4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
65 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
66 unsigned int core_pipe_limit
;
67 int suid_dumpable
= 0;
69 /* The maximal length of core_pattern is also specified in sysctl.c */
71 static LIST_HEAD(formats
);
72 static DEFINE_RWLOCK(binfmt_lock
);
74 int __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
78 write_lock(&binfmt_lock
);
79 insert
? list_add(&fmt
->lh
, &formats
) :
80 list_add_tail(&fmt
->lh
, &formats
);
81 write_unlock(&binfmt_lock
);
85 EXPORT_SYMBOL(__register_binfmt
);
87 void unregister_binfmt(struct linux_binfmt
* fmt
)
89 write_lock(&binfmt_lock
);
91 write_unlock(&binfmt_lock
);
94 EXPORT_SYMBOL(unregister_binfmt
);
96 static inline void put_binfmt(struct linux_binfmt
* fmt
)
98 module_put(fmt
->module
);
102 * Note that a shared library must be both readable and executable due to
105 * Also note that we take the address to load from from the file itself.
107 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
110 char *tmp
= getname(library
);
111 int error
= PTR_ERR(tmp
);
116 file
= do_filp_open(AT_FDCWD
, tmp
,
117 O_LARGEFILE
| O_RDONLY
| FMODE_EXEC
, 0,
118 MAY_READ
| MAY_EXEC
| MAY_OPEN
);
120 error
= PTR_ERR(file
);
125 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
129 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
132 fsnotify_open(file
->f_path
.dentry
);
136 struct linux_binfmt
* fmt
;
138 read_lock(&binfmt_lock
);
139 list_for_each_entry(fmt
, &formats
, lh
) {
140 if (!fmt
->load_shlib
)
142 if (!try_module_get(fmt
->module
))
144 read_unlock(&binfmt_lock
);
145 error
= fmt
->load_shlib(file
);
146 read_lock(&binfmt_lock
);
148 if (error
!= -ENOEXEC
)
151 read_unlock(&binfmt_lock
);
161 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
167 #ifdef CONFIG_STACK_GROWSUP
169 ret
= expand_stack_downwards(bprm
->vma
, pos
);
174 ret
= get_user_pages(current
, bprm
->mm
, pos
,
175 1, write
, 1, &page
, NULL
);
180 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
184 * We've historically supported up to 32 pages (ARG_MAX)
185 * of argument strings even with small stacks
191 * Limit to 1/4-th the stack size for the argv+env strings.
193 * - the remaining binfmt code will not run out of stack space,
194 * - the program will have a reasonable amount of stack left
197 rlim
= current
->signal
->rlim
;
198 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4) {
207 static void put_arg_page(struct page
*page
)
212 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
216 static void free_arg_pages(struct linux_binprm
*bprm
)
220 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
223 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
226 static int __bprm_mm_init(struct linux_binprm
*bprm
)
229 struct vm_area_struct
*vma
= NULL
;
230 struct mm_struct
*mm
= bprm
->mm
;
232 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
236 down_write(&mm
->mmap_sem
);
240 * Place the stack at the largest stack address the architecture
241 * supports. Later, we'll move this to an appropriate place. We don't
242 * use STACK_TOP because that can depend on attributes which aren't
245 BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
246 vma
->vm_end
= STACK_TOP_MAX
;
247 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
248 vma
->vm_flags
= VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
249 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
250 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
251 err
= insert_vm_struct(mm
, vma
);
255 mm
->stack_vm
= mm
->total_vm
= 1;
256 up_write(&mm
->mmap_sem
);
257 bprm
->p
= vma
->vm_end
- sizeof(void *);
260 up_write(&mm
->mmap_sem
);
262 kmem_cache_free(vm_area_cachep
, vma
);
266 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
268 return len
<= MAX_ARG_STRLEN
;
273 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
278 page
= bprm
->page
[pos
/ PAGE_SIZE
];
279 if (!page
&& write
) {
280 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
283 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
289 static void put_arg_page(struct page
*page
)
293 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
296 __free_page(bprm
->page
[i
]);
297 bprm
->page
[i
] = NULL
;
301 static void free_arg_pages(struct linux_binprm
*bprm
)
305 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
306 free_arg_page(bprm
, i
);
309 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
314 static int __bprm_mm_init(struct linux_binprm
*bprm
)
316 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
320 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
322 return len
<= bprm
->p
;
325 #endif /* CONFIG_MMU */
328 * Create a new mm_struct and populate it with a temporary stack
329 * vm_area_struct. We don't have enough context at this point to set the stack
330 * flags, permissions, and offset, so we use temporary values. We'll update
331 * them later in setup_arg_pages().
333 int bprm_mm_init(struct linux_binprm
*bprm
)
336 struct mm_struct
*mm
= NULL
;
338 bprm
->mm
= mm
= mm_alloc();
343 err
= init_new_context(current
, mm
);
347 err
= __bprm_mm_init(bprm
);
363 * count() counts the number of strings in array ARGV.
365 static int count(char __user
* __user
* argv
, int max
)
373 if (get_user(p
, argv
))
387 * 'copy_strings()' copies argument/environment strings from the old
388 * processes's memory to the new process's stack. The call to get_user_pages()
389 * ensures the destination page is created and not swapped out.
