 BUG_ON(ret < 0);
6905 path->lowest_level = 0;
6906 btrfs_release_path(root, path);
6907 return 0;
6910 mutex_lock(&root->fs_info->tree_reloc_mutex);
6911 ret = init_reloc_tree(trans, root);
6912 BUG_ON(ret);
6913 reloc_root = root->reloc_root;
6915 shared_level = ref_path->shared_level;
6916 ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
6918 keys = ref_path->node_keys;
6919 nodes = ref_path->new_nodes;
6920 memset(&keys[shared_level + 1], 0,
6921 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
6922 memset(&nodes[shared_level + 1], 0,
6923 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
6925 if (nodes[lowest_level] == 0) {
6926 path->lowest_level = lowest_level;
6927 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
6928 0, 1);
6929 BUG_ON(ret);
6930 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
6931 eb = path->nodes[level];
6932 if (!eb || eb == reloc_root->node)
6933 break;
6934 nodes[level] = eb->start;
6935 if (level == 0)
6936 btrfs_item_key_to_cpu(eb, &keys[level], 0);
6937 else
6938 btrfs_node_key_to_cpu(eb, &keys[level], 0);
6940 if (nodes[0] &&
6941 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6942 eb = path->nodes[0];
6943 ret = replace_extents_in_leaf(trans, reloc_root, eb,
6944 group, reloc_inode);
6945 BUG_ON(ret);
6947 btrfs_release_path(reloc_root, path);
6948 } else {
6949 ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
6950 lowest_level);
6951 BUG_ON(ret);
6955 * replace tree blocks in the fs tree with tree blocks in
6956 * the reloc tree.
6958 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
6959 BUG_ON(ret < 0);
6961 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6962 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
6963 0, 0);
6964 BUG_ON(ret);
6965 extent_buffer_get(path->nodes[0]);
6966 eb = path->nodes[0];
6967 btrfs_release_path(reloc_root, path);
6968 ret = invalidate_extent_cache(reloc_root, eb, group, root);
6969 BUG_ON(ret);
6970 free_extent_buffer(eb);
6973 mutex_unlock(&root->fs_info->tree_reloc_mutex);
6974 path->lowest_level = 0;
6975 return 0;
6978 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
6979 struct btrfs_root *root,
6980 struct btrfs_path *path,
6981 struct btrfs_key *first_key,
6982 struct btrfs_ref_path *ref_path)
6984 int ret;
6986 ret = relocate_one_path(trans, root, path, first_key,
6987 ref_path, NULL, NULL);
6988 BUG_ON(ret);
6990 return 0;
6993 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
6994 struct btrfs_root *extent_root,
6995 struct btrfs_path *path,
6996 struct btrfs_key *extent_key)
6998 int ret;
7000 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7001 if (ret)
7002 goto out;
7003 ret = btrfs_del_item(trans, extent_root, path);
7004 out:
7005 btrfs_release_path(extent_root, path);
7006 return ret;
7009 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7010 struct btrfs_ref_path *ref_path)
7012 struct btrfs_key root_key;
7014 root_key.objectid = ref_path->root_objectid;
7015 root_key.type = BTRFS_ROOT_ITEM_KEY;
7016 if (is_cowonly_root(ref_path->root_objectid))
7017 root_key.offset = 0;
7018 else
7019 root_key.offset = (u64)-1;
7021 return btrfs_read_fs_root_no_name(fs_info, &root_key);
7024 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7025 struct btrfs_path *path,
7026 struct btrfs_key *extent_key,
7027 struct btrfs_block_group_cache *group,
7028 struct inode *reloc_inode, int pass)
7030 struct btrfs_trans_handle *trans;
7031 struct btrfs_root *found_root;
7032 struct btrfs_ref_path *ref_path = NULL;
7033 struct disk_extent *new_extents = NULL;
7034 int nr_extents = 0;
7035 int loops;
7036 int ret;
7037 int level;
7038 struct btrfs_key first_key;
7039 u64 prev_block = 0;
7042 trans = btrfs_start_transaction(extent_root, 1);
7043 BUG_ON(!trans);
7045 if (extent_key->objectid == 0) {
7046 ret = del_extent_zero(trans, extent_root, path, extent_key);
7047 goto out;
7050 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7051 if (!ref_path) {
7052 ret = -ENOMEM;
7053 goto out;
7056 for (loops = 0; ; loops++) {
7057 if (loops == 0) {
7058 ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7059 extent_key->objectid);
7060 } else {
7061 ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7063 if (ret < 0)
7064 goto out;
7065 if (ret > 0)
7066 break;
7068 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7069 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7070 continue;
7072 found_root = read_ref_root(extent_root->fs_info, ref_path);
7073 BUG_ON(!found_root);
7075 * for reference counted tree, only process reference paths
7076 * rooted at the latest committed root.
7078 if (found_root->ref_cows &&
7079 ref_path->root_generation != found_root->root_key.offset)
7080 continue;
7082 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7083 if (pass == 0) {
7085 * copy data extents to new locations
7087 u64 group_start = group->key.objectid;
7088 ret = relocate_data_extent(reloc_inode,
7089 extent_key,
7090 group_start);
7091 if (ret < 0)
7092 goto out;
7093 break;
7095 level = 0;
7096 } else {
7097 level = ref_path->owner_objectid;
7100 if (prev_block != ref_path->nodes[level]) {
7101 struct extent_buffer *eb;
7102 u64 block_start = ref_path->nodes[level];
7103 u64 block_size = btrfs_level_size(found_root, level);
7105 eb = read_tree_block(found_root, block_start,
7106 block_size, 0);
7107 btrfs_tree_lock(eb);
7108 BUG_ON(level != btrfs_header_level(eb));
7110 if (level == 0)
7111 btrfs_item_key_to_cpu(eb, &first_key, 0);
7112 else
7113 btrfs_node_key_to_cpu(eb, &first_key, 0);
7115 btrfs_tree_unlock(eb);
7116 free_extent_buffer(eb);
7117 prev_block = block_start;
7120 mutex_lock(&extent_root->fs_info->trans_mutex);
7121 btrfs_record_root_in_trans(found_root);
7122 mutex_unlock(&extent_root->fs_info->trans_mutex);
7123 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7125 * try to update data extent references while
7126 * keeping metadata shared between snapshots.
7128 if (pass == 1) {
7129 ret = relocate_one_path(trans, found_root,
7130 path, &first_key, ref_path,
7131 group, reloc_inode);
7132 if (ret < 0)
7133 goto out;
7134 continue;
7137 * use fallback method to process the remaining
7138 * references.
7140 if (!new_extents) {
7141 u64 group_start = group->key.objectid;
7142 new_extents = kmalloc(sizeof(*new_extents),
7143 GFP_NOFS);
7144 nr_extents = 1;
7145 ret = get_new_locations(reloc_inode,
7146 extent_key,
7147 group_start, 1,
7148 &new_extents,
7149 &nr_extents);
7150 if (ret)
7151 goto out;
7153 ret = replace_one_extent(trans, found_root,
7154 path, extent_key,
7155 &first_key, ref_path,
7156 new_extents, nr_extents);
7157 } else {
7158 ret = relocate_tree_block(trans, found_root, path,
7159 &first_key, ref_path);
7161 if (ret < 0)
7162 goto out;
7164 ret = 0;
7165 out:
7166 btrfs_end_transaction(trans, extent_root);
7167 kfree(new_extents);
7168 kfree(ref_path);
7169 return ret;
7171 #endif
7173 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7175 u64 num_devices;
7176 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7177 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7179 num_devices = root->fs_info->fs_devices->rw_devices;
7180 if (num_devices == 1) {
7181 stripped |= BTRFS_BLOCK_GROUP_DUP;
7182 stripped = flags & ~stripped;
7184 /* turn raid0 into single device chunks */
7185 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7186 return stripped;
7188 /* turn mirroring into duplication */
7189 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7190 BTRFS_BLOCK_GROUP_RAID10))
7191 return stripped | BTRFS_BLOCK_GROUP_DUP;
7192 return flags;
7193 } else {
7194 /* they already had raid on here, just return */
7195 if (flags & stripped)
7196 return flags;
7198 stripped |= BTRFS_BLOCK_GROUP_DUP;
7199 stripped = flags & ~stripped;
7201 /* switch duplicated blocks with raid1 */
7202 if (flags & BTRFS_BLOCK_GROUP_DUP)
7203 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7205 /* turn single device chunks into raid0 */
7206 return stripped | BTRFS_BLOCK_GROUP_RAID0;