391 static int copy_strings(int argc
, char __user
* __user
* argv
,
392 struct linux_binprm
*bprm
)
394 struct page
*kmapped_page
= NULL
;
396 unsigned long kpos
= 0;
404 if (get_user(str
, argv
+argc
) ||
405 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
410 if (!valid_arg_len(bprm
, len
)) {
415 /* We're going to work our way backwords. */
421 int offset
, bytes_to_copy
;
423 offset
= pos
% PAGE_SIZE
;
427 bytes_to_copy
= offset
;
428 if (bytes_to_copy
> len
)
431 offset
-= bytes_to_copy
;
432 pos
-= bytes_to_copy
;
433 str
-= bytes_to_copy
;
434 len
-= bytes_to_copy
;
436 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
439 page
= get_arg_page(bprm
, pos
, 1);
446 flush_kernel_dcache_page(kmapped_page
);
447 kunmap(kmapped_page
);
448 put_arg_page(kmapped_page
);
451 kaddr
= kmap(kmapped_page
);
452 kpos
= pos
& PAGE_MASK
;
453 flush_arg_page(bprm
, kpos
, kmapped_page
);
455 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
464 flush_kernel_dcache_page(kmapped_page
);
465 kunmap(kmapped_page
);
466 put_arg_page(kmapped_page
);
472 * Like copy_strings, but get argv and its values from kernel memory.
474 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
477 mm_segment_t oldfs
= get_fs();
479 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
483 EXPORT_SYMBOL(copy_strings_kernel
);
488 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
489 * the binfmt code determines where the new stack should reside, we shift it to
490 * its final location. The process proceeds as follows:
492 * 1) Use shift to calculate the new vma endpoints.
493 * 2) Extend vma to cover both the old and new ranges. This ensures the
494 * arguments passed to subsequent functions are consistent.
495 * 3) Move vma's page tables to the new range.
496 * 4) Free up any cleared pgd range.
497 * 5) Shrink the vma to cover only the new range.
499 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
501 struct mm_struct
*mm
= vma
->vm_mm
;
502 unsigned long old_start
= vma
->vm_start
;
503 unsigned long old_end
= vma
->vm_end
;
504 unsigned long length
= old_end
- old_start
;
505 unsigned long new_start
= old_start
- shift
;
506 unsigned long new_end
= old_end
- shift
;
507 struct mmu_gather
*tlb
;
509 BUG_ON(new_start
> new_end
);
512 * ensure there are no vmas between where we want to go
515 if (vma
!= find_vma(mm
, new_start
))
519 * cover the whole range: [new_start, old_end)
521 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
525 * move the page tables downwards, on failure we rely on
526 * process cleanup to remove whatever mess we made.
528 if (length
!= move_page_tables(vma
, old_start
,
529 vma
, new_start
, length
))
533 tlb
= tlb_gather_mmu(mm
, 0);
534 if (new_end
> old_start
) {
536 * when the old and new regions overlap clear from new_end.
538 free_pgd_range(tlb
, new_end
, old_end
, new_end
,
539 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
542 * otherwise, clean from old_start; this is done to not touch
543 * the address space in [new_end, old_start) some architectures
544 * have constraints on va-space that make this illegal (IA64) -
545 * for the others its just a little faster.
547 free_pgd_range(tlb
, old_start
, old_end
, new_end
,
548 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
550 tlb_finish_mmu(tlb
, new_end
, old_end
);
553 * Shrink the vma to just the new range. Always succeeds.
555 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
561 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
562 * the stack is optionally relocated, and some extra space is added.
564 int setup_arg_pages(struct linux_binprm
*bprm
,
565 unsigned long stack_top
,
566 int executable_stack
)
569 unsigned long stack_shift
;
570 struct mm_struct
*mm
= current
->mm
;
571 struct vm_area_struct
*vma
= bprm
->vma
;
572 struct vm_area_struct
*prev
= NULL
;
573 unsigned long vm_flags
;
574 unsigned long stack_base
;
575 unsigned long stack_size
;
576 unsigned long stack_expand
;
577 unsigned long rlim_stack
;
579 #ifdef CONFIG_STACK_GROWSUP
580 /* Limit stack size to 1GB */
581 stack_base
= rlimit_max(RLIMIT_STACK
);
582 if (stack_base
> (1 << 30))
583 stack_base
= 1 << 30;
585 /* Make sure we didn't let the argument array grow too large. */
586 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
589 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
591 stack_shift
= vma
->vm_start
- stack_base
;
592 mm
->arg_start
= bprm
->p
- stack_shift
;
593 bprm
->p
= vma
->vm_end
- stack_shift
;
595 stack_top
= arch_align_stack(stack_top
);
596 stack_top
= PAGE_ALIGN(stack_top
);
597 stack_shift
= vma
->vm_end
- stack_top
;
599 bprm
->p
-= stack_shift
;
600 mm
->arg_start
= bprm
->p
;
604 bprm
->loader
-= stack_shift
;
605 bprm
->exec
-= stack_shift
;
607 down_write(&mm
->mmap_sem
);
608 vm_flags
= VM_STACK_FLAGS
;
611 * Adjust stack execute permissions; explicitly enable for
612 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
613 * (arch default) otherwise.
615 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
617 else if (executable_stack
== EXSTACK_DISABLE_X
)
618 vm_flags
&= ~VM_EXEC
;
619 vm_flags
|= mm
->def_flags
;
620 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
622 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
628 /* Move stack pages down in memory. */
630 ret
= shift_arg_pages(vma
, stack_shift
);
635 /* mprotect_fixup is overkill to remove the temporary stack flags */
636 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
638 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
639 stack_size
= vma
->vm_end
- vma
->vm_start
;
641 * Align this down to a page boundary as expand_stack
644 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
645 #ifdef CONFIG_STACK_GROWSUP
646 if (stack_size
+ stack_expand
> rlim_stack
)
647 stack_base
= vma
->vm_start
+ rlim_stack
;
649 stack_base
= vma
->vm_end
+ stack_expand
;
651 if (stack_size
+ stack_expand
> rlim_stack
)
652 stack_base
= vma
->vm_end
- rlim_stack
;
654 stack_base
= vma
->vm_start
- stack_expand
;
656 ret
= expand_stack(vma
, stack_base
);
661 up_write(&mm
->mmap_sem
);
664 EXPORT_SYMBOL(setup_arg_pages
);
666 #endif /* CONFIG_MMU */
668 struct file
*open_exec(const char *name
)
673 file
= do_filp_open(AT_FDCWD
, name
,
674 O_LARGEFILE
| O_RDONLY
| FMODE_EXEC
, 0,
675 MAY_EXEC
| MAY_OPEN
);
680 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
683 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
686 fsnotify_open(file
->f_path
.dentry
);
688 err
= deny_write_access(file
);
699 EXPORT_SYMBOL(open_exec
);
701 int kernel_read(struct file
*file
, loff_t offset
,
702 char *addr
, unsigned long count
)
710 /* The cast to a user pointer is valid due to the set_fs() */
711 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
716 EXPORT_SYMBOL(kernel_read
);
718 static int exec_mmap(struct mm_struct
*mm
)
720 struct task_struct
*tsk
;
721 struct mm_struct
* old_mm
, *active_mm
;
723 /* Notify parent that we're no longer interested in the old VM */
725 old_mm
= current
->mm
;
726 sync_mm_rss(tsk
, old_mm
);
727 mm_release(tsk
, old_mm
);
731 * Make sure that if there is a core dump in progress
732 * for the old mm, we get out and die instead of going
733 * through with the exec. We must hold mmap_sem around
734 * checking core_state and changing tsk->mm.
736 down_read(&old_mm
->mmap_sem
);
737 if (unlikely(old_mm
->core_state
)) {
738 up_read(&old_mm
->mmap_sem
);
743 active_mm
= tsk
->active_mm
;
746 activate_mm(active_mm
, mm
);
748 arch_pick_mmap_layout(mm
);
750 up_read(&old_mm
->mmap_sem
);
751 BUG_ON(active_mm
!= old_mm
);
752 mm_update_next_owner(old_mm
);
761 * This function makes sure the current process has its own signal table,
762 * so that flush_signal_handlers can later reset the handlers without
763 * disturbing other processes. (Other processes might share the signal
764 * table via the CLONE_SIGHAND option to clone().)
766 static int de_thread(struct task_struct
*tsk
)
768 struct signal_struct
*sig
= tsk
->signal
;
769 struct sighand_struct
*oldsighand
= tsk
->sighand
;
770 spinlock_t
*lock
= &oldsighand
->siglock
;
772 if (thread_group_empty(tsk
))
773 goto no_thread_group
;
776 * Kill all other threads in the thread group.
779 if (signal_group_exit(sig
)) {
781 * Another group action in progress, just
782 * return so that the signal is processed.
784 spin_unlock_irq(lock
);
788 sig
->group_exit_task
= tsk
;
789 sig
->notify_count
= zap_other_threads(tsk
);
790 if (!thread_group_leader(tsk
))
793 while (sig
->notify_count
) {
794 __set_current_state(TASK_UNINTERRUPTIBLE
);
795 spin_unlock_irq(lock
);
799 spin_unlock_irq(lock
);
802 * At this point all other threads have exited, all we have to
803 * do is to wait for the thread group leader to become inactive,
804 * and to assume its PID:
806 if (!thread_group_leader(tsk
)) {
807 struct task_struct
*leader
= tsk
->group_leader
;
809 sig
->notify_count
= -1; /* for exit_notify() */
811 write_lock_irq(&tasklist_lock
);
812 if (likely(leader
->exit_state
))
814 __set_current_state(TASK_UNINTERRUPTIBLE
);
815 write_unlock_irq(&tasklist_lock
);
820 * The only record we have of the real-time age of a
821 * process, regardless of execs it's done, is start_time.
822 * All the past CPU time is accumulated in signal_struct
823 * from sister threads now dead. But in this non-leader
824 * exec, nothing survives from the original leader thread,
825 * whose birth marks the true age of this process now.