7208 return flags;
7211 static int __alloc_chunk_for_shrink(struct btrfs_root *root,
7212 struct btrfs_block_group_cache *shrink_block_group,
7213 int force)
7215 struct btrfs_trans_handle *trans;
7216 u64 new_alloc_flags;
7217 u64 calc;
7219 spin_lock(&shrink_block_group->lock);
7220 if (btrfs_block_group_used(&shrink_block_group->item) +
7221 shrink_block_group->reserved > 0) {
7222 spin_unlock(&shrink_block_group->lock);
7224 trans = btrfs_start_transaction(root, 1);
7225 spin_lock(&shrink_block_group->lock);
7227 new_alloc_flags = update_block_group_flags(root,
7228 shrink_block_group->flags);
7229 if (new_alloc_flags != shrink_block_group->flags) {
7230 calc =
7231 btrfs_block_group_used(&shrink_block_group->item);
7232 } else {
7233 calc = shrink_block_group->key.offset;
7235 spin_unlock(&shrink_block_group->lock);
7237 do_chunk_alloc(trans, root->fs_info->extent_root,
7238 calc + 2 * 1024 * 1024, new_alloc_flags, force);
7240 btrfs_end_transaction(trans, root);
7241 } else
7242 spin_unlock(&shrink_block_group->lock);
7243 return 0;
7247 int btrfs_prepare_block_group_relocation(struct btrfs_root *root,
7248 struct btrfs_block_group_cache *group)
7251 __alloc_chunk_for_shrink(root, group, 1);
7252 set_block_group_readonly(group);
7253 return 0;
7257 * checks to see if its even possible to relocate this block group.
7259 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7260 * ok to go ahead and try.
7262 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7264 struct btrfs_block_group_cache *block_group;
7265 struct btrfs_space_info *space_info;
7266 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7267 struct btrfs_device *device;
7268 int full = 0;
7269 int ret = 0;
7271 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7273 /* odd, couldn't find the block group, leave it alone */
7274 if (!block_group)
7275 return -1;
7277 /* no bytes used, we're good */
7278 if (!btrfs_block_group_used(&block_group->item))
7279 goto out;
7281 space_info = block_group->space_info;
7282 spin_lock(&space_info->lock);
7284 full = space_info->full;
7287 * if this is the last block group we have in this space, we can't
7288 * relocate it unless we're able to allocate a new chunk below.
7290 * Otherwise, we need to make sure we have room in the space to handle
7291 * all of the extents from this block group. If we can, we're good
7293 if ((space_info->total_bytes != block_group->key.offset) &&
7294 (space_info->bytes_used + space_info->bytes_reserved +
7295 space_info->bytes_pinned + space_info->bytes_readonly +
7296 btrfs_block_group_used(&block_group->item) <
7297 space_info->total_bytes)) {
7298 spin_unlock(&space_info->lock);
7299 goto out;
7301 spin_unlock(&space_info->lock);
7304 * ok we don't have enough space, but maybe we have free space on our
7305 * devices to allocate new chunks for relocation, so loop through our
7306 * alloc devices and guess if we have enough space. However, if we
7307 * were marked as full, then we know there aren't enough chunks, and we
7308 * can just return.
7310 ret = -1;
7311 if (full)
7312 goto out;
7314 mutex_lock(&root->fs_info->chunk_mutex);
7315 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7316 u64 min_free = btrfs_block_group_used(&block_group->item);
7317 u64 dev_offset, max_avail;
7320 * check to make sure we can actually find a chunk with enough
7321 * space to fit our block group in.
7323 if (device->total_bytes > device->bytes_used + min_free) {
7324 ret = find_free_dev_extent(NULL, device, min_free,
7325 &dev_offset, &max_avail);
7326 if (!ret)
7327 break;
7328 ret = -1;
7331 mutex_unlock(&root->fs_info->chunk_mutex);
7332 out:
7333 btrfs_put_block_group(block_group);
7334 return ret;
7337 static int find_first_block_group(struct btrfs_root *root,
7338 struct btrfs_path *path, struct btrfs_key *key)
7340 int ret = 0;
7341 struct btrfs_key found_key;
7342 struct extent_buffer *leaf;
7343 int slot;
7345 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7346 if (ret < 0)
7347 goto out;
7349 while (1) {
7350 slot = path->slots[0];
7351 leaf = path->nodes[0];
7352 if (slot >= btrfs_header_nritems(leaf)) {
7353 ret = btrfs_next_leaf(root, path);
7354 if (ret == 0)
7355 continue;
7356 if (ret < 0)
7357 goto out;
7358 break;
7360 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7362 if (found_key.objectid >= key->objectid &&
7363 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7364 ret = 0;
7365 goto out;
7367 path->slots[0]++;
7369 ret = -ENOENT;
7370 out:
7371 return ret;
7374 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7376 struct btrfs_block_group_cache *block_group;
7377 struct btrfs_space_info *space_info;
7378 struct btrfs_caching_control *caching_ctl;
7379 struct rb_node *n;
7381 down_write(&info->extent_commit_sem);
7382 while (!list_empty(&info->caching_block_groups)) {
7383 caching_ctl = list_entry(info->caching_block_groups.next,
7384 struct btrfs_caching_control, list);
7385 list_del(&caching_ctl->list);
7386 put_caching_control(caching_ctl);
7388 up_write(&info->extent_commit_sem);
7390 spin_lock(&info->block_group_cache_lock);
7391 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7392 block_group = rb_entry(n, struct btrfs_block_group_cache,
7393 cache_node);
7394 rb_erase(&block_group->cache_node,
7395 &info->block_group_cache_tree);
7396 spin_unlock(&info->block_group_cache_lock);
7398 down_write(&block_group->space_info->groups_sem);
7399 list_del(&block_group->list);
7400 up_write(&block_group->space_info->groups_sem);
7402 if (block_group->cached == BTRFS_CACHE_STARTED)
7403 wait_block_group_cache_done(block_group);
7405 btrfs_remove_free_space_cache(block_group);
7406 btrfs_put_block_group(block_group);
7408 spin_lock(&info->block_group_cache_lock);
7410 spin_unlock(&info->block_group_cache_lock);
7412 /* now that all the block groups are freed, go through and
7413 * free all the space_info structs. This is only called during
7414 * the final stages of unmount, and so we know nobody is
7415 * using them. We call synchronize_rcu() once before we start,
7416 * just to be on the safe side.