826 * When we take on its identity by switching to its PID, we
827 * also take its birthdate (always earlier than our own).
829 tsk
->start_time
= leader
->start_time
;
831 BUG_ON(!same_thread_group(leader
, tsk
));
832 BUG_ON(has_group_leader_pid(tsk
));
834 * An exec() starts a new thread group with the
835 * TGID of the previous thread group. Rehash the
836 * two threads with a switched PID, and release
837 * the former thread group leader:
840 /* Become a process group leader with the old leader's pid.
841 * The old leader becomes a thread of the this thread group.
842 * Note: The old leader also uses this pid until release_task
843 * is called. Odd but simple and correct.
845 detach_pid(tsk
, PIDTYPE_PID
);
846 tsk
->pid
= leader
->pid
;
847 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
848 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
849 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
851 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
852 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
854 tsk
->group_leader
= tsk
;
855 leader
->group_leader
= tsk
;
857 tsk
->exit_signal
= SIGCHLD
;
859 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
860 leader
->exit_state
= EXIT_DEAD
;
861 write_unlock_irq(&tasklist_lock
);
863 release_task(leader
);
866 sig
->group_exit_task
= NULL
;
867 sig
->notify_count
= 0;
871 setmax_mm_hiwater_rss(&sig
->maxrss
, current
->mm
);
874 flush_itimer_signals();
876 if (atomic_read(&oldsighand
->count
) != 1) {
877 struct sighand_struct
*newsighand
;
879 * This ->sighand is shared with the CLONE_SIGHAND
880 * but not CLONE_THREAD task, switch to the new one.
882 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
886 atomic_set(&newsighand
->count
, 1);
887 memcpy(newsighand
->action
, oldsighand
->action
,
888 sizeof(newsighand
->action
));
890 write_lock_irq(&tasklist_lock
);
891 spin_lock(&oldsighand
->siglock
);
892 rcu_assign_pointer(tsk
->sighand
, newsighand
);
893 spin_unlock(&oldsighand
->siglock
);
894 write_unlock_irq(&tasklist_lock
);
896 __cleanup_sighand(oldsighand
);
899 BUG_ON(!thread_group_leader(tsk
));
904 * These functions flushes out all traces of the currently running executable
905 * so that a new one can be started
907 static void flush_old_files(struct files_struct
* files
)
912 spin_lock(&files
->file_lock
);
914 unsigned long set
, i
;
918 fdt
= files_fdtable(files
);
919 if (i
>= fdt
->max_fds
)
921 set
= fdt
->close_on_exec
->fds_bits
[j
];
924 fdt
->close_on_exec
->fds_bits
[j
] = 0;
925 spin_unlock(&files
->file_lock
);
926 for ( ; set
; i
++,set
>>= 1) {
931 spin_lock(&files
->file_lock
);
934 spin_unlock(&files
->file_lock
);
937 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
939 /* buf must be at least sizeof(tsk->comm) in size */
941 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
946 void set_task_comm(struct task_struct
*tsk
, char *buf
)
951 * Threads may access current->comm without holding
952 * the task lock, so write the string carefully.
953 * Readers without a lock may see incomplete new
954 * names but are safe from non-terminating string reads.
956 memset(tsk
->comm
, 0, TASK_COMM_LEN
);
958 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
960 perf_event_comm(tsk
);
963 int flush_old_exec(struct linux_binprm
* bprm
)
968 * Make sure we have a private signal table and that
969 * we are unassociated from the previous thread group.
971 retval
= de_thread(current
);
975 set_mm_exe_file(bprm
->mm
, bprm
->file
);
978 * Release all of the old mmap stuff
980 retval
= exec_mmap(bprm
->mm
);
984 bprm
->mm
= NULL
; /* We're using it now */
986 current
->flags
&= ~PF_RANDOMIZE
;
988 current
->personality
&= ~bprm
->per_clear
;
995 EXPORT_SYMBOL(flush_old_exec
);
997 void setup_new_exec(struct linux_binprm
* bprm
)
1001 char tcomm
[sizeof(current
->comm
)];
1003 arch_pick_mmap_layout(current
->mm
);
1005 /* This is the point of no return */
1006 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1008 if (current_euid() == current_uid() && current_egid() == current_gid())
1009 set_dumpable(current
->mm
, 1);
1011 set_dumpable(current
->mm
, suid_dumpable
);
1013 name
= bprm
->filename
;
1015 /* Copies the binary name from after last slash */
1016 for (i
=0; (ch
= *(name
++)) != '\0';) {
1018 i
= 0; /* overwrite what we wrote */
1020 if (i
< (sizeof(tcomm
) - 1))
1024 set_task_comm(current
, tcomm
);
1026 /* Set the new mm task size. We have to do that late because it may
1027 * depend on TIF_32BIT which is only updated in flush_thread() on
1028 * some architectures like powerpc
1030 current
->mm
->task_size
= TASK_SIZE
;
1032 /* install the new credentials */
1033 if (bprm
->cred
->uid
!= current_euid() ||
1034 bprm
->cred
->gid
!= current_egid()) {
1035 current
->pdeath_signal
= 0;
1036 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1037 bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
) {
1038 set_dumpable(current
->mm
, suid_dumpable
);
1042 * Flush performance counters when crossing a
1045 if (!get_dumpable(current
->mm
))
1046 perf_event_exit_task(current
);
1048 /* An exec changes our domain. We are no longer part of the thread
1051 current
->self_exec_id
++;
1053 flush_signal_handlers(current
, 0);
1054 flush_old_files(current
->files
);
1056 EXPORT_SYMBOL(setup_new_exec
);
1059 * Prepare credentials and lock ->cred_guard_mutex.
1060 * install_exec_creds() commits the new creds and drops the lock.
1061 * Or, if exec fails before, free_bprm() should release ->cred and
1064 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1066 if (mutex_lock_interruptible(¤t
->cred_guard_mutex
))
1067 return -ERESTARTNOINTR
;
1069 bprm
->cred
= prepare_exec_creds();
1070 if (likely(bprm
->cred
))
1073 mutex_unlock(¤t
->cred_guard_mutex
);
1077 void free_bprm(struct linux_binprm
*bprm
)
1079 free_arg_pages(bprm
);
1081 mutex_unlock(¤t
->cred_guard_mutex
);
1082 abort_creds(bprm
->cred
);
1088 * install the new credentials for this executable
1090 void install_exec_creds(struct linux_binprm
*bprm
)
1092 security_bprm_committing_creds(bprm
);
1094 commit_creds(bprm
->cred
);
1097 * cred_guard_mutex must be held at least to this point to prevent
1098 * ptrace_attach() from altering our determination of the task's
1099 * credentials; any time after this it may be unlocked.
1101 security_bprm_committed_creds(bprm
);
1102 mutex_unlock(¤t
->cred_guard_mutex
);
1104 EXPORT_SYMBOL(install_exec_creds
);
1107 * determine how safe it is to execute the proposed program
1108 * - the caller must hold current->cred_guard_mutex to protect against
1111 int check_unsafe_exec(struct linux_binprm
*bprm
)
1113 struct task_struct
*p
= current
, *t
;
1117 bprm
->unsafe
= tracehook_unsafe_exec(p
);
1120 write_lock(&p
->fs
->lock
);
1122 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1128 if (p
->fs
->users
> n_fs
) {
1129 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1132 if (!p
->fs
->in_exec
) {
1137 write_unlock(&p
->fs
->lock
);
1143 * Fill the binprm structure from the inode.
1144 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1146 * This may be called multiple times for binary chains (scripts for example).
1148 int prepare_binprm(struct linux_binprm
*bprm
)
1151 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1154 mode
= inode
->i_mode
;
1155 if (bprm
->file
->f_op
== NULL
)
1158 /* clear any previous set[ug]id data from a previous binary */
1159 bprm
->cred
->euid
= current_euid();
1160 bprm
->cred
->egid
= current_egid();
1162 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1164 if (mode
& S_ISUID
) {
1165 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1166 bprm
->cred
->euid
= inode
->i_uid
;
1171 * If setgid is set but no group execute bit then this
1172 * is a candidate for mandatory locking, not a setgid
1175 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1176 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1177 bprm
->cred
->egid
= inode
->i_gid
;
1181 /* fill in binprm security blob */
1182 retval
= security_bprm_set_creds(bprm
);
1185 bprm
->cred_prepared
= 1;
1187 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1188 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1191 EXPORT_SYMBOL(prepare_binprm
);
1194 * Arguments are '\0' separated strings found at the location bprm->p
1195 * points to; chop off the first by relocating brpm->p to right after
1196 * the first '\0' encountered.
1198 int remove_arg_zero(struct linux_binprm
*bprm
)
1201 unsigned long offset
;
1209 offset
= bprm
->p
& ~PAGE_MASK
;
1210 page
= get_arg_page(bprm
, bprm
->p
, 0);
1215 kaddr
= kmap_atomic(page
, KM_USER0
);
1217 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1218 offset
++, bprm
->p
++)
1221 kunmap_atomic(kaddr
, KM_USER0
);
1224 if (offset
== PAGE_SIZE
)
1225 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1226 } while (offset
== PAGE_SIZE
);
1235 EXPORT_SYMBOL(remove_arg_zero
);
1238 * cycle the list of binary formats handler, until one recognizes the image
1240 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1242 unsigned int depth
= bprm
->recursion_depth
;
1244 struct linux_binfmt
*fmt
;
1246 retval
= security_bprm_check(bprm
);
1250 /* kernel module loader fixup */
1251 /* so we don't try to load run modprobe in kernel space. */
1254 retval
= audit_bprm(bprm
);
1259 for (try=0; try<2; try++) {
1260 read_lock(&binfmt_lock
);
1261 list_for_each_entry(fmt
, &formats
, lh
) {
1262 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1265 if (!try_module_get(fmt
->module
))
1267 read_unlock(&binfmt_lock
);
1268 retval
= fn(bprm
, regs
);
1270 * Restore the depth counter to its starting value
1271 * in this call, so we don't have to rely on every
1272 * load_binary function to restore it on return.