7418 synchronize_rcu();
7420 while(!list_empty(&info->space_info)) {
7421 space_info = list_entry(info->space_info.next,
7422 struct btrfs_space_info,
7423 list);
7425 list_del(&space_info->list);
7426 kfree(space_info);
7428 return 0;
7431 int btrfs_read_block_groups(struct btrfs_root *root)
7433 struct btrfs_path *path;
7434 int ret;
7435 struct btrfs_block_group_cache *cache;
7436 struct btrfs_fs_info *info = root->fs_info;
7437 struct btrfs_space_info *space_info;
7438 struct btrfs_key key;
7439 struct btrfs_key found_key;
7440 struct extent_buffer *leaf;
7442 root = info->extent_root;
7443 key.objectid = 0;
7444 key.offset = 0;
7445 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7446 path = btrfs_alloc_path();
7447 if (!path)
7448 return -ENOMEM;
7450 while (1) {
7451 ret = find_first_block_group(root, path, &key);
7452 if (ret > 0) {
7453 ret = 0;
7454 goto error;
7456 if (ret != 0)
7457 goto error;
7459 leaf = path->nodes[0];
7460 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7461 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7462 if (!cache) {
7463 ret = -ENOMEM;
7464 break;
7467 atomic_set(&cache->count, 1);
7468 spin_lock_init(&cache->lock);
7469 spin_lock_init(&cache->tree_lock);
7470 cache->fs_info = info;
7471 INIT_LIST_HEAD(&cache->list);
7472 INIT_LIST_HEAD(&cache->cluster_list);
7475 * we only want to have 32k of ram per block group for keeping
7476 * track of free space, and if we pass 1/2 of that we want to
7477 * start converting things over to using bitmaps
7479 cache->extents_thresh = ((1024 * 32) / 2) /
7480 sizeof(struct btrfs_free_space);
7482 read_extent_buffer(leaf, &cache->item,
7483 btrfs_item_ptr_offset(leaf, path->slots[0]),
7484 sizeof(cache->item));
7485 memcpy(&cache->key, &found_key, sizeof(found_key));
7487 key.objectid = found_key.objectid + found_key.offset;
7488 btrfs_release_path(root, path);
7489 cache->flags = btrfs_block_group_flags(&cache->item);
7490 cache->sectorsize = root->sectorsize;
7493 * check for two cases, either we are full, and therefore
7494 * don't need to bother with the caching work since we won't
7495 * find any space, or we are empty, and we can just add all
7496 * the space in and be done with it. This saves us _alot_ of
7497 * time, particularly in the full case.
7499 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7500 exclude_super_stripes(root, cache);
7501 cache->last_byte_to_unpin = (u64)-1;
7502 cache->cached = BTRFS_CACHE_FINISHED;
7503 free_excluded_extents(root, cache);
7504 } else if (btrfs_block_group_used(&cache->item) == 0) {
7505 exclude_super_stripes(root, cache);
7506 cache->last_byte_to_unpin = (u64)-1;
7507 cache->cached = BTRFS_CACHE_FINISHED;
7508 add_new_free_space(cache, root->fs_info,
7509 found_key.objectid,
7510 found_key.objectid +
7511 found_key.offset);
7512 free_excluded_extents(root, cache);
7515 ret = update_space_info(info, cache->flags, found_key.offset,
7516 btrfs_block_group_used(&cache->item),
7517 &space_info);
7518 BUG_ON(ret);
7519 cache->space_info = space_info;
7520 spin_lock(&cache->space_info->lock);
7521 cache->space_info->bytes_super += cache->bytes_super;
7522 spin_unlock(&cache->space_info->lock);
7524 down_write(&space_info->groups_sem);
7525 list_add_tail(&cache->list, &space_info->block_groups);
7526 up_write(&space_info->groups_sem);
7528 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7529 BUG_ON(ret);
7531 set_avail_alloc_bits(root->fs_info, cache->flags);
7532 if (btrfs_chunk_readonly(root, cache->key.objectid))
7533 set_block_group_readonly(cache);
7535 ret = 0;
7536 error:
7537 btrfs_free_path(path);
7538 return ret;
7541 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7542 struct btrfs_root *root, u64 bytes_used,
7543 u64 type, u64 chunk_objectid, u64 chunk_offset,
7544 u64 size)
7546 int ret;
7547 struct btrfs_root *extent_root;
7548 struct btrfs_block_group_cache *cache;
7550 extent_root = root->fs_info->extent_root;
7552 root->fs_info->last_trans_log_full_commit = trans->transid;
7554 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7555 if (!cache)