1274 bprm
->recursion_depth
= depth
;
1277 tracehook_report_exec(fmt
, bprm
, regs
);
1279 allow_write_access(bprm
->file
);
1283 current
->did_exec
= 1;
1284 proc_exec_connector(current
);
1287 read_lock(&binfmt_lock
);
1289 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1292 read_unlock(&binfmt_lock
);
1296 read_unlock(&binfmt_lock
);
1297 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1299 #ifdef CONFIG_MODULES
1301 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1302 if (printable(bprm
->buf
[0]) &&
1303 printable(bprm
->buf
[1]) &&
1304 printable(bprm
->buf
[2]) &&
1305 printable(bprm
->buf
[3]))
1306 break; /* -ENOEXEC */
1307 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1314 EXPORT_SYMBOL(search_binary_handler
);
1317 * sys_execve() executes a new program.
1319 int do_execve(char * filename
,
1320 char __user
*__user
*argv
,
1321 char __user
*__user
*envp
,
1322 struct pt_regs
* regs
)
1324 struct linux_binprm
*bprm
;
1326 struct files_struct
*displaced
;
1330 retval
= unshare_files(&displaced
);
1335 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1339 retval
= prepare_bprm_creds(bprm
);
1343 retval
= check_unsafe_exec(bprm
);
1346 clear_in_exec
= retval
;
1347 current
->in_execve
= 1;
1349 file
= open_exec(filename
);
1350 retval
= PTR_ERR(file
);
1357 bprm
->filename
= filename
;
1358 bprm
->interp
= filename
;
1360 retval
= bprm_mm_init(bprm
);
1364 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1365 if ((retval
= bprm
->argc
) < 0)
1368 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1369 if ((retval
= bprm
->envc
) < 0)
1372 retval
= prepare_binprm(bprm
);
1376 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1380 bprm
->exec
= bprm
->p
;
1381 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1385 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1389 current
->flags
&= ~PF_KTHREAD
;
1390 retval
= search_binary_handler(bprm
,regs
);
1394 /* execve succeeded */
1395 current
->fs
->in_exec
= 0;
1396 current
->in_execve
= 0;
1397 acct_update_integrals(current
);
1400 put_files_struct(displaced
);
1409 allow_write_access(bprm
->file
);
1415 current
->fs
->in_exec
= 0;
1416 current
->in_execve
= 0;
1423 reset_files_struct(displaced
);
1428 void set_binfmt(struct linux_binfmt
*new)
1430 struct mm_struct
*mm
= current
->mm
;
1433 module_put(mm
->binfmt
->module
);
1437 __module_get(new->module
);
1440 EXPORT_SYMBOL(set_binfmt
);
1442 /* format_corename will inspect the pattern parameter, and output a
1443 * name into corename, which must have space for at least
1444 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1446 static int format_corename(char *corename
, long signr
)
1448 const struct cred
*cred
= current_cred();
1449 const char *pat_ptr
= core_pattern
;
1450 int ispipe
= (*pat_ptr
== '|');
1451 char *out_ptr
= corename
;
1452 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1454 int pid_in_pattern
= 0;
1456 /* Repeat as long as we have more pattern to process and more output
1459 if (*pat_ptr
!= '%') {
1460 if (out_ptr
== out_end
)
1462 *out_ptr
++ = *pat_ptr
++;
1464 switch (*++pat_ptr
) {
1467 /* Double percent, output one percent */
1469 if (out_ptr
== out_end
)
1476 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1477 "%d", task_tgid_vnr(current
));
1478 if (rc
> out_end
- out_ptr
)
1484 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1486 if (rc
> out_end
- out_ptr
)
1492 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1494 if (rc
> out_end
- out_ptr
)
1498 /* signal that caused the coredump */
1500 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1502 if (rc
> out_end
- out_ptr
)
1506 /* UNIX time of coredump */
1509 do_gettimeofday(&tv
);
1510 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1512 if (rc
> out_end
- out_ptr
)
1519 down_read(&uts_sem
);
1520 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1521 "%s", utsname()->nodename
);
1523 if (rc
> out_end
- out_ptr
)
1529 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1530 "%s", current
->comm
);
1531 if (rc
> out_end
- out_ptr
)
1535 /* core limit size */
1537 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1538 "%lu", rlimit(RLIMIT_CORE
));
1539 if (rc
> out_end
- out_ptr
)
1549 /* Backward compatibility with core_uses_pid:
1551 * If core_pattern does not include a %p (as is the default)
1552 * and core_uses_pid is set, then .%pid will be appended to
1553 * the filename. Do not do this for piped commands. */
1554 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1555 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1556 ".%d", task_tgid_vnr(current
));
1557 if (rc
> out_end
- out_ptr
)
1566 static int zap_process(struct task_struct
*start
, int exit_code
)
1568 struct task_struct
*t
;
1571 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1572 start
->signal
->group_exit_code
= exit_code
;
1573 start
->signal
->group_stop_count
= 0;
1577 if (t
!= current
&& t
->mm
) {
1578 sigaddset(&t
->pending
.signal
, SIGKILL
);
1579 signal_wake_up(t
, 1);
1582 } while_each_thread(start
, t
);
1587 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1588 struct core_state
*core_state
, int exit_code
)
1590 struct task_struct
*g
, *p
;
1591 unsigned long flags
;
1594 spin_lock_irq(&tsk
->sighand
->siglock
);
1595 if (!signal_group_exit(tsk
->signal
)) {
1596 mm
->core_state
= core_state
;
1597 nr
= zap_process(tsk
, exit_code
);
1599 spin_unlock_irq(&tsk
->sighand
->siglock
);
1600 if (unlikely(nr
< 0))
1603 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1606 * We should find and kill all tasks which use this mm, and we should
1607 * count them correctly into ->nr_threads. We don't take tasklist
1608 * lock, but this is safe wrt:
1611 * None of sub-threads can fork after zap_process(leader). All
1612 * processes which were created before this point should be
1613 * visible to zap_threads() because copy_process() adds the new
1614 * process to the tail of init_task.tasks list, and lock/unlock
1615 * of ->siglock provides a memory barrier.
1618 * The caller holds mm->mmap_sem. This means that the task which
1619 * uses this mm can't pass exit_mm(), so it can't exit or clear
1623 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1624 * we must see either old or new leader, this does not matter.
1625 * However, it can change p->sighand, so lock_task_sighand(p)
1626 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1629 * Note also that "g" can be the old leader with ->mm == NULL
1630 * and already unhashed and thus removed from ->thread_group.
1631 * This is OK, __unhash_process()->list_del_rcu() does not
1632 * clear the ->next pointer, we will find the new leader via
1636 for_each_process(g
) {
1637 if (g
== tsk
->group_leader
)
1639 if (g
->flags
& PF_KTHREAD
)
1644 if (unlikely(p
->mm
== mm
)) {
1645 lock_task_sighand(p
, &flags
);
1646 nr
+= zap_process(p
, exit_code
);
1647 unlock_task_sighand(p
, &flags
);
1651 } while_each_thread(g
, p
);
1655 atomic_set(&core_state
->nr_threads
, nr
);
1659 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1661 struct task_struct
*tsk
= current
;
1662 struct mm_struct
*mm
= tsk
->mm
;
1663 struct completion
*vfork_done
;
1664 int core_waiters
= -EBUSY
;
1666 init_completion(&core_state
->startup
);
1667 core_state
->dumper
.task
= tsk
;
1668 core_state
->dumper
.next
= NULL
;
1670 down_write(&mm
->mmap_sem
);
1671 if (!mm
->core_state
)
1672 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1673 up_write(&mm
->mmap_sem
);
1675 if (unlikely(core_waiters
< 0))
1679 * Make sure nobody is waiting for us to release the VM,
1680 * otherwise we can deadlock when we wait on each other
1682 vfork_done
= tsk
->vfork_done
;
1684 tsk
->vfork_done
= NULL
;
1685 complete(vfork_done
);
1689 wait_for_completion(&core_state
->startup
);
1691 return core_waiters
;
1694 static void coredump_finish(struct mm_struct
*mm
)
1696 struct core_thread
*curr
, *next
;
1697 struct task_struct
*task
;
1699 next
= mm
->core_state
->dumper
.next
;
1700 while ((curr
= next
) != NULL
) {
1704 * see exit_mm(), curr->task must not see
1705 * ->task == NULL before we read ->next.
1709 wake_up_process(task
);
1712 mm
->core_state
= NULL
;
1716 * set_dumpable converts traditional three-value dumpable to two flags and
1717 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1718 * these bits are not changed atomically. So get_dumpable can observe the
1719 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1720 * return either old dumpable or new one by paying attention to the order of
1721 * modifying the bits.
1723 * dumpable | mm->flags (binary)
1724 * old new | initial interim final
1725 * ---------+-----------------------
1733 * (*) get_dumpable regards interim value of 10 as 11.
1735 void set_dumpable(struct mm_struct
*mm
, int value
)
1739 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1741 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1744 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1746 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1749 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1751 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1756 static int __get_dumpable(unsigned long mm_flags
)
1760 ret
= mm_flags
& MMF_DUMPABLE_MASK
;
1761 return (ret
>= 2) ? 2 : ret
;
1764 int get_dumpable(struct mm_struct
*mm
)
1766 return __get_dumpable(mm
->flags
);
1769 static void wait_for_dump_helpers(struct file
*file
)
1771 struct pipe_inode_info
*pipe
;
1773 pipe
= file
->f_path
.dentry
->d_inode
->i_pipe
;
1779 while ((pipe
->readers
> 1) && (!signal_pending(current
))) {
1780 wake_up_interruptible_sync(&pipe
->wait
);
1781 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
1794 * helper function to customize the process used
1795 * to collect the core in userspace. Specifically
1796 * it sets up a pipe and installs it as fd 0 (stdin)
1797 * for the process. Returns 0 on success, or
1798 * PTR_ERR on failure.