7556 return -ENOMEM;
7558 cache->key.objectid = chunk_offset;
7559 cache->key.offset = size;
7560 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7561 cache->sectorsize = root->sectorsize;
7564 * we only want to have 32k of ram per block group for keeping track
7565 * of free space, and if we pass 1/2 of that we want to start
7566 * converting things over to using bitmaps
7568 cache->extents_thresh = ((1024 * 32) / 2) /
7569 sizeof(struct btrfs_free_space);
7570 atomic_set(&cache->count, 1);
7571 spin_lock_init(&cache->lock);
7572 spin_lock_init(&cache->tree_lock);
7573 INIT_LIST_HEAD(&cache->list);
7574 INIT_LIST_HEAD(&cache->cluster_list);
7576 btrfs_set_block_group_used(&cache->item, bytes_used);
7577 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7578 cache->flags = type;
7579 btrfs_set_block_group_flags(&cache->item, type);
7581 cache->last_byte_to_unpin = (u64)-1;
7582 cache->cached = BTRFS_CACHE_FINISHED;
7583 exclude_super_stripes(root, cache);
7585 add_new_free_space(cache, root->fs_info, chunk_offset,
7586 chunk_offset + size);
7588 free_excluded_extents(root, cache);
7590 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7591 &cache->space_info);
7592 BUG_ON(ret);
7594 spin_lock(&cache->space_info->lock);
7595 cache->space_info->bytes_super += cache->bytes_super;
7596 spin_unlock(&cache->space_info->lock);
7598 down_write(&cache->space_info->groups_sem);
7599 list_add_tail(&cache->list, &cache->space_info->block_groups);
7600 up_write(&cache->space_info->groups_sem);
7602 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7603 BUG_ON(ret);
7605 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7606 sizeof(cache->item));
7607 BUG_ON(ret);
7609 set_avail_alloc_bits(extent_root->fs_info, type);
7611 return 0;
7614 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7615 struct btrfs_root *root, u64 group_start)
7617 struct btrfs_path *path;
7618 struct btrfs_block_group_cache *block_group;
7619 struct btrfs_free_cluster *cluster;
7620 struct btrfs_key key;
7621 int ret;
7623 root = root->fs_info->extent_root;
7625 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7626 BUG_ON(!block_group);
7627 BUG_ON(!block_group->ro);
7629 memcpy(&key, &block_group->key, sizeof(key));
7631 /* make sure this block group isn't part of an allocation cluster */
7632 cluster = &root->fs_info->data_alloc_cluster;
7633 spin_lock(&cluster->refill_lock);
7634 btrfs_return_cluster_to_free_space(block_group, cluster);
7635 spin_unlock(&cluster->refill_lock);
7638 * make sure this block group isn't part of a metadata
7639 * allocation cluster
7641 cluster = &root->fs_info->meta_alloc_cluster;
7642 spin_lock(&cluster->refill_lock);
7643 btrfs_return_cluster_to_free_space(block_group, cluster);
7644 spin_unlock(&cluster->refill_lock);
7646 path = btrfs_alloc_path();
7647 BUG_ON(!path);
7649 spin_lock(&root->fs_info->block_group_cache_lock);
7650 rb_erase(&block_group->cache_node,
7651 &root->fs_info->block_group_cache_tree);
7652 spin_unlock(&root->fs_info->block_group_cache_lock);
7654 down_write(&block_group->space_info->groups_sem);
7656 * we must use list_del_init so people can check to see if they
7657 * are still on the list after taking the semaphore
7659 list_del_init(&block_group->list);
7660 up_write(&block_group->space_info->groups_sem);
7662 if (block_group->cached == BTRFS_CACHE_STARTED)
7663 wait_block_group_cache_done(block_group);
7665 btrfs_remove_free_space_cache(block_group);
7667 spin_lock(&block_group->space_info->lock);
7668 block_group->space_info->total_bytes -= block_group->key.offset;
7669 block_group->space_info->bytes_readonly -= block_group->key.offset;
7670 spin_unlock(&block_group->space_info->lock);
7672 btrfs_clear_space_info_full(root->fs_info);
7674 btrfs_put_block_group(block_group);
7675 btrfs_put_block_group(block_group);
7677 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7678 if (ret > 0)
7679 ret = -EIO;
7680 if (ret < 0)
7681 goto out;
7683 ret = btrfs_del_item(trans, root, path);
7684 out:
7685 btrfs_free_path(path);
7686 return ret;