1799 * Note that it also sets the core limit to 1. This
1800 * is a special value that we use to trap recursive
1803 static int umh_pipe_setup(struct subprocess_info
*info
)
1805 struct file
*rp
, *wp
;
1806 struct fdtable
*fdt
;
1807 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
1808 struct files_struct
*cf
= current
->files
;
1810 wp
= create_write_pipe(0);
1814 rp
= create_read_pipe(wp
, 0);
1816 free_write_pipe(wp
);
1824 spin_lock(&cf
->file_lock
);
1825 fdt
= files_fdtable(cf
);
1826 FD_SET(0, fdt
->open_fds
);
1827 FD_CLR(0, fdt
->close_on_exec
);
1828 spin_unlock(&cf
->file_lock
);
1830 /* and disallow core files too */
1831 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
1836 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
1838 struct core_state core_state
;
1839 char corename
[CORENAME_MAX_SIZE
+ 1];
1840 struct mm_struct
*mm
= current
->mm
;
1841 struct linux_binfmt
* binfmt
;
1842 const struct cred
*old_cred
;
1847 static atomic_t core_dump_count
= ATOMIC_INIT(0);
1848 struct coredump_params cprm
= {
1851 .limit
= rlimit(RLIMIT_CORE
),
1853 * We must use the same mm->flags while dumping core to avoid
1854 * inconsistency of bit flags, since this flag is not protected
1857 .mm_flags
= mm
->flags
,
1860 audit_core_dumps(signr
);
1862 binfmt
= mm
->binfmt
;
1863 if (!binfmt
|| !binfmt
->core_dump
)
1865 if (!__get_dumpable(cprm
.mm_flags
))
1868 cred
= prepare_creds();
1872 * We cannot trust fsuid as being the "true" uid of the
1873 * process nor do we know its entire history. We only know it
1874 * was tainted so we dump it as root in mode 2.
1876 if (__get_dumpable(cprm
.mm_flags
) == 2) {
1877 /* Setuid core dump mode */
1878 flag
= O_EXCL
; /* Stop rewrite attacks */
1879 cred
->fsuid
= 0; /* Dump root private */
1882 retval
= coredump_wait(exit_code
, &core_state
);
1886 old_cred
= override_creds(cred
);
1889 * Clear any false indication of pending signals that might
1890 * be seen by the filesystem code called to write the core file.
1892 clear_thread_flag(TIF_SIGPENDING
);
1895 * lock_kernel() because format_corename() is controlled by sysctl, which
1896 * uses lock_kernel()
1899 ispipe
= format_corename(corename
, signr
);
1906 if (cprm
.limit
== 1) {
1908 * Normally core limits are irrelevant to pipes, since
1909 * we're not writing to the file system, but we use
1910 * cprm.limit of 1 here as a speacial value. Any
1911 * non-1 limit gets set to RLIM_INFINITY below, but
1912 * a limit of 0 skips the dump. This is a consistent
1913 * way to catch recursive crashes. We can still crash
1914 * if the core_pattern binary sets RLIM_CORE = !1
1915 * but it runs as root, and can do lots of stupid things
1916 * Note that we use task_tgid_vnr here to grab the pid
1917 * of the process group leader. That way we get the
1918 * right pid if a thread in a multi-threaded
1919 * core_pattern process dies.
1922 "Process %d(%s) has RLIMIT_CORE set to 1\n",
1923 task_tgid_vnr(current
), current
->comm
);
1924 printk(KERN_WARNING
"Aborting core\n");
1927 cprm
.limit
= RLIM_INFINITY
;
1929 dump_count
= atomic_inc_return(&core_dump_count
);
1930 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
1931 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
1932 task_tgid_vnr(current
), current
->comm
);
1933 printk(KERN_WARNING
"Skipping core dump\n");
1934 goto fail_dropcount
;
1937 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, NULL
);
1939 printk(KERN_WARNING
"%s failed to allocate memory\n",
1941 goto fail_dropcount
;
1944 retval
= call_usermodehelper_fns(helper_argv
[0], helper_argv
,
1945 NULL
, UMH_WAIT_EXEC
, umh_pipe_setup
,
1947 argv_free(helper_argv
);
1949 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1954 struct inode
*inode
;
1956 if (cprm
.limit
< binfmt
->min_coredump
)
1959 cprm
.file
= filp_open(corename
,
1960 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1962 if (IS_ERR(cprm
.file
))
1965 inode
= cprm
.file
->f_path
.dentry
->d_inode
;
1966 if (inode
->i_nlink
> 1)
1968 if (d_unhashed(cprm
.file
->f_path
.dentry
))
1971 * AK: actually i see no reason to not allow this for named
1972 * pipes etc, but keep the previous behaviour for now.
1974 if (!S_ISREG(inode
->i_mode
))
1977 * Dont allow local users get cute and trick others to coredump
1978 * into their pre-created files.
1980 if (inode
->i_uid
!= current_fsuid())
1982 if (!cprm
.file
->f_op
|| !cprm
.file
->f_op
->write
)
1984 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
1988 retval
= binfmt
->core_dump(&cprm
);
1990 current
->signal
->group_exit_code
|= 0x80;
1992 if (ispipe
&& core_pipe_limit
)
1993 wait_for_dump_helpers(cprm
.file
);
1996 filp_close(cprm
.file
, NULL
);
1999 atomic_dec(&core_dump_count
);
2001 coredump_finish(mm
);
2002 revert_creds(old_cred
